

Delft University of Technology

AI-Assisted Design & Optimization for Predictive Maintenance
A Case Study using Deep Learning and Search Metaheuristics for Structural Health
Monitoring in Aviation
Ewald, Vincentius

DOI
10.4233/uuid:a3070931-7512-44fa-833e-4fdc9e33da4a
Publication date
2023
Document Version
Final published version
Citation (APA)
Ewald, V. (2023). AI-Assisted Design & Optimization for Predictive Maintenance: A Case Study using Deep
Learning and Search Metaheuristics for Structural Health Monitoring in Aviation. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:a3070931-7512-44fa-833e-4fdc9e33da4a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:a3070931-7512-44fa-833e-4fdc9e33da4a
https://doi.org/10.4233/uuid:a3070931-7512-44fa-833e-4fdc9e33da4a

AI-Assisted Design & Optimization
for Predictive Maintenance

A Case Study using Deep Learning and Search
Metaheuristics for Structural Health Monitoring in Aviation

A doctoral dissertation

Vincentius Ewald

AI-Assisted Design & Optimization

for Predictive Maintenance

A Case Study using Deep Learning and Search Metaheuristics for

Structural Health Monitoring in Aviation

Propositions

1. Semi-supervised learning is the most feasible way to achieve success in machine learning projects

(This thesis).

2. Human bias is the most crucial element to reach artificial general intelligence (This thesis).

3. Outside academia, there is no need to search an optimum by metaheuristics since greedy

method is sufficient (This thesis).

4. Without AI democratization, airline and aircraft industries will stop talking about big data and

Internet of Things by themselves (This thesis).

5. Stochastics is a way to express our ‘Unwissenheit’.

6. The key assumption for determining scientific truth is an agreement.

7. The best presentation slide in a scientific conference is an empty slide.

8. The boundary of science is religion and philosophy.

9. An appropriate PhD contract length to generalize a fundamental axiom e.g., from Newton 2nd

law into Hamiltonian, is about 200 years.

10. The safest way to protect the Netherlands from global warming by replacing the “Deltawerken”
with the Swiss Alps.

* Unwissenheit (DE) or Onwetendheid (NL) is not knowing the unknown, i.e., not to be confused

with ignorance: ignorance can be understood as the act of neglecting things we know.

These propositions are regarded as opposable and defendable and have been approved as such by

the promotors Prof. dr. ir. Rinze Benedictus and Dr. Roger M. Groves

AI-Assisted Design & Optimization for
Predictive Maintenance

A Case Study using Deep Learning and Search Metaheuristics for SHM in Aviation

Dissertation

Proefschrift

for the purpose of obtaining the degree of doctor

ter verkrijging van de graad van doctor

at Delft University of Technology,
aan de Technische Universiteit Delft,

by the authority of the Rector Magnificus, Prof. dr. ir. T.H.J.J. van der Hagen,
op gezag van de Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen

chair of the Board for Doctorates

voorzitter van het College voor Promoties

to be defended publicly on

in het openbaar te verdedigen op

Friday, November 17th, 2023, at 12:30

Vrijdag, 17 november 2023 om 12:30 uur

by

door

Vincentius EWALD

born in Bandung, Indonesia

geboren te Bandung, Indonesië

Master of Science

Material Science and Engineering

 Diplôme d'ingénieur

Ecole européenne d’ingénieurs en génie des matériaux

University of Saarland

Germany

Duitsland

University of Lorraine

France

Frankrijk

This dissertation has been approved by the promotors.

Prof. dr. R. Benedictus

Dr. R.M. Groves

Composition of the doctoral committee:

Rector Magnificus Chairperson

Prof. dr. ir. R. Benedictus Delft University of Technology, promotor

Dr. R.M. Groves Delft University of Technology, promotor

Independent members:

Prof. dr. M. Vejlkovic Delft University of Technology

Dr. N. Yorke-Smith Delft University of Technology

Prof. Dr.-Ing. C. Boller University of Saarland, Germany

Dr. J. B. Harley University of Florida, USA

Prof. dr. ir. T. Tinga University of Twente

This research has been supported b by the Ministry of Economic Affairs as a part of the “Topsectoren”
policy. The research team has received TKI-funding from the top-sector High Tech Systems and Materials
for the Smart Sensing for Aviation Project.

Keywords: Structural Health Monitoring, Guided Lamb Wave, Machine Learning, Deep Learning,
Computational Intelligence, Metaheuristics, Optimization, Signal Processing, Sensor Network, Aircraft
Inspection

Printed by: Ipskamp Printing

Cover image: Vincentius Ewald

Copyright © 2023 by Vincentius Ewald

ISBN: 978-94-6473-293-1

An electronic version of this dissertation is available at

http://repository.tudelft.nl/

http://repository.tudelft.nl/

I have said that science is impossible without faith. No amount of
purely objective and disconnected observation can show that
probability is a valid notion, the laws of induction in logic cannot be
established inductively. Inductive logic, the logic of Bacon, is rather
something on which we can act than something which we can prove,
and to act on it is a supreme assertion of faith. Science is a way of life
which can only flourish when men are free to have faith.

An excerpt from The Human Use of Human Beings.
- Norbert Wiener

i

Acknowledgement

Bremen, October 14th, 2023

Since the beginning of my dissertation, there are numerous people I owe to and without them all

this work would have not been possible.

My special thanks go to my supervisor Roger, Head of the Aerospace NDT Lab, who since the

beginning hosted me as master student and taught me to be very critical on what I wrote. Without

all his effort, the constructive comments and discussion, many of the published papers are not

even worthy to be considered. Thank you, Rinze, as a chairholder of the group of structural

integrity and composites (SIC) at TU Delft who hosted me as a candidate. Further thanks go to the

members of Aerospace NDT Lab: Pratik, Nakash, Andrei, and Luigi for the fruitful discussion

around NDT-SHM topics during the monthly colloquium.

During my research period, I was helped by Victor and Misja to do some experiments and without

skilled technicians like you, some part of this thesis would be missing. Further thanks go to my

previous office mates: Chirag, Camila, Nitesh, and Janos. Thanks for always having crazy

conversation à la PhD: Piled Higher and Deeper. I know some of you guys are done, but some might

still be writing, and we know the doctoral trajectory is roller coaster of multiple convex function,

so courage to the finish line! Further, I would like to thank Huub, my fellow PhD candidate, who

helped me to translate the abstract of the thesis into Dutch. Last not least, thank you Gemma for

being very patient secretary who always cleaned up the mess of my administrative works.

From the University of Saarland (Germany) and the Kaunas University of Technology

(Lithuania) I would like to thank my research collaborators Ramanan, Aadhik, and Christian for

providing me with the simulation data and its pre-processing method. It was a very good work,

and I am very proud that our collaboration yielded into a peer-reviewed publication.

I am thankful to my current colleagues at Testia: Holger, Bastien, Astrid, Ashwin, Steffen, Jonas,

and my current teammates Héléne, Christian, Thomas, Samuel, and Bichu. We know all NDT and

SHM is super niche world. After some years of exploring many possibilities around Europe, it

seems that my current career trajectory within one of the largest aircraft OEM gave me an

understanding why the current SHM approach is difficult to be implemented within this strictly

controlled supply chain.

Over the years, since the beginning of my master study in Saarbrücken and finishing the

trajectory in Delft, I had friendship circle to which I am thankful for. My first thanks go to the

Hodgins, I know you guys are now back in South Carolina, and I wish to visit you again one day!

My bro Eric, you are always there with me in many situations, huh? Thank you as well to my

fellowship in Delft: Febe, Vitali, Arjan, Mike and Nicola. Now you might be in Delft, France, Mexico,

or Canada – but oh my gosh, we are very international! And Mike, I’ll knock your front door the

next time I’m in Vancouver, eh? Finally, my bro, fellow, ex-student, and partner in crime Xavier:

After all the journey we made, I would like to express my big hug before I’m replacing you with
ChatGPT v5.0.

For the fellowships in ICF Rotterdam and The Bridge Brussels: I would like to thank Fred, Henny,

Bill and Gretchen. It would have been a blessing for me to know you. We meet each other at quite

late stage of my dissertation, but without disengaging from my scientific day to day work, all this

writing would have been meaningless to me. Thank you for all the support you provided.

Thank you to my family in Indonesia who always asked me when the dissertation is finished.

Finally, a big thanks to my +1 Bea and our little one N.Y who always being with me all the time in

our home. After all the years passed, this work would have been completely irrelevant without

your presence.

ii

Abstract

One of the classical solutions to maintain the aircraft structural integrity is to rely on the analysis

of non-destructive testing (NDT) inspector with various inspection methods. However, it is

relatively expensive in matter of time and costs to train human resources until the certification is

reached. Further, in majority of the cases of aircraft scheduled and unscheduled maintenance,

most of the detected damages are far below the damage tolerance limit and therefore are

considered as a costly false positive because such inspections generally require additional

downtime. Structural Health Monitoring (SHM) tries to reduce the wasteful resources in the

maintenance, repair, and overhaul (MRO) industry by signaling such false positives during the

maintenance process by becoming an integral part of the structure itself.

On the other hand, there has been an increase in using the artificial intelligence (AI) methodologies

such as computational heuristics and machine learning in many areas of human civilization which

includes voice and face recognition, languages translation, and automated driving. There has been

a lot of interest on implementing AI to assist SHM in maintaining airworthiness while driving the

cost down. Nevertheless, the maintenance of airworthiness (such as but not limited to, EASA Part

145/M and FAA CFR Part 21) is a heavily regulated area and are not easily changed.

The current state of the art was captured in the literature review. This includes recent

developments of guided wave based SHM and the parameter optimization as well as recent trends

and advances in artificial intelligence such as machine and deep learning. The findings from the

state of the art were used as the basis to determine the research problem and to propose the

solution.

The first part of the proposed solution consisted of a short review the damage growth assumption

within the damage tolerance framework and the used methodology to generate and capture Lamb

wave signal within Finite Element (FE) environment. This methodology is a deterministic solution

that can be partially used for solving continuous optimization in deterministic sensor placement

problem. It was further expanded to include a semi-stochastic approach to address non-

predictable damage location that includes some metaheuristics search such as genetic algorithm

and swarm intelligence. The ultimate first part of solution was a compromise between the

deterministic and semi-stochastic actuator-sensor topology.

The second part of the proposed solution was the investigation on whether deep learning can be

used to treat the Lamb wave signal given the configuration obtained from the first part of the

proposed solution. To do so, an assumption based on converging probability measures and

generalization bound in deep learning must be taken. Then, the approach is to represent the entity

of the captured Lamb wave signal in time-frequency domain either as randomly sampled

spectrogram or layers of joined spectrograms. After the training, the hypothesis was validated

with A/B Testing.

Then, the research was expanded to understand the scalability level of deep learning for SHM for

given data size, model parameters, and restriction on physical memory. In this sense, the signal

representations were trained sequentially with an example of in hybrid convolutional recurrent

network. The investigation was focused on stability behavior of convoluted-recurrent modelling

for variable spectrogram length and the experimental validation of the model for classification of

the Lamb wave spectrogram signals.

Keywords: Structural Health Monitoring, Guided Lamb Wave, Machine Learning, Deep Learning,

Computational Intelligence, Metaheuristics, Optimization, Signal Processing, Sensor Network,

Aircraft Inspection

iii

Samenvating

Een van de klassieke oplossingen om de structurele integriteit van vliegtuigen te behouden is

vertrouwen op de analyse van non-destructief onderzoek (NDO)-inspecteurs met verschillende

inspectiemethoden. Dit is echter relatief duur in termen van tijd en kosten om personeel op te

leiden totdat de certificering is bereikt. Bovendien liggen in de meeste gevallen van gepland en

ongepland onderhoud van vliegtuigen de meeste gedetecteerde beschadigingen ver onder de

schadetolerantiegrens en worden ze daarom beschouwd als een dure fout-positieve inspectie

omdat dergelijke inspecties over het algemeen extra stilstandtijd vereisen. Structural Health

Monitoring (SHM) probeert de verspillende hulpbronnen in de maintenance, repair, and overhaul

(MRO) te verminderen door dergelijke valse positieven tijdens het onderhoudsproces te

signaleren door een integraal onderdeel van de structuur zelf te worden.

Aan de andere kant is er een toename in het gebruik van kunstmatige intelligentie (AI)-

methodologieën zoals computationele heuristieken en machinaal leren op veel gebieden van de

menselijke beschaving, waaronder stem- en gezichtsherkenning, taalvertaling en

geautomatiseerd rijden. Er is veel belangstelling voor de implementatie van AI om SHM te helpen

de luchtwaardigheid te behouden en tegelijkertijd de kosten te verlagen. Niettemin is het behoud

van de luchtwaardigheid (zoals, maar niet beperkt tot, EASA Part 145/M en FAA CFR Part 21) een

zwaar gereguleerd gebied en kan niet gemakkelijk worden gewijzigd.

In het literatuuronderzoek is de huidige state-of-the-art vastgelegd. Dit omvat recente

ontwikkelingen op het gebied van guided wave gebaseerde SHM en de parameteroptimalisatie,

evenals recente trends en vooruitgang op het gebied van kunstmatige intelligentie, zoals machine-

en deep learning. De bevindingen uit de stand van de techniek zijn als basis gebruikt om het

onderzoeksprobleem te bepalen en de oplossing voor te stellen.

Het eerste deel van de voorgestelde oplossing bestond uit een korte beoordeling van de aanname

van de schadegroei binnen het schadetolerantieraamwerk en de gebruikte methodologie voor het

genereren en vastleggen van Lamb wave signalen binnen de finite elementen (FE)-omgeving. Deze

methodologie is een deterministische oplossing die gedeeltelijk kan worden gebruikt voor het

oplossen van continue optimalisatie van het deterministische sensorplaatsingsprobleem. Het

werd verder uitgebreid met een semi-stochastische benadering om niet-voorspelbare

schadelocaties aan te pakken, waaronder enkele metaheuristische onderzoeken, zoals genetische

algoritmen en zwermintelligentie. Het ultieme eerste deel van de oplossing was een compromis

tussen de deterministische en semi-stochastische actuator-sensor-topologie.

Het tweede deel van de voorgestelde oplossing was het onderzoek of deep learning kan worden

gebruikt om het Lamb-wave signaal te verwerken, gegeven de configuratie verkregen uit het eerste

deel van de voorgestelde oplossing. Om dit te doen, moet een aanname worden gedaan die is

gebaseerd op convergerende waarschijnlijkheidsmetingen en generalisaties die gebonden zijn

aan diepgaand leren. Vervolgens is de aanpak om de entiteit van het opgevangen Lamb-

golfsignaal in het tijdfrequentiedomein weer te geven, hetzij als willekeurig bemonsterd

spectrogram, hetzij als lagen van samengevoegde spectrogrammen. Na de training werd de

hypothese gevalideerd met A/B-testen.

Vervolgens werd het onderzoek uitgebreid om inzicht te krijgen in het schaalbaarheidsniveau van

deep learning voor SHM voor een gegeven datagrootte, modelparameters en beperkingen op

fysiek geheugen. In deze zin werden de signaalrepresentaties opeenvolgend getraind met een

voorbeeld van een hybrid convolutional recurrent network. Het onderzoek was gericht op het

stabiliteitsgedrag van dergelijke modelling voor variabele spectrogramlengte en de

experimentele validatie van het model voor classificatie van de spectrogramsignalen.

Keywords: Structural Health Monitoring, Guided Lamb Wave, Machine Learning, Deep Learning,

Computationele Intelligentie, Metaheuristiek, Optimalisatie, Signaalverwerking, Sensornetwerk,

Vliegtuiginspectie

iv

Contents

1. Introduction...……. 1

1.1. World of Aircraft Maintenance... 1

1.2. The Role of Artificial Intelligence (AI) in Predictive Maintenance.........................…. 2

1.3. Structural State Diagnostic in MRO: …………………………………………………………………..........................…. 3

1.3.1. Design Philosophies and Non-Destructive Testing in Aircraft Maintenance.... 4

1.3.2. Role of Structural Health Monitoring in Maintenance..…. 4

1.4. Thesis Organization..…. 6

Literature List.. 6

2. The State of the Art…….....................……..…… 9

2.1. Recent Development on Lamb Wave SHM.. 9

2.1.1. Technological Advancement on Lamb Wave SHM……...…. 10

2.1.2. Advancement on Strategic Design of SHM System Parameter................................. 14

2.2. Recent Trend in Machine Learning and Computational Intelligence................…… 19

2.2.1. Advancement in Machine and Deep Learning……...……. 19

2.2.2. Computational Intelligence for Optimization.……...………….…. 32

2.3. General Problem Statement & Objective.……...………………………....... 37

2.3.1. Recognized Problems in SHM & NDT.……...… 37

2.3.2. Recognized Problems in Computer Science, Machine and Deep Learning

Community.…….. 38

2.3.3. Diagnostic Decision Logic & Maintenance Logic and Isomorphism in

Finite Automata..…… 39

2.3.4. Research Problems Formulation................................………………………….……............................. 43

Literature List... 44

Appendix...… 54

3. Theoretical Background..…. 55

3.1. Lamb Wave and Simulated Propagation...………………………. 55

3.1.1. Acoustic Wave in Plate-Like Structure...………………………. 55

3.1.2. Simulated Lamb-Wave Propagation in Finite Element Environment.................. 59

3.1.3. Piezoelectric Actuator and Sensor...……………………………. 61

3.1.4. Lamb Wave Attenuation....……...………………. 63

3.2. Signal Representation and Data Processing..…………………….. 65

3.2.1. Signal Representation....……...……………………………………… 66

3.2.2. Feature Extraction and Damage Index..………………………… 70

3.3. Optimization and Search Metaheuristics..…….......................... 72

3.3.1. Fundamentals on Continuous Optimization..…....................... 73

3.3.2. Search Metaheuristics in Discrete Optimization..….....……………. 75

3.4. Machine and Deep Learning ..….............................…………………………………. 80

3.4.1. Statistical Learning Theory for Supervised Learning...………… 81

3.4.2. Inductive Bias..…...……………………………………………. 85

3.4.3. Neural Network.. 87

3.4.4. Hyperparameter Tuning............................……... 91

3.4.5. Regularization............................……...…………………………………………….. 93

3.5. Features Learning and Invariant Representation....…...……………. 94

Literature List...…….............…………………………………………………. 97

4. Deterministic Approach Sensor Placement.................................…... 103

4.1. Crack Growth in Damage Tolerance Structure................……………..................................…… 103

4.2. Simulation of Lamb Wave Propagation with ABAQUS FE....……................................…… 105

4.3. Image Processing...……. 107

4.4. Blob Detection..….....................………………. 109

4.5. Results and Discussion....……..….....................…. 112

4.6. Conclusion....……...….................................……. 115

Literatures...…...……. 116

5. Holistic Sensor Network Topology Optimization...............................…….............................. 117

5.1. Fitness Function..…..… 117

5.2. Methodology............................…... 122

v

5.2.1. Global Random Search....................….. 123

5.2.2. Greedy Search........................…….. 124

5.2.3. Metaheuristics Search....................……..……………………………………. 125

5.2.3.1. Genetic Algorithm (GA)............……..………………………………….. 125

5.2.3.2. Simulated Annealing....................……..….……………………………………. 127

5.2.3.3. Swarm Intelligence....................……..………………………………………. 128

5.3. Preliminary Results…..……………………………………….…. 129

5.3.1. Comparison between Greedy Methods, Random Search, and GA...................……. 129

5.3.2. Comparison between Metaheuristics........…….. 130

5.4. Integrative Method.........................….. 131

5.5. Experimental Validation............……... 133

5.5.1. Reproducing Hotspot SHM............…….. 133

5.5.2. Experimental Setup....…….............…….. 134

5.5.3. Impact Damage Setup....….............…….. 135

5.5.4. Damage Analysis....….............……..… 137

5.5.4.1. Hotspot Damage Detection..………………………………... 138

5.5.4.2. Impact Localization….............……... 138

5.6. Chapter Summary….............……..…. 144

Literatures...…...……………………………………………………….. 144

6. Deep Learning for Structural Health Monitoring....................…...…. 147

6.1. Research Outline Recap...… 148

6.2. Concept and Theoretical Background ...…….…………………….. 149

6.2.1. Formalization of DeepSHM.. 149

6.2.2. Model Abstraction of DeepSHM Behavior...……. 154

6.3. Methodology...…… 155

6.3.1. Simulation Setup... 155

6.3.2. Data Pre-Processing..……. 158

6.3.3. Entity Representation...…. 159

6.3.3.1. Hierarchical Representation in Multiple Sensor..…………….. 159

6.3.3.2. Conserved Entity over Time..… 159

6.3.4. Training Setup and Parameters... 160

6.3.4.1. Hardware...…… 160

6.3.4.2. Software and Libraries...……. 160

6.3.4.3. Optimization....................…...… 161

6.3.4.4. Neural Network Architectures and Optimizers..………………. 161

6.4. Training Result....................…..…. 162

6.4.1. On Modelling DeepSHM as Multiple Actors with Independent Decision

Making..…….......................................…..… 163

6.4.1.1. Influence of Network Architecture and Sensor Locations….................................... 163

6.4.1.2. Effect of the Convolution Window Length...… 167

6.4.2. On Modelling DeepSHM as Conserved Entity over Time.......................................…… 168

6.5. Concept Validation..…… 171

6.5.1. Result comparison with Random Noise Training..……. 171

6.5.2. Model Testing...……... 172

6.5.2.1. Hierarchical Representation in Multiple Sensors..…. 172

6.5.2.2. Representation as Conserved Entity over Time..…………….. 173

6.6. Conclusion..……...…. 174

6.6.1. Summary..……..…. 174

6.6.2. Conclusion and Recommendation....................................…...…… 174

Source codes and online Documentation...................................…...…… 176

Literatures...…..….…. 176

7. Recurrent Modelling of Time-Frequency Signal.. 179

7.1. Introduction…...….. 179

7.2. Related Work to Recurrent Modelling in Predictive Maintenance……………………………… 180

7.3. Theoretical Foundation of Hybrid ConvNet-Recurrent Network.............................. 182

7.4. Methodology..……... 183

7.4.1. Experimental Validation..…….. 184

7.4.2. Sensor Placement..…….. 185

7.4.3. Reassigned Spectrogram....................................…….................................……………………………………. 186

vi

7.4.4. Recurrent Training Mechanism....................................….............................…………………………… 187

7.4.5. Hyperparameters Configuration..…... 187

7.5. Results and Discussion..….....................................……………………………………… 188

7.5.1. Simulation Dataset..…... 188

7.5.2. Experimental Dataset...……………………………………….. 190

7.5.3. Discussion....................................……...…………………………………………………… 192

7.6. Conclusion....................................……...………………………………………………… 193

Attachment....................................…..……………………………………………………… 194

Literatures....................................…..……………………………………………………….. 206

8. Conclusion and Future Works........................…...………………………………..… 207

8.1. Summary........................….. 207

8.2. Conclusion................……...… 209

8.3. Research Outlook................……...… 212

vii

List of Abbreviations

ABC Artificial Bee Colony

AC Advisories Circular; Alternating Current

AC(S)O Ant Colony (System) Optimization

AE Autoencoder; Acoustic Emission

AI Artificial Intelligence

API Application Programming Interface

AROR Annualized Rate of Returns

ART Adaptive Resonance Theory

(AL)BERT (A Lite) Bidirectional Encoder Representations from Transformers

BFGS Broyden–Fletcher–Goldfarb–Shanno

BMP Bitmap

BNC Bayonet Neill Concelman

CBM Condition Based Maintenance

CC Cross Correlation

CDF Cumulative Distribution Function

CFL Courant-Friedrich-Lewy

CFRP Carbon Fiber Reinforcement Plastics

CI Computational Intelligence

CL Classification Layer

CNC Computerized Numerical Control

(C)(R)NN (Convolutional) (Recurrent) Neural Network

CT Chirplet Transformation; Computed Tomography

CV Computer Vision

(C)WT (Continuous) Wavelet Transform

DBN Deep Belief Network

DDF Digital Damage Fingerprints

DDR Double Data Rate

DE Differential Evolution

DEC Deep Embedding Clustering

DFA Deterministic Finite Automata

DI Damage Index

DL Deep Learning

(D)(A)NN (Deep) (Artificial) Neural Network

DOE Design of Experiment

DOL Designated Operational Lifecycle

DPD Damage Parameter Database

DWT Discrete Wavelet Transformation

EASA European Union Aviation Safety Agency

EDM Electrical Discharge Machine

EEG Electroencephalography

EFIT Elastodynamic Finite Integration Technique

EM Expectation Maximization

EMAT Electromagnetic Acoustic Transducer

EMD Empirical Mode Decomposition

EMI Electromechanical Impedance

FAA Federal Aviation Administration

FBG Fiber-Bragg Grating

FDM Finite Difference Method

FN False Negative

FOL First Order Logic

FP False Positive

FPGA Field Programmable Gate Array

FSM Finite State Machine

GA Genetic Algorithm

GAN Generative Adversarial Network

GB Gigabyte

GDOP Geometric Dilution of Precision

viii

GDT Generalized Data Transformation

GPT Generative Pre-Trained Transformer

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

GUI Graphical User Interface

HF High-Frequency

HHC Home Health Care

HHT Hilbert-Huang Transform

HMM Hidden Markov Models

HT Hilbert Transform

(I)(F)FT (Inverse) (Fast) Fourier Transformation

IR Infrared

JPEG Joint Photographic Experts Group

KL Kullback-Leibler

LISA Local Interaction Simulation

LSTM Long Short-Term Memory

LW Lamb Waves

MAD Mean Absolute Deviation

MAPCG Multi-Attention Parallel CNN-GRU

MAV Micro Aerial Vehicle

MB Megabytes

MDP Markov Decision Process

MI Mutual Information

ML Machine Learning

MLP Multi-Layer Perceptron

MPCA Multiple Particle Collision Algorithm

MPI Magnetic Particle Inspection

MRO Maintenance, Repair, and Overhaul

MSE Mean-Squared Error

MSG Maintenance Steering Group

MTS Minimum Time Search

NAG Nesterov Accelerated Gradient

ND(E/I/T) Non-Destructive Evaluation / Inspection / Testing

NFA Non-Deterministic Finite Automaton

NFZ Near-Field Zone

NNF Nearest-Neighbor Fields

NP Non-Polynomial

ODB Output Database

OEM Original Equipment Manufacturer

OPEX Operating Expenditure

(PA)UT Phased Array Ultrasonic Tomography

PAC Probably Approximately Correct

PCA Principal Component Analysis

PDE Partial Differential Equations

PID Proportional Integral Derivative

PMMA Polymethylmethacrylate

PNG Portable Network Graphic

POD Probability of Detection

PSO Particle Swarm Optimization

PVDF Polyvinylidene Fluoride

PWAS Piezoelectric Wafer Active Sensor

PZT Pb[ZrxTi1−X]O3 (Lead Zirconium Titanate)

QAP Quadratic Assignment Problem

RAM Random Access Memory

RBM Restricted Boltzmann Machine

RGB Red-Green-Blue

RL Reinforcement Learning

RMSD Root Mean Square Deviation

RUL Remaining Useful Life

ix

SA Simulated Annealing

SGD (Stochastic) Gradient Descent

(S)FE(M) (Spectral) Finite Element (Method)

SH Shear Horizontal

SHM Structural Health Monitoring

SIF Stress Intensity Factor

SIM Sharp Interface Model

SLDV Scanning Laser Doppler Vibrometer

SLP Single-Layer Perceptron

SNR Signal-to-Noise Ratio

SPWVD (Smoothed) (Pseudo) Wigner-Ville Distribution

STDP Spike-Timing Dependent Plasticity

STFT Short-Time Fourier Transform

SV Shear Vertical

SVD Singular Value Decomposition

SVM Support Vector Machine

TCS Total Cost Saving

TFD Time-Frequency Distribution

TFR Time-Frequency Representation

TN True Negative

TOA Time-Of-Arrival

TOF Time-Of-Flight

TP True Positive

TS Tabu Search

TSP Travelling Salesman Problem

UAV Unmanned Aerial Vehicles

US Ultrasound

VC Vapnik–Chervonenkis

VGG Visual Geometry Group

WDCNN Wide First-Kernel Deep CNN

WDP Winner Determination Problem

WFT Warped Frequency Transform

x

List of Most Relevant Physical Notations in Chronological Appearance

  
= +

  
1 2

² ² ²
² ² ²
p p p

t x x
 The second partial derivative of mechanical pressure p at time t is

dependent of second derivative of p towards coordinate x1 and x2

λ
ρ
+

= Lamé 2µ
L

c
The longitudinal wave velocity cL as a function of Lamé constant λLamé, the material density ρ, and the shear modulus μ

ρ ν
=

+2 (1)T

E
c

The transversal wave velocity cT as a function of elastic modulus E,

the material density ρ, and Poisson’s ratio νv

f ; y Scalar potential, Vector potential

ω
= −

²² ²
²

L

p k
c

 Non dimensional parameter p is dependent from angular frequency ω, longitudinal bulk wave velocity cL and wavenumber k

λ
λ


= −
wave

wave

P

G P

c
c c The dependency of wave group velocity cG as function of wave

phase velocity cP, and wavelength λwave

;
ijkl

C e General stiffness matrix of the material; strain tensor

;W G Volumetric area; surficial integral area

+ + =
a

Mu Cu Ku F

The vector of applied loads Fa as product of the structural mass
matrix M, the structural damping matrix C, and structural stiffness,

uwhere u is the particle displacement, is the particle velocity and
ü is the particle acceleration

 
CFL rec max

; ; ;t t h f Time increment ΔtCFL according to CFL condition; Recommended
time step Δtrec; finite element width h; maximum frequency fmax

= +E

ij ijkl kl kij k
S S T d E

Mechanical strain Sij as a product of the mechanical compliance of
the material sE

ijkl measured at zero electric field, mechanical stress
Tkl, and piezoelectric coupling effect dkij.

ε= + T

j jkl kl jk k
D d T E Electrical displacement Dj as a function of electrical field Ek and

dielectric permittivity measures εT
jk zero mechanical stress

α β=  −
0
[exp()]P P x Excitation signal power P as a function of geometrical attenuation

factor α and material attenuation coefficient β

0
; ()E A t Original excitation energy; signal amplitude at time t

    : , , }, ,{D
A quintuple D which consists of vector elements written as
convention in actor tuple π, medium tuple ψ, transition tuple τ,
phenomenon tuple λ, and environmental tuple ω

λ(); ()X t X f Signal vector X at time t influenced by parameter λ, transformed

signal vector X in the frequency domain

−
()n n

n

t b

a

A mother wavelet function Φ with shifting factor b and scaling
factor a at time t and its discretized version for a discrete time-step
n

KIC, acrit Critical stress intensity factor, critical crack length

  ; ; ;
ij ij

r s
The Euclidian distance from the wave source at coordinate (xi,yj) up
to an arbitrary pixel; pixel score at coordinate (xi,yj); network score;
averaged Euclidian distance; standard deviation

xi

List of Most Relevant Mathematical Notations in Chronological Appearance

(P z) Superclass of probability distribution P with density z

 : , :x y For all x, there exists y

   ,A B C A is weak superset of B and C and is not an empty set ∅

   →: Q F
The state transition function δ maps state Q which contains alphabet
∑ into final state F

; ;n n n Set of natural, integer, and real numbers with dimension of n

+ ;i I i Element i belongs to set I, element i belongs to set of positive integers

   Intersection elements that belong to both the sets and

(| , ,)y

m
P d f m A

Conditional probability of the ordered set d of size m of the cost

values y, given function f to be optimized and algorithm A.

  
0

 Initial gradient step η0 is assigned to variable η

+ − 
1

()
i i i i

x x f x
Data point x at step i+1 is defined as an update of its previous value at
step i, subtracted by gradient step η multiplied with partial derivative
of function f

 2G
X Set X is a subset of feasible solution of ground set 2G

H
C

 CHypothesis space of concept class

E Generic notation of estimate

sup; inf Supremum; infimum

n
R Rademacher complexity with respect to the sample n

[0,1]
min ()

mn
J


 Minimize the loss function J that has size dimension m x n, where

parameters ϴ can take any real value between 0 and 1

 
MSE CEE

(); ()J J Mean-squared based loss function J(ϴ); cross-entropy based loss
function J(ϴ)

V U Composition of function V and U

n
y

r Invariant latent of label y at sample n

 ² (,);G x y Laplacian (second partial derivative) of Gaussian function G at pixel

x, y; feature scaling

1 Chapter 1. Introduction

1. Introduction

1.1. World of Aircraft Maintenance

Besides fuel and ground services, one of the most crucial aspects in an airline

operating cost is the maintenance. In 2017, it was reported that 70 billion USD

was spent by airlines for maintenance, repair, and overhaul (MRO) [Michaels

(2018)] and this figure was expected to grow to 115 billion USD in 2028 due to

increasing number of aircraft deliveries [Ann Shay (2018), Chong (2018)].

According to [IATA (2019)], the current maintenance cost varies between 91 and

44,573 USD (with an average of 2634 USD) per flight cycle. While seemingly

small, this figure translates to between 0.1 – 16 million USD (with an average of

3.6 million USD) per aircraft during its lifetime.

In general, without standards and regulations, different airlines and aircraft

manufacturers would have different maintenance procedures and the situation

would be a mess because every company would have their own standard. So, to

harmonize these maintenance procedures, governmental bodies have been set-

up to make advisory circulars (AC) to improve airworthiness. This was the

reason for inception of the maintenance steering group (MSG) task that has the

purpose to be aircraft maintenance logic.

The focus of MSG-2 was process orientated and it used a bottom-up approach.

As mentioned earlier, humans learn from their previous experiences because

they often develop a process that are far from perfect. Based on the experience

and the identified weaknesses of MSG-2, this process was overhauled in MSG-3,

which was first published in 1980. In contrast to the MSG-2, MSG-3 introduced a

top-down approach by focusing on the consequences of failure.

An effort-aware maintenance manager would rationally not spend time and

associated cost for excessive maintenance if there is no foreseeable reliability

improvement or if the total effort of excessive maintenance exceeds its real

value. When focusing on CBM, there is a lot of space to continuously improve

and there are many approaches how to develop CBM [Tinga and Loendersloot

(2014)] – this will be discussed in detail as it will be discussed in chapter 2 and 3.

Many engineering structures are designed to be operated within their design

limits. In any engineering discipline be it civil, automotive, aerospace, electrical,

or mechatronics, there is always a term called lifecycle or lifetime, which can be

more precisely expressed as designated operational lifecycle (DOL). The DOL

typically signifies a quantifiable amount in term of usage cycles, within which

the structure can be utilized reliably. That means, after the DOL is reached – it

should be the time to write off the object or system.

On the other side however, our universe tends to behave in non-predictable

way, and we can denote it as a stochastic universe. Pragmatically, we shall

assume that uncertainties could be very likely occur at any time. A practical

2 Chapter 1. Introduction

application of this philosophical assumption for aircraft maintenance is that

damages occur during the DOL of an aircraft and unfortunately this would likely

to reduce the DOL by a certain degree, we just do not know how much because

monitoring these uncertainties is very difficult.

1.2. The Role of Artificial Intelligence (AI) in Predictive Maintenance

In 2012, a new jargon was introduced by the German Ministry of Education and

Research [BMBF]: Industry 4.0 and the term 4th industrial revolution is also used

equivalently. While the 3rd industrial revolution in early 1990 was heavily

focused on utilization of electronic devices to increase productivity using

automation, Industry 4.0 reinforces the ability of the electronic devices to

connect with each other, commonly known as Internet-of-Things (IoT). IoT has

many sub-components and one of its sub-components is the volume, velocity,

and variety of data involved (also called big data) and its corresponding

advanced analytics and algorithms. In other word, the importance of using data

be it either for leveraging of MRO processes by artificial intelligence (AI) and

machine learning (ML), monitoring real-time performance, or accelerated

information exchange within Industry 4.0 is emphasized.

Recently, people are also increasingly talking about deep learning (DL), a subset

of ML techniques using a deep artificial neural network (ANN) [Frankish and

Ramsey (2014), Chollet (2018)]. However, when talking about deep and machine

learning, we should first understand their relationship with artificial

intelligence (AI). Unfortunately, there is no universally accepted definition of

these terms, however the consensus can be summarized in Fig. 1.2-1, where we

can see DL is the smallest subset of ML and ML is a subset of the broader AI field.

The concept of artificial intelligence arose when Alan Turing introduced the

Turing test in 1950, which was published his paper [Turing (1950)] with an

opening phrase: "I propose to consider the question: Can machines think?”.

Fig. 1.2-1: Deep Learning as a subset of machine learning which is just another sub-field of

artificial intelligence.

3 Chapter 1. Introduction

In his test, Turing proposed that a human judge makes a conversation with an

artificial responder that generates human-like answers in a separate room with

the condition that the conversation is limited to communication via the

computer keyboard and screen. If the human cannot reliably distinguish

whether the response was generated by the machine or human, the machine is

said to have passed the Turing test. This test thus become one of the most

important concepts in AI, although it was not free of criticism, especially when

[Searle (1980)] proposed the Chinese room argument.

Apart from the philosophical concept, the term deep learning was first

mentioned by [Dechter (1986)], albeit not within the context of multilayered

neural network. Most notable work has been performed by [Hinton and

Salakhutdinov (2006)], when they introduced the restricted Boltzmann machine

(RBM), a generative stochastic ANN that learns a probability distribution from its

set of inputs. However, the history of ANN can be tracked back to 1958 when

Rosenblatt introduced the concept of perceptron for the first time [Rosenblatt

(1958)]. The popularity of ANN grew until the late 1970’s, where it was slowed

down by then the slow computational ability. Eventually this popularity was

overshadowed by another machine learning technique called Support Vector

Machine (SVM) [Corinna and Vapnik (1995)] in the 1990’s.

Like any other emerging technology, AI oversaw several cycles of hype and

disappointment. Cuts in AI research funding marked the periods of

disappointment, commonly referred as AI winters [Crevier (1993), Hendler

(2008)] and it has already happened twice, during late 1970’s and between the

early 1990’s and early 2000’s. Since 2010’s however, thanks to ever-increasing

computational power (see Moore’s Law [Moore (1965), Liddle (2006)] for a

detailed explanation) including the developments of the graphical processing

unit (GPU) and field programmable gate array (FPGA), the development of AI

has been in steady pace.

From the low-level perspective, an example case for the technical

implementation within the predictive maintenance framework is the utilization

of past historical data from many sensors already installed in engineering

structures to predict potential damages and if possible, their future states by

using both rule-based systems including the majority of sensing signal

processing techniques, and machine learning methods.

1.3. Structural State Diagnostic in MRO

The last paragraph of section 1.2 mentioned the utilization of historical sensor

data to predict the potential damages contained by engineering structure. So,

given a similar structure, when a similar damage occurs in the future, the

resulting sensor signal would also be likely to be similar, and this would be an

interesting study case for machine and deep learning as neural network is

generally good at recognizing certain signal patterns. The detail explanation of

this will be given later in chapter 3.

4 Chapter 1. Introduction

1.3.1. Design Philosophies and Non-Destructive Testing in Aircraft Maintenance

According to [Baker and Wang (2018), Bellinger and Liao (2009)], three design

philosophies exist: safe-life, failsafe, and damage tolerance. Safe-life design is

based on the predicted lifecycle of a component. During this period, it should be

assumed that no component failure occurs. After this period, the component

must be replaced, regardless of its condition. On the other side, failsafe is a

design to which an error results in the least possible damage. It requires that

partial failure of the structure does not cause its entire failure. Failsafe design

recognizes that cracks may occur, but the structures is so arranged that the

critical crack will not lead to sudden total failure before it can be repaired. An

example of a failsafe design is a horizontal stabilizer [Wanhill (2003)].

Damage tolerance is defined as “the ability of a structure to sustain anticipated

loads in the presence of fatigue, corrosion or accidental damage until such damage

is detected through inspections or malfunctions and is repaired”. [Ransom et al.
(2008)]. It is an extension of failsafe design, and it plays a central role in current

aircraft design. Within damage tolerance, a thorough damage assessment in a

possible failure scenario is necessary. Three key items in damage tolerant

designs are: fatigue crack growth, crack detection with NDT, and residual

strength prediction [Fatemi et al. (2001), Abdel-Latif (2009)]. While the damage

tolerant design itself can be regarded as a passive protection against damage,

NDT is an active intervention within the maintenance framework.

To be able to predict the residual strength before the next repair, a non-

destructive evaluation of crack existence and an estimate of its growth is

needed. This evaluation of the concerned component demands aircraft repair

stations with open-access and closed-access man hours, which costs money

and time [McFadden and Worrels (2012)]. As many aircraft parts are made to be

damage tolerance, an inspection within certain interval is needed to ensure that

the aircrafts are operating within its design limit [EASA AMC 20-20A].

There are a manifold of NDT technologies that have been established for

decades in aircraft inspection [Fahr (2014)] such as high-frequency ultrasound

(HF-US) and phased-array ultrasonic tomography (PAUT) [Rau (2006), Pohl

(1998)], visual inspection combined with magnetic particle inspection (MPI)

[Betz (2007)], and eddy current [Meilland (2006)] and all these techniques are

used to detect flaw such as crack and delamination within aircraft parts.

1.3.2. Role of Structural Health Monitoring in Maintenance

All the above-mentioned techniques have a range of detection accuracy and

their own cost in terms of man-hours and down-time [Shaloo et al. (2022)]. In

aerospace domain, a qualified NDT technician is in general in very rare position

and while an NDT inspection costs both man-hours and service down-time.

Nevertheless, it is needed to be understood that the underlying principle here is

5 Chapter 1. Introduction

not to fly unsafe aircraft, but rather to have reliable decision support for MRO

about whether certain parts are to be repaired or not.

In classical aircraft maintenance, this unscheduled inspection tends to be

rigorous and very tedious. While this is done for understandable safety reasons,

it is not very efficient either since it requires unnecessary man-hours and down-

time. In line with the spirit of predictive maintenance within Industry 4.0 for

aircraft MRO, a question now arises: How can we minimize uncertainty during

unscheduled maintenance with advanced novel technologies such as deep learning

and big data that can be combined with increasing computational power?

With the current approach, to detect a crack with NDT equipment, one needs

access for opening and closing the relevant substructure of the aircraft and

regardless of whether a crack is found or not, this will require spending man-

hours. This is where a successful Structural Health Monitoring (SHM) becomes

handy, where NDT is embedded the aircraft – so when certain aircraft parts to

be replaced, ideally it automatically sends a warning flag to the aircraft operator

to signal that that certain part must be replaced without spending man-hours for

determining the uncertainty.

When looking in low-level detail regarding automated inspection by SHM, there

are several potential techniques that can be used as NDT decision support while

not completely replacing NDT itself. Among them are guided Lamb Waves (LW)

SHM which principally uses lower-frequency acoustic waves and Fiber-Bragg

Grating (FBG) [Ibrahim (2017)]. Guided LW-SHM shares the same physical

phenomenon as the well-established NDT such as HF-US and PAUT, except that

this technique is more suitable for larger area measurement with a capability up

to several meters due to its larger wavelength in comparison to HF-US and PAUT

which typically only penetrates area of several cm³ under the sensor. This is the

main reason guided Lamb waves has been selected as the main physical

phenomenon of this dissertation.

Like other SHM methods, the approach of using LW-SHM is not immune to

criticism, particularly because there are multitudes of parameter configurations

that were previously less problematic in NDT but now would affect the LW-

SHM signal pattern – such as sensor positioning, frequency selection, type of

sensor adhesive, etc. In chapter 5, these factors will be discussed and some

methodologies will be proposed, particularly metaheuristic optimization

[Gogna (2013), Du and Swamy (2016), Sörensen et al. (2018)] which are of

interests not only to AI community but also to operations research [Rardin

(2016)] community.

Now, while some might believe that the well-established NDT methods are a

direct competitor to LW-SHM, looking back into the purpose of SHM as NDT

decision support it turns out that both methods can and should complement

each other rather than being competitors.

6 Chapter 1. Introduction

1.4. Thesis Organization

The thesis is structured as follows: The state of the art of guided LW-SHM,

machine and deep learning in the last 10 years will be reported in chapter 2.

Based on this state-of-the-art, the problem statement and the main research

objective will be introduced. The well-established theoretical background that

covers the physics and numerical simulation of guided Lamb waves,

configuration factors such as sensor placement method, signal processing,

inductive bias based on domain knowledge and well-known statistical learning

theory is given in a separate theoretical chapter as chapter 3.

Chapter 4 will describe the preliminary results from the used methodology to

numerically simulate the data generation and its experimental validation, while

the preliminary result from the sensor placement methodology and its

experimental validation is given in chapter 5. The results of deep learning

training behavior including the discussion of different representations is given

in chapter 6, while chapter 7 is a methodology extension of chapter 6 in which

the representation is modelled in sequential way. Finally, the summary,

conclusion, and outlook of this dissertation is given in chapter 8. For ease of

reading, each chapter will have its separate literature list.

Literature list

Abdel-Latif AM. An Overview of the Applications of NDI/NDT in Engineering Design for Structural
Integrity and Damage Tolerance in Aircraft Structures. In Damage and Fracture Mechanics.
Springer Science+Business Media, Berlin / Heidelberg (2009).

Ann Shay L. Commercial Spending Will Lead MRO Field in 2018. Aviation Week & Space
Technology (2018). Available http://aviationweek.com/commercial-aviation/commercial-
spending-will-lead-mro-field-2018 (Last online: FEB-2020).

Baker AA, Wang J. Adhesively Bonded Repair/Reinforcement of Metallic Airframe Components:
Materials, Processes, Design and Proposed Through-Life Management. In Aircraft Sustainment and
Repair. Chapter 6: 191 – 252 (2018).

Bellinger NC, Liao M. Corrosion and Fatigue Modeling of Aircraft Structures. In Corrosion Control in
the Aerospace Industry. Chapter 8: 172 – 191 (2009).

Betz CE. Principle of Magnetic Particle Inspection. Magnaflux (2007).

Bundesministerium für Bildung und Forschung (BMBF). Was ist Industrie 4.0? Available:
https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/WasIndustrie40/was-ist-
industrie-40.html (Last online: MAR-2020).

Chollet F. Deep Learning with Python and Keras. Manning Publications Inc, Shelter Island (2018).

Chong A. Global MRO spend to reach $115 billion by 2028 – Wyman. Flightglobal (2018). Available
https://www.flightglobal.com/news/articles/global-mro-spend-to-reach-115-billion-by-2028-
oli-445243/ (Last online: FEB-2020).

Corinna C, Vapnik V. Support-Vector Networks. J Machine Learning. Vol. 20: 273-297 (1995).

Crevier D. AI: The Tumultuous Search for Artificial Intelligence. Basic Books Inc, New York (1993).

Dechter R. Learning While Searching in Constraint-Satisfaction-Problems. Proc. 5th American
Association of Artificial Intelligence (AAAI), Philadelphia (1986).

Du KL, Swamy MNS. Search and Optimization by Metaheuristics: Techniques and Algorithms
Inspired by Nature. Birkhäuser, Basel (2016).

European Union Aviation Safety Agency (EASA). AMC 20-20A: Continuing Structural Integrity
Programme. Available: https://www.easa.europa.eu/en/document-library/easy-access-
rules/online-publications/easy-access-rules-acceptable-means?page=14 (Last online: NOV
2022).

http://aviationweek.com/commercial-aviation/commercial-spending-will-lead-mro-field-2018
http://aviationweek.com/commercial-aviation/commercial-spending-will-lead-mro-field-2018
https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/WasIndustrie40/was-ist-industrie-40.html
https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/WasIndustrie40/was-ist-industrie-40.html
https://www.flightglobal.com/news/articles/global-mro-spend-to-reach-115-billion-by-2028-oli-445243/
https://www.flightglobal.com/news/articles/global-mro-spend-to-reach-115-billion-by-2028-oli-445243/
https://www.easa.europa.eu/en/document-library/easy-access-rules/online-publications/easy-access-rules-acceptable-means?page=14
https://www.easa.europa.eu/en/document-library/easy-access-rules/online-publications/easy-access-rules-acceptable-means?page=14

7 Chapter 1. Introduction

Fatemi A, Fuchs H, Stephens R. Metal Fatigue in Engineering (2nd Ed.). John Wiley & Sons, New
York (2001).

Frankish K, Ramsey WM. The Cambridge Handbook of Artificial Intelligence. Cambridge
University Press, Cambridge (2014).

Gogna A. Metaheuristics: Review and Application. J Experimental & Theoretical Artificial
Intelligence. Vol. 25(4): 503-526 (2013).

Hendler JA. Avoiding Another AI Winter. IEEE Intelligent Systems. Vol. 23: 2-4 (2008).

Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data with Neural Networks. J
Science. Vol. 313(5786): 504-507 (2006).

Ibrahim RA. Handbook of Structural Life Assessment. John Wiley & Sons Ltd., Hoboken (2017)

International Air Transport Association (IATA). Airline Maintenance Cost: Executive Commentary
Edition 2019. Available
https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-
public.pdf (Last online: MAR-2020).

International Civil Aviation Organization (ICAO). State of Global Aviation Safety 2019 Edition.
Available https://www.icao.int/safety/Documents/ICAO_SR_2019_final_web.pdf (Last online:
MAR-2020).

Liddle DE. The Wider Impact of Moore's Law. IEEE Solid-State Circuits Society Newsletter. Vol.
20(3): 28 (2006).

McFadden M, Worrells DS. Global Outsourcing of Aircraft Maintenance. Journal of Aviation
Technology and Engineering Vol. 1(2): 63–73 (2012).

Meilland P. Novel Multiplexed Eddy-Current Array for Surface Crack Detection on Rough Steel
Surface. Proc. 9th European Conf of Non-Destructive Testing (ECNDT), Berlin (2006).

Michaels K. Opinion: OEMs Focus on Mature Aircraft for Aftermarket Growth. Aviation Week &
Space Technology (2018). Available http://aviationweek.com/commercial-aviation/opinion-
oems-focus-mature-aircraft-aftermarket-growth (Last online: FEB-2020).

Moore GE. Cramming More Components onto Integrated Circuits. J Electronics. Vol. 38(8): 114-117
(1965).

Pohl J. Ultrasonic Inspection of Adaptive CFRP-Structures. Proc. 7th European Conf of Non-
Destructive Testing (ECNDT), Copenhagen, (1998).

Ransom JB, Glaessgen EH, Raju IS, Knight NF, Reeder JR. Lessons Learned from Recent Failure and
Incident Investigations of Composite Structures. Proc. 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Schaumburg (2008).

Rardin RL. Optimization in Operations Research (2nd Ed.). Prentice Hall, Upper Saddle River (2016).

Rau E, Grauvogl E, Manzke H, Cyr P. Ultrasonic Phased Array Testing of Complex Aircraft
Structures. Proc. 9th European Conf on Non-Destructive Testing (ECNDT), Berlin (2006).

Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the
Brain. J Psychological Review. Vol. 65(6): 386-408 (1958).

Searle J. Minds, Brains and Programs. J Behavioral and Brain Sciences. Vol. 3(3): 417-457 (1980).

Shaloo M, Schnall M, Klein T, Huber N, Reitinger B. A Review of Non-Destructive Testing (NDT)
Techniques for Defect Detection: Application to Fusion Welding and Future Wire Arc Additive
Manufacturing Processes. J Materials (Basel). Vol. 15(10): 3697 (2022).

Sörensen K, Sevaux M, Glover F. A History of Metaheuristics. In Handbook of Heuristics. Springer,
Cham (2018).

Tinga T, Loendersloot R. Aligning PHM, SHM, and CBM by Understanding the Physical System
Failure Behaviour. Proc. European Conf of the Prognostics and Health Management Society
(PHME), Nantes (2014).

Turing AM. Computing Machinery and Intelligence. J Mind. Vol. 49: 433-460 (1950).

Wanhil RJH. Milestone Case Histories in Aircraft Structural Integrity. Comprehensive Structural
Integrity. Vol. 1: 61-72 (2003).

https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf
https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf
https://www.icao.int/safety/Documents/ICAO_SR_2019_final_web.pdf
http://aviationweek.com/commercial-aviation/opinion-oems-focus-mature-aircraft-aftermarket-growth
http://aviationweek.com/commercial-aviation/opinion-oems-focus-mature-aircraft-aftermarket-growth

8 Chapter 1. Introduction

9 Chapter 2. State of the Art

2. The State of the Art

Chapter 1 introduced the background and the general scope of this dissertation,

while in this chapter we will explore the more specific scope of the work. Before

going too deep, recall the definition of SHM proposed by [Boller (2008)]: “SHM is

the integration of sensing and […] actuation devices to allow the loading and

damaging conditions of a structure to be recorded, analyzed, localized, and

predicted in a way that NDT becomes an integral part of the structure and a

material. Consequently, SHM requires […] loads and damage monitoring […]

assessment algorithms and needs to get those merged in a holistic process such that

the structural health can be accompanied during the life cycle […]” which can be
visualized as the workflow depicted in Fig. 2-1 [Ooijevaar (2014)]:

Fig. 2-1: The workflow of SHM proposed by [Ooijevaar (2014)] in which one could decide to induce

a certain actuation in a structure that might contains any damage, record the structural response

that is captured by sensor system, and represent the response as feature pattern.

As depicted in Fig. 1, SHM is divided into two major frameworks: diagnostic and

prognostic. Diagnostic SHM concerns the feature extraction and classification

that can be related to the physical current state of the structure, while prognostic

SHM evaluates the failure probability of the structure given the current structural

state and decides whether the concerned structure needs to be repaired,

replaced, or written-off depending on its predicted residual life. Specifying the

framework further, the tasks of SHM can be generally divided into 4 functional

levels, where diagnostic SHM comprises the functional level 1 – 3 and prognostic

SHM comprises the functional level 4 [Ooijevaar (2014)]:

SHM Level 1: the condition monitoring of structural load

SHM Level 2: the detection of damage presence

SHM Level 3: the characterization of the present damage regarding its location,

type, and severity in terms of size

SHM Level 4: the prediction of failure probability and remaining useful life (RUL)

of the structure given the state of SHM from levels 2 and 3.

Narrowing this down to functional level, the work will focus on SHM levels 2 and

3 only, because these tasks are the most relevant to NDT and Lamb wave.

2.1. Recent Development on Lamb Wave SHM

This section will focus on recent developments in Lamb Wave SHM, and it will be

divided into three sub-sections: a review on recent developments of

10 Chapter 2. State of the Art

experimental and simulation work on Lamb Wave SHM in section 2.1.1, and the

parameter optimization of SHM systems in section 2.1.2.

2.1.1. Technological Advancement on Lamb Wave SHM

The fundamentals of guided wave propagation in solids have been described

extensively in literatures, for instance in [Cesnik and Raghavan (2009), Su and Ye

(2009)]. When talking about recent advances in experimental and simulation

work in Lamb wave SHM, there are many research directions that have been

paved for the last decade as well. For example, looking into older work, [Andrews

et al. (2008)] investigated Lamb wave propagation behavior in various

temperature ranging from -18°C to 107°C in a metallic plate. They concluded that,

at least for metallic plates, only small changes occur in the observed waveform. A

similar study was also performed by [Dodson and Inman (2013)] for a

temperature ranging from 20°C to 70°C and they came to a similar conclusion

delivered by [Andrews et al. (2008)]. Some of the results from [Dodson and Inman

(2013)] are given in Fig. 2.1.1-1.

Fig. 2.1.1-1: Effect of temperature on a). phase velocity and b). group velocity as a function of

frequency thickness on Al6061. [Dodson and Inman (2013)].

A more comprehensive studied that also includes moisture, external vibration,

and bonding condition beside the thermal effects was delivered by [Gorgin et al.

(2020)]. They stated that the temperature effects can be compensated by various

techniques. This is especially useful for many composite materials as composites

are affected by moisture, bonding defects, and shear lag effect between the

structural surface and the sensor. They stated that vibration only modifies the

amplitude and can be filtered so that the time-of-flight (TOF) is not affected. This

condition is obviously valid only if the operational vibration has a much lower

frequency than those of ultrasonic signals. A similar study regarding the effects

of structural complexities combined with environmental conditioning on

anisotropic composite materials has been performed by [Schubert et al. (2014)].

11 Chapter 2. State of the Art

The accuracy of analytical modeling based on wave function expansion and the

Born approximation of Lamb wave scattering at delaminations in multilayered

isotropic plates has been studied by [Ng (2015)]. The result was cross validated

with an explicit numerical method and a good agreement was found. It was

concluded that delamination can be modeled as a waveguide divided into two

sub-waveguides. [Šofer et al. (2018)] discussed the numerical solution for
Rayleigh-Lamb waves in complex wavenumbers to describe the wavemodes

propagation.

[Gao et al. (2020)] studied the response features of second-harmonic generation

of Lamb wave propagation to the thickness of microdamage layer in a solid plate.

They verified the analytical results with a finite element simulation and a close

agreement between the theoretical and numerical analysis was found. As a

conclusion, they claimed that their findings provided a convenient means for

accurate characterization of inhomogeneous microdamage in layered plates.

[Wu et al. (2020)] investigated the surface effects of Lamb waves propagation in a

nanoplate. They combined classical wave theory with the surface elasticity

theory. They found that for a very thin layer, even in fundamental modes, the

Lamb wave phase velocity increased if the plate thickness decreased.

It is not only the physical understanding and analytical modelling that have been

an important subject. Transducer technology is also important, e.g. [Gu and

Wang (2009)] investigated the feasibility of a monolithic polyvinylidene fluoride

(PVDF) based transducer for generating and sensing Lamb waves, citing that

PVDF is not only low-cost, but also low-power which makes it suitable for

wireless-sensing and remote operation. [Othmani and Zhang (2020)]

investigated the influence of initial stresses of the Lamb wave propagation in

PVDF. They formulated the Legendre polynomial to calculate wave propagation

characteristics and validated the analytical approach with simulation results.

They concluded that for the design of a PVDF sensor, the following parameters

must be considered: initial stress, laminate thickness and mass density, as they

are the main factors that determine the phase and group velocities of the

corresponding Lamb wave modes.

In numerical work, [Malinowski et al. (2009)] introduced the phased-array

method for damage localization on a thin-aluminum plate based on the spectral

element method (SEM) and reconstructed the wavefield scan. While they

concluded that the damage detection and localization has been effective, the

technique was purely based on the numerical method and further experimental

work would be needed to validate the work. Another approach to using SEM has

been proposed by [Hu and Zhou (2012)] where they a modelled transverse crack

as a massless spring which was derived from a basic formulation in fracture

mechanics. While they compared the results with conventional finite element

analysis, further experimental work is also needed to validate their approach.

[Ambrozinski et al. (2010)] compared the numerical approach from local

interaction simulation on a sharp interface model (LISA/SIM) and the

12 Chapter 2. State of the Art

elastodynamic finite integration technique (EFIT). The difference between LISA

and EFIT is that LISA is based on a finite differentiation approach, while EFIT

eliminates the differential problem by using staggered grid. They concluded that

both methods can be combined with experimental measurements to solve

inverse material problem identification. The results of the numerical approach

by employing EFIT has also been replicated by [Rappel et al. (2014)].

A different approach on numerical modelling was proposed by [Gravenkamp

(2014)] in his doctoral research. While he used SEM for the latter part of problem

discretization, he formulated the scaled boundary FEM (SB-FEM), which can be

regarded as a semi-analytical method as only the element boundaries needed to

be discretized. The work was experimentally validated in several different

materials setup. The results were quite promising in the way that his formulation

saves computational cost by a factor of 100 in comparison with traditional FEM.

A simpler simulation on Lamb wave propagation by using FEM on commercial

software such as ABAQUS in metallic plate has been proposed [Nirbhay et al.

(2017), Ding et al. (2018), Ismail et al. (2019)]. These are similar studies to what I

performed before [Ewald et al. (2015)] along with several other studies that also

involve composite plates [Chen et al. (2012), Wang (2014), De Luca (2016, 2018),

Duan (2017)]. While these studies are not particularly novel, the method of using

commercial software turns out to be reliable and replicable without involving

highly complex analytical formulations that could take years to be developed.

[Miguel et al. (2019)] proposed a finite element framework based on Carrera’s
unified formulation for simulating Lamb wave propagation in continua by using

the higher-order polynomial approximation. The essence of their work was to

look for a compromise between classical plate theory that is insufficiently

accurate for complex geometry and common quadratic 3D finite elements that

quickly takes very high computational effort for relatively large structure.

For signal processing and damage detection, there have been many works

performed during the last decade. The generalities and theoretical fundamentals

on Lamb wave signal processing has been thoroughly described by [Su and Ye

(2009), Staszewski and Sohn (2009)]. They discussed the signal processing based

on time-domain, frequency-domain, and time-frequency domain. nevertheless,

Lamb wave signal processing for damage detection remains difficult to be solved

by single ‘catch-them-all’ techniques since it involves complexity, uncertainty,

and variability as stated by [Harley et al. (2017)] who proposed several methods

that decompose into variability reduction, uncertainty analysis by various

techniques such as sparse wavenumber synthesis, and complexity leverage by

using baseline subtraction, matched field processor, and delay sum and sparse

method [Nokhbatolfoghahai et al. (2019)].

Chronologically, when looking back into older works, [Soma-Sekhar et al. (2006)]

used Lamb wave tomography to demonstrate the detection capability of their

system on low-velocity impact damage on quasi-isotropic graphite-reinforced

epoxy matrix composites. One way to characterize Lamb wave signals is to

13 Chapter 2. State of the Art

represent signals in the time frequency domain, also known as a Time-Frequency

Representation (TFR). There are several methods to do this: Short-Time Fourier

Transform (STFT), Wigner-Ville distribution (WVD), Chirplet Transform (CT)

and Wavelet Transform (WT) [Su and Ye (2009), Kerber et al. (2010), and

Kordbacheh (2012)].

The difference between these techniques is the function that is multiplied by the

time domain input signal. For instance, while in STFT the time domain input

signal is multiplied by a fixed window length, in WT, the input signal is multiplied

by a scalable mother wavelet. A very detailed approach on characterizing Lamb

wave signals with that TFR with Matching Pursuit is described by [Karpenko

(2013)] in his thesis, where the proposed TFR is designed on the basis of the

reassigned spectrogram in order to improve the resolution. The work was

experimentally validated on aluminum and woven composite plates.

[De Marchi et al. (2013)] proposed a novel signal processing for chirp excitation

with three steps: 1). warped frequency transform (WFT) to compensate the

dispersion due to propagation, 2). signal compression to remove the frequency

modulation, and 3). an imaging algorithm to localize the damage. This approach is

related to that which has been proposed by [Hua et al. (2015)]. The difference in

the study is, that they used more pulse variations that include white noise signal

in their chirped excitation.

[Ahmad (2014)] characterized Lamb wave propagation signals in thermoplastic

materials using the Daubechies 4-tap (db4) based wavelet algorithm and Gabor

Transform to determine the experimental group velocities and by using this

technique, they were able to identify higher-order Lamb modes such as S10, A7,

A9, and A10 modes. [Chen and Wang (2014)] introduced a technique for signal

noise removal by calculating the fractional differential amplitude and extracted

the amplitude spectrum with estimation model. They validated their study with

simulation and experimental method.

From imaging techniques, [Gao et al. (2019)] introduced sparse reconstruction

imaging from contactless Lamb wave excitation by a laser and reconstructed the

signal using system response decomposition. While the sparse imaging result is

not smooth, the achieved damage localization accuracy was below 1 cm. They

concluded that the performance of this sparse imaging technique relies on the

denoising parameters and the number of the excitation sources.

Lamb mode conversion is another area of research direction that has been

established for a while. Typically, in this case, the work involves the

characteristic of mode conversion to detect or localize the damage, as has been

proposed by [Hosseini et al. (2014)]. In their work, they used the scattered

coefficients from continuous wavelet transform (CWT) to separate the different

Lamb modes in sandwich structures. As a conclusion, a damage localization with

a maximum error of 2 mm was obtained.

14 Chapter 2. State of the Art

In area of a developing damage index (DI), [Gao et al. (2018)] proposed an

integrated impedance technique for damage classification, i.e., instead of the

amplitude, they indirectly derived the DI by monitoring the impedance variation

of the sensor network and then, the DI is calculated by adjusted result of the

sensor self-diagnostic parameter to estimate the damage severity. This method is

particularly useful to monitor 1) the structural health, and 2). the health of the

sensor network itself.

We can summarize the literatures above into 4 distinct research directions: 1).

physics & analytical modelling on Lamb wave based SHM, 2). signal processing

for damage characterization, 3). numerical approach on Lamb wave propagation,

and 4). sensor technologies for Lamb wave generation and sensing.

2.1.2. Advancement on Strategic Design of SHM System Parameter

The focus of the section 2.1.1 was on the scientific and technological novelty and

advances of Lamb wave based SHM that might (or might not) come into closer

realization of fully functional Lamb wave based SHM, i.e., those are still within the

laboratory realm or smaller scale development level. This section will be focused

more on design parameters that are relevant for larger-scale SHM deployment.

One of the very early studies on Lamb wave design parameters was the mode

selection performed by [Rose et al. (1993)], where at that time, they were only

talking about ultrasonic NDT a with guided wave for a composite plate, but of

course without mentioning SHM since at that time, the term SHM was most likely

not heard yet. The topic of wave mode tuning techniques was revisited by [Shi

(2002)] in his doctoral research, where he described different methods such as

single transducer tuning, phased array tuning, and synthetic phase tuning.

The reason why wave mode selection is important is due to the fact that unlike

bulk waves, Lamb waves have a dispersive and multi-modal nature, i.e., not only

that the propagating velocity changes as a function of frequency, but also that at

least two fundamental Lamb modes are always present. In fact, signal processing

of Lamb wave for damage detection is often hampered by the presence of

undesired higher-order Lamb modes that must be separated first by many

techniques such as those discussed in section 2.1.1. The complexity and difficulty

of analyzing more than just the fundamental Lamb modes was reiterated by

[Wilcox (1998)] in his dissertation.

Over two decades, the topic on wave mode selection has been revisited several

times. In the slightly later article, [Wilcox et al. (2001)] pointed out that 6 crucial

factors influence propagating Lamb modes: dispersion, attenuation, sensitivity,

excitability, detectability, and selectivity. Also, they mentioned that a wedge

transducer is generally unsuitable for a liquid-surrounded structure, and they

recommended using either an electromagnetic acoustic transducer (EMAT) or a

shear PZT instead. It was pointed out by [Santoni et al. (2007) and Giurgiutiu et al.

(2007)] that the Lamb mode tuning can be influenced by the dimension of the

15 Chapter 2. State of the Art

transducer, where they demonstrated this tuning with several varying

transducer dimensions and calculated the effective dimension to compensate for

the shear-lag effect between the sensor and surface due to bonding, and finally

processed the captured signal with the time-reversal method.

A further study on calibration methods for a circular shaped PZT for Lamb wave

tuning has been published by [Sohn and Lee (2010)]. They first constructed the

theoretical tuning curve due to discrepancy between the bonding layer and the

energy distribution: After that, they incorporated the energy distributions among

the symmetric and antisymmetric modes and validated the effectiveness of the

calibration method by using numerical and experimental work on an aluminum

plate. An example of such a tuning curve before and after their proposed

calibration is depicted in Fig. 2.1.2-1.

Fig. 2.1.2-1: Discrepancy between the experimental and theoretical tuning curves a). before and b).

after calibration – which can be either a linear or a non-linear adjustment. [Sohn and Lee (2010)].

Other approach to generate specific Lamb modes has been proposed by [Yan and

Bo (2011)]. Instead of determining the PZT dimension, they used a transducer pair

on the top and bottom surface of an aluminum plate. Such an approach would

allow weakening of one Lamb mode while strengthening the other, so that only a

single dominating Lamb mode is propagating the plate. While they validated

their numerical modelling with experimental work, such approach is not very

practical for some applications in aircraft crack monitoring because it would

require one of the sensors to be placed on the outside.

[Schmidt et al. (2013)] proposed a design for an interdigital transducer that

consists of multiple arrays of positive and negative electrodes that are separated

by wavelength distance. They first analyzed the broadband excitation frequency

range between 25 – 400 kHz and validated the work on a carbon fiber reinforced

composites plate accompanied with finite element modelling in the ANSYS

environment. Unlike a conventional PZT which is in general very brittle, the

interdigital transducers are flexible in shape and suitable to many geometries,

however the disadvantage of this type of transducer is its relatively higher price

and its relatively large dimension (circa 5 x 5 cm) which might not be suitable for

hardly accessible areas closer to fasteners.

A related work on Lamb mode phase matching has been proposed by [Li et al.

(2020)]. They first described the theoretical analysis of a second harmonic Lamb

16 Chapter 2. State of the Art

mode in an isotropic plate and went further into the derivation of non-linear

parameters for Lamb waves which were later adjusted to the phase-matching

condition due to attenuation (see Fig. 2.1.2-2). Based on their experimental

validation, it can be observed that higher S-modes have a tendency of amplitude

perseveration, i.e., better energy efficiency.

Fig. 2.1.2-2: Phase matched Lamb modes indicated by square symbols, in a). phase velocity

dispersion curve and b). group velocity dispersion curve. [Li et al. (2020)]

Another parameter that can be fine-tuned for Lamb wave based SHM is the

excitation waveform. There were not many works performed in this area: study

on waveform design performed by [Zeng et al. (2013)] for improving resolvable

resolution can be briefly mentioned. They stated that besides sensor distance,

both the number of excitation cycles and the center frequency are significant

factors that influence the resolvable resolution.

Another approach on frequency mixing has also been recently proposed by

[Chen et al. (2020)]. In this work, they studied the response of frequency mixing

from two counter-propagating Lamb waves in a two-layered plate. They found

that outside the wave mixing zone, the magnitude of the combined harmonic

tends to be stable and due to the relatively small size of the wave mixing zone, this

technique can enhance the localization accuracy of debonding in the two-

layered plate. They performed a semi-analytical model and verified this in

numerical modelling via FEM, but an experimental validation still must be

conducted to validate the proposed approach.

As for the design of the SHM power system, there have not been many approaches

proposed: One work from [Kural et al. (2013)] describes the design and

optimization of the transmission and reception circuits when using inductors.

They first characterized the power consumption of the sender-receiver system

in a broad excitation range between 20 and 200 kHz to determine the minimum

power supply threshold, and then compensated the power throughput by using

the inductor system. Conclusively, they found out that the power throughput of

the system can be increased 5-fold.

Another important parameter that influences damage detectability in Lamb

wave based SHM system is the PZT pattern and positioning. Depending on the

detectability, performance, and cost-benefit requirement, the sensor network

17 Chapter 2. State of the Art

arrangement can be either sparse or dense. [Croxford et al. (2007)] mentioned

that for SHM, a sparse sensor network arrangement is suitable – which is very

logical since the complexity and redundancy of a dense SHM sensor network

would outweigh its cost-benefit performance and thus in that case an inspection

by conventional NDT would suffice. Further, they mentioned that for a sparse

network, the distance between the sensors is ideally far larger than the scale of

the anticipated damage.

An example comparison between a sparse and a slightly dense sensor network

was presented by [Ambrozinski (2012)] where they compared the damage

imaging reconstruction from a sparse and a star-shaped Phased-Array sensor

network. They conducted the experiment on an aluminum plate with a size of

1000 x 1000 x 2 mm and concluded that due to the complexity of aircraft

structures, a baseline imaging needs to be subtracted from a reconstructed image

of the damaged structure. As the study was quite in an early stage, they mentioned

that further work addressing environmental condition such as temperature

needed to be performed.

In a more recent article from [Kudela et al. (2018)], a novel strategy to improve

imaging resolution was proposed. In this case, they used a circular sensor pattern

placed in the same geometry and material as used in [Ambrozinski et al. (2012)].

In this work, two parameters were studied: the excitation waveform and the

sensor density. The waveform excitation they used was also based on pulse

compression as has been discussed earlier in [Lin et al. (2016)]. Their strategy for

sensor positioning was to start with a dense network (assigned as a focal point),

and then slightly increase the sensor distance based on signal post-

compensation and the sum of the energy.

[Lee and Staszewski (2007)] used the local interaction simulation approach

(LISA) to model a small number of damage scenarios and based on the result of

the simulations, the locations with the highest peak to peak locations were

identified as suitable locations for sensor placement. A related approach using

simulation of Lamb wave propagation was proposed by [Venkat et al. (2016) and

Taltavull et al. (2017)]. In this approach, the summed-up energy captured by all

the individual sensors was plotted and the most optimal sensor location was

determined as the one with the highest captured energy.

A similar approach was realized in an experimental setup by [Stawiarski and

Muc (2019)]. However, instead of the energy, they calculated the damage index

(DI) based on the correlation coefficient between the baseline signal and the

signal from the defected structure. [Fendzi et al. (2014)] proposed a novel

approach for sensor placement using geometric dilution of precision (GDOP),

which is based on a Lamb wave ray tracing method for known damage locations.

[Haynes et al. (2014)] proposed sensor placement by minimizing the Bayesian

cost and thus selected the locally optimal sensor location. However, if the damage

occurs outside of that area, it might fail to detect it.

18 Chapter 2. State of the Art

[Mallardo et al. (2012)] proposed a hybrid probabilistic approach using a

combination of a Genetic Algorithm (GA) and an Artificial Neural Network

(ANN), where they related the fitness function to the approximate error of the

ANN. This approach takes a very dense network into consideration and seems to

be suitable for monitoring stringers and frames, but at the same time it can be

considered an overkill and not very cost-efficient for monitoring an impact in an

open area.

In more recent study, [Thiene et al. (2016)] introduced DI-free sensor placement

optimization based on a fitness function that maximizes the coverage area of the

sensor network. They calculated the coverage of each pixel in the geometry

based on the pitch-catch technique, so that every pixel that contributes to the

probability that a damage in a random location is being detected is counted. Their

goal was to maximize the coverage area of the sensor network. A related

approach on maximizing coverage area was recently proposed by [Soman et al.

(2019), Soman and Malinowski (2019)] and [Mustapha et al. (2019)]. Some of these

techniques are also mentioned in a recent review by [Ostachowitz et al. (2019)].

Some figures from these works are collated together in Fig. 2.1.2-3.

Fig. 2.1.2-3: From [Thiene et al. (2016)]: Comparison two different sensor network topology of 4

sensors, a). Denser network in lower part of plate, b). balanced network, c). experimental setup.

From [Soman et al. (2019)]: Network score convergence as function of sensor density for d). highest

(coverage 1), and e). lowest (coverage 3) sensor-actuator pair coverage, respectively. Detailed

definition of coverage nomenclature can be read in the paper.

In a recent work from [Balamonica et al. (2020)], a study on sensor networks

based on serial and parallel connections was performed. They conducted the

work for a reinforced concrete beam to understand dynamic damage

quantification metrics such as the moving root mean square deviation (M-RMSD),

the moving cross-correlation (M-CC), and the moving mean absolute deviation

(M-MAD). The beam was subjected to damage and was measured by the sensor

response conductance with varying frequencies for different sensing paths and

19 Chapter 2. State of the Art

it was concluded that the sensor node with the higher magnitude in the frequency

domain is the one which is closer to the damage.

Another parameter that can be optimized to increase the efficiency and

detectability of an SHM system is the geometry of the structure itself as has been

proposed by [Ong and Chiu (2012), (2013)]. While the idea of optimizing the

geometrical aspects for current damage tolerant design is quite wild, this

approach would make sense for a new structure which is to be designed from

scratch. In their work, they proposed fatigue crack detection and localization

using ray tracing in a specially designed sub-structure within an aircraft wing

that specifically redirects Lamb wave propagation. The study was performed in

a FEM environment and experimentally validated.

As a conclusion for this sub-chapter, the design parameters of Lamb wave SHM

that should be considered when designing such system has been discussed by

[Carboni et al. (2015)] where they employed statistical approaches by Design of

Experiment (DOE) to study the main influencing factors such as Lamb mode

tuning, frequency combination, pulse-echo and pitch-catch configuration, and

sensor position for damage detection in carbon fiber composites.

2.2. Recent Trends in Machine Learning and Computational Intelligence

This section contains the recent trends and advances in machine learning,

evolutionary computing in heuristics optimization, and give some perspective on

computational neuroscience that might be adapted to the development of

autonomous systems in the sub-section 2.2.1 – 2.2.3, respectively.

2.2.1. Advancement in Machine and Deep Learning

Since the scope of machine learning is very broad and in recent years it is getting

more and more chaotic than ever, before ‘getting lost’ in the jungle of machine

learning terminology, we shall understand the existing paradigms of machine

learning [Mohri et al. (2018), Karimpanal and Bouffanais (2018), Settles (2010),

Sahoo et al. (2018)]: supervised learning, unsupervised learning, semi-supervised

learning, self-supervised learning, feature learning, reinforcement learning,

active learning, and online learning:

- Supervised learning: This is most probably the most well-known learning

scenario. In supervised learning, the algorithm receives a set of labeled

examples as training data and makes predictions for all unseen points. The

most common applications that use machine learning are image

recognition, weather prediction, and spam email detection.

- Unsupervised learning: In this case, the learning algorithm exclusively

receives unlabeled training data and estimates whether there are

relations between each point. Generally, the performance of an

unsupervised learning algorithm is difficult to measure since in general no

labeled example is available in that setting. An example of unsupervised

20 Chapter 2. State of the Art

machine learning techniques is clustering for news category grouping and

principal component analysis (PCA) for dimensionality reduction.

- Semi-supervised learning: This approach falls between unsupervised and

supervised learning. The learning algorithm receives a training sample

consisting of both labeled and unlabeled data and makes predictions for

all unseen points. This approach is very common in settings where

unlabeled data is easily accessible, but labels are expensive to obtain,

which reflects many real-world situations.

- Self-supervised learning: Like semi-supervised learning, self-supervised

learning also falls between supervised and unsupervised learning. The

difference here is, self-supervised learning makes use of completely

unlabeled data, but it tries to find the relationship between each data point

and tries to map that relationship in a supervised way. This is commonly

used in the robotics domain where a self-supervised algorithm learns the

relation between multimodal data from a color and a depth camera.

- Feature learning: Sometimes also called representation learning, feature

learning allows a system to automatically discover the representations

needed for feature detection from raw data. Learning representations

replace hand-engineered features and allow the algorithm to both learn

the features directly from the raw data and to use them to perform a

specific task. An example of feature learning is a face recognition software

that detects biometric markers such as eyes and mouth location.

- Transfer learning: Also associated with feature learning and deep

learning, transfer learning makes use of the learned feature

representations. Since a deep neural network can only perform a specific

task and it must be retrained if the task is changed, the learned features are

sometimes transferred into a similar task in order to save training time.

- Online learning: Online learning is a subset of supervised learning, which

involves an ‘online scenario’ that consists of multiple rounds of intermixed

training and testing phases. However, unlike classical supervised

learning, the online scenario is not done in a mini batch over an entire

dataset, but rather in sequential way as soon as new data points are

discovered.

- Active learning: Like online learning, active learning is a special case of

supervised learning. The active learning algorithm interactively collects

training data, typically by querying a human to request labels for new

points. The goal in active learning is to achieve a performance comparable

to the standard supervised learning scenario, but with fewer labeled

examples.

- Reinforcement learning: Like active learning, a reinforcement learning

algorithm actively interacts with the environment. It receives an

immediate reward or penalty for each action. The objective of

reinforcement learning is to maximize the reward over a course of actions

and iterations with the environment. However, unlike many other

machine learning scenarios, reinforcement learning does not yield a

statistical model like a neural network, but rather a policy that maps the

agent action to maximize its reward.

21 Chapter 2. State of the Art

Supervised learning is most probably the most common and often talked about in

machine learning and when introducing someone to machine learning, the first

method that will be introduced would probably linear, polynomial, and logistic

regressions as these simple techniques have existed since centuries. Indeed,

almost all modern supervised techniques are at least involving regression. The

most simplistic supervised algorithm would probably be a simple (also called

naïve) Bayesian classifier that can also slightly be expanded into multinomial

Bayes classifier. Already in 1997, [Domingos and Pazzani (1997)] discussed the

optimality of a Bayes classifier, where they show it can be optimal under hinge

loss. There are already enough works on Bayes classifiers and therefore will not

be elaborated further here.

Another popular technique in supervised learning is called Support Vector

Machine (SVM) which was introduced by [Cortes and Vapnik (1995)] as a

support-vector network for pattern recognition. The original SVM was basically

a binary classifier that used an optimal hyperplane which maximizes the margin

in multidimensional space. In a simplified case where the data points are linearly

separable, it can be simplified as a linear SVM. The work has been extended by

[Lee at al. (2004)] to include multicategory classifier SVM and its statistical theory

has been recently provided by [Pouliot (2018)].

The most popular and heavily researched supervised learning method is

probably neural network, which was introduced for the first time by [Rosenblatt

(1958)] as a perceptron and later emerged as a network and thus called multilayer

perceptron (MLP). Since MLP is an imitation of a biological neural network, it is

also sometimes called artificial neural network (ANN). MLP grew in popularity

until the 1990’s [Hopfield (1982)], where at that time the computational ability was
low, and the ANN popularity was overshadowed by SVM [Lee and To (2010)].

In between, there were periods called the ‘AI winters’ where research in artificial
intelligence suffered a lack of funding and interest, and these were notoriously

between the early to late 1970’s, between the late 1980’s and the early 1990’s, and
after the dotcom bubble collapse in the early 2000’s. It was not until the mid-

2000’s when [Hinton and Salakhutdinov (2006), Hinton et al. (2006)] introduced

the deep belief network (DBN), a class of DNN, when the neural network regained

popularity. Post-2012, people were increasingly talking about ‘deep learning’ but

actually it is just a network with at least 2 hidden layers, so technically a 2-layered

MLP from the 1970’s would also qualify to be called deep learning.

While MLP was powerful enough to recognize the handwritten digit even in the

early 1980’s, it was still far away from recognizing the human face or detecting an
object within an image. Not only was MLP memory consuming, but at that time

there was not enough computational power to train a huge MLP. Moreover, a

complex MLP was very prone to the overfitting problem. To overcome the

problem, a convolutional neural network (CNN or ConvNet) called LeNet-5 was

introduced by [LeCun et al. (1998)], depicted in Fig. 2.2.1-1.

22 Chapter 2. State of the Art

Fig. 2.2.1-1. Original LeNet-5 [LeCun et al. (1998)]

The idea behind CNN was to capture local spatial information within the input

image, thus it was designed as a shared network parameter within a convolution

filter that slides from the top left to the bottom right of the input image. The input

representations were subsampled into several feature maps and this step was

repeated in several times until a very deep abstraction level of the original input

image was reached. Finally, the feature maps were attached to a smaller, but fully

connected MLP at the end. LeNet-5 was published coincidentally during the peak

of dotcom bubble, however as one can expect, there was a short period of AI

winters afterwards. From 2010 onwards, research in CNN were flourishing.

[Krizehvsky et al. (2012)] introduced AlexNet, a deeper and larger version of

LeNet-5. They also trained it on GPU and thus accelerated the training process.

Unsurprisingly, AlexNet was the top performer in ImageNet Large Scale Visual

Recognition Competition (ILSVRC) 2012. Since then, there exist many variants of

CNN:

- 16- and 19-layers deep network from Visual Geometry Group of Oxford

University, called VGG-16 and VGG-19 [Simonyan and Zisserman (2015)]

- 152-layers deep CNN with skip connections called Residual Network

(ResNet) [He et al. (2016)]

- CNN a variational convolution filter size from the Google team, called

GoogLeNet which also known as InceptionNet (22-layers deep) and its

younger brother InceptionNet v4 and its sibling recombinant Inception-

ResNet [Szegedy et al. (2015), (2017)]

- a smaller but efficient CNN for smartphone and embedded vision

application called MobileNet [Howard et al. (2017)]

- similar to MobileNet: SqueezeNet [Iandola et al. (2017)] that achieved

AlexNet-level of performance but only with less than 1 MB size.

One of the major breakthroughs in CNN was proposed by [Hinton et al. (2018)] in

what they called as dynamically routed capsule network (CapsNet). In normal

CNN, a pooling layer is typically attached after each convoluted feature map to

reduce feature redundancy, but this causes information loss regarding object

pose and location. So, a CNN would recognize an image that consists of eyes,

mouth, nose, and ears as perfect human face even if the mouth is placed on the top

of the eyes. This is known as white attack, but it is to be expected because the

convolution kernel from a CNN only learns the local spatiality of an object (e.g.,

eye color, pupil, lens within an eye) but it does not learn the eye position relative

23 Chapter 2. State of the Art

to the human face. CapsNet addressed this issue by learning an equivariant

representation of the object, i.e., it tracks the object movements just from several

samples and concatenate them in a capsule. Instead of a common non-linear

activator such as sigmoid or linear rectifier, the capsule is routed to the next layer

by a squash function. The architecture of CapsNet and the equivariant object

representation is depicted in Fig. 2.2.1-2 a – c.

Fig. 2.2.1-2: a). Architecture of CapsNet, b). 8 sample images from 4 objects that are fed into CapsNet

– each object and its equivariant representation is given in top and bottom, c). Artificially

generated images from learned parameters trained with CapsNet. It can be seen quickly that

CapsNet can efficiently learns the object pose. [Hinton et al. (2018)]

24 Chapter 2. State of the Art

Another approach that commonly appears with a neural network is sequential

data modelling using a recurrent network. This approach is very useful for a data

block that has variable length, but also for very long data that has to be treated in

sequential mode such as human speech, textbook, or a very long time-series. In a

recurrent network, the information is processed in the recurrent cell. There are

several variants of core recurrent cells that make up the network: the vanilla

recurrent neural network (RNN), the long short-term memory (LSTM) and the

gated recurrent unit (GRU) which were originally introduced by [Rumelhart et al.

(1986)], [Hochreiter and Schmidhuber (1997)], and [Cho et al. (2014)],

respectively. The basic recurrent cell operations and the model architecture of a

generic recurrent network is depicted in Fig. 2.2.1-3.

Fig. 2.2.1-3: a). Recurrent cell basic operations: Vanilla RNN, LSTM, and GRU [Rathor (2018)]. b).

Recurrent network architecture [Hochreiter and Schmidhuber (2017)]. Every cell at hidden layer

can be either vanilla RNN, LSTM, GRU, or combination of these.

While the theoretical detail is too complex to discuss in this literature review, it

can be pointed out that the similarity of these networks is that the input into the

recurrent cell not only comes from the input layer, but also from preceding

output layer. This is in contrast with a feed-forward neural network (such as MLP

25 Chapter 2. State of the Art

and CNN) which only gets its input solely from the input layer. The advantage of

LSTM and GRU over vanilla RNN is that the GRU and LSTM cells have memory

and thus are more suitable for applying to a long-term dependency problem such

as machine translation. An example that demonstrates the capability of a 4-layers

deep LSTM network to handle long term dependency has been performed by

[Sutskever et al. (2014)]. They showed that there is no translation degradation for

English – French translation for sentences of less than 35 words.

Another possible approach for sequential modelling on recurrent network is the

combination between CNN with LSTM. There are two different approaches to

this: 1). the conjunct CNN-LSTM where the MLP layer in the standard feed-

forward CNN is simply replaced by LSTM cells such as demonstrated by [Xue et

al. (2019), Vidal and Kristjanpoller (2020)] and 2). the ConvLSTM method where

the convolutional kernel from standard CNN is made recurrent as an LSTM cell

such as demonstrated by [Xu et al. (2019)]. For this reason, this can be regarded as

a 2D-LSTM cell.

Given the ability possessed by CNN to extract spatial information from the input

and the ability of recurrent models such as GRU and LSTM to learn temporal

relationships stretching across long periods of time, it is natural to fathom a

neural network that is a hybrid of both. The resulting hybrid neural network

would enable the pattern learning of the spectrotemporal input in an end-to-end

manner.

The first proof of this concept found its first appearance in research dating back

to 2015 [Ng et al. (2015), Donahue et al. (2015)]. To best of my knowledge, the first

hybrid CNN and LSTM combination was proposed by [Shi et al. (2015)].

Numerous variants of CNN-LSTM hybrid networks have since been proposed in

a wide range of technical fields, such as: clinical electroencephalography (EEG)

[Xu et al. (2020)], financial forecasting [Lu et al. (2020)], renewable energy

production [Tovar et al. (2020)], natural language processing [Sainath et al.

(2014)] and, ostensibly of course, computer vision [Ercolano and Rossi (2021)].

Theoretically, a convolutional operation of the kernel can be of arbitrary

dimension, although as humans we normally perceive in either 1-, 2- or 3-

dimensional space. The simplest example was by given [Xu et al. (2020)] in which

they employed 1D CNN-LSTM architecture, in which they used the 1D CNN-

LSTM for automatic recognition of epileptic seizures via the analysis of EEG

signals. The purpose of the convolutional layer was to extract features from the

preprocessed EEG input data, while the LSTM component of the architecture

would then subsequently perform the extraction of temporal features. This novel

application of 1D CNN-LSTM architecture for a clinical EEG task proved to have

much better performance than both traditional machine learning algorithms and

simpler deep neural networks and a pure CNN network.

Within the field of field of financial forecasting, [Lu et al. (2020)] used a 1D CNN-

LSTM network to predict the price of a stock one day ahead. The tasks of both the

26 Chapter 2. State of the Art

1D CNN and LSTM components are similar to those in the previous case, so

unsurprisingly one may view the financial data input into the network as a

suggestive signal of a company's potential profitability. As an outcome, they

concluded that a 1D CNN-LSTM is capable of reliably forecasting stock prices,

which was further demonstrated by comparing the results from alternative

models such as multi-layer perceptron (MLP), pure CNN, pure recurrent (RNN

and LSTM) and CNN-RNN.

One prominent example from the medical field using CNN-RNN recombination

has been performed by [Gheisari et al. (2021)] for detecting glaucoma, a leading

cause of blindness. According to their results, the combined CNN-RNN model

reached an average F-score of 96.2% while the base CNN model only reached an

average F-score of 79.2%. Another work from the medical field has been

demonstrated by [Islam et al. (2020)] who used it to automatically diagnose X-ray

imagery data of Covid-19 patients. Their experimental results show that the

algorithm achieved an accuracy of 99.4% and an F1-score of 98.9%. A visual

depiction of their implementation of 2D CNN LSTM is given in Fig. 2.2.1-4.

Fig. 2.2.1-4: 2D CNN-LSTM network proposed by [Islam et al. (2020)] to distinguish X-ray imaging

data between a healthy (normal) lung, a Covid-19 patient, and a bacterial pneumonia.

27 Chapter 2. State of the Art

Another application of CNN-LSTM was proposed by [Ercolano and Rossi (2021)]

who developed an algorithm to recognize daily life activities in the home

environment using skeleton data coming from a depth camera. In this case, they

had a 3D CNN component which takes as input depth wise grid representations

of skeletal data, as depicted in Fig. 2.2.1-5.

Fig. 2.2.1-5: 3D CNN-LSTM for recognizing RGB-D skeletal data [Ercolano and Rossi (2021)]

[Tovar et al. (2020)] used a similar network to predict electric energy

consumption. They used multivariate datasets coming from different sensor data

such as atmospheric pressure, humidity, temperature, AC voltage, radiations, etc.

A visualization of the implementation of their workflow is given in Fig. 2.2.1-6.

Fig. 2.2.1-6: Visual depiction of the 1D CNN-LSTM implemented work for electricity energy

consumption prediction [Tovar et al. (2020)].

Within the field of SHM-NDT, there are few use cases of the CNN-LSTM

architecture. One example is the work of [Khorram et al. (2019)] which focused

on intelligent bearing diagnostics and prognostics and aimed at reducing

unscheduled downtime, performance degradation and hazardous safety matters

by detecting bearing faults using CNN-LSTM with the end-to-end approach. In

their work, the data is maintained in its raw format without any pre-processing

such as a Fast Fourier Transformation (FFT) or Discrete Wavelet Transformation

(DWT). Notably, the result achieved by this work demonstrated a level of

accuracy higher than that of any other present in literature. They collected raw

accelerometer measurements as input data which are fed into the temporal

sequence prediction algorithm, as depicted in Fig. 2.2.1-7.

28 Chapter 2. State of the Art

Fig. 2.2.1-7: End-to-end 1D CNN-LSTM approach for bearing fault diagnosis [Khorram et al. (2019)].

The loss function is defined as L.

In the domain of machine translation, a novel approach for neural translation has

been proposed by [Bahdanau et al. (2015)]. An LSTM memory cell degrades for a

very long sentence. They addressed this issue by adapting the approach of

[Sutskever et al. (2014)] as variable length vectors and adaptively choose a subset

of these vectors. This is called attention mechanism, and it relieves the

computational load from squashing all the information from the source sentence

into a single fixed-length vector. Concretely, they used a bi-directional RNN both

as an encoder during sequence annotation and a decoder during context

searching from the source sentence. An example result is depicted in Fig. 2.2.1-5.

Fig. 2.2.1-8: Example translation result for English – French word matching using approach

proposed by [Bahdanau et al. (2015)]

29 Chapter 2. State of the Art

A variation for neural machine translation has been introduced by [Vaswani et al.

(2017)] where they called their model Transformer network. While the work of

[Sutskever et al. (2014)] relied on sequence aligned recurrence, [Vaswani et al.

(2017)] exploited the self-attention mechanism, where the attention mechanism

can be related to different positions within a source sentence instead of one.

Their model was extended into Pre-trained Bidirectional Encoder

Representations from Transformers (BERT) by [Devlin et al. (2018)] by leveraging

the bidirectionality of the Transformer network which was previously only

made for the left-to-right direction.

One interesting approach in supervised learning is transfer learning where a

machine learning model that has been trained to solve certain task (e.g., face

recognition) can be retrained and repurposed for another task (e.g., object

detection). An example for this approach has been demonstrated by [Goodfellow

et al. (2014)] on a generative adversarial network (GAN). The network consists of

a generator and discriminator that behave in an adversarial way and can be

trained in semi-supervised mode [Kingma et al. (2014)], i.e., a generalization from

a small amount of labelled data for a large but unlabeled dataset.

In terms of unsupervised learning, there are works that have been performed by

the computer science and machine learning community, although these works

are very much overwhelmed by deep learning. One of the most popular

unsupervised techniques that is very often used for data compression as well is

clustering. Originally proposed by [MacQueen (1965)] by using k-means, i.e., data

are partitioned into k-clusters under the assumption that each data point that is

close to the nearest mean is assumed to belong to that cluster. The resulting

cluster is called a Voronoi tessellation.

Beside clustering techniques, another unsupervised learning technique which is

also commonly used for data compression is called principal component

analysis (PCA). Originally proposed by [Pearson (1901)] in early 19th century, PCA

can be done by either using singular value decomposition (SVD) or by performing

eigenvalue decomposition on the covariance matrix. The method has been

refined several times, e.g.: by [Ke and Kanade (2005)] who proposed alternative

convex programming for robust L1-Norm factorization, [Johnstone and Lu

(2009)] who discussed consistency and sparsity for high-dimensional PCA, and

[Markopoulus et al. (2014)] who generalized multiple L1-maximum projection

components.

While many of the works are proposing novel techniques and methodologies,

[Locatello et al. (2019)] challenged some common assumptions in unsupervised

learning regarding disentangled representations. Disentangled representations

are narrowly defined variables of observation features which are encoded in a

separate dimension, i.e., these are models that capture the very low-level features

of a given observation in such a way that if one feature changes, the others remain

unaffected. They first argued that “unsupervised learning of disentangled

representations is fundamentally impossible without inductive biases”, trained

30 Chapter 2. State of the Art

more than 12.000 models that covered many prominent methods and metrics,

and concluded that there seems to be no such thing as fully disentangled methods

without supervision.

Semi-supervised learning can be regarded as a generalized form of both

supervised and unsupervised learning because one can either fully supervise the

model during the training – or let the model find to learn the distribution without

any prior label and in semi-supervised mode, both approaches are combined in

a single training pipeline. One early empirical study on the semi-supervised

approach involving variations of Bayes classifiers on multiple datasets and

common benchmarks can be read in the work performed by [Guo et al. (2010)].

Furthermore, [Bengio et al. (2013), Reddy et al. (2018), Li and Liang (2019)]

provided a literature review on recent semi-supervised techniques.

One common problem in semi-supervised approach is the duality between

quasi-omnipresence of unlabeled data and sparse availability of labeled data

which is tied to the expensive cost of labelling all possible datasets. [Triguero et

al. (2015)] provided an extensive survey on self-labeling techniques covering the

taxonomy of methodologies, multiple software packages, and various empirical

studies. An example of such self-labeling approach is proposed by [Benato et al.

(2018)]. In this example, they used projected feature space with a CNN-based

encoder-decoder system to propagate the dataset labeling.

Briefly speaking, in deep learning, what people are interested in is in particular

the feature representation of the input dataset. For this reason, the International

Conference of Learning Representations (ICLR) has been invented as a research

venue by the deep learning community since 2013 and consequently, many of the

ICLR papers are mostly concerned with feature learning. For representation

learning, the importance of mutual information (MI) maximization should be

pointed out and this is reiterated by [Tschannen et al. (2020)], although they also

argued that MI properties are highly dependent on used inductive bias, i.e., the

choice of encoder-decoder architecture and its parametrization. [Ozair et al.

(2019)] introduced the Wasserstein dependency measure instead of common KL-

divergence in the mutual information. Similar to the Hellinger-Bhattacharyya

distance, the Wasserstein distance measures the similarity between two

probability distributions, which can be regarded as a generalization of the

Euclidian and the Mahalanobis distance. They argued that the Wasserstein

measure captures a more complete representations in the mutual information

estimator. The state-of-the-art of MI maximization in word representation can be

read in [Kong et al. (2020)].

It is also important to incorporate the inductive bias as well such that a proper

architecture is selected. Inductive bias was reiterated again by [Shen et al. (2019)]

on their work regarding ordered neurons in an LSTM network for different tasks

such as language modeling and logical inference. [Kolesnikov et al. (2019)] argued

that “standard architecture design recipes do not necessarily translate from the

fully supervised to the self-supervised setting and architecture choices which

31 Chapter 2. State of the Art

negligibly affect performance in the fully labeled setting, may significantly affect

performance in the self-supervised setting”.

[Misra and Maaten (2019)] introduced Pretext Invariant-Representations in self-

supervised mode, in such a way that the neural network learns representations

from both the original image and its invariant transform and clustered the output

in a memory bank about whether an image transform is similar or dissimilar.

When training such a large dataset, sometimes either time or space becomes

limited. [Goyal et al. (2019)] proposed to scale different dataset axis such as pre-

training dataset size, model capacity, and the related problem complexity.

Not only for visual problems, but self-supervised learning can also (and probably

should) be used for multi-modal problems. [Patrick et al. (2020)] introduced

generalized data transformation (GDT) in the audio-visual representation

learning problem to allow choice as to whether the transform is invariant or

distinctive and to derive the conditions which the transformation combinations

must obey. Their framework approach is depicted in Fig. 2.2.1-9.

Fig. 2.2.1-9: Schematic overview of GDT. A: Hierarchical sampling of GDT for the audio-visual

problem. B: The network learns the invariant and distinctive transformations. C: Result example

showing which pairs are repelling and attracting. [Patrick et al. (2020)]

Finally, when talking about machine learning paradigms, one should not forget

reinforcement learning (RL), where the central task is to influence agent behavior

in an environment in order to maximize cumulative rewards. The formal

introduction into reinforcement learning can be seen in [Busoniu et al. (2010),

Mohri et al. (2018), François-Lavet et al. (2018)]. In short, in reinforcement

learning an agent collects information through a sequence of actions by

interacting with the environment.

One early application of reinforcement learning was proposed back in the early

90’s by [Littman (1994), Tesauro (1995)] for playing games and these have been
extended in recent years for many games such as chess or AlphaGo [Szita (2012),

Lai (2015), Tang et al. (2017), Shao et al. (2018)] where the agent learns how to

maximize the reward by winning the game. Further application of reinforcement

learning can be seen in the domain of robotics and humanoids such as

demonstrated by [Kormushev et al. (2013), Gu et al. (2017), Liu et al. (2018)], and

for autonomous vehicle such as cars and unmanned aerial vehicles (UAV) [Ng

(2003), Munoz et al. (2019), Becker-Ehmck et al. (2020), Ravi Kiran et al. (2020)].

32 Chapter 2. State of the Art

An extensive survey on reinforcement learning on robotics can be read in [Kober

and Peters (2014)].

2.2.2. Computational Intelligence for Optimization

The selection of technical and process parameter optimization for SHM such as

number, location, and shape of the sensors, optimal excitation and sampling

frequency, or even the geometry and constituent material of the structure, etc.

can be regarded as a subset problem of a discrete mathematical optimization: it is

a selection of the best element from a set of possible elements, i.e., finding a

maximum (or minimum) and if possible, globally. The generalized problem in

optimization can be formulated as the finding a non-convex function with non-

linear programming technique for multi-objective optimization. From there,

many special cases can be derived, e.g., for solving single objective linear

problem with simplex algorithm.

The manifold of neural networks has been reviewed in very extensive way in the

previous section – so it will not be further discussed here. Both evolutionary

computing and swarm intelligence are methods that are very often used to solve

optimization problems, and both can be regarded as metaheuristic methods.

Generally, when solving an optimization problem, depending on the nature of

the problem complexity, one can discretize these methods into one of these four

approaches, including some of the common sub-techniques [Bianchi et al. (2009),

Brinkhuis and Tikhomirov (2005), Cook et al. (1998)]:

- Nonlinear programming: function-based (such as line-search and

interpolation), gradient-based (such as Trust region, Quasi-Newton, and

conjugate gradient), and Hessian based methods.

- Convex optimization: linear programming (such as simplex and interior-

point methods), quadratic programming – both are special case of non-

linear programming where the functions to be solved are either linear or

quadratic.

- Combinatorial optimization: Dynamic programming, Brute-force, Greedy

method, Integer programming, State-space search, Graph algorithm

- Metaheuristics: Evolutionary algorithm (such as genetic algorithm),

Simulated annealing, Swarm intelligence (such as ant colony, bee colony,

and particle swarm optimization), Tabu search

Unfortunately, in the optimization community there are fewer resources and

publications unlike the machine and deep learning domain. Nevertheless, one

particular optimization technique, which is the gradient based method, serves as

a fundamental backbone in many machine learning techniques especially for

backpropagation in neural networks and gradient ascent for expectation

maximization (EM) in other ML techniques, such as hidden Markov models

(HMM) [Stamp (2017)] and mixture models [Marin et al. (2005)]. Most of modern

deep learning optimization is done through gradient descent and its variant.

33 Chapter 2. State of the Art

Some other optimization techniques beside gradient descent are the Levenberg-

Marquardt and Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods including

its variant limited-memory BFGS (L-BFGS) [Nocedal and Wright (2006)]. Further,

there is also Newton’s method, but it requires a twice differentiable function since
it needs to calculate the Hessian matrix H, making it mostly impractical to

optimize a large network.

Some well-known problems within combinatorial optimization are the vehicle

routing problem (including the travelling salesman problem and the route

inspection problem), the knapsack problem and the art gallery problem. One

obvious method to solve a combinatorial problem is the exhaustive search

(commonly known as brute force) which visits all possible options in the search

space. Depending on the problem class complexity (i.e., P for polynomial time vs

NP for non-polynomial time in a Turing machine), this option can be viable when

the search space is extraordinarily small. In most real-world cases, brute force is

computationally infeasible since the time complexity will be factorial – the time

complexity is denoted as 𝓞(n!) – see Fig. 2.2.2-1, where n is the number of possible

elements in the search space. The list of complexity of some common algorithms

can be read in [BigOCheatSheet (online)].

Fig. 2.2.2-1: Time complexity as a function of all possible elements in the search space.

[BigOCheatSheet (online)]. Ideally, an algorithm can be considered feasible in many real-world

problems if its computational complexity is less than O(n²), and possibly less than O(n log n).

Thus, we may rely on metaheuristics search algorithms such as the evolutionary

algorithm to find a solution for many combinatorial problems. As summary, there

are currently four mainstream approaches: 1). Evolutionary computing methods

such as the genetic algorithm, neuroevolution and differential evolution, 2).

Physically inspired methods such as simulated annealing and its variations,

quantum annealing and stochastic tunneling, 3). Swarm intelligence-based

34 Chapter 2. State of the Art

methods such as ant colony, bee colony, and particle swarm optimization, and 4).

Socially inspired methods such as tabu search and its variants.

An application of adaptive differential evolution for dynamic optimization has

been demonstrated by [Trojanowski et al. (2011)], where they modified the

mutation operator to be based on an α-stable distribution. A similar approach on

modified mutation has also been proposed by [Azad et al. (2011)] but they also

implemented self-adaptive control parameters that influence the generated

population at each run. This approach is related to what has been proposed by

[Lourenço et al. (2013)]. In their work, a rule that defines how many individuals

should be selected and how they should be chosen in order to adjust the selective

pressure. The algorithm was tested on the knapsack problem.

[Forstenlechner et al. (2017)] proposed a similarity-based crossover technique

by calculating the similarity measures such as Hamming and Levenshtein

distance depending on the variable used. [Abbood and Vidal (2017)] introduced

several different mutation operators in the co-evolution algorithm which they

called the “Fly Algorithm”. The algorithm was tested for reconstructing a
computed tomography (CT)-scan of cancer patient. A comparison of some of the

adaptive selection techniques has been performed by [Jankee et al. (2015)].

On the application side, an evolutionary algorithm can be combined with a graph

search algorithm such as A* for drone path planning for a surveillance mission in

an urban environment as proposed by [Ghambari et al. (2019)]. The objective was

to find the shortest path under the constraint that the drone must maintain a safe

distance when flying between the obstacles.

A similar UAV path planning has also been proposed by [Arantes et al. (2016),

Ellefsen et al. (2016)]. In similar way, [Ragusa et al. (2017)] also proposed an

enhanced path planning for autonomous flight with a mini drone, the so-called

micro aerial vehicle (MAV). They mentioned that common limitations of using

GAs for path planning in a simulated environment are that the environment is

discrete, and that the UAV motion is monotonic.

A genetic algorithm was also employed to optimize aircraft approach trajectories

[Vormer et al. (2006)] and to solve automated taxi routing in an airport, such as

proposed [Brownlee et al. (2018)]. They recognized that aircraft taxiing not only

causes unnecessary fuel burn, but it also frustrates passengers and airport

resources. For this reason, their algorithm was designed to minimize the taxiing

time and they validated the approach using an example at 3 international major

airport hubs.

Another interesting application of an evolutionary algorithm in an aerospace

related domain beside path planning is to optimize the winglet design such as

proposed by [Teixeira et al. (2016)], where several decision variables are fed into

the algorithm to optimize two objectives: the ratio of drag-lift coefficients, and the

wing root bending moment coefficient. This approach was similar to the later

35 Chapter 2. State of the Art

work by [Gewehr and Sousa (2019), Zhang et al. (2020)], although the later

implemented in the winglet configuration for a solar-powered aircraft.

In metaheuristics by swarm intelligence, one of the commonly used methods is

the ant colony optimization algorithm (ACO) which is a probabilistic multi agent-

based technique that is inspired by the behavior of real ants for solving

computational problems with high complexity such as vehicle routing. [Melo et

al. (2013)] divided the ant colony system (ACS) for solving the dynamic travelling

salesman problem (TSP) – which is an NP-hard problem – into several cases that

can have different selection strategies. An example of a real-world application of

ACS optimization for logistics and transportation domain was proposed by [Luo

et al. (2019)], where they aimed to minimize CO2 emissions of transportation

vehicles from home health care (HHC) companies. Not only for logistics, but ant

colony optimization (ACO) has also been used for path optimization of multiple

UAVs during Minimum Time Search (MTS) missions [Carabaza et al. (2017)].

While this can be used for military and defense-related topics, fortunately the

example they gave was for a simulated search and rescue mission for a lost hiker.

Interestingly, ACO can also be used for optimizing recurrent neural networks

such as LSTM and has been demonstrated by [El Said et al. (2018)]. In this work,

they basically evolved the LSTM network by letting the artificial ants choose the

best connections between the hidden layers. This technique can be viewed as a

regularization for overfitting prevention that used metaheuristics search instead

of a regular neuron dropout. The example results of their work for vibration

prediction from a single test flight that compares optimized and non-optimized

LSTM architecture is given in Fig.2.2.2-5.

Fig. 2.2.2-1: Comparison between vibration prediction from unoptimized and ACO-optimized

LSTM network. [El Said et al. (2018)].

Besides the ACO, artificial bee colony (ABC) algorithm, originally proposed by

[Karaboga (2005)], is also commonly used for search metaheuristics. Rather than

using a pheromone trail, in ABC the employed bee goes to a food source, evaluates

the nectar amount and dances in the beehive. An onlooker bee watches the dance

and goes to the food source and examines it. If the food source is abandoned, the

employed bee (which then becomes a scout) will continue to search for a new

36 Chapter 2. State of the Art

food source. The algorithm was slightly modified by [Consoli and Pavone (2013)]

to solve the graph coloring problem and by [Wang et al. (2016)] for searching k-

Nearest-Neighbor Fields (k-NNF).

As an alternative to the artificial ant and bee colony is the more generic particle

swarm optimization (PSO), which was originally proposed by [Kennedy and

Eberhart (1995), Shi and Eberhart (1998)], is also commonly used for many

optimization problems. Many of the PSO variations do exist such as novelty

driven PSO [Galvao et al. (2015)], where “the particles are driven only towards

instances significantly different from those found before” to avoid local optima, i.e.,

they assigned the best position of particle to be the one that has the highest

novelty instead of the best fitness.

PSO has also been used to optimize hyperparameter selection in a neural

network, as demonstrated by [Lorenzo et al. (2017)]. This can be related to the

work of [El Said et al. (2018)], although in this case they only used a standard CNN

instead of LSTM for validation of their work. Not only for hyperparameter

optimization in supervised learning, [Nguyen et al. (2018)] used PSO for feature

selection in transfer learning with a domain adaptation approach. As for real-

world PSO applications there are several interesting works that have been

proposed such as: filter parameter selection for image denoising [Wang et al.

(2017)] by employing a structural similarity index to calculate the intensity

parameter. This approach was similar to a more recent work proposed by

[Portelli and Pallez (2019)]. Recently, [Mohamed and Otero (2020)] used PSO for

solving a multi-objective approach for market timing in a financial portfolio

optimization such as value at risk (VaR), transactions count, and annualized rate

of returns (AROR), where the solution set was presented as a Pareto set.

Another possible metaheuristic that is still used sometimes (although now

outdated) is the tabu search. Originally proposed by [Glover (1986)], tabu search

is a local neighborhood search, i.e., after taking a certain solution, it checks the

value of its immediate neighbors. If it turns out that one of the neighbors is better

than the current solution, then it will be taken as the best solution. This procedure

is repeated until the termination condition is met. For this reason, tabu search is

rarely employed as and apart from the contribution from [Sghir et al. (2013)] who

used tabu search for the winner determination problem (WDP) and [Abdelkafi et

al. (2017)] who used hybrid iterative tabu search for a quadratic assignment

problem (QAP). Otherwise there seems to be not many works involving tabu

search anymore.

The same is also valid for simulated annealing (SA) methods, which was

originally proposed by [Pincus (1970)]. SA was inspired by the annealing process

in metallurgy: after heating a metal at very high temperature, the slow cooling

process ensures that the atoms have enough time to rearrange themselves

according to the law of thermodynamics to form stable crystals because this

results in a low-energy state – which is equivalent to the global optimum in

metaheuristics. SA can be used to find the global optima of multivariable

37 Chapter 2. State of the Art

functions. In comparison to the genetic algorithm however, SA normally

performs worse as it can incorporate a candidate solution that is not improving,

while genetic algorithm only accepts an evolving candidate.

There were not so many recent works involving SA apart from [Hung et al.

(2008)], who demonstrated a multi-objective SA for PID controller design. [Mu et

al. (2015)] proposed a memetic algorithm using combined SA and greedy

optimization for community detection in networks. They argued that combining

a global search with a locally concentrated SA will generate an algorithm with a

better search ability. [Larsen et al. (2016), Larsen (2019)], used SA in combination

with a pheromone-based perturbation strategy to identify important network

substructures in the domain of biology, especially for protein structure

comparison and studying human disease.

2.3. General Problem Statement & Objective

This section summarizes the general problem recognized from both the SHM &

NDT community and computer science community. In the latter part of this

section, the main research problem formulation will be described and then

further broken down into several sub-problems.

2.3.1. Recognized Problems in SHM & NDT

For diagnostic applications, particularly in NDT, several applications of deep

learning – which is largely based on CNN for crack visual detection – have been

proposed. These works are generally focused on surface inspection of structures

have been proposed by: [Zhang et al. (2016), Cha et. al (2017), Chaiyasarn et al.

(2018), Fan et al. (2018), Panella et al. (2018), Pauly et al. (2017)] and many more.

Besides for surficial crack detection at surface, there are several other works

involving CNN in NDT, such as for optical phase boundary detection in

shearography proposed by [Sawaf and Groves (2014)], welding detection using

X-Ray images by [Hou et al. (2018)], and damaged steel and CFRP using infrared

(IR) images by [Yousefi et al. (2018)].

In similar way, deep learning has also brought some wave of excitement to

diagnostic SHM, although there are less works exploiting deep learning for

diagnostic SHM in comparison to NDT. In recent years several works that

incorporate deep learning in SHM has been proposed by of [Ebrahimkhanlou

and Salomone (2019)] who used deep autoencoder (deep AE) for acoustic

emission (AE) source localization, [Choy (2018), De Oliveira et al. (2018)] who

used CNN for processing electromechanical impedance (EMI), and [Azimi and

Pekcan (2019)], who used CNN for damage identification and localization of

vibration sensor data in civil infrastructure.

However, as CNN is a discriminative model that is specifically tailored to learn

how to solve certain task, once the model is trained, its parameters are fixed for

solving that particular task only. Consequently, when the particular task is

38 Chapter 2. State of the Art

slightly changed (e.g., recognizing a car in autonomous driving instead of

recognizing a face in Facebook), a new deep learning model must be created.

Hence, transfer learning might be a temporary solution, albeit it requires a

pretrained model based on a large dataset. In SHM- NDT, such large datasets are

not publicly available, and it is hardly feasible to perform transfer learning. It has

been tried for recognizing crack image as has it been proposed, and in Lamb wave

based SHM there was a trial done [Liu and Zhang (2019)] although there is a doubt

on the efficacy of transferring image parameters for audio or acoustic wave signal

processing. This is because the pre-trained model was trained specifically for

recognizing images that has a physical origin of photon particles which is a

fundamentally different physical phenomenon from an acoustic wave. While the

network may finally learn the features from the time-frequency spectrogram, I

also think that there would be no advantage of using pre-trained image

recognition models in comparison to classical random start weights.

Another approach using online active learning has been proposed by [Bull et. al

(2019)]. They recognized that the lack of descriptive labels made conventional

supervised learning infeasible, and they proposed a novel adaptive learning

process that updates the learning algorithm as soon as a new class of data is

discovered by calculating the entropy. This approach bridges the gap of lack of

labelled data temporarily, however it will fail at some point due to the

incapability of the models to capture all possible cluster distributions since these

tend to be infinite in nature.

Conclusively, while we shall appreciate the numerous works that propose deep

learning approaches for SHM and NDT, a theoretical foundation that formalizes

the utilization of deep learning for NDT and SHM is currently lacking. Some

insight into understanding why deep learning might work for acoustic wave

signal modelling for applications in structural diagnostic is needed. Further, the

practicality of SHM still encounters many technical questions, and one of them is

robust pattern recognition for signal classification for damage detection, which

might not be robust in case of sub-optimal sensor topology, that is, when not

enough wavefront is captured by one of the sensors within the sensor network.

As previously described in chapter 2.1.2, currently there is only a limited amount

of research in terms of sensor topology optimization. Much research has been

placed on optimizing sensor positions with some good result, but to move

forward it must be scalable on the SHM level.

2.3.2 Recognized Problems from Computer Science, Machine and Deep Learning

Community

As for technological advancement from the AI and computer science community,

we shall acknowledge that this advancement can clearly bring an improvement

in the SHM and NDT community. One string that is attached to many of the works

done in these communities is that many of the advanced techniques proposed are

limited to publicly available benchmarks, such as:

39 Chapter 2. State of the Art

• Image recognition and computer vision: handwriting recognition

database (MNIST), MS-COCO, ImageNet, CIFAR-10 and CIFAR-100, Open

Images and Street View House Numbers (SVHN).

• Text data: Amazon reviews, The Reuters Corpus, WordNet, Internet Movie

Database (IMDB) Reviews, Sentiment140, and Twitter100k.

• Sound data: TIMIT, Common Voice, AudioSet, and Clotho.

They are rarely exposed to unusual, non-publicly available data such as Lamb

wave signals and its representation since both SHM and NDT are quite niche

areas in engineering. Thus, it is natural that they might not even be aware of what

Lamb wave SHM is. For this reason, we can easily identify that it might be

worthwhile to investigate further the treatability of Lamb wave signals with the

advances brought by the computer science and AI community.

Before getting deeper into the investigation, one question that should be asked is

what would be the starting point? Of course, it is a wish from many people not to

have supervision bias, but without any incorporation of domain knowledge,

meaningful research should (and probably can) not be conducted. Revisit the

theorem proposed by [Locatello et al. (2019)] regarding unsupervised learning of

disentangled representations:

Theorem 2.3.2-1. [Locatello et al. (2019)]

1

2

2

For 1, let ~ denote any distribution which admits a density () ()

Then, there exists an infinite family of bijective functions : sup() sup()

()
such that 0 almost everywhere

d

i
i

i

j

d P p p

f

f u

u

=

 =

→


 



z z z

z z

,
 (i.e. and () are completely entangled)

and () (()) sup() (i.e. they have the same marginal distribution)

i j
f

P u P f u u =   

z z

z z z

Proof: See Appendix A.

Corollary: Theorem 2.3.2-1 essentially shows that without inductive biases both

on models and data sets (e.g., from prior knowledge), the task is fundamentally

impossible, i.e., biases are the part of solution when dealing a real-world problem

with machine learning.

That practically means, it is up to the SHM-NDT community to explore and

exploit whether the advanced machine learning and computational intelligence

techniques brought by the AI community can be employed to push the desired

improvement in predictive maintenance.

2.3.3. Diagnostic Decision Logic and Isomorphism in Finite Automata

Rather than going directly with engineering details, we shall start with the

formalism and mathematical logic. It consists of 6 separate different areas: logic,

model theory, computability, set theory, proof, and Gödel’s Incompleteness
theorem. While not everything can be described in a detailed way, we can refer

40 Chapter 2. State of the Art

to [Li (2010), Mendelson (1997), Shoenfield (2010), Boolos et al. (2002)]. The above-

mentioned literatures introduce the formal systems and quantifiers and help

understand propositional calculus and first-order logic (FOL). The semantics of

FOL is that interpretation is based on the context and its syntax consists of

variables and quantification (e.g., ‘for all: ∀’, ‘there exists: ∃’). The four

fundamental elements of formal systems are:

1. A finite set of symbols

2. A grammar rules

3. A set of axioms

4. A set of inferencing rules

In computational linguistics, Chomsky hierarchy represents the hierarchical

class of languages that are accepted by the different abstract machines. As such,

the formal languages represented in the hierarchy can be described as formal

grammar. The abstract machines (often called automata) are computational

models which follow a predetermined sequence of instructions. [Chomsky

(1956)] classified the grammar, automaton, and language as shown in Table 2.4.1-

2. Type-3 grammar is also contained by type-2 grammar, and type-2 grammar is

contained by type-1 grammar, and type-1 grammar is contained by type-0

grammar. In the same way, every regular language is recursively enumerable,

and every finite-state machine is a special case of Turing machine, and so on.

Grammar Language Automaton

Type-3 Grammar Regular Finite state machine

Type-2 Grammar Context-Free Pushdown automaton

Type-1 Grammar Context-Sensitive Linear-bounded automaton

Type 0-Grammar Recursively Enumerable Turing machine
Table 2.4.1-1: Chomsky hierarchy

Without going too deep into theoretical computer science, the formalism in

aircraft maintenance logic goes this way: many parts of the Airbus A320 have

been designed to be damage tolerant. Let us simplify the assumption by stating

that the inspection technique has a detection limit of a crack longer than 5 cm, i.e.,

a crack ≥ 5 cm is said to be a damage. When a certain sub-structure is damaged, it

needs to be repaired so that the aircraft is airworthy. In this situation, the binary

input: {Damage, NOT-Damage} can be associated with two possible finite states:

{Airworthy, Repair}. This formulation can be translated into the simplest model

of automaton: the finite state machine (FSM). The formal definition of an FSM for

the binary diagnostic SHM is a quintuplet {∑, Q, q0, δ, F}, where:

∑ are input alphabet, finite ∅-set of symbols ⊇ {Damage, NOT-Damage}

Q is a finite ∅-set of states ⊇ {Airworthy, Repair}

q0 is an initial state, ϵ Q ⊇ {Airworthy} δ is the state-transition function, δ : Q x ∑ → F

F is the set of final states, ϵ Q ⊇ {Airworthy}

41 Chapter 2. State of the Art

An example of FSM is deterministic finite automata (DFA), see Fig. 2.3.3-1a, while

the state transition function for a given input is depicted in Fig. 2.3.3-2b. With this

logic, whenever there is a damage, the next following state will be {Repair} and if

it is still damaged, it will stay in {Repair}, otherwise it will return to the state

{Airworthy}.

Fig. 2.3.3-1: a). Deterministic finite automaton (DFA) for diagnostic SHM binary logic, b). state

transition function δ for the input alphabet {Damage, NOT-Damage}. The final state is represented

as double circle, which in this case is {Airworthy}.

A finite sequence of the input alphabet is called a string and an n-set of strings is

called a language L ⊇ Ln. For brevity, {NOT-Damage, Damage} will be abbreviated

as as {0, 1}, respectively. As such, an example of strings that can be accepted by

the binary diagnostics DFA are:

• The aircraft was never used so that it has no accumulated damage over

time such that L1 = {0, 00, 000, 0000, 00000, ….}

• The aircraft was flown, and it has accumulated damage, but directly

repaired afterwards such that L2 = {010, 10, 0110, 01110, 10010, ….}

On the contrary, an example of strings that will be rejected the DFA are:

• The aircraft was flown, and it has accumulated damage, but never directly

repaired afterwards such that L3 = {01, 001, 011, 0011, 000011, ….}

• The aircraft has already been damaged just after it was produced such that

L4 = {1, 11, 111, 1111, 11111, ….}

• Further, we can define a language L5 ⊆ L4 for a situation where the aircraft

has been damaged after the production, repaired directly afterwards, but

damaged during the service and not repaired such that L5 = {1101, 1001,

1101, 100011, …}

As previously said, the above situation is simplified for a binary diagnostic only.

In real-world situation, when we are not satisfied with the binary diagnostics as

many would like to regress during the aircraft lifecycle, we can slightly extend

the FSM into three states and a 3-input alphabet as described in Table 2.3.3-1:

∑ : {NOT-Damage, Damage-Threshold 1, Damage-Threshold 2}

Q : {Airworthy, Damage Growth, Repair}

q0 : {Airworthy}

F : {Airworthy, Damage Growth}

Table 2.3.3-1: Three states diagnostics FSM with 3 input alphabets

42 Chapter 2. State of the Art

For brevity, the set {NOT-Damage, Damage-Threshold 1, Damage-Threshold 2} is

abbreviated as {0,1,2}. In the situation above, the state {Airworthy} is associated

only for {0}, and when the input alphabet is {1}, the state would be {Damage

Growth}. When the input state is {2}, the state would be {Repair}. The initial state

would be {Airworthy} and the final states can be {Airworthy} or {Damage

Growth}. Depending on how the airworthiness is regulated by the governmental

agency, there are multiple paths possible during damage growth. The applicable

logic here is to assign a multiple possibility when the state is {Damage Growth}.

Such FSM is called non-deterministic finite automaton (NFA). The NFA diagram

and its state transition function is given in Fig. 2.3.3-2.

Fig. 2.3.3-2: a). Non-deterministic finite automaton (NFA) for non-binary diagnostic logic, b). state

transition function δ for the input alphabet {0, 1, 2}.

There are several situations that can be associated with the non-determinism

during damage growth state:

• After the state {Damage Growth} has been reached, suddenly the SHM

measurement gives {0} (i.e., no damage at all) when in fact this is probably

illogical since the damage state does not return to the baseline without

repair, which indicates high probability of a measurement error. In this

case, two possible states {Airworthy, Repair} will follow – indicated by the

lower red arrows in Fig. 2.4.1-2a. An example of such a string would be

either {000110} or {001102}.

• After the {Damage Growth} state has been reached, an aircraft operator

can choose to let the damage grow until it reaches the second threshold

where it has to be repaired or the operator chooses to repair it directly.

This case is indicated by the upper red arrows in Fig. 2.4.1-2a. An example

of such a string would be either {011111} or {000012}.

We can see that for the single NFA described above, there exists 4 equivalent DFA

depending on which string is accepted – i.e., on the logic path the aircraft operator

would like to choose. Further, the diagnostic NFA can still be expanded into 5

different states and 3 damage thresholds as depicted in Fig. 2.3.3-4 and by its

formal definition in Table 2.3.3-1. In this case, it is interesting to think what state

transition function δ can be applied to this logic and what kind of strings can be

accepted / rejected by such automaton.

43 Chapter 2. State of the Art

Fig. 2.3.3-4: NFA for 5-states diagnostic logic with 4 input alphabets. Red arrows indicate the

multiple next possible states.

∑ : {NOT-Damage, Threshold 1, Threshold 2, Threshold 3}

Q : {Airworthy, Damage Growth, Warning, Re-Check, Repair}

q0 : {Airworthy}

F : {Airworthy, Damage Growth, Warning}
Table 2.4.1-4: Five states diagnostics FSM with 4 input alphabets

2.3.4. Research Problems Formulation

Narrowing down this statement for NDT and SHM domain, it would mean that

instead of focusing on automated decision making, AI should be used as decision

support to accelerate decision making in the MRO industry. A concrete example

of this can be demonstrated by automated damage detection to help to decide

whether an aircraft should be repaired or not. Acknowledging the state of the art

in NDT & SHM and the recent advances from the CS and ML community, the high-

level question that should be asked from the NDT & SHM community is: is it

feasible to incorporate computational and artificial intelligence as a design tool for

an automated diagnostic as a decision support for predictive maintenance – and if

so, in what way? Surely there are different ways to do so, and I hypothesize that it

is certainly feasible although it might not always be the easy way.

To answer this question, we shall break down the problem into several

manageable sub-problems, and the proposition are:

1. The design complexity and parameter optimization, particularly on

sensor placement methodologies for both deterministic and semi-

stochastic approaches according to what extent the structure is designed

based on the premise that sensor network topology affects the damage

detection capability and the overall SHM performance. In this proposal,

the investigation can be rephrased as which different sensor network

topologies are needed to understand the trade-off between the strategies and

if possible, to propose a compensation technique?

44 Chapter 2. State of the Art

2. Deep learning for SHM, i.e., an investigation as to whether deep learning

can be used to treat the Lamb wave signal – and if so, whether it has certain

theoretical justification. What would be the pros and cons when using deep

learning to treat Lamb wave signals and what would be the consequences for

design and manufacturing of SHM system? Further considerations on

certain aspects from computational neuroscience for processing the

Lamb wave signal could also be considered.

3. Eventually and worthy to be considered as a research direction as well:

when combining the sub-problems to reconstruct the final solution: Given

a certain sensor topology, what would the training behavior look like from for

different sensors and how do different signal representation will affect the

training behavior?

In relation to the research problem formulation described in Section 2.3.3, we

shall start with a simplified solution: problem discretization in binary mode, i.e.,

whether a damage is being detected or not. After that, we can further refine our

precision with regressive discretization, i.e., taking different possible damage

states into consideration. The following chapters 3 - 7 will follow one of these case

studies streams.

Literatures

Abbood ZA, Vidal FP. Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm.
Proc. 13th Intl Conf on Artificial Evolution, Paris (2017).

Abdelkafi O, Idoumghar L, Lepagnot J. Improved Hybrid Iterative Tabu Search for QAP Using
Distance Cooperation. Proc. 13th Intl Conf on Artificial Evolution, Paris (2017).

Ahmad R. Wavelet Based Characterization of Acoustic Attenuation in Polymers Using Lamb Wave
Modes. Proc. 7th European Workshop on Structural Health Monitoring (EWSHM), Nantes (2014).

Ambrozinski L, Packo P, Stepinski T, Uhl T. Ultrasonic Guided Waves Based Method for SHM
Simulations and an Experimental Test. Proc. 5th World Conference on Structural Control and
Monitoring (WCSCM), Tokyo (2010).

Ambrozinski L, Stepinski T, Uhl T, Ochonski J, Klepka A. Development of Lamb Waves Based SHM
Systems. J Key Engineering Materials. Vol. 518: 87-94 (2012).

Andrews JP, Palazotto AN, DeSimio MP, Olson SE. Lamb Wave Propagation in Varying Isothermal
Environments. Intl J of Structural Health Monitoring. Vol. 7(3): 265-270 (2008).

Arantes MDS, Arantes JDS, Toledo CFM, Williams BC. A Hybrid Multi-Population Genetic
Algorithm for UAV Path Planning. Proc. 2016 Genetic and Evolutionary Computation Conf
(GECCO), Denver (2016).

Azad MAK, Fernanded MGP. Modified Constrained Differential Evolution for Solving Nonlinear
Global Optimization Problems. Proc. Intl Joint Conf on Computational Intelligence, Paris (2011).

Azimi M, Pekcan G. Structural Health Monitoring using Extremely Compressed Data through Deep
Learning. J Computer Aided Civil and Infrastructure Engineering. Vol. 12517: 1-18 (2019).

Balamonica K, Saravanan J, Priya B, Gopalakrishnan N. Piezoelectric Sensor–Based Damage
Progression in Concrete Through Serial/Parallel Multi-Sensing Technique. Intl J Structural Health
Monitoring. Vol. 19(2): 339-356.

Bahdanau D, Cho KH, Bengio Y. Neural Machine Translation by Jointly Learning to Align and
Translate. Proc. Intl Conf on Learning Representations (ICLR), San Diego (2015).

Becker-Ehmck P, Karl M, Peters J, van der Smagt P. Learning to Fly via Deep Model-Based
Reinforcement Learning (2020). Available: https://arxiv.org/abs/2003.08876 (Last online: JUL-
2020)

https://arxiv.org/abs/2003.08876

45 Chapter 2. State of the Art

Benato BC, Telea AC, Falçao AX. Semi-Supervised Learning with Interactive Label Propagation
Guided by Feature Space Projections. Proc. 31st Brazilian Symposium on Computer Graphics and
Image Processing (SIBGRAPI), Paraná (2018).

Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence. Vol. 35(8): 1-31 (2013).

Big O Cheat Sheet. Available: https://www.bigocheatsheet.com/ (Last online: JUL-2020).

Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ. A Survey on Metaheuristics for Stochastic
Combinatorial Optimization. J Natural Computing. Vol. 8(2): 239-287 (2009).

Boller C. Structural Health Monitoring – An Introduction and Definitions. In: Encyclopedia of
Structural Health Monitoring, John Wiley & Sons Ltd (2009).

Boolos G, Burgess J, Richard J. Computability and Logic (4th Ed.). Cambridge University Press,
Cambridge / New York / Melbourne / Madrid / Cape Town (2002).

Brinkhuis J, Tikhomirov V. Optimization: Insights and Applications. Princeton University Press,
Princeton (2005).

Brownlee AEI, Weiszer M, Woodward JR, Chen J. A Rolling Window with Genetic Algorithm
Approach to Sorting Aircraft for Automated Taxi Routing. Proc. 2018 Genetic and Evolutionary
Computation Conf (GECCO), Kyoto (2018).

Bull A, Rogers TJ, Wickramarchchi C, Cross EJ, Worden K, Dervilis N. Probabilistic Active
Learning: An Online Framework for Structural Health Monitoring. J Mechanical System and Signal
Processing. Vol. 134: 106294 (2019).

Busoniu L, Babuska R, De Schutter B, Ernst D. Reinforcement Learning and Dynamic Programming
Using Function Approximators. CRC Press Automation and Control Engineering Series, Boca
Raton / London / New York (2010).

Carabaza SP, Ortega JB, Portas EB, Orozco JA, Cruz JM. A Multi-UAV Minimum Time Search
Planner based on ACOR. Proc. 2017 Genetic and Evolutionary Computation Conf (GECCO), Berlin
(2017).

Carboni M, Gianneo Andrea, Giglio M. A Lamb Waves Based Statistical Approach to Structural
Health Monitoring of Carbon Fibre Reinforced Polymer Composites. J Ultrasonics. Vol. 60: 51-64
(2015).

Cesnik C, Raghavan A. Fundamentals of Guided Elastic Waves in Solids. In: Encyclopedia of
Structural Health Monitoring, John Wiley & Sons Ltd (2009).

Cha YJ, Choi W, Büyüköztürk O. Deep Learning Based Crack Damage Detection Using
Convolutional Neural Networks. J Computer‐Aided Civil and Infrastructure Engineering, Vol.
32(5): 361-378 (2017).

Chaiyasarn K, Sharma M, Ali L, Khan W, Poovarodom N. Crack Detection in Historical Structures
Based on Convolutional Neural Networks. Intl J of Geomate, Vol. 15(51): 240-251 (2018).

Chen H, Gao G, Hu N, Deng M, Xiang Y. Modeling and Simulation of Frequency Mixing Response of
Two Counter-Propagating Lamb Waves in a Two-Layered Plate. J Ultrasonics. Vol. 104: 106109
(2020).

Chen L, Dong Y, Meng Q, Liang W. FEM Simulation for Lamb Wave Evaluate the Defects of Plates.
IEEE Intl Workshop on Microwave and Millimeter Wave Circuits and System Technology,
Chengdu (2012).

Chen X, Wang CL. Noise Removing for Lamb Wave Signals by Fractional Differential. J
Vibroengineering. Vol. 16(6): 2676-2684 (2014).

Cho KH, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation. Proc. Conf on Empirical Methods in
Natural Language Processing (EMNLP), Doha (2014).

Chomsky N. Three Models for the Description of Language. IRE Transactions on Information
Theory. Vol.2: 113-124 (1956).

Choy AW. Structural Health Monitoring with Deep Learning. Proc. 2018 IAENG Intl Conf on
Control and Automation, Hong Kong (2018).

Consoli P, Pavone M. O-BEE-COL: Optimal BEEs for COLoring Graphs. Proc. 11th Intl Conf on
Artificial Evolution, Bordeaux (2013).

Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A. Combinatorial Optimization. Wiley,
New York (1998).

Cortes C, Vapnik V. Support-Vector Networks. J Machine Learning. Vol. 20: 273–297 (1995).

Croxford AJ, Wilcox PD, Drinkwater BW, Konstantinidis G. Strategies for Guided-Wave Structural
Health Monitoring. Proc. Royal Society A. Vol. 463(2087): 2961-2981 (2007).

https://www.bigocheatsheet.com/

46 Chapter 2. State of the Art

De Luca A, Perfetto D, DeFenza A, Petrone G, Caputo F. Sensitivity Analysis on the Damage
Detection Capability of a Lamb Waves Based SHM System for a Composite Winglet. Procedia
Structural Integrity. Vol. 12: 578-588 (2018).

De Luca A, Sharif-Khodaei Z, Aliabadi MH, Caputo F. Numerical Simulation of the Lamb Wave
Propagation in Impacted CFRP Laminate. Procedia Engineering. Vol. 167: 109-115 (2016).

De Marchi L, Perelli A, Marzani A. A Signal Processing Approach to Exploit Chirp Excitation in
Lamb Wave Defect Detection and Localization Procedures. J Mechanical System and Signal
Processing. Vol. 39 (1-2): 20-31 (2013).

De Oliveira MA, Monteiro MA, Vieira Filho J. A New Structural Health Monitoring Strategy Based on
PZT Sensors and Convolutional Neural Network. J Sensors.Vol. 18: 1-21 (2018).

Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. Proc. 2019 Conf of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL), Minneapolis (2019).

Ding X, Zhao Y, Hu N, Liu Y, Zhang J, Deng M. Experimental and Numerical Study of Nonlinear
Lamb Waves of a Low-Frequency S0 Mode in Plates with Quadratic Nonlinearity. J MDPI Materials.
Vol. 11(11): 2096.

Dodson JC, Inman DJ. Thermal Sensitivity of Lamb Waves for Structural Health Monitoring
Applications. J Ultrasonics. Vol. 53(3): 677-685 (2013).

Domingos P, Pazzani M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. J
Machine Learning. Vol. 29: 103-130 (1997).

Donahue J, Hendricks LA, Rohrbach M, Venugopalan S, Guadarrama S, Saenko K, Darrell T. Long-
term Recurrent Convolutional Networks for Visual Recognition and Description. Proc. 15th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston (2015).

Duan W, Niu X, Gan TH, Kanfoud J, Chen HP. A Numerical Study on the Excitation of Guided Waves
in Rectangular Plates Using Multiple Point Sources. MDPI J Metals. Vol. 7: 552 (2017)

Ebrahimkhanlou A, Dubuc B, Salomone S. A Generalizable Deep Learning Framework for
Localizing and Characterizing Acoustic Emission Sources in Riveted Metallic Panels. J Mechanical
System and Signal Processing. Vol. 130: 248-272 (2019).

Ellefsen KO, Lepikson HA, Albiez JC. Planning Inspection Paths through Evolutionary Multi-
objective Optimization. Proc. 2016 Genetic and Evolutionary Computation Conf (GECCO), Denver
(2016).

El Said AR, El Jamiy F, Higgins J, Wild B, Desell T. Using Ant Colony Optimization to Optimize Long
Short-Term Memory Recurrent Neural Networks. Proc. 2018 Genetic and Evolutionary
Computation Conf (GECCO), Kyoto (2018).

Ercolano G, Rossi S. Combining CNN and LSTM for Activity of Daily Living Recognition with a 3D
Matrix Skeleton Representation. J Intelligent Service Robotics. Vol. 14: 175-185 (2021).

Ester M, Kriegel HP, Sander J, Xu X. A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. Proc. 2nd Intl Conf on Knowledge Discovery and Data Mining (KDD-
96), Portland (1996).

Ewald V, Ochôa P, Groves RM, Benedictus R. Design of a Structural Health Monitoring System for a
Damage Tolerance Fuselage Component. Proc. 7th Intl Symposium on NDT in Aerospace, Bremen
(2015).

Fan Z, Wu Y, Lu J, Li W. Automatic Pavement Crack Detection Based on Structured Prediction with
the Convolutional Neural Network (2018). Available online https://arxiv.org/abs/1802.02208 (Last
online: FEB-2020)

Fendzi C, Morel J, Rébillat M, Guskov M, Mechbal N, Coffignal G. Optimal Sensor Placement to
Enhance Damage Detection in Composite Plates. Proc. 7th European Workshop on Structural
Health Monitoring (EWSHM), Nantes (2014).

Forstenlechner S, Fagan D, Nicolau M, O’Neill M. Semantics-Based Crossover for Program
Synthesis in Genetic Programming. Proc. 13th Intl Conf on Artificial Evolution, Paris (2017).

François-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J. An Introduction to Deep
Reinforcement Learning. In: Foundations and Trends in Machine Learning. Vol. 11(3-4): 1-140
(2018).

Fuller R. Introduction to Neuro-Fuzzy Systems. Springer, Berlin / Heidelberg (2000).

Galvao DF, Lehman J, Urbano P. Novelty-Driven Particle Swarm Optimization. Proc. 12th Intl Conf
on Artificial Evolution, Lyon (2015).

Gao D, Wu Z, Yang L, Zheng Y. Integrated Impedance and Lamb Wave-based SHM Strategy for Long
Term Cycle Loaded Composite Structure. J Structural Health Monitoring (SHM). Vol. 17(4): 763-776
(2018).

https://arxiv.org/abs/1802.02208

47 Chapter 2. State of the Art

Gao F, Hua J, Zeng L, Lin J. Amplitude Modified Sparse Imaging for Damage Detection in Quasi-
isotropic Composite Laminates using Non-contact Laser Induced Lamb Waves. J Ultrasonics. Vol.
93: 122-129 (2019).

Gao G, Liu C, Hu N, Deng M, Chen H, Xiang Y. Response of Second-Harmonic Generation of Lamb
Wave Propagation to Microdamage Thickness in a Solid Plate. J Wave Motion. Vol. 96: 102557
(2020).

Gewehr LAC, Sousa BS. Winglet Design Optimization Using A Multi-Objective Genetic Algorithm.
Proc. 25th ABCM Intl Congress on Mechanical Engineering, Uberlândia (2019).

Ghambari S, Idoumghar L, Jourdan L, Lepagnot J. Hybrid Evolutionary Algorithm for Offline UAV
Path Planning. Proc. 14th Intl Conf on Artificial Evolution, Mulhouse (2019).

Gheisari S, Shariflou S, Phu J, Kennedy PJ, Agar A, Kalloniatis M, Golzan SM. A Combined
Convolutional and Recurrent Neural Network for Enhanced Glaucoma Detection. Scientific
Reports. Vol. 11: 1945 (2021).

Giurgiutiu V, Yu L, Santoni GB, Xu B. Lamb Wave Tuning for Piezoelectric Wafer Active Sensor
Applications in In-Situ Structural Health Monitoring. Proc. Annual Review of Progress in
Quantitative Nondestructive Evaluation, Golden (2007).

Glover F. Future Paths for Integer Programming and Links to Artificial Intelligence. J Computers
and Operations Research. Vol. 13(5): 533-549 (1986).

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y.
Generative Adversarial Nets. Proc. 27th Intl Conf on Neural Information Processing Systems
(NIPS), Montréal (2014).

Gorgin R, Luo Y, Wu Z. Environmental and Operational Conditions effects on Lamb Wave Based
Structural Health Monitoring Systems: A Review. J Ultrasonics. Vol. 105: 106114 (2020).

Goyal P, Mahajan D, Gupta A, Misra I. Scaling and Benchmarking Self-Supervised Visual
Representation Learning. Proc. IEEE Intl Conf on Computer Vision (ICCV), Seoul (2019).

Gravenkamp H. Numerical Methods for the Simulation of Ultrasonic Guided Waves. Dissertation.
Technical University Carolo-Wilhelmina Brunswick, Braunschweig (2014).

Gu H, Wang ML. A Monolithic Interdigitated PVDF Transducer for Lamb Wave Inspection. Intl J of
Structural Health Monitoring. Vol. 8(2): 137-148 (2009).

Gu S, Holly E, Lillicrap T and Levine S. Deep Reinforcement Learning for Robotic Manipulation with
Asynchronous Off-policy Updates. Proc. 2017 IEEE Intl Conf on Robotics and Automation (ICRA),
Singapore (2017).

Guo Y, Niu X, Zhang H. An Extensive Empirical Study on Semi-supervised Learning. Proc. 10th IEEE
Intl Conf on Data Mining (ICDM), Sydney (2010).

Gupta D, Ramjee R, Kwatra N, Sivathanu M. Unsupervised Clustering using Pseudo-semi-
supervised Learning. Proc. Intl Conf on Learning Representations (ICLR), Virtual Conf (2020).

Harley JB, Liu C, Oppenheim IJ, Moura JMF. Managing Complexity, Uncertainty, and Variability
in Guided Wave Structural Health Monitoring. SICE J of Control, Measurement, and System
Integration. Vol. 10(5): 325-336 (2017).

Haynes C. Effective Health Monitoring Strategies for Complex Structures. Dissertation. University of
California San Diego (UCSD), San Diego (2014).

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. Proc. IEEE Conf on
Computer Vision and Pattern Recognition (CVPR), Las Vegas (2016).

Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data with Neural Networks. Science
Magazine. Vol. 313: 504-507 (2006).

Hinton GE, Osindero S, Teh YW. A Fast-Learning Algorithm for Deep Belief Nets. J Neural
Computation. Vol. 18(7): 1527–54 (2006).

Hinton GE, Sabour S, Frosst N. Matrix Capsules with EM Routing. Proc. Intl Conf on Learning
Representations (ICLR), Vancouver (2018).

Hochreiter S, Schmidhuber J. Long Short-Term Memory. J Neural Computation 9(8): 1735-1780
(1997).

Hopfield JJ. Neural Networks and Physical Systems with Emergent Collective Computational
Abilities. Proc. Natl Academy of Science USA, Vol. 79(8): 2554-2558 (1982).

Hosseini SMH, Duczek S, Gabbert U. Damage Localization in Plates Using Mode Conversion
Characteristics of Ultrasonic Guided Waves. J Non-Destructive Evaluation (JNDE). Vol. 33: 152–165
(2014).

Hou W, Wei Y, Guo J, Jin Y, Zhu C. Automatic Detection of Welding Defects using Deep Neural
Network. J Physics. Vol. 933: 012006 (2018).

48 Chapter 2. State of the Art

Howard AG, Zhu ML, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017).
Available: https://arxiv.org/abs/1704.04861 (Last online: SEP-2020)

Hu S, Zhou L. Modeling Lamb Wave Propagation in Damaged Structures Based upon Spectral
Element Method. J Advanced Materials Research. Vol. 570: 79-86 (2012).

Hua J, Lin J, Zeng L, Gao F. Pulse Energy Evolution for High-resolution Lamb Wave Inspection. J
Smart Materials and Structures. Vol. 24(6): 065016 (2015).

Hung MH, Shu LS, Ho SJ, Hwang SF, Ho SY. A Novel Intelligent Multiobjective Simulated Annealing
Algorithm for Designing Robust PID Controllers. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans. Vol. 38(2): 319-330 (2008).

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level
Accuracy with 50x Fewer Parameters and <0.5MB Model Size (2017). Available:
https://arxiv.org/abs/1602.07360 (Last online: SEP-2020).

Islam MZ, Islam MM, Asraf A. A Combined Deep CNN-LSTM Network for the Detection of Novel
Coronavirus (COVID-19) using X-Ray Images. Informatics in Medicine Unlocked. Vol. 20: 100412
(2020).

Ismail N, Hafizi ZM, Nizwan CKE, Ali S. Simulation of Lamb Wave Interactions with Defects in a
Thin Plate. IOP J of Physics Conf. Series. Vol. 1262: 012030 (2019).

Jankee C, Verel S, Derbel B, Fonlupt C. Distributed Adaptive Metaheuristic Selection: Comparisons
of Selection Strategies. Proc. 12th Intl Conf on Artificial Evolution, Lyon (2015).

Johnstone IM, Lu AY. On Consistency and Sparsity for Principal Components Analysis in High
Dimensions. J of the American Statistical Association. Vol. 104(486): 682-693 (2009).

Karaboga D. An Idea Based on Honeybee Swarm for Numerical Optimization (2005). Available:
https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf (Last
online: JUL-2020)

Karimpanal TG, Bouffanais R. Self-Organizing Maps for Storage and Transfer of Knowledge in
Reinforcement Learning. J Adaptive Behavior. Vol. 27(2): 111-126 (2018).

Karpenko O. Signal Analysis in Guided Wave Structural Health Monitoring. Master Thesis.
Michigan State University, Lansing (2013).

Ke Q, Kanade T. Robust L1 -Norm Factorization in the Presence of Outliers and Missing Data by
Alternative Convex Programming. Proc. IEEE Conf on Computer Vision and Pattern Recognition
(CVPR), San Diego (2005).

Kennedy J, Eberhart R. Particle Swarm Optimization. Proc. IEEE Intl Conf on Neural Networks IV
(1995).

Kerber F, Sprenger H, Niethammer M, Luangvilai K, Jacobs LJ. Attenuation Analysis of Lamb
Waves Using the Chirplet Transform. EURASIP J on Advances in Signal Processing. Vol. 2010:
375171 (2010).

Khorram A, Khalooei M, Rezghi M. End-to-End CNN + LSTM Deep Learning Approach for Bearing
Fault Diagnosis. J Applied Intelligence. Vol. 51(1): 1-16 (2019).

Kingma DP, Rezende DJ, Mohamed S, Welling M. Semi-supervised Learning with Deep Generative
Models. Proc. 27th Intl Conf on Neural Information Processing Systems (NIPS), Montréal (2014).

Kober J, Peters J. Reinforcement Learning in Robotics: A Survey. In: Learning Motor Skills. Springer
Tracts in Advanced Robotics. Springer, Cham (2014).

Kolesnikov A, Zhai X, Beyer L. Revisiting Self-Supervised Visual Representation Learning. Proc.
IEEE Conf on Computer Vision and Pattern Recognition (CVPR), Long Beach (2019).

Kong L, d’Autumne CM, Ling W, Yu L, Dai Z, Yogatama D. A Mutual Information Maximization
Perspective of Language Representations Learning. Proc. Intl Conf on Learning Representations
(ICLR), Virtual Conf (2020).

Kordbacheh M, Yousefi-Koma A, Saleh MS, Soorgee MH. Application of Wavelet Transform as a
Signal Processing Method for Defect Detection using Lamb Waves: Experimental Verification.
Iranian J of Mechanical Engineering. Vol. 13(2): 82-95 (2012).

Kormushev P, Calinon S, Caldwell DG. Reinforcement Learning in Robotics: Applications and Real-
World Challenges. J MDPI Robotics, Vol. 2(3): 122-148 (2013).

Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural
Networks. Proc. Advances in Neural Information Processing Systems 25 (NIPS), Lake Tahoe
(2012).

Kudela P, Radzienski M, Ostachowicz W, Yang Z. Structural Health Monitoring System Based on a
Concept of Lamb Wave Focusing by the Piezoelectric Array. J Mechanical System and Signal
Processing. Vol. 108: 21-32 (2018).

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf

49 Chapter 2. State of the Art

Kural A, Pullin R, Holford K, Lees J, Naylon J, Paget C, Featherston C. Design and Characterization
of an Ultrasonic Lamb-Wave Power Delivery System. IEEE Trans on Ultrasonics, Ferroelectric and
Frequency Control. Vol. 60(6): 1134-1140 (2013).

Lai M. Giraffe: Using Deep Reinforcement Learning to Play Chess. Thesis. Imperial College, London
(2015).

Larsen SJ, Alkaersig FG, Ditzel HJ, Jurisica I, Alcatraz N, Baumbach J. A Simulated Annealing
Algorithm for Maximum Common Edge Subgraph Detection in Biological Networks. Proc. 2016
Genetic and Evolutionary Computation Conf (GECCO), Denver (2016).

Larsen SJ. Finding Patterns in Complex Biomedical Data Using Networks and Molecular Profiling.
Dissertation. University of Southern Denmark, Odensee (2019).

LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-Based Learning Applied to Document Recognition.
Proc. IEEE. Vol. 86(11): 2278-2324 (1998).

Lee B, Staszewski W. Sensor Location Studies for Damage Detection with Lamb Waves. J Smart
Material and Structures. Vol. 16: 399-408 (2007).

Lee MC, To C. Comparison of Support Vector Machine and Back Propagation Neural Network in
Evaluating the Enterprise Financial Distress. Intl J of Artificial Intelligence & Applications, Vol.
1(3): 31-43 (2010).

Lee Y, Yin L, Wahba G. Multicategory Support Vector Machines: Theory and Application to the
Classification of Microarray Data and Satellite Radiance Data. J American Statistical Association.
Vol. 99: 67-81 (2004).

Li W. Mathematical Logic: Foundations for Information Science. Birkhäuser, Basel / Boston / Berlin
(2010).

Li W, Chen B, Cho Y. Non-Linear Feature of Phase Matched Lamb Waves in Solid Plate. J Applied
Acoustics. Vol. 160: 107124 (2020).

Littman M. Markov Games as a Framework for Multi-Agent Reinforcement Learning. Proc. 11th Intl
Conf on Machine Learning (ICML), New Brunswick (1994).

Liu H, Zhang Y. Deep Learning Based Crack Damage Detection Technique for Thin Plate Structures
using Guided Lamb Wave Signals. J Smart Materials and Structure. Vol. 29: 015032 (2019).

Liu Y, Bi S, Dong M, Zhang Y, Huang J, Zhang J. A Reinforcement Learning Method for Humanoid
Robot Walking. Proc. IEEE 8th Annual Intl Conf on CYBER Technology in Automation, Control, and
Intelligent Systems (CYBER), Tianjin (2018).

Locatello F, Bauer S, Lucic M, Rätsch G, Gelly S, Schölkopf B, Bachem O. Challenging Common
Assumptions in the Unsupervised Learning of Disentangled Representations. Proc. Intl Conf on
Learning Representations (ICLR), New Orleans (2019).

Lorenzo PR, Nalepa J, Kawulok M, Ramos LS, Pastor JR. Particle Swarm Optimization for Hyper-
Parameter Selection in Deep Neural Networks. Proc. 2017 Genetic and Evolutionary Computation
Conf (GECCO), Berlin (2017).

Lourenço N, Pereira F, Costa E. Learning Selection Strategies for Evolutionary Algorithms. Proc. 11th
Intl Conf on Artificial Evolution, Bordeaux (2013).

Luo H, Dridi M, Grunder O. Ant Colony Optimization Algorithm for a Transportation Problem in
Home Health Care with the Consideration of Carbon Emissions. Proc. 14th Intl Conf on Artificial
Evolution, Mulhouse (2019).

Lu W, Li J, Li Y, Sun A, Wang J. A CNN-LSTM-Based Model to Forecast Stock Prices. J Complexity.
Vol. 2020: 6622927 (2020).

MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations. Proc. 5th
Berkeley Symposium on Mathematical Statistics and Probability, Berkeley (1965-1966).

Mallardo V, Aliabadi MH, Sharif Khodaei MH. Optimal Sensor Positioning for Impact Localization
in Smart Composite Panels. J Intelligent Material Systems and Structures. Vol. 24: 559-573 (2012).

Malinowski P, Wandowski T, Trendavilova I, Ostachowitz W. A Phased Array-based Method for
Damage Detection and Localization in Thin Plates. Intl J of Structural Health Monitoring. Vol. 8(1):
5-15 (2009).

Marin JM, Mengersen K, Robert CP. Bayesian Modelling and Inference on Mixtures of Distributions.
Handbook of Statistics Vol. 25. Elsevier (2005).

Markopoulous PP, Karystinos GN, Pados DA. Optimal Algorithms for L1-Subspace Signal

Processing. IEEE Transactions on Signal Processing. Vol. 62(19): 5046-5058 (2014).

Melo L, Pereira F, Costa E. Effective Multi-Caste Ant Colony System for Large Dynamic Traveling
Salesperson Problems. Proc. 11th Intl Conf on Artificial Evolution, Bordeaux (2013).

Mendelson E. Introduction to Mathematical Logic (4th Ed.). Chapman & Hall, London / Weinheim /
New York / Tokyo / Melbourne / Madras (1997).

50 Chapter 2. State of the Art

Miguel AG, Pagani A, Carrera E. Higher-order Structural Theories for Transient Analysis of Multi-
mode Lamb waves with Applications to Damage Detection. J of Sound and Vibration. Vol. 457: 139–
155 (2019).

Misra I, Maaten L. Self-Supervised Learning of Pretext-Invariant Representations. Proc. IEEE Conf
on Computer Vision and Pattern Recognition (CVPR), Virtual Conf, (2020).

Mohamed I, Otero FEB. A Multiobjective Optimization Approach for Market Timing. Proc. 2020
Genetic and Evolutionary Computation Conf (GECCO), Virtual Conf (2020).

Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning (2nd Ed.). The MIT Press,
Cambridge/London (2018).

Mu CH, Xie J, Liu Y, Chen F, Liu Y, Jiao LC. Memetic Algorithm with Simulated Annealing Strategy
and Tightness Greedy Optimization for Community Detection in Networks. J Applied Soft
Computing, Vol. 34: 485-501 (2015).

Munoz G, Barrado C, Cetin E, Salami E. Deep Reinforcement Learning for Drone Delivery. J MDPI
Drones. Vol. 3(3): 72 (2019).

Mustapha S, Ismail Z, Ali Fakih M, Tarhini H. Sensor Placement Optimization on Complex and Large
Metallic and Composite Structures. Intl J Structural Health Monitoring. Vol. 19(1): 262-280 (2019).

Ng AY. Shaping and Policy Search in Reinforcement Learning. Dissertation. University of
California, Berkeley (2003).

Ng CT. On Accuracy of Analytical Modeling of Lamb Wave Scattering at Delaminations in
Multilayered Isotropic Plates. Intl J of Structural Stability and Dynamics. Vol. 15(8): 1540010 (2015).

Nguyen BH, Xue B, Andreae P. A Particle Swarm Optimization based Feature Selection Approach to
Transfer Learning in Classification. Proc. 2018 Genetic and Evolutionary Computation Conf
(GECCO), Kyoto (2018).

Nirbhay M, Dixit A, Misra RK. Finite Element Modelling of Lamb Waves Propagation in 3D Plates
and Brass Tubes for Damage Detection. Russian J of Nondestructive Testing. Vol. 53(4): 308-329
(2017).

Nocedal J, Wright SJ. Numerical Optimization (2nd Ed.). Springer Science+Business Media, New
York (2006).

Nokhbatolfoghahai A, Navazi HM, Groves RM. Use of Delay and Sum for Sparse Reconstruction
Improvement for Structural Health Monitoring. J Intelligent Material Systems and Structures. Vol.
30(18-19): 2919-2931 (2019).

Ong WH, Chiu WK. Redirection of Lamb Waves for Structural Health Monitoring. Hindawi J Smart
Materials Research. Vol. 2012: 718686 (2012).

Ong WH, Chiu WK. Enhancement of Lamb Wave Based In-Situ Structural Health Monitoring
through Guided Local Geometry Changes. Intl J of Structural Health Monitoring. Vol. 12(4): 339-358
(2013).

Ooijevaar T. Vibration Based Structural Health Monitoring of Composite Skin-Stiffener Structures.
Dissertation. University of Twente, Enschede (2014).

Ostachowitz W, Soman R, Malinowski P. Optimization of Sensor Placement for Structural Health
Monitoring: A Review. Intl J of Structural Health Monitoring. Vol. 8(3): 963-988 (2019).

Othmani C, Zhang H. Lamb Wave Propagation in Anisotropic Multilayered Piezoelectric Laminates
Made of PVDF-θ° with Initial Stresses. J Composite Structures. Vol. 240: 112085 (2020).

Ozair S, Lynch C, Bengio Y, van den Ooord A, Levine S, Sermanet P. Wasserstein Dependency
Measure for Representation Learning. Proc. 33rd Conf on Neural Information Processing Systems
(NIPS), Vancouver (2019).

Panella F, Boehm J, Loo Y, Kaushik A, Gonzalez D. Deep Learning and Image Processing for
Automated Crack Detection and Defect Measurement in Underground Structures. Proc. Conf ISPRS
TC II Mid-term Symposium Towards Photogrammetry 2020, Riva del Garda (2018).

Patrick M, Asano YM, Kuznetsova P, Fong R, Henriques JF, Zweig G, Vedaldi A. Multi-modal Self-
Supervision from Generalized Data Transformations (2020). Available:
https://arxiv.org/abs/2003.04298 (Last online: OCT-2020)

Pauly P, Peel H, Luo S, Hogg D, Fuentes R. Deeper Networks for Pavement Crack Detection. Proc. Intl
Symposium on Automation and Robotics in Construction, Taipei (2017).

Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine.
Vol. 2(11): 559-572 (1901).

Pincus M. A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained
Optimization Problems. J of Operation Research. Vol. 18(6): 1225-1228 (1970).

Portelli G, Pallez D. Image Signal Processor Parameter Tuning with Surrogate-Assisted Particle
Swarm Optimization. Proc. 14th Intl Conf on Artificial Evolution, Mulhouse (2019).

https://arxiv.org/abs/2003.04298

51 Chapter 2. State of the Art

Pouliot GA. Equivalence of Multicategory SVM and Simplex Cone SVM: Fast Computations and
Statistical Theory. Proc. 35th Intl Conf on Machine Learning (ICML), Stockholm (2018).

Ragusa VR, Mathias HD, Kazakova VA, Wu AS. Enhanced Genetic Path Planning for Autonomous
Flight. Proc. 2017 Genetic and Evolutionary Computation Conf (GECCO), Berlin (2017).

Rappel H, Yousefi-Koma A, Jamali J, Bahari A. Numerical Time-Domain Modeling of Lamb Wave
Propagation Using Elastodynamic Finite Integration Technique. J Shock and Vibration. Vol. 2014:
434187 (2014).

Rathor S. Simple RNN vs GRU vs LSTM: Difference Lies in More Flexible Control (2018).
https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-
flexible-control-5f33e07b1e57 (Last online: JUL-2020)

Ravi Kiran B, Sobh I, Talpaert V, Mannion P, Sallab AA, Yogamani S, Perez P. Deep Reinforcement
Learning for Autonomous Driving: A Survey (2020). Available: https://arxiv.org/abs/2002.00444
(Last online: JUL-2020)

Reddy YCA, Viswanath P, Reddy B. Semi-supervised Learning: A Brief Review. Intl J of Engineering
& Technology. Vol. 7(18): 81-85 (2018).

Rose JL, Pilarski A, Ditri J. An Approach to Guided Wave Mode Selection for Inspection of Laminated
Plate. J Reinforced Plastics and Composites. Vol. 12(5): 536-544 (1993).

Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization.
Brain, Cornell Aeronautical Laboratory, Psychological Review. Vol. 65(6): 386-408 (1958).

Rumelhart DE, Hinton GE, Williams RJ. Learning Representations by Back-Propagating Errors.
Nature. Vol. 323(9): 534-536 (1986).

Russell S, Norvig P. Artificial Intelligence, Global Edition (4th Ed.). Pearson New Jersey (2021).

Sahoo D, Pham Q, Lu J, Hoi SCH. Online Deep Learning: Learning Deep Neural Networks on the Fly.
Proc. 27th Intl Joint Conf on Artificial Intelligence (IJCAI), Stockholm (2018).

Sainath TN, Vinyals O, Senior A, Sak H. Convolutional, Long Short-Term Memory, Fully Connected
Deep Neural Networks. IEEE Intl Conf on Acoustics, Speech and Signal Processing (ICASSP),
Brisbane (2015).

Santoni GB, Yu L, Xu B, Giurgiutiu V. Lamb Wave-Mode Tuning of Piezoelectric Wafer Active
Sensors for Structural Health Monitoring. J Vibration and Acoustics. Vol. 129(6): 752-762 (2007).

Sawaf F, Groves RM. Phase Discontinuity Predictions Using a Machine-Learning Trained Kernel.
Applied Optics. Vol. 53(24): 5439-5447 (2014).

Schmidt D, Sinapius M, Wierach P. Design of Mode Selective Actuators for Lamb Wave Excitation in
Composite Plates. CEAS Aeronautical J. Vol. 4: 103-112 (2013).

Schubert KJ, Brauner C, Herrmann AS. Non-Damage-Related Influences on Lamb Wave–based
Structural Health Monitoring of Carbon Fiber–Reinforced Plastic Structures. Intl J of Structural
Health Monitoring. Vol. 13(2): 158-176 (2014).

Settles B. Active Learning Literature Survey. Computer Sciences Technical Report 1648 (January-
26-2010 Update). University of Wisconsin–Madison, Madison (2010).

Sghir I, Hao JK, Jaafar IB, Ghédira K. A Recombination-Based Tabu Search Algorithm for the
Winner Determination Problem. Proc. 11th Intl Conf on Artificial Evolution, Bordeaux (2013).

Shao K, Zhao D, Li N, Zhu Y. Learning Battles in Vizdoom via Deep Reinforcement Learning. Proc.
IEEE Conf on Computational Intelligence and Games (CIG), Maastricht (2018).

Shen Y, Tan S, Sordoni A, Courville A. Ordered Neurons: Integrating Tree Structures into Recurrent
Neural Networks. Proc. Intl Conf on Learning Representations, New Orleans (2019).

Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting. Proc. 28th Intl Conf on Neural Information
Processing Systems (NIPS), Montréal (2015).

Shi Y. Analysis of Optimum Lamb Wave Tuning. Dissertation. Massachusetts Institute of
Technology (MIT), Cambridge (2002).

Shi Y, Eberhart RC. A Modified Particle Swarm Optimizer. Proc. of IEEE Intl Conf on Evolutionary
Computation (1998).

Shoenfield JR. Mathematical Logic (2nd Ed.). CRC Press, Boca Raton / New York (2010).

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
Proc. Intl Conf on Learning Representations (ICLR), San Diego (2015)

Šofer M, Ferfecki P, Šofer P. Numerical Solution of Rayleigh-Lamb Frequency Equation for Real,
Imaginary and Complex Wavenumbers. MATEC Web of Conferences 157: 08011 (2018).

Sohn H, Lee SJ. Lamb Wave Tuning Curve Calibration for Surface-bonded Piezoelectric
Transducers. J Smart Materials and Structures. Vol. 19(1): 015007 (2010).

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57
https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57
https://arxiv.org/abs/2002.00444

52 Chapter 2. State of the Art

Soman R, Malinowski P. A Real-Valued Genetic Algorithm for Optimization of Sensor Placement for
Guided Wave-Based Structural Health Monitoring. Hindawi J of Sensors. Vol. 2019: 9614630 (2019).

Soman R, Kudela P, Balasubramaniam K, Singh SK, Malinowski P. A Study of Sensor Placement
Optimization Problem for Guided Wave-Based Damage Detection. MDPI J Sensors. Vol. 19: 1856
(2019).

Soma-Sekhar BV, Balasubramaniam K, Krishnamurthy CV. Structural Health Monitoring of Fiber-
reinforced Composite Plates for Low-velocity Impact Damage using Ultrasonic Lamb Wave
Tomography. Intl J of Structural Health Monitoring. Vol. 5(3): 243-253 (2006).

Sutskever I, Vinyals O, Le QV. Sequence to Sequence Learning with Neural Networks. Proc. 27th Intl
Conf on Neural Information Processing Systems (NIPS), Montréal (2014).

Stamp M. A Revealing Introduction to Hidden Markov Models. In: Introduction to Machine Learning
with Applications in Information Security. Chapman and Hall/CRC, New York (2017).

Staszewski WJ, Sohn H. Signal Processing for Structural Health Monitoring. In: Encyclopedia of
Structural Health Monitoring, John Wiley & Sons Ltd (2009).

Stawiarski A, Muc A. On Transducers Localization in Damage Detection by Wave Propagation
Method. MDPI J Sensors. Vol. 19: 1937 (2019).

Su Z, Ye L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications.
Springer, Berlin / Heidelberg (2009).

Szegedy C, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going
Deeper with Convolutions. Proc. IEEE Conf on Computer Vision and Pattern Recognition (CVPR),
Boston (2015).

Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. Proc. 31st AAAI Conf on Artificial Intelligence, San Francisco (2017).

Szita I. Reinforcement Learning in Games. In: Reinforcement Learning: Adaptation, Learning, and
Optimization. Springer, Berlin / Heidelberg (2012).

Taltavull A, Qiu L, Venkat RS, Dürager C, Boller C, Ren Y, Yuan S. Simulation, Realization and
Validation of Guided Wave SHM System Solutions for Aircraft Metallic Structural Repairs. Proc. 11th
Intl Workshop on Structural Health Monitoring (IWSHM), Stanford (2017).

Tang Z, Shao K, Zhao D, Zhu Y. Recent Progress of Deep Reinforcement Learning: From AlphaGo to
AlphaGo Zero. J Control Theory and Applications. Vol. 34(12): 1529-1546 (2017).

Teixeira MAM, Goulart F, Campelo F. Evolutionary Multiobjective Optimization of Winglets. Proc.
2016 Genetic and Evolutionary Computation Conf (GECCO), Denver (2016).

Tesauro G. Temporal Difference Learning and TD-Gammon. Communications of the ACM. Vol.
38(3): 58-68 (1995).

Thiene M, Sharif Khodaei Z, Aliabadi MH. Optimal Sensor Placement for Maximum Area Coverage
for Damage Localization in Composite Structures. J Smart Materials and Structures. Vol. 25: 095037
(2016).

Tovar M, Robles M, Rashid F. PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model.
Case of Study: Temixco-Morelos, México. J Energies. Vol. 13(24): 1-15 (2020).

Triguero I, Garcia S, Herrera F. Self-labeled Techniques for Semi-supervised Learning: Taxonomy,
Software and Empirical Study. J Knowledge Information System. Vol. 42: 245-284 (2015).

Trojanowski K, Raciborski M, Kaczynski P. Adaptive Differential Evolution with Hybrid Rules of
Perturbation for Dynamic Optimization. Proc. Intl Joint on Conf on Computational Intelligence,
Paris (2011).

Tschannen M, Djolonga J, Rubenstein PK, Gelly S, Lucic M. On Mutual Information Maximization
for Representation Learning. Proc. Intl Conf Learning Representations, Virtual Conf (2020).

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention
Is All You Need. Proc. 30th Intl Conf on Neural Information Processing Systems (NIPS), Long Beach
(2017).

Venkat RS, Boller C, Qiu L, Ravi NB, Mahapatra DR, Chakraborty N. Integrated Approach to
Demonstrate Optimum Sensor Positions in a Guided Wave Based SHM System Using Numerical
Simulation. Proc. 8th Intl Symposium on NDT in Aerospace, Bangalore (2016).

Vidal A, Kristjanpoller W. Gold Volatility Prediction using a CNN-LSTM Approach. J Expert
Systems with Applications. Vol. 157: 113481 (2020).

Vormer F, Mulder M, Mulder JA, Van Paassen MM. Optimization of Flexible Approach Trajectories
Using a Genetic Algorithm. J Aircraft 43(4): 941-952 (2006).

Wang T. Finite Element Modelling and Simulation of Guided Wave Propagation in Steel Structural
Members. Master Thesis. University of Western Sydney, Sydney (2014).

53 Chapter 2. State of the Art

Wang C, Xue B, Shang L. PSO-based Parameters Selection for the Bilateral Filter in Image Denoising.
Proc. 2017 Genetic and Evolutionary Computation Conf (GECCO), Berlin (2017).

Wang Y, Qian Y, Li Y, Gong M, Banzhaf W. Artificial Multi-Bee-Colony Algorithm for k-Nearest-
Neighbor Fields Search. Proc. 2016 Genetic and Evolutionary Computation Conf (GECCO), Denver
(2016).

Wilcox PD. Lamb Wave Inspection of Large Structures Using Permanently Attached Transducers.
Dissertation. Imperial College, London (1998).

Wilcox PD, Lowe MJS, Cawley P. Mode and Transducer Selection for Long Range Lamb Wave
Inspection. J Intelligent Material Systems and Structures. Vol. 12(8): 553-565 (2001).

Wu W, Zhang H, Jia F, Yang X, Liu H, Yuan W, Feng XQ, Gu B. Surface Effects on Frequency
Dispersion Characteristics of Lamb Waves in a Nanoplate. J Thin Solid Films. Vol. 697: 137831
(2020).

Xu Y, Gao L, Tian K, Zhou SG, Sun H. Non-Local ConvLSTM for Video Compression Artifact
Reduction. IEEE Intl Conf on Computer Vision (ICCV), Seoul (2019).

Xue N, Triguero I, Figueredo GP, Landa-Silva D. Evolving Deep CNN-LSTMs for Inventory Time
Series Prediction. IEEE Congress on Evolutionary Computation (CEC), Wellington (2019).

Yan ZH, Bo YJ. Piezoelectric Transducer Parameter Selection for Exciting a Single Mode from
Multiple Modes of Lamb Waves. J Chinese Physics B. Vol. 20(9): 094301 (2011).

Yousefi B, Kalhor D, Usamentiaga R, Lei L, Castanedo CI, Maldague X. Application of Deep Learning
in Infrared Non-Destructive Testing. Proc. 14th Quantitative InfraRed Thermography Conf, Berlin
(2018).

Zeng L, Lin J, Lei Y, Xie H. Waveform Design for High-Resolution Damage Detection Using Lamb
Waves. IEEE Trans on Ultrasonics, Ferroelectrics and Frequency Control. Vol. 60(5): 1025-1029
(2013).

Zhang L, Ma D, Yang M, Wang S. Optimization and Analysis of Winglet Configuration for Solar
Aircraft. Chinese J of Aeronautics. Vol. 1549: 1-15 (2020).

Zhang L, Yang F, Zhang YD, Zhu YJ. Road Crack Detection Using Deep Convolutional Neural
Network. Proc. IEEE Intl Conf on Image Processing, Phoenix (2016).

54 Chapter 2. State of the Art

Appendix A [Locatello et al. (2019)]

55 Chapter 3. Theoretical Background

3. Theoretical Background

In this chapter, the theoretical background that is necessary to understand the

discussion will be described. The organization of this chapter is as follows: the

theoretical background of Lamb wave propagation and its numerical simulation

is given in section 3.1. In section 3.2, I will describe deterministic and heuristic

approaches for discrete optimization. Section 3.3 concerns the signal processing

of time-series signal, and in section 3.4, I will elaborate on some theoretical

perspectives from computational neuroscience. Finally, in section 3.5, the theory

and some assumptions of some commonly used machine and deep learning

algorithms will be described.

3.1. Lamb Wave and Simulated Propagation

This section contains four sub-sections: In sub-section 3.1.1 I will describe the

physics of Lamb waves while the simulation of Lamb wave propagation with

numerical modelling is given in sub-section 3.1.2, while sub-section 3.1.3 will

describe the piezoelectric effect which is needed to excite the Lamb wave.

Finally, in sub-section 3.1.4, a brief discussion on the attenuation of Lamb wave in

different materials in order to justify the selection of certain excitation

parameters is given.

3.1.1. Acoustic Wave in Plate-Like Structure

Acoustic waves in bulk mode propagates in solid media both as longitudinal and

transversal waves. In 3-dimensional space, the acoustic wave propagation can

be described by the general wave equation:

1 2 3

1 ² ² ² ²
()

² ² ² ² ²
p p p p

c t x x x

   
= + +

   

(3.1.1-1)

In Eq. 3.1.1-1, c is the speed of sound, p is mechanical pressure, t is time, and x1 … x3

are the spatial coordinate signifiers. A longitudinal wave oscillates in the

direction of the propagation, while a transversal wave oscillates perpendicular

to its direction of propagation. In isotropic media, the longitudinal bulk wave

speed cL and transversal bulk wave speed cT are defined as [Su and Ye (2009)]:

λ ν
ρ ρ ν ν ρ ν ρ
+ −

= = = =
+ − +

Lamé
2µ (1) µ

,
(1)(1 2) 2 (1)L T

E E
c c

(3.1.1-2)

Further, in Eq. 3.1.1-2, E is the Young modulus of the material, ν is Poisson’s ratio, λLamé is the Lamé constant, ρ is the material density, and μ is the shear modulus of

the plate. For a damage tolerant aircraft substructure such as an aluminum

fuselage, the material can be regarded as a thin isotropic and homogenous plate,

i.e., when one geometrical dimension is significantly smaller than the other two

dimensions as can be seen Fig. 3.1.1-1.

56 Chapter 3. Theoretical Background

Fig. 3.1.1-1: Thin plate with a length L, width W, and thickness 2h << (L,W) in the Cartesian

coordinate system [Su and Ye (2009)]. The wave propagation direction is parallel to x1 and x2.

When the plate thickness 2h is approximately the same as the wavelength (i.e., 2h

 λwave), the general wave equation from Eq. 3.1.1-1 can be simplified as given in Eq.

3.1.1-3 [Su and Ye (2009)], where u is the particle displacement and f is the body

force in the xi direction, respectively.

λ ρ ρ
Lamé , ,

(+µ) µ (, 1,2,3)
j ji i jj i i
u u f u i j +  +  =  = (3.1.1-3)

To solve Eq. 3.1.1-3, we need to first to decompose it into two uncoupled parts

under the plane strain condition with the displacement potentials method which

is based on the Helmholtz theorem [Rose (1999), Achenbach (1973)] that takes the

longitudinal and transversal wave velocity cL and cT into account:

ρ
λ

       
+ = =

   + 
1 3 Lamé

² ² 1 ² ²
² ² ² 2µ ²

L
x x c t t

(3.1.1-4)

ρ       
+ = =

   
1 3

² ² 1 ² ²
² ² ² 2µ ²

T
x x c t t

(3.1.1-5)

Where the scalar potential ϕ and vector potential ψ are defined as:

ω = + −
1 3 2 3 1

[sin() cos()]exp[()]A px A px i kx t (3.1.1-6)

ω = + −
1 3 2 3 1

[sin() cos()]exp[()]B px B px i kx t (3.1.1-7)

A1, A2, B1 and B2 are four constants determined by the boundary conditions. The

relation between the non-dimensional parameters p and q, wavenumber k,

angular frequency ω, wavelength λwave and longitudinal and transversal bulk

wave velocities cL and cT is given by:

ω ω π
λ

= − = − =
wave

² ² 2
² ² , ² ² ,

² ²
L T

p k q k k
c c

(3.1.1-8)

A Lamb mode is the result of the wave being constrained by two surfaces with a

thickness on the same magnitude as the wavelength combined with interference

phenomena that creates a standing wave pattern in the thickness direction while

57 Chapter 3. Theoretical Background

propagating in horizontal direction [Giurgiutiu (2014)]. Due to this property, a

Lamb wave contains both longitudinal and transverse components, i.e., the

particle motions are in parallel and perpendicular directions to the propagation

direction, respectively. The general description of Lamb waves in an isotropic

and homogeneous plate is given by [Su and Ye (2009)]:

λ λ
=

+ + −
Lamé Lamé

tan() 4 ²()µ
tan() (² ² 2µ ²)(² ²)
qh k pq

ph k p p k q

(3.1.1-9)

Eq. (3.1.1-9) can be split into two equations by substituting Eq. (3.1.1-7) and (3.1.1-8)

to obtain the symmetric and anti-symmetric characteristics of the Lamb wave,

respectively:

− −
= =

− −
tan() 4 ²() tan() (² ²)

,
tan() (² ²) tan() 4 ²()
qh k pq qh k q

ph k q ph k pq

(3.1.1-10)

The symmetric and anti-symmetric characteristics of Lamb waves refers to the

particle displacement u1 and u3 relative to the plate mid-plane, as depicted in Fig.

3.1.1-2a-b, respectively. Since the symmetric Lamb mode (S-Mode) has a quasi–
pressure displacement field, it is sometimes referred as the compressional Lamb

wave mode, and it is sensitive to defects anywhere in the thickness direction

[Marcos (2011)]. The anti-symmetric Lamb wave (A-Mode) has a quasi-flexural

displacement field, and it is sometimes referred as a bending Lamb mode and it is

more sensitive to defect in wave propagation direction such as surface cracks or

delamination [Guy et al. (2003), Liu et al. (2013)].

Fig. 3.1.1-2: a). Symmetric Lamb wave (S-Mode) and b). Anti-symmetric Lamb wave (A-Mode). [Pant

et al. (2013)]

Lamb waves are dispersive, i.e., their velocities are dependent on the wave

frequency and plate thickness. The fundamental symmetric and anti-symmetric

Lamb modes (referred as the A0-Mode and the S0-Mode, respectively) are always

present during the propagation, whereas at a higher frequency or for thicker

plates (or the combination both), the higher order Lamb modes (A1, S1… A2, S2…) will
also occur. During propagation, these wave modes will reflect and then overlap

with each other as soon as the wave front touches each free boundary.

The solution of Eq. (3.1.1-10) describes the dispersive behavior of the Lamb waves,

and it can be numerically calculated by combining Eq. (3.1.1-8) and Eq. (3.1.1-10)

with the material properties and plate thickness. Further, the solution can also be

drawn as a dependency of wave velocity as a function of frequency-thickness

58 Chapter 3. Theoretical Background

product for each Lamb mode and therefore it is referred as a dispersion curve. An

example of a dispersion curve for symmetric and anti-symmetric Lamb modes

with the normalized phase velocity in an aluminum plate is depicted in Fig. 3.1.1-

3a-b, respectively. At higher frequency-thickness, A0 and S0 modes become

nearly without the dispersion as can be seen from Fig. 3.1.1-3a-b. Above 2000

[Hz•m], the velocity of A0-Mode is quasi-constant and not very much affected by

either the frequency or the plate thickness anymore. The same behavior can be

observed for the S0-Mode above 3000 [Hz•m], see Fig. 3.1.1-3a.

Fig. 3.1.1-3: Dispersion curve for a). S-Modes and b). A-Modes in aluminum plate [Su and Ye (2009)].

Less dispersive region is marked in dashed box.

In bulk waves, each individual wave travels with certain phase velocity and the

overall envelope shape of the wave amplitudes travels with the group velocity

[Su and Ye (2009)]. Analogously, each Lamb mode propagates with a different

phase velocity cP. The wave packet of Lamb modes propagates at the group

velocity cG, which is defined in Eq. (3.1.1-11).

λ
λ
 

= −  = −
 wave

wave

P P

G P G P

c c
c c c c k

k

(3.1.1-11)

The dispersion curve can also be drawn in terms of group velocity or

alternatively in wavenumber, as in Fig. 3.1.1-4a-b, respectively. It is important to

understand the dispersion relation of the group velocity since “it is the actual
velocity captured in experiments” [Su and Ye (2009)].

Fig. 3.1.1-4: Lamb wave dispersion curve for an aluminum plate in terms of a). group velocity [Zhao

et al. (2017)] and b). wavenumber-thickness [Masserey and Fromme (2008)].

59 Chapter 3. Theoretical Background

3.1.2. Simulated Lamb-Wave Propagation in Finite Element Environment

For exactly calculating the Lamb wave propagation behavior in a plate, an

analytical model must be built. However, building an analytical model for many

engineering structures is difficult as many engineering applications are driven

by complex systems and their physics is very likely to be governed by

multivariate Partial Differential Equations (PDEs). Therefore, when analytically

solving multivariate PDE for real-world structures, most of the times

simplifications are used resulting in either of following consequences:

1. The analytical solution quality is reduced since it becomes imprecise, or

2. The solution is guaranteed only for certain increment of the structure, thus

making it not scalable from the holistic perspective

For this reason, full-analytical solutions for complex structures are many times

computationally heavy and numerical solutions are often sought in those cases.

According to [Giurgiutiu (2014)], for complex geometries, “the numerical methods
represent the only viable approach to understanding the multiple reflections and
diffractions of the ultrasonic waves within the component”.

There are different mathematical ways one can obtain numerical solutions of

Lamb waves such as Finite element method (FEM), Finite difference method

(FDM), Elastic Finite integration technique (EFIT) and spectral FEM (SFEM)

[Ostachowitz et al. (2012)]. FEM is de facto the most popular numerical analysis

method thanks to its flexibility of being adapted to many different engineering

problems, i.e., not only for Lamb wave propagation. For this reason, most of the

numerical analysis software packages that are commercially available for wide-

public are FEM based.

FEM developments are based on the Hamilton's principle, which states that the

motion of the system within certain interval vanishes under infinitesimal

variations of the displacements and formulated as [Duczek et al. (2014), Cerniglia

et al. (2010)]:

1. Lagrangian function in the volumetric integral area Ω, which describes the

difference between the kinetic energy and the elastic strain energy

2. External work over volumetric area Ω and surficial integral area Γ

ρδ δε ε δ δ
  

   +    =   +     
  T T T T

ijkl

External workLagrange volumetric integral

C
v s

u u d u Fd u Fd
(3.1.2-1)

In Eq. (3.1.2-1), ρ is the material density, u and ü are the particle displacement

vectors in the material and their corresponding accelerations, respectively, ε is

the strain tensor, and Cijkl is the stiffness matrix of the material. The external

forces can be classified as surface load FS and volume load FV. After some

60 Chapter 3. Theoretical Background

calculations described in [Zienkiewicz et al. (2005)], Eq. (3.1.2-1) can be written as

the well-known equation of motion:

+ + =
a

Mu Cu Ku F (3.1.2-2)

In Eq. (3.1.2-2), M is the structural mass matrix; C is the structural damping matrix;

K is the structural stiffness matrix; Fa, is the vector of applied loads; andu is the

particle velocity. For metals in the elastic deformation zone (such as Lamb waves

propagation), the structural damping can be neglected, thus Eq. (3.1.2-2) can be

regarded as dependent of particle displacement and acceleration only. To

numerically solve the PDE in Eq. (3.1.2-2), the geometry involved is divided into

mesh elements over which the equation can be approximated [Zienkiewicz et al

(2005), Wriggers (2008)].

A mesh element is a spatial discrete representation of the geometry. For a three-

dimensional problem, there are four element types: brick, tetrahedral, prism, and

pyramid. In most commercial FE software, two computationally feasible

polynomial approximation methods exist: linear (p=1) and quadratic (p=2). Both

determine the number of nodes in each element type (see Fig. 3.1.2-1).

Fig. 3.1.2-1: Mesh Element Type. Top: Linear Mesh (p = 1), Bottom: Quadratic Mesh (p = 2)

To reach a better calculation result, the mesh can be refined by decreasing the

distance between each node so that the size of the mesh element becomes

smaller, thus increasing the required number of elements to cover the whole

geometry. This is called h-type refinement, where h signifies the mesh element

size. There is another refinement called p-type refinement [Gopalakrishnan et al.

(2008)], which in contrast to the h-type, focuses on higher order p-polynomial

approximations such as cubic (p=3), quartic (p=4), and so on. Higher order p-type

refined finite element is also called spectral element (SE) or p-FE. Deep research

into p-FE methods for application in Lamb wave propagation has been

investigated by [Pahlavan (2012)], however this did not involve any commercial

FE software, since at the moment there was no such SE-FE software available in

61 Chapter 3. Theoretical Background

the market. The finite element size, he is derived from the smallest wavelength

λmin. In the linear case, [Moser et al. (1999)] recommended 20 nodes per

wavelength for good spatial resolution, which can be written as:

λ
= min

20e
h

(3.1.2-3)

Beside the spatial discretization, the time discretization of equation Eq. (3.1.2-2) is

needed as well. The minimum requirement to ensure numerical stability of time

integration is sufficed by the Courant-Friedrich-Lewy (CFL) condition [Duczek

et al. (2014)]:

 =  =
CFL rec

max

1
,

20
G

h
t t

c f

(3.1.2-4)

The CFL condition stipulates that the wave should not travel more than one

element width h in a single time increment ΔtCFL. For the Newmark time

integrator, the recommended time step Δtrec is 20 increments per cycle of the

maximum frequency fmax as given in Eq. (3.1.2-4), so that solutions can be

calculated in efficient manner, especially for ultrasounds with frequencies in the

MHz [Cerniglia et al. (2010), Gresil et al. (2012)].

3.1.3. Piezoelectric Actuator and Sensor

There are several transducer technologies that can be used for generating Lamb

waves, such as conventional and air-coupled piezoelectricity, electromagnetic,

and laser transducer [Su and Ye (2009), Boller et al. (2004), Döring (2011), Güemes

and Ostachowitz (2013)]. For application in ultrasonic SHM, the most common

method is to use a conventional piezoelectric patch of type lead zirconate titanate

or piezoelectric wafer active sensor (PWAS, Fig. 3.1.3-1 a-b) due to their relatively

cheap price and their lightweight.

Fig. 3.1.3-1: a). piezoelectric patch mounted on a structure, b). typical thin cylindrical PZT patch

[Budoya et al. (2017)]

Piezoelectricity effect was discovered by Jacque and Pierre Curie in the 1880s. “It
is an anisotropic property of crystalline materials and results from non-uniform
charge distributions within a crystal’s cells.” [Boller et al. (2004)]. This property

can manifest itself in two ways:

62 Chapter 3. Theoretical Background

1. Direct piezoelectric effect, which occurs in the materials where an

electrical charge is generated due to an applied mechanical force

2. Inverse piezoelectric effect which is the occurrence of an internal strain

due to an applied electrical field.

The inverse piezoelectric effect is used for generating acoustic waves, while the

direct piezoelectric effect is used for detecting acoustic waves – see Fig. 3.1.3-2 a-

b for illustrations.

Fig. 3.1.3-2: a). direct piezoelectric effect, b). inverse piezoelectric effect [Mishra et al. (2018)]

There are several material groups which exhibit these properties. The most

common are the piezoceramics with Perovskite structure (ABO3), such as: BaTiO3,

CaTiO3, and SrTiO3. Piezoceramic sensors are particularly attractive for damage

detection in a structure because they can be used both as actuator and sensor

(sender and receiver) and this allows both passive and active damage detection.

The most commonly used transducers come from this group: the PZT (lead

zirconate titanate) or Pb[ZrxTi1-x]O3, with 0≤x≤1. The second group is the

piezoelectric polymers, material being the polyvinylidene fluoride (PVDF). Also,

some natural materials like quartz, topaz, dry bone, and silk exhibit

piezoelectricity. Furthermore, III-V and II-VI semiconductors are also

piezoelectric due to their crystal asymmetry.

The electromechanical effect in piezoelectricity is described through the

tensorial piezoelectric constitutive equations [Gresil et al. (2012)]:

= +E

ij ijkl kl kij k
S S T d E (3.1.3-1)

ε= + T

j jkl kl jk k
D d T E (3.1.3-2)

where, Sij is the mechanical strain; Tkl is the mechanical stress; Ek is the electrical

field; Dj is the electrical displacement; sE
ijkl is the mechanical compliance of the

material measured at zero electric field, εT
jk is the dielectric permittivity

measures at zero mechanical stress, and dkij represents the piezoelectric

coupling effect.

63 Chapter 3. Theoretical Background

3.1.4. Lamb Wave Attenuation

Like Rayleigh waves, the energy of plate waves dissipates during propagation,

and this is also the case for Lamb waves and in-plane shear horizontal (SH)-

waves. This phenomenon is called attenuation and it can be observed with a

gradually decreasing of the signal amplitude [Su and Ye (2009)]. When Lamb

waves propagate inside the absorptive material, their energy is absorbed by the

material, which results from friction between material particles, thus converting

the wave energy to heat during propagation [Luangvilai (2007)].

In the presence of material inhomogeneities such as stiffeners, corrosion, crack,

rivet holes, etc. the attenuation is more pronounced. S-Mode Lamb waves tend to

travel farther than the A-Mode due to their dominant in-plane particle

displacement, whereas the energy of an A-Mode is partially leaking out along the

free surfaces due to its dominant perpendicular particle displacement. The

relatively high attenuation of the A-Mode becomes more pronounced when the

structures are immersed in water or buried in soil [Wilcox et al. (2005)]. The time-

harmonic solution to Eq. 3.1.1-3 can be written as:

ω=  −(,) exp[()]u x t A i t kx (3.1.4-1)

Where in Eq. (3.1.3-1), A is the amplitude of the Lamb wave. The measured signal

power P at point x after having an original excitation signal power P0 in a plate

that has the geometrical attenuation factor α which is proportional to 1/√x and

material attenuation coefficient β is given in Eq. (3.1.4-2). Alternatively, it can also

be expressed in energy E as a function of original excitation energy E0 as given in

Eq. (3.1.4-3) [Ono and Gallego (2012)].

α β α
0

1
[exp()] , whereP P x

x

 
=  − =  

 

(3.1.4-2)

β
0

1
exp(2)E E x

x

 
=   − 

 

(3.1.4-3)

The amplitude of Lamb waves signals in a plate decay at a rate that is

proportional to the inverse square root of the propagation distance. The ratio

between amplitudes A(d1) and A(d2) of distances d1 and d2 at two points along the

propagation path is given by Eq. (3.1.4-4). Due to the consecutive attenuation, [Su

and Ye (2009), Konstantinidis et al. (2006)] suggested to compensate the energy

loss due to geometrical spreading by multiplying the signal amplitude with the

square root of elapsed time as given by Eq. (3.1.4-5).

21

2 1

()

()

dA d

A d d
=

(3.1.4-4)

='() ()A t A t t
(3.1.4-5)

64 Chapter 3. Theoretical Background

The material attenuation β depends on frequency and thickness, e.g. for a 1-mm

thick aluminum plate, the attenuation coefficient is between 2.2 – 17 dB/m for an

excitation frequency between 0.5 – 5 MHz, where for a thermoplastic material

such as polymethylmethacrylate (PMMA), the attenuation is higher by a factor of

10 – 50x [Ono and Gallego (2012), Fig. 3.1.4-1a] due to its more pronounced

viscoelastic property in comparison to metals such as steel [Fig. 3.1.4-1b] or

aluminum which only exhibit negligible viscous properties.

Fig. 3.1.4-1: a). Lamb wave attenuation as a function of frequency for aluminum and PMMA plate

[Kasama et al. (2000), Ono and Gallego (2012)] and b). Decrease of Lamb wave amplitude of

different frequencies in a steel plate as a function of propagation distance [Ono (2018)].

[Zhao et al. (2007)] gave another example of Lamb wave attenuation in an

aerospace structure, where a transducer T is placed between rivet holes as

depicted in Fig. 3.1.4-2a (Case 1). Given that the actuator T was excited by using a

1.8 MHz excitation frequency, Fig. 3.1.4-2b illustrates the captured S0-mode Lamb

wave signal from a series of sensors X that are located 20 – 200 mm away from the

actuator T. In this case, they calculated that the average attenuation rate was

0.044 dB/mm. In case 2, they placed a sensor series ∆ across the stiffeners, and

using the same frequency and S0-mode excitation obtained an average

attenuation of 15 dB per rivet row. The distance between the rivet rows was 6.5

cm, meaning that the average attenuation was increased to 0.231 dB/mm. This

calculation already included multiple scattering from the rivets.

Fig. 3.1.4-2: a). Sketch of distribution of rivets and transducers in wing section (‘T’: actuator; ‘X’:
sensor array in Case 1; ‘Δ’: sensor in Case 2); and b). integrated Lamb wave signals captured by a

series of sensors in a straight line (Case 1) [Zhao et al. (2007)].

65 Chapter 3. Theoretical Background

3.2. Signal Representation and Data Processing

This section describes the different ways to represent the captured Lamb wave

signal and the commonly used features to calculate the damage index that can be

related to predict the physical damage state. The general formulation of SHM

diagnostic can be categorized into quintuple D: {π, ψ, τ, λ, ω} where:

1. π is the actor domain and contains the parameters that are needed to

generate and measure the physical phenomenon of interest λ,

2. ψ is the medium domain where the phenomenon of interest λ reigns,

3. τ is the transitional domain, which separates the actor from the medium,

4. λ is the phenomenon of interest, that is the physical phenomenon, which is

observed in actor domain π,

5. ω is the environmental domain which covers π, ψ, and τ, but are separated

from them

We consider here a typical Lamb wave experimental setup such as in Fig. 3.2-1

[Wang et al. (2019)], where actor π consists of the computer, amplifier, controller,

and PZT patch, medium ψ consists of the aluminum plate including any

inhomogeneities inside such as fasteners, rivet holes, welded regions, cracks, or

corrosion spots, transitional tuple τ consists of the glue layer between the plate

and the PZT, λ is the propagating Lamb wave at a certain time, and ω includes the

environmental factors such as temperature, humidity, or external vibration that

might affect or interfere the behavior of the Lamb wave propagation.

Fig. 3.2-1: Typical Example of Lamb Wave Experimental Setup [Wang et al. (2019)] where P are the

sensing locations and D are the simulated defect locations.

Obviously, the Lamb wave propagation cannot be seen with naked eye, and in

fact, in many real-world situations where data is only recorded offline, we can

only observe the signal shown in the computer. Human perception on what

occurs in the medium domain ψ during the wave propagation λ is based on signal

X that is recorded by the actor tuple π. When accounting for the environmental

factor ω, human perception can clearly be distorted if the signal is distorted. The

most direct formulation of Lamb wave propagation is:

66 Chapter 3. Theoretical Background

λ π ψ τ ω π ψ τ ω λ−=  = 1(, , ,) , , , ()f f (3.2-1)

In reality, the occurrence of Lamb wave propagation λ is rather inferred through

the observation of signal X at time t in the oscilloscope or computer that is

contained by the tuple π, so the formulation becomes:

λπ ψ τ ω =(̂ , , ,) ()f X t (3.2-2)

Assuming that the behavior between actor, environmental, and transition tuple

is consistent during the observation time, the relationship between

inhomogeneities i in the medium ψ can be simplified as:

λψ (̂) () ()
i

f X t X t (3.2-3)

3.2.1. Signal Representation

An example of Lamb wave signal in the time domain Xλ(t) from Eq. (3.2-3) at 100

and 200 kHz excitation frequency in an aluminum plate is depicted in Fig. 3.2.1-

1a-b [Malaeb et al. (2018)], respectively.

Fig. 3.2.1-1: Example of Lamb wave signal at a). 100 kHz and b). 200 kHz excitation frequency in

aluminum plate [Malaeb et al. (2018)].

Such a signal representation as shown in Fig.3.2.1-1 is called a time-series as the

amplitude data points are ordered in time order. A second way to represent the

signal is to look at its frequency spectrum and to convert the time-series into

frequency-domain spectrum. A fast Fourier transform (FFT) is commonly used to

convert time-discrete signal into a frequency spectrum. Analogously, the

frequency-domain spectrum can be re-converted into a time—series by using an

inverse FFT (IFFT). The general equation of Fourier transformation in continuous

67 Chapter 3. Theoretical Background

time t and its inverse in continuous frequency f are given in Eq. (3.2.1-1) and (3.2.1-

2), respectively:

π() () exp(2)X f X t i ft dt


−
=  −

(3.2.1-1)

π() () exp(2)X t X f i ft df


−
=  −

(3.2.1-2)

Accordingly, the discretized Fourier transform and its inverse in discrete time tn

and frequency fn can be described as:

π1

0

2
() () () exp()

N

n n
n

i ft
X f X f X t

N

−

=

−
 = 

(3.2.1-3)

π1

0

2
() () () exp()

N

n n
n

i ft
X t X t X f

N

−

=

−
 = 

(3.2.1-4)

An example of the time and frequency representation of a Lamb wave signal

measured by scanning laser Doppler vibrometer (SLDV) is given in Fig. 3.2.1-2

[Tian and Yu (2014)].

Fig. 3.2.1-2: Time-domain Lamb wave signal from a). excitation PZT and c). SLDV scanning point

located on the plate. Their frequency representation is depicted in b) and d), respectively [Tian

and Yu (2014)]. More detail on SLDV technique can be read in [Tian et al. (2019), Schmitt et al. (2013),

Pohl and Mook (2013)].

Both the time-series and its frequency representation can be joined to create a

Time-Frequency Representation (TFR), sometimes known as Time–Frequency

Distribution (TFD). There are several ways to achieve a TFR [Krammer and Jones

(1994), Hlawatsch (1998), Legendre et al. (2000), Debnath (2002), Shin and Song

(2000), Niethammer et al. (2000), Zemmour (2006), Kehtarnavaz (2008), Li et al.

(2009), Harley et al. (2015), Zhang et al. (2015), Boashash (2016), Zoubi et al. (2019)]:

1. Short-Time Fourier Transform (STFT)

2. Wavelet Transform (WT)

68 Chapter 3. Theoretical Background

3. (Smoothed-Pseudo) Wigner Ville Distribution (SPWVD)

4. Hilbert-Huang Transform (HHT)

STFT is probably the simplest way to represent the TFR. While the FFT does not

provide any information about the change in the frequency spectrum over time,

the STFT is also suitable for signals in which the frequency changes over time.

With the STFT, a window function is applied to the time series, i.e., the window is

shifted at each point in time and to the frequency to be considered and thus the

absolute duration and bandwidth of the window remain constant. The resolution

in the time and frequency domains are therefore dependent on the window size.

The continuous form of the STFT coefficient for window length w at time t and its

discretized version for a discrete time-step n ∈ ℤ are:

π
()

Fourier Transform Window function

STFT (,) () exp(2) ()
X t
t f X t i ft w t dt



−

=  −  −
(3.2.1-5)

π
()

Window functionFourier Transform

STFT (,) () exp(2) ()
X t n n
t f X t i ft w t dt



−

=  −  −
(3.2.1-6)

Due to the time-frequency uncertainty, the resolution in the time domain is

inversely proportional to the resolution in the frequency domain and therefore it

is not possible to achieve the best possible resolution in the time domain and in

the frequency domain at the same time (“No Free Lunch” principle). The STFT

coefficients can be represented as spectrograms as depicted in Fig. 3.2.1-3.

Fig. 3.2.1-3: Spectrogram of Lamb wave signals in pitch-catch configuration for (a) no defect, (b) 5%,

(c) 35%, and (d) 80% through wall of electrical discharge machined (EDM) notches in aluminum

plate with 1 mm thickness [Shin and Song (2000)].

To overcome the time-frequency trade-off, the wavelet transformation is used.

The term wavelet describes the basic function used for the transformation. Like

the STFT, a window function is applied to the time series signal. The window

function, called the ‘mother wavelet’ must be selected according to the general

representative shape of the time series waveform. However, instead of moving

and modulating the window, the mother wavelet is shifted and scaled.

As with the STFT, the scaling also results in a frequency shift, but at the same time

as the frequency increases, the duration of the window is reduced. A WT can be

regarded as a flexible size TFR pixel. This results in a more detailed temporal

resolution at higher frequencies and a lower time resolution at lower frequencies.

The continuous form of the wavelet transforms coefficient WT for a mother

69 Chapter 3. Theoretical Background

wavelet function Φ with shifting factor b and scaling factor a at time t and its

discretized version for a discrete time-step n ∈ ℤ is:

()

Continuous mother wavelet

1
WT (,) () ()

X t

t b
t f X t dt

aa



−

−
=  

(3.2.1-7)

()

Discretized mother wavelet

1
WT (,) () ()n n

X t n n
n nn

t b
t f X t

aa



=−

−
=  

(3.2.1-8)

An example of a TFR of Lamb wave signal by wavelet transform is depicted in Fig.

3.2.1-4 [Pramila et al. (2007)] where 3.2.1-4a depicts the signal in the time domain

while where 3.2.1-4b represents the TFR of 3.2.1.4a.

Fig. 3.2.1-4: a). Representation of Lamb wave signal in time domain and b). its representation in the

time-frequency domain by using a wavelet transform [Pramila et al. (2007)].

The Wigner-Ville distribution (WVD) was introduced by Eugene Wigner in 1932

in quantum physics to introducing quantum corrections to statistical physics

with the objective of replacing the wave function in the Schrödinger equation by

a probability density in phase space. The shared algebraic structure between

time-frequency in signal processing and position-momentum in quantum

physics made it possible to adapt WVD techniques for TFR analysis.

Due to its origin in quantum mechanics, WVD can offer a very high resolution and

thus detailed quasi-continuous TFR analysis. For calculating a WVD, first the

non-stationary autocorrelated signal Xc(t) must be defined as given in Eq. (3.2.1-

7), where the bar signifies the complex conjugate. Then the Wigner distribution

function for a given window length τ is given by Eq. (3.2.1-8). For a zero-mean time

series (i.e., where µ(t) = 0), the Wigner function can be written as Eq. (3.2.1-9).

70 Chapter 3. Theoretical Background

() ()μ μ
1 1 2 2

() () () () ()cX t X t t X t t= −  −
(3.2.1-7)

τ τ π τ τ
()

WVD (,) (,) exp(2)
2 2

c

X t
t f X t t i f d



−

= + −  −
(3.2.1-8)

τ τ π τ τ
()

WVD (,) () () exp(2)
2 2X t

t f X t X t i f d


−

= +  −  −
(3.2.1-9)

As per the “No Free Lunch” principle however, the WVD comes with the trade-off

that it is computationally expensive. This matter becomes significant when the

WVD is applied to a broadband signal and therefore makes it impractical in many

signal processing applications. Several methods have been proposed to reduce

this effort, and the most known one is called the smoothed-pseudo WVD

(SPWVD) [Li and Liu (2008)]. An example of a SPWVD spectrogram of a Lamb

wave signal is depicted in Fig. 3.2.1-5.

Fig. 3.2.1-5: a). Time-domain Lamb wave signal containing overlapping higher multiple modes and

b). its TFR by using SPWVD [Li and Liu (2008)].

The SPWVD is given by Eq. (3.2.1-10), where q is a lowpass function for a time-shift

u and PW is the pseudo-Wigner-Ville distribution which is given by Eq. (3.2.1-11),

where w is the selected window function.

() ()
SPWVD (,) () PW () ()

X t X t
t f q t u f t du



−

 = −  
(3.2.1-10)

π τ
()

PW (,) () () () () exp(2)
2 2 2 2X t

t f w w X t X t i f d
    



−

=  −  +  −  −
(3.2.1-11)

3.2.2. Feature Extraction and Damage Index

The multitude of signal representations either in time domain, frequency domain,

or time-frequency domain can be analyzed in order to extract the relevant

features that might be useful to interpret the physical condition of the relevant

structure. According to [Su and Ye (2009)], feature extraction is “the process of
identifying and picking up the damage-modulated properties and parameters in a
signal which are called the features or characteristics of the signal”. In this aspect,

71 Chapter 3. Theoretical Background

various approaches have been developed to define and extract the features to

calculate the damage index (DI) that gives an indication of the presence of

damage. There are several DIs that can be linked to physical damage [Michaels

and Michaels (2007), Konstantinidis et al. (2006), Betz et al. (2006), Rizzo and

DiScalea (2006)], for instance the energy distribution from an extracted signal

envelope with a Hilbert Transform (HT), given in Eq. (3.2.1-12), the peak-to-peak

amplitude, residual mean squared deviation (RMSD) from the baseline

extraction, given in Eq. (3.2.1-12) and signal variance, given in Eq. (3.2.1-13). There

are two variants of energy-based DI. Both are given in Eq. (3.2.1-13). The signal

correlation-based DI is given in Eq. (3.2.1-15). In these equations, X(t) is the signal

function in the continuous domain, xi is the signal from a baseline structure at

discrete time i, τ is the window length and µ is the signal average, respectively.

The subscript tilde denotes a signal from a damaged structure.

τ
π τ()

1 ()
HT

()X t

X t
d

t



−

=
−

(3.2.1-12)

1
RMSD

1

()²
DI

²

N

i ii
N

ii

x x

x
=

=

−
= 



(3.2.1-13)

1 1

0 0

1 1

0 0

Energy(1) Energy(2)

() ² () ² () ²
DI , DI

() ² () ²

t t

t t

t t

t t

X t X t dt X t dt

X t dt X t dt

   −   
= =   
   
   

 
 

(3.2.1-14)

1
Signal_Corr

1 1

(µ)(µ)
DI 1

(µ)² (µ)²

N

i x i xi

N N

i x i xi i

x x

x x

=

= =

− −
= −

−  −


 

(3.2.1-15)

Another way to extract features is to build a damage fingerprinting specification

from the raw signal in either time-domain, frequency-domain, or time-frequency

domain. The reason to do so is because in many cases, a raw signal contains many

non-characteristic points. [Su and Ye (2009)]. They mentioned that “taking into
account the most frequently occurring damage cases, a damage parameter
database (DPD) hosting all DDF can be constructed for a particular type of damage
in the structure under inspection, e.g., a crack or delamination”. For a Lamb wave

SHM system consisting of a certain number of actuators and sensors, a series of

feature vector pairs, termed as digital damage fingerprints (DDF) can be

established for all the signals captured by the sensor network, and depicted as a

flowchart in Fig. 3.2.2-2 [Su and Ye (2009)].

Fig. 3.2.2-2: The flowchart of DDF-based signal processing for damage identification in Lamb wave

based SHM [Su and Ye (2009)].

72 Chapter 3. Theoretical Background

3.3. Optimization and Search Metaheuristics

Lamb wave mode conversion and scattering occur all the time and this not only

leads to the fact that the signal interpretation becomes aggravated, but also that

the ToF measurement of one specific wave mode will be more difficult. To

suppress wave mode conversion and subsequent mode overlapping, an actuator

should be put far from any edge, holes, or structural joints. Consider a mounted

sensor network on a structure, a time-harmonic interfacial shear stress [Xu and

Giurgiutiu (2007)] occurs during wave propagation as depicted in Fig. 3.3-1a-b.

Fig. 3.3-1: Load on a plate due to the PZT actuation for a). Symmetric and b). Antisymmetric Lamb

modes [Xu and Giurgiutiu (2007)]. The plate thickness is 2d, and the PZT diameter is 2a. In this

figure, τ denotes the interfacial shear stress.

The amount of shear stress depends on the sensor diameter and the loading

condition. For more sensors and the use of sensors with larger radius, the larger

will be the influence of the interfacial shear stress. Thus, one should aim to use the

minimum number of sensors possible. For a pulse-echo configuration, a single

PZT transducer is sufficient, whereas for the pitch-catch configuration the

minimum number of PZT transducers is 2. The larger structure the structure is,

the more transducers would be needed to cover the entire area of inspection.

A larger number of sensors collects more data and when combined with

appropriate signal processing techniques might decrease the probability of

damage misdetection, but at the same time this could be uneconomical and

provide redundant data. Thus, a compromise must be made between the number

of PZTs to be installed and the sensor network performance.

Briefly speaking, optimization is a branch of mathematics seeking to model,

analyze and solve analytically or numerically problems which consist of

minimizing or maximizing a function for a certain input set [Nocedal and Wright

(2006)]. The quality of the results depends on 1). the basic assumptions of the

model, 2). the choice of the variables that one seeks to optimize, 3). the efficiency

of the algorithm and 4). the computing power available. When speaking about

mathematical optimization, there are two general streams which depend on the

domain range: continuous optimization and discrete optimization, which will be

described in sections 3.3.1 and 3.3.2, respectively.

73 Chapter 3. Theoretical Background

3.3.1. Fundamentals on Continuous Optimization

In contrast to discrete optimization, in which the variables can take either

Boolean or integer values, in continuous optimization, the variables in the model

are allowed to take any value within a range of values, which are usually real

numbers, although they can also be complex numbers. The formal definition of

finite dimensional continuous optimization problems for searching minima can

be written as:

Definition 3.3.1-1. [Stein (2016), Nocedal and Wright (2006)]

,

1

1

() 0 ,
min () subject to

() 0 ,

with (at least partially differentiable or convex) objective function : ,

inequality constraint functions : , with a finite set index

n

i

x n
j

n

n

i

g x i I
f x

h x j J

f

g i I

 

  
 = 

→

→ 
1

, and

equality constraint functions : , with a finite set index

Define the feasible set to be the set of points that satisfy the constraints:

() 0 ,

() 0 ,

Then, the

n

j

i

j

I

h j J J

x

g x i I

h x j J

→ 


    =  =   

objective function can simply be rewritten as:

min ()
x
f x



Subsequently, to search for the function maxima, the objective function f(x) can

simply be multiplied by -1. The solutions of the objective function f(x) are either a

global or local extremum. The formal definition of global and local minima is

given in Def. 3.3.1-2.

Definition 3.3.1-2: Global and Local Minima [Nocedal and Wright (2006)]

*

*

*

*

* *

*

,

A point is a if :

() ()

A point is a if :

 neighborhood of : () ()

A point is a if :

 neighborhood o

nx

x

x x x

x

f x f x

x

x f x f x

x





 

 



 

   

 

  

global minimum

local minimum

strict local minimum
* *

*

* *

f : () ()

A point is a if:

 neighborhood of : is the only local minimum in

x f x f x

x

x x





    

isolated local minimum

In the same way, the global and local maxima can be simply re-defined by

multiplying the objective function f(x) by -1. For convenience, the subsequent

definitions will be limited to minima and any subsequent objective functions will

be formulated as minimization problems. The best solution to any optimization

problem is found when we reach a global minimum. But in many situations, this

74 Chapter 3. Theoretical Background

is not feasible since many algorithms cannot practically visit many points.

Depending on the functions, many algorithms are trapped in the manifold of local

minima. The only way to be sure that the local minimum is a global minimum is to

visit all possible points in the search space, making any algorithm to run this

search in either take an indefinite time or space and it will be as worthless as a

random generator, i.e., a blind search. Let revisit the No-Free-Lunch theorem on

search and optimization proposed by [Wolpert (1997)]:

Theorem 3.3.1-1: No Free Lunch in Optimization [Wolpert and Macready (1997)]

=


 →

 
1 2

1 2

For any pair of algorithms A and A :

(| , ,) (| , ,)

where denotes the ordered set of size of the cost values associated

to input values and : is the function being opt

y y

m m
f f

y

m

P d f m A P d f m A

d m y Y

x X f X Y imized.

(| , ,) denotes the conditional probability of obtaining a given sequence

of cost values from algorithm run times on function .

y

m i

i

P d f m A

A m f

The consequence of the No-Free-Lunch Theorem can be interpreted in following

ways [Ho and Pepyne (2002), English (2000)]:

1. A general-purpose almost-universal optimizer can theoretically exist.

That does not mean however, that it is necessarily practical.

2. An algorithm may outperform another on a problem when neither is

specialized to the problem.

3. For almost all objective functions, specialization is essentially accidental.

Examining all possible points in the neighborhood of point x* to make sure that x*

is local minimum seems to be impractical as the function complexity can still trap

the algorithm. However, there is a more efficient way to identify local minima if f

is smooth, especially when f is twice continuously differentiable, we may predict

whether x* is a local minimum only by examining the gradient ∇f(x*) and the

Hessian ∇²f(x*). In essence, the study of minimization [Apostol (1974), Nocedal

and Wright (2006), Bartle and Sherbert (2011)] is derived from Taylor’s theorem.

In any case, all algorithms seek a point where the gradient ∇f vanishes. The most

direct process to find the local minima is the method of steepest gradient,

sometimes also called gradient descent:

1
() ,

i i i i
x x f x i +

+ = −   (3.3.1-1)

In Eq. (3.3.1-1), η is the gradient step. Assuming that f is continuously

differentiable, x* converges towards the local minimum. The adaptive gradient

step size η at step i is defined as:

1 1

1

| () [() ()] |

|| () () || ²

T

i i i i

i

i i

x x f x f x

f x f x

− −

−

−  − 
 =

 − 

(3.3.1-2)

75 Chapter 3. Theoretical Background

Gradient descent is the most used methods to find minima in many problems,

including in operation research, schedule optimization, machine learning, and

many more. Especially for many machine learning problems where the search

space is often large, some stochasticity is often involved, in which the most

common algorithm is called stochastic gradient descent (SGD) [Hoseini et al.

(2019)], as given in Algorithm 3.3.1-1.

Algorithm 3.3.1-1. Stochastic Gradient Descent.

0 0

0

1

1

Setup initial values:

,

Calculate ()

Until termination condition is reached:

Randomly shuffle

For until , do:

()

Calculate ()

If () () : () ()

i

i i i i

i

i i i

x x

f x

x

i i M

x x f x

f x

f x f x f x f x

+

+

−

  

 =  
− 

 

3.3.2. Search Metaheuristics in Discrete Optimization

Unlike continuous optimization where the variables are usually real numbers, in

discrete optimization the input variables are restricted to only take discrete

numbers, i.e., integers. If the objective function is linear, it is possible to solve the

problem with linear programming. However, some real-world problems such as

sensor placement has a non-linear optimization function – albeit simplification

through integer variables and boundaries. Assume a section of fuselage panel

with a size of 1 m² that can be discretized into a 100 cm x 100 cm grid with a

resolution of 1 cm² for each grid pixel, then we have 10.000 possible placements

for each transducer involved. For N transducers and L pixels, we have C

combinations of possible placements:

!

!()!

L
C

N L N
=

−

(3.3.1-11)

For 2 PZTs in 100 x 100 cm plate, there are 50 million placement combinations

possible. For 3 transducers, the number of possible combinations jump to 167

billion. It would be absurdly expensive to test all these combinations to

determine which sensor network topology will minimize the missed detection

rate, which alternatively can be rephrased as maximization of the probability of

detection (PoD). For this reason, a smarter and more efficient way to find feasible

local minima is necessary – this general framework is called (meta)-heuristics.

Heuristics are a technique designed for solving a problem more quickly when

classic a method such as Newtonian or gradient based algorithms are too slow, or

for finding an approximate solution when classic methods fail to find any exact

solution, while metaheuristic can be regarded as an expansion of this approach

76 Chapter 3. Theoretical Background

such that the heuristic algorithms can be controlled and fine-tuned. According to

[Sörensen and Glover (2013), Sörensen et al. (2018)], “a metaheuristic is a high-
level problem-independent algorithmic framework that provides a set of guidelines
or strategies to develop heuristic optimization algorithms”. In no way should the

definition be abused so that one might think metaheuristics can find the most

optimum solution, because it never guarantees that a global minimum will be

found, but rather that it can guarantee that the solution(s) found are part of the set

of possible optima within the landscape of the objective function. Chapter 2

mentioned some of the common metaheuristics: genetic algorithm (GA),

simulated annealing (SA), and particle swarm optimization (PSO) which includes

the ant- and bee-colony optimization. Before going deeper into metaheuristics, let

us recall a very standard problem-solving heuristic: the greedy approach. An

example of the greedy method is given in Algorithm 3.3.2-1. An algorithm is said

greedy when it satisfies the following two conditions [Charlier (1995)]:

1. The algorithm creates the solution in an incremental way.

2. At each step of the sequence, the local minimum is selected.

Algorithm 3.3.2-1. Greedy Method for Minimization [Martins and Ribeiro (2006)].

→


= 
1

Recall the minimization problem for the objective function : 2 with

min () subject to

Where { ,..., } is the ground set and 2 is a set of feasible solutions

We are looking for an optimal s

G

G

n

f

f S S X

G e e X

   

 
 

olution * such that (*) (),

The greedy method is given as follows in pseudocode:

Setup initial values:

Evaluate the incremental cost

Until termination condition is reached:

Select the el

S X f S f S S X

S

e G




 

ement with the smallest incremental cost

{ }

Update the incremental cost \

s S

S S s

e G S

Obviously, the greedy method is not always the best method. This not to say that

for some problems, the optimal solution can be found with the greedy method,

e.g., for determining the minimum number of coins when giving change. Assume

that 0.86 € is given as a return from the following € coin denominations: {1¢, 2¢,

5¢, 10¢, 20¢, 50¢, 1€, 2€}.

Then, the minimum number of coins can then be broken down as 1x 50¢, 1x 20¢,

1x 10¢, 1x 5¢, 1x 1¢ which sums up to 5 coins. Now assume with hypothetical € coin
denominations: {2¢, 8¢, 10¢, 40¢, 60¢, 90¢, 1.50€} where 0.86€ is given as a return.

Following the sorting greedy method, the given output would be: 1x 60¢, 2x 10¢,

and 3x 2¢ which sums up to 6 coins. Obviously, it misses an alternative output: 2x

40¢ and 3x 2¢, which only sums up to 5 coins.

77 Chapter 3. Theoretical Background

In mathematics and computer science (CS), when an exhaustive search is

infeasible, metaheuristics can be introduced to partially solve the problem. As

explained in chapter 2 earlier, there are two metaheuristics mainstreams

[Echevarría et al. (2019)] as depicted in Fig. 3.3.2-1:

1. Non-population-based methodologies such as simulated annealing and

tabu search

2. Population-based methodologies, which can be divided into evolutionary

algorithms and swarm intelligence.

Fig. 3.3.2-1: Classification on Metaheuristics according to [Echevarría et al. (2019)]. MPCA: Multiple

Particle Collision Algorithm, SIs: Swarm Intelligence, EAs: Evolutionary Algorithm, DE:

Differential Evolution, MAs: Memetic Algorithm, SA: Simulated Annealing, PCA: Particle Collision

Algorithm, TS: Tabu Search.

Based on the number of papers in the literature review of chapter 2, we can see

that evolutionary algorithms and swarm intelligence are the most commonly

used metaheuristics, while simulated annealing has a smaller significance, and

the popularity of tabu search has been declining. For this reason, three major

search metaheuristics: Genetic algorithm (GA), particle swarm intelligence and

simulated annealing (SA), will be subsequently described.

GA is a biologically inspired algorithm from the Darwinian concept of natural

evolution [Kramer (2017)]. Usually, a GA contains three main operators: mutation,

crossover, and selection [Schmitt (2001)] and typically, the procedure starts with

a given initial population that will be assessed against its fitness. Those

individuals who have the best fitness are crossed-over to each other and/or a

“genetic mutation” is applied e.g., by bit-flipping or replacement. The individuals

who do not have the best fitness are not selected. This procedure is repeated

several times until a specified certain termination condition is reached. A typical

genetic algorithm is described in Algorithm 3.3.2-2.

78 Chapter 3. Theoretical Background

Algorithm 3.3.2-2. Genetic Algorithm [Zaritsky and Sipper (2004)]

Input parameter: set of blocks, Output: Superstring of set

Setup initial values:

Set generation 0

Initialize population to random individuals from *

Do procedure (,)

Until te

t

t

S S

t

P i S

S P

−



Evaluate_Fitness

1

rmination condition is reached:

Select individuals from

ˆProcedure (,)

Procedure ()
Do ˆProcedure (,)

ˆ

1

Definition procedure

t

t t

t

t

t t

P

i P i P

i P

S P

P P

t t
+




 
 


 


 +

Crossover

Mutate

Evaluate_Fitness

Evaluate_F (,) :

For each individual :

Generate derived string ()

All blocks from that are not covered by ()

* () Concatenation of () and Do

1
()

* () ²

t
S P

i P

s i

m S s i

s i s i m

fitness i
s i



  

 


itness

As defined in algorithm 2, there are 2 basic operations in a genetic algorithm: the

mutation and the crossover operator. The mutation operator alters one or more

values in the chromosome and its purpose is to preserve and introduce diversity,

while crossover is used to combine the genetic information of two parents to

generate new children. In practice, there are many other ways to conduct

mutations and genetic operations. For a simplified illustration, only the most

common methods are shown in Fig. 3.3.2-2.

Fig. 3.3.2-2: Basic Operation of Genetic Algorithm: Mutated and Crossover from Parent Generation.

[Ewald et al. (2020)]

As an example, the chromosome input value can be encoded as a binary value {0,

1}. In a single-point crossover, as shown in Fig. 3.3.2-2, the parent chromosome is

divided into two sub-genomes (e.g. [1001] and [1010] from parent 1, and [0110] and

[0101] from parent 2), and the genome information are permuted in order to

derive the crossover children.

79 Chapter 3. Theoretical Background

To create mutated children, two common methods are normally used:

1. Bit string mutation (e.g. [10011010] from parent 1 into [10010010] as the

mutated children 1)

2. Bit-flip mutation (e.g. [01100101] from parent 2 into [01110001] as the

mutated children 2).

The mutation operation rate is required to be larger than 0 to avoid being stuck in

a local minimum, but at the same time it is kept low in such way that the algorithm

does not jump too fast from one optimum to another as both of these conditions

make the search unnecessary long.

The second metaheuristic method is particle swarm optimization (PSO) which is

a nature-inspired algorithm that looks for a solution to an optimization problem

based on biological swarm behavior, i.e., the individuals within a swarm try to

stay within the group at all times to follow the group movement while

maintaining a certain minimum distance from other individuals [Kennedy and

Eberhart (1995), Shi and Eberhart (1998)]. Analogous to the natural phenomenon,

in a PSO algorithm, a population of solution candidates is moved through the

search space in order to obtain an approximately good solution to the problem.

For this purpose, the position of each individual population must be recalculated

in each iteration step. An example of PSO is given in Algorithm 3.3.2-3.

Algorithm 3.3.2-3. Particle Swarm Optimization [Raza and Qamar (2016)]

best

Input: set of conditional functions, set of decision functions

Output: best solution

Setup initial values :

random Position, random Velocity

fit bestFit(), global_best fit,pos_best bestP
i i

C D

X

i

X V

X

− −
−


 
   os(),

Until termination condition is met for :

if(fitness() fit):

fit fitness(),pos_best

if(fitness() global_best):

global_best fitness()

(), ()

i i

i

X P X

i

i

i X

i

i






 



updateVelocity updatePosition

The third metaheuristic method is called SA. The basic idea of SA is to simulate a

cooling process that occurs during annealing in metallurgy. After a metal is

heated, slow cooling ensures that the atoms have sufficient time to arrange

themselves and form stable crystals to achieve a low-energy state which is close

to the optimum. Adopting this natural process into a mathematical optimization,

temperature T corresponds to a probability in which the intermediate

optimization result may also deteriorate and the function to be minimized is the

80 Chapter 3. Theoretical Background

energy E of the system. However, in contrast to a local search algorithm, SA can

escape a local optimum. A simplified simulated annealing algorithm is described

in Algorithm 3.3.2-4.

Algorithm 3.3.2-4. Simulated Annealing [Fraga-Gonzalez et al. (2017)]

0 0

0

0

1

1

Input: initial temperature, cost function, initial state,

cooling schedule, neighbor state function

Setup initial values:

Until termination condition is reached:

()

()

Do

k

k k

k

T J s

S N

T T

s s

s N s

E J s
+

+

− − −
− −





 

1

()

if min 1,exp (0,1) :

k

k k

J s

E

T

s s

T S
+


 −
    −       
 




random

3.4. Machine and Deep Learning

3.4.1. Statistical Learning Theory for Supervised Learning

In short, machine learning is a field of study of artificial intelligence which is

based on mathematical and statistical approaches to give computers the capacity

to learn from data without being explicitly programmed. [Mitchell (1997)] defined

the algorithm of machine learning as: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experience E”. Broadly
speaking, the current field of machine learning concerns with the design,

analysis, optimization, development and implementation of such algorithms.

In this section, the most important concepts in statistical learning with the focus

on supervised learning is highlighted. As previously known, supervised learning

is a branch of machine learning in which the learning algorithm tries to find a

hypothesis that makes predictions that are as accurate as possible. A hypothesis

is to be understood as a mapping function that assigns a presumed output value

to each input value. For supervised learning, the basic assumption is that there

exists an unknown probability distribution. Now, we must consider how to

associate the probability distribution with machine learning.

In general, when considering supervised learning, the following questions

naturally arise: which learning problems can be solved efficiently and is it easier

to solve some problems rather than others? How many N training samples do we

need, and which parameters θ must be fine-tuned during the learning process? In

computer science, the proper intuition would be the learnability of the function

81 Chapter 3. Theoretical Background

itself, commonly known as the probably approximately correct (PAC)-learning

framework. More concretely, the underlying assumption for the given

assumption stated in Eq. (3.2-3) is that we know hθ: f(X) → ψ belongs to the concept

class C, where hθ is a hypothesis function that belongs to the hypothesis space H.

The PAC learning framework is given in Lemma 3.4.1-1.

Lemma 3.4.1-1. PAC Learning. [Valiant (1984, 2013), Moran and Yehudayoff (2015)]

X
 



= 
For any hypothesis , where is the hypothesis space in the concept

class , the generalization error is defined as Such a

generalization error is impossible to calculate since

(()).
h
J P h

h H H

J f
C C

C

X 
=

= 
1

the hypothesis space is

infinitely large. Thus, we can come up with the approximated measurable error

over samples, commonly referred as empirical error

Assume the existence o

1
(()).

N

h

n

J P h f
N

N

ε
δ κ



  =     −     


f

 a learning algorithm such that for any > 0 and

 > 0, distribution on input , the following holds for traini

1 ln : () 1

Then, n

ng sa

the co cep s

mples:

t class i said to

h

X

N J

N

P

A

C

C be PAC-learnable.

In Lemma 3.4.1-1, hθ can be thought as a function that can inversely map X into ψ.

We denote the family of this function as generalizer H such that hθ ∈ H. As stated

above, the assumption is that the universe tends to behave stochastically, thus H

does not actually map the observation X into ψ directly but would rather map X

into the joint probability density P(hθ|X). The formal definition of a

(multidimensional) generalizer [Wolpert (1990, 1992)] is:

Definition 3.4.1-2. Multidimensional Generalizer [Wolpert (1990, 1992)]

     

An -dimensional generalizer is a countable infinite set of continuous functions

from a subset of () to , from a subset of () to

, etc. Notationally, a -dimensional generalizer i

k k k k k

k

k

+ +


{ } { }

(1)

s a set of continuous

functions along with domains of defininions, where and being

from to .
i i

i k k

L i L

Generalization is one of the most important concepts in machine learning which

can be informally defined as the model’s ability to adapt properly to unseen,

independently and identically distributed (i.i.d) data drawn from the distribution

used to create a machine learning model. The probabilistic nature of many

physical phenomenon prohibits us from computing the true underlying risk,

hence what we can compute is the number of mistakes on the training data, called

the empirical error (sometimes also called as the training error), which has

already been explained in Lemma 3.4.1-1.

Normally, we may expect that the empirical risk is relatively small – otherwise,

the learning algorithm will not be able to explain the training data. Under this

assumption however, we cannot guarantee the training error will be

82 Chapter 3. Theoretical Background

approximatively equal to the rest of the sample set X. We shall say that a classifier

generalizes well if the difference between the true error and empirical error in

Lemma 3.4.1-1 is small. Note that within this context, a good generalization

performance does not necessarily mean that a classifier will have a small overall

empirical error, but it rather only means that the empirical error is a good

estimate of the true error.

We may never be sure whether the model we created from the training sampled

from the distribution is complex enough to represent the distribution or whether

is too simple? In this case, we are talking about the bias-variance trade-off. Bias is

the error resulting from incorrect assumptions in the learning algorithm. High

distortion can cause an algorithm to fail to model the appropriate relationships

between input and output, and this is called underfitting. For this reason, bias is

also called approximation error. Variance is the error based on the sensitivity to

minor fluctuations in the training data. A high variance causes overfitting: instead

of modelling the input-output relation, the algorithm is rather memorizing the

noise in the data. Mathematically, the total error can be summarized as:

2

True Irreducible ErrorPredicted Predicted Avg. Predicted

Bias² Variance

Error() ([()] ())² [() [()]]²
e

X h X f X h X h X  = − + − + 
(3.4.1-1)

The total error can be decomposed into 3 different errors: 1). Bias, 2). Variance,

and 3). Irreducible error. The irreducible error (sometimes called Bayesian error)

is the error that cannot be removed [Kuhn and Johnson (2016)] due to statistical

noise in the observations. If we choose a very large hypothesis space H ∋ hθ, the

bias will be small because |H| will most likely contain all possible hθ that fit the

input-output relation we would like to model.

However, at the same time, since it contains all possible hθ, the distance between

the incorrect prediction and the truth will also increase, thus making the

estimation error (variance) larger. The same logic applies if we choose small

hypothesis space H ∋ hθ. Thus, at this point, the “sweetspot” will be to find a
balance between the bias and variance as depicted in Fig. 3.4.1-1a-b.

Fig. 3.4.1-1. a). Bull’s eye model of four different scenarios representing combinations of both high

and low bias and variance. b). Trade-off between bias² and variance.

83 Chapter 3. Theoretical Background

Before going further, let us denote |Hn| as the cardinality of the hypothesis space

H that contains all possible hθ with n sample points. Let the maximum number of

hypothesis functions that can be distinguished S(H,n) be defined as:

1
(,) max{| | ,..., }

n n
S H n H X X X=  (3.4.1-2)

The quantity S(H,n) is denoted as the shattering coefficient of the hypothesis

space H with respect to sample size n. The shattering coefficient can be thought

as “the number of ways that the function space can separate the patterns into two
classes” [Luxburg and Schölkopf (2008)], i.e., the capacity measure of the

hypothesis space. In other words, the larger the hypothesis space H, the larger

shattering coefficient will be. From the PAC-Learning according to [Wolpert

(1990, 1992)], we would like to know what is the quantifiable measure for

generalization by using the shattering coefficient S? [Vapnik and Chervonenkis

(1971), Devroye et al. (1996)] have already discussed and given a proof on the

convergence bound. The generalization bound that we would like to hold with a

probability of at least 1 − δ is defined as [Luxburg and Schölkopf (2008)]:

()emp

4
() () log(2 (,)) log()R h R h S H n

n  + − 

(3.4.1-3)

Eq. (3.4.1-3) tells us that if both the empirical risk Remp(hθ) and the square root term

are small, then the total risk Remp(hθ) can be guaranteed with a probability of at

least 1 − δ will be small. This means that even if the size hypothesis space |H| is

small, it is not coincidence that some essential aspects of the problem have been

captured. Whether a problem is hard to learn is entirely dependent on our prior

knowledge, i.e., we must come up with a suitable function class.

Another important concept in terms of generalization beside the shattering

coefficient is the VC-Dimension (named after Vapnik and Chervonenkis), which

is a measure of function capacity. The purpose of introducing the VC-Dimension

is to “characterize the growth behavior of the shattering coefficient using a single
number” [Luxburg and Schölkopf (2008)]. Simply speaking, a set of points are said

to be shattered, if for each xn ∈ X, there exists a classifier hθ ∈ H such that xn = hθ ∩

X. I give a simple explanation using Fig. 3.4.1-2a-b.

Fig. 3.4.1-2. VC-dimension of axis-aligned rectangles. (a) Examples of realizable dichotomies for

four points in a diamond pattern. (b) No sample of five points can be realized if the interior point

and the remaining points have opposite labels [Mohri et al. (2018)].

Formally, given a hypothesis space H, a dichotomy of a set X is defined as one of

the possible ways of labeling the points of D using a hypothesis hθ ∈ H. A set D of n

84 Chapter 3. Theoretical Background

≥ 1 points is said to be shattered by a hypothesis set H when H realizes all possible

dichotomies of S, i.e.,when |Hn| = 2n. The VC-dimension of a hypothesis set H is

defined the size of the largest set that can be shattered by H [Mohri et al. (2018)]:

VC max{ | | 2 for some }n

H n
n H h=  =

(3.4.1-4)

The other important concept in supervised learning to measure the hypothesis

capacity is the Rademacher complexity. Unlike the VC dimension, Rademacher

complexity depends on the probability distribution. The Rademacher complexity
captures the richness of a family of functions by measuring the degree to which a
hypothesis set can fit random noise [Mohri et al. (2018)]. The formal definition of

Rademacher complexity R is given as follows:

Definition 3.4.1-3. Rademacher Complexity [Mohri et al. (2012)].

=
 

+

1

1 2

Let be a family of functions mapping from to [,] and (,...,)

a fixed samples with elements in . Let , ,... be independent random

variables that are assigned either with 1 or - 1 each w

n
H X a b X x x

n X

 =

 
 

 
 

1

ith probability 0.5.

Then, the empirical Rademacher complexity of with respect to the sample

1
sup ()

 is defined as:

n

n

i i
h H i

h X
n

H

n

R

The interpretation of Rademacher complexity is as follows: we know that the

product σih(Xi) either takes value +1 if σi = h(Xi) and -1 if otherwise. The sum

product will be therefore larger if σi coincides with h(Xi) on many data points and

this means the hypothesis function h fits to the labels σi and thus the empirical

error Remp will be minimized. If we now take the supremum into account, we look

up on all possible hypothesis h within the hypothesis space H. Thus, we can

expect that a model that generalizes well would have higher Rademacher

complexity, i.e., Rademacher complexity measures how large the hypothesis

space H is. Like the shattering coefficient, one can prove generalization bounds of

the following form: with probability at least 1 – δ:

emp

1ln()
() () 2

2n
R h R h

n 
 +  +R

(3.4.1-4)

The Rademacher complexity R, together with the VC-dimension [Goldberg and

Jerrum (1995), Clayton (2014)] are a measure of richness of a class of real-valued

functions – that is, the capability of generalizer L is related to how complex it is.

There are many more capacity concepts, but the general form which most

bounds take is composed of three different terms and have the following form:

emp
() () capacity() confidence()R h R h H  + +  (3.4.1-5)

85 Chapter 3. Theoretical Background

Finally, to wrap-up, the relation between generalization gap and capacity

concept (here Rademacher R complexity is taken as an example) is formally

defined in Def. 3.4.1-4.

Definition 3.4.1-4. Generalization gap [Kawaguchi et al. (2017), Mohri et al. (2012),

Balcan (2011)].

  →
1 1

()

Let -samples in the sampling space of training dataset {(,),...,(,)},

where and , and the generalizer () : . The expected

generalization risk is denoted as and the computable

n n

L S

n D x y x y

x X y Y L S X Y

R


=

 −

 

()
1

() ()

empirical risk is

1
denoted as: = ((),), where is the error or loss function

associated with . The generalization gap is defined as:

Assume [0,1], we have that

N

L S i i
i

L S L S

R J L x y J
N

L G G R R

J   − 

  +

0 with probability at least 1 :

1ln()
sup 2 () ,

2
where () is the Rademacher complexity of .

N

n

G L
N

L L

R

R

3.4.2. Inductive Bias

Prior knowledge is incorporated in the way we design the algorithm. This is

related to inductive bias. Broadly and informally, there are four categories

involving the prior knowledge [Luxburg and Schölkopf (2008)]:

1. The formalization of the data space X, e.g., by its topology. Commonly, this

is done by using a distance or a similarity function which tells us how

“similar” different input values in X are.

2. The loss function J. This function encodes what the “goal” of learning
should be, e.g., we can weight errors on individual data points more

heavily than on other data points.

3. Assumptions on the underlying probability distributions, i.e., when we did

not make any assumption, no matter what probability distribution

generated our data, the generalization bounds would apply.

4. Any deliberate hypothesis set construction in H, i.e., we encode our

assumptions on how a useful a classifier might look.

Briefly speaking, the inductive bias of a learning algorithm is the set of

assumptions that the learning algorithm A uses to predict outputs for a given

input that it has not yet encountered. Formally defined, the inductive bias of

learning algorithm A is “any minimal set of assertions B such that for any target

concept C and corresponding training data DC” [Mitchell (1997)] that the following

formula holds:

: () (,)
n n n
x X B x xD DA   

C C
├ (3.4.2-1)

86 Chapter 3. Theoretical Background

Where C the target concept, DC set of training examples, xi is i-th instance of input

set X, and A(xi,DC) the classification assigned to xi by A after training on set DC is.

Consider following notations:

yi:
P:
Q:
L:
H:
ℍ: ΔQ(H): ΔP(h):

i-th instance of output space Y

Probability distribution on X × Y

Distribution on P

Loss function that maps Y × Y → ℝ

Hypothesis space which is a set of function h: X → Y

Family of hypothesis space where H ∈ ℍ

Loss of hypothesis space H on Q

Loss of function h on distribution P

The loss function, also sometimes called the cost function, is the error between

the actual and predicted output. For a regression problem, there are several

functions that can be chosen such as mean squared error, average absolute

deviation, or mean difference. For a classification problem, it is more common to

choose loss functions that map an output probability between 0 and 1, such as

cross-entropy error or hinge loss [Rosasco et al. (2003)]. The goal of bias learning

is to find the hypothesis space H ∈ ℍ that minimizes ΔQ(H):

() inf () ()

inf ((),) (,) ()()

Q PP h H

P X YQ h H

H h dQ P

L h x y dP x y dQ PH





  

=


 

(3.4.2-2)

Typically, minimizing ΔQ(H) cannot be done directly, therefore sampling n times

from P according to Q is needed to yield: P1,…,Pn. Furthermore, we sample m times

from X × Y according to each Pi to yield the pairs: {(xi
1,yi

1),…,(xi
m,yi

m)}. In the sequel,

an (n,m)-sample is denoted by z and written as a matrix in Eq. (3.4.2-3). In order to

choose a hypothesis space H ∈ ℍ, one needs to minimize the empirical loss on z Δz(H) as in Eq. (3.4.2-4).

11 11 1 1 1

1 1

(,) (,)

(,) (,)

m m

n n nm nm n

x y x y z

x y x y z

 
 

 =  
 
 

z

(3.4.2-3)

1

1
() inf ()

i

n

z zh
i

h
n 

=

  
H

H
(3.4.2-4)

The bias induced learning algorithm Â is then defined as [Baxter (2000)]:

(,)

0, 0

ˆ : ()
n m

n m

A X Y
 

 →
(3.4.2-5)

Which reads: the map that takes (n,m)-samples from the distribution X × Y as

input to the hypothesis space H ∈ ℍ as the output.

87 Chapter 3. Theoretical Background

3.4.3. Neural Network

In neuroscience, a neural network is part of a biological nervous systems that

forms a connection which “fires” when it gets a stimulus [Saladin (2016)], whereas

in computational neuroscience, this natural phenomenon is imitated to model

the biological network for which the mathematical model is often referred to

artificial neural network (ANN) [Haykin (2009)]. In many models, neurons are

arranged in layers one behind the other, also called single-layer perceptron

(SLP). The first artificial neuron was introduced by [McCulloch and Pitts (1943)]

as a logical threshold value element with several inputs and a single output. It

took a Boolean variable, and thus can assume the states true and false and “fire”
when the sum of the input signals exceeded a threshold value. [McCulloch and

Pitts (1943)] showed that any simple propositional function (AND, OR, NOT) can

be described by a combination of several such neurons as depicted in Fig. 3.4.3-1.

Fig. 3.4.3-1. Depiction of a). biological neuron and its mathematical modelling as b). artificial neuron

according to McCulloch and Pitts [Reed (2009)].

Until today, the fundamental assumption of learning rule relies on the Hebbian

postulate [Hebb (1949)] which is based on the fact that the activation and

inhibition of a synapse can be calculated as the product of pre- and postsynaptic

activity. There is neuroscientific evidence that long-term potentiation and spike-

timing dependent plasticity (STDP) is the biological pendant to Hebb's postulate.

In the SLP, there is only a single layer of artificial neurons, which also represents

the output vector. Each neuron is represented by a neuron function and receives

the entire input vector xn as a parameter. The binary output value of the

perceptron is learned by adjusting the weights θn and bias b of each neuron:

1 if: 0
Output

0 otherwise

n n
n

x b  + = 




(3.4.3-1)

Once the weights have been learned, a perceptron is also able to classify input

vectors that differ slightly from the vector originally learned. This is precisely

what makes the perceptron capable of classification, from which it owes its

name. SLPs can be attached together to create a multilayer perceptron (MLP)

which represents information flows from the input layer to the output layer via

multiple layers. In the case where the information flows in one direction, the

network is called a feedforward network as depicted Fig. 3.4.3-2a-b.

88 Chapter 3. Theoretical Background

Fig. 3.4.3-2: Feedforward neural network in form of a). simple neural network or SLP and b). MLP,

which is an example of a deep neural network.

Training neural network will involve loss function minimization. As mentioned

in Section 3.3.1, minimization is just another optimization problem. The output zm

in layer m can be calculated from the input xn and weight θn at node n in layer m-

1, thus Eq. (3.4.3-1) can be rewritten as:

()m n n n
n

z x b y
 

=   +  
 


(3.4.3-2)

Where φ is the activation function to be selected. This is typically either as

sigmoid function, a hyperbolical tangent (tanh), or a rectified linear unit (ReLU).

Per Def. 3.3.1-1, the optimization problem of loss function J can be simplified as

Eq. 3.4.3-3 and with the chain rule, the relationship between loss function J and

neural weight θ can be rewritten as Eq. 3.4.3-4.

[0,1]
min ()

mn
J




(3.4.3-3)

()

()
m n n n

mn m n mn n n mn

z y y yJ J J

z y y y

     
= =

      

(3.4.3-4)

Since Eq. (3.4.3-4) involves the chain rule, we can imagine implementing this in

multiple layers and therefore increasing the calculation steps each time we add a

layer in the neural network structure. Since the loss is defined as the difference

between the output and the input at the preceding layer, such an operation is

therefore called backpropagation. There are many variants of how to do

backpropagation, but for brevity, only the simplest form without additional

algorithmic parameters is given. Concretely, the simplest loop to perform a

weight update at step i with gradient descent is defined as:

1 1i i i

mn mn mn mn

mn

J− − 
 =  +  =  − 



(3.4.3-5)

The algorithmic procedure of Eq. (3.4.3-5) is given in Algorithm 3.4.3-1.

89 Chapter 3. Theoretical Background

Algorithm 3.4.3-1: Gradient Update Procedure

0

1

1

1

1

Input: learning rate

Setup initial values:

Calculate ()

Until termination condition is reached:

Calculate loss ()

If () () :

() ()

mn mn

mn

i i

mn mn

mn
i

mn mn

i i

mn mn

i

mn mn

J

J

J

J J

J J

+

+

+

+

 −

 



 =  − 


  

  

  

If the size of the input layer is small (i.e., less than 1000 nodes), the weights of the

network can be easily adjusted during the training. However, as the size of the

input layer grows, the number of weights becomes large, and the training

becomes unbearable. For this reason, the convolutional neural network (CNN),

sometimes also called ConvNet was introduced in the computer science

community. It turns out that CNN has been proven to be an extremely effective

tool in the field of computer vision since it has less network weights to be trained

and this approach became a foundation of modern computer vision.

A CNN consists of multiple successively increasing refined data filters – the

layers of a convolutional filter. Within the context of this analogy, the input data

to a CNN, for instance a single black and white image can represented as a 3D

tensor of size: height ×width × channels of pixel values ranging from 0 to 255. The

transformations performed by each layer are parametrized by its neural weights

and then, the loss is calculated. There are two types of layers that are normally

used in CNN core architecture: the convolutional layer and the pooling layer. The

core CNN is typically attached to the fully connected (FC) layer. The

convolutional layer performs a convolutional operation to the input tensor that it

receives from previous layer for feature extraction. The filter performs the

process of feature extraction by sliding over the input data by several pixels

which is also assigned and called the stride as depicted in Fig. 3.4.3-3.

Fig. 3.4.3-3: Convolution operation in CNN using stride s = 2 and zero-padding

CNN would theoretically accept an arbitrarily sized input, but it is normally used

for data with a fixed input size. In reality there is no such thing as infinite space,

i.e., we are practically limited to the current computational capacity. Thus,

employing a CNN for data with variable length such as a time series (such as

90 Chapter 3. Theoretical Background

weather forecast, stock market, speech signal, seismic/volcanic activity) and

long-dependency input (such as long sentences, handwriting recognition, or

language translation) will pose a computational problem for CNN. For this

reason, a recurrent neural network (RNN) is developed. As the name says, an RNN

is a neural network with recurrent connections, made up of interconnected

neurons in which there is at least one recurring input cycle within the network.

There are 3 most common variants in the RNN family: the original (referred to as

vanilla) RNN, long short-term memory (LSTM), and gated recurrent unit (GRU).

Like a feedforward network, the units are connected by synapses and the neural

output is a nonlinear combination of its inputs. The differences between these

three RNNs are the basic operation within its cell. Vanilla RNN has the basic

recurrent operation: at time t, the input at time t Xt and pre-current input at time

t-1 Xt-1 are added together to calculate the output at time t.

When training such a network, the SGD method is often used. A deep neural

network implementation will involve a very long chain of training, i.e., after a long

backpropagation chain, the gradient starts to vanish. The LSTM method solves

this problem by using three types of gates for: an input gate, a remember-forget

gate and an output gate to enable a short-term memory that lasts for a long time.

The operations within LSTM cells with the input at time t Xt, bias b, hidden state h,

cell state c, weights θ and activation function φ are:

Forget gate:

Input gate:

Output gate:

Cell state:

Hidden state:

1

1

1

1 1

ˆ()

ˆ()

ˆ()

ˆ()

()

t F t F t F

t I t I t I

t O t O t O

t t t t c t c t c

t t t

f X h b

i X h b

o X h b

c F c i X h b

h o c

−

−

−

− −

=   +  +
=   +  +
=   +  +
= +   +  +
= 

Instead of a single neural function, the LSTM module consists of the

aforementioned gates. Briefly speaking, the input gate controls the extent to

which a new value flows into the cell, the forget gate controls the extent to which

a value remains in the cell or is forgotten and the output gate the extent to which

it is in which the value in the cell is used to calculate the next module in the chain.

A Gated Recurrent Unit (GRU) network is a variant of LSTMs introduced in 2014

and it has comparable performance to that of LSTMs for the prediction of time

series. The main difference is the number of parameters within the recurrent

cells: the cell is only associated with a hidden state (no more cell state), while the

input and forget gates of the cells are merged to become “update gate z” and the
output gate is replaced by a “reset gate r”. The GRU cells operations are:

Update gate:

Reset gate:

Hidden state:

1

1

1

ˆ()

ˆ()

ˆ(1) (())

t z t z t z

t r t r t r

t t h t h t t h

z X h b

r X h b

h z X r h b

−

−

−

=   +  +
=   +  +
= −   +  +

91 Chapter 3. Theoretical Background

3.4.4. Hyperparameter Tuning

A hyperparameter is a parameter that is used to control the training algorithm.

Model M is constructed by a learning algorithm A using the training set

Dtraining(xi,yi), where the learning algorithm is parameterized by a set of

hyperparameters ϕ, i.e., M = A(Dtraining(xi,yi); ϕ). The formalized hyperparameter

tuning problem is defined as [Claesen and De Moor (2015)]:

test training
* argmin (; (;))J D AD


 =  (3.4.4-1)

Where ϕ* is the optimal hyperparameter, J is the selected cost function, and Dtest

the test set. For neural network training, the most common hyperparameters are

learning rate, number of training epochs, hidden layers & hidden units and types

of activation function. A list of common activation functions for a Hadamard

product z of transposed weights θT and input X are given in Table 3.4.4-1.

Table 3.4.4-1: Commonly used activation functions with simplified graphical representation

During backpropagation, the weights are adjusted until the error is minimized.

The input data is generally divided into training sample groups called batches

and reshuffled. A complete cycle of all input data after several reshuffling is

referred to as an epoch. When applying the SGD during the training, it is likely

that it will be slowed down in one of the local minima, especially for non-convex

objective function. [Sutskever et al. (2013)] tackled this by adding momentum γ

and it was further developed [Botev et al. (2017)] by adapting Nesterov

accelerated gradient (NAG) to escape the local minima trap:

Activation
Function

Equation 1D-Graph

Signum
(sgn)

1, 0

() () 0, 0

1, 0

T

z

X z z

z

− 


  =  = =
 

Linear () ()TX z z  =  =

Sigmoid
(sigm)

1
() ()

1 exp()
TX z

z
  =  =

+ −

Hyperbolic
tangent

(tanh)

exp() exp()
() ()

exp() exp()
T z z
X z

z z

− −
  =  =

+ −

Linear Rectifier
(ReLu)

() () max(0,)TX z z  =  =

92 Chapter 3. Theoretical Background

1 1

Momentum NAG

1

()

Update rule:

i i i

i i

v v J v

v

− −

−

=  −   − 

   +

(3.4.4-1)

Where vi is the gradient update velocity at increment i and η is the learning rate.

Another popular gradient descent is called Adam [Kingma and Ba (2015)], its

variant RMSProp [Hinton et al. (2014)], Adagrad [Duchi et al. (2011)], and Adadelta

[Zeiler et al. (2015)]. The difference between the gradient descent flavors is:

• Adagrad adapts the learning rate to the parameters, i.e., it has a low

learning rate for connection weights that are associated with frequent

features and a higher learning rate for connection weights that are

associated with infrequent features.

• Adadelta is an Adagrad extension that seeks to reduce its “monotonically
decreasing learning rate. […] Adadelta restricts the window of accumulated
past gradients to a fixed size” [Zeiler et al. (2015)]. Another alternative

denomination to Adadelta is RMSprop.

• Adaptive Moment Estimation (Adam) is another method that computes

adaptive learning rates for each parameter. Like Adadelta, Adam also

“stores an exponentially decaying average of past squared gradients, and
additionally it keeps an exponentially decaying average of past gradients
similar to momentum.” [Ruder (2016)].

The formal definition of different SGD flavors is summarized in Table 3.4.4-2. The ε-factor (typically small at 10-8) is added to the flavors to avoid division by 0.

Table 3.4.4-2: Summary of adaptive SGD. In Adagrad, Gt,ii is a diagonal matrix where each diagonal

element i,i is the square sum of the gradients up to time step t, whereas in RMSProp and Adadelta,

E signifies the running average of the gradient. In Adam, vt is the exponentially decaying average

of past squared gradients, mt is the exponentially decaying average of past gradients, and β1, β2 are

the bias factor of the first and second moment of estimates, respectively.

SGD Flavor Formal Definition

Adagrad 1, 1, ,

,

()
t i t i t i

t ii

J
G

+ +


 =  −  

+ 

Adadelta
(RMSProp)

1

1

()
[| () | ²]

[²] [²] (1) ²

t t t

t

t t t

J
E J

E E

+

−


 =  −  

  + 

 =   + −  

Adam

1

1 1 1 2 1 2

1 2

(1) () (1) | () | ²
,

1 1

t t t

t

t t t t

t tt t

m
v

m J v J
m v

+

− −


 =  −

+ 

 + −     + −   
= =

−  − 

93 Chapter 3. Theoretical Background

3.4.5. Regularization

To overcome the overfitting problem during training, a regularization technique

is introduced. It is the process of regularizing the parameters that constrains,

regularizes, or shrinks the coefficient estimates towards zero to prevent the

algorithm from shaping an overly complex model. There are two categories of

regularization: L1-Norm (sometimes called Lasso Regularization) and L2-Norm

(also called Ridge Regression). In L1-Norm, the sum of the absolute values of each

element in the weight tensor is summed. In short, in L1, we estimate the median of

the distribution while in L2, we estimate the distribution mean instead. Table

3.4.5-1 summarizes the regularized cost function J expressed in mean-squared

error (MSE) and cross-entropy error (CEE).

Table 3.4.5-1: L1 and L2-Norm for both MSE and CEE cost function input x and true output y, where

θ is the weight parameter, hθ is the hypothesis function w.r.t θ, i.e., the predicted output, ϑ is the

regularization factor, j is the weights index within sample i of a total of N-samples taken from the

underlying distribution D(x,y).

Another regularization methodology is called dropout which was invented by

[Srivastava et al. (2014)]. When training the network, between 25% – 50% of the

neurons in each layer of the network are randomly switched off to prevent the

neighboring neurons from "co-approximating" each other too closely. A neural

network of n units can be viewed as a collection of 2n possible thinned networks.

An example of dropped out network is depicted in Fig. 3.4.5-1.

Fig. 3.4.5-1: a). A standard neural net with 2 hidden layers. b). An example of a thinned net produced

by applying dropout to the network on the left [Srivastava et al. (2014), Wang et al. (2018).

Norm Regularized Cost Function

L1

MSE
1 0

CEE
1 0

1
() (())²

1
() log(()) (1)log(1 ())

N m

i i j
i j

N m

i i i i j
i j

J y h x
N

J y h x y h x
N


= =

 
= =

 = − +  

 
 = − + − − +   

 

 

 

L2

2

MSE
1 0

2

CEE
1 0

1
() (())²

1
() log(()) (1)log(1 ())

N m

i i j
i j

N m

i i i i j
i j

J y h x
N

J y h x y h x
N


= =

 
= =

 = − +  

 
 = − + − − +   

 

 

 

94 Chapter 3. Theoretical Background

3.5. Features Learning and Invariant Representation

Consider the following definition from an example of autonomous driving

perception [Pendleton et al. (2017)]: “Environment perception is a fundamental
function to enable autonomous vehicles, which provides the vehicle with crucial
information on the driving environment, including the free drivable areas and
surrounding obstacles’ locations, velocities, and even predictions of their future
states […]”. We can adapt this for SHM in an analogous way: Perception in health

monitoring is a fundamental function to enable the full functionality of

autonomous damage evaluation, which provides the SHM system with crucial

information on the changes in the sensory input such as change in amplitude,

frequency, or phase-shift.

Further, consider the human hearing process [Stöver and Diensthuber (2011)]

which consists of two parts: 1). Conversion of mechanical (audio) waves that

travel through the concha, malleus and cochlea into electrical stimulation by

stereocilia and 2). Information processing that is carried by a neurotransmitter

through auditory nerves [Petralia and Wenthold (2009)] into auditory cortex

located in the temporal lobe of human brain. Part 1 is analogous to the conversion

of an analog Lamb wave signal into an electrical signal by a piezoelectric

transducer (PZT) thanks to the piezoelectric effect. Part 2 is analogous to SHM

signal processing to extract information from the electrical signal to have a

meaningful interpretation.

The postulate of [Hebb (1949)] states that the connectivity between two neurons

is determined by how strong they are linked to each other, i.e., the connectivity

between two neurons increases if they are simultaneously activated and

decreases otherwise [Wallisch et al. (2014)]. Practically, if the auditory cortex is

fed with the same audio signal over time, at some point the brain would

automatically recognize it. In this process, human brain is thought to create

invariant representation on recognizing objects from different timeframe and

locations [Quiroga et al. (2005)]. To help understand what invariant

representation means, consider following lemmata:

Lemma 3.5-1. The affine transformation of multivariable function composition O

(trivial proof)

  →

 →
1

1 1

Let a set , where , be defined as | : and (,...,)

affine spaces. A composition is defined as: : . Let (, ,) be

the hyperspaces of the affine spaces (,...,), (,...,

k k k k

k

k k k

k

F k F f f X X

O O F F F X Y Z

X X Y Y


→ →

1

() () () () () ()

1 1 1

), and (,...,) that

contain point sets (,...,),(,...,), and (,...,) where . Let

(,) be a set of linear maps, and (:), (:) be affine

transformations. A m

k k

k k k k k k

i i i

Z Z

x x y y z z i

U V U X Y V Y Z

()

→  →
− = − 

→

ap : is said to be an affine map if :

such that () () () , in (,). Then, the composition

: : is an affine transformation with tangent map .

U X Y V Y Z

V y z f y f z y z Y Z

O V U X Y V U

95 Chapter 3. Theoretical Background

Lemma 3.5-2. The cumulative distribution function (CDF) as the estimate of

invariant for affine transformation. [Liao et al. (2013)]

Assume an observation , where is a set of all possible observations.

Furthermore, we consider transformation , where is 2D affine groups

that consists of all possible tranformations , such

X X

G G

T




t

x

g

 

 as translation, resizing, etc.

Assume a set of smallest atomic representations of observation as where

. For the set | 1,..., , the distribution of , is invariant and

unique to each

i

t i t i
i g t T x g =

x 
 

()σ
1

 observation. The empirical distribution of the inner products

1
, is used as the signature: () , , where is the

typical sigmoid function and is the resolution parameter fo

i

t i n t i
t

x g x x g n
T =



 = + 




T

  

r each observation.

Since each observation has its own characteristic empirical , it also shows

that these signatures could be used to discriminate between them.

x 

Lemma 3.5-3. Invariant latent. [Feige (2019)]

 θ

y

y

y y



=

λ

λ

λ

()

()

()

Let consider class label that can be associated with the phenomenon in

Eq. 3.2-1. The full set of class -labeled data | () will be denoted as

. The invariant latent of lab

n

n

n

n n

y

h

x h x

D r



y

N

 
 

=

 =   
λ()

() ~(\{ })
1

el is thus defined as:

1
() ()

where is the number of sampled observations.

n

y
n nh

N
i

y x D x
i

r f x f x
N

The importance of these above-mentioned lemmas is following:

1. Any (non)-dispersive acoustic wave signal (including body waves such as

a P- and SV-wave and/or a surface wave such as Lamb-, Rayleigh wave,

and SH-wave) can be regarded as a decomposable multivariable function

of multiple polynomial functions and there exists an affine function that

transforms the space of signal features to affine spaces of signal features,

2. the transformation of each atomic representation of wave is invariant –

these has been used e.g., in wavelet transformation, and

3. in a more high-level waveform composition such as a longer time-series,

the invariant latent can be explicitly calculated to provide the information

needed to learn which wave packet within the time-series from all

possible damage classes have in common – e.g., the first and second wave

packet for similar damage sizes are all similar, i.e., having a cosine

similarity 1.

In March 2019, the innovator club at Merck proposed these research questions in

the brain hack challenge that they called The Future of AI [Merck (2019)]. In one

of the challenges, they were looking for a formalization of a cortical algorithm, a

mechanism which might be able to imitate the pattern recognition process that is

believed to be taking place in the grid neuron, which is in the mammal neocortex.

In one of their core problems statements, two assumptions are made:

96 Chapter 3. Theoretical Background

1. “Hierarchical structure: Entities are hierarchically structured, which
means that an entity E is either fundamental (i.e., it cannot be broken
down any further) or it is composed of other entities E1, E2, ..., Ei such that
every perception p of E is associated with a set of perceptions p1, p2, ..., pi.”

2. “Entity conservation over time: Subsequent perceptions in time are
(usually) generated by the same set of entities.”

For the hierarchical structure, entities are subdivided into smaller features, and

an analogy for this assumption would be looking at one car which can be

decomposed into a sub-structure such as a wheel, door, light, windshield, etc. The

same analogy for human faces can be applied: nose, eyes, ears, etc. These sub-

features are in turn can be decomposed into smaller shapes such as the edges and

circles. The idea is depicted in Fig. 3.5-1.

Fig. 3.5-1: Structured hierarchical representations [Lee et al. (2011)]

For the second assumption (conserved entity over time), ideally not only the full-

length signal but also the different observation perspective must be considered.

An analogy for this assumption would be looking at a particular car, but it can be

looked from different angles, e.g., from the front, left, back, etc. – see Fig. 3.5-2 to

have an easy way to imagine this. But at the end, this car represents exactly only

a single entity.

Fig. 3.5-2: Representation of entity conservation over time [Ewald et al. (2022)]

The above-mentioned assumptions are taken as an inspiration to model different

various sensing perceptions: a guided wave signal from different sensing

locations can be represented as smaller subset of features (e.g., single wave

packets), or it could also be represented as holistic datapoints encompassing the

conservation over time. This will be later discussed in chapter 6.

Within this context, we must assume that each observation x ∈ X should

correspond to at least an element y ∈ Y. The relational mapping between domains

X and Y can at least describe in three characteristics: surjective, injective, and

bijective. The formal definition is given in Lemma 3.5.1-4.

97 Chapter 3. Theoretical Background

Lemma 3.5.1-4. The bijective relation maps an input space X into output sets Y

(trivial proof)

1 1

1 1

Consider : , where , , then is if for

(,...,) [,...,] there exists at least one solution for each ,

i.e. : : [,...,] (,...,). Further, is said to be

k

k k

k k

f X Y X Y f

f x x y y x X y Y

y Y x X y y f x x f

→ 
=  

    =

surjective

i

1 1

(1) (2) (1) (2) (1) (2)

, if

for (,...,) [,...,] there exists at most one solution for each

, . . , : () () . Finally, is said to be

 if is both and

k k
f x x y y x X

y Y ie x x X f x f x x x f

f

= 

   =  =

njective

bijective surjective .injective

Depending on the case, be it either a discriminative or a generative problem, any

of these three characteristics can be modelled in machine learning. When there

is a one-to-one relation between both domains, then this relation is called

bijective. Assuming that the relation between each parameter combination in the

formal diagnostic and its corresponding label explained means that changing

any parameters in the setup would cause the phenomenon λ to change. In other

words, each λ is only unique to each parameter combination. For example, the

change of the material, dimension, boundary conditions, sensor geometry, etc.

and/or combination of these parameters, would cause λ to behave differently, so

that the observation set X would also change.

Literatures

Achenbach JD. Wave Propagation in Elastic Solids. North-Holland American Elsevier, New York
(1973).

Apostol T. Mathematical Analysis (2nd Ed.). Addison-Wesley, Boston (1974).

Balcan MF. Rademacher Complexity. In Lecture series CS 8803: Machine Learning Theory,
Carnegie Mellon University (2011)

Bartle RG, Sherbert DR. Introduction to Real Analysis (4th Ed.). John Wiley & Sons, Inc., Hoboken
(2011).

Baxter J. A Model of Inductive Bias Learning. J Artificial Intelligence Research. Vol. 12: 149-198
(2000).

Betz DC, Staszewski WJ, Thursby G, Culshaw B. Structural Damage Identification Using
Multifunctional Bragg Grating Sensors: II. Damage Detection Results and Analysis. J Smart
Materials and Structures. Vol. 15: 1313-1322 (2006).

Boashash B. Time-Frequency Signal Analysis and Processing – A Comprehensive Reference (2nd Ed.).
Elsevier, Amsterdam / Boston / Heidelberg / London / New York (2016).

Boller C, Staszweski WJ, Tomlinson GR. Health Monitoring of Aerospace Structures: Smart Sensor
Technologies and Signal Processing. John Wiley & Sons Ltd, West Sussex (2004).

Botev A, Lever G, Barber D. Nesterov’s Accelerated Gradient and Momentum as Approximations to
Regularised Update Descent. Proc. Intl Joint Conf on Neural Networks (IJCNN), Anchorage (2017).

Budoya D, Castro B, Campeiro L, Silveira R, Freitas E, Baptista F. Analysis of Piezoelectric
Diaphragms in Impedance-Based Damage Detection in Large Structures. Proc. MDPI. Vol.2: 131
(2018)

Cerniglia D, Pantano A, Montinaro N. 3D Simulations and Experiments of Guided Wave
Propagation in Adhesively Bonded Multi-Layered Structures. J NDT & E Intl. Vol. 43(6): 527-535
(2010).

Charlier B. The Greedy Algorithms Class: Formalization, Synthesis and Generalization. Lectures
Notes. UCL Belgium (1995).

Claesen M, De Moor B. Hyperparameter Search in Machine Learning. Proc. The XI Metaheuristics
International Conference, Agadir (2015).

98 Chapter 3. Theoretical Background

Clayton S. Topic 10: Rademacher Complexity. In Lecture series EECS 598: Lecture on Statistical
Learning Theory. University of Michigan (2014).

Debnath L. Wavelet Transforms and Their Applications. Birkhäuser, Boston (2002).

Devroye L, Györfi L, Lugosi G. A Probabilistic Theory of Pattern Recognition. Springer, New York
(1996).

Döring D. Luftgekoppelter Ultraschall und Geführte Wellen für die Anwendung in der
Zerstörungsfreien Werkstoffprüfung. PhD Dissertation. Universität Stuttgart (2011).

Duchi J, Hazan E, Singer Y. Adaptive Subgradient Methods for Online Learningand Stochastic
Optimization. J Machine Learning Research. Vol. 12: 2121-2159 (2011).

Duczek S, Joulaian M, Düster A, Gabbert U. Numerical Analysis of Lamb Waves Using the Finite
and Spectral Cell Methods. Intl J Numerical Methods in Engineering. Vol. 99(1): 26-53 (2014).

Echevarría LC, Santiago OL, Velho HFC, Neto AJS. Fault Diagnosis Inverse Problems: Solution with
Metaheuristics. Springer Intl Publishing, Cham (2019).

English TM. Optimization is Easy and Learning is Hard in the Typical Function. Proc. 2000
Congress on Evolutionary Computation (CEC00), La Jolla (2000).

Ewald V, Groves RM, Benedictus R. Integrative Approach for Transducer Positioning Optimization
for Ultrasonic Structural Health Monitoring for the Detection of Deterministic and Probabilistic
Damage Location. Intl J Structural Health Monitoring. DOI: 10.1177/1475921720933172 (2020).

Ewald V, Venkat RS, Asokkumar A, Benedictus R, Boller C, Groves RM. Perception Modelling by
Invariant Representation of Deep Learning for Automated Structural Diagnostic in Aircraft
Maintenance: A Study Case using DeepSHM. J Mechanical System and Signal Processing. Vol 165:
108153 (2022).

Feige I. Invariant-Equivariant Representation Learning for Multi-Class Data. 36th Intl Conf on
Machine Learning (ICML), Long Beach, 1-5 (2019).

Fraga-Gonzalez LF, Aguilara RQF, Gonzalez AG, Ante GS. Adaptive Simulated Annealing for
Tuning PID Controllers. J AI Communications, Vol. 30(5): 347-362 (2017).

Giurgiutiu V. Structural Health Monitoring with Piezoelectric Wafer Active Sensor. Academic Press-
Elsevier, San Diego (2014).

Gopalakrishnan S, Chakraborty A, Mahapatra DR. Spectral Finite Element Method – Wave
Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures. Springer-
Verlag, London (2008).

Goldberg PW, Jerrum MR. Bounding the Vapnik-Chervonenkis Dimension of Concept Classes
Parameterized by Real Numbers. J Machine Learning. Vol. 18(2-3): 131-148 (1995).

Gresil M, Giurgiutiu V, Shen B, Poddar B. Guidelines for Using the Finite Element Method for
Modeling Guided Lamb Wave Propagation in SHM Processes. Proc. 6th European Workshop on
Structural Health Monitoring (EWSHM), Dresden (2012).

Güemes JA, Ostachowicz W. New Trends in Structural Health Monitoring. Springer Verlag, Wien /
Heidelberg / New York / Dordrecht / London (2013).

Guy P, Jayet Y, Goujon L. Guided Wave Interaction with Complex Delaminations: Application to
Damage Detection in Composite Structures. Proc. NDE for Health Monitoring and Diagnostics, San
Diego (2003).

Harley J, Zoubi A, Matthews VJ, Adams DO. Lamb Waves Mode Decomposition Using the Cross-
Wigner-Ville Distribution. Intl Workshop on Structural Health Monitoring, Stanford (2015).

Haykin S. Neural Networks and Learning Machines (3rd Ed.). Pearson, New York / Boston / San
Francisco (2009).

Hebb DO. The Organization of Behavior: A Neuropsychological Theory. John Wiley and Sons, New
York (1949)

Hlawatsch F. Time-Frequency Analysis and Synthesis of Linear Signal Spaces. Springer, Boston
(1998).

Hinton G, Srivastava N, Swersky S. Lecture 6a: Overview of Mini-Batch Gradient Descent. In
Lecture: Neural Networks for Machine Learning (2016). Available:
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf (Last online: FEB-2021)

Ho YC, Pepyne DL. Simple Explanation of the No-Free-Lunch Theorem and Its Implication. J
Optimization Theory and Applications: Vol. 115: 549-570 (2002).

Hoseini F, Shahbahrami A, Bayat P. AdaptAhead Optimization Algorithm for Learning Deep CNN
Applied to MRI Segmentation. J Digit Imaging. Vol. 32: 105-115 (2019).

Kasama H, Takemoto M, Ono K. Attenuation Measurement of Laser Excited S0-Lamb Wave by the
Wavelet Transform and Porosity Estimation in Superplastic Al-Mg Plate. Hihakai-Kensa Japanese
J Nondestructive Testing. Vol. 49(4): 269-276 (2000).

http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

99 Chapter 3. Theoretical Background

Kawaguchi K, Kaelbling LP, Bengio Y. Generalization in Deep Learning. Mathematics of Deep
Learning, Cambridge University Press, to appear. Preprint available as: MIT-CSAIL-TR-2018-014

Kehtarnavaz N. Digital Signal Processing System Design – LabVIEW-Based Hybrid Programming
(2nd Ed.). Elsevier, Amsterdam / Boston / Heidelberg / London / New York (2008).

Kennedy J, Eberhart R. Particle Swarm Optimization. Proc. Intl Conf on Neural Networks (ICNN),
Perth (1995).

Kingma DP, Ba JL. Adam: A Method for Stochastic Optimization. Proc. Intl Conf on Learning
Representations, San Diego (2015).

Konstantinidis G, Drinkwater BW, Wilcox PD. The Temperature Stability of Guided Wave
Structural Health Monitoring Systems. J Smart Materials and Structures. Vol. 15: 967-976 (2006).

Kramer O. Genetic Algorithm Essentials. In: Studies in Computational Intelligence. Springer
International Publishing, Cham, 2017.

Kuhn M, Johnson K. Applied Predictive Modeling (5th Ed.). Springer Science+Business Media, New
York (2016).

Lee H, Grosse R, Ranganath R, Ng AY. Unsupervised Learning of Hierarchical Representations with
Convolutional Deep Belief Network. Communications of the ACM. Vol. 54(10): 95-103 (2011).

Legendre S, Massicote D, Goyette J, Bose TK. Wavelet-transform-based Method of Analysis for
Lamb Wave Ultrasonic NDE Signals. IEEE Transactions on Instrumentation and Measurement.
Vol. 49(3): 524-530 (2000).

Li F, Meng Guang, Kageyama K, Ye L. Optimal Mother Wavelet Selection for Lamb Wave Analyses. J
Intelligent Material Systems and Structures. Vol. 20(10): 1147-1161 (2009).

Li J, Liu S. Mode Identification of Lamb Waves. Proc. 17th World Conf on Nondestructive Testing,
Shanghai (2008).

Liao Q, Leibo JZ, Poggio T. Learning Invariant Representations and Applications to Face
Verification. 27th Conf on Neural Information Processing System (NIPS), Lake Tahoe, 1-9 (2013).

Liu Z, Yu H, He C, Wu B. Delamination Detection in Composite Beams using Pure Lamb Mode
Generated by Air-Coupled Ultrasonic Transducer. J Intelligent Material System and Structures.
Vol. 25(5): 541-550 (2013.)

Luangvilai K. Attenuation of Ultrasonic Lamb Waves with Applications to Material
Characterization and Condition Monitoring. PhD Dissertation. Georgia Institute of Technology
(2007).

Luxburg U, Schölkopf B. Statistical Learning Theory: Models, Concepts, and Results. In: Handbook
of the History of Logic (Vol.: 10). Elsevier, Oxford / Amsterdam / Waltham (2011).

Malaeb RA, Mahfoud EN, Harb MS. Decomposition of Fundamental Lamb Wave Modes in Complex
Metal Structures Using COMSOL. Proc. COMSOL Conf, Lausanne (2018).

Marcos EM. Cracks Detection in Aluminium Plates by Ultrasounds using Lamb Waves. MSc Thesis.
AGH University Kraków (2011).

Martins SL, Ribeiro CC. Metaheuristics and Applications to Optimization Problems in
Telecommunications. In: Handbook of Optimization in Telecommunications. Springer, Boston
(2006).

Masserey B, Fromme P. On the Reflection of Coupled Rayleigh-like Waves at Surface Defects in
Plates. J Acoustical Society of America. Vol. 123(1): 88-98 (2008).

McCulloch W, Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics. Vol. 5: 113-133 (1943).

Merck: Future of AI Challenge. Available online https://app.ekipa.de/challenges/future-of-
ai/brief (Last online: FEB-2020).

Michaels JE, Michaels TE. Guided Wave Signal Processing and Image Fusion for In-Situ Damage
Localization in Plates. J Wave Motion. Vol. 44: 482-492 (2007).

Mishra S, Unnikrishnan L, Nayak SK, Mohanty S. Advances in Piezoelectric Polymer Composites for
Energy Harvesting Applications: A Systematic Review. Vol. 304(1): 1800463 (2018).

Mitchell T. Machine Learning. McGraw-Hill, Redmond & Ithaca (1997).

Mohri M, Rostamizadeh A, Talwakar A. Foundations of Machine Learning (2nd Ed.) MIT Press,
Cambridge & London (2012).

Moran S, Yehudayoff A. Sample Compression Schemes for VC Classes. J Communications of the
Association of Computing Machinery (ACM). Vol. 63(3): 1-21 (2016).

Moser F, Jacobs LJ, Qu J. Modeling Elastic Wave Propagation in Waveguides with the Finite
Element Method. J NDT & E Intl. Vol. 32(4): 225-234 (1999).

https://app.ekipa.de/challenges/future-of-ai/brief
https://app.ekipa.de/challenges/future-of-ai/brief

100 Chapter 3. Theoretical Background

Niethammer M, Eisenhardt C, Jacob LJ. Application of the Short Time Fourier Transform to
Interpret Ultrasonic Signals. AIP Conf Proc. Vol. 509: 703 (2000).

Nocedal J, Wright SJ. Numerical Optimization (2nd Ed.). Springer Science+Business Media, New
York (2006).

Ono K, Gallego A. Attenuation of Lamb Waves in CFRP Plates. J Acoustic Emission. Vol. 30: 109-123
(2012).

Ono K. Review on Structural Health Evaluation with Acoustic Emission. J MDPI Applied Sciences.
Vol. 8: 958 (2018).

Ostachowicz W, Kudela P, Krawczuk M, Zak A. Guided Waves in Structures for SHM: The Time-
Domain Spectral Element Method. John Wiley & Sons Ltd., West Sussex (2012).

Pahlavan PL. Wave Propagation in Thin-walled Composite Structures: Application to Structural
Health Monitoring. PhD Dissertation. Delft University of Technology (2012).

Pant S, Laliberte J, Martinez M. Structural Health Monitoring (SHM) of Composite Aerospace
Structures Using Lamb Waves. Proc. 19th Inlt Conf Composite Materials (ICCM), Montreal (2013).

Pendleton SD, Andersen H, Du X, Shen X, Meghjani M, Eng YH, Rus D, Ang MH. Perception,
Planning, Control, and Coordination for Autonomous Vehicles. MDPI J Machines. Vol. 5(1): 1-54
(2017).

Petralia RS, Wenthold RJ. Neurotransmitters in the Auditory System. Encyclopedia of
Neuroscience (2009).

Pohl J, Mook G. Laser-Vibrometric Analysis of Propagation and Interaction of Lamb Waves in
CFRP-Plates. CEAS Aeronautical J. Vol. 4: 77-85 (2013).

Pramila T, Shukla R, Kishore NN, Raghuram V. A Study of the Spectral Behavior of Laser-Generated
Lamb Waves using Wavelet Transforms. Proc. 4th Intl Conf on NDT, Chania (2007).

Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried. Invariant Visual Representation by Single
Neurons in the Human Brain. Nature Vol. 435: 1102-1107 (2005).

Raza MS, Qamar U. A Hybrid Feature Selection Approach Based on Heuristic and Exhaustive
Algorithms using Rough Set Theory. ACM Conf on Internet of Thing and Cloud Computing (ICC
2016, Cambridge (2016).

Reed S. Chapter 32: Artificial Neural Network. In: Encyclopedia of Structural Health Monitoring.
John Wiley and Sons Ltd, West Sussex (2009).

Rizzo P, DiScalea FL. Feature Extraction for Defect Detection in Strands by Guided Ultrasonic
Waves. Intl J Structural Health Monitoring. Vol. 5(3): 297-308 (2006).

Rosasco L, De Vito E, Caponnetto A, Piana M, Verri A. Are Loss Functions All the Same? J Neural
Computation. Vol. 16: 1063-1076 (2003).

Rose JL. Ultrasonic Waves in Solid Media. Cambridge University Press, New York (1999).

Ruder S. An Overview of Gradient Descent Optimization Algorithms (2016). Available:
https://arxiv.org/abs/1609.04747 (Last online: FEB-2021).

Saladin K. Human Anatomy. McGraw-Hill Education Ltd, New York (2016)

Schmitt LM. Fundamental Study: Theory of Genetic Algorithms. J Theoretical Computer Science.
Vol. 259: 1-61 (2001).

Schmitt M, Schmidt K, Olfert S, Rautenberg J, Lindner G, Henning B, Reind LM. Detection of
Coatings within Liquid-Filled Tubes and Containers by Mode Conversion of Leaky Lamb Waves. J
Sensors and Sensor Systems. Vol. 2(1): 73-84 (2013).

Sethuraman J. Some Limit Theorems for Joint Distributions. The Indian J of Statistics: Series A. Vol.

23(4): 379-386 (1961).

Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. Proc. IEEE Intl Conf on Evolutionary
Computation Proceedings, Anchorage (1998).

Shin HJ, Song SJ. Observation of Lamb Wave Mode Conversion on an Aluminum Plate. Proc. 15th
World Conf for Non-Destructive Testing (WCNDT), Rome (2000).

Sörensen K, Sevaux M, Glover F. A History of Metaheuristics. In: Handbook of Heuristics. Springer,
Cham (2018).

Sörensen K, Glover F. Metaheuristics. In: Encyclopedia of Operations Research and Management
Science. Springer, Boston (2013).

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. J Machine Learning Research. Vol. 15: 1929-1958 (2014).

Stein O. What is Continuous Optimization? Lecture Notes Karlsruhe Inst of Technology (2016).
Available: http://kop.ior.kit.edu/downloads/continuous_optimization.pdf (Last online: DEC-
2020).

https://arxiv.org/abs/1609.04747
http://kop.ior.kit.edu/downloads/continuous_optimization.pdf

101 Chapter 3. Theoretical Background

Stöver T, Diensthuber M. Molecular Biology of Hearing. J GMS Current Topics in
Otorhinolaryngology - Head and Neck Surgery. Vol. 10: 1-15 (2011).

Su Z, Ye L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications.
Springer, Berlin / Heidelberg (2009).

Sutskever I, Martens J, Dahl G, Hinton G. On the Importance of Initialization and Momentum in
Deep Learning. Proc 30th Intl Conf on Machine Learning (ICML), Atlanta (2013).

Tian Z, Yu L. Lamb Wave Frequency–Wavenumber Analysis and Decomposition. J Intelligent
Material Systems and Structures. Vol. 25(9): 1107-1123 (2014).

Tian Z, Howden S, Ma Z, Xiao W, Yu L. Pulsed Laser-Scanning Laser Doppler Vibrometer (PL-SLDV)
Phased Arrays for Damage Detection in Aluminum Plates. J Mechanical Systems and Signal
Processing. Vol. 121: 158-170 (2019).

Valiant LG. A Theory of the Learnable. J Communications of the Association of Computing
Machinery (ACM). Vol. 27(11): 1134-1142 (1984).

Valiant LG. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a
Complex World. Basic Books Inc., New York (2013).

Vapnik V, Chervonenkis A. On the Uniform Convergence of Relative Frequencies of Events to Their
Probabilities. Theory of Probability and its Applications. Vol. 16(2): 264-280 (1971).

Wallisch P, Lusignan ME, Benayoun MD, Baker TI, Dickey AS, Hatsopoulus NG. Chapter 36 -
Neural Networks Part I: Unsupervised Learning. In MATLAB for Neuroscientists: An Introduction
to Scientific Computing in MATLAB (2nd Ed). Elsevier, London / Waltham / San Diego (2014).

Wang S, Wang X, Zhao P, Wen W, Kaeli D, Chin P, Lin X. Defensive Dropout for Hardening Deep
Neural Networks under Adversarial Attacks. Proc. Intl Conf on Computer-Aided Design (ICCAD)
San Diego (2018).

Wang X, Cai J, Zhou Z. Lamb Wave Signal Reconstruction Method for High-resolution Damage
Imaging. Chinese J of Aeronautics. Vol. 32(5): 1087-1099 (2019).

Wilcox P, Lowe M, Cawley P. Omnidirectional Guided Wave Inspection of Large Metallic Plate
Structures Using an EMAT Array. IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control. Vol. 52(4): 653-665 (2005).

Wolpert DH, Macready WG. No Free Lunch Theorems for Optimization. IEEE Transactions on
Evolutionary Computations. Vol. 1(1): 67-82 (1997).

Wolpert DH. A Mathematical Theory of Generalization: Part I. J Complex Systems. Vol. 4: 151-200
(1990).

Wolpert DH. Stacked Generalization. J Neural Networks. Vol. 5(2): 241-259 (1992).

Wriggers P. Nonlinear Finite Element Methods. Springer-Verlag, Berlin / Heidelberg (2008).

Xu B, Giurgiutiu V. Single Mode Tuning Effects on Lamb Wave Time Reversal with Piezoelectric
Wafer Active Sensors for Structural Health Monitoring. J Non-Destructive Evaluation. Vol. 26: 123-
134 (2007).

Zaritsky A, Sipper M. The Preservation of Favored Building Blocks in the Struggle for Fitness: The
Puzzle Algorithm. IEEE Transactions on Evolutionary Computation. Vol. 8(5): 443-455 (2004).

Zemmour AI. The Hilbert-Huang Transform for Damage Detection in Plate Structures. Master
Thesis. University of Maryland (2006).

Zeiler A. Adadelta: An Adaptive Learning Rate Method (2012). Available:
https://arxiv.org/abs/1212.5701 (Last online: JAN-2021)

Zhang Y, Wang S, Huang S, Zhao W. Mode Recognition of Lamb Wave Detecting Signals in Metal
Plate Using the Hilbert-Huang Transform Method. J Sensor Technology. Vol. 5(1): 7-14 (2015).

Zhao X, Gao H, Zhang G, Ayhan B, Yan F, Kwan C, Rose JL. Active Health Monitoring of an Aircraft
Wing with Embedded Piezoelectric Sensor/Actuator Network: I. Defect Detection, Localization and
Growth Monitoring. J Smart Materials and Structures. Vol. 16(4): 1208-1217 (2007).

Zhao Y, Li F, Cao P, Liu Y, Zhang J, Fu S, Zhang J, Hu N. Generation Mechanism of Nonlinear
Ultrasonic Lamb Waves in Thin Plates with Randomly Distributed Microcracks. J Ultrasonics. Vol.
79: 60-67 (2017).

Zienkiewicz OC, Taylor RL, Zhu JZ. Finite Element Method - Its Basis and Fundamentals (6th Ed.).
Elsevier Butterworth-Heinemann, Oxford / Burlington (2005).

Zoubi AB, Kim S, Adams DO, Matthews VJ. Lamb Wave Mode Decomposition Based on Cross-
Wigner-Ville Distribution and Its Application to Anomaly Imaging for Structural Health Monitoring.
Vol. 66(5): 984-997 (2019).

https://arxiv.org/abs/1212.5701

102 Chapter 3. Theoretical Background

103 Chapter 4. Deterministic Approach on Sensor Placement

4. Deterministic Approach Sensor Placement

This chapter partially contains the work that has been published as:

1. Ewald V, Groves RM, Benedictus R. Transducer Placement Option of Lamb

Wave SHM System for Hotspot Damage Monitoring. MDPI J Aerospace. Vol.

5: 39 (2018).

Recall the formulated high-level research question in section 2.3.4: in what way is

the incorporation of computational and artificial intelligence as a design tool for

automated diagnostics within predictive maintenance feasible? One of the sub-

problems to address this research question is the investigation of the design

complexity, particularly on sensor placement using deterministic and semi-

stochastic methods according to the purpose of its structural design. This

objective can be broken down into two approaches: deterministic and semi-

stochastic. Based on the literature review in Chapter 2, following two streams of

research in sensor positioning have been identified:

1. Transducer placement for detecting hotspot damage from predictable

locations based on fatigue analysis such as a rivet hole crack, and

2. Transducer placement for detecting stochastic damage locations that are

independent of fatigue analysis, such as hail impact or tool drop.

As a full description of both approaches would be very lengthy, in this chapter,

only the first approach will be described, i.e., when the consideration assumes a

known damage location due to the original design of the concerned aircraft sub-

structure. In particular, we must consider following aspects [Ewald (2015)]:

1. Crack growth law and critical crack size in a damage-tolerant aircraft sub-

structure.

2. Numerical simulation of Lamb wave propagation in a plate-like structure

to save experimental time.

3. Data processing that involves signal subtraction of damaged from

undamaged baseline structures.

Chapter 4 is organized in following way: Section 4.1 briefly reviews the crack

growth assumption within the damage tolerance framework, and in section 4.2,

the methodology to model Lamb waves in the Finite Element (FE) environment is

discussed. The simulated data processing methodology is given in sections 4.3

and 4.4, while the results and discussion from the applied methodologies are

given in Section 4.5. Finally, the conclusion of this chapter is given in Section 4.6.

4.1. Lamb Wave and Crack Growth in Damage Tolerance Structure

To understand deterministic sensor positioning for a predictable damage

location, firstly, it is important to understand the concept of damage tolerant

design. Recall that the definition of damage tolerance is “the ability of the structure

104 Chapter 4. Deterministic Approach on Sensor Placement

to sustain design limit loads in the presence of damage caused by fatigue, corrosion

and other sources until such damage is detected and repaired” [Harris et al. (2003)].

The important key elements in damage tolerant design are:

1. The assumption of initial damage existence,

2. Damage growth in the material due to structural loading, and

3. The critical damage size up to which the structure endures the loading

before catastrophic failure.

These three key elements are synchronous to the regions I, II, and III in a da/dN

curve [Pugno et al. (2006)], which describes crack propagation rate as a function

of stress intensity factor (SIF) range during fatigue cycle (ΔK), shown in Fig. 4.1-1.

Fig. 4.1-1: Typical da/dN curve. ΔKth is threshold stress intensity factor range, KIC is the critical

stress intensity factor in mode I crack propagation, C and m are Paris-Erdogan constants.

The assumption of initial damage existence falls in region I of Fig. 4.1-1, where the

crack growth is typically slow. This region can be covered by some advanced

NDT and material characterization techniques such as X-Ray tomography

[Schors et al. (2006)] or scanning electron microscopy (SEM) [Wang et al. (2005)].

After passing the threshold SIF range ΔKth, region II begins where the crack

propagation rate is stable, and crack growth normally follows the Paris-Erdogan

law [Pugno et al. (2003), Milella (2013)]/ In this region, the crack becomes much

larger and sometimes can be seen with naked eye [McMaster (2010)]. This is the

domain of interest for SHM and the majority of NDT methods. The critical crack

length ac is typically connected with the critical stress intensity factor KIC. After

transition between region II and III, the crack propagation rate becomes rapid

and unstable until final failure.

Lamb waves can interact with damage which has a size at least the half of its

wavelength [Gilchrist (1999), Wang and Su (2014)], and since the critical damage

tolerant size (which can be up to several hundred millimeters [Harris et al.

(2003)]) is generally larger than the wavelength (which is typically less than 100

mm), it is safe to assume that Lamb waves can also interact with the critical

105 Chapter 4. Deterministic Approach on Sensor Placement

damage. The SIF is generally higher in the area around the notch; thus, one can

expect that a fatigue crack will initiates around a notch. For example, the changes

in cabin pressure in an aircraft fuselage can be approximated by the internal

pressure in a thin-walled cylinder where the hoop stress is two times larger than

the axial stress [Richard and Sander (2008)]. Therefore, the crack orientation is

expected to be orthogonal to the direction of the hoop stress. By knowing the most

probable damage orientation and location and the critical damage size for a

certain geometry, two FE simulation scenarios of wave propagation can be

performed: 1). Lamb wave propagation in an undamaged structure as a baseline

and 2). Lamb wave propagation in a critically damaged structure.

4.2. Simulation of Lamb Wave Propagation with ABAQUS FE

The theoretical foundation of simulated Lamb wave has been given in Section

3.1.2. To reliably model an ultrasonic signal, the recommended number of mesh

elements is 4 elements per A0- or 8 per S0-wavelength [Ewald (2015)]. The method

for choosing the simulation parameters has been described in [Zienkiewicz et al.

(2005)]. An example screen capture of Lamb wave propagation in ABAQUS

simulation software is depicted in Fig. 4.2-1a–b, where a typical excitation signal

is given Fig. 4.2-1c, and its response is given in Fig. 4.2-1d. Their respective

frequency domain signals are given in Fig. 4.2.1e–f, respectively.

106 Chapter 4. Deterministic Approach on Sensor Placement

Fig. 4.2-1: Example of simulated Lamb wave propagation in ABAQUS FE for a). A0-mode and b). S0-

mode. The excitation signal and its responses captured in different sensing nodes (red and blue

lines) are depicted in c) and d), respectively. The frequency domain responses by using FFTs of c)

and d) are given in e) and f), respectively.

For this work, the test object is an aluminum plate with a dimension of 600 mm x

400 mm x 2 mm. The following parameters were chosen based on the study

conducted in the previous work [Ewald (2015)]: ABAQUS explicit, generic

aluminum properties (Young’s modulus of 70 GPa, Poisson ratio of 0.33, density of

2700 kg/m³), quadratic brick mesh (C3D20) with a global mesh size of 1 mm, single

node out-of-plane excitation with windowed 5 sine-cycle of central frequency of

250 kHz with 1N concentrated force, dynamic implicit step, no boundary

conditions imposed, time increment of 0.1 µs (i.e., the sampling frequency is 10

MHz), total time period of 500 µs and a single nodal output precision. The crack

can simply be modelled as an elliptical material discontinuity.

The specification of the computer where the simulation was run was: Intel Xeon

E5-1620 3.5 GHz (Quad-core 8-Threads), 32 GB DDR3-RAM, and NVidia NVS310M

Graphic card (GPU acceleration was not activated). The wave propagation image

can be later captured with automated script. The color vector of a single pixel is

normally represented as an RGB array and can be used to represent different

Lamb wave displacement amplitudes. The average displacement U is defined as:

2 2 2

x y z
U u u u= + + (4.2-1)

where ux, uy, and uz are the displacements in x, y, and z-directions, respectively.

Fig. 4.2-2 shows an example simulation of Lamb wave propagation 30 µs after

excitation. No displacement (U = 0 nm) is shown as a blue pixel, while a

displacement of 2.5 nm is shown in green, and a displacement of 5 nm is shown in

red. The values in-between such as 1.25 nm and 3.75 nm are shown in cyan and

yellow, respectively.

This colormap ‘rainbow’ is the default colormap in ABAQUS. Note that this
colormap is slightly different from the basic 3-bit RGB colormap depicted in Fig.

4.2-2 as it has more color transitions, i.e., there are smoother transitions between

blue and cyan, cyan and green, and so on.

107 Chapter 4. Deterministic Approach on Sensor Placement

Fig. 4.2.-2: Lamb wave propagation at 30 µs after excitation in an Al-7075-T6 plate with dimensions

of 200 mm x 200 mm x 1 mm (shown in ABAQUS GUI Viewer)

While this image processing procedure offers less displacement information as

all displacement values are translated into an RGB array, this alternative

procedure much faster, and more memory efficient rather than extracting data

directly from the ABAQUS ODB binary file.

4.3. Image Processing

The Lamb wave propagation at a certain moment in the ABAQUS Viewer can be

captured as an image. Fig. 4.3-2a-b shows Lamb wave propagation at t = 100 µs

and 125 µs in an undamaged Al-7075 plate with 3 rivet holes, respectively. These

are the baseline images. As can be seen from these figures, the wave reflection

from the rivet hole is minimal, thus only showing a minimal amount of wave

ripples. The scale of displacement magnitude is the same as depicted in Fig. 4.2-2.

Figure 4.3-2: Lamb wave propagation at a). t = 100 and b). 125 µs in uncracked Al 7075 Plate.

Fig. 4.3-3a-b show the wave propagation in the same plate but with a symmetric

crack (from tip-to-tip, including the hole diameter of 10 mm) of 28 mm length in

the middle of the plate (marked by a yellow rectangle). The images captured have

108 Chapter 4. Deterministic Approach on Sensor Placement

size of a 1210 x 807 pixels, so the resolution is 2 pixel/mm. These images are stored

as an array with a size of 1210 x 807 x 3, where each pixel has 3 arrays, each

containing a normalized floating value between 0 and 1 for each of the RGB

colors. A similar pattern of Lamb wave propagation can be observed if the crack

length differs by +/- 10%, as shown in Fig. 4.3-3c-d. In this case, the crack length is

30 mm instead of 28 mm. However, if the crack is much larger, a notable change

in the wave propagation pattern can be observed, as depicted in Fig. 4.3-3e-f. In

this case, the crack length is 60 mm.

Figure 4.3-3: Lamb wave propagation at a). t = 100 and b). 125 µs in an Al 7075 Plate with a 28 mm

crack. In a similar way, the wave propagation for an Al-7075 Plate with 30 mm and 60 mm cracks

at t = 100 µs and t = 125 µs are depicted in c – f, respectively.

By subtracting the image of the cracked plate Fig. 4.3-3e from the baseline images

in Fig. 4.3-2b, the reflected wave scatter image can be obtained, as shown in Fig.

4.3-4a. In an analogous way, we can easily subtract Fig. 4.3-2b from Fig. 4.3-2f.

Note the RGB values are subtracted rather than the displacement values. Pixels,

for which there is no change in wave scatter are shown as black. In Fig. 4.3-4a, the

reflected wave scatter is highlighted by the yellow rectangle, while the distorted

transmitted wave is obtained as well (in the red rectangle) but is not clearly

visible.

109 Chapter 4. Deterministic Approach on Sensor Placement

Fig. 4.3-4: Differential image of a). Fig. (4.3-3h – 4.3-2b) and b). Fig. (4.3-2b – 4.3-2h)

For the further sections, only the results from the uncracked plate and the

cracked plate of 60 mm crack will be shown for conciseness. Fig. 4.3-4b can be

explained in the same manner: the corruptly transmitted wave scatter image is

highlighted more (red rectangle), while the reflected wave scatter can still be

seen (yellow rectangle) but is less visible. To highlight both the reflected and

corrupted wave scatter, the two images shown in Fig. 4.3-4a – b can be joined to

form a composite image, which can be either created either via addition or image

fusion. In image addition, both images are simply added to each other. The second

one is called image fusion and uses the ‘imfusion’ function in MATLAB, where the
two images are firstly converted into greyscale mode, given a false color and then

added mathematically. An example of image addition and image fusion are

depicted in Fig. 4.3-5a – b, respectively. For the sensor placement procedure

described in Section 4.4, the inverse fused image (Fig. 4.3-5b) is used so we can still

see the representation of reflected and missing wave scatter.

Fig. 4.3-5: a). Inverse of a). added image and b). fused images of Fig. 4.3-4.

4.4. Blob Detection

The wave scatter which was caused by both reflections and corrupted

transmissions due to the crack front are represented by false color (i.e., green and

magenta pixels in Fig. 4.3-5b. These pixels have a different color from the

background (white). The region of interest is determined by using the MATLAB

blob detection function to locate areas of adjacent green and magenta pixels. The

larger the blob is, the larger the area of wave scatter. The sensor should be placed

in the centroid of the largest blob, so that it will have a high probability of

capturing a portion of wave scatter from cracks.

110 Chapter 4. Deterministic Approach on Sensor Placement

The blob detection algorithm is based on the Laplacian of Gaussian [MATLAB IPT

Documentation, Kong et al. (2013), Lindeberg (1998)] with an 8-pixel connectivity

kernel. The Gaussian function G of an input image f(x,y) and feature scaling σ is

defined as:

1 ² ²
(, ,) exp

2 ²

x y
G x y



 +
 =  − 

  

(4.4-1)

The Laplacian operator ∇² is defined as:

² ²
²

² ²
f f

x y

 
 = +

 

(4.4-2)

By applying the Laplacian operator in Eq. (4.4-2) to the Gaussian function in Eq.

(4.4-1), one obtains the Laplacian of Gaussian (LoG), as described in Eq. (4.4-3).

Concretely, LoG is the edge of the blob and for this reason, many edge detection

algorithm problems rely on LoG.

4

² ² ² ²
² (,) exp

x y x y
G x y





   + −  +
 =  −   

   

(4.4-3)

Recall the definition of continuous optimization described in Section 3.3.1. Since

the Gaussian function is a quasi-concave, it is continuously differentiable in ℝ.

Within a blob, there are several anchors point candidates. The right centroid of

the blob is found when the LoG reaches the maximum. Hence, the blob centroid

xc, yc with the scale σc is the simultaneous local minimum of the LoG. The objective

function to search the best centroid within the blob can be thus formulated as:

(, ,)
(, ,) argminmax (² (,))
c c c x y
x y G x y =  (4.4-4)

For the blob detection, an 8-pixel connectivity kernel (Fig. 4.4-1a) is used because

it is more suitable for a larger area since the diagonal neighbor is counted as well,

while a 4-pixel connectivity kernel (Fig. 4.4-1b) is typically used for line and

corner detection. In Fig. 4.4-1a – b, the meaning of -1 and 0 are pixels which are

counted and are not counted as a neighbor of the center pixel, respectively.

Fig. 4.4-1: Convolutional kernel of a). 8-pixel connectivity and b). 4 -pixel connectivity within 3x3

convolution.

111 Chapter 4. Deterministic Approach on Sensor Placement

The blob detections from various time increments are depicted in Fig. 4.4-2a-d.

As mentioned before, the sensor should be placed in the location with the largest

change in signal over time, i.e., the largest blob. Since it generally contains more

than a single pixel, the centroid can be calculated to determine the average pixel

location that would receive wave scatter. In Fig. 4.4-2a-d, the largest and the

second-largest blob centroids are marked by red and green dots, respectively.

Blob boundaries are marked by the yellow polylines.

Fig. 4.4-2: Detected blobs at a). 100 µs, b). 125 µs, c). 150 µs, and d). 175 µs. The largest and second-

largest blobs are marked in red and green, respectively. Arrows indicate the direction of

movement of the blobs.

The rest of the centroids are marked by blue dots. In order not to lose the

overview, the reader is encouraged to compare Fig. 4.4-2a with Fig. 4.3-2a and 4.3-

3e, as well as Fig. 4.4-2b with Fig. 4.3-2b and 4.3-3f. The X-Y coordinates of the blob

centroid and the blob size are summarized in Table 4.4-1.

Time

Frame

Largest centroid Second-largest centroid

Coord.

[pixel]

Coord.

[mm]

Area

[pixel]

Coord.

[pixel]

Coord.

[mm]

Area

[pixel]

100 µs 888;403 440;200 15910 716;403 355;200 12917

125 µs 1031;402 511;199 29535 582;404 289;200 18794

150 µs 1154;402 572;199 27067 445;401 221;200 8808

175 µs 1111;405 551;201 24214 304;402 151;199 7949

Table 4.4-1: Area and coordinates of the largest and second largest centroid. Units are in pixel and

mm. Total area is in pixel. Average resolution is 2 pixel / mm.

After a certain time, the wave pattern becomes more chaotic due to multiple

reflections from the crack front, rivet holes, and plate edges so that more smaller

112 Chapter 4. Deterministic Approach on Sensor Placement

centroids will be born that are not exactly aligned with the mid Y-axis anymore.

The detailed procedure in MATLAB to find to trace the blob is described in

Algorithm 4.4-1.

Algorithm 4.4-1. Blob Detection.

0

Input parameter: set of images, Output: , Blob centroid coordinates

Setup initial values:

Number of available images

Number of detected blobs

Until termination condition is reached:

Convert the

Do

S X Y

i

n

− −




8

8

RGB matrix into greyscale array

Set the intensity threshold threshold

Trace region with 8-pixel connectivity

Update ()

Until termination condition is reached:

Store area informa

Do

i i

i

i

i

S I

I

B

n n B


 


 

8

8 8

1

8

8

tion in ()

Sort blob size such that () ()

Store blob boundaries ()

Calculate blob centroids mean(())

Update centroid coordinate:

n

n

n i

n i n i

n i

n n i

C

C

A B

A B A B n

R B

C R B

X X

Y Y

+




 

 =




 

The smaller centroids imply that the potential energy capture by PZT is getting

smaller and this will be aggravated by Lamb wave attenuation. This is the reason

it is recommended to have ‘early wave scatter capture’ for hotspot SHM design.
Typically, one can decide the best sensor position by considering the movement

of the centroid per time increment, also known as ray tracing [Heinze et al.

(2014)].

4.5. Results and Discussion

In order to get a better overview, Fig. 4.4-2a – d was fused into a single image. An

example result of this operation is depicted in Fig. 4.5.1, where each pixel contains

information about the normalized intensity between 0 and 1 which is then

mapped into the rainbow color scale. From Fig. 4.5.1, it can be subjectively judged

that the best sensor position is between X = 44 cm and 57 cm and the second-best

sensor position is between and X = 34 and 38 cm, while the vertical coordinate for

both positions remain at Y = 20 cm.

In order to demonstrate that the image processing algorithm also works for a

different case of simulations, the case can slightly be modified the case for the a).

the critical crack length to 30 mm, and b). the orientation of the crack by 8°. The

whole procedure was repeated, and the results for the mentioned cases are

113 Chapter 4. Deterministic Approach on Sensor Placement

depicted in Fig. 4.5.2 and 4.5.3, respectively. From Fig. 4.5.2, it can be seen that the

areas with higher pixel intensity (colored in red with value between 0.7 and 1) are

smaller than those of Fig. 4.5.1. This is to be expected since the wave perturbation

at the crack front due to a crack length of 30 mm is smaller than those of 60 mm.

Figure 4.5.1: Fused image of Fig. 4.4.2a-d. The normalized intensity value is encoded between 0 and

1 and is therefore unitless. Intensity value of 0 indicates no residual wave scatter, while intensity

value of 1 indicates the maximum residual wave scatter.

Figure 4.5.2: Fused image of differential images of a 30 mm crack. Intensity value convention from

Fig. 4.5.1 applies.

Meanwhile from Fig. 4.5.3, it can be seen that the crack orientation changes the

direction of the reflected wave scatter, and it is still conforming with Snell’s law.
However, it does not change the orientation of areas where the wave scatter is not

114 Chapter 4. Deterministic Approach on Sensor Placement

present. After cross validating with the original simulation data, it can be

confirmed that angled crack only heavily influences the reflected wave scatter

portion, but not the missing scatter portion (Fig. 4.5.4a-b, marked in yellow).

Figure 4.5.3: Fused image of differential images of 60 mm crack with 8° orientation. Intensity value

convention from Fig. 4.5.1 applies.

Figure 4.5-4: Lamb wave propagation at a). t = 100 and b). 125 µs in Al 7075 Plate

In this work, two best locations for placing the sensor are given. However, the

number of sensors that are allocated for every case can be adjusted according to

the manufacturer and/or aircraft operator requirement to achieve the required

crack detectability. Furthermore, not only the number of sensors, but also the

excitation frequency can be changed depending on the size of the critical crack

that must be detected. A higher frequency means a shorter wavelength, thus

enabling the wave to interact with a smaller critical crack length.

It is to be noted that such a higher frequency Lamb wave will also be more quickly

attenuated than the lower frequency Lamb wave. Therefore, in order to stabilize

the SHM network performance, more sensors will be required. Nevertheless,

when more sensors are employed, higher procurement costs are also expected

due to more weight, more data processing capability, etc. This can be regarded as

115 Chapter 4. Deterministic Approach on Sensor Placement

the classical trade-off between SHM investment cost and SHM network reliability

and the decision should be passed back to the aircraft manufacturer or operator

according to their needs.

4.6. Conclusion

This work demonstrated a novel technique to design the sensor network

topology for hotspot SHM by using differential images and a blob detection

algorithm. While my image processing technique does not allow a quantitative

approach to observe the nodal displacement, i.e., displacement from every single

FE node, I believe this technique offers a more holistic view (Fig. 4.5.1 – 4.5.3) of

where to place the PZT sensors on the structure to be monitored.

Also, with this technique I believe that the sensor placement can be done more

quickly without exhaustive data processing from simulation files for each

surface while not sacrificing too much spatial resolution. In practice, even the

extracted nodal data from the simulation must be interpolated, since in reality a

PZT sensor would always occupy more than a single node (e.g., a typical PZT in

our lab has a diameter of 1 cm, so would theoretically occupy about 78 FE nodes).

Therefore, as concluding remark, hopefully this technique will help further

research in sensor placement.

Chapter 2 stated that the main research problem formulation of this dissertation

is to investigate the feasibility of incorporating computational and artificial

intelligence as a design tool for an automated diagnostic within predictive

maintenance – and if so, in what way certainly? Essentially, to connect the

discussion in this chapter to the feasibility, now we need to recall the sub-

research question defined in section 2.3.4:

The design complexity and parameter optimization, particularly on sensor

placement methodologies for both deterministic and semi-stochastic approaches

according to what extent the structure is designed based on the premise that sensor

network topology affects the damage detection capability and the overall SHM

performance. In this proposal, an investigation of different sensor network

topologies is needed to understand the trade-off between the strategies and if

possible, to propose a compensation technique.

In this chapter, the deterministic methodology for transducer placement for

known damage location based on continuous optimization described in Section

3.3.1 is used. While the methodology described in this chapter can easily be

repeated for many different types of geometry and material properties to

partially answer the design question on deterministic sensor placement, there

are several issues that still need to be addressed:

1. Experimental validation of the deterministic design of the sensor topology

as in this chapter, only the simulation data from ABAQUS FE is used.

116 Chapter 4. Deterministic Approach on Sensor Placement

2. Stochastic strategy for non-predictable damage location, especially for

quasi-instantaneous but abrupt-like events such as bird and/or lightning

strike, tool drop, and hail impact.

3. Bimodal utilization of deterministic and stochastic information of the

network topology, i.e., when concerning the integration of both

approaches since both damage type, be it on predictable or non-

predictable location are very likely to appear during aircraft operational

lifetime.

As a short conclusion, the three above mentioned topics are the starting point of

the next chapter.

Literatures

Ewald V. Post-Design Damage Tolerance Enhancement of Primary Aircraft Structures by

Ultrasonic Lamb Wave Based Structural Health Monitoring (SHM) System. MSc Thesis. Universität
des Saarlandes, Saarbrücken (2015).

Gilchrist MD. Attenuation of Ultrasonic Rayleigh-Lamb Waves by A Symmetrical Embedded Crack

in an Elastic Plate. J Applied Mathematics and Mechanics. Vol. 79: pp 497 – 498 (1999).

Harris CE, Starnes Jr JH, Shuart MJ. Advanced Durability and Damage Tolerance Design and

Analysis Methods for Composite Structures – Lesson Learned from NASA Technology Development

Programs. NASA Langley Research Center, Hampton (2003).

Heinze C, Sinapius M, Wierach P. Lamb Wave Propagation in Complex Geometries - Model

Reduction with Aroximated Stiffeners. 7th European Workshop on Structural Health Monitoring
(EWSHM), Nantes (2014).

Kong H, Akakin HC, Sarma SE. A Generalized Laplacian of Gaussian Filter for Blob Detection and its

Alications. IEEE Transactions on Cybernetics. Vol. 43: 1719-1733 (2013).

Lindeberg T. Feature Detection with Automatic Scale Selection. Technical report ISRN KTH/NA/P–
96/18–SE. Kungliga Tekniska Högskolan (KTH), Stockholm (1998).

MATLAB IPT Documentation. Available: https://de.mathworks.com/help/images/ (Last online:
03-FEB-2018)

McMaster RC. Volume 9: Visual Testing (VT). In Nondestructive Testing Handbook (3rd Ed.).
American Society for Nondestructive Testing (ASNT), Columbus (2010).

Milella PP. Fatigue and Corrosion in Metals. Springer, Milan / Heidelberg / New York / Dordrecht /
London (2013).

Pugno N, Ciavarella M, Cornetti P, Carpinteri A. A Generalized Paris’ Law for Fatigue Crack
Growth. J Mechanics and Physics of Solids. Vol. 54: 1333-1349 (2006).

Richard HA, Sander M. Technische Mechanik: Festigkeitslehre (2. Auflage). Vieweg+Teubner,
Wiesbaden (2008).

Schors J, Harbich KW, Hentschel MP, Lange A. Non-Destructive Micro Crack Detection in Modern

Materials. Proc. 9th European Conf of Non-Destructive Testing (ECNDT), Berlin (2006).

Wang Q, Su Z. Crack Diagnosis and Monitoring Method Using Linear-Phased PZT Sensor Array.
Proc. 2nd Intl Conf of Structural Health Monitoring and Integrity Management (ICSHMIM),
Nanjing, (2014).

Wang XS, Wua BS, Wang QY. Online SEM Investigation of Microcrack Characteristics of Concretes

at Various Temperatures. J Cement and Concrete Research. Vol. 35: pp 1385-1390 (2005).

https://de.mathworks.com/help/images/

117 Chapter 5. Holistic Sensor Network Topology Optimization

5. Holistic Sensor Network Topology Optimization

This chapter partially contains the work that has been published in:

1. Ewald V, Groves RM, Benedictus R. Integrative Approach for Transducer

Positioning Optimization for Ultrasonic Structural Health Monitoring for the

Detection of Deterministic and Probabilistic Damage Location. Intl J of

Structural Health Monitoring. DOI: 10.1177/1475921720933172 (2020).

In chapter 4 of this dissertation, we saw the deterministic sensor placement

methodology. In the last section of chapter 4, there were still several issues that

still need to be addressed:

1. Experimental validation of the deterministic design of the sensor topology

as in this chapter, only the simulation data from ABAQUS FE is used.

2. Stochastic strategy for non-predictable damage location, especially for

quasi-instantaneous but abrupt-like events such as bird and/or lightning

strike, tool drop, and hail impact.

3. Bimodal utilization of deterministic and stochastic of the network

topology, i.e., when concerning the integration of both approaches since

both damage type, be it on predictable or non-predictable location are

very likely to appear during aircraft operational lifetime.

This chapter will address these issues one by one. Before going deeper into the

strategy, we should take the influencing physical parameters into account when

determining the objective function. This will be discussed in section 5.1. The

stochastic strategy for sensor placement is described in section 5.2, while the

bimodal topology is described in section 5.3 and the preliminary result are given

in section 5.4. Section 5.5 gives the experimental validation of sections 5.2 and 5.3

and finally, the conclusion and summary are given in section 5.6.

5.1. Fitness Function

As explained in [Ewald et al. (2020)], the deterministic approach would require

too many simulations, and is computationally unfeasible, a situation that can be

related to the art gallery problem [O’Rourke (1987)]. Thus, it would be useful to

maximize the sensor coverage area to detect damages that occur within that

coverage area. Hence, I propose a target function that describes the attenuation

at a certain location in the propagation space of the Lamb wave. First, consider

the measured signal power P in an infinite plate at point x where the original

excitation signal power is P0 [Ono and Gallego (2012)] with the geometrical

attenuation factor α which is proportional to 1/√r [Su and Ye (2009), Mizutani et

al. (2014), Schubert and Herrmann (2011), Dentith and Mudge (2014), Kerber et al.

(2010)], where r is the distance from wavefront to the point x:

0
1= exp(-) whereP P r
r

       (5.1-1)

118 Chapter 5. Holistic Sensor Network Topology Optimization

The material attenuation β depends on frequency and thickness, e.g., for a 1-mm

thick aluminum plate, the attenuation coefficient is between 2.2 – 17 dB/m for a

frequency between 0.5 – 5 MHz [Ono and Gallego (2012), Kasama et al. (2000)]. For

a given coordinate (xi,yj), we can construct an effective travel distance assigned

in pixel value f(rij) by multiplying the total attenuation [αij·exp(-β·rij)] by the

propagating distance rij from the wave propagation source so that it is

comparable to a measured Lamb wave signal amplitude attenuation profile:

0
1= exp(-) where

1()= [exp(-)] whereij ij ij ij ij

ij

P P r
r

f r r r
r

    

     

(5.1-2)

Where the distance rij is defined as the Euclidian distance from the wave

propagation source at coordinate (xi,yj) up to an arbitrary pixel located in

coordinate (x̂i,ŷj) and αij is the dimensionless geometric spreading correction

factor at the distance rij, respectively:

ˆ ˆ2 2= (-) +(-)ij i i j jr x x y y (5.1-3)

Consider a structural inhomogeneity such as rivet hole at the coordinate (x̃i,ỹj)

that acts as secondary source since a Lamb wavefront is scattered at the rivet

holes, where in my assumption, the scattering occurring at the rivet is considered

lossless. A scattering efficiency could be included in the calculation if a reliable

value is available. The secondary source emits a lower energy as the waves have

lost energy in travelling from the source PZT to the rivet hole via the indirect path

r ̃ij defined by:

ˆ ˆ2 2 2 2
PZT-rivet rivet-pixel= + = (-) +(-) + (-) +(-)ij i i j j i i j jr r r x x y y x x y y (5.1-4)

The pixel value in Eq. (5.1-4) for the secondary source can be rewritten in Eq. (5.1-

5).

rivet-pixel

rivet-pixel

PZT-rivet rivet-pixel

()= [exp(-)]

1 = exp(-)

ij ij

ij

f r r r

r r
r r

   

 
     

ij

(5.1-5)

where ᾶij is the recalculated geometrical spreading correction factor at the

distance r̃ij. As an example, consider a resolution of 1 pixel that corresponds to 1

cm in reality, the function values of Eq. (5.1-2) and (5.1-5) for different values of β

with the distance rrivet-pixel = 0.25m are depicted in Fig. 5.1-1a – b, respectively.

Remember that this pixel value is only a dimensionless construct that indicates

the Lamb wave attenuation profile. The constructed pixel value is not only based

on the attenuation profile (which goes toward +∞ very close to the source) but

also to anticipate the near-field zone (NFZ), known as the dead zone since where

it is difficult to evaluate any flaws within the NFZ. For simplicity, let us only

consider the NFZ to be the area which is covered directly by the PZT.

https://en.wikipedia.org/wiki/%C5%B6

119 Chapter 5. Holistic Sensor Network Topology Optimization

Fig. 5.1-1: Unitless pixel value of a). f(rij) and b). f(r̃ij) as a function of distance which is comparable to

amplitude profile. For demonstration purposes, the curve in Fig. 5.1-1b is calculated based on r̃ij =

0.25m + rivet-pixel.

Depending on the modes, material, excitation frequency, and thickness, the

attenuation β can vary between 0.001 to 0.005 dB/cm [Drinkwater et al. (2013)].

For instance, in CFRP woven (10-ply), an A0-mode Lamb wave excited at 285 kHz

would only need to travel 85 mm until 90% decay, whereas in woven CFRP of 8-

ply, an S0-mode Lamb wave excited at 250 kHz, it would need to travel 1700 mm

until 90% decay [Su and Ye (2009)].

Generally, the S0-mode tends to travel further than the A0-mode due to the fact

that the A0-mode is dominated by perpendicular displacement relative to the

wave propagation direction, thus it is leaking more energy to the surrounding

environment [Su and Ye (2009)]. This is in contrast to the S0-mode which is

dominated by the in-plane particle displacement, so that the energy is better

conserved within the plate. For the consecutive scattering, [Su and Ye (2009)]

suggested to compensate the energy loss due to geometrical spreading by

multiplying the measured amplitude with the square root of the time elapsed:

(̂) ()f t f t t
(5.1-6)

Consider the example proposed by [Zhao et al. (2006)], where transducer T is

placed between rivet holes as depicted in Fig. 5.1-2a (case 1). Given that actuator

T was excited by using a 1.8 MHz excitation frequency, Fig. 5.1-2b illustrates the

captured S0-mode Lamb wave signal from a series of sensors X that are located 20

– 200 mm away from the actuator T.

Fig. 5.1-2: Sketch of distribution of rivets and transducers in wing section (‘T’: actuator; ‘X’: sensor
in Case 1; ‘Δ’: sensor in Case 2); and b). integrated Lamb wave signals captured by a series of sensors

in a straight line (Case 1) [Zhao et al. (2007)].

120 Chapter 5. Holistic Sensor Network Topology Optimization

In this case, they calculated that the average attenuation rate was 0.044 dB/mm.

In case 2, they placed sensor series ∆ across the stiffeners, and using the same

frequency and S0-mode excitation obtained an average attenuation of 15 dB per

rivet row. The distance between the rivet rows was 6.5 cm, meaning that the

average attenuation was increased to 0.231 dB/mm. This calculation already

included the multiple scattering across the rivets.

As simplification, only the first appearance of the wave scattering until the wave

is absorbed at the boundaries of the plate is considered. The calculated pixel

score sij at pixel (x̃i,ỹj) for N transducers and B inhomogeneities can simply be

defined as a summation of normalized function values f(rij) and f(r̃ij):

|| () || || () ||
ij ij ij

N B

s f r f r (5.1-7)

The network score τ is simply the summation of all pixel scores, excluding the

pixel P ϵ PN or PB, which are occupied by the transducers N and inhomogeneities

B, respectively:

1 1

,

where 0 if (,) (,)

m n

ij
i j

ij N i j B i j

s

s P P x y P x y



(5.1-8)

As a limitation, only the area directly below the PZT is considered as effective

NFZ. The rivet hole is idealized as a “secondary actuator”, with the simplification
that the wave scatter from the rivet hole is homogenously reflected to all

directions, although in practice, it would depend on the direction of the coming

wavefront. Thus, it is logical to set the pixel score to be 0 at those occupied pixels

as they do not act as wave detection points. Additionally, Eq. (5.1-9) can be

normalized to take any positive real number between 0 and 100:

1 1

100 100
|| ||

() (())

m n

ij
i j

s
m n m n N B




(5.1-9)

Examples of the network score mapping for transducers placed at coordinates

20|40 cm and 115|10 cm in a plate with dimension of 120x80 cm are given in Fig.

5.1-3a – b, respectively, while their alternative representations in 3D projection

are depicted in Fig. 5.1-3c – d, respectively. In Fig. 5.1-3a – b, the sensor and rivet

hole locations are red dots in locations indicated by white and black rectangles,

respectively.

Fig. 5.1-3a shows that the whole plate is better covered if the PZT is located at

20|40 cm since the network score is 39.73, in comparison to Fig. 5.1-3b (PZT

location at 115|10 cm) which has a network score of only 33.17. Our definition of

coverage is any pixel location where a direct or scattered wave propagates. Thus,

a network score of 39.73 can be considered as the average wave amplitude is

39.73% of the maximum. Note that until Eq. (5.1-9), we shall not consider any

signal processing parameters nor algorithm yet (except the anticipation towards

121 Chapter 5. Holistic Sensor Network Topology Optimization

the NFZ). The value of coverage level can be later adjusted once the thresholding

parameter has been determined.

Fig. 5.1-3: Mapped unitless pixel score sij and network score τ for transducer placement at a). 20|40

cm and b). 115|10 cm. Fig. c) and d) are the alternative representations of the network score in 3-

dimensional projection. The white and black rectangles signify the sensor and rivet hole locations,

respectively.

Furthermore, the network score will decrease if the attenuation coefficient β is

increased as depicted in Fig. 5.1-4a – b (cf. with Fig. 5.1-3a with β = 0.3). The

attenuation coefficient depends on the material properties and excitation

frequency [Ono and Gallego (2012)]. This implies that even if the material is the

same, the network score will be lower if a higher excitation frequency is applied.

Fig. 5.1-4: Mapped pixel score sij and network score τ for transducer placement at 20|40 cm for a). β

= 0.1 and b) β = 0.7. The white and black rectangles signify the sensor and rivet hole locations,

respectively.

The best sensor network topology will reach a network score ||τ|| = 100. However,

knowing that this is quite unlikely, the objective is defined as:

()(,)
(|| τ ||)argmax N

i jx y
 (5.1-10)

122 Chapter 5. Holistic Sensor Network Topology Optimization

Eq. (5.1-10) reads, given N number of sensors, determine the coordinate (xi,yj) of

each actuator N that maximizes the network score τ. Theoretically, the maximum

value is the total amount of pixels without (N+B) as per Eq. (5.1-9). For example, a

plate with a size of 120 x 80 cm and 2 mounted sensors and 3 rivet holes would

have theoretical maximum score of 9600 – (2+3) = 9595, or 99.9479 if it is

normalized by using Eq. (5.1-9). The interpretation of Eq. (5.1-10) means that at the

maximum network score, a minimum attenuation is reached. Assuming that the

PZT sensors are able to capture any wave scatter due to the damage occurring at

anywhere on the plate and coupled to adequate signal processing, the sensor

network will be able to detect and predict the damage location reliably.

From Eq. (5.1-7 – 10), it is obvious that the network score is independent of the

damage index DI. This at least eases the transducer placement search for the best

fitness. However, to search for the best fitness, it would still take a lot of time even

without determining the DI from experiment. The number of possible sensor

placement combinations C of given N sensors, B inhomogeneities and L pixels is

given by Eq. (5.1-11).

As an example, assume each pixel size is 1x1 cm, then for a plate of 120x80 cm for

a single sensor (N = 1) and 3 rivet holes (B = 3) in which there are C = 9597 possible

combinations, the computation time for the brute force search with my PC

specification is 2.57 seconds. However, for two, three, and four sensors the

calculation time would increase from 3.4 hours to 15 months and to 3000 years,

respectively.

5.2. Methodology

From Eq. (5.1-11), it is easily known that it is not feasible to look for all possible

transducer locations since it may take indefinitely long. When an exhaustive

brute force search takes too much time, normally a heuristic search is employed

to find a close-to-optimal solution within a reasonable amount of time. To find a

viable solution from such a large search space, one could consider the following

approaches: 1). no prior knowledge was used during the decision making; thus,

the decision probability is equally distributed over the decision set, 2). prior

knowledge is used in the decision making and for sorting the decision options,

and 3). no prior knowledge was involved at the beginning but is gradually

incorporated as the decision-making process evolves.

These approaches can be related to popular search techniques [Hopcroft et al.

(2006), Rastrigin (1963), Kramer (2017), Schmitt (2001), Hung et al. (2008),

Kennedy and Eberhart (1995)] such as: random search, greedy methodology

some metaheuristics such as genetic algorithm (GA), swarm intelligence, and

simulated annealing (SA). In this section, investigate these approaches to find a

solution for Eq. (5.1-10) will be investigated.

()!

!()!

L B
C

N L B N
 (5.1-11)

123 Chapter 5. Holistic Sensor Network Topology Optimization

5.2.1. Global Random Search

Global random search is the easiest method to use to solve a combinatorial

problem. However, given a limited time constraint, it is also the least efficient

since the optimal sensor position might not be found. The algorithm is very

simple and can be demonstrated in only 4 lines of pseudocode, as shown in

Algorithm 5.2.1-1. The random value in this case is a random position of xi,yj.

Algorithm 5.2.1-1. Random Search

+

Input parameter: random value from search space

Output: output function (), decision variable {0,1}

Until termination condition is reached:

Calculate (random value)
Do

Update if (random value)

X

Y f X w

f

w f

−
− =

 > (random value)f





The results of the global random sensor position search are depicted in Fig. 5.2.1-

1a – b. Fig. 5.2.1-1a depicts the search result for 3 sensors, while Fig. 5.2.1-1b depicts

the result of a search of 6 sensors. While the result would normally change for

each iteration, it is possible for the random search to converge with an increasing

number of sensors (see Fig. 5.2.1-1c). Fig. 5.2.1-1c depicts the average network

score after 10 searches for a 1 – 10 sensors search from 1 to 1000 iterations.

Fig. 5.2.1-1: Found sensor network pattern by random search for a). 3 sensors and b). 6 sensors with

black & white rectangles convention from Fig. 5.1-4, while c) depicts the distribution of the network

score for a random search of 1 – 50 sensors after 1000 iterations. Error bars indicate the standard

deviation of the network score during 1000 iterations.

124 Chapter 5. Holistic Sensor Network Topology Optimization

As one can see in Fig. 5.2.1-1c, the random search algorithm starts to converge

from 5 sensors with decreasing standard deviation (indicated by the error bars)

towards an average network score of around 81, which means the plate is 81%

covered by the wavefront should an impact happen anywhere on the plate. The

computational time, as expected, is linear since the calculation effort is the same

for every iteration.

5.2.2. Greedy Search

According to [Cormen et al. (2009)], “a greedy algorithm always makes the choice
that looks best at the moment”, i.e., it makes a locally optimal choice in the hope that

this choice will lead to a globally optimal solution”. For some problems, the
greedy algorithm can provide an optimal solution, while in other cases it does not,

because sometimes the selected solutions reach a local optimum. An example

pseudocode of a greedy algorithm was shown in Algorithm 3.3.2-1 (Chapter 3).

In the greedy algorithm, the function value will be sorted from the minimum to

maximum, and the argument maximum is chosen as the optimal solution. For

multiple sensors, the greedy algorithm will search the next optimal sensor

position step by step. That is, the next sensor position is determined by the

previous sensor position by considering the last previous sensor position. In

practice, this will lead to locally optimal solutions that might still be globally

optimal solution within a reasonable amount of time.

The mode of operation of the greedy algorithm is depicted in Fig. 5.2.2-1a – d. The

algorithm finds the best position of the first sensor (Fig. 5.2.2.1-a), then calculates

the next best sensor position based on the position of the previous sensor.

Fig. 5.2.2-1a – d: Found sensor network pattern by greedy methods for 1, 3, 5, and 7 sensors,

respectively. The black and white rectangles convention applies.

125 Chapter 5. Holistic Sensor Network Topology Optimization

As can be seen from Fig. 5.2.2-1a vs Fig. 5.2.2-1b, the greedy algorithm for 3 sensors

search (network score = 72.28) performs better than a global random search

(average network score = 62.26). This is expected because the random search

does not have clear strategy to find the maximum except by saving the best

possible solution for each iteration, while the strategy of finding the maximum in

the greedy algorithm is by dividing the problem into smaller sub-problems. The

greedy algorithm was able to determine the maximum theoretical network value

thanks to the sorting function which in this case is 38.2033 as can be seen in Fig.

5.2.2-1a. The problem with this approach is when more than 1 sensor search is

applied, the required calculation time is comparable to 9600N for a plate size of

120 x 80 cm, where N is the amount of the sensors. Sorting is therefore not always

feasible for a multivariable search.

5.2.3. Metaheuristics Search

5.2.3.1. Genetic Algorithm (GA)

Usually, a GA contains three main operators: mutation, crossover, and selection

[Schmitt (2001)] and typically, the procedure starts with a given initial

population that will be assessed against its fitness. Those individuals who have

the best fitness are crossed-over to each other and/or a “genetic mutation” is
applied e.g., by bit-flipping or replacement. The individuals who do not have the

best fitness are not selected. This procedure is repeated several times until a

specified certain termination condition is reached. A pseudocode example of GA

has been described in Algorithm 3.3.2-2 in the chapter 3. For the sensor placement

problem, the sensor coordinates xi,yj are first encoded as a chromosome (Fig.

5.2.3.1-1) that will be assessed against the fitness function. The genome length is

2N, where N is the amount of the sensors to be installed.

Fig. 5.2.3.1-1: Sensor position as chromosome in genetic algorithm for N sensors

Typically, the aircraft manufacturer or operator will determine how many

sensors are to be installed based on the balance between cost, additional weight,

POD / sensor network performance and safety. Generally, the more sensors that

are installed means a higher Lamb wave coverage, but this also means higher

costs and energy consumption, and more weight since every sensor is attached

to a cable. Also, after a certain number of sensors, the coverage will only slowly

increase up to the upper limit of the sensor network performance. The results

from a genetic algorithm for 1 – 8 sensor searches are depicted in Fig. 5.2.3.1-1a – f,

respectively. From these figures, one can clearly see that the genetic algorithm

tends to outperform the global random search and greedy algorithms. For

instance, for 3 sensor searches, the genetic algorithm reaches a network score of

84.12 (Fig. 5.2.3.1-1c) after 21 seconds, while the greedy algorithm only reaches a

network score of 72.28 (Fig. 5.2.2-1b).

126 Chapter 5. Holistic Sensor Network Topology Optimization

Fig. 5.2.3.1-1a – f: Found sensor network pattern by genetic algorithm search result for 1, 2, 3, 4, 6, 8

sensors. The black and white rectangles convention applies.

The random search performed even worse as it reaches a network score of 62.26

(Fig. 5.2.1-1a). Note that for the special case of a 1 sensor search, the genetic

algorithm was successful in finding the maximum theoretical value of the sorting

greedy algorithm, which is 38.2033 (cf. Fig. 5.2.1-1a to Fig. 5.2.3.1-1a) – thus there is

no difference in this case between the greedy and the genetic algorithm, which

proves that the construction of the genetic algorithm worked in a consistent way.

However, it should be noted that the genetic algorithm performs slowly,

especially when the number of sensors increases. While the greedy algorithm

and random search give a result almost immediately, a search with a genetic

algorithm for 6 sensors took almost 4 minutes. Not only that, but the more sensors

are also employed, the more computer memory is needed, sometimes forcing

earlier termination of the algorithm and resulting a lower score, such as in Fig.

5.2.3.1-1f.

In a larger plate where more sensors are to be installed, a genetic algorithm would

deliver a high network score, however this will be neutralized by its slower

performance. This is actually in line with the No Free Lunch Theorem proposed

by [Wolpert and Macready (1997)]: “Given a finite set V and a finite set S of real

127 Chapter 5. Holistic Sensor Network Topology Optimization

numbers, assume that f: V → S is chosen at random according to uniform

distribution on the set SV of all possible functions from V to S. For the problem of

optimizing f over the set V, then no algorithm performs better than a blind search.”

5.2.3.2. Simulated Annealing

As explained in chapter 3, simulated annealing (SA) is another heuristic method

like GA. It was inspired by a process used in metallurgy, where steel blocks are

slowly cooled down and reheated in alternating cycles in order to minimize the

energy of the material. This method is thus used as an inspiration in the

optimization problem to find the extrema of a function. For this sensor

optimization method, the algorithmic approach is given in Algorithm 5.2.3.2-1.

Note that in Algorithm 5.2.3.2-1, random(0,1) is a function that randomly takes any

real number between 0 and 1. The search result obtained by using simulated

annealing is depicted in Fig. 5.2.3.2-1a – f.

Algorithm 5.2.3.2-1. Simulated Annealing

0 0 0

Input parameter: sensor position as and coordinate,

initial temperature, ,

Output: output function ()

Until termination condition is reached:

Pick a random neighboring sensor posit

Do

X x y

T T T X X

Y f X

−
−  

−

0

0 0

ion

Calculate differential energy () () ()

If min 1,exp (0,1) :

X X

E X J X J X

E

T

X X

random

 


  −
      

  


128 Chapter 5. Holistic Sensor Network Topology Optimization

Fig. 5.2.3.2-1a – f: Found sensor network pattern by simulated annealing search result for 1, 2, 3, 4, 6,

8 sensors. The black and white rectangles convention applies.

Comparing these figures with GA (Fig. 5.2.3.1-1a – f), we can see that simulated

annealing (SA) performs slightly worse than GA, but it is better than random

search.

5.2.3.3. Swarm Intelligence

The last metaheuristics method being used is the swarm intelligence, which was

inspired by biological swarm behavior. In this case, every individual within the

swarm will act in accordance with certain simple rules, but the interaction or

synergy between simple individual actions can result in various ways of

collectively complex behaviors. The algorithmic approach for solving the sensor

placement problem is given in Algorithm 5.2.3.3-1 and the search results for

particle swarm optimization (PSO) are depicted in Fig. 5.2.3.3-1a – f.

Algorithm 5.2.3.3-1. Particle Swarm Optimization

1 2

Initial parameters: sensor coordinate particle position , particle velocity

Assign inertia factor , and cognitive learning rate and

Assign sensor best position particle best position

Un

i i

i i

X v

w c c

p X



 

1 2

til termination condition is reached:

Calculate fitness value ()

Update if () > ()

Do Choose with best fitness value and assign as

Calculate new velocity ()

i

i i i i

i i

i i i i

f X

p f X f X p

X g

v w v c p X crandom r

+ =

=  +  − + ()()

Update particle position
i i

i i i

g X

X X v

andom






 −
  +

129 Chapter 5. Holistic Sensor Network Topology Optimization

Fig. 5.2.3.2-1a – f: Found sensor network pattern by swarm intelligence for 1, 2, 3, 4, 6, 8 sensors. The

black and white rectangles convention applies.

5.3. Preliminary Results

5.3.1. Comparison between Greedy Methods, Random Search, and GA.

As a summary, a performance comparison of global random search (after 1000

runs), greedy, and genetic algorithms (after 10 runs) is presented in Fig. 5.3.1-1,

where only the standard deviation (stdev) σ from the random search is shown.

Note that the stdev σ of the genetic algorithm (GA) is too small to be visualized in

the graph.

Fig. 5.3.1-1: Network score for random search algorithm of 1 – 8 sensors

The stdev of the greedy algorithm is 0 because each step of the algorithm is a

deterministic method in which no stochastic factor is involved. The x-axis

130 Chapter 5. Holistic Sensor Network Topology Optimization

represents the number of sensors while the left y-axis represents the network

score reached by each algorithm. The right y-axis represents the computational

time needed for each algorithm. Neglecting the computation time, obviously the

GA has the best performance from the three algorithms. However, taking the

computation time into account, the greedy algorithm is competitive with the GA.

Note that the right y-axis has a logarithmic scale. Conversely, the random search

took the lowest computational time while it has the lowest network performance.

It can be seen from Fig. 5.3.1-1, that GA starts to outperform the greedy algorithm

from 3 sensors onwards, however the 10-run genetic algorithm took about 12

times longer (about 264 seconds) than the greedy algorithm. Also, note that in Fig.

5.3.1-1, the standard deviation for the GA cannot be shown as these are too small

to be visualized (2.04 or less)

One could argue about the best terminating conditions of these algorithms. For

this reason, 4 different thresholds of network score are set: 80, 85, 90, and 95

which can be understand as coverage levels between 80% – 95% of the surface –

which when coupled with adequate signal processing can yield a global

probability of damage detection (POD) of the network between 80% – 95%. The

trade-off between the network score, number of sensors N, and the required

computational time is presented in Table 5.3-1. For brevity, let us not consider the

hardware weights and the potential data redundancy as well as the system

energy and/or power required as the number of sensors increases.

Algorithm

Network Score:

80

Network Score:

85

Network Score:

90

Network Score:

95

N Time [s] N Time [s] N Time[s] N Time[s]

Random 3 3.62 10 7.32 n/r n/r n/r n/r

Greedy 4 26.03 6 37.95 8 44.96 n/r n/r

GA* 3 132.09 4 268.64 4 268.64 10 1442.25

Table 5.3.1-1: Number of sensors (N) and time needed to reach network score from 80 to 95. The

result for random search is based on 1000 iterations, whereas for GA is based on 10 iterations. *n/r:

not reached. (*): GA: Genetic Algorithm

As can be seen in Table 5.3.1-1, neglecting the required computational time, it is

obvious that the genetic algorithm has the best performance from the three

algorithms, however, it also requires the most computational time. Conversely,

the random search has the lowest computational time and the lowest network

performance.

5.3.2. Comparison between Metaheuristics

Analogous to section 5.3.1, I will compare the results between the metaheuristics

search result: genetic algorithm (GA), particle swarm optimization (PSO), and

simulated annealing (SA). In order to save time, only 5 iterations instead of 10 are

run. The results are given in Table 5.3.2-1.

131 Chapter 5. Holistic Sensor Network Topology Optimization

 PSO GA SA

N Mean Stdev Time Mean Stdev Time Mean Stdev Time

1 36.9031 0.0068 53.4 38.2034 0.0000 26.2 34.7713 2.1256 14.5

2 76.7108 0.0028 68.4 76.6800 0.0000 38.5 76.6192 0.0752 75.0

3 84.1839 0.0036 149.8 84.1225 0.0012 81.1 83.1327 0.5466 79.2

4 91.3353 0.0145 271.5 91.3135 0.0142 214.4 89.3785 0.9662 77.4

5 92.1262 2.2475 570.7 92.5737 0.5127 468.9 87.0934 1.8111 192.4

6 95.0607 0.1544 422.1 94.4081 0.8687 341.1 87.4289 0.9803 288.1

7 93.9077 1.0875 845.8 93.1091 0.8386 461.7 88.9369 0.5013 338.4

8 94.5158 0.8002 662.1 94.4317 0.0630 1102.8 87.9961 0.6909 523.8

Table 5.3.2-1: Comparison of search results after 5 iterations by using 3 metaheuristics: Particle

swarm optimization (PSO), genetic algorithm (GA), and simulated annealing (SA). N is the number

of sensors. The time is expressed in [s].

As we can see from Table 5.3.2-1, both GA and PSO seem to outperform SA,

especially for a search of more than 3 sensors. This is to be expected since below

3 sensors, the search space is still relatively small, and SA only tracks a single

solution at time. Accordingly, the computation time needed for SA is relatively

lower than GA and PSO (Recall: No Free Lunch). Starting from 4 sensors however,

SA seems to converge and is not able to reach a network score of 90. Conclusively,

after 5 iterations only GA and PSO are able to reach a network score of 90 with a

minimum of 4 sensors in a plate 120 cm x 80 cm, as given in Table 5.3.2-2.

Algorithm

Network Score:

80

Network Score:

85

Network Score:

90

Network Score:

95

N Time [s] N Time [s] N Time[s] N Time[s]

PSO 3 149.8 4 271.5 4 271.5 6 422.1

GA 3 81.1 4 214.4 4 214.4 n/r n/r

SA 3 79.2 4 77.4 n/r n/r n/r n/r

Table 5.3.2-2: Number of sensors (N) and time needed to reach network score from 80 to 95. Search

results are based on 5 iterations. *n/r: not reached.

5.4. Integrative Method

The hotspot SHM design described in chapter 4 has the job of monitoring hotspot.

On the contrary, the probabilistic approach for SHM described until section 5.3

in this chapter is useful for detecting random damage locations. The proposed

SHM system design is to integrate both approaches in one. This is because when

aircrafts are in service, they are prone to both types of damages whose

occurrence are likely to be independent of each other.

The procedure described in chapter 4 can be reproduced for an aluminum plate

with dimensions of 120 x 80 cm and the two best hotspot sensor locations were

determined to be 45|40 cm and 80|40 cm. As a reference, the network score for the

hotspot SHM configuration with the sensors located at 45|40 cm and 80|40 cm is

52.22, as depicted in Fig. 5.4-1a. This is clearly inferior to a 2-sensor network

generated by the genetic algorithm (cf. Fig. 5.2.3.1-1b). That means, the proposed

132 Chapter 5. Holistic Sensor Network Topology Optimization

hotspot SHM network would have a relatively poor coverage for the detection of

damage at a random location.

Fig. 5.4-1: Sensor network score and topology for a) hotspot SHM network for detection of hotspot

crack and b). stochastic SHM network for random impact detection.

In an analogous way, the network pattern for detecting random damage locations

depicted in Fig. 5.4-1b might have a relatively lower detectability for the detection

of cracks from the rivet holes. As a side note, Fig. 5.4-1b is an exception: this sensor

configuration might still have a good detectability of hotspot crack detection

considering that the wave scatter from the rivet hole is coming in a perpendicular

direction to the sensor. After first putting the two hotspot SHM sensors at 45|40 cm

and 80|40 cm, the network score can be increased by adding several other

sensors using the metaheuristics such as GA and PSO described in section 5.1 –

5.3. As an example, a demonstration by adding 1, 2, 3, and 4 additional sensors

using GA is depicted in Fig. 5.4-2a – d. Note that in these figures, the first and

second-best hotspot SHM sensor coordinates are denoted by numbers 1 and 2,

respectively and the locations do not change in every iteration.

Fig. 5.4-2: Network score and topology for integrated SHM with 2 sensors for hotspot and a). 1, b). 2,

c). 3, and d). 4 sensors for random damage detection, respectively. The first and second-best

hotspot SHM sensors are denoted by number 1 and 2.

133 Chapter 5. Holistic Sensor Network Topology Optimization

The black and white rectangles signify the rivet hole and stochastic SHM sensor

network topology, respectively. It can be concluded from Fig. 5.4-2a – d, that the

network scores are lower than those from the solution generated by the pure

genetic algorithm, however I think that this hybrid approach is the most plausible

way to compensate the conflicting objectives between hotspot and global SHM

sensor placement.

5.5. Experimental Validation

5.5.1. Reproducing Hotspot SHM

As described in section 5.4, a hybrid approach that combines hotspot and global

SHM sensor network design was made for an aluminum plate of size 100 x 50 cm

with 8 rivet holes using the simulation parameters given in [Ewald (2015)] to

demonstrate that the algorithm works for different geometrical size. The hotspot

location was assumed to be at 75|20 cm with a maximum damage tolerance size of

a 16 cm fatigue crack (from tip to tip). The rest of the process is merely a

reproduction of chapter 4 for different geometry.

Fig. 5.5.1-1a – b depicts the wave propagation at t = 100 µs in the baseline and

artificially cracked plate, respectively, where Fig. 5.5.1-1c is the subtracted result

of Fig. 5.5.1-1a and 5.5.1-1b. There are several blob centroids of interest as depicted

in Fig. 5.5.1-1c, marked by the blue dots, where the largest and second-largest

blobs are marked by green and red dots, respectively. The fused images from

wave propagation between 25 and 250 µs is depicted in Fig. 5.5.1-1d, and after

averaging the blob centroids from all time frames, the best hotspot sensor

coordinates found after using blob detection algorithm were 65|21 cm and 84|20

cm.

Fig. 5.5.1-1: Simulated wave propagation in a). baseline / pristine and b). artificially cracked plate.

c). The subtracted result of image a) and b), where the centroids of largest and 2nd-larget blob are

marked by green and red dots, respectively, d). Fused differential image from all time frames

between 25 µs and 250 µs.

134 Chapter 5. Holistic Sensor Network Topology Optimization

5.5.2. Experimental Setup

After finding the hotspot sensors coordinates at 65|21 cm and 84|20 cm, the rest of

the locations were determined by the GA since it has lower stdev than PSO as can

be seen in Table 5.3.2-1. To minimize the number of PZTs used in the experiments,

I tested two sample topologies: 1). 3 global + 2 hotspot sensors, and 2). 5 global + 2

hotspot sensors. For conciseness, the first network will be denoted as the “3+2”

network, while the latter will be denoted as the “5+2” network. The sensor

coordinates determined by the genetic algorithm are depicted in Fig. 5.5.2-1a – b.

Fig. 5.5.2-1: Sensor network pattern for a). 3+2 network (Scenario 1A) and b). 5+2 network (Scenario

1B). The red dots signify the hotspot sensors, and the blue dots signify the rest of the global sensors

that are determined by the genetic algorithm (GA) since it has slightly lower stdev than the PSO.

Multiple PZTs could additionally act as actuators to send excitation signals, and

this would generate a larger dataset. Ideally, to reach the energy level that

corresponds to the maximum network score, all actuators should be excited at

the same time. For the 3+2 network, this would require 5 waveform generators

and this amount of necessary hardware was not available, and thus for the sake

of demonstration, only the hotspot sensor located at 65|21 cm is excited. This only

corresponds a fraction of the previously described signal power was used. The

available hardware during the test were a Picoscope 6402A oscilloscope, an

Agilent Waveform generator 33500B, standard BNC cables, a radial PZTs

American Piezo APC-850 (Ø 9.52 mm, thickness = 1 mm, resonance frequency fr =

207 kHz), a desktop PC installed with Waveform Builder Pro and software from

Picoscope. The experimental setup is depicted in Fig. 5.5.2-2.

Fig. 5.5.2-2: Experimental Setup

135 Chapter 5. Holistic Sensor Network Topology Optimization

As we have radial mode PZTs with a thickness smaller than the diameter, then

normally it is the S0-mode which will be the predominant waveform that will be

actuated and sensed by the PZT [Pohl et al. (2012)]. From 8 specimens, 2 plates

must be assigned as baseline, otherwise the residual time-trace cannot be

calculated. The baseline from the 3+2 and 5+2 network will be designated as

Scenarios 1A and 1B, respectively. As scenarios 2 and 3 have very large and visible

damage (almost 30 cm), we can expect that the 3+2 network will be more than

sufficient to identify this damage, and accordingly since scenarios 6 and 7 have a

hardly noticeable dent, the denser 5+2 network is assigned to them. Finally, to

compare the damage localization performance from both networks, the 3+2 and

5+2 network were assigned to scenarios 4 and 5, respectively.

5.5.3. Impact Damage Setup

To experimentally validate the sensor network configuration to detect both

random and hotspot damage occurrences, several damage scenarios are tested

as given in Table 5.5.3-1. An artificial fatigue crack was created by milling a slot

adjacent to the rivet hole. The length of the artificial crack in product applications

will be determined according to the damage tolerance criteria. For this study, it is

assumed to be 8 cm from tip to tip, i.e., including the rivet hole with a diameter of

1 cm. Due to the limitations of the dimensions of the fixation table of the impact

tower (see Fig. 5.5.3-1a), the dimension of the plate is reduced to 100 cm x 50 cm

(mentioned earlier in section 5.5.1) as depicted in Fig. 5.5.3-1b.

Table 5.5.3-1: Damage scenarios tested by using aluminum 7075-T6 of size 100 x 50 x 0.2 cm.

Depending on the impact type (hail impact, tool drop, ground collision), the

impact energy could vary. For instance, a tool drop has a typical energy lower

than 28 Joule [Li et al. (2016)], while hail impact energy during taxiing can reach

up to 162 Joule [Li et al. (2016), USDOT-FAA (2017)] and this can reach 3900 Joule

Sce-

nario

Height
h

[m]

Energy
EImpact

[J]

Velocity
v

[m/s]

Description of
Impact

Impact
Epicenter

[cm]

Hotspot
Crack

Coordinates
[cm]

Sensor

Network

1A None
These are baselines

3+2

1B 5+2

2 2.0 80.4 6.3
ca. ½ plate

breaks
27;24 None

3+2

3 2.0 80.4 6.3
ca. ½ plate

breaks
27;24 75;20

3+2

4 1.7 68.4 5.8
ca. ¼ plate

breaks
20;35 None

3+2

5 1.7 68.4 5.8
ca. ¼ plate

breaks
20;35 None

5+2

6 1.6 64.3 5.6 only dent 27;24 75;20 5+2

7 1.6 64.3 5.6 only dent 27;24 None 5+2

136 Chapter 5. Holistic Sensor Network Topology Optimization

[Li et al. (2016)] during cruise. The TU Delft impact tower was operated at up to its

height limit h = 2.0 m, which corresponds to an impact energy of 80.4 J, as given in

Table 5.5.3-1. This impact energy was sufficient to cause a large visible damage on

the test coupon (see Fig. 5.5.3-2a).

Fig. 5.5.3-1: a). Impact test setup and b). Dimension of the specimen in mm (including the rivet holes)

Fig. 5.5.3-2: Example of damaged aluminum plates from scenario a). 3, b). 5, and c). 7 of Table 5.5.3-

1, respectively.

137 Chapter 5. Holistic Sensor Network Topology Optimization

The maximum mass m that can be attached to the impactor is 2.4 kg (made of

Tungsten), making the total impact mass 4.1 kg (including the mass fixation.

During the testing period, a spherical impactor shape and fixator holder with

sharp corner were available and therefore these were chosen. This mass is

slightly heavier than typical hail, but assuming that the potential energy is fully

converted to kinetic energy, this corresponds to impact velocities between 5.60

and 6.26 m/s – which is typically slower than hail impact even during taxiing. As

an illustration, the damaged aluminum plates from scenarios 3, 5, and 7 are

depicted in Fig. 5.5.3-2a – c.

5.5.4. Damage Analysis

To validate the consistency of each specimen setup, the cumulative correlation

coefficient (CC) between the baseline and each damage scenario was calculated.

The PZT pulsing actuation used was the trivial 5-cycles Hann sinusoid (at f = 200

kHz) and the signal amplitude was recorded by the oscilloscope. As the hotspot

sensor at 65|21 cm is used as an actuator, the only sensor which is available at the

same location on every specimen is the one located at 84|20 cm. The normalized

baseline signals, their envelope, and the corresponding cumulative CC are

depicted in Fig. 5.5.4-1.

Fig. 5.5.4-1: Baseline for scenario 1A and 1B at sensor located at 84|20 cm.

The CC can be calculated for any time length, for instance the CC of the baseline

signals and between the baseline envelopes until 300 µs are 0.9254 and 0.9366,

respectively. This is to be expected, since even in an ideal experimental case, two

similar and pristine plates can still have a difference in measurement due to their

material properties or the presence of minor defects inside the materials.

Moreover, background noise and vibration from nearby equipment in the

laboratory can cause a low-frequency signal oscillation. Intuitively, we need to

set a band pass the signal between half and double of the resonance PZT

frequency (100 – 400 kHz) to isolate both the low and high-frequency noise.

Theoretically, an optimization on the band pass is needed, however this was not

included as it was not the main purpose of this study. Since the plate dimensions

are 100 x 50 cm and assuming that the S0-mode is travelling at 5300 m/s, at 300 µs

the wavefront would have covered a distance of 2.12m.

138 Chapter 5. Holistic Sensor Network Topology Optimization

5.5.4.1. Hotspot Damage Detection

There is neither a need for damage localization nor damage classification for

hotspot SHM placement as both the location and critical damage size will have

been predicted according to damage tolerance design. Logically, only the SHM

detection function applies here. As can be seen from Fig. 5.5.4.1-1a, there is an 80%

decrease in amplitude of both signals and envelope between 36 and 53 µs, which

corresponds to a travelling distance of 19 cm for the S0-mode which is exactly the

distance between the actuator and the sensor.

Accordingly, the CC of the signals and the envelope drops below 0.3 at 36 µs.

Assuming that the measurement instrument is working properly (e.g., no

defective cables or equipment), such a huge decrease in amplitude (80%) clearly

signifies the lack of wave scatter in the propagation path between sensor and

actuator. As such, it can be assumed that the crack emerging from the rivet hole

has already blocked a significant portion of the wave propagation path. Fig.

5.5.4.1-1b can be explained in the same way.

Fig. 5.5.4.1-1a). Amplitude time-series and the CC from Scenario 1A vs 3 and b). Scenario 1B vs 6

5.5.4.2. Impact Localization

While the detection of hotspot damage typically only requires an observation of

amplitude change, impact localization also requires signal observation regarding

phase shift to extract information to calculate the travel distance of a particular

Lamb wave mode.

As an example, a comparison of the signal waveforms, envelopes, and their

corresponding CC between the baseline (Scenario 1A) and scenario 2 from

network 3+2 at two different sensing locations are given in Fig. 5.5.4.2-1a – b. Since

the CCEnvelopes only consider half of the signals and does not consider the

139 Chapter 5. Holistic Sensor Network Topology Optimization

incremental variation of the amplitude within the envelope, it is less sensitive

towards the time shifts in the original signal waveforms, as can be seen in Fig.

5.5.4.2-1a between 60 – 90 µs, marked in red dotted rectangle.

Fig. 5.5.4.2-1: Comparison between signals waveforms, envelopes, and CC of the scenario 1A

(Baseline) and 2 (Damaged) at the sensor located at a). 84|20 cm and b). 38|41 cm.

On the other hand, CCEnvelopes is quite sensitive towards amplitude change,

especially when the amplitude suddenly drops, such as between 180 µs – 200 µs,

marked in Fig. 5.5.4.2-1a in the purple dotted rectangle. During this period, CCSignal

also drops, although it is occurring in less dramatic way, i.e., 0.9678 to 0.8713 for

CCEnvelopes in comparison with 0.8337 to 0.7942 for CCSignal. Fig. 5.5.4.2-1b can be

explained in the same manner.

As stated in section 5.3, the CC of the baseline signals and between the baseline

envelopes until 300 µs are 0.9254 and 0.9366, respectively. For this reason, we

shall only consider that a damage would occur if the CC dropped below these

numbers.

However, the CC would not only drop just because of the damage, we shall also

consider all error propagation factors, such as an inhomogeneous amount of

applied superglue between the PZT and plate surface, geometrical tolerances

such as length, width, thickness of the plate and the rivet holes, the exact

coordinate of the sensor placement, potential micro-defects within the plate, etc.

For this reason, it would be wise to consider a threshold CC that is slightly below

these numbers, but still above 0.5 (CC = 0.5 means 50% correlation), otherwise all

information that is contained below the threshold will be suppressed, too.

Along with the objective stated in chapter 2 and [Thiene et al. (2016)], the purpose

of this chapter is definitely not to propose a novel signal processing method or

new feature to calculate DI, but rather to propose a sensor network placement

method that is DI-free and can be coupled with any signal processing.

As an example, let us take the threshold of CCEnvelope = 0.9 (which is <0.9254) and a

CCSignal = 0.8 (which is < 0.9366) as an example. Thus, if both CC values drop below

these thresholds, it is considered as significant. The original waveform and the

signal envelope from the baseline (1B) and the damaged plate (scenario 5) and

their CC captured by PZTs located at 12|40 cm and 11|12 cm is depicted in Fig.

5.5.4.2-2a – b. After determining the threshold, the first thing to consider is the

Time-of-Arrival (TOA).

140 Chapter 5. Holistic Sensor Network Topology Optimization

Fig. 5.5.4.2-2: Comparison between signals waveforms, envelopes, and CC of the scenario 1B

(Baseline) and 5 (Damaged) at the sensor located at a). 12|40 cm and b). 11|12 cm.

Since both CC values are always changing at every time increment, it is wise to

take the TOA where the CC either: 1). reaches its local optima or, 2). Stabilizes as a

local plateau. For brevity, in both these cases CC is denoted as CC*. An example

for case 1) is given in Fig. 5.5.4.2-2a, where the TOA of the CC*Signal and CC*Envelope

are at 124.0 µs and 128.6 µs, respectively. An example for case 2) is given in Fig.

5.5.4.2-2b, where the TOA of the CC*Signal and CC*Envelope is at 120.9 µs and 150.8 µs,

respectively. The TOA of course might change if the threshold is lowered or

raised.

For simplification, let us consider only the TOA of the first local optima and the

first local plateau. In future work, the desired technique can be combined with

more advanced signal processing such as sparse reconstruction by sum-and-

delay technique [Nokhbatolfoghahai et al. (2019)], however in line with the

objective: I would like to know how well the hybrid sensor placement method

works if it is coupled with conventional signal processing. The localization of the

impact damage can be triangulated by calculating the elliptical distance between

the actuator and 2 different sensor positions, according to Eq. (5.5.4.2-1a – b).

0 1 1 0 1
(Path) Actuator Damage Damage Sensor Sensor

TOA
S S
d P P P P v

(5.5.4.2-1a)

0 2 2 0 2
(Path) Actuator Damage Damage Sensor Sensor

TOA
S S
d P P P P v

(5.5.4.2-1b)

In Eq. (5.5.4.2-1a – b), dS0(Path1) and dS0(Path2) are the sums of the Euclidian distance

from the actuator to the damage and the damage to the sensor indexed with

location 1 and 2 measured from each position P of either the actuator or damage,

respectively. PActuator, PSensor, and PDamage are the x- and y- coordinates of the

actuator, corresponding sensor, and damage, respectively. vS0, and TOASensor are

the velocity of the S0-wavemode and the time of arrival at the corresponding

sensor location, respectively. PDamage can be obtained by solving Eq. 5.5.4.2-1a – b

simultaneously. By repeating this step for all actuator – sensor pairs, a

distribution of predicted PDamage can be obtained. For every solved quadratic

equation, there are a maximum of 2 solutions. An example of these calculations

141 Chapter 5. Holistic Sensor Network Topology Optimization

by using TOA from CC*Envelope for a single actuator – sensor pair is given in Table

5.5.4.2-1. Note that the full table is too long to be presented here.

Table 5.5.4.2-1: Predicted Damage Location based on TOA-Triangulation from Various

Damage Scenario

Not every single solution is useful, for instance in scenario 1A-3, the first

predicted coordinate at 79|78 cm lies outside of the plate, thus the other solution

which is at 16|25 cm is taken as the accepted predicted location. In scenario 1A-4,

both solutions are complex roots so they cannot be considered anymore. In this

case, only the roots that fulfill the constraint (i.e., positive real numbers within the

dimensions of the plate) are taken as an accepted solution. The reason that

sometimes there are no accepted solutions is because in Eq. (5.5.4.2-1a – b), all

TOA(CC*) are multiplied by the S0-wavemode velocity, assuming that the

dominant Lamb mode for excited radial PZT is the S0-mode.

This is an oversimplification because generally, both fundamental Lamb modes

are always present, i.e., after the wavefront comes in contact with any

inhomogeneities such as rivet holes and plate boundaries, wave mode

conversion occurs. To avoid this, a Lamb wave mode separation technique such

as [Xu and Ta (2012)] can be used to sort in which group the TOA belongs to. For

now, it is enough to consider all accepted predicted damage locations and to

calculate the distribution of these predictions.

The distribution of the predicted damage locations is summarized in Fig. 5.5.4.2-

3a – d, which shows predicted damage locations from scenarios 2, 4, 5 and 7,

respectively. As can be seen from Fig. 5.5.4.2-3a and 4a, even a simple algorithm

can easily localize a large damage size (about ½ of plate impacted, i.e., 30 cm),

although there is an area that was not covered by the distribution as the damage

itself is quite large. Furthermore, for the localization of smaller impact damage

(about ¼ plate, i.e. impacted in scenario 4 and 5) which are depicted in Fig. 5.5.4.2-

3b – c and Fig. 5.5.4.2-4b – c, respectively, the determination of damage location

based on TOA calculation outputs provides a relatively reliable localization.

This is in contrast with small impact, which barely causes a smaller dent on the

surface where in this case, even the denser network is not able to predict the

damage location in a sufficient manner as depicted in Fig. 5.5.4.2-3d and 5.5.4.2-

4d.

Scenario

x-y-Coordinate (in cm) of:

TOA of CC*Envelope

(in µs) from

Predicted

Damage x-y-

Coordinates (in Actuator Sensor 1 Sensor 2 Sensor 1 Sensor 2

2 65|21 84|20 10|33 197.9 113.7 22|26 OR 21|39

3 65|21 84|20 24|10 40.5 131.4 79|78 OR 16|25

4 65|21 24|10 10|33 200.5 110.7 Complex Root

5 65|21 84|20 12|40 202.3 128.6 21|31 OR 18|52

6 65|21 35|7 36|41 208.9 150.8 22|56 OR 59|67

7 65|21 84|20 12|40 204.3 131.4 21|31 OR 17|53

142 Chapter 5. Holistic Sensor Network Topology Optimization

Fig. 5.5.4.2-3 (clockwise from top left): Damage localization result from scenario a). 2, b). 4, c). 5 and

d). 7.

Fig. 5.5.4.2-4 (clockwise from top left): Real plate from scenario a). 2, b). 4, c). 5 and d). 7. The blue

rectangles indicates the impact damages where the red ellipse are the distributions of predicted

damage locations. Note: the aluminum surface works like a mirror, giving unwanted reflection in

the photo

Taking a closer look into the quantification of the localization performance, I

calculated several criteria as given in Table 5.5.4.2-2:

1. Averaged Euclidian distance δ: the distance between each predicted

damage location Px,y (which is just the distribution mean) and the epicenter

of the actual damage epicenter Ax,y without considering the multi-site

damage

143 Chapter 5. Holistic Sensor Network Topology Optimization

2. Mahalanobis distance M: the distance between actual damage epicenter

without considering the multi-site damage and the probability

distribution of all predicted damage locations.

3. Standard deviation σx and σy for both x- and y- axis

4. Percentage R which is ratio between elliptical area covered by vertex σx

and σy divided by plate size, which is 100 x 50 cm = 5000 cm², for scenario

2, 4, 5, and 7: these elliptical areas can be seen in Fig. 5.5.4.2-4 already.

Table 5.5.4.2-2: Euclidian and Mahalanobis distance between the predicted and actual impact

epicenter

As it can be seen from Table 5.5.4.2-2, the Euclidian distances between the

predicted and actual epicenter varies between 5.0 cm and 14.3 cm. Note that in

scenarios 2 – 5, the damage is quite large, i.e., not only dents and therefore it

occupies multiple locations and the actual damage locations are covered by R.

In scenarios 6 and 7, R is large, but the damage size is small (dents Ø = 1 cm), which

poses a limitation of the damage detection algorithm, because the Lamb wave

mode at this particular PZT frequency (200 kHz, wavelength λ = 2.65 cm) is not a

good match with the damage size. The difference between scenarios 6 and 7 is

only the artificial fatigue crack located at 75|20 cm for scenario 6 has been

described in section 5.3.1. For scenario 7, the average error on Euclidian distance

is 14.3 cm and the ratio R is 17.8%.

Practically, when scaling this hybrid approach for a larger-sized structure (e.g., 5

x 5 m), then at least 4 m² (about ⅙ or 16.7% of the surface) must still be scanned

manually. As stated previously, the sensor network pattern is designed to work

independently of any signal processing, thus, to increase accuracy in the future,

the signals could be first separated by using method described in [Xu and Ta

(2012)] and then processed further by using the delay and sum method for sparse

reconstruction described in [Nokhbatolfoghahai (2019)].

It is often forgotten that the purpose of SHM is not to replace NDT completely, but

to determine whether a further NDT inspection of a certain aircraft part is needed

during unscheduled maintenance or not. Therefore, I believe that by reducing the

inspection man-hours by at least 83.3%, we may think that the hybrid sensor

placement method with a minimum number of sensors for hotspot and global

damage detection contributes to design strategies for Lamb wave SHM.

Scenario
Ax,y

[cm|cm]
Px,y

[cm|cm]
δ

[cm]
M

[unitless]
σx|σy

[cm|cm]
R

2 27|24 29|33 9.5 4.438*10-3 19|11 13.0%

3 27|24 24|28 5.0 4.665*10-3 19|7 8.3%

4 20|35 27|34 6.8 2.990*10-3 20|8 10.2%

5 20|35 33|33 12.8 3.824*10-3 21|12 16.2%

6 27|24 26|30 5.8 2.033*10-3 21|13 17.2%

7 27|24 37|35 14.3 1.531*10-3 23|12 17.8%

144 Chapter 5. Holistic Sensor Network Topology Optimization

5.6. Chapter Summary

This chapter demonstrated that a sensor network topology for hotspot SHM for

detection of predictable crack location can be merged with the probabilistic

approach without sacrificing too much of the global sensitivity. To do so, first, the

hotspot sensor locations are determined according to the largest centroid based

on blob detection algorithm. Then, to determine the sensor positions for detecting

random damage, 5 search algorithms were compared: global random search,

greedy methodology, and 3 common metaheuristics: genetic algorithm (GA),

particle swarm optimization (PSO), and simulated annealing (SA).

Global random search has the lowest performance, and GA and PSO are on par,

and they have the best performance, while the greedy methodology and SA have

a search performance which lies in between GA/PSO and global random search.

Accordingly, as per the No Free Lunch theorem, both GA and PSO took the most

computational resources – this can be either in time or space while the random

search took the least computational resources. Unsurprisingly, the required

computational resources of the greedy method and SA also lie in between global

random search and GA and PSO.

Since the specimen size used in this work was not too large and the computational

time for every iteration search was below 1 hour, the genetic algorithm is used to

determine the integrated sensor network topology. This hybrid approach

demonstrated that sensor networks can detect fatigue cracks and locate

randomly occurring damage, if these do not occur at the same time. I believe this

likelihood is small, but nevertheless, it might be interesting in future study to

understand the probability of fatigue crack and impact occurring at the same

time.

Given the results in section 5.3 to 5.5, it is safe to think that the hybrid approach

based on blob detection algorithm and search metaheuristics can partially

address the sensor positioning problem in active ultrasonic SHM in scalable

manner – especially when the detection requirement is not too high. However, for

placing a much larger numbers of sensors in a larger and complex structure, the

suggestion would be using the greedy algorithm instead of the genetic algorithm

to compensate for the network performance and the computational effort

required.

Literature

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms (3rd Ed.). Ch. 16: Greedy
Algorithms. MIT Press, Cambridge / London (2009).

Dentith M, Mudge ST. Geophysics for the Mineral Exploration Geoscientist (1st Ed.). Cambridge
University Press, Cambridge (2011).

Drinkwater BW, Castaings, Bernard Hosten. The Measurement of and Lamb Wave Attenuation to
Determine the Normal and Shear Stiffnesses of a Compressively Loaded Interface. J Acoustical
Society of America. Vol. 113: 3161 (2003).

145 Chapter 5. Holistic Sensor Network Topology Optimization

Ewald V. Post-Design Damage Tolerance Enhancement of Primary Aircraft Structures by
Ultrasonic Lamb Wave Based Structural Health Monitoring (SHM) System. MSc Thesis. Universität
des Saarlandes, Saarbrücken (2015).

Ewald V, Groves RM, Benedictus R. Integrative Approach for Transducer Positioning Optimization
for Ultrasonic Structural Health Monitoring for the Detection of Deterministic and Probabilistic
Damage Location. Intl J of Structural Health Monitoring. DOI: 10.1177/1475921720933172 (2020).

Hopcroft JE, Motwani R, Ullman JD. Introduction to Automata Theory, Languages, and
Computation (3rd Ed.). Addison-Wesley Longman Publishing Co., Inc., Boston (2006).

Hung MH, Shu LS, Ho SJ, Hwang SF, Ho SY. A Novel Intelligent Multiobjective Simulated Annealing.
Algorithm for Designing Robust PID Controllers. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans. Vol. 38(2): 319-330 (2008).

Kasama H, Takemoto M, Ono K. Attenuation Measurement of Laser Excited S0-Lamb Wave by the
Wavelet Transform and Porosity Estimation in Superplastic Al-Mg Plate. Hihakai-Kensa (Japanese
J Nondestructive Testing). Vol. 49: pp 269-276 (2000).

Kennedy J, Eberhart R. Particle Swarm Optimization. Proc. IEEE Intl Conf on Neural Networks IV
(1995).

Kerber F, Sprenger H, Niethammer M, Luangvilai K, Jacobs LJ. Attenuation Analysis of Lamb

Waves Using the Chirplet Transform. J on Advances in Signal Processing: 375171 (2010).

Kramer O. Genetic Algorithm Essentials. In: Studies in Computational Intelligence. Springer Intl
Publishing, Cham (2017).

Li S, Jin F, Zhang W, Meng Z. Research of Hail Impact on Aircraft Wheel Door with Lattice Hybrid
Structure. J Physics Conf Series. Vol. 744: 012102 (2016).

Mizutani Y, Suenaga K, Todoroki A, Suzuki Y. Estimation of Viscoelastic Properties by Lamb Wave
Analysis. Proc 31st Conf of the European Working Group on Acoustic Emission (EWGAE),
Dresden (2014).

Nokhbatolfoghahai A, Navazi HM, Groves RM. Use of Delay and Sum for Sparse Reconstruction
Improvement for Stuctural Health Monitoring. J Intelligent Material Systems and Structures. pp 1 –
13 (2019).

O’Rourke J. Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987).

Ono K, Gallego A. Attenuation of Lamb Waves in CFRP Plates. J Acoustic Emission. Vol. 30: 109-123
(2012).

Pohl J, Willberg C, Gabber U, Mook G. Experimental and Theoretical Analysis of Lamb Wave
Generation by Piezoceramic Actuators for Structural Health Monitoring. J Experimental
Mechanics. Vol. 52: 429-438 (2012).

Rastrigin, LA. The Convergence of the Random Search Method in the Extremal Control of Many
Parameter System. J Automation and Remote Control. Vol. 24: 1337-1342 (1963).

Schubert KJ, Hermann AS. On Attenuation and Measurement of Lamb Waves in Viscoelastic
Composites. J Composite Structures. Vol. 94: 177-185 (2011).

Schmitt LM. Fundamental Study: Theory of Genetic Algorithms. J Theoretical Computer Science.
Vol. 259: 1-61 (2001).

Su Z, Ye L. Identification of Damage Using Lamb Waves: From Fundamental to Applications.
Springer-Verlag, Berlin / Heidelberg (2009).

Thiene M, Sharif Khodaei Z, Aliabadi MH. Optimal Sensor Placement for Maximum Area Coverage
for Damage Localization in Composite Structures. Smart Materials and Structures. Vol. 25: 095037
(2016).

USDOT Federal Aviation Administration (FAA). Detection and Characterization of Hail Impact
Damage in Carbon Fiber Aircraft Structures. Final Report DOT/FAA/TC-16/8 (2017).

Wolpert DH, Macready WG. No Free Lunch Theorems for Optimization. IEEE Transactions on
Evolutionary Computation. Vol. 1: 67-82 (1997).

Xu K, Ta D. Mode Separation of Lamb Waves Based on Dispersion Compensation Method. J
Acoustical Society of America. Vol. 131: 2714-2722 (2012).

Zhao X, Gao H, Zhang G, Ayhan B, Yan F, Kwan C, Rose JL. Active Health Monitoring of an Aircraft
Wing with Embedded Piezoelectric Sensor/Actuator Network: I. Defect Detection, Localization and
Growth Monitoring. J Smart Materials and Structures. Vol. 16: 1208- 1217 (2006).

146 Chapter 5. Holistic Sensor Network Topology Optimization

147 Chapter 6. Deep Learning for Structural Health Monitoring

6. Deep Learning for Structural Health Monitoring

This chapter partially contains the work that has been published in:

1. Ewald V, Groves RM, Benedictus R. DeepSHM: A Deep Learning Approach

for Structural Health Monitoring Based on Guided Lamb Wave Technique.

Proc. SPIE Smart Structures + NDE: 10970, Denver (2019).

2. Ewald V, Venkat RS, Asokkumar A, Benedictus R, Boller C, Groves RM.

Perception Modelling by Invariant Representation of Deep Learning for

Automated Structural Diagnostic in Aircraft Maintenance: A Study Case

using DeepSHM. J Mechanical System and Signal Processing. Vol 165:

108153 (2022).

As stated previously in chapter 2, the high-level problem formulation that should

be asked from the NDT & SHM community is: what is the feasibility of incorporating

artificial intelligence (AI) as a design tool for an automated diagnostic within

predictive maintenance – and if so, in what way? For this chapter, let us focus on

the following lower-level research problem formulations mentioned in section

2.3 of this dissertation:

1. “Investigation whether deep learning can be used to treat the Lamb wave

signal – and if so, does it have certain theoretical justification? What would

be the pros and cons when of deep learning to treat Lamb wave signals and

what would be the consequence for the design and manufacturing of the SHM

system? Further considerations on certain aspects from computational

neuroscience for processing the Lamb wave signal should also probably taken

into account.”

2. “When combining the sub-problems to reconstruct the final solution: given

certain sensor topology, what would be the training behavior for different

sensors and whether some perspective from computational neuroscientific

could also be considered as well?”

Section 2.4 introduced some formalism such as automata, logic, and their

consequences for diagnostics. These formal concepts are important to

understand so that we, the empirical science community which consists of

physicists, chemists, and biologists and various types of engineers, do not merely

accuse the formal science community (e.g., mathematicians, computer scientists,

and software engineers) with prejudices such as “AI is a total Blackbox”.

Understanding the concepts of rules, logics, and languages as well as high-level

abstraction of (human) perception and common sense are sometimes

unfortunately taken for granted by the empirical science community. Only when

the formal concepts have been understood, one can successfully proceed to

incorporate domain specific knowledge with a domain agnostic approach.

148 Chapter 6. Deep Learning for Structural Health Monitoring

6.1. Research Outline Recap

The theoretical background of machine and deep learning as well as features and

invariant representations has been described in sections 3.4 and 3.5 of chapter 3.

To begin this chapter, assume the following premises to determine the AI

architecture strategy:

1. More complexity in geometry and material properties would require

enhanced signal processing to capture signal features,

2. A pure physical model is normally more powerful, but typically requires a

lot of effort and sometimes it also idealizes some assumptions that might

not always correspond to the real-world situation, and

3. A pure statistical model can only find correlation, but not causation (also

known as the ‘black-box property’), thus conclusions are difficult to
understand. Therefore, a compromise between a physical and a statistical

model must be made in order to further progress the advancement of

automated damage detection, be it in SHM or NDT.

The previous work [Ewald at al. (2018a)] demonstrated how to bias CNN with

appropriate aerospace domain knowledge for both NDT and SHM applications.

This was also in line with the approach proposed by [Gardner et al. (2020)]. For

SHM applications using active Lamb waves, I previously proposed a hybrid

model called DeepSHM framework [Ewald et al. (2019)]. Specifically, it is a

statistical signal modelling based on deep learning biased by a physical nature

and easily worked for a complex signal classification.

Like any other deep learning algorithm, the advantage of DeepSHM is its

agnosticism: it treats any input, and it gives any output given the input, so no

matter how complex the signal is, the classification accuracy is tendentially very

high. The biggest disadvantage of DeepSHM is also its agnosticism: for any given

bad input, the outcome would be a poor output, which is known in computer

science as a Garbage in – Garbage out [Kim et al. (2016)] process.

While deep learning would work given any input sequence, to align this research

with the previous work and for this reason, the use of DeepSHM is limited solely

for active Lamb wave based SHM. One specific problem that was encountered in

[Ewald at al. (2019)] was that some of the algorithms could not make a distinction

between signals that come from a slightly geometrically similar defect, i.e.,

statistically speaking, they come from the similar distribution. The reason for this

was the physical limitation that one particular ultrasonic wavelength is in

general only suitable for detecting damage in a certain size range. The proposed

hypothesis to overcome this problem are:

1. Applying broadband frequency excitation since this will involve a broader

wavelength distribution.

2. Varying the sensing locations to potentially obtain more information.

To do so, a typical deep learning workflow will be performed: the classification

performance metrics in the confusion matrix will be compared with given

149 Chapter 6. Deep Learning for Structural Health Monitoring

captured signals from different sensing locations. One associated problem with

signal processing with multiple sensing locations is that it could result in different

sensor responses which might give conflicting predictions (e.g., no damage based

on the response of one sensor and damage based on the response of the other

sensor). This leads to the following research questions:

1. How much do the varying sensing location and the different sensing

representations of the time-frequency Lamb wave signal influence the deep

learning training behavior?

2. Given the ‘a posteriori knowledge’ from question (1), what consequences can

be drawn for engineering applications in SHM and why should this approach

work?

This chapter is organized as follows: my thoughts about modelling SHM

perception from a neuroscientific perspective is given in section 6.2. The

necessary methodologies (such as generating data with simulation, signal pre-

processing, hyperparameter configuration, etc.) is given section 6.3. The results

and discussion, as well as the concept validation are given in section 6.4 and 6.5,

respectively. Finally, the conclusion is given in chapter 6.6.

6.2. Theoretical Background

The general formulation of diagnostic has been described in section 3.2 and the

relationship between inhomogeneities i in the medium ψ can as a function of time

dependent observable Xλ(t) containing phenomenon λ at time t is:

λψ (̂) () ()
i

f X t X t (6.2-1)

The observable Xλ(t) is the measured signal and can be mathematically expressed

in either vector form or more generically a finite-dimensioned observation

tensor. Every observation X perpetually changes for any given domain

parameters. Thus, it would be naturally logical to describe the behavior of X as

probabilistic variables rather than as deterministic ones. For brevity, let us

assume the null hypothesis hθ where the existence of λ is caused only by changing

parameters in ψ. Due to the first assumption of the stochastic nature of

observation X, the relation can be formulated via Bayes conditional probability P:

(() | ()) (())
(() | ())

(())
i i

i

P X t h P h
P h X t

P X t

(6.2-2)

Where in Eq. 6.2.1-3, P(hθ(ψi)|Xλ(t)) is the posterior probability of the existence of

i-th inhomogeneities ψ given observations Xλ(t), P(Xλ(t)|hθ(ψi)) is the prior

probability where Xλ(t) occurs given the hypothesis hθ. P(Xλ(t)) and P(hθ(ψi)) are

the marginal probabilities of observing Xλ(t) and hθ(ψi) independently,

respectively. Furthermore, in Eq. 6.2.1-3, θ is the fitting parameters (which in deep

learning are normally called neural network weights) that are to be optimized

during the learning process. Given the fact that in most of the case, the observable

150 Chapter 6. Deep Learning for Structural Health Monitoring

X is multi-dimensional, it is logical to formulate the problem as a multivariate

distribution rather than a uni- or bivariate distribution.

Further, let us consider the most suitable expression of the joint probability

distribution. Naturally, there is an infinite number of possible combinations

within ψ (e.g., for the length of a crack, the size of delamination, or corrosion

depth) and that a very small variation within ψ normally only causes small

variation. So, instead of a discrete probability mass distribution, the probability

density function is the more suitable formulation for a joint distribution in

diagnostics since it expresses the density of a continuous random variable.

Recall section 3.4.1 from chapter 3: when considering any machine learning

algorithms, the following questions naturally arise: which learning problems can

be solved efficiently and which are easier to solve than others? How many N

training samples do we need, and which parameters θ must be tuned during the

learning process? In computer science, the proper intuition would be the

learnability of the function itself, as explained from Lemma 3.4.1-1 [Valiant (1984,

2013)]: The probably approximately correct (PAC)-learning framework [Valiant

(1984, 2013), Gormley (2016), Moran and Yehudayoff (2016)].

[Mitchell (1997)] defined the algorithm of the machine learning process as: “A

computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T, as measured by

P, improves with experience E”. Specifically, this means that a trained algorithm,

which is just the generalizer L in disguise from Def. 3.4.1-2 [Wolpert (1990, 1992)],

that has learned during machine learning process E and is said to be able to

generalize on the class of tasks T from a certain probability distribution,

In the diagnostic realm, task T is the diagnostic itself, that is retrieving the

information from the observable variables Xψ regarding the damage state,

experience E is the iterative process for enhancing the algorithm to increase the

accuracy performance of the trained algorithm that best generalizes the

distribution over Xψ. The probability for the i-th class of information given the Xψ

in k-dimensional Hilbert space is typically written as a logit or sigmoid function

[Mitchell (1997), MIL-HDBK-1823 (2009)] and can be generalized in a SoftMax

function:

1

exp([()])
(() | ())

exp([()])

T

i

i K
T

k
k

X t
P h i X t

X t

(6.2-3)

The posterior of P(hθ(ψi)|Xλ(t)) is taking real value within [0, 1], but can also

sometimes be expressed as percentage value. The posterior is maximized by

minimizing the information difference, which can be referred to either as loss,

cost or error between the predicted value hθ(ψi) and the true information

contained X. The central task of machine learning is to minimize the loss function

by iteratively adjusting θ. Depending on the problem formulation, different loss

functions must be defined. For instance, in a regression problem, the mean

squared error is typically chosen, while when looking further into a classification

151 Chapter 6. Deep Learning for Structural Health Monitoring

problem, a cross-entropy loss is chosen since it maps a logistic output between 0

and 1 and thus is an appropriate measure to calculate a similarity between two

distributions. The cross-entropy H(p,q) between the true distribution p(Xψ) and

the estimated distribution q(Xψ) is defined as [Rubinstein and Kroese (2004)]:

()

(,) (()) log (() ())
i i

X t

H p q p X t q X t h (6.2-4)

Within the context of classification problem, the minimization of the cross-

entropy loss Jθ for N training samples can be rewritten from Eq. 6.2-4 as:

1

1
argmin min () log (())

N

i

J p X q X h
N

(6.2-5)

Depending on the algorithm complexity, θ can be infinitely dimensional,

meaning that from Eq. 6.2-5, it can be easily assumed that learning in machine

learning is a NP-hard as it contains a highly dimensional combinatorial problem

that is ~O(θ!). While it is impractical to reach Jθ = 0, learning means we are striving

for Jθ → 0, so there must be an upper limit where the probability measures

converge [Sethuraman (1961)] given by Lemma 6.2.1-1, while the consequence

can be summarized in Corollary 6.2.1-1.

Lemma 6.2.1-1: Converging probability measure [Sethuraman (1961)]



→ →  

1 2
Let and , , ..., be the sequence of probability measures defined

on a measurable space (,), then converges strongly to

(in symbols) if () () .
i

i i

C U P P

M V P

P P P P C P C C V

Corollary 6.2.1-1: A proper probabilistic generalizer (upwardly compatible HERBIE)

is said to have an upper converging generalization bound if the probability measures

over the defined measure spaces strongly converge according to Lemma 6.2-1.

One statistical metric that is useful to indicate the upper convergence limit of the

generalization bound is the statistical classification accuracy A, defined as:

()

TP TN
A

TP TN FP FN

(6.2-6)

Where in Eq. 6.2-6, TP, TN, FP, FN is the true positive, true negative, false positive,

and false negative rate, respectively. The definition of TP, TN, FP, and FN can be

found in [Ting (2017)]. As mentioned before, it should be noted that often it is

useful to influence the algorithm by domain knowledge, as demonstrated in

previous work [Ewald et al. (2018a)].

Biasing the algorithm also includes determining the data distribution which is fed

into the learning algorithm to have interpretable outcome and to avoid a Garbage

in – Garbage out process. Therefore, it is very important to determine which task

T the algorithm should perform at the beginning. For this reason, we can expand

152 Chapter 6. Deep Learning for Structural Health Monitoring

the definition of an upwardly compatible generalizer in Def. 3.4.1-2 on deep

learning by considering Def. 3.4.1-3 regarding the generalization gap and the

Rademacher complexity R. As explained in section 3.4.1, the Rademacher

complexity and VC-dimension [Goldberg and Jerrum (1995), Clayton (2014)] are

a measure of the richness of a class of real-valued functions. To guarantee the

upper bound of the generalizer, [Kawaguchi et al. (2017)] proposed a theorem via

the validation error as given in Lemma 6.2.1-2.

Lemma 6.2.1-2. Generalization bounds of deep learning via validation

[Kawaguchi et al. (2017)]

(,)

,

Let the sampling space be split according to the true distribution in

 and that denote the training and validation datasets, respectively.

Let ((),) for each pair

N XY

train val

N N

L i L i i

S P

S S

R J L x y

2

, ,

()

 (,) . For any 0, with

probability at least 1 , then the following holds :

2 sup ln 2 sup () ln

3

where is de

val
N

val

i i N

val

val val

L i L i

L L S

val val

val

x y S

L L

L L

R R
N N

L fined as a set of models that is independent of a held-out

validation dataset , but can depend on the training dataset .val

N N

L

S S

Lemma 6.2.1-2 practically explains why deep learning could generalize well if the

generalization bound is reached, which is guaranteed by the converging

validation error despite possible sharp local minima or non-robustness. Thanks

to corollary 6.2.1-1, we can now summarize the conclusion in corollary 6.2.1-2.

Corollary 6.2.1-2: An upwardly compatible deep learning model reaches its upper

generalization bound when the validation loss converges.

[Kawaguchi et al. (2017)] mentioned following worst cases:

,
sup 1

L i
 (6.2-7a)

2

,
sup () 1

L i
 (6.2-7b)

Given a large hyperparameter cardinality (e.g., 106) and 1000 training epochs in a

larger dataset Nval = 10000, the second and third terms of the equations sum up

only to 6.94%:

2

, ,
2 sup ln 2 sup () ln

6.94%
3

val val

L i L i

val val

L L

N N

(6.2-8)

In the non-worst case, this figure decreases to 0.49%. Extrapolating this for the

case where the dataset amount is way smaller (e.g., Nval = 100) with a less complex

153 Chapter 6. Deep Learning for Structural Health Monitoring

deep neural network architecture with a smaller cardinality (e.g., 102) and 100

training epochs, we have a probability of 0.9 that:

()
55.66%

val
N

L L S
R R (6.2-9)

This means that there is 55.66% chance that the model does not generalize. The

implication of an upwardly generalizable of a diagnostic algorithm, is to increase

the true positive (TP) and decrease the false negative (FN, equivalent to statistical

error of type II) detection rate, thus maximizing the probability of detection

(POD), sometimes called the sensitivity or recall rate, defined as:

()

TP
POD

TP FN

(6.2-10)

The current standard practice for diagnostic NDT according to [MIL-HDBK1823

(2009)] is a POD = 0.9 (or 90%) within 95% statistical confidence σ, although this

might not be suitable for diagnostic SHM [Hayo et al. (2011)]. To be more generic

with the formulation, we can redraw the proposition of [Ooijevaar (2014)] for an

active Lamb wave SHM system, shown in Fig. 6.2-1. The processing framework of

the observable Xψ containing damage information captured by the actor π using

a trained deep learning to predict the hypothesis hθ(λ) can be seen in Fig. 6.2-2.

Fig. 6.2.1-1: Diagnostic SHM by using an active guided Lamb wave as physical phenomenon.

Fig. 6.2.1-2: DeepSHM Framework

154 Chapter 6. Deep Learning for Structural Health Monitoring

Like any machine learning process, the central task of the DeepSHM framework

is to find generalizable parameters θ to fit the correlation between Xλ(t) and hθ(ψi),

where in guided Lamb wave SHM, hθ(ψi) is defined as the hypothesis of the

damage information contained in medium domain ψ that is influenced by

interaction between phenomenon Lamb wave (λ) and the damage itself.

6.2.2. Model Abstraction of DeepSHM Behavior

As SHM itself is inspired by biology, maybe DeepSHM should not just be capable

of actuating and sensing, but it should have its own perception. Section 3.5

mentioned the definition of machine perception by [Pendleton et al. (2017)]. The

definition of machine perception can then be simply adapted for the SHM

domain: Perception in diagnostic SHM is a fundamental function to enable the full

functionality of an autonomous damage detection system, which provides the SHM

system with crucial information on changes in the sensory input (such as changes

in amplitude, frequency, or phase-shift).

Interestingly for any ultrasound-based technology, such perception is similar to

the hearing process in our brain. We might be staying in a room when someone is

calling our name, but no matter what frequency or volume our name was called,

we broadly understand it is our name. So, there must be an assumption of the

existence of shared invariant features between each name calling. Same with

Lamb waves, the recorded signals would be likely to have entirely different

amplitudes, phase shift, and frequency from each other if it is recorded at

different sensing location.

The explanation of invariant representation and its importance to Lamb wave

signal processing can be found in section 3.5 and Lemmata 3.5.1-1 – 3.5.1-4. Recall

two assumptions made by The Future of AI challenges [Merck (2019)], in which

they were looking for a formalization of the cortical algorithm, a mechanism

which might be able to imitate the pattern recognition process that is believed to

be taking place in the grid neuron, which is located in the mammalian neocortex:

1. “Hierarchical structure: Entities are hierarchically structured, which

means that an entity E is either fundamental (i.e., it cannot be broken

down any further) or it is composed of other entities E1, E2, ..., Ei such that

every perception p of E is associated with a set of perceptions p1, p2, ..., pi.”

2. “Entity conservation over time: Subsequent perceptions in time are

(usually) generated by the same set of entities.”

The reason to consider this fringe idea from neuroscience is because it gives us a

hint about how we should treat the SHM signals. Concretely, given any arbitrary

structure with k-sensors, let us adapt these two assumptions as follows:

1. Hierarchical Representation of signals. The signals can be captured

anywhere in the structure, but they are represented separately. As such,

treating such images would require multiple learners in parallel as no

sensor data fusion is required because each node acts as an independent

actor. Thus, multiple outputs come from k-sensory inputs forming k-

155 Chapter 6. Deep Learning for Structural Health Monitoring

possible perceptions. In this case, the invariant representation is the

atomic decomposition of each observation.

2. Conserved Entity over Time. In this case, the observable X(t) is represented

as a single entity. Assuming a bijective projection as given by Lemma 3.5.1-

4, any arbitrary signal can only be associated with that structure, no matter

where the sensors are placed. As such, k-sensory inputs can be

represented in a stack of a k-dimensional array. Consequently, treating

such images would only require a single model and thus DeepSHM would

only act as a single actor. In this case, each layer of the k-dimensional

image becomes the invariant representant of the whole observations.

The experimental design in the next sections will follow either one of the above-

mentioned assumptions.

6.3. Methodology

This section will describe the methodology used to obtain the result. The

simulation parameters to obtain a Lamb wave signal are described in section

6.3.1. Section 6.3.2 explains the data processing method while in section 6.3.3, the

input based on the assumptions of entity representation mentioned in section

6.2.2 will be explained. The training setup and parameters such as hardware and

libraries selection, loss function and hyperparameter optimization are described

in section 6.3.4.

6.3.1. Simulation Setup

I would like to give the credit for the simulation part to my research colleagues

from Saarland University, Germany: Aadhik Asokkumar, Dr. Ramanan Venkat

and Prof. Dr.-Ing. Christian Boller since many works on simulation have been

performed at the Chair of Non-Destructive Testing and Quality Assurance. As a

study case for the preliminary concept DeepSHM, the case study was based on

the previous works [Ewald et al. (2015, 2018a)] using aluminum 2024 (Al-2024)

plate, a commonly used material in aerospace fuselage structures.

Since the energy of the Lamb waves are mostly confined within the plate, they

can be efficiently used to monitor a relatively large area and depending on the

wavelength, it can be between less than a meter up to several meters [Wilcox

(1998)]. Lamb waves are dispersive in nature and analytically the dispersion

phenomenon can be expressed in terms of a wavenumber vs frequency relation

[Rose (2014)], from which relationships such as phase velocity vs frequency and

group velocity vs frequency, as shown in Fig. 6.3.1-1 (left and right, respectively),

can be derived. To save computational resources, the size of the aluminum plate

is limited to 600 x 400 x 2 mm. Additionally, a crack with a full-length of 2a is

assumed to grow from the rivet hole which is located at 400|200 mm, as depicted

in Fig. 6.3.1-2.

156 Chapter 6. Deep Learning for Structural Health Monitoring

Fig. 6.3.1-1: Dispersion diagram for Aluminum 2024 with a thickness of 2 mm. Red: Symmetric

modes Blue: Anti-symmetric modes. The dispersion curves are generated using the German

Aerospace Center (DLR) dispersion calculator [Huber (Online)]

Fig. 6.3.1-2: Sensor positions are numbered from 1 – 8. The coordinates of each sensor position are

written in brackets. A is the actuator and H are the rivet holes. All dimensions are expressed in mm.

The sensor locations are numbered from 1 – 8.

The half-crack length including the notch is denoted as a, which is measured

from the center of the rivet hole. Due to space constraints, only three crack

growth scenarios are demonstrated. They vary from 0 mm (pristine plate) up to

200 mm length which is assumed to be the critical crack length acrit. The total

crack length 2a in percentage as a proportion of 200 mm is presented for multiple

classification scenarios in Table 6.3.1-1.

Table 6.3.1-1: Classification scenarios with different percentage of crack length with reference to

acrit = 200 mm

Scenario 1
6 damage classes:

Baseline – 20% – 40% – 60% – 80% – 100% of acrit

Scenario 2
9 damage classes:

10% – 20% – 30% of acrit with varying angle (0°, 15°, and 45°)

Scenario 3
15 damage classes:

Combination of scenarios 1 and 2

157 Chapter 6. Deep Learning for Structural Health Monitoring

To determine the hotspot sensing location, the previously developed blob

detection algorithm [Ewald et al. (2018b)] was used. The algorithm to obtain the

fused image of the wave propagation as depicted can be downloaded from the

Github repository. The two sensing locations of the centroids with maximal blob

area were used: at 1). 360|200 mm and 2). 510|200 mm. To compare the training

performance, we can assign additional random sensing locations (numbered as

location 3 – 8), see Fig. 6.3.1-2.

In each simulation, there are two sub-simulations running: 1). The Lamb wave

propagation in the mechanical regime, and 2). The piezoelectrical conversion

from the mechanical regime into the electrical regime. Sub-simulation 1 runs only

once because there was only one plate, however, sub-simulation 2 will take a

longer time as the number of sensor position increases. Depending on the number

of assigned PZT locations, the total simulation time varies between 6 – 12 hours.

Since there are 6 crack length classes (including the baseline) in scenario 1, 6

simulations must be performed, which will take at least 36 hours to complete.

Accordingly, the complete scenario took approximately 54 hours to complete on

an Intel Core i7 processor and 32 GB RAM.

To reduce the simulation time and to ensure that there was enough space in our

hard drive, in the simulation of scenario 1, only the sensors located at positions 1

– 4 are simulated, as the classification scenarios for the crack lengths are more

distant from each other (i.e., the simulation request in sensor location 5 – 8 was

disabled). In scenario 2, however, classifications become more difficult because

sensor signals from a plate with 10% acrit are similar to the one of 20% acrit, so I

simulated the response from all 8 sensor positions, making each simulation twice

longer due to the FE calculation of additional electromechanical conversion in

the position 5 – 8. The combined sensor data from scenarios 1 and 2 are made into

scenario 3, although due to the lack of the data of the other 4 sensors (i.e., sensor

locations no. 5 – 8), only the 4 sensors data with the same location from scenarios

1 and 2 (i.e., sensor locations no. 1 – 4) could be used.

To generate the Lamb waves using the piezoelectric effect in the numerical

model, COMSOL Multiphysics was used. The PZT has a diameter of 9.52 mm and

a thickness of 1 mm, respectively. The material properties are Young modulus E =

73.1 GPa, Poisson's ratio μ = 0.33 and density ρ = 2780 kg/m3 [Bauccio (1993)]. In

COMSOL, the predefined PZT properties (orthotropic, Type 5A) are defined as

follows (values in GPa): C11 = C22 = 120.35; C33 = 110.88; C44 = C55 = 21.05; C66 = 22.58;

C12 = C13 = C23 = C21 = C31 = C32 = 75.1; the coupling matrix values are as follows

(values in C.m-2): e15 = e24 = 12.3; e31 = e32 = -5.35; e33 = 15.78; and the relative

permittivity matrix elements are as follows: ε11 = ε22 = 919.1 and ε33= 826.6 with

density ρ = 7750 kg/m3. The excitation pulse is a chirped Gaussian pulse with a

central frequency of 310 kHz and bandwidth of 100 to 500 kHz.

To fulfil the Courant-Friedrichs-Lewy condition [Duczek et al. (2014)], a sampling

frequency of 10 MS/s, which is 20 times above the Nyquist frequency to ensure

158 Chapter 6. Deep Learning for Structural Health Monitoring

there are enough sampling points. This approach has been already validated by

the time of arrival method and a previous experiment [Taltavull (2017)].

The simulation was modeled without considering external environmental

influences, and human factors, which results in an identical output signal every

time the simulation is repeated. As a data augmentation technique, a random

white Gaussian noise was added to the sensor signals to make them closer to the

signals obtained from an experiment. This method is demonstrated with a sensor

signal obtained from the simulation in Fig. 6.3.1-3, from which we can consider

that an SNR of 15 is quite noisy and an SNR of 25 to resemble a typical non-

averaged signal measured from an experiment.

Fig. 6.3.1-3: Example of simulated signal without noise, with SNR = 15 (green) and SNR = 25 (blue)

6.3.2. Data Pre-Processing

This section covers the pre-processing method for the Lamb wave signal

generated through the simulation described in section 6.3.1. As mentioned, zero-

mean noise was used to simulate external dynamic disturbances with varying

SNR between 5 and 25. Note that zero-mean noise is used for a simplification and

that the purpose of this work is not focused on the data augmentation technique,

i.e., once a better noise representation is available, it can be used in a future study

to generate a more realistic simulated signal.

The signals from the sensors can be transformed from a 1D representation (time

domain signal) into a 2D Time-Frequency representation (TFR) and signals from

each crack condition will result in distinct images that can be fed into a CNN.

There are quite a few methods that can be used to perform TFR for Lamb waves.

The reassignment method is a technique used in TFRs to sharpen and to localize

the frequencies nearer to their true regions along time of the signal [Niethammer

et al. (2001)]. Therefore, we used the reassignment method implemented on Short

Time Fourier Transform (STFT) in the Github repository of [Fedotenkova (2016)].

An example of such a transformation is shown in Fig. 6.3.2-1.

Fig. 6.3.2-1: Example of normalized reassigned STFT. Black pixel signifies an STFT coefficient

around 0 and it contains mostly noise and no meaningful information, where the white pixel

represents an STFT coefficient close to 1, which contains the waveform information.

159 Chapter 6. Deep Learning for Structural Health Monitoring

6.3.3. Entity Representation

The entity representation is described in section 6.2.2 and there are two

assumptions that can be made: 1). The entity is hierarchically represented over

smaller sub-entities, and 2). The entity is conserved over time. This sub-section will

describe how to represent the entity in each way.

6.3.3.1. Hierarchical Representation in Multiple Sensor

The analogy of a hierarchical representation of human face recognition is that a

face consists of eyes, mouth, noses, ears, chin, etc. The eye consists of an eyebrow,

pupil, iris, sclera, etc. In-line with this analogy when a larger entity can be broken

down into smaller sub-entities, we can randomly sample the signal over a certain

time window W and then pre-process the randomly sampled sequence by the

method described in section 6.3.2.

Examples of randomly sampled TFRs from a sensor that is located at 51|20 cm in

an undamaged aluminum plate are depicted in Fig. 6.3.3.1-1a – d, where in these

figures, W is varied between 20 and 320 µs and thus corresponds to a varying

image size between 200 and 3200 pixels in length and between 7 and 253 pixels

in width. The width represents the STFT coefficient of the frequency component.

Applying a smaller window length would imply the probability that certain

features that occur in other classes increase, leading to a higher invariant

estimate. For data augmentation, the invariant transformation would be shifting

the features to the left or right to represent small sensor displacements.

Fig. 6.3.3.1-1: Spectrogram of randomly sampled signals from the sensor that is located at 51|28 cm

over a convolution window length W of a). 20 µs, b). 40 µs, c). 80 µs, and d). 160 µs. 1 µs input length

corresponds to 10 input samples. Sampling frequency = 10 MHz. The meaning of greyscale color

scaling is analogous to Fig. 6.3.2-1.

6.3.3.2. Conserved Entity over Time

An ideal representation of the conserved time-entity signals would be a stack(s)

of pre-processed data from all possible observation points, that is all signals are

ideally captured by a grid neuron. However, this is very difficult to realize in SHM,

particularly because in SHM one would typically only have small number of

sampling observations (e.g., less than 10 sensors for a monitoring area of 1 m²).

For ultrasonic based SHM, it might be possible in the future to combine an

actuator PZT and a moving phased array (PA)-probe as a sensor that acts as a grid

neuron, where the smallest discretization unit is the size of PZT actuator.

160 Chapter 6. Deep Learning for Structural Health Monitoring

Nevertheless, we can only partially reconstruct the responses by simplifying the

conserved representation, e.g., for 3 sensors, the pre-processed data from section

6.3.2 can be visualized by stacking them together in an RGB array, depicted in Fig.

6.3.3.2-1. For 4 sensors or more, the data cannot be visualized without reducing

the information content – but it can be stacked in a k-dimensional array.

Applying a larger window length means that the probability that certain features

occur in other classes decreases (i.e., equivalent to a lower invariant estimate).

For data augmentation, the invariant transformation would be left or right

shifting the features to represent a small sensor displacement but also swapping

the channels (e.g., the red, green, and blue channels first represent sensors 1,2,3

respectively and then are swapped to represent sensors 2,3,1 respectively). The

reason for this channel equivalence is because the feature representations of

each channel will be summed together before being passed through to the next

layer. To simplify: what would be the perception difference in hearing music

when the left and right speaker of a stereo headset are turned around?

Fig. 6.3.3.2-1: Feature representation of merged input signal from 3 sensors channeled in RGB array.

6.3.4. Training Setup and Parameters

6.3.4.1. Hardware

The analysis was performed on a standard TU Delft PC, which is a Dell Precision

T5810 running with Intel Xeon(R) E5-1620 3.5 GHz and 32 GB DDR-RAM running

on Windows 10 which is equipped with an additional NVidia GPU GeForce

GTX1080Ti to increase the computational performance. At the time of purchase

(June 2018), the graphic card had the highest performance on the end-user

market. At that time, this was sufficient large-scale GPU such as the NVidia DGX-

2 or the cloud services such as Azure or Amazon AWS. Another alternative for

training a deep neural network would be a Field Programmable Gate Array

(FPGA) as it promises even faster processing, but it would require hardware

customization which is out of scope of this project.

6.3.4.2. Software and Libraries

At the time the experiment made (mid-2018), the software selection was decided

for the de-facto market leader TensorFlow (developed by Google) and the Keras

Wrapper API because they were the richest libraries available on Python market.

An alternative library such as PyTorch is also available, albeit it was less rich than

161 Chapter 6. Deep Learning for Structural Health Monitoring

TensorFlow, but recently gaining its popularity among the deep learning

academics due to its simpler syntax. Some “academic friendly” scripting
languages such as MATLAB and Julia have also launched their own GUI-based

deep learning toolbox, making it is even more practical to use.

6.3.4.3. Optimization

Training a neural network is NP-hard and a hyperparameter grid search would

take non-polynomial effort, so we shall prioritize converging iterative methods

over search metaheuristics given the high dimensionality of parameters θ. When

talking about converging iterative methods, the natural choice for a high-

dimensionality of θ would be the 1st order methods, also known as the gradient-

based method which is a single-dimensional Jacobian. Involving any second-

order methods (i.e., involving Hessian matrix) would likely be able to solve the

problem faster than gradient-methods, however as there is no such thing as a free

lunch, the Hessian method would also a require much larger amount of

computational space (i.e., RAM/memory).

Among the 1st order methods, some popular techniques are (L)-BFGS [Morales

(2002)], Gauß-Newton [Shalev-Shwartz and Ben-David (2014)], the (steepest)

gradient descent [Ruder (2016)], and Levenberg-Marquardt [Zayani et al. (2008)].

Like other libraries, currently only the gradient descent methods are

implemented in Keras. The native optimizer is called stochastic gradient descent

(SGD) with variable batch training size which supports momentum and Nesterov

acceleration [Botev et al. (2017)] as given in Eq. (6.3.4.3-1) to escape local minima.

θδ γ δ η θ γ δ
θ θ δ

1

1 1

()
t t t

t t t

J

(6.3.4.3-1)

In Eq. (6.3.4.3-1), δt+1 is the update vector for parameter θ at iteration t+1, η is the

learning rate, J is the assigned cost function and γ is the momentum which is

typically set to 0.9 [Srivastava et al. (2014)]. There are more optimizers available

in Keras such as RMSProp, adaptive moment estimate (Adam) and its variants

(Adagrad, Adadelta, Adamax, Nesterov-Adam). More detailed explanations of

these techniques can be found in Keras documentation as well as [Géron (2017)].

6.3.4.4. Neural Network Architectures and Optimizers

The convolutional filter of CNN is designed to capture spectrotemporal features

of the TFR and after that, the learned filters are fed into a fully connected layer

(MLP). Without capturing the spectrotemporal features, the information

coherence within a certain time-frequency window will be lost. To demonstrate

that spectrotemporal features are learned during the training, we must compare

the training results from CNN+MLP and pure MLP architectures without

convolutional kernel for each of the 3 different classification scenarios.

Analogous to neural network parameters optimization, finding a suitable

network architecture has an NP-hard property since the architecture

162 Chapter 6. Deep Learning for Structural Health Monitoring

combinations are infinitely extendable and unfortunately, there is no strict rule

to design the number of layers. Nevertheless, given the theoretical detail

regarding function capacity in chapter 3, the network should be designed as

compact as possible. Thus, it would be logical to start the choice of architecture

with the less complex series. Therefore, the previous architectures from previous

work [Ewald (2019)] are re-used, as described in Table 6.3.4.5-1.

Table 6.3.4.5-1. Neural network architectures used. C(i): i-filter convolutional kernel; MP:

MaxPooling layer; DO(j): dropout regularization with rate of j; D(k): dense (fully connected) layer

with k-neurons, CL: Classification layer

The utilization of more sophisticated CNN such as VGG-16 [Simonyan and

Zisserman (2014)], inception layers [Szegedy et al. (2015)], or ResNet [He et al.

(2016)] are out of scope of this work.

The sample code can be cloned from the repository [Github (online)]. For training

purposes, the data should be normalized between 0 and 1 to avoid an exploding

gradient. For a deep neural network, it is recommended to always activate the

dropout regularization and according to [Srivastava (2014)], 0.5 is the best rate

found. The default parameter for the optimizers is presented in Table 6.3.4.5-2.

Table 6.3.4.5-2. Default optimizers parameters in Tensorflow library. η: Learning rate, γ: neural

momentum, ηdecay: learning rate decay, NESTEROV: Nesterov momentum parameter, β1, β2:

exponential decay rate for 1st and 2nd moment estimates.

6.4. Training Result

The training results for the given parameters in section 6.3.3 are presented in this

section and are organized as follows:

• In section 6.4.1, the results and discussion for modelling DeepSHM as a

hierarchical entity, as discussed in section 6.3.3.1, are presented, where the

discussion includes the training results trained under both the SGD and

Adam optimizers for different sensing locations in each given damage

case scenario for variable window length.

• In section 6.4.2, the results for modelling DeepSHM as a conserved entity,

as discussed in section 6.3.3.2, that gets the input from fused sensor data,

are presented. In this case, the training results for different sensing

locations will be given, however as a consequence of the assumption of the

conserved entity over time, only the full window length can be used.

For sake of brevity, the training samples are limited to only 100 samples per class

to see the network behavior. During the trial-and-error phase, I actually tried

with 1000 samples first, but it took too long for preprocessing (about 2 days per

MLP D(128)-DO(0.5)-D(16)-CL

CNN
C(8)-MP-DO(0.5)-C(16)-MP-DO(0.5)-C(32)-MP-DO(0.5)-D(16)-

DO(0.5)- CL

SGD η = 0.01, γ = 0.0, ηdecay = 0.0, NESTEROV = FALSE

Adam η = 0.001, β1 = 0.9, β2 = 0.999, ε = 10-8, ηdecay = 0.0, AMSGrad = FALSE

163 Chapter 6. Deep Learning for Structural Health Monitoring

dataset). In our case, the input size varied between 251 x 7 pixels up to 4101 x 247

pixels, depending on the dataset generated.

6.4.1. Results of Hierarchical Representation

6.4.1.1. Influence of Network Architecture and Sensor Locations

To demonstrate the superiority of CNN in comparison to multilayer perceptron

(MLP) to handle spectrotemporal data, first the training result of MLP handling

the training set is presented. The MLP is trained for all the damage scenarios given

in Table 6.3.1-1 with various reserved memory from 800 to 3200 input samples.

For brevity, only the training results for the training and validation datasets from

the presumably best sensor location are shown, which is the sensor at location 2

(cf. Fig. 6.3.1-2). For simplification, the training process will be limited up to 50

epochs only. The training results are depicted in Fig. 6.4.1.1-1a – f.

Fig. 6.4.1.1-1a – f: Training results of MLP for signal from sensor 2 with various window length

trained under Adam and SGD optimizer up to 50 epochs. 1 µs input length corresponds to 10 input

samples. VACC = Final validation accuracy, VLOSS = Final Validation Loss. Note that the scaling is

not uniform due to the default library settings.

SGD and Adam optimizer shall be compared in this case. Adam uses the adaptive

learning rate from the moments of the gradients estimates thus it is generally

faster in finding the gradient path in the beginning epochs and keeps an

exponentially decay of prior gradients average. On the other side, SGD is slightly

a). MLP Scenario 1, Sensor 2, SGD, Length = 80 µs
VLOSS: 3.7699 – VACC: 0.5500

b). MLP Scenario 1, Sensor 2, Adam, Length = 80 µs
VLOSS: 6.9666 – VACC: 0.2417

c). MLP Scenario 1, Sensor 2, SGD, Length = 160 µs
VLOSS: 3.1631 – VACC: 0.6500

d). MLP Scenario 1, Sensor 2, Adam, Length = 160 µs
VLOSS: 2.1606 – VACC: 0.4833

e). MLP Scenario 1, Sensor 2, SGD, Length = 320 µs

VLOSS: 13.4317 – VACC: 0.1667

f). MLP Scenario 1, Sensor 2, Adam, Length = 320 µs
VLOSS: 13.4317 – VACC: 0.1667

164 Chapter 6. Deep Learning for Structural Health Monitoring

slower in finding an optimal gradient in the beginning epochs as it only computes

the gradient without the estimate approximation.

For a general training purpose, Adam is therefore recommended as it can find the

gradient path faster. From Fig. 6.4.1.1-1a – b, for a window length of 80 µs, it can be

seen that the MLP model quickly overfits regardless of the optimizer used. While

the training accuracy reaches almost 1.0 (or 100%) in Fig. 6.4.1.1-1a – b, it can be

seen that the validation accuracy stays below 0.6 (or 60%). This behavior is

confirmed again in Fig. 6.4.1.1-1c – d, where the window length was extended to

160 µs and in both cases, the difference between training and validation accuracy

is more than 35%.

When the window length was extended once more to 320 µs (see Fig. 6.4.1.1-1e – f),

only a constant flat line over the whole training epoch was reached, meaning that

the GPU was overloaded. This problem can be solved by adding more physical

memory by using a better GPU until it meets a larger input dimension where we

start another loop of using a more powerful GPU. With such an unacceptable

training behavior, it is decided not to further proceed with exploiting the MLP

since a simple MLP would highly be likely to fail to capture a spectrotemporal

feature due to its lower function capacity.

For the CNN architecture, the CNN was kept with 3 hidden convolutional layers

attached to the same MLP. Then, each convolutional layer was followed by

pooling and dropout layers as described in Table 6.3.4.5-1. In general, the network

may learn the pattern representation after long training, however in reality, we

always have a time-cost limit, and a training budget threshold must be

determined depending on application and budget resources. To demonstrate a

simplified training budget, assume limit the training epochs to 50. The training

results from CNN trained both under Adam and SGD optimizer for damage

scenario 1 (Table 6.3.1-1) are depicted in Fig. 6.4.1.1-2a – h, where in this case the

CNN is trained to distinguish 6 different damage classes including one from the

baseline.

a). CNN Scenario 1, Sensor 1, Adam, Length = 320 µs

VLOSS: 0.2251 – VACC: 0.9667

b). CNN Scenario 1, Sensor 1, SGD, Length = 320 µs
VLOSS: 0.1674 – VACC: 0.9917

c). CNN Scenario 1, Sensor 2, Adam, Length = 320 µs

VLOSS: 0.0289 – VACC: 0.9850

d). CNN Scenario 1, Sensor 2, SGD, Length = 320 µs
VLOSS: 0.0563 – VACC: 0.9917

165 Chapter 6. Deep Learning for Structural Health Monitoring

e). CNN Scenario 1, Sensor 3, Adam, Length = 320 µs
VLOSS: 0.4638 – VACC: 0.9250

f). CNN Scenario 1, Sensor 3, SGD, Length = 320 µs
VLOSS: 1.3220 – VACC: 0.5167

g). CNN Scenario 1, Sensor 4, Adam, Length = 320 µs

VLOSS: 0.3490 – VACC: 0.9417

h). CNN Scenario 1, Sensor 4, SGD, Length = 320 µs
VLOSS: 0.1336 – VACC: 0.9917

Fig. 6.4.1.1-2a – h: Training results of CNN for signal from sensor 1 – 4 in scenario 1 with window

length of 320 µs trained with Adam and SGD up to 50 epochs. Sensor locations are given in Fig. 12.

1 µs input length corresponds to 10 input samples. VACC = Final validation accuracy, VLOSS =

Final Validation Loss. Note that the scaling is not uniform due to the default library settings.

The highest validation accuracy reached was 0.9917 (or 99.17%) from data

captured by sensors 1, 2, and 4 when optimized by SGD, while the lowest

validation accuracy reached was 51.67% from data captured by sensor 3.

However, when using Adam, the highest validation accuracy reached was

98.50% from data captured by sensor 2 (which is presumably the best sensor

position) followed by 96.67%, 94.17%, and 92.50% for sensors 1, 4, and 3,

respectively. Because the Adam optimizer yields a better result than the SGD,

from this point on, only the result of the trained network under Adam optimizer

will be shown.

For the classification of damage scenario 2, the PZT response was also simulated

from sensor locations 5 – 8, because in this scenario, the CNN is trained to classify

less distinguishable signals from each class as per Table 6.3.1-1. Normally, more

sensor responses would give an advantage because there is more data available.

Nevertheless, for brevity only the training results using Adam optimizer from

sensor location 1 – 4 in Fig. 6.4.1.1-3a – d are shown, which can be directly

compared to Fig. 6.4.1.1-2a, c, e, and g, respectively.

The results depicted in Fig. 6.4.1.1-3a – d met the expectation because validation

accuracy is on average lower than in scenario 1, ranging from 32.22% in sensor 3

(where it also overfits – see Fig. 6.4.1.1-3c and sensor 3 is one of the worst PZT

sensing locations) to 93.33% in sensor 1, depicted in Fig. 6.4.1.1-3a which is one of

the best PZT sensing locations. This is to be expected, because if we look closely

into scenario 2, it can be easily assumed that the TFR signal from the baseline

plate and the damaged plate with a smaller crack length (e.g., only 10% acrit) and

smaller deviated angle (i.e., 15°) are likely to be similar to each other, especially

because the recording length was short (320 µs). Thus, the neural network would

not be able to distinguish these TFR.

166 Chapter 6. Deep Learning for Structural Health Monitoring

Nevertheless, unlike classical signal processing, the TFRs from better sensing

locations such as sensor positions 1, 2, and 4 were able to be trained to reach a

better validation accuracy (Fig. 6.4.1.1-3a, b, and d). As a side note, by doubling or

even quadrupling the window length from 320 µs to 640 µs or 1280 µs, I believe the

neural network will be very likely to be able to learn the distinguishing pattern

between the TFR and thus further increase the validation accuracy. This is

because in the later time-series response, the wave scatter from the crack would

eventually travel through sensor location 3, too.

While this might be an advantage of deep learning over classical signal

processing, recall that doubling or quadrupling the. window length would

require double or quadruple the amount of data storage. If one TFR image takes

up 2 MB, doubling this would mean at least 4 MB. For small-scale research, this is

surely not a problem but scaling this up on industrial level would mean double or

quadruple the required investment for data storage. So, to be fair we shall not

forget that in classical signal processing, multiplying the data storage might not

be necessary.

a). CNN Scenario 2, Sensor 1, Adam, Length = 320 µs

VLOSS: 0.5129 – VACC: 0.9333

b). CNN Scenario 2, Sensor 2, Adam, Length = 320 µs
VLOSS: 0.5204 – VACC: 0.8833

c). CNN Scenario 2, Sensor 3, Adam, Length = 320 µs
VLOSS: 1.8719 – VACC: 0.3222

d). CNN Scenario 2, Sensor 4, Adam, Length = 320 µs
VLOSS: 0.8863 – VACC: 0.7278

Fig. 6.4.1.1-3a – d: Training results of CNN for signal from sensor 1 – 4 in scenario 2 with window

length of 320 µs trained with Adam optimizer up to 50 epochs. Sensor locations are given in Fig. 12.

1 µs input length corresponds to 10 input samples. VACC = Final validation accuracy, VLOSS =

Final Validation Loss. Note that the scaling is not uniform due to the default library settings.

As previously mentioned in Table 6.3.1-1, damage scenario 3 is just the

combination of scenario 1 (a very distinctive classification ranging from 0% –

100% length of critical crack in each 20% step) and scenario 2 (a less

distinguishable signal between each class with varying angled crack), the

training results are slightly better than scenario 2, but worse than scenario 1. Note

that in this case, only the data from the 4 sensors in scenario 2 which are located

in the same location as in scenario 1 can be added to the training set. Also, the

importance of sensor positioning is also now clearly highlighted. The training

results are depicted in Fig. 6.4.1.1-4a – d. As mentioned before, sensors 1 and 2 are

at one of the best sensing locations and thus, the validation training accuracy

167 Chapter 6. Deep Learning for Structural Health Monitoring

reached was more than 0.9 or 90% (Fig. 6.4.1.1-4a – b), while sensor 3, which is

located very far away from the crack location, only reached a validation

accuracy of 43.67% (Fig. 6.4.1.1-4c). Again, this is far from surprising, because we

can expect that at the sensing location occupied by the sensor 3, the accumulated

energy from the scattered wave from the crack to be far less than that captured

by sensors 1 and 2. The data from sensor 4, which is located close to the crack

location but not directly placed along the wave scatter propagation path, reaches

a final validation accuracy of 69.67%, as depicted in Fig. 6.4.1.1-4d.

a). CNN Scenario 3, Sensor 1, Adam, Length = 320 µs

VLOSS: 0.6909 – VACC: 0.9333

b). CNN Scenario 3, Sensor 2, Adam, Length = 320 µs
VLOSS: 0.4589 – VACC: 0.9367

c). CNN Scenario 3, Sensor 3, Adam, Length = 320 µs

VLOSS: 1.6451 – VACC: 0.4367

d). CNN Scenario 3, Sensor 4, Adam, Length = 320 µs
VLOSS: 1.1499 – VACC: 0.6967

Fig. 6.4.1.1-4a – d: Training results of CNN for signal from sensor 1 – 4 in scenario 3 with window

length of 320 µs trained under Adam optimizer up to 50 epochs. 1 µs input length corresponds to 10

input samples. VACC = Final validation accuracy, VLOSS = Final Validation Loss. Note that the

scaling is not uniform due to the default library settings.

From all these experiments, we can safely conclude that one cannot rely solely

on a deep or any other advanced machine learning algorithm to tackle a physical

limitation and thus there must be a physical intervention (such as adding more

PZT sensors until detectability convergence increases) to improve the result. The

good news is, however, that the previous work regarding the sensor placement

strategy for hotspot sensor placement using blob detection [Ewald (2018b)] can

be used because a sensor placement strategy is still needed even when applying

a sophisticated machine learning techniques such as deep learning. The bad

news on the other side is that a hotspot sensor placement strategy is still needed

– thus a design effort for an SHM sensor placement strategy is needed and there

would be a cost for this both in time and money.

6.4.1.2. Effect of the Convolution Window Length

This scenario describes the influence of the reserved convolutional window

length of the signal on the required time per training step and on the final

validation accuracy (VACC). For brevity, only the data from the best sensing

location is used, which is sensor 2. The convolutional window length varies

between 10 µs to 320 µs sampled from the full signal as previously explained in

section 6.3.3. All the scenarios are trained with Adam optimizer and to save time,

168 Chapter 6. Deep Learning for Structural Health Monitoring

the training is limited to only 50 epochs. The results for all scenarios are

summarized in Fig. 6.4.1.2-1a and Table 6.4.1.2-1, where it can be seen that at least

a window length of 200 µs is necessary to surpass a 90% training accuracy

threshold, while for the more difficult scenarios 2 and 3, a windows length of 320

µs is needed. The computation time per time step varies between around 16 ms

for TFR with up to 60 µs window length and increases quadratically as the

window length is increased as depicted in Fig. 6.4.1.2-1b.

Window
Length

[µs]

Scenario 1: 6 classes Scenario 2: 9 classes Scenario 3: 15 classes

Time /
Step
[ms]

Final
VACC

Time /
Step
[ms]

Final
VACC

Time /
Step
[ms]

Final
VACC

10 16 0.1667 14 0.1111 14 0.0633

15 16 0.1833 14 0.1111 14 0.0667

20 16 0.1500 14 0.1278 15 0.0800

25 16 0.1750 14 0.1167 15 0.0833

30 16 0.1917 15 0.1444 15 0.0733

40 16 0.2167 15 0.1556 17 0.0933

50 16 0.3000 16 0.1389 18 0.0733

60 25 0.3917 17 0.1611 20 0.0867

80 28 0.4917 18 0.2111 22 0.2300

100 24 0.5250 24 0.1811 28 0.2267

120 29 0.6000 22 0.1611 33 0.3500

160 46 0.7593 47 0.4889 54 0.3833

200 67 0.9167 68 0.5086 70 0.5600

320 185 0.9833 212 0.9044 190 0.9467
Table 6.4.1.2-1: Effect of Window Length on Training Time per Epoch and Final VACC* at 50

Epochs. *VACC = Validation Accuracy

Fig. 6.4.1.2-1: a). The relation between final validation accuracy (VACC) and reserved window

length in [µs]; b). The relation between time effort needed per training step and reserved window

length in [µs].

6.4.2. Results of Conserved Entity over Time

Now it is interesting to see the training behavior when the perception is modelled

as a single entity conserved over time. The consequence for this assumption is

that the training set consists of a k-dimensional data cube composed of multi-

layer full-length TFRs, e.g., see Fig. 6.3.3.2-1. Theoretically, the data cube should

comprise all possible layers which represents all possible responses from each

sensor. However, for brevity, the data cube is represented in 3-layers (meaning

that only 3 sensor responses are used) so that it can easily be converted into an

b) a)

169 Chapter 6. Deep Learning for Structural Health Monitoring

image and trained with the libraries (Keras and Tensorflow). While Tensorflow

can read bitmap (BMP) files, it is not recommended to convert STFT coefficient

matrix into BMP since it took too much space. Thus, a portable network graphic

(PNG) format, which is a lossless compression format, was chosen to balance

between the information richness contained in BMP and the compression

sparsity of JPEG format. Most of the ready-to-use deep learning libraries only

support a 3-channel color image because many works in which the deep learning

community are focused on using RGB images. By customizing the library, it is

possible in the future to train an arbitrarily sized dataframe in Python, such as

demonstrated by [Paoletti et al. (2018)] for classification of hyperspectral images

by using CNN. Unfortunately, those works are in general very niche and often not

made publicly accessible.

For this section, several sensor responses are combined to create the

representation. Since there are only 4 sensors in scenario 1, all possible

combinations of the training behavior of the sensor response (1;2;3, 1;3;4, 1;2;4, and

2;3;4) can be shown, as depicted in Fig. 6.4.2-1a – d. However, as there are too many

possible combinations in scenario 2, only the result of several combinations are

shown in Fig. 6.4.2-1e – h. The rest of the results are available in the dataset, or

alternatively the readers can also download the code from the repository and try

to run it. Finally, since scenario 3 is simply a combination of scenario 1 and 2, only

4 sensor responses can be shown. The corresponding training results from

scenario 3 are given in Fig. 6.4.2-1i – l.

a). CNN Scenario 1, Sensor 1;2;3, Adam

VLOSS: 1.5293e-04 – VACC: 1.0000

b). CNN Scenario 1, Sensor 1;2;4, Adam
VLOSS: 0.0021 – VACC: 1.0000

c). CNN Scenario 1, Sensor 2;3;4, Adam

VLOSS: 0.0031 – VACC: 1.0000

d). CNN Scenario 1, Sensor 1;3;4, Adam
VLOSS: 1.1921e-07 – VACC: 1.0000

e). CNN Scenario 2, Sensor 2;4;6, Adam

VLOSS: 2.1336e-06 – VACC: 1.0000

f). CNN Scenario 2, Sensor 2;6;8, Adam
VLOSS: 3.3180e-05 – VACC: 1.0000

170 Chapter 6. Deep Learning for Structural Health Monitoring

g). CNN Scenario 2, Sensor 3;5;7, Adam
VLOSS: 1.9950e-04 – VACC: 1.0000

h). CNN Scenario 2, Sensor 3;6;8, Adam
VLOSS: 9.7399e-04 – VACC: 1.0000

i). CNN Scenario 3, Sensor 1;2;3, Adam

VLOSS: 9.6724e-04 – VACC: 1.0000

j). CNN Scenario 1, Sensor 1;3;4, Adam
VLOSS: 0.0028 – VACC: 1.0000

k). CNN Scenario 3, Sensor 1;2;4, Adam

VLOSS: 0.0015 – VACC: 1.0000

l). CNN Scenario 3, Sensor 2;3;4, Adam
VLOSS: 0.0032 – VACC: 1.0000

Fig. 6.4.2-1a – l: Training results of CNN for combined signal from various sensor combination in all

damage scenarios trained under Adam optimizer up to 50 epochs. VACC = Final validation

accuracy, VLOSS = Final Validation Loss. Note that the scaling is not uniform due to the default

library settings.

From all sub-figures in Fig. 6.4.2-1, it can be clearly concluded that modelling the

SHM perception as a single conserved entity has a quickly converging training

rather than modelling the perception as hierarchically ordered but separate

entities. For the first case, it is obvious that the sensing locations now becomes the

less important issue. There are clearly several different behaviors before the

training accuracy reaches its 1.0 plateau as depicted in Fig. 6.4.2-1a – l.

My assumption regarding on why CNN was able to capture the correlated 3D-

spectrotemporal features within certain regions in spectrograms is the existence

of the correlated 3D-spectrotemporal features which turns out to be the evidence

of invariant latent [Feige (2019)] in which the estimate is proposed in Lemma 3.5-

3. It is difficult to deductively prove the applicability of this lemma because

neural network parameters can only propose correlations without explanatory

power, but for the time being this is de facto accepted in the computer science

community. A plausible explanation to my hypothesis has already been stated

previously in section 6.2.2 regarding music recognition in the human brain.

While a Lamb wave signal is not a music or a song, it is not merely random noise

either – there is an interconnection between each particle wave movement

during guided wave propagation because an acoustic wave in a continuum can

171 Chapter 6. Deep Learning for Structural Health Monitoring

be regarded as harmonic motion and thus do not fall into a sudden singularity, so

I assume the existence of locally connected spectrotemporal features between

each layer in Fig. 6.3.3.2-1. We shall be aware that this assumption is of course not

valid for randomly occurring singularities within a continuum – but normally we

never expect sudden singularities within acoustic wave signals either (except

when the sensor is broken, but that is a separate topic).

It is difficult to understand what is happening inside the deep neural network, but

I postulate that these local spectrotemporal features, while being very deeply

embedded in the CNN model, are very distinct to each other for every different

damage class. This was due to previous assumption that every different damage

class would produce a varying, non-homogenous TFR at each different sensing

location and therefore allow the neural network to easily capture these (cf.

Rademacher complexity) and learn from them after several training epochs.

Each TFR is then a special distinctive signature of each probability classes as

supported in Lemma 3.5-2.

In general, it is common to use a single-frequency centered Hann window as an

excitation wave because it would be easier to analyze the sensor response based

on single-frequency signal. As this has always been most of the case, the training

results gives evidence that it might be an advantage to try out the less exploited

and more “adventurous” chirplet-like excitation signal for Lamb wave SHM. The

training results suggest that these distinctive spectrotemporal features within the

representation that are more heavily augmented due to the quasi-chirplet

excitation in comparison to when it is excited by simple Hann window signal,

which in general produces more complex material response and thus more

complex information embedded in the signal representations that helps the CNN

to learn from this distinctive spectrotemporal information. Currently this is my

speculation, so I think that there would be a future opportunity to quantitatively

investigate this matter in more rigorous research.

6.5. Concept Validation

6.5.1. Result comparison with Random Noise Training

To deliver further evidence regarding the invariant latent, a mock-up test is set

up to compare the training behavior between 1). the simulated signal with added

white Gaussian noise with varying SNR between 5 – 15 and 2). pure Gaussian

white noise. The reason to do random noise training comes from statistical A/B

testing. Without a trial like this, we will never know whether the network actually

learns the pattern, or it merely remembers the noise behind the pattern. An

example of TFR of Gaussian white noise is depicted in Fig. 6.5.1-1. The noise was

trained under exactly the same training parameters as before and split into 6

different folders like in scenario 1.

Fig. 6.5.1-1: TFR of a white Gaussian noise with a length of 320 µs

172 Chapter 6. Deep Learning for Structural Health Monitoring

The white noise training were repeated several times and give two sample results

in Fig. 6.5.1-2a – b which depict the training behavior for a white noise signal with

a window length of 320 µs. It can be seen from Fig. 6.5.1-2a – b that the networks

failed to reach a validation accuracy of more than 60% even after 50 training

epochs, while the training accuracy reached a value much higher than the

validation accuracy.

a). 1st run of random noise modelling

b). 2nd run of random noise modelling

Fig. 6.5.1-2a – b: Sample training results of random noise modelling. Note that the scaling is not

uniform due to the default library settings.

The distance between the training and validation accuracy is relatively far

(between 20% and 40%), which is a clear sign of heavy network overfitting, yet

this is not the most important fact. What is more important to know is that it failed

to deliver a consistent result, i.e., the network did not learn anything from the TFR

pattern because there is not locally connected spectrotemporal features in the

TFR of a noise, indicating that the invariant latent assumption within the noise

group does not hold. In fact, the network simply memorized the noise. More

figures are available upon demand, or the readers are welcome to clone the

repository [Ewald et al. (2019)] to self-experiment with it.

6.5.2. Model Testing

6.5.2.1. Hierarchical Representation in Multiple Sensors

To test the validity of the models as to whether they can classify the signal or not,

a confusion matrix must be calculated. As a sample result, the test results were

shown from scenarios 1 and 2 for sensor 2 for convolutional window lengths of 80

µs, 160 µs, and 320 µs which are depicted in Fig. 6.5.2.1-1a – f, respectively. Further,

the labels “0” to “5” in Fig. 6.5.2.1-1a – c correspond to the damage condition of

scenario 1 described in Table 6.3.1-1 with “0” as the baseline and “5” as the critical
crack length acrit. The same logic applies for Fig. 6.5.2.1-1d – f from scenario 2

described in Table 6.3.1-1, where in this case, “0” is the 0°-oriented crack with a

length of 10% acrit and “8” is the 45°-oriented crack with length of 30% acrit.

a). Model test result from Scen. 1
Sensor 2, Window length = 80 µs

b). Model test result from Scen. 1
Sensor 2, Window length = 160 µs

c). Model test result from Scen. 1
Sensor 2, Window length = 320 µs

173 Chapter 6. Deep Learning for Structural Health Monitoring

d). Model test result from Scen. 2
Sensor 2, Window length = 80 µs

e). Model test result from Scen. 2
Sensor 2, Window length = 160 µs

f). Model test result from Scen. 2
Sensor 2, Window length = 320 µs

Fig. 6.5.2.1-1a – f: Model test result from scenario 1 and 2 for sensor 2 with varying window length

between 80 and 320 µs.

The labelling itself is currently not important as this can be changed in the code.

A diagonal with an average of 1.00 such as Fig. 6.5.2.1-1c corresponds to 100%

POD. In Fig. 6.5.2.1-1f (marked in red rectangle), it is obvious that the CNN cannot

correctly classify the smaller cracks, which in this case “0” is an 0°-oriented crack

of 10% acrit, whereas “1” is a 15°-oriented crack of 10% acrit. This is to be expected

since the captured signals from a setup where there are minimal differences in

crack length and orientation will be likely similar to each other. For a detailed

proof, the relative entropy and the cosine similarities between two time-series

can be calculated, however this is not the focus of this work. As the result is very

coherent to validation accuracy depicted in Fig. 6.4.1.2-1a, we can conclude that

the generalization guarantee via Lemma 6.2.1-2 [Kawaguchi et al. (2017)] holds.

6.5.2.2. Representation as Conserved Entity over Time

When modelling the feature representation in a single conserved entity, the

network does not seem to have a problem at all classifying the test data in an

accurate way with 100% POD as depicted in Fig. 6.5.2.2-1a – c. The meaning of the

labels “0” to “8” is analogous to our explanation in section 6.5.2.1.

While more test results are available, for brevity only three example results are

shown in Fig. 6.5.2.2-1a – c that depict result from scenario 2 for conserved entity

representation that fused responses from sensor 1;2;3, 1;5;7, and 2;4;6,

respectively. All other tests yield a 100% POD. Also, here I hypothesize that it

learned the locally spectrotemporal features within the entity in a more subtle

and concise way as there is more information embedded in this ‘data cube’.

a). Model test result from Scen. 2
Sensor 1;2;3

b). Model test result from Scen. 2
Sensor 1;5;7

c). Model test result from Scen. 2
Sensor 2;4;6

Fig. 6.5.2.2-1a – c: Model test results from scenario 2 for conserved entity representation that fused

different sensor responses.

174 Chapter 6. Deep Learning for Structural Health Monitoring

6.6. Conclusion

6.6.1. Summary

This chapter is an extension to the previous work [Ewald (2019)], in which the

generalized idea about diagnostics was conceptualized and then formalized as

the DeepSHM framework. In section 6.2, I elaborated my thoughts about

perception from a neuroscientific perspective incorporated into the SHM and

NDT domains, while the methodology used such as the numerical model, data

pre-processing, and neural network training are described in section 6.3. The

results and discussion are given by section 6.4, and the validation of the concept

is given by section 6.5.

6.6.2. Conclusion and Recommendation

Before making any recommendation, recall the hypothesis stated in section 6.1:

… that some of the algorithms could not make a distinction between the signals
that come from slightly similar a distribution. I hypothesized that this problem

might be overcome by:

1. Applying broadband frequency excitation since broadband excitation

frequency will normally invoke more variable wavenumber, and broader

wavelengths.

2. Varying sensing location to obtain more potential information.

Based on the results, we can state that the CNN captures more information due to

the varying sensing location and varying wavelength thanks to the chirplet-like

excitation. However, this approach encounters its limit as well, as can be seen in

Fig. 6.5.2.1-1f. It is possible to enlarge the excitation band frequency to include

more information, however this would have two drawbacks: 1). A more

expensive wideband PZT must be used, and 2). Assigning a human data analyst to

analyze such a complex signal with traditional signal processing would require

more time and it would be a disadvantage if we would like to understand and

relate meaningful signal features to the physical domain of the structure.

My recommendation is therefore to use the quasi chirp-like excitation only when

it is coupled with advanced machine learning, which in any case is already a

black-box. Employing a machine learning algorithm such as CNN requires a

quality control of both input and output. Further, the following questions were

stated the beginning:

1. How much do the varying sensing locations and the different sensing

representations of the time-frequency Lamb wave signal influence the deep

learning training behavior?

2. Given “a posteriori knowledge” from (1), what consequence can be drawn for

the engineering application in SHM and why should this approach work?

175 Chapter 6. Deep Learning for Structural Health Monitoring

Objectively I am firm that there is not a single ultimate answer, but that we can see

the highly optimally located set of sensors give the most desired training

behavior due to better response capture. On the other side, when the information

is fused first from different sensing locations, that is in the case of conserved

entity representation, it can clearly be seen that the sensing position does not

matter anymore as has already been explained in section 6.4.2.

Revisiting the term “no free lunch”, it is fair here to state that the training cost in

terms of time also increases when the network must learn more parameters. At

this moment, I believe decreasing the neural network size is the most feasible way

to make deep learning for structural diagnostics is scalable for industrial

production, with the caveat that limiting the amount of model parameters would

risk that the training would be longer. In the worst case where the size of data is

limited, this would lead into a less generalizable model. In future work, it would

be of interest to investigate the scalability level of deep learning for SHM for a

given data size, model parameters, and restrictions on physical memory.

Also, another consideration that should be discussed is the actuator position. If

the actuator position is changed, the signal representation also changes. While it

is possible to determine the damage even if the actuator position has changed, the

model needs to be changed as well. This is a limitation of deep learning where it

learns the statistical distribution from given samples. This principle applies to all

type of supervised networks such as MLP and its derivates, CNN and its

derivatives (LeNet, VGG, ResNet, etc.), recurrent and its derivates (LSTM, GRU,

RNN), etc. To ensure that the damage types from different actuator locations can

be detected, there are two possibilities:

1. A new model based on that actuator-sensor pair must be created, or

2. The training data from all possible actuator-sensor pair must be included

during the training.

It is possible to train data coming with 2 sensors only and we can expect that the

performance lies between a single sensor response and a 3-sensor response (cf.

Section 6.5.2.1 and section 6.5.2.2). As mentioned, the entity is represented via two

different perceptions:

1. The behavior of Lamb wave propagation is sampled for a single sensor and

different window lengths are applied to generate multiple perceptions,

resulting in different chopped time-series which were converted via

reassigned STFT to generate greyscale array (Fig. 6.3.3.1-1)

2. The behavior of Lamb wave propagation is sampled in n-sensor locations

(e.g., n = 3 in our case) with a full window length (full length is adjustable,

but we have 400 µs). These time-series were again converted into

reassigned spectrogram and joined together to form image in Fig. 6.3.3.2-1.

It is possible to join signals from more sensors (n > 3), but of course these

cannot be depicted as RGB images anymore.

176 Chapter 6. Deep Learning for Structural Health Monitoring

Conclusively, the second perception modelling can be regarded as the extension

of the first modelling and as academia, we might be tricked into thinking “higher
performance = better” so we will be tempted to use more and more sensors data
(n > 20) to improve performance, until we meet the big O in the time-space

complexity.

A further limitation in this current study is that only damage classification

techniques being employed. For damage localization, the label in the datasets can

be expanded with the location of the corresponding damages such as proposed

by [Hu et al. (2020), Zhang et al. (2021)] and retraining the models. In this case, the

model will be assigned to classification and regression tasks at the same time.

Computationally, this is not a problem per se. However, the availability of the

data in such case is very scarce so that the proposed DeepSHM may work well

only in the medium to long-term run when enough data is available.

For the short-term, some augmentation techniques and generative modelling

should probably be incorporated to bypass the data scarcity. For a conservative

industry like aerospace, this is a perfect pace because the industry and its people

and process are moving slowly – this will provide enough time to the major OEMs

to place a strategy on their investment and to make a right prioritization.

Source codes and online Documentation

Fedotenkova M. Available online https://github.com/mfedoten/reasspectro (Last online: FEB-
2020).

Github repository. Available online https://github.com/vewald/DeepSHM (Last online: SEP-
2020).

Keras Optimizers Documentation. Available online https://www.keras.io/optimizer (Last online:
JUL-2020).

PyTorch Documentation. Available online www.pytorch.org (Last online: AUG-2020).

Tensorflow Documentation. Available online https://www.tensorflow.org (Last online: AUG-
2020).

Literatures

Bauccio ML. ASM Metals Reference Book (3rd Ed). ASM International, Materials Park (1993).

Botev A, Lever G, Barber D. Nesterov’s Accelerated Gradient and Momentum as Approximations to

Regularised Update Descent. International Joint Conference on Neural Networks (IJCNN), 1-5
(2017).

Clayton S. Topic 10: Rademacher Complexity. In Lecture series EECS 598: Lecture on Statistical
Learning Theory. University of Michigan (2014).

Duczek S, Joulaian M, Düster A, Gabbert U. Numerical Analysis of Lamb Waves Using the Finite

and Spectral Cell Methods. Intl J for Numerical Methods in Engineering. Vol. 99: 26-53 (2014).

Ewald V, Goby X, Jansen H, Groves RM, Benedictus R. Incorporating Inductive Bias into Deep

Learning: A Perspective from Automated Visual Inspection in Aircraft Maintenance. Proc. 10th Intl
Symposium on NDT in Aerospace, Dresden, 1-9 (2018a).

Ewald V, Groves RM, Benedictus R. Transducer Placement Option of Lamb Wave SHM System for

Hotspot Damage Monitoring. MDPI J Aerospace. Vol. 5(2): 39 (2018b).

Ewald V, Groves RM, Benedictus R. DeepSHM: A Deep Learning Approach for Structural Health

Monitoring Based on Guided Lamb Wave Techniques. Proc. SPIE Smart Structures and NDE,
Denver, 1-16 (2019).

https://github.com/mfedoten/reasspectro
https://github.com/vewald/DeepSHM
https://www.keras.io/optimizer
http://www.pytorch.org/
https://www.tensorflow.org/

177 Chapter 6. Deep Learning for Structural Health Monitoring

Ewald V, Ochoa P, Groves RM, Benedictus RM. Design of a Structural Health Monitoring System for

a Damage Tolerance Fuselage Component. Proc. 7th Intl Symposium on NDT in Aerospace, Bremen,
1-9 (2015).

Ewald V, Venkat RS, Asokkumar A, Benedictus R, Boller C, Groves RM. Perception Modelling by

Invariant Representation of Deep Learning for Automated Structural Diagnostic in Aircraft

Maintenance: A Study Case using DeepSHM. J Mechanical System and Signal Processing. Vol 165:
108153 (2022).

Feige I. Invariant-Equivariant Representation Learning for Multi-Class Data. 36th Conference on
International Conference on Machine Learning (ICML), Long Beach, 1-5 (2019).

Gardner P, Worden K, Liu X. On the Application of Domain Adaptation in Structural Health

Monitoring. J Mechanical Systems and Signal Processing. Vol. 138: 106550 (2020).

Géron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’Reilly Media,
Sebastopol CA (2017).

Goldberg PW, Jerrum MR. Bounding the Vapnik-Chervonenkis Dimension of Concept Classes

Parameterized by Real Numbers. J Machine Learning, Vol. 18(2-3): 131-148 (1995).

Gormley M. Lecture 28: PAC Learning. In Lecture series 10-601: Introduction to Machine Learning.
Carnegie Mellon University (2016).

Hayo T, Frankenstein B, Boller C, Bockenheimer C. Approach to the Technical Qualification of a

SHM System in Terms of Damage Detection in Aerospace Industry. Proc. Intl Workshop Smart
Materials, Structures & NDT in Aerospace, Montreal, 1-9 (2011).

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. Proc. Conf on
Computer Vision and Pattern Recognition (CVPR), Las Vegas (2016)

Hu C, Yang B, Yan J, Xiang Y, Zhou S, Xuan FZ. Damage Localization in Pressure Vessel by Guided

Waves Based on Convolution Neural Network Approach. J. Pressure Vessel Technol. Vol. 142(6):
061601 (2020).

Huber A. Dispersion Calculator Software. Available online
https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142 Last online:
JUN-2020).

Kawaguchi K, Kaelbling LP, Bengio Y. Generalization in Deep Learning. Mathematics of Deep
Learning, Cambridge University Press, to appear. Preprint available as: MIT-CSAIL-TR-2018-014

Kim Y, Huang J, Emery S. Garbage In, Garbage Out: Data Collection, Quality Assessment and

Reporting Standards for Social Media Data Use in Health Research, Infodemiology and Digital

Disease Detection. J Med Internet Res., Vol. 18: e41 (2016).

Merck: Future of AI Challenge. Available online https://app.ekipa.de/challenges/future-of-
ai/brief (Last online: FEB-2020).

MIL-HDBK-1823A. Non-Destructive Evaluation System Reliability Assessment. US Department of
Defense, Wright-Patterson (2009).

Mitchell T. Machine Learning. McGraw-Hill, Redmond & Ithaca (1997).

Moran S, Yehudayoff A. Sample Compression Schemes for VC Classes. J Communications of the
Association of Computing Machinery (ACM). Vol. 63(3): 1-21 (2016).

Morales JL. A Numerical Study of Limited Memory BFGS Methods. J Applied Mathematics Letter.
Vol. 15(4): 481-487 (2002).

Niethammer M, Jacobs LJ, Qu J, Jarzynski J. Time-Frequency Representations of Lamb Waves. J
Acoustical Society of America. Vol.109(5): 1841-7 (2001).

Ooijevaar T. Vibration-based Structural Health Monitoring of Composite Skin-stiffener Structures.

PhD Diss, University of Twente (2014).

Paoletti ME, Haut JM, Plaza J, Plaza A. A New Deep Convolutional Neural Network for Fast

Hyperspectral Image Classification. J of Photogrammetry and Remote Sensing (ISPRS), Vol. 145(A):
120-147 (2018).

Pendleton SD, Andersen H, Du X, Shen X, Meghjani M, Eng YH, Rus D, Ang MH. Perception,

Planning, Control, and Coordination for Autonomous Vehicles. MDPI J Machines, Vol. 5(1): 1-54
(2017).

Rose JL. Ultrasonic Guided Waves in Solid Media. Cambridge University Press (2014).

Rubinstein RY, Kroese D. The Cross-Entropy Method: A Unified Approach to Combinatorial

Optimization, Monte Carlo Simulation and Machine Learning. Springer-Verlag, New York (2004).

Ruder S. An Overview of Gradient Descent Optimization Algorithms (2016). Available online
https://arxiv.org/abs/1609.04747 (Last online: FEB-2020)

Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, Cambridge (2014).

https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142
https://app.ekipa.de/challenges/future-of-ai/brief
https://app.ekipa.de/challenges/future-of-ai/brief
https://arxiv.org/abs/1609.04747

178 Chapter 6. Deep Learning for Structural Health Monitoring

Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
Proc. Intl Conf on Learning Representations (ICLR), San Diego (2014)

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to

Prevent Neural Networks from Overfitting. J Machine Learning Research, Vol. 15: 1929-1958 (2014).

Szegedy G, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going

Deeper with Convolutions. Proc. IEEE Conf on Computer Vision and Pattern Recognition, Boston
(2015).

Taltavull A. Structural Health Monitoring Solutions for Patched Metallic Aircraft Repairs Based on

Guided Ultrasonic Waves. MSc Thesis, University of Saarland (2017).

Ting KM. Confusion Matrix. In Encyclopedia of Machine Learning and Data Mining. Springer,
Boston (2017).

Valiant LG. A Theory of the Learnable. J Communications of the Association of Computing
Machinery (ACM). Vol. 27(11): 1134-1142 (1984).

Valiant LG. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a
Complex World. Basic Books Inc., New York (2013).

Wilcox PD. Lamb Wave Inspection of Large Structures Using Permanently Attached Transducers.
PhD Dissertation, Imperial College University of London (1998).

Wolpert DH. A Mathematical Theory of Generalization: Part I. J Complex Systems. Vol. 4: 151-200
(1990).

Wolpert DH. Stacked Generalization. J Neural Networks. Vol. 5(2): 241-259 (1992).

Zayani R, Bouallegue R, Roviras D. Levenberg-Marquardt Learning Neural Network for Adaptive

Predistortion for Time-Varying HPA with Memory in OFDM Systems. 16th European Signal
Processing Conf (EUSIPCO), Lausanne (2008).

Zhang S, Li CM, Ye W. Damage Localization in Plate-like Structures using Time-Varying Feature

and One-Dimensional Convolutional Neural Network. J Mechanical Systems and Signal
Processing. Vol. 147: 107107 (2021).

179 Chapter 7. Recurrent Modelling of Time-Frequency Signal

7. Recurrent Modelling of Time-Frequency Signal

This chapter partially contains the work that has been submitted as:

1. Ewald V, Goby X, Venkat RS, Benedictus R, Groves RM. On Stability of

Sequential Modelling in Data Driven Predictive Maintenance: A Study Case

Using CNN-LSTM for DeepSHM. Intl J of Structural Health Monitoring (In

Review)

Chapter 7 will be divided as follows: The introductory part will be given in

section 7.1, while the state-of-the art from which the research problems are

derived will be described in section 7.2 and a short theoretical foundation on

hybrid convolutional recurrent network will be given in section 7.3. Section 7.4

covers methodology to generate the data which includes the simulation

parameters, experimental setup, and data pre-processing methodology. The

results will be discussed in section 7.5, and finally, the conclusions of this chapter

will be given in section 7.6.

7.1. Introduction

In chapter 6, we have already seen a lengthy discussion about convolutional

neural networks (CNN) and their training & test methodology. The data treated

came from simulation and there was no experimental validation yet. The issue of

scalability has also not been addressed yet, especially for a continuous stream of

data. The objective of this chapter is to introduce recurrent modelling of time-

frequency signals, i.e., where the latent representation of the CNN is treated as

continuous input.

The previous CNN model introduced in chapter 6 poses a static behavior, i.e., it

treats the input signals of certain given lengths, despite being hardly trainable

on/for inputs of variable lengths. Practically, we will always be limited by the

current available hardware. All deep learning libraries require a memory

placeholder, that means the acceptable input size cannot be larger than the

available physical memory. To overcome this, the computer science community

has pioneered the recurrent models. As mentioned early in section 2.2.1

regarding the advances made in machine & deep learning, the two algorithms

which are currently most established (or maybe to say instead highly regarded)

& commonly employed in sequence-to-sequence modelling [Hochreiter and

Schmidhuber (1997), Cho et al. (2014), Vaswani et al. (2017), Devlin et al. (2018)]

are:

1. Recurrent neural network (RNN), with its vanilla variant, long short-term

memory (LSTM), and gated recurrent unit (GRU)

2. Transformer network various derivatives of it, such as Bidirectional

Encoder Representations from Transformers (BERT), its lighter variant

LiteBERT, and Generative Pre-trained Transformer (GPT)

180 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Unlike textbooks, which can be effortlessly scanned & provided as an input to

BERT, there is no such luxury within SHM & NDT, and even if the data happens to

be available, the lack of annotations thereof remains, simply because the world

of SHM-NDT is a relatively niche area in comparison to computer science. In this

chapter, I would like to specifically address the usage of recurrent modelling for

SHM-NDT applications.

7.2. Related work to Recurrent Modelling in Predictive Maintenance

Since most of the literatures have been covered in chapter 2, in this section only a

select works related to health monitoring is taken into consideration.

The earliest work I found for recurrent modelling for machine monitoring is from

[Zhao et al. (2016)]. They compared various machine learning models from multi-

layer perceptron (MLP), support vector machine (SVM), and shallow and deep

LSTM for treating time-series data from Computerized Numerical Control (CNC)

milling machine to predict the tool wear. As a result, they concluded that 3-layer

LSTM outperforms single layer LSTM which in turns outperforms MLP and SVM.

They further extended the work by including convoluted bi-directional LSTM to

treat the signal from the milling machine [Zhao et al. (2017)].

It is also interesting that they remarked that while a solely physics-based model

such as the Paris or Forman crack growth model have been proven to be

successful in industry, their performance is also highly tied to the “quality and

accuracy of domain knowledge about the practical mechanical systems”. Further,

they mentioned that “in real life, due to complexity and noisy working conditions,

such high-quality domain knowledge is often unavailable, which hinders the

robustness of these physics-based models” [Zhao et al. (2016, 2017)]. I also agreed

with their argument against solely-physics-based models regarding their

inability to be updated with on-line measurements, which limits the flexibility of

the applications.

Further, physics-based modelling can only consider the current known domain

knowledge, which means it needs either an update or a completely different

approach when new knowledge is discovered. While there is nothing wrong with

that, but it just highlights the evolution of scientific process. For this reason,

hybrid data-driven physics-based models, which are based on historical

measured data as decision making support tool from the online data collected

from sensors, are necessary to facilitate the Internet of Things (IoT).

[He et al. (2019)] used a 2D CNN component to detect well rod pumping system

faults and gradually changing faults, a special type of fault which only becomes

apparent once irreversible damage has occurred. The framework consisted

mainly of classifying the gradually changing state of the faults present in the

pumping system based on visual information with various viewing angles. Their

framework is depicted in Fig. 7.2-5.

181 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. 7.2-5: End-to-end 2D CNN-LSTM approach for detecting gradual changing fault in rod pump

system proposed by [He et al. (2019)].

As seen in Fig. 7.2-5, the 2D CNN extracts features from the images. The extracted

features are then amalgamated by LSTM component which enabled so-called

“indicator diagrams” to be constructed. These indicator diagrams, along with a

SoftMax classifier are used to establish a correspondence of the input data with

the type of fault that might be present. Conclusively, their result delivered

evidence of the effectiveness of the CNN-LSTM architecture in being able to learn

characteristic spatiotemporal features in order to make accurate system fault

predictions. A 1D CNN-LSTM hybrid model was also implemented by [Dang et al.

(2021)] for the development of a data-driven SHM method incorporating various

feature fusion such as the autoregressive model (AR), discrete wavelet

transforms (DWT), and empirical mode decomposition (EMD).

The work of [Shenfield and Howarth (2020)] for diagnostics and prognostics

focused on a hybrid model consisting of an RNN path and a wide first-kernel

Deep CNN (WDCNN). They claimed that this architecture is robust against

variable environmental noise and has a low cost of time for both inference &

182 Chapter 7. Recurrent Modelling of Time-Frequency Signal

training. Training & testing was carried out for 4 different RNN type variants of the

RNN-WDCNN architecture and of two simpler standard ML models. The end

results obtained conclusively demonstrated that the LSTM-WDCNN variant

performed the best across nearly the entire board of evaluations.

[Chen et al. (2020)] proposed multi-scale CNN and LSTM model (MCNN-LSTM)

to predict bearing faults given a raw vibration signal as an input. They applied 6

convolutional layers followed by 2-LSTM layers and as a result, the F1-score

varied between 95.10% to 99.45%. Further, they also tested the proposed model

with various signals with SNR ranging from −2 to 10 dB and conclude that the

average classification accuracy varies from 81.41 dB (SNR = 0) to 95.25 (SNR = 10).

A very similar idea was proposed by [Zhang et al. (2021)], in which some

finetuning and hyperparameters differ.

[Huo et al. (2021)] proposed multi-attention parallel CNN-GRU (MAPCG) fault

diagnosis by using variational modal decomposition of a rolling bearing as an

input to the network. The classification accuracy of their proposed model is

98.5% which is on average higher than other models such as pure CNN, pure GRU,

and autoencoders. Not only for acoustic emission signals, a hybrid CNN also-

LSTM architecture has been used in NDT-SHM domain for online defect

recognition in CO2-welded joint, as proposed by [Liu et al. (2018)]. The algorithm

converges at 300 epochs and the accuracy of defects detection in CO2 welding

molten pool is 94%.

Unlike pure time-domain recurrent modeling approaches such as AE signal

classification [Haile et al. (2018)], bridge vibration health monitoring [Xiao et al.

(2021)], or system temperature prediction [Mousavi and Gandomi (2021)], there

have not been many works in the SHM-NDT domain that involve hybrid CNN-

recurrent models. Thus, we can safely conclude that there is currently a lack of

usage of convoluted sequential modelling for treatment of Lamb wave signals.

Moreover, there is currently no explanation on how these sequential modelling

approaches will behave. For this reason, the purpose of this work is to:

1. Demonstrate the capability of hybrid convoluted sequential modelling for

treating the spectrogram of Lamb wave signal.

2. Investigate of the stability behavior of convoluted-recurrent modelling for

variable spectrogram length

3. Perform the experimental validation of the model for the classification of

Lamb wave spectrogram signals.

7.3. Theoretical Foundation of Hybrid CNN-Recurrent Network

As we know from chapter 3, CNN is a special class of feed-forward neural

network, the hallmark of which being in the processing of data that is either

visually or topologically represented. The two main layers which perform the set

of key operations within a CNN are a convolutional layer and a pooling layer. The

convolutional layer convolves multiple filters with raw input data and generates

183 Chapter 7. Recurrent Modelling of Time-Frequency Signal

features. The 2D feature map output F resulting from the convolutional operation

is defined at pixel (i, j) as:

() () ()=  = + +(,) , (,) (,)
m n

F i j K X i j X i m j n K m n
(7.3-1)

In Eq. 7.3-1, K is the 2D convolutional kernel of size m x n, and X is the 2D input

signal. The activation function φ within the convolutional layers can be chosen

from Table 3.4.4-1, although the current most popular activation function is the

ReLU function since it offers a good balance between an accurate approximation

and the computational cost of traditional non-linear activation such as

hyperbolic tangent or sigmoid. The ReLU activation function is defined as:

  =  =
ReLu
() () max(0,)TX z z

(7.3-2)

In Eq. 7.3-2, z is the product of the transposed neural weight matrix θ and original

input signal X. Next, the activated output is passed through a pooling layer which

performs a down-sampling of the activated feature map. This yields both a slight

improvement in computational performance and a slight boost to invariance to

the transformed feature map representation [Lee et al. (2016)]. A commonly used

pooling function is the max-pooling function, which selects only the maximum

value within the feature matrix region obtained by the convolution filters. The

resulting pooling value G is given by:

() () = =  max (0,) max 0, ,
i i i i
G F K X i j

(7.3-3)

There are two ways to treat the down-sampled feature representation before it is

passed through to the FC-layer at the end of the CNN component of the network:

either via a flattening function can be employed in order to transform the input

into a 1D flattened vector, or with global pooling (GP) layer in order to preserve

the spatiality before the classification layer. In either case, the resulting classed

representation is provided as input to the fully connected layer which adjusts

feature map such that it can be input with a time-series representation to the

recurrent segment of the hybrid network. As known from chapter 3, there are

currently 3 types of recurrent network: the vanilla RNN, LSTM, and GRU. LSTM

and GRU have the advantage over RNN that both have distinctive use of memory

blocks and cell states, which are designed to deal with temporal relationships

present in data. Since LSTM and GRU overperformed the vanilla RNN, the use of

the vanilla variant will not be further discussed, and the work will focus on the

LSTM and GRU variants in this chapter. The detailed mathematical operations of

LSTM and GRU are given in Section 3.4.3.

7.4. Methodology

This section will describe the methodology used to generate the data, convert it

into time-frequency domain signal that will be used as an input, and the

184 Chapter 7. Recurrent Modelling of Time-Frequency Signal

hyperparameter configuration to train the network. There are two ways to

generate the data: via Finite Element (FE) simulation and lab experiment. Both

methods have its own advantages and disadvantages, which are summarized in

Table 7.4.1.

Simulated Data Experimental Data

Advantages:

1. Easily reproducible

2. Simulation parameters can be

fine-tuned.

3. Relatively “cheap” in terms of
physical resources, i.e., only PC

is needed as hardware.

Disadvantages:

1. Does not represent real-world

data, thus needs to be the

simulated signal noise.

2. Relatively slow to calculate the

response, i.e., highly depends

on PC specification.

3. Signal quality highly depends

on selected methodology (e.g.,

FDM vs FEM, etc.)

Advantages:

1. Close to real-world operation

data.

2. Huge amounts of data can be

easily and quickly captured

(within several minutes)

3. Only a standard PC is needed.

Disadvantages:

1. Relatively “expensive” in terms

of hardware setup (waveform

generator, PZT sensors, cables,

oscilloscope) and materials

2. Environmental conditions are

not always easily reproducible.

3. Lab & factory testing conditions

do not always represent real-

world operational condition

Table 7.4-1: Advantages and disadvantages of using simulation vs experimental data.

Since the simulation methodology has been thoroughly described in Section 6.2.1,

it will not describe in this section any further. Instead, only the methodology to

generate the data with lab equipment will be described here.

7.4.1. Experimental Validation

The geometrical and physical parameters of the aluminum plate have been

described in Section 6.2.1. For the experimental setup, the following hardware is

available at the TU Delft Aerospace NDT Laboratory: PZT sensors from American

Piezo (Material: APC-850, Ø = 9.52 mm, 1 mm thickness), standard BNC cables,

waveform generator Agilent 33500B, amplifier Agilent 33502A, Picoscope

Oscilloscope 7402, cutting machine, aluminum plate with 3 rivet holes.

The crack is assumed to start from the middle rivet hole, and it is simulated by

cutting from the middle rivet hole as only the geometrical change is of concern

here. Note that this approach is valid only for active scheduled SHM where data

is captured on-demand, i.e., thus in reality it is not suitable for online passive

monitoring. The data was captured at baseline level, and increasingly in an

incremental way at 20%, 40%, 60%, 80%, and 100% critical crack length acrit to

simulate 6 distinctive damage classes. Several photos of the experiments are

given in Fig. 7.4.1-1a – d.

185 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. 7.4.1-1: a). Position of the sensors relative to the 3 rivet holes, b). Experimental setup which

consists of an aluminum plate, PC, waveform generator, oscilloscope, and amplifier, c). Simulating

the crack propagation process with a cutting machine, and d). Setup of amplifier (top) and

waveform generator (bottom).

7.4.2. Sensor Placement

The sensor placement methodology has been described in chapter 6. For brevity

of this section, only the results for the two best sensing locations are taken:

position 1, located at (360|200) mm and 2, located at (510|200) mm. The actuator is

located at (200|200) mm, as can be seen in Fig. 7.4.2-1.

Fig. 7.4.2-1: Sensor positions are numbered from 1 – 8. The coordinates of each sensor position are

written in brackets. A is the actuator; and H are the rivet holes. All dimensions are expressed in mm.

The sensor locations are numbered from 1 – 8 and a is the half crack length.

186 Chapter 7. Recurrent Modelling of Time-Frequency Signal

7.4.3. Reassigned Spectrogram

To make a compromise between the time-resolution and frequency-resolution

while keeping both with a relatively high resolution, a reassigned spectrogram

methodology [Flandrin et al. (2002)] is used, which is based on multitaper

technique to estimate the power spectrum of a stationary signal [Thomson (1982),

Percival et al. (1993)]. As described in section 6.3.2, the reassignment method is a

technique used in TFRs to sharpen and to localize the frequencies nearer to their

true regions along time of the signal [Niethammer et al. (2001)]. Examples of the

reassigned spectrograms are given in Fig. 7.4.3-1a – d. In each figure, the first,

second, and third rows indicate the baseline signal, the signal from the damaged

plate with 2a = 40% critical crack length acrit, and the signal from the damaged

plate with 2a = 100% critical crack length acrit, respectively. The network

topology and the crack location can be seen from Fig. 7.4.2-1.

a). Sensor 1, f = 150 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row: X(2a = acrit)

b). Sensor 2, f = 150 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row: X(2a = acrit)

c). Sensor 1, f = 250 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row: X(2a = acrit)

d). Sensor 2, f = 250 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row: X(2a = acrit)

Fig. 7.4.3-1: Reassigned spectrogram for sensing location 1 and 2 with the actuation frequency f of

either 150 kHz or 250 kHz. X(2a) indicates the spectrogram of the captured signal X for the plate

with crack length of 2a. The geometrical configuration can is depicted in Fig. 7.4.2-1.

When considering the entity representation described in section 6.3.3, the signal

depicted in Fig. 7.4.3-1a can be joined together with Fig. 7.4.3-1b to create a joint

representation, known as a conserved entity over time. The result is depicted in

187 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. 7.4.3-2a. This can be analogously applied for activation frequency f = 250 kHz,

as depicted in Fig. 7.4.3-2b.

a). Sensor 1 and 2, f = 150 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row: X(2a = acrit)

b). Sensor 1 and 2, f = 250 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row: X(2a = acrit)

Fig. 7.4.3-2: Reassigned spectrogram for joined captured signal at sensing locations 1 and 2 with the

actuation frequency f of a). 150 kHz and b). 250 kHz. The nomenclature is analogous to Fig. 7.4.3-1.

The image is saved as portable network graphic (PNG) to conserve the quality of information.

In both examples, the blue channel is filled with the 0-matrix, the red channel

represents data captured by sensor 1 and the green channel represents data from

sensor 2. The convolutional operation is not affected by the color channel

assignment, however, for the consistency only the red and green channel in the

following section is used.

7.4.4. Recurrent Training Mechanism

At time tn, the reassigned spectrogram is divided into several sliding windows of

different length s = 128 pixels, 256 pixels, 512 pixels, and 1024 pixels. The size of

the input length into the network is s x spectrogram bandwidth (239 frequency

components) x number of channels (either 1 or 3). The sliced spectrogram is put

as an input into the convolutional layer of the neural network and the abstract

representation from the convolutional layer serves as an input for the recurrent

layer, which can be either LSTM or GRU. At time tn+1, the sliding windows are

moved by several strides (e.g.: 10 x-pixels, i.e.: time-component) and the

procedure mentioned before is repeated until the whole spectrogram is covered.

7.4.5. Hyperparameters Configuration

To understand the training stability of the network, we shall compare several

hyperparameter configurations:

1. Number of recurrent layers: 2 vs 4

2. Type of recurrent layers: LSTM vs GRU

3. Type of transition layers: Dense (Flatten) vs global pooling (GP)

4. Dropout rate: 0.10 vs 0.25 vs 0.50

188 Chapter 7. Recurrent Modelling of Time-Frequency Signal

The logic to use 2 vs 4 recurrent LSTM and/or GRU layers is due to the vanishing

gradient problem. In fact, LSTM and GRU are designed to tackle the problem RNN

has by slowing down the vanishing gradient. However, if more LSTM / GRU

recurrent layers are embedded, then the vanishing gradient is accelerated again

and hence becomes counterproductive against the purpose for it is intended to.

Without any dropout (i.e., 0.0) the network might be prone to overfitting, however

when the dropout is = 1, then all neuronal parameters will be reset to some

random vectors, rendering the training impossible. The goal is to find some sweet

spots between these values without exhaustive search. Note that these

combinational lists are not exhaustive, and practically it is almost impossible to

cover all possible parameters due to combinatorial variations.

7.5. Results and Discussion

This section will cover the training results for the CNN-recurrent models to

understand their training stability. As previously explained, there are two

datasets: one from simulation and the other from the lab experiments. These

training results will be discussed in sections 7.5.1 and 7.5.2, respectively. The

discussion on what essential information as well as knowledge that can be

extracted is given in section 7.5.3. Like any machine learning method, training a

deep neural network involves stochasticity and sometimes it involves some

anecdotal artifacts that might be difficult to verify a-priori. To make a conclusion,

it is therefore wise to make a slightly larger-scale training to detect any consistent

behavior rather than to focus on a certain random artifact. Some important

notation in this section with regards to the data is: single-channel spectrogram

(e.g., Fig. 7.4.3-1) denotes the converted time-series data from sensor 1 and 3-

channel spectrogram (e.g., Fig. 7.4.3-2) denotes the converted time-series data

from sensor 1 and 2. The 3rd (blue) channel as mentioned in section 7.4.3 is a matrix

filled with zero values.

7.5.1. Simulation Dataset

We start to discuss the training stability based on the selected hyperparameters

given in section 7.4. Only a single hyperparameter selection is observed at one

time while keeping the other parameters constant to isolate the observation, e.g.:

when comparing two different networks with a different number of layers, the

dropout rate and the type of layers should be kept the same. The result of training

curves can be seen from attachment A.

a. Comparison between 2-layer GRU vs 4-layer GRU, both networks have a

dropout rate of 0.10 with flattening for transition (see figures in attachment

A1 and A2):

▪ It can be observed that the training curve of 2-layer GRU behaves more

stably for a both single-channel (i.e.: Lamb wave response from single

sensor location) and a 3-channel spectrogram (i.e.: Lamb wave

189 Chapter 7. Recurrent Modelling of Time-Frequency Signal

response from 3 different sensing locations), except for a sliding

window length s = 512 pixels (Fig. A1-3).

▪ For a shorter sliding window, the training of 2 channels data converges

more quickly than that of single channel only (cf. Fig. A1-1 vs A1-5 and

Fig. A1-2 vs Fig. A1-6). This can be confirmed by looking at Fig. A1-4 vs

Fig. A1-8, although we can see that in Fig. A1-4, the convergence of the

training curve is faster than that of Fig. A1-1 and A1-2.

▪ From Fig. A2-1, we can see that training of 4-layer GRU failed for a single

channel spectrogram with a sliding window length of s = 128, while s =

512 and 1024 pixels fails after some epochs (Fig. A2-3 and A2-4,

respectively). The 3-channel spectrogram with s = 256 pixels also fails

after some epochs (Fig. A2-5).

b. Comparison between 2-layer GRU vs 2-layer LSTM. Both networks have a

dropout rate of 0.10 with flattening as transition layers (see figures in

attachment A1 and A3):

▪ It can be observed that the training of the 2-layer GRU is more stable

than the LSTM. From attachment A, we can see that only training for

single channel data with s = 512 pixels does not converge (Fig. A1-3),

while from attachment B, we can see either some very rough training

curves or that the training accuracy suddenly falls (Fig. A3-1, Fig. A3-2,

Fig. A3-5 and Fig. A3-6).

▪ For a sliding window length s = 512 and 1024 pixels for both single-

channel and 2-channel data, the difference of the training behavior

between LSTM and GRU is not significant (cf. Fig. A1-4 vs A3-4, Fig. A1-

7 vs A3-7, and Fig. A1-8 vs A3-8).

▪ Training with LSTM results in smoother training curve (cf. Fig A1-3 vs

Fig. A3-3).

c. Comparison between 2-layer LSTM with flattening and GP as transition

layers (see figures in attachment A3 and A4):

▪ No significant difference can be observed that except that for the GP

layer, the training is slightly noisier, although it successfully converges

for single-channel spectrogram with s = 256 and 512 pixels.

▪ The training failed for a single-channel spectrogram with s = 1024

pixels (Fig. A4-4), which might be due to a memory issue.

▪ The training for a 3-channel spectrogram succeeds for both GP and

flattening transition layers for s = 256, 512, and 1024 pixels (Fig. A3-6 to

A3-8 and Fig. A4-6 to A4-8, respectively). However, it can be seen that s

= 1024 pixels results in the smoothest training curve of all.

d. Comparison between 2-layer LSTM with flattening layers as transition

layer with varying dropout rate: 0.10 vs 0.25 vs 0.50 (see figures in

attachment A3, A5, and A6):

190 Chapter 7. Recurrent Modelling of Time-Frequency Signal

▪ In general, it can be observed that training with a dropout rate of 0.25 is

noisier than 0.10 and this is to be expected. At the same time, training

with a lower dropout rate would mean that there is a fair likelihood that

a dropout rate of 0.10 can also cause parameter overfitting.

▪ Training with a dropout rate of 0.25 fails for a single-channel

spectrogram with s = 128 as the window might be too short (Fig. A5-1

and A5-5), and it behaves inconsistently for s = 256, 512, and 1024 pixels

(Fig. A5-2 to Fig. A5-4), as well as for a 3-channel spectrogram with s =

128 pixels (Fig. A5-5). The training convergence for 3-channel

spectrogram starts at s = 256 pixels (Fig. A5-6 to A5-8).

▪ Training with a dropout rate of 0.50 completely fails (see Fig. A6-1 to

A6-8), likely due to the fact too many neurons are dropped in a such

way that the network could not learn anymore during the training.

7.5.2. Experimental Dataset

Analogous to section 7.5.1, the description of the result is organized in the same

manner. The difference here between Section 7.5.2 is that the dataset used is from

the oscilloscope, as described in Section 7.4.1. The result of training curves can be

seen from attachment B.

a. Comparison between 2-layer LSTM with flattening layers as transition

layers with dropout rate of 0.10 vs 0.25 (see attachment B1 and B3):

▪ It can be observed from Fig. B3-1 and B3-5 that both training curves of

the single-channel and 3-channel spectrogram with s = 128 pixels and

dropout rate of 0.25 converge, while when using the dropout rate of

0.10, the training failed as can be seen in Fig. B1-1 and B1-5.

▪ From Fig. B3-5 to B3-8, the training for all 3-channel spectrograms with

dropout rate of 0.25 successfully converge to >98% training accuracy,

while for training with dropout rate of 0.10, only the training for the 3-

channel spectrogram with s = 512 and 1024 pixels converges.

▪ The training for a single-channel spectrogram for s = 256 pixels and 512

pixels failed (Fig. B3-2 and B3-3, respectively), while for s = 1024 pixels

the curve converges to >98% training accuracy although the training

itself is very noisy (Fig. B3-4).

b. Comparison between 2-layer GRU with GP layer as transition layer and

dropout rate of 0.10 vs 0.25 (see attachment B2 and B4):

▪ From Fig. B2-1 and B2-2, it can be observed that the training for a single-

channel spectrogram with s = 128 and 256 pixels with dropout rate of

0.10 converges, while when it is increased to 0.25, the training curve

became very noisy.

▪ From Fig. B2-5 to B2-7, it can be observed that the significant difference

in training the 3-channel spectrogram for s = 128, 256, and 512 pixels,

191 Chapter 7. Recurrent Modelling of Time-Frequency Signal

respectively, lies in the noisiness of the training. However, when

training the 3-channel spectrogram with s = 1024, it failed.

▪ From Fig. B2-3, B2-4, B4-3, and B4-4, it can be seen that training the

single-channel spectrogram with s = 512 pixels and 1024 pixels with

dropout rate of 0.10 and 0.25 failed.

c. Comparison between 4-layer GRU vs LSTM, both networks had a dropout

rate of 0.25 and a GP layer as a transition layer (see attachment B5 and B6):

▪ The training for both 4-layer GRU and LSTM fails in for all single-

channel spectrogram of all window lengths (s = 128, 256, 512, and 1024

pixels) as depicted in Fig. B5-1 to B5-4 and B6-1 to B6-4, respectively.

▪ On the contrary, when training a 3-channel spectrogram with a 4-layer

GRU, the accuracy goes well above > 98% (Fig. B6-5 to B6-8) for all

window lengths (s = 128, 256, 512, and 1024 pixels) albeit some noisiness

in the training but this is to be expected since the 4-layer recurrent

network is more difficult to train.

▪ In the meanwhile, only the training with 4-layer LSTM for the 3-

channel spectrogram with s = 512 and 1024 pixels converged (Fig. B5-7

and B5-8, respectively), while it failed to converge when s = 128 and 256

pixels (Fig. B5-5 and B5-6, respectively).

d. Comparison between 2- vs 4-layer LSTM with dropout rate of 0.25 and GP

layer as transition layer (see attachment B3 and B5):

▪ The training of the single-channel spectrogram with a 4-layer LSTM

failed for all window lengths (s = 128, 256, 512, and 1024 pixels) as

depicted in Fig. B5-1 to B5-4, while only the training with a 2-layer LSTM

for a single-channel spectrogram with sliding window length of 128

pixels was successful (Fig. B3-1).

▪ It can be observed that training the 3-channel spectrogram with a 4-

layer LSTM only starts to converge when the spectrogram has the

window length s = 512 pixels (Fig. B5-7 and B5-8).

▪ Finally, the training of 3-channel spectrogram was successful for 2-

layer LSTM in for all window lengths (s = 128, 256, 512, and 1024 pixels)

as depicted in Fig. B3-5 to B3-8, respectively.

e. Comparison between 2- vs 4-layer GRU with a dropout rate of 0.25 and GP

layer as transition layer (see attachment B4 and B6):

▪ It can be observed that training a single-channel spectrogram with a 4-

layer GRU did not converge for all window lengths (s = 128, 256, 512, and

1024 pixels), as depicted in Fig. B6-1 to B6-4, while training 2-layer GRU

failed with window lengths s = 512 and 1024 pixels (Fig. B4-3 and B4-4)

– most likely due to a memory issue.

▪ It is worth mentioning that the spectrogram training with a 2-layer

GRU results in very noisy training behavior (Fig. B4-1 and B4-2).

192 Chapter 7. Recurrent Modelling of Time-Frequency Signal

▪ No significant difference for training 3-channel spectrogram with 2-

layer and 4-layer GRU for all window lengths (s = 128, 256, 512, and 1024

pixels) can be seen in Fig. B4-4 to B4-8 and B6-4 to B6-8, respectively.

7.5.3. Discussion

This section covers some essential observations found from section 7.5.1 and

7.5.2:

1. Comparison between the flattening function vs global pooling (GP) layer

as transition layer between the convolutional feature and recurrent part:

Using the flattening function typically results in more stable and smoother

training curve, but this is to be enjoyed with caution as it might overfit

more quickly than a GP layer. The GP layer averaged the final spatial

features and by doing so, the convoluted features become more invariant,

preventing the overfitting in the fully connected layers. At the same time,

it may also introduce more noisy training behavior.

2. The effect of varying dropout rates: a dropout rate of 0.10 generally causes

the training curve to be smoother than a dropout out rate of 0.25, and a

dropout rate of 0.25 is generally making the training curve smoother than

that of 0.50. This is general knowledge, but not in coherence with Hinton’s

group initial proposal [Srivastava et al. (2014)] that the dropout rate of 0.50

is the best. Concludingly, the guideline stating that dropout should be 0.50

cannot not confirmed as all trainings failed (attachment A6).

3. Comparison between recurrent network mechanisms: The LSTM type is

sometimes smoother than GRU when the dropout rate is set correctly, but

from what we can observe from the result, the stability difference is

minimal. The difference is only the computational memory used. Since

only a very small amount of data is trained, no noticeable difference is

observed. However, there is need for scalability study in the future.

4. The effect of the number of layers: along with general deep learning

knowledge, adding more layers allows a higher network complexity that

increases the estimation capacity (cf. Rademacher complexity and VC-

Dimension from section 3.4.1). Allowing a higher complexity will allow a

more complex pattern to be analyzed, however it also increases the

likelihood of overfitting. Therefore, steering the network robustness by

adding some regularization such as dropout is necessary to prevent

overfitting. From the results, we can see that a 2-recurrent layer network

has a better training stability than a 4-recurrent layer network. This is most

likely due to the fact that the space-time coherence is becoming “blurrier”
as the number of recurrent layers is increased. The pattern complexity

that is available in the spectrogram, be it in the single or 3-channel, is likely

to be far lower than estimation capacity of the 4-recurrent layer.

193 Chapter 7. Recurrent Modelling of Time-Frequency Signal

As a general remark, for this type of data, especially for a Lamb wave

spectrogram, the suggestion is to use 2 recurrent layers with a dropout rate

between 0.10 and 0.25. Both the flattening function and GP can be used

interchangeably, but the preference should be given for the GP as it may result

into more robust network albeit giving slightly noisier training. For the

recurrent network type, we can safely conclude that both GRU and LSTM can

also be used interchangeably except when it involves large-scale training

where the GRU might be more computationally efficient than the LSTM.

7.6. Conclusion

This chapter aims to investigate the training stability of the hybrid convoluted

sequential modelling by influencing the hyperparameters involved. The

introductory part and the state-of-the art from which the research problems are

derived is given in section 7.1 and 7.2. With briefly described theory on the hybrid

network in section 7.3 (and partially some others which were mentioned in

chapter 3), I hope to have given enough overview on the theoretical foundation,

while the research methodology was given in section 7.4. All in all, this leads to

the result and discussion given in section 7.5.

As a reiteration from the beginning, hybrid data-driven physics models based on

historical data to support decision making from the online data collected from

sensors are necessary to facilitate the Internet of Things (IoT) and we know that

due to the current limitation of non-recurrent CNN, a continuous Lamb wave

signal from an aircraft cannot easily handled as a one-shot problem, but we must

rather align to the problem nature of such signal, i.e., some sequential modelling

should be involved. Revisiting the purpose of this work given at the end of section

7.2, my conclusion is following:

1. The hybrid convoluted sequential modelling has clearly a capability to

treat the spectrogram of Lamb wave signal opening the potential not only

for application in active SHM only, but it could be used for a solution that

requires passive monitoring such as acoustic emission.

2. Based on the investigation on stability of training behavior of convoluted-

recurrent modelling for a variable spectrogram length, we can safely

confirm that training such a hybrid convoluted recurrent network is more

difficult as none of the unstable training behavior (such as in attachment

A6) occurs with non-recurrent CNN (cf. the results with chapter 6).

3. To increase the training curve stability, there is the possibility to involve

more channels in the spectrogram, although it would mean if it has more

than 4-channels, a customization for the current deep learning software

such as Tensorflow or PyTorch is needed as the image processing library

can only take PNG at most (i.e., 4-channels including the alpha layer).

194 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Attachment A

Fig. A1: Training Curves of Simulated Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: GRU Type of transition layers: Dense (Flatten)

Dropout rate: 0.10 Input: either 1 channel or 3 channels

Fig. A1-1: s = 128 pixels, Data from sensor 1

Fig. A1-5: s = 128 pixels, Data from sensors 1 and 2

Fig. A1-2: s = 256 pixels, Data from sensor 1

Fig. A1-6: s = 256 pixels, Data from sensors 1 and 2

Fig. A1-3: s = 512 pixels, Data from sensor 1

Fig. A1-7: s = 512 pixels, Data from sensors 1 and 2

Fig. A1-4: s = 1024 pixels, Data from sensor 1

Fig. A1-8: s = 1024 pixels, Data from sensors 1 and 2

195 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. A2: Training Curves of Simulated Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 4

Type of recurrent layers: GRU Type of transition layers: Dense (Flatten)

Dropout rate: 0.10 Input: either 1 channel or 3 channels

Fig. A2-1: s = 128 pixels, Data from sensor 1

Fig. A2-5: s = 128 pixels, Data from sensors 1 and 2

Fig. A2-2: s = 256 pixels, Data from sensor 1

Fig. A2-5: s = 256 pixels, Data from sensors 1 and 2

Fig. A2-3: s = 512 pixels, Data from sensor 1

Fig. A2-7: s = 512 pixels, Data from sensors 1 and 2

Fig. A2-4: s = 1024 pixels, Data from sensor 1

Fig. A2-8: s = 1024 pixels, Data from sensors 1 and 2

196 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. A3: Training Curves of Simulated Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten)

Dropout rate: 0.10 Input: either 1 channel or 3 channels

Fig. A3-1: s = 128 pixels, Data from sensor 1

Fig. A3-5: s = 128 pixels, Data from sensors 1 and 2

Fig. A3-2: s = 256 pixels, Data from sensor 1

Fig. A3-6: s = 256 pixels, Data from sensors 1 and 2

Fig. A3-3: s = 512 pixels, Data from sensor 1

Fig. A3-7: s = 512 pixels, Data from sensors 1 and 2

Fig. A3-4: s = 1024 pixels, Data from sensor 1

Fig. A3-8: s = 1024 pixels, Data from sensors 1 and 2

197 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. A4: Training Curves of Simulated Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: LSTM Type of transition layers: GP

Dropout rate: 0.10 Input: either 1 channel or 3 channels

Fig. A4-1: s = 128 pixels, Data from sensor 1

Fig. A4-5: s = 128 pixels, Data from sensors 1 and 2

Fig. A4-2: s = 256 pixels, Data from sensor 1

Fig. A4-6: s = 256 pixels, Data from sensors 1 and 2

Fig. A4-3: s = 512 pixels, Data from sensor 1

Fig. A4-7: s = 512 pixels, Data from sensors 1 and 2

Fig. A4-4: s = 1024 pixels, Data from sensor 1

Fig. A4-8 s = 1024 pixels, Data from sensors 1 and 2

198 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. A5: Training Curves of Simulated Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten)

Dropout rate: 0.25 Input: either 1 channel or 3 channels

Fig. A5-1: s = 128 pixels, Data from sensor 1

Fig. A5-5: s = 128 pixels, Data from sensors 1 and 2

Fig. A5-2: s = 256 pixels, Data from sensor 1

Fig. A5-6: s = 256 pixels, Data from sensors 1 and 2

Fig. A5-3: s = 512 pixels, Data from sensor 1

Fig. A5-7: s = 512 pixels, Data from sensors 1 and 2

Fig. A5-4: s = 1024 pixels, Data from sensor 1

Fig. A5-8: s = 1024 pixels, Data from sensors 1 and 2

199 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. A6: Training Curves of Simulated Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten)

Dropout rate: 0.50 Input: either 1 channel or 3 channels

Fig. A6-1: s = 128 pixels, Data from sensor 1

Fig. A6-5: s = 128 pixels, Data from sensors 1 and 2

Fig. A6-2: s = 256 pixels, Data from sensor 1

Fig. A6-6: s = 256 pixels, Data from sensors 1 and 2

Fig. A6-3: s = 512 pixels, Data from sensor 1

Fig. A6-7: s = 512 pixels, Data from sensors 1 and 2

Fig. A6-4: s = 1024 pixels, Data from sensor 1

Fig. A6-8: s = 1024 pixels, Data from sensors 1 and 2

200 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Attachment B

Fig. B1: Training Curves of Experimental Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten)

Dropout rate: 0.10 Input: either 1 channel or 3 channels

Fig. B1-1: s = 128 pixels, Data from sensor 1

Fig. B1-5: s = 128 pixels, Data from sensors 1 and 2

Fig. B1-2: s = 256 pixels, Data from sensor 1

Fig. B1-6: s = 256 pixels, Data from sensors 1 and 2

Fig. B1-3: s = 512 pixels, Data from sensor 1

Fig. B1-7: s = 512 pixels, Data from sensors 1 and 2

Fig. B1-4: s = 1024 pixels, Data from sensor 1

Fig. B1-8: s = 1024 pixels, Data from sensors 1 and 2

201 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. B2: Training Curves of Experimental Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: GRU Type of transition layers: GP

Dropout rate: 0.10 Input: either 1 channel or 3 channels

Fig. B2-1: s = 128 pixels, Data from sensor 1

Fig. B2-5: s = 128 pixels, Data from sensors 1 and 2

Fig. B2-2: s = 256 pixels, Data from sensor 1

Fig. B2-6: s = 256 pixels, Data from sensors 1 and 2

Fig. B2-3: s = 512 pixels, Data from sensor 1

Fig. B2-7: s = 512 pixels, Data from sensors 1 and 2

Fig. B2-4: s = 1024 pixels, Data from sensor 1

Fig. B2-8: s = 1024 pixels, Data from sensors 1 and 2

202 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. B3: Training Curves of Experimental Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten)

Dropout rate: 0.25 Input: either 1 channel or 3 channels

Fig. B3-1: s = 128 pixels, Data from sensor 1

Fig. B3-5: s = 128 pixels, Data from sensors 1 and 2

Fig. B3-2: s = 256 pixels, Data from sensor 1

Fig. B3-6: s = 256 pixels, Data from sensors 1 and 2

Fig. B3-3: s = 512 pixels, Data from sensor 1

Fig. B3-7: s = 512 pixels, Data from sensors 1 and 2

Fig. B3-4: s = 1024 pixels, Data from sensor 1

Fig. B3-8: s = 1024 pixels, Data from sensors 1 and 2

203 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. B4: Training Curves of Experimental Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 2

Type of recurrent layers: GRU Type of transition layers: GP

Dropout rate: 0.25 Input: either 1 channel or 3 channels

Fig. B4-1: s = 128 pixels, Data from sensor 1

Fig. B4-5: s = 128 pixels, Data from sensors 1 and 2

Fig. B4-2: s = 256 pixels, Data from sensor 1

Fig. B4-6: s = 256 pixels, Data from sensors 1 and 2

Fig. B4-3: s = 512 pixels, Data from sensor 1

Fig. B4-7: s = 512 pixels, Data from sensors 1 and 2

Fig. B4-4: s = 1024 pixels, Data from sensor 1

Fig. B4-8: s = 1024 pixels, Data from sensors 1 and 2

204 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. B5: Training Curves of Experimental Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 4

Type of recurrent layers: LSTM Type of transition layers: GP

Dropout rate: 0.25 Input: either 1 channel or 3 channels

Fig. B5-1: s = 128 pixels, Data from sensor 1

Fig. B5-5: s = 128 pixels, Data from sensors 1 and 2

Fig. B5-2: s = 256 pixels, Data from sensor 1

Fig. B5-6: s = 256 pixels, Data from sensors 1 and 2

Fig. B5-3: s = 512 pixels, Data from sensor 1

Fig. B5-7: s = 512 pixels, Data from sensors 1 and 2

Fig. B5-4: s = 1024 pixels, Data from sensor 1

Fig. B5-8: s = 1024 pixels, Data from sensors 1 and 2

205 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Fig. B6: Training Curves of Experimental Data with various sliding window lengths s from sensor

locations 1 and 2 with following the hyperparameters:

Number of convolutional layers: 7 Number of recurrent layers: 4

Type of recurrent layers: GRU Type of transition layers: GP

Dropout rate: 0.25 Input: either 1 channel or 3 channels

Fig. B6-1: s = 128 pixels, Data from sensor 1

Fig. B6-5: s = 128 pixels, Data from sensors 1 and 2

Fig. B6-2: s = 256 pixels, Data from sensor 1

Fig. B6-6: s = 256 pixels, Data from sensors 1 and 2

Fig. B6-3: s = 512 pixels, Data from sensor 1

Fig. B6-7: s = 512 pixels, Data from sensors 1 and 2

Fig. B6-4: s = 1024 pixels, Data from sensor 1

Fig. B6-8: s = 1024 pixels, Data from sensors 1 and 2

206 Chapter 7. Recurrent Modelling of Time-Frequency Signal

Literatures

Chen X, Zhang B, Gao D. Bearing Fault Diagnosis Base on Multi-scale CNN and LSTM Model. J
Intelligent Manufacturing. Vol. 32: 971-987 (2021).

Cho KH, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning Phrase Representations using

RNN Encoder–Decoder for Statistical Machine Translation. Proc. Conf on Empirical Methods in
Natural Language Processing (EMNLP), Doha (2014).

Dang HV, Tran-Ngoc H, Nguyen TV, Bui-Tien T, De Roeck G, Nguyen HX. Data-Driven Structural

Health Monitoring Using Feature Fusion and Hybrid Deep Learning. IEEE Transactions on
Automation Science and Engineering. Vol. 18(4): 2087-2103 (2021).

Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. Proc. 2019 Conf of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL), Minneapolis (2019).

Flandrin P, Auger F, Chassande-Mottin E. Time-Frequency Reassignment: From Principles to

Algorithms. Applications in Time-Frequency Signal Processing. Vol. 10: 179-204 (2002).

Haile M, Hsu Cu, Bradley N, Chen J. Recurrent Neural Networks for Identification of Acoustic Wave

Reflections. Proc. 9th European Workshop on Structural Health Monitoring (EWSHM), Manchester
(2018).

He Y, Liu Y, Shao S, Zhao X, Liu G, Liu L. Application of CNN-LSTM in Gradual Changing Fault

Diagnosis of Rod Pumping System. Mathematical Problems in Engineering. Vol. 2019: 4203821
(2019).

Hochreiter S, Schmidhuber J. Long Short-Term Memory. J Neural Computation 9(8): 1735-1780
(1997).

Huo Z, Yang X, Zhang T, Wang Y, Zheng Y. Multi-attention Parallel CNN-GRU Fault Diagnosis

Method for Rolling Bearing. Proc. 12th CAA Symposium on Fault Detection, Supervision, and Safety
for Technical Processes (SAFEPROCESS), Chengdu (2021).

Lee CY, Gallagher PW, Tu Z. Generalizing Pooling Functions in Convolutional Neural Networks:

Mixed, Gated, and Tree. Proc. 19th Intl Conf on Artificial Intelligence and Statistics (AISTATS),
Cadiz (2016).

Liu T, Bao J, Wang J, Zhang Y. A Hybrid CNN⁻LSTM Algorithm for Online Defect Recognition of CO₂
Welding. MDPI J Sensors. Vol. 18(12): 4369 (2018).

Mousavi M, Gandomi A. Deep Learning for Structural Health Monitoring under Environmental and

Operational Variations. SPIE Proc. Nondestructive Characterization and Monitoring of Advanced
Materials, Aerospace, Civil Infrastructure, and Transportation XV: 115920H (2021).

Niethammer M, Jacobs LJ, Qu J, Jarzynski J. Time-Frequency Representation of Lamb Waves. J
Acoustical Society of America. Vol. 109(5): 1841-1847 (2001).

Percival DB, Walden AT. Spectral Analysis for Physical Applications: Multitaper and Conventional

Univariate Techniques. Cambridge University Press, Cambridge (1993).

Shenfield A, Howarth M. A Novel Deep Learning Model for the Detection and Identification of Rolling

Element-Bearing Faults. MDPI J Sensors. Vol. 20(18): 5112 (2020).

Shi X, Chen Z, Wang H, Yeung DY, Wong W, Woo W. Convolutional LSTM Network: A Machine

Learning Approach for Precipitation Nowcasting. Proc. 28th Intl Conf on Neural Information
Processing Systems (NIPS), Montreal (2015).

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A Simple Way to

Prevent Neural Networks from Overfitting. J Machine Learning Research, Vol. 15: 1929-1958 (2014).

Thomson DJ. Spectrum Estimation and Harmonic Analysis. Proc. IEEE, 70(9): 1055-1096 (1982).

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention

Is All You Need. Proc. 30th Intl Conf on Neural Information Processing Systems (NIPS), Long Beach
(2017).

Xiao S, Qiao S, Chen H, Liu X, Li Y, Tang M, Hu H, Li G. Data Prediction Model Based on LSTM Neural

Network in Bridge Health Monitoring System. IOP Conf Series Earth and Environmental Science
668(1):012068 (2021).

Zhang X, Cong Y, Yuan Z, Zhang T, Bai X. Early Fault Detection Method of Rolling Bearing Based on

MCNN and GRU Network with an Attention Mechanism. J Shock and Vibration. Vol. 2021: 6660243
(2021).

Zhao R, Wang J, Yan R, Mao K. Machine Health Monitoring with LSTM Networks. Proc. 10th Intl Conf
on Sensing Technology (ICST), Nanjing (2016).

Zhao R, Yan R, Wang J, Mao K. Learning to Monitor Machine Health with Convolutional Bi-

Directional LSTM Networks. MDPI J Sensors Vol. 17: 273 (2017)

207 Chapter 8. Conclusion and Future Works

8. Conclusion and Future Works

This chapter will briefly summarize the content of the PhD work in section 8.1,

while section 8.2 will give the conclusions of the scientific work regarding the

utilization of computational and artificial intelligence for applications in SHM

domain. As a final word, the outlook and challenges of future AI-driven SHM

system will be given in section 8.3.

8.1. Result Summary

To conclude the dissertation, I will provide a flashback into the results obtained

during my research.

Chapter 4 of covers the assumption of the damage growth within the damage

tolerance, and the used methodology to generate and capture Lamb wave signal

within a Finite Element (FE) environment. The data processing includes color

theory, image processing, and blob detection was also given in this chapter.

While the image processing algorithm proposed is not a quantitative approach,

this technique can be regarded as a first step for studying sensor placement in a

more holistic way. The methodology proposed depicts a deterministic solution

that can be partially used for solving continuous optimization in sensor

placement problem. This solution, however, does not end there. As the

conclusion of chapter 4, the following issues were still to be addressed:

1. “Stochastic strategy for non-predictable damage location, especially for

quasi-instantaneous but abrupt-like events such as bird strike, …”

2. “Bimodal utilization of deterministic and stochastic of the network topology,

with regard to the integration of both approaches …”

Therefore, a further approach was developed in chapter 5, in which I mentioned

the important influencing physical parameters to determine the objective

function that is to be minimized. Chapter 5 covers the stochastic strategy for

sensor placement by using random search, greedy methods, genetic algorithm,

simulated annealing, and swarm intelligence, and then elaborated the results

from chapter 4 to create the bimodal topology for both predictable and non-

predictable damage locations. The experimental validation was also given in this

chapter which results in following conclusive statements:

• Global random search has logically the lowest search performance, while

GA and PSO are on par, and they have the best performance. The greedy

methodology and SA have a search performance which lies in between

GA/PSO and global random search.

• The hybrid approach that combines blob detection algorithm and search

metaheuristics is a good fit to address sensor positioning problem in active

ultrasonic SHM in a limited albeit scalable manner, especially when the

detection requirement is not too high.

208 Chapter 8. Conclusion and Future Works

• Unsurprisingly, the hybrid approach described in chapter 5 fulfills its

duty as long as the purpose of (active)-SHM is to complement NDT and not

functioning as its replacement.

In chapter 6, we saw the investigation on whether deep learning can be used to

treat the Lamb wave signal. The chapter started with the main questions: “How

does the varying sensing location and the different sensing representations of a

Lamb wave signal influence the deep learning training behavior?” and “What

consequence can be drawn for the engineering application in SHM and why should

this approach work?”. To preliminarily answer these questions, the proposition of

modelling SHM perception from a neuroscientific perspective has been made.

Also included in chapter 6 is the concept and theoretical background such as

converging the probability measure and generalization bound in deep learning.

The approach to represent the entity of the captured Lamb wave signal in the

time-frequency domain are either hierarchical (which only consists of a

randomly sampled spectrogram) or a conserved entity over time (which consists

multiple layers of spectrograms joined in an image). These entities are trained

using the parameters listed in section 6.3.4, while the training results from both

entity representations are given in section 6.4. To validate the hypothesis, a

simple A/B Testing is conducted in section 6.5. The conclusions were:

• An optimal sensor network topology will give the most desired training

behavior due to a better response capture. However, as far as we can see

from the results, when training the representation of the signals from

multiple sensing locations in one single entity seemingly outweighs the

previous assumption. Given the approximating capacity of a deep neural

network as described before, we shall actually be not surprised.

• The training cost in terms of time would increase when the network must

learn more parameters. Currently, limiting the neural network size is very

likely to be the only feasible way to make deep learning for structural

diagnostics scalable for industrial application.

Finally, chapter 6 also stated: “In the future work, it would be of interest to

investigate the scalability level of deep learning for SHM for a given data size, model

parameters, and restriction on physical memory”. Thus, this backlog was partially

tackled in chapter 7 especially by taking sequential modelling into account. The

methodology contains experimental setup, several simulation parameters, and

data pre-processing which is basically the same as in chapter 6.

Based on the conducted literature review, we can safely conclude that there have

been not many works in SHM-NDT domain that involve the hybrid CNN-

recurrent models. As of 2021, the usage of convoluted sequential modelling for

treatment of Lamb wave signal is practically limited and more importantly, there

is currently no explanation on how these sequential modelling will behave.

Section 7.5 divided the training results coming from 2 datasets: from experiment

and from simulation. In each sub-section, we saw the comparison of the training

209 Chapter 8. Conclusion and Future Works

stability by modifying several hyperparameters. Based on the results, the

conclusions of chapter 7 can be summarized as follows:

• Hybrid convoluted sequential modelling can cope with the spectrogram

of a Lamb wave signal as input, and as such it opens up the potential not

only for application in active SHM, but also for continuous monitoring

such as acoustic emission (AE). In fact, it will be even more useful to embed

the spectrotemporal capture via a convolutional kernel in the model

rather than relying only on a pure time-domain recurrent model.

• The caveat is however: from the training results, it seems that training such

a hybrid CNN-recurrent network is more difficult due to the unstable

training behavior. Further, parallelization via GPU does not help because

unlike convolutional operations that can be performed simultaneously,

recurrent network operations are designed to follow each after.

An approach to involve more channels in the spectrogram to increase the

training stability is also proposed. This would mean that if the spectrogram has

more than 4- channels, some software engineering works such as deep learning

library customization is needed.

8.2. Conclusion

To conclude this dissertation in general, let us revisit the research purpose stated

in chapter 2 which covers the state of the art in NDT & SHM and the recent

advances from the CS and ML community. This resulted into a high-level

question that should be asked from the NDT & SHM community is:

What is the feasibility of incorporating computational and artificial

intelligence as a design tool for an automated diagnostic within

predictive maintenance – and if so, in what way?

As already pointed out, to (partially) solve certain domains with the help of AI, we

shall break down the main problem into several manageable sub-problems,

commonly known as the divide and conquer strategy that has been regularly

used in many aspects of human civilization. The smaller sub-questions are:

1. “The design complexity and parameter optimization, particularly on sensor

placement methodologies for both deterministic and semi-stochastic

approach according to what extent the structure is designed based on the

premise that sensor network topology affects the damage detection capability

and the overall SHM performance, i.e., which different sensor network

topologies are needed to understand the trade-off between the strategies and

if possible, to propose a compensation technique?

Two assumptions were made to answer question 1 and they naturally came from

the structural design: A hazard in the structure can occur both in its weakest point

due to design constraints or in another location that might be less predictable due

210 Chapter 8. Conclusion and Future Works

to the stochastic nature of the environment. Consequently, the sensor network

topology problem is broken down into three possible approaches:

• For the localized problem such as hotspot damage detection, we

should maximize the sensor response based on the isolated location.

• For a statistically less predictable damage location such as hail impact,

the logical choice would be to maximize the detection area in such way

that any sudden impact will be detected on the first instance.

• In realistic world, both kinds of hazards would likely to occur. I

therefore proposed to compensate both by using the combination of

topology that have hotspot & global damage detection capability.

2. “Utilization of deep learning for SHM, i.e., an investigation as to whether deep

learning can be used to treat the Lamb wave signal – and if so, whether it has

a certain theoretical justification. What would be the pros and cons when

using deep learning to treat Lamb wave signals and what would be the

consequences for design and manufacturing of SHM system?”

To answer question 2 an assumption that a set of a labeled data is available must

be made. Within the supervised learning approach, the relevant foundation

needed to understand the concept of learning is given so that we shall know that

the high accuracy or classification performance of the deep neural network is not

merely because of network overfitting, since there is a baseline for the theoretical

guarantee as demonstrated in chapter 6. Consequently, by now we should be

aware of what deep learning can do (and what it is not). An A/B Testing is needed

to ensure that the network does not simply overfit the noise. To summarize:

• We can clearly see that the potential advantage of deep learning lies in

its relatively high performance and currently as of 2022, it is still the

best in-class for pattern recognition within supervised learning. Given

the generalization guarantee via testing and validation, we know that

at least the network is not simply memorizing the spectrogram.

• On the negative side: Speaking from my personal experience working

in industry and given the standard practice where many labelled data

are hidden (i.e., not accessible in a public repository), we shall raise the

doubt about the scalability of using the deep learning approach – not

only for Lamb wave SHM, but also for other SHM-NDT related topics.

3. “Eventually and worthy to be considered as a research direction as well: when

combining the sub-problems to reconstruct the final solution: Given a certain

sensor topology, what would the training behavior look like for different

sensors and could a philosophical aspect from neuroscientific perspective be

considered as well?”

The answer to question 3 has been largely answered in chapters 6 and 7. Chapter

discussed the training behavior from a single-layer and a 3-layered spectrogram

for a given sensor topology. Also as mentioned earlier, this chapter highlighted

the theoretical foundation which focused on the learning capacity and the

211 Chapter 8. Conclusion and Future Works

generalization gap via validation. Statistical A/B Testing was involved as well to

ensure that the network does not overfit the input.

Chapter 7 focused on the training stability of sequential modelling with varying

hyperparameters. The hyperparameter selection can be regarded either as a

guideline or an anchor for further a hyperparameter search study. The results

from chapter 6 and 7 can be summarized in the following two statements:

• The training behavior does not only depend on the network topology,

but also the approach taken as to whether the network is fed with the

whole signal representation such as ConvNet or whether it is modelled

sequentially. The latter one has generally less stable training behavior

and it takes more time to reach performance convergence, but it also

depicts the only possible modelling approach for continuous input.

• Taking the two entity representations inspired by the neuroscientific

perspective into account (i.e., hierarchical representations of entity

and conserved entity over time), the organization of the spectrogram

clearly influences the training behavior in such a way that a more

complex input pattern yields in a faster training convergence by

creating a very distinctive pattern in each probability class.

Finally, it is now the time to deliver a general conclusion for this PhD thesis. I

stated in the beginning that there is nothing as a free lunch and as a staunch

believer that there is really no such thing as a free lunch, not only in mathematics

or computer science, but literally everything, I would like to point out both the

strengths and weaknesses of employing AI and computational intelligence for

designing SHM in predictive maintenance. The strength of using AI (especially

deep learning and metaheuristics) as a design tool for SHM is:

1. From the results, it is obvious that deep learning and metaheuristics

empowered the search of design parameters, thus it is safe to say that both

techniques are suitable methods for designing sub-SHM system. Guided

by domain knowledge, it will help many aircraft designers to accelerate

their work. Note that we shall acknowledge that the domain knowledge

here is not an option, but a requirement.

2. Currently it is known that aircraft operations are not all about

maintenance since aircraft maintenance only accounts for up to 20% of

the operating expenditure (OPEX). Thus, even with a high-efficiency

functioning system (e.g., 80% man-hours reduction), the total cost saving

(TCS) from OPEX will be only account to 16%. On the bright side, this gives

an opening for the aircraft designer to adapt and/or (re)-design the future

of maintenance framework to include AI & computational intelligence

elements.

As always, with good news, there must be some bad news since otherwise our life

might become too easy:

212 Chapter 8. Conclusion and Future Works

1. On the practicality aspect, some assumptions such as that data labels must

be available is quite difficult to be fulfilled, if not absurd. While in-flight

sensor data is typically available, they are mostly hidden and restricted to

the OEM and getting an access to it another step of bureaucracy. As there

is no to little public data available, the further development on using AI for

SHM in aircraft maintenance will probably be hindered since it lacks

(open) community support.

2. Generally, as for many other AI techniques in other domains, the design of

SHM by involving deep learning and/or metaheuristics is not immune

from the computational capacity problem, thus the question of scalability

is not yet answered since it was not the part of my PhD research.

8.3. Research Outlook

Looking forward, an approach using AI might not be yet ripe enough at a scalable

level for industrial demand, however the good news is that there are still many

challenges that lie ahead, and this shall not prevent further research and

development. In fact, such challenges open a new research direction and will

further encourage more science and engineering knowledge exploration. Within

the short- to medium-term from an academic perspective (i.e., within 5 – 10 years

although this is typically regarded as medium- to long-term from industrial

perspective), the outlook I can describe given the general conclusion in section

8.2 and considering the strength and weaknesses of employing ML/CI in SHM

system design indicates 2 possible future work directions:

1. On the scientific side, I suggest that future research should include a semi-

supervised approaches to generate more data labels from the known

probability distribution. However, as it combines both supervised and

unsupervised approach, another theoretical guarantee beyond the PAC

framework and the generalization guarantees via validation that

encompasses both learning methods, must be taken into consideration as

well.

2. On the application & engineering side: we shall put a tremendous research

effort on scalability that encompasses the interface between big data

management, software engineering, and SHM system as Internet-of-

Things (IoT) solution in order to prevent that the previous efforts stay only

within labs and/or academia without proper industrial exploitation.

AI-Assisted Design & Optimization for Predictive Maintenance

Vincentius Ewald

