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Propositions 
 

1. Semi-supervised learning is the most feasible way to achieve success in machine learning projects 

(This thesis). 

2. Human bias is the most crucial element to reach artificial general intelligence (This thesis). 

3. Outside academia, there is no need to search an optimum by metaheuristics since greedy 

method is sufficient (This thesis). 

4. Without AI democratization, airline and aircraft industries will stop talking about big data and 

Internet of Things by themselves (This thesis). 

5. Stochastics is a way to express our ‘Unwissenheit’. 

6. The key assumption for determining scientific truth is an agreement. 

7. The best presentation slide in a scientific conference is an empty slide. 

8. The boundary of science is religion and philosophy. 

9. An appropriate PhD contract length to generalize a fundamental axiom e.g., from Newton 2nd 

law into Hamiltonian, is about 200 years. 

10. The safest way to protect the Netherlands from global warming by replacing the “Deltawerken” 
with the Swiss Alps. 

 

* Unwissenheit (DE) or Onwetendheid (NL) is not knowing the unknown, i.e., not to be confused 

with ignorance: ignorance can be understood as the act of neglecting things we know. 

 

 

 

These propositions are regarded as opposable and defendable and have been approved as such by 

the promotors Prof. dr. ir. Rinze Benedictus and Dr. Roger M. Groves
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I have said that science is impossible without faith. No amount of 
purely objective and disconnected observation can show that 
probability is a valid notion, the laws of induction in logic cannot be 
established inductively. Inductive logic, the logic of Bacon, is rather 
something on which we can act than something which we can prove, 
and to act on it is a supreme assertion of faith. Science is a way of life 
which can only flourish when men are free to have faith. 

 

 

 

 

 

 

 

 

 

 

An excerpt from The Human Use of Human Beings. 
- Norbert Wiener 
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Abstract 
 

One of the classical solutions to maintain the aircraft structural integrity is to rely on the analysis 

of non-destructive testing (NDT) inspector with various inspection methods. However, it is 

relatively expensive in matter of time and costs to train human resources until the certification is 

reached. Further, in majority of the cases of aircraft scheduled and unscheduled maintenance, 

most of the detected damages are far below the damage tolerance limit and therefore are 

considered as a costly false positive because such inspections generally require additional 

downtime. Structural Health Monitoring (SHM) tries to reduce the wasteful resources in the 

maintenance, repair, and overhaul (MRO) industry by signaling such false positives during the 

maintenance process by becoming an integral part of the structure itself. 

 

On the other hand, there has been an increase in using the artificial intelligence (AI) methodologies 

such as computational heuristics and machine learning in many areas of human civilization which 

includes voice and face recognition, languages translation, and automated driving. There has been 

a lot of interest on implementing AI to assist SHM in maintaining airworthiness while driving the 

cost down. Nevertheless, the maintenance of airworthiness (such as but not limited to, EASA Part 

145/M and FAA CFR Part 21) is a heavily regulated area and are not easily changed.  

 

The current state of the art was captured in the literature review. This includes recent 

developments of guided wave based SHM and the parameter optimization as well as recent trends 

and advances in artificial intelligence such as machine and deep learning. The findings from the 

state of the art were used as the basis to determine the research problem and to propose the 

solution. 

 

The first part of the proposed solution consisted of a short review the damage growth assumption 

within the damage tolerance framework and the used methodology to generate and capture Lamb 

wave signal within Finite Element (FE) environment. This methodology is a deterministic solution 

that can be partially used for solving continuous optimization in deterministic sensor placement 

problem. It was further expanded to include a semi-stochastic approach to address non-

predictable damage location that includes some metaheuristics search such as genetic algorithm 

and swarm intelligence. The ultimate first part of solution was a compromise between the 

deterministic and semi-stochastic actuator-sensor topology. 

 

The second part of the proposed solution was the investigation on whether deep learning can be 

used to treat the Lamb wave signal given the configuration obtained from the first part of the 

proposed solution. To do so, an assumption based on converging probability measures and 

generalization bound in deep learning must be taken. Then, the approach is to represent the entity 

of the captured Lamb wave signal in time-frequency domain either as randomly sampled 

spectrogram or layers of joined spectrograms. After the training, the hypothesis was validated 

with A/B Testing. 

 

Then, the research was expanded to understand the scalability level of deep learning for SHM for 

given data size, model parameters, and restriction on physical memory.  In this sense, the signal 

representations were trained sequentially with an example of in hybrid convolutional recurrent 

network. The investigation was focused on stability behavior of convoluted-recurrent modelling 

for variable spectrogram length and the experimental validation of the model for classification of 

the Lamb wave spectrogram signals. 

 

Keywords: Structural Health Monitoring, Guided Lamb Wave, Machine Learning, Deep Learning, 

Computational Intelligence, Metaheuristics, Optimization, Signal Processing, Sensor Network, 

Aircraft Inspection 
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Samenvating 
 

Een van de klassieke oplossingen om de structurele integriteit van vliegtuigen te behouden is 

vertrouwen op de analyse van non-destructief onderzoek (NDO)-inspecteurs met verschillende 

inspectiemethoden. Dit is echter relatief duur in termen van tijd en kosten om personeel op te 

leiden totdat de certificering is bereikt. Bovendien liggen in de meeste gevallen van gepland en 

ongepland onderhoud van vliegtuigen de meeste gedetecteerde beschadigingen ver onder de 

schadetolerantiegrens en worden ze daarom beschouwd als een dure fout-positieve inspectie 

omdat dergelijke inspecties over het algemeen extra stilstandtijd vereisen. Structural Health 

Monitoring (SHM) probeert de verspillende hulpbronnen in de maintenance, repair, and overhaul 

(MRO) te verminderen door dergelijke valse positieven tijdens het onderhoudsproces te 

signaleren door een integraal onderdeel van de structuur zelf te worden. 

 

Aan de andere kant is er een toename in het gebruik van kunstmatige intelligentie (AI)-

methodologieën zoals computationele heuristieken en machinaal leren op veel gebieden van de 

menselijke beschaving, waaronder stem- en gezichtsherkenning, taalvertaling en 

geautomatiseerd rijden. Er is veel belangstelling voor de implementatie van AI om SHM te helpen 

de luchtwaardigheid te behouden en tegelijkertijd de kosten te verlagen. Niettemin is het behoud 

van de luchtwaardigheid (zoals, maar niet beperkt tot, EASA Part 145/M en FAA CFR Part 21) een 

zwaar gereguleerd gebied en kan niet gemakkelijk worden gewijzigd. 

 

In het literatuuronderzoek is de huidige state-of-the-art vastgelegd. Dit omvat recente 

ontwikkelingen op het gebied van guided wave gebaseerde SHM en de parameteroptimalisatie, 

evenals recente trends en vooruitgang op het gebied van kunstmatige intelligentie, zoals machine- 

en deep learning. De bevindingen uit de stand van de techniek zijn als basis gebruikt om het 

onderzoeksprobleem te bepalen en de oplossing voor te stellen. 

 

Het eerste deel van de voorgestelde oplossing bestond uit een korte beoordeling van de aanname 

van de schadegroei binnen het schadetolerantieraamwerk en de gebruikte methodologie voor het 

genereren en vastleggen van Lamb wave signalen binnen de finite elementen (FE)-omgeving. Deze 

methodologie is een deterministische oplossing die gedeeltelijk kan worden gebruikt voor het 

oplossen van continue optimalisatie van het deterministische sensorplaatsingsprobleem. Het 

werd verder uitgebreid met een semi-stochastische benadering om niet-voorspelbare 

schadelocaties aan te pakken, waaronder enkele metaheuristische onderzoeken, zoals genetische 

algoritmen en zwermintelligentie. Het ultieme eerste deel van de oplossing was een compromis 

tussen de deterministische en semi-stochastische actuator-sensor-topologie. 

 

Het tweede deel van de voorgestelde oplossing was het onderzoek of deep learning kan worden 

gebruikt om het Lamb-wave signaal te verwerken, gegeven de configuratie verkregen uit het eerste 

deel van de voorgestelde oplossing. Om dit te doen, moet een aanname worden gedaan die is 

gebaseerd op convergerende waarschijnlijkheidsmetingen en generalisaties die gebonden zijn 

aan diepgaand leren. Vervolgens is de aanpak om de entiteit van het opgevangen Lamb-

golfsignaal in het tijdfrequentiedomein weer te geven, hetzij als willekeurig bemonsterd 

spectrogram, hetzij als lagen van samengevoegde spectrogrammen. Na de training werd de 

hypothese gevalideerd met A/B-testen. 

 

Vervolgens werd het onderzoek uitgebreid om inzicht te krijgen in het schaalbaarheidsniveau van 

deep learning voor SHM voor een gegeven datagrootte, modelparameters en beperkingen op 

fysiek geheugen. In deze zin werden de signaalrepresentaties opeenvolgend getraind met een 

voorbeeld van een hybrid convolutional recurrent network. Het onderzoek was gericht op het 

stabiliteitsgedrag van dergelijke modelling voor variabele spectrogramlengte en de 

experimentele validatie van het model voor classificatie van de spectrogramsignalen. 

 

Keywords: Structural Health Monitoring, Guided Lamb Wave, Machine Learning, Deep Learning, 

Computationele Intelligentie, Metaheuristiek, Optimalisatie, Signaalverwerking, Sensornetwerk, 

Vliegtuiginspectie 
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1. Introduction 

 

1.1. World of Aircraft Maintenance 

 

Besides fuel and ground services, one of the most crucial aspects in an airline 

operating cost is the maintenance. In 2017, it was reported that 70 billion USD 

was spent by airlines for maintenance, repair, and overhaul (MRO) [Michaels 

(2018)] and this figure was expected to grow to 115 billion USD in 2028 due to 

increasing number of aircraft deliveries [Ann Shay (2018), Chong (2018)].  

According to [IATA (2019)], the current maintenance cost varies between 91 and 

44,573 USD (with an average of 2634 USD) per flight cycle. While seemingly 

small, this figure translates to between 0.1 – 16 million USD (with an average of 

3.6 million USD) per aircraft during its lifetime. 

 

In general, without standards and regulations, different airlines and aircraft 

manufacturers would have different maintenance procedures and the situation 

would be a mess because every company would have their own standard. So, to 

harmonize these maintenance procedures, governmental bodies have been set-

up to make advisory circulars (AC) to improve airworthiness. This was the 

reason for inception of the maintenance steering group (MSG) task that has the 

purpose to be aircraft maintenance logic. 

 

The focus of MSG-2 was process orientated and it used a bottom-up approach. 

As mentioned earlier, humans learn from their previous experiences because 

they often develop a process that are far from perfect. Based on the experience 

and the identified weaknesses of MSG-2, this process was overhauled in MSG-3, 

which was first published in 1980. In contrast to the MSG-2, MSG-3 introduced a 

top-down approach by focusing on the consequences of failure. 

 

An effort-aware maintenance manager would rationally not spend time and 

associated cost for excessive maintenance if there is no foreseeable reliability 

improvement or if the total effort of excessive maintenance exceeds its real 

value. When focusing on CBM, there is a lot of space to continuously improve 

and there are many approaches how to develop CBM [Tinga and Loendersloot 

(2014)] – this will be discussed in detail as it will be discussed in chapter 2 and 3.  

 

Many engineering structures are designed to be operated within their design 

limits. In any engineering discipline be it civil, automotive, aerospace, electrical, 

or mechatronics, there is always a term called lifecycle or lifetime, which can be 

more precisely expressed as designated operational lifecycle (DOL). The DOL 

typically signifies a quantifiable amount in term of usage cycles, within which 

the structure can be utilized reliably. That means, after the DOL is reached – it 

should be the time to write off the object or system. 

 

On the other side however, our universe tends to behave in non-predictable 

way, and we can denote it as a stochastic universe. Pragmatically, we shall 

assume that uncertainties could be very likely occur at any time. A practical 
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application of this philosophical assumption for aircraft maintenance is that 

damages occur during the DOL of an aircraft and unfortunately this would likely 

to reduce the DOL by a certain degree, we just do not know how much because 

monitoring these uncertainties is very difficult. 

 

1.2. The Role of Artificial Intelligence (AI) in Predictive Maintenance 

 

In 2012, a new jargon was introduced by the German Ministry of Education and 

Research [BMBF]: Industry 4.0 and the term 4th industrial revolution is also used 

equivalently. While the 3rd industrial revolution in early 1990 was heavily 

focused on utilization of electronic devices to increase productivity using 

automation, Industry 4.0 reinforces the ability of the electronic devices to 

connect with each other, commonly known as Internet-of-Things (IoT). IoT has 

many sub-components and one of its sub-components is the volume, velocity, 

and variety of data involved (also called big data) and its corresponding 

advanced analytics and algorithms. In other word, the importance of using data 

be it either for leveraging of MRO processes by artificial intelligence (AI) and 

machine learning (ML), monitoring real-time performance, or accelerated 

information exchange within Industry 4.0 is emphasized. 

 

Recently, people are also increasingly talking about deep learning (DL), a subset 

of ML techniques using a deep artificial neural network (ANN) [Frankish and 

Ramsey (2014), Chollet (2018)]. However, when talking about deep and machine 

learning, we should first understand their relationship with artificial 

intelligence (AI). Unfortunately, there is no universally accepted definition of 

these terms, however the consensus can be summarized in Fig. 1.2-1, where we 

can see DL is the smallest subset of ML and ML is a subset of the broader AI field. 

The concept of artificial intelligence arose when Alan Turing introduced the 

Turing test in 1950, which was published his paper [Turing (1950)] with an 

opening phrase: "I propose to consider the question: Can machines think?”. 
 

 
Fig. 1.2-1: Deep Learning as a subset of machine learning which is just another sub-field of 

artificial intelligence. 
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In his test, Turing proposed that a human judge makes a conversation with an 

artificial responder that generates human-like answers in a separate room with 

the condition that the conversation is limited to communication via the 

computer keyboard and screen. If the human cannot reliably distinguish 

whether the response was generated by the machine or human, the machine is 

said to have passed the Turing test. This test thus become one of the most 

important concepts in AI, although it was not free of criticism, especially when 

[Searle (1980)] proposed the Chinese room argument. 

 

Apart from the philosophical concept, the term deep learning was first 

mentioned by [Dechter (1986)], albeit not within the context of multilayered 

neural network. Most notable work has been performed by [Hinton and 

Salakhutdinov (2006)], when they introduced the restricted Boltzmann machine 

(RBM), a generative stochastic ANN that learns a probability distribution from its 

set of inputs. However, the history of ANN can be tracked back to 1958 when 

Rosenblatt introduced the concept of perceptron for the first time [Rosenblatt 

(1958)]. The popularity of ANN grew until the late 1970’s, where it was slowed 

down by then the slow computational ability. Eventually this popularity was 

overshadowed by another machine learning technique called Support Vector 

Machine (SVM) [Corinna and Vapnik (1995)] in the 1990’s. 
 

Like any other emerging technology, AI oversaw several cycles of hype and 

disappointment. Cuts in AI research funding marked the periods of 

disappointment, commonly referred as AI winters [Crevier (1993), Hendler 

(2008)] and it has already happened twice, during late 1970’s and between the 

early 1990’s and early 2000’s. Since 2010’s however, thanks to ever-increasing 

computational power (see Moore’s Law [Moore (1965), Liddle (2006)] for a 

detailed explanation) including the developments of the graphical processing 

unit (GPU) and field programmable gate array (FPGA), the development of AI 

has been in steady pace. 

 

From the low-level perspective, an example case for the technical 

implementation within the predictive maintenance framework is the utilization 

of past historical data from many sensors already installed in engineering 

structures to predict potential damages and if possible, their future states by 

using both rule-based systems including the majority of sensing signal 

processing techniques, and machine learning methods.  

 

1.3. Structural State Diagnostic in MRO 

 

The last paragraph of section 1.2 mentioned the utilization of historical sensor 

data to predict the potential damages contained by engineering structure. So, 

given a similar structure, when a similar damage occurs in the future, the 

resulting sensor signal would also be likely to be similar, and this would be an 

interesting study case for machine and deep learning as neural network is 

generally good at recognizing certain signal patterns. The detail explanation of 

this will be given later in chapter 3. 
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1.3.1. Design Philosophies and Non-Destructive Testing in Aircraft Maintenance 

 

According to [Baker and Wang (2018), Bellinger and Liao (2009)], three design 

philosophies exist: safe-life, failsafe, and damage tolerance. Safe-life design is 

based on the predicted lifecycle of a component. During this period, it should be 

assumed that no component failure occurs. After this period, the component 

must be replaced, regardless of its condition. On the other side, failsafe is a 

design to which an error results in the least possible damage. It requires that 

partial failure of the structure does not cause its entire failure. Failsafe design 

recognizes that cracks may occur, but the structures is so arranged that the 

critical crack will not lead to sudden total failure before it can be repaired. An 

example of a failsafe design is a horizontal stabilizer [Wanhill (2003)]. 

 

Damage tolerance is defined as “the ability of a structure to sustain anticipated 

loads in the presence of fatigue, corrosion or accidental damage until such damage 

is detected through inspections or malfunctions and is repaired”. [Ransom et al. 
(2008)]. It is an extension of failsafe design, and it plays a central role in current 

aircraft design. Within damage tolerance, a thorough damage assessment in a 

possible failure scenario is necessary. Three key items in damage tolerant 

designs are: fatigue crack growth, crack detection with NDT, and residual 

strength prediction [Fatemi et al. (2001), Abdel-Latif (2009)]. While the damage 

tolerant design itself can be regarded as a passive protection against damage, 

NDT is an active intervention within the maintenance framework. 

 

To be able to predict the residual strength before the next repair, a non-

destructive evaluation of crack existence and an estimate of its growth is 

needed. This evaluation of the concerned component demands aircraft repair 

stations with open-access and closed-access man hours, which costs money 

and time [McFadden and Worrels (2012)]. As many aircraft parts are made to be 

damage tolerance, an inspection within certain interval is needed to ensure that 

the aircrafts are operating within its design limit [EASA AMC 20-20A]. 

 

There are a manifold of NDT technologies that have been established for 

decades in aircraft inspection [Fahr (2014)] such as high-frequency ultrasound 

(HF-US) and phased-array ultrasonic tomography (PAUT) [Rau (2006), Pohl 

(1998)], visual inspection combined with magnetic particle inspection (MPI) 

[Betz (2007)], and eddy current [Meilland (2006)] and all these techniques are 

used to detect flaw such as crack and delamination within aircraft parts. 

 

1.3.2. Role of Structural Health Monitoring in Maintenance 

 

All the above-mentioned techniques have a range of detection accuracy and 

their own cost in terms of man-hours and down-time [Shaloo et al. (2022)]. In 

aerospace domain, a qualified NDT technician is in general in very rare position 

and while an NDT inspection costs both man-hours and service down-time. 

Nevertheless, it is needed to be understood that the underlying principle here is 
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not to fly unsafe aircraft, but rather to have reliable decision support for MRO 

about whether certain parts are to be repaired or not. 

 

In classical aircraft maintenance, this unscheduled inspection tends to be 

rigorous and very tedious. While this is done for understandable safety reasons, 

it is not very efficient either since it requires unnecessary man-hours and down-

time.  In line with the spirit of predictive maintenance within Industry 4.0 for 

aircraft MRO, a question now arises: How can we minimize uncertainty during 

unscheduled maintenance with advanced novel technologies such as deep learning 

and big data that can be combined with increasing computational power? 

 

With the current approach, to detect a crack with NDT equipment, one needs 

access for opening and closing the relevant substructure of the aircraft and 

regardless of whether a crack is found or not, this will require spending man-

hours. This is where a successful Structural Health Monitoring (SHM) becomes 

handy, where NDT is embedded the aircraft – so when certain aircraft parts to 

be replaced, ideally it automatically sends a warning flag to the aircraft operator 

to signal that that certain part must be replaced without spending man-hours for 

determining the uncertainty. 

 

When looking in low-level detail regarding automated inspection by SHM, there 

are several potential techniques that can be used as NDT decision support while 

not completely replacing NDT itself. Among them are guided Lamb Waves (LW) 

SHM which principally uses lower-frequency acoustic waves and Fiber-Bragg 

Grating (FBG) [Ibrahim (2017)]. Guided LW-SHM shares the same physical 

phenomenon as the well-established NDT such as HF-US and PAUT, except that 

this technique is more suitable for larger area measurement with a capability up 

to several meters due to its larger wavelength in comparison to HF-US and PAUT 

which typically only penetrates area of several cm³ under the sensor. This is the 

main reason guided Lamb waves has been selected as the main physical 

phenomenon of this dissertation. 

 

Like other SHM methods, the approach of using LW-SHM is not immune to 

criticism, particularly because there are multitudes of parameter configurations 

that were previously less problematic in NDT but now would affect the LW-

SHM signal pattern – such as sensor positioning, frequency selection, type of 

sensor adhesive, etc. In chapter 5, these factors will be discussed and some 

methodologies will be proposed, particularly metaheuristic optimization 

[Gogna (2013), Du and Swamy (2016), Sörensen et al. (2018)] which are of 

interests not only to AI community but also to operations research [Rardin 

(2016)] community. 

 

Now, while some might believe that the well-established NDT methods are a 

direct competitor to LW-SHM, looking back into the purpose of SHM as NDT 

decision support it turns out that both methods can and should complement 

each other rather than being competitors. 
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1.4. Thesis Organization 

 

The thesis is structured as follows: The state of the art of guided LW-SHM, 

machine and deep learning in the last 10 years will be reported in chapter 2. 

Based on this state-of-the-art, the problem statement and the main research 

objective will be introduced. The well-established theoretical background that 

covers the physics and numerical simulation of guided Lamb waves, 

configuration factors such as sensor placement method, signal processing, 

inductive bias based on domain knowledge and well-known statistical learning 

theory is given in a separate theoretical chapter as chapter 3. 

 

Chapter 4 will describe the preliminary results from the used methodology to 

numerically simulate the data generation and its experimental validation, while 

the preliminary result from the sensor placement methodology and its 

experimental validation is given in chapter 5. The results of deep learning 

training behavior including the discussion of different representations is given 

in chapter 6, while chapter 7 is a methodology extension of chapter 6 in which 

the representation is modelled in sequential way. Finally, the summary, 

conclusion, and outlook of this dissertation is given in chapter 8. For ease of 

reading, each chapter will have its separate literature list. 
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2. The State of the Art 

 

Chapter 1 introduced the background and the general scope of this dissertation, 

while in this chapter we will explore the more specific scope of the work. Before 

going too deep, recall the definition of SHM proposed by [Boller (2008)]: “SHM is 

the integration of sensing and […] actuation devices to allow the loading and 

damaging conditions of a structure to be recorded, analyzed, localized, and 

predicted in a way that NDT becomes an integral part of the structure and a 

material. Consequently, SHM requires […] loads and damage monitoring […] 

assessment algorithms and needs to get those merged in a holistic process such that 

the structural health can be accompanied during the life cycle […]” which can be 
visualized as the workflow depicted in Fig. 2-1 [Ooijevaar (2014)]:  

 

 
Fig. 2-1: The workflow of SHM proposed by [Ooijevaar (2014)] in which one could decide to induce 

a certain actuation in a structure that might contains any damage, record the structural response 

that is captured by sensor system, and represent the response as feature pattern. 

 

As depicted in Fig. 1, SHM is divided into two major frameworks: diagnostic and 

prognostic. Diagnostic SHM concerns the feature extraction and classification 

that can be related to the physical current state of the structure, while prognostic 

SHM evaluates the failure probability of the structure given the current structural 

state and decides whether the concerned structure needs to be repaired, 

replaced, or written-off depending on its predicted residual life. Specifying the 

framework further, the tasks of SHM can be generally divided into 4 functional 

levels, where diagnostic SHM comprises the functional level 1 – 3 and prognostic 

SHM comprises the functional level 4 [Ooijevaar (2014)]: 

 

SHM Level 1: the condition monitoring of structural load 

SHM Level 2: the detection of damage presence 

SHM Level 3: the characterization of the present damage regarding its location, 

type, and severity in terms of size 

SHM Level 4: the prediction of failure probability and remaining useful life (RUL) 

of the structure given the state of SHM from levels 2 and 3. 

 

Narrowing this down to functional level, the work will focus on SHM levels 2 and 

3 only, because these tasks are the most relevant to NDT and Lamb wave. 

 

2.1. Recent Development on Lamb Wave SHM 

 

This section will focus on recent developments in Lamb Wave SHM, and it will be 

divided into three sub-sections: a review on recent developments of 
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experimental and simulation work on Lamb Wave SHM in section 2.1.1, and the 

parameter optimization of SHM systems in section 2.1.2. 

 

2.1.1.  Technological Advancement on Lamb Wave SHM 

 

The fundamentals of guided wave propagation in solids have been described 

extensively in literatures, for instance in [Cesnik and Raghavan (2009), Su and Ye 

(2009)]. When talking about recent advances in experimental and simulation 

work in Lamb wave SHM, there are many research directions that have been 

paved for the last decade as well. For example, looking into older work, [Andrews 

et al. (2008)] investigated Lamb wave propagation behavior in various 

temperature ranging from -18°C to 107°C in a metallic plate. They concluded that, 

at least for metallic plates, only small changes occur in the observed waveform. A 

similar study was also performed by [Dodson and Inman (2013)] for a 

temperature ranging from 20°C to 70°C and they came to a similar conclusion 

delivered by [Andrews et al. (2008)]. Some of the results from [Dodson and Inman 

(2013)] are given in Fig. 2.1.1-1. 

 

 
Fig. 2.1.1-1: Effect of temperature on a). phase velocity and b). group velocity as a function of 

frequency thickness on Al6061. [Dodson and Inman (2013)]. 

 

A more comprehensive studied that also includes moisture, external vibration, 

and bonding condition beside the thermal effects was delivered by [Gorgin et al. 

(2020)]. They stated that the temperature effects can be compensated by various 

techniques. This is especially useful for many composite materials as composites 

are affected by moisture, bonding defects, and shear lag effect between the 

structural surface and the sensor. They stated that vibration only modifies the 

amplitude and can be filtered so that the time-of-flight (TOF) is not affected. This 

condition is obviously valid only if the operational vibration has a much lower 

frequency than those of ultrasonic signals. A similar study regarding the effects 

of structural complexities combined with environmental conditioning on 

anisotropic composite materials has been performed by [Schubert et al. (2014)].  
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The accuracy of analytical modeling based on wave function expansion and the 

Born approximation of Lamb wave scattering at delaminations in multilayered 

isotropic plates has been studied by [Ng (2015)]. The result was cross validated 

with an explicit numerical method and a good agreement was found. It was 

concluded that delamination can be modeled as a waveguide divided into two 

sub-waveguides. [Šofer et al. (2018)] discussed the numerical solution for 
Rayleigh-Lamb waves in complex wavenumbers to describe the wavemodes 

propagation. 

 

[Gao et al. (2020)] studied the response features of second-harmonic generation 

of Lamb wave propagation to the thickness of microdamage layer in a solid plate. 

They verified the analytical results with a finite element simulation and a close 

agreement between the theoretical and numerical analysis was found. As a 

conclusion, they claimed that their findings provided a convenient means for 

accurate characterization of inhomogeneous microdamage in layered plates. 

[Wu et al. (2020)] investigated the surface effects of Lamb waves propagation in a 

nanoplate. They combined classical wave theory with the surface elasticity 

theory. They found that for a very thin layer, even in fundamental modes, the 

Lamb wave phase velocity increased if the plate thickness decreased.  

 

It is not only the physical understanding and analytical modelling that have been 

an important subject. Transducer technology is also important, e.g. [Gu and 

Wang (2009)] investigated the feasibility of a monolithic polyvinylidene fluoride 

(PVDF) based transducer for generating and sensing Lamb waves, citing that 

PVDF is not only low-cost, but also low-power which makes it suitable for 

wireless-sensing and remote operation. [Othmani and Zhang (2020)] 

investigated the influence of initial stresses of the Lamb wave propagation in 

PVDF. They formulated the Legendre polynomial to calculate wave propagation 

characteristics and validated the analytical approach with simulation results. 

They concluded that for the design of a PVDF sensor, the following parameters 

must be considered: initial stress, laminate thickness and mass density, as they 

are the main factors that determine the phase and group velocities of the 

corresponding Lamb wave modes. 

 

In numerical work, [Malinowski et al. (2009)] introduced the phased-array 

method for damage localization on a thin-aluminum plate based on the spectral 

element method (SEM) and reconstructed the wavefield scan. While they 

concluded that the damage detection and localization has been effective, the 

technique was purely based on the numerical method and further experimental 

work would be needed to validate the work. Another approach to using SEM has 

been proposed by [Hu and Zhou (2012)] where they a modelled transverse crack 

as a massless spring which was derived from a basic formulation in fracture 

mechanics. While they compared the results with conventional finite element 

analysis, further experimental work is also needed to validate their approach. 

 

[Ambrozinski et al. (2010)] compared the numerical approach from local 

interaction simulation on a sharp interface model (LISA/SIM) and the 
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elastodynamic finite integration technique (EFIT). The difference between LISA 

and EFIT is that LISA is based on a finite differentiation approach, while EFIT 

eliminates the differential problem by using staggered grid. They concluded that 

both methods can be combined with experimental measurements to solve 

inverse material problem identification. The results of the numerical approach 

by employing EFIT has also been replicated by [Rappel et al. (2014)].  

 

A different approach on numerical modelling was proposed by [Gravenkamp 

(2014)] in his doctoral research. While he used SEM for the latter part of problem 

discretization, he formulated the scaled boundary FEM (SB-FEM), which can be 

regarded as a semi-analytical method as only the element boundaries needed to 

be discretized. The work was experimentally validated in several different 

materials setup. The results were quite promising in the way that his formulation 

saves computational cost by a factor of 100 in comparison with traditional FEM. 

 

A simpler simulation on Lamb wave propagation by using FEM on commercial 

software such as ABAQUS in metallic plate has been proposed [Nirbhay et al. 

(2017), Ding et al. (2018), Ismail et al. (2019)]. These are similar studies to what I 

performed before [Ewald et al. (2015)] along with several other studies that also 

involve composite plates [Chen et al. (2012), Wang (2014), De Luca (2016, 2018), 

Duan (2017)]. While these studies are not particularly novel, the method of using 

commercial software turns out to be reliable and replicable without involving 

highly complex analytical formulations that could take years to be developed. 

[Miguel et al. (2019)] proposed a finite element framework based on Carrera’s 
unified formulation for simulating Lamb wave propagation in continua by using 

the higher-order polynomial approximation. The essence of their work was to 

look for a compromise between classical plate theory that is insufficiently 

accurate for complex geometry and common quadratic 3D finite elements that 

quickly takes very high computational effort for relatively large structure. 

 

For signal processing and damage detection, there have been many works 

performed during the last decade. The generalities and theoretical fundamentals 

on Lamb wave signal processing has been thoroughly described by [Su and Ye 

(2009), Staszewski and Sohn (2009)]. They discussed the signal processing based 

on time-domain, frequency-domain, and time-frequency domain. nevertheless, 

Lamb wave signal processing for damage detection remains difficult to be solved 

by single ‘catch-them-all’ techniques since it involves complexity, uncertainty, 

and variability as stated by [Harley et al. (2017)] who proposed several methods 

that decompose into variability reduction, uncertainty analysis by various 

techniques such as sparse wavenumber synthesis, and complexity leverage by 

using baseline subtraction, matched field processor, and delay sum and sparse 

method [Nokhbatolfoghahai et al. (2019)]. 

 

Chronologically, when looking back into older works, [Soma-Sekhar et al. (2006)] 

used Lamb wave tomography to demonstrate the detection capability of their 

system on low-velocity impact damage on quasi-isotropic graphite-reinforced 

epoxy matrix composites. One way to characterize Lamb wave signals is to 
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represent signals in the time frequency domain, also known as a Time-Frequency 

Representation (TFR). There are several methods to do this: Short-Time Fourier 

Transform (STFT), Wigner-Ville distribution (WVD), Chirplet Transform (CT) 

and Wavelet Transform (WT) [Su and Ye (2009), Kerber et al. (2010), and 

Kordbacheh (2012)]. 

 

The difference between these techniques is the function that is multiplied by the 

time domain input signal. For instance, while in STFT the time domain input 

signal is multiplied by a fixed window length, in WT, the input signal is multiplied 

by a scalable mother wavelet. A very detailed approach on characterizing Lamb 

wave signals with that TFR with Matching Pursuit is described by [Karpenko 

(2013)] in his thesis, where the proposed TFR is designed on the basis of the 

reassigned spectrogram in order to improve the resolution. The work was 

experimentally validated on aluminum and woven composite plates. 

 

[De Marchi et al. (2013)] proposed a novel signal processing for chirp excitation 

with three steps: 1). warped frequency transform (WFT) to compensate the 

dispersion due to propagation, 2). signal compression to remove the frequency 

modulation, and 3). an imaging algorithm to localize the damage. This approach is 

related to that which has been proposed by [Hua et al. (2015)]. The difference in 

the study is, that they used more pulse variations that include white noise signal 

in their chirped excitation.  

 

[Ahmad (2014)] characterized Lamb wave propagation signals in thermoplastic 

materials using the Daubechies 4-tap (db4) based wavelet algorithm and Gabor 

Transform to determine the experimental group velocities and by using this 

technique, they were able to identify higher-order Lamb modes such as S10, A7, 

A9, and A10 modes. [Chen and Wang (2014)] introduced a technique for signal 

noise removal by calculating the fractional differential amplitude and extracted 

the amplitude spectrum with estimation model. They validated their study with 

simulation and experimental method. 

 

From imaging techniques, [Gao et al. (2019)] introduced sparse reconstruction 

imaging from contactless Lamb wave excitation by a laser and reconstructed the 

signal using system response decomposition. While the sparse imaging result is 

not smooth, the achieved damage localization accuracy was below 1 cm. They 

concluded that the performance of this sparse imaging technique relies on the 

denoising parameters and the number of the excitation sources. 

 

Lamb mode conversion is another area of research direction that has been 

established for a while. Typically, in this case, the work involves the 

characteristic of mode conversion to detect or localize the damage, as has been 

proposed by [Hosseini et al. (2014)]. In their work, they used the scattered 

coefficients from continuous wavelet transform (CWT) to separate the different 

Lamb modes in sandwich structures. As a conclusion, a damage localization with 

a maximum error of 2 mm was obtained. 
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In area of a developing damage index (DI), [Gao et al. (2018)] proposed an 

integrated impedance technique for damage classification, i.e., instead of the 

amplitude, they indirectly derived the DI by monitoring the impedance variation 

of the sensor network and then, the DI is calculated by adjusted result of the 

sensor self-diagnostic parameter to estimate the damage severity. This method is 

particularly useful to monitor 1) the structural health, and 2). the health of the 

sensor network itself.  

 

We can summarize the literatures above into 4 distinct research directions: 1). 

physics & analytical modelling on Lamb wave based SHM, 2). signal processing 

for damage characterization, 3). numerical approach on Lamb wave propagation, 

and 4). sensor technologies for Lamb wave generation and sensing. 

 

2.1.2. Advancement on Strategic Design of SHM System Parameter 

 

The focus of the section 2.1.1 was on the scientific and technological novelty and 

advances of Lamb wave based SHM that might (or might not) come into closer 

realization of fully functional Lamb wave based SHM, i.e., those are still within the 

laboratory realm or smaller scale development level. This section will be focused 

more on design parameters that are relevant for larger-scale SHM deployment.  

 

One of the very early studies on Lamb wave design parameters was the mode 

selection performed by [Rose et al. (1993)], where at that time, they were only 

talking about ultrasonic NDT a with guided wave for a composite plate, but of 

course without mentioning SHM since at that time, the term SHM was most likely 

not heard yet. The topic of wave mode tuning techniques was revisited by [Shi 

(2002)] in his doctoral research, where he described different methods such as 

single transducer tuning, phased array tuning, and synthetic phase tuning. 

 

The reason why wave mode selection is important is due to the fact that unlike 

bulk waves, Lamb waves have a dispersive and multi-modal nature, i.e., not only 

that the propagating velocity changes as a function of frequency, but also that at 

least two fundamental Lamb modes are always present. In fact, signal processing 

of Lamb wave for damage detection is often hampered by the presence of 

undesired higher-order Lamb modes that must be separated first by many 

techniques such as those discussed in section 2.1.1. The complexity and difficulty 

of analyzing more than just the fundamental Lamb modes was reiterated by 

[Wilcox (1998)] in his dissertation. 

 

Over two decades, the topic on wave mode selection has been revisited several 

times. In the slightly later article, [Wilcox et al. (2001)] pointed out that 6 crucial 

factors influence propagating Lamb modes: dispersion, attenuation, sensitivity, 

excitability, detectability, and selectivity. Also, they mentioned that a wedge 

transducer is generally unsuitable for a liquid-surrounded structure, and they 

recommended using either an electromagnetic acoustic transducer (EMAT) or a 

shear PZT instead. It was pointed out by [Santoni et al. (2007) and Giurgiutiu et al. 

(2007)] that the Lamb mode tuning can be influenced by the dimension of the 
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transducer, where they demonstrated this tuning with several varying 

transducer dimensions and calculated the effective dimension to compensate for 

the shear-lag effect between the sensor and surface due to bonding, and finally 

processed the captured signal with the time-reversal method.  

 

A further study on calibration methods for a circular shaped PZT for Lamb wave 

tuning has been published by [Sohn and Lee (2010)]. They first constructed the 

theoretical tuning curve due to discrepancy between the bonding layer and the 

energy distribution: After that, they incorporated the energy distributions among 

the symmetric and antisymmetric modes and validated the effectiveness of the 

calibration method by using numerical and experimental work on an aluminum 

plate. An example of such a tuning curve before and after their proposed 

calibration is depicted in Fig. 2.1.2-1. 

 

 
Fig. 2.1.2-1: Discrepancy between the experimental and theoretical tuning curves a). before and b). 

after calibration – which can be either a linear or a non-linear adjustment. [Sohn and Lee (2010)]. 

 

Other approach to generate specific Lamb modes has been proposed by [Yan and 

Bo (2011)]. Instead of determining the PZT dimension, they used a transducer pair 

on the top and bottom surface of an aluminum plate. Such an approach would 

allow weakening of one Lamb mode while strengthening the other, so that only a 

single dominating Lamb mode is propagating the plate. While they validated 

their numerical modelling with experimental work, such approach is not very 

practical for some applications in aircraft crack monitoring because it would 

require one of the sensors to be placed on the outside.  

 

[Schmidt et al. (2013)] proposed a design for an interdigital transducer that 

consists of multiple arrays of positive and negative electrodes that are separated 

by wavelength distance. They first analyzed the broadband excitation frequency 

range between 25 – 400 kHz and validated the work on a carbon fiber reinforced 

composites plate accompanied with finite element modelling in the ANSYS 

environment. Unlike a conventional PZT which is in general very brittle, the 

interdigital transducers are flexible in shape and suitable to many geometries, 

however the disadvantage of this type of transducer is its relatively higher price 

and its relatively large dimension (circa 5 x 5 cm) which might not be suitable for 

hardly accessible areas closer to fasteners. 

 

A related work on Lamb mode phase matching has been proposed by [Li et al. 

(2020)]. They first described the theoretical analysis of a second harmonic Lamb 
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mode in an isotropic plate and went further into the derivation of non-linear 

parameters for Lamb waves which were later adjusted to the phase-matching 

condition due to attenuation (see Fig. 2.1.2-2). Based on their experimental 

validation, it can be observed that higher S-modes have a tendency of amplitude 

perseveration, i.e., better energy efficiency.   

 

 
Fig. 2.1.2-2: Phase matched Lamb modes indicated by square symbols, in a). phase velocity 

dispersion curve and b). group velocity dispersion curve. [Li et al. (2020)] 

 

Another parameter that can be fine-tuned for Lamb wave based SHM is the 

excitation waveform. There were not many works performed in this area: study 

on waveform design performed by [Zeng et al. (2013)] for improving resolvable 

resolution can be briefly mentioned. They stated that besides sensor distance, 

both the number of excitation cycles and the center frequency are significant 

factors that influence the resolvable resolution. 

 

Another approach on frequency mixing has also been recently proposed by 

[Chen et al. (2020)]. In this work, they studied the response of frequency mixing 

from two counter-propagating Lamb waves in a two-layered plate. They found 

that outside the wave mixing zone, the magnitude of the combined harmonic 

tends to be stable and due to the relatively small size of the wave mixing zone, this 

technique can enhance the localization accuracy of debonding in the two-

layered plate. They performed a semi-analytical model and verified this in 

numerical modelling via FEM, but an experimental validation still must be 

conducted to validate the proposed approach. 

 

As for the design of the SHM power system, there have not been many approaches 

proposed: One work from [Kural et al. (2013)] describes the design and 

optimization of the transmission and reception circuits when using inductors. 

They first characterized the power consumption of the sender-receiver system 

in a broad excitation range between 20 and 200 kHz to determine the minimum 

power supply threshold, and then compensated the power throughput by using 

the inductor system. Conclusively, they found out that the power throughput of 

the system can be increased 5-fold. 

 

Another important parameter that influences damage detectability in Lamb 

wave based SHM system is the PZT pattern and positioning. Depending on the 

detectability, performance, and cost-benefit requirement, the sensor network 
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arrangement can be either sparse or dense. [Croxford et al. (2007)] mentioned 

that for SHM, a sparse sensor network arrangement is suitable – which is very 

logical since the complexity and redundancy of a dense SHM sensor network 

would outweigh its cost-benefit performance and thus in that case an inspection 

by conventional NDT would suffice. Further, they mentioned that for a sparse 

network, the distance between the sensors is ideally far larger than the scale of 

the anticipated damage. 

 

An example comparison between a sparse and a slightly dense sensor network 

was presented by [Ambrozinski (2012)] where they compared the damage 

imaging reconstruction from a sparse and a star-shaped Phased-Array sensor 

network. They conducted the experiment on an aluminum plate with a size of 

1000 x 1000 x 2 mm and concluded that due to the complexity of aircraft 

structures, a baseline imaging needs to be subtracted from a reconstructed image 

of the damaged structure. As the study was quite in an early stage, they mentioned 

that further work addressing environmental condition such as temperature 

needed to be performed. 

 

In a more recent article from [Kudela et al. (2018)], a novel strategy to improve 

imaging resolution was proposed. In this case, they used a circular sensor pattern 

placed in the same geometry and material as used in [Ambrozinski et al. (2012)]. 

In this work, two parameters were studied: the excitation waveform and the 

sensor density. The waveform excitation they used was also based on pulse 

compression as has been discussed earlier in [Lin et al. (2016)]. Their strategy for 

sensor positioning was to start with a dense network (assigned as a focal point), 

and then slightly increase the sensor distance based on signal post-

compensation and the sum of the energy.  

 

[Lee and Staszewski (2007)] used the local interaction simulation approach 

(LISA) to model a small number of damage scenarios and based on the result of 

the simulations, the locations with the highest peak to peak locations were 

identified as suitable locations for sensor placement.  A related approach using 

simulation of Lamb wave propagation was proposed by [Venkat et al. (2016) and 

Taltavull et al. (2017)]. In this approach, the summed-up energy captured by all 

the individual sensors was plotted and the most optimal sensor location was 

determined as the one with the highest captured energy. 

 

A similar approach was realized in an experimental setup by [Stawiarski and 

Muc (2019)]. However, instead of the energy, they calculated the damage index 

(DI) based on the correlation coefficient between the baseline signal and the 

signal from the defected structure. [Fendzi et al. (2014)] proposed a novel 

approach for sensor placement using geometric dilution of precision (GDOP), 

which is based on a Lamb wave ray tracing method for known damage locations. 

[Haynes et al. (2014)] proposed sensor placement by minimizing the Bayesian 

cost and thus selected the locally optimal sensor location. However, if the damage 

occurs outside of that area, it might fail to detect it.  
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[Mallardo et al. (2012)] proposed a hybrid probabilistic approach using a 

combination of a Genetic Algorithm (GA) and an Artificial Neural Network 

(ANN), where they related the fitness function to the approximate error of the 

ANN. This approach takes a very dense network into consideration and seems to 

be suitable for monitoring stringers and frames, but at the same time it can be 

considered an overkill and not very cost-efficient for monitoring an impact in an 

open area. 

 

In more recent study, [Thiene et al. (2016)] introduced DI-free sensor placement 

optimization based on a fitness function that maximizes the coverage area of the 

sensor network. They calculated the coverage of each pixel in the geometry 

based on the pitch-catch technique, so that every pixel that contributes to the 

probability that a damage in a random location is being detected is counted. Their 

goal was to maximize the coverage area of the sensor network. A related 

approach on maximizing coverage area was recently proposed by [Soman et al. 

(2019), Soman and Malinowski (2019)] and [Mustapha et al. (2019)]. Some of these 

techniques are also mentioned in a recent review by [Ostachowitz et al. (2019)]. 

Some figures from these works are collated together in Fig. 2.1.2-3. 

 

 
Fig. 2.1.2-3: From [Thiene et al. (2016)]: Comparison two different sensor network topology of 4 

sensors, a). Denser network in lower part of plate, b). balanced network, c). experimental setup. 

From [Soman et al. (2019)]: Network score convergence as function of sensor density for d). highest 

(coverage 1), and e). lowest (coverage 3) sensor-actuator pair coverage, respectively. Detailed 

definition of coverage nomenclature can be read in the paper. 

 

In a recent work from [Balamonica et al. (2020)], a study on sensor networks 

based on serial and parallel connections was performed. They conducted the 

work for a reinforced concrete beam to understand dynamic damage 

quantification metrics such as the moving root mean square deviation (M-RMSD), 

the moving cross-correlation (M-CC), and the moving mean absolute deviation 

(M-MAD). The beam was subjected to damage and was measured by the sensor 

response conductance with varying frequencies for different sensing paths and 



 

19 Chapter 2. State of the Art 

it was concluded that the sensor node with the higher magnitude in the frequency 

domain is the one which is closer to the damage. 

 

Another parameter that can be optimized to increase the efficiency and 

detectability of an SHM system is the geometry of the structure itself as has been 

proposed by [Ong and Chiu (2012), (2013)]. While the idea of optimizing the 

geometrical aspects for current damage tolerant design is quite wild, this 

approach would make sense for a new structure which is to be designed from 

scratch. In their work, they proposed fatigue crack detection and localization 

using ray tracing in a specially designed sub-structure within an aircraft wing 

that specifically redirects Lamb wave propagation. The study was performed in 

a FEM environment and experimentally validated. 

 

As a conclusion for this sub-chapter, the design parameters of Lamb wave SHM 

that should be considered when designing such system has been discussed by 

[Carboni et al. (2015)] where they employed statistical approaches by Design of 

Experiment (DOE) to study the main influencing factors such as Lamb mode 

tuning, frequency combination, pulse-echo and pitch-catch configuration, and 

sensor position for damage detection in carbon fiber composites. 

 

2.2. Recent Trends in Machine Learning and Computational Intelligence  

 

This section contains the recent trends and advances in machine learning, 

evolutionary computing in heuristics optimization, and give some perspective on 

computational neuroscience that might be adapted to the development of 

autonomous systems in the sub-section 2.2.1 – 2.2.3, respectively. 

 

2.2.1. Advancement in Machine and Deep Learning 

 

Since the scope of machine learning is very broad and in recent years it is getting 

more and more chaotic than ever, before ‘getting lost’ in the jungle of machine 

learning terminology, we shall understand the existing paradigms of machine 

learning [Mohri et al. (2018), Karimpanal and Bouffanais (2018), Settles (2010), 

Sahoo et al. (2018)]: supervised learning, unsupervised learning, semi-supervised 

learning, self-supervised learning, feature learning, reinforcement learning, 

active learning, and online learning: 

 

- Supervised learning: This is most probably the most well-known learning 

scenario. In supervised learning, the algorithm receives a set of labeled 

examples as training data and makes predictions for all unseen points. The 

most common applications that use machine learning are image 

recognition, weather prediction, and spam email detection. 

- Unsupervised learning: In this case, the learning algorithm exclusively 

receives unlabeled training data and estimates whether there are 

relations between each point. Generally, the performance of an 

unsupervised learning algorithm is difficult to measure since in general no 

labeled example is available in that setting. An example of unsupervised 
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machine learning techniques is clustering for news category grouping and 

principal component analysis (PCA) for dimensionality reduction. 

- Semi-supervised learning: This approach falls between unsupervised and 

supervised learning. The learning algorithm receives a training sample 

consisting of both labeled and unlabeled data and makes predictions for 

all unseen points. This approach is very common in settings where 

unlabeled data is easily accessible, but labels are expensive to obtain, 

which reflects many real-world situations. 

- Self-supervised learning: Like semi-supervised learning, self-supervised 

learning also falls between supervised and unsupervised learning. The 

difference here is, self-supervised learning makes use of completely 

unlabeled data, but it tries to find the relationship between each data point 

and tries to map that relationship in a supervised way. This is commonly 

used in the robotics domain where a self-supervised algorithm learns the 

relation between multimodal data from a color and a depth camera. 

- Feature learning: Sometimes also called representation learning, feature 

learning allows a system to automatically discover the representations 

needed for feature detection from raw data. Learning representations 

replace hand-engineered features and allow the algorithm to both learn 

the features directly from the raw data and to use them to perform a 

specific task. An example of feature learning is a face recognition software 

that detects biometric markers such as eyes and mouth location. 

- Transfer learning: Also associated with feature learning and deep 

learning, transfer learning makes use of the learned feature 

representations. Since a deep neural network can only perform a specific 

task and it must be retrained if the task is changed, the learned features are 

sometimes transferred into a similar task in order to save training time. 

- Online learning: Online learning is a subset of supervised learning, which 

involves an ‘online scenario’ that consists of multiple rounds of intermixed 

training and testing phases. However, unlike classical supervised 

learning, the online scenario is not done in a mini batch over an entire 

dataset, but rather in sequential way as soon as new data points are 

discovered. 

- Active learning: Like online learning, active learning is a special case of 

supervised learning. The active learning algorithm interactively collects 

training data, typically by querying a human to request labels for new 

points. The goal in active learning is to achieve a performance comparable 

to the standard supervised learning scenario, but with fewer labeled 

examples. 

- Reinforcement learning: Like active learning, a reinforcement learning 

algorithm actively interacts with the environment. It receives an 

immediate reward or penalty for each action. The objective of 

reinforcement learning is to maximize the reward over a course of actions 

and iterations with the environment. However, unlike many other 

machine learning scenarios, reinforcement learning does not yield a 

statistical model like a neural network, but rather a policy that maps the 

agent action to maximize its reward. 
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Supervised learning is most probably the most common and often talked about in 

machine learning and when introducing someone to machine learning, the first 

method that will be introduced would probably linear, polynomial, and logistic 

regressions as these simple techniques have existed since centuries. Indeed, 

almost all modern supervised techniques are at least involving regression. The 

most simplistic supervised algorithm would probably be a simple (also called 

naïve) Bayesian classifier that can also slightly be expanded into multinomial 

Bayes classifier. Already in 1997, [Domingos and Pazzani (1997)] discussed the 

optimality of a Bayes classifier, where they show it can be optimal under hinge 

loss. There are already enough works on Bayes classifiers and therefore will not 

be elaborated further here. 

 

Another popular technique in supervised learning is called Support Vector 

Machine (SVM) which was introduced by [Cortes and Vapnik (1995)] as a 

support-vector network for pattern recognition. The original SVM was basically 

a binary classifier that used an optimal hyperplane which maximizes the margin 

in multidimensional space. In a simplified case where the data points are linearly 

separable, it can be simplified as a linear SVM. The work has been extended by 

[Lee at al. (2004)] to include multicategory classifier SVM and its statistical theory 

has been recently provided by [Pouliot (2018)]. 

 

The most popular and heavily researched supervised learning method is 

probably neural network, which was introduced for the first time by [Rosenblatt 

(1958)] as a perceptron and later emerged as a network and thus called multilayer 

perceptron (MLP). Since MLP is an imitation of a biological neural network, it is 

also sometimes called artificial neural network (ANN). MLP grew in popularity 

until the 1990’s [Hopfield (1982)], where at that time the computational ability was 
low, and the ANN popularity was overshadowed by SVM [Lee and To (2010)].  

 

In between, there were periods called the ‘AI winters’ where research in artificial 
intelligence suffered a lack of funding and interest, and these were notoriously 

between the early to late 1970’s, between the late 1980’s and the early 1990’s, and 
after the dotcom bubble collapse in the early 2000’s. It was not until the mid-

2000’s when [Hinton and Salakhutdinov (2006), Hinton et al. (2006)] introduced 

the deep belief network (DBN), a class of DNN, when the neural network regained 

popularity. Post-2012, people were increasingly talking about ‘deep learning’ but 

actually it is just a network with at least 2 hidden layers, so technically a 2-layered 

MLP from the 1970’s would also qualify to be called deep learning.  
 

While MLP was powerful enough to recognize the handwritten digit even in the 

early 1980’s, it was still far away from recognizing the human face or detecting an 
object within an image. Not only was MLP memory consuming, but at that time 

there was not enough computational power to train a huge MLP. Moreover, a 

complex MLP was very prone to the overfitting problem. To overcome the 

problem, a convolutional neural network (CNN or ConvNet) called LeNet-5 was 

introduced by [LeCun et al. (1998)], depicted in Fig. 2.2.1-1. 
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Fig. 2.2.1-1. Original LeNet-5 [LeCun et al. (1998)] 

 

The idea behind CNN was to capture local spatial information within the input 

image, thus it was designed as a shared network parameter within a convolution 

filter that slides from the top left to the bottom right of the input image. The input 

representations were subsampled into several feature maps and this step was 

repeated in several times until a very deep abstraction level of the original input 

image was reached. Finally, the feature maps were attached to a smaller, but fully 

connected MLP at the end. LeNet-5 was published coincidentally during the peak 

of dotcom bubble, however as one can expect, there was a short period of AI 

winters afterwards. From 2010 onwards, research in CNN were flourishing. 

[Krizehvsky et al. (2012)] introduced AlexNet, a deeper and larger version of 

LeNet-5. They also trained it on GPU and thus accelerated the training process. 

Unsurprisingly, AlexNet was the top performer in ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) 2012. Since then, there exist many variants of 

CNN: 

 

- 16- and 19-layers deep network from Visual Geometry Group of Oxford 

University, called VGG-16 and VGG-19 [Simonyan and Zisserman (2015)] 

- 152-layers deep CNN with skip connections called Residual Network 

(ResNet) [He et al. (2016)] 

- CNN a variational convolution filter size from the Google team, called 

GoogLeNet which also known as InceptionNet (22-layers deep) and its 

younger brother InceptionNet v4 and its sibling recombinant Inception-

ResNet [Szegedy et al. (2015), (2017)] 

- a smaller but efficient CNN for smartphone and embedded vision 

application called MobileNet [Howard et al. (2017)] 

- similar to MobileNet: SqueezeNet [Iandola et al. (2017)] that achieved 

AlexNet-level of performance but only with less than 1 MB size. 

 

One of the major breakthroughs in CNN was proposed by [Hinton et al. (2018)] in 

what they called as dynamically routed capsule network (CapsNet). In normal 

CNN, a pooling layer is typically attached after each convoluted feature map to 

reduce feature redundancy, but this causes information loss regarding object 

pose and location. So, a CNN would recognize an image that consists of eyes, 

mouth, nose, and ears as perfect human face even if the mouth is placed on the top 

of the eyes. This is known as white attack, but it is to be expected because the 

convolution kernel from a CNN only learns the local spatiality of an object (e.g., 

eye color, pupil, lens within an eye) but it does not learn the eye position relative 
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to the human face. CapsNet addressed this issue by learning an equivariant 

representation of the object, i.e., it tracks the object movements just from several 

samples and concatenate them in a capsule. Instead of a common non-linear 

activator such as sigmoid or linear rectifier, the capsule is routed to the next layer 

by a squash function. The architecture of CapsNet and the equivariant object 

representation is depicted in Fig. 2.2.1-2 a – c. 

 

 
Fig. 2.2.1-2: a). Architecture of CapsNet, b). 8 sample images from 4 objects that are fed into CapsNet 

– each object and its equivariant representation is given in top and bottom, c). Artificially 

generated images from learned parameters trained with CapsNet. It can be seen quickly that 

CapsNet can efficiently learns the object pose. [Hinton et al. (2018)] 
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Another approach that commonly appears with a neural network is sequential 

data modelling using a recurrent network. This approach is very useful for a data 

block that has variable length, but also for very long data that has to be treated in 

sequential mode such as human speech, textbook, or a very long time-series. In a 

recurrent network, the information is processed in the recurrent cell. There are 

several variants of core recurrent cells that make up the network: the vanilla 

recurrent neural network (RNN), the long short-term memory (LSTM) and the 

gated recurrent unit (GRU) which were originally introduced by [Rumelhart et al. 

(1986)], [Hochreiter and Schmidhuber (1997)], and [Cho et al. (2014)], 

respectively. The basic recurrent cell operations and the model architecture of a 

generic recurrent network is depicted in Fig. 2.2.1-3. 

 

 
Fig. 2.2.1-3: a). Recurrent cell basic operations: Vanilla RNN, LSTM, and GRU [Rathor (2018)]. b). 

Recurrent network architecture [Hochreiter and Schmidhuber (2017)]. Every cell at hidden layer 

can be either vanilla RNN, LSTM, GRU, or combination of these. 

 

While the theoretical detail is too complex to discuss in this literature review, it 

can be pointed out that the similarity of these networks is that the input into the 

recurrent cell not only comes from the input layer, but also from preceding 

output layer. This is in contrast with a feed-forward neural network (such as MLP 
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and CNN) which only gets its input solely from the input layer.  The advantage of 

LSTM and GRU over vanilla RNN is that the GRU and LSTM cells have memory 

and thus are more suitable for applying to a long-term dependency problem such 

as machine translation. An example that demonstrates the capability of a 4-layers 

deep LSTM network to handle long term dependency has been performed by 

[Sutskever et al. (2014)]. They showed that there is no translation degradation for 

English – French translation for sentences of less than 35 words. 

 

Another possible approach for sequential modelling on recurrent network is the 

combination between CNN with LSTM. There are two different approaches to 

this: 1). the conjunct CNN-LSTM where the MLP layer in the standard feed-

forward CNN is simply replaced by LSTM cells such as demonstrated by [Xue et 

al. (2019), Vidal and Kristjanpoller (2020)] and 2). the ConvLSTM method where 

the convolutional kernel from standard CNN is made recurrent as an LSTM cell 

such as demonstrated by [Xu et al. (2019)]. For this reason, this can be regarded as 

a 2D-LSTM cell. 

 

Given the ability possessed by CNN to extract spatial information from the input 

and the ability of recurrent models such as GRU and LSTM to learn temporal 

relationships stretching across long periods of time, it is natural to fathom a 

neural network that is a hybrid of both. The resulting hybrid neural network 

would enable the pattern learning of the spectrotemporal input in an end-to-end 

manner. 

 

The first proof of this concept found its first appearance in research dating back 

to 2015 [Ng et al. (2015), Donahue et al. (2015)]. To best of my knowledge, the first 

hybrid CNN and LSTM combination was proposed by [Shi et al. (2015)]. 

Numerous variants of CNN-LSTM hybrid networks have since been proposed in 

a wide range of technical fields, such as: clinical electroencephalography (EEG) 

[Xu et al. (2020)], financial forecasting [Lu et al. (2020)], renewable energy 

production [Tovar et al. (2020)], natural language processing [Sainath et al. 

(2014)] and, ostensibly of course, computer vision [Ercolano and Rossi (2021)].  

 

Theoretically, a convolutional operation of the kernel can be of arbitrary 

dimension, although as humans we normally perceive in either 1-, 2- or 3-

dimensional space. The simplest example was by given [Xu et al. (2020)] in which 

they employed 1D CNN-LSTM architecture, in which they used the 1D CNN-

LSTM for automatic recognition of epileptic seizures via the analysis of EEG 

signals. The purpose of the convolutional layer was to extract features from the 

preprocessed EEG input data, while the LSTM component of the architecture 

would then subsequently perform the extraction of temporal features. This novel 

application of 1D CNN-LSTM architecture for a clinical EEG task proved to have 

much better performance than both traditional machine learning algorithms and 

simpler deep neural networks and a pure CNN network.  

 

Within the field of field of financial forecasting, [Lu et al. (2020)] used a 1D CNN-

LSTM network to predict the price of a stock one day ahead. The tasks of both the 
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1D CNN and LSTM components are similar to those in the previous case, so 

unsurprisingly one may view the financial data input into the network as a 

suggestive signal of a company's potential profitability. As an outcome, they 

concluded that a 1D CNN-LSTM is capable of reliably forecasting stock prices, 

which was further demonstrated by comparing the results from alternative 

models such as multi-layer perceptron (MLP), pure CNN, pure recurrent (RNN 

and LSTM) and CNN-RNN. 

 

One prominent example from the medical field using CNN-RNN recombination 

has been performed by [Gheisari et al. (2021)] for detecting glaucoma, a leading 

cause of blindness. According to their results, the combined CNN-RNN model 

reached an average F-score of 96.2% while the base CNN model only reached an 

average F-score of 79.2%. Another work from the medical field has been 

demonstrated by [Islam et al. (2020)] who used it to automatically diagnose X-ray 

imagery data of Covid-19 patients. Their experimental results show that the 

algorithm achieved an accuracy of 99.4% and an F1-score of 98.9%. A visual 

depiction of their implementation of 2D CNN LSTM is given in Fig. 2.2.1-4. 

 

 
Fig. 2.2.1-4: 2D CNN-LSTM network proposed by [Islam et al. (2020)] to distinguish X-ray imaging 

data between a healthy (normal) lung, a Covid-19 patient, and a bacterial pneumonia. 
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Another application of CNN-LSTM was proposed by [Ercolano and Rossi (2021)] 

who developed an algorithm to recognize daily life activities in the home 

environment using skeleton data coming from a depth camera. In this case, they 

had a 3D CNN component which takes as input depth wise grid representations 

of skeletal data, as depicted in Fig. 2.2.1-5. 

 

 
Fig. 2.2.1-5: 3D CNN-LSTM for recognizing RGB-D skeletal data [Ercolano and Rossi (2021)] 

 

[Tovar et al. (2020)] used a similar network to predict electric energy 

consumption. They used multivariate datasets coming from different sensor data 

such as atmospheric pressure, humidity, temperature, AC voltage, radiations, etc. 

A visualization of the implementation of their workflow is given in Fig. 2.2.1-6. 

 

 
Fig. 2.2.1-6: Visual depiction of the 1D CNN-LSTM implemented work for electricity energy 

consumption prediction [Tovar et al. (2020)]. 

 

Within the field of SHM-NDT, there are few use cases of the CNN-LSTM 

architecture. One example is the work of [Khorram et al. (2019)] which focused 

on intelligent bearing diagnostics and prognostics and aimed at reducing 

unscheduled downtime, performance degradation and hazardous safety matters 

by detecting bearing faults using CNN-LSTM with the end-to-end approach. In 

their work, the data is maintained in its raw format without any pre-processing 

such as a Fast Fourier Transformation (FFT) or Discrete Wavelet Transformation 

(DWT). Notably, the result achieved by this work demonstrated a level of 

accuracy higher than that of any other present in literature. They collected raw 

accelerometer measurements as input data which are fed into the temporal 

sequence prediction algorithm, as depicted in Fig. 2.2.1-7. 
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Fig. 2.2.1-7: End-to-end 1D CNN-LSTM approach for bearing fault diagnosis [Khorram et al. (2019)]. 

The loss function is defined as L. 

 

In the domain of machine translation, a novel approach for neural translation has 

been proposed by [Bahdanau et al. (2015)]. An LSTM memory cell degrades for a 

very long sentence. They addressed this issue by adapting the approach of 

[Sutskever et al. (2014)] as variable length vectors and adaptively choose a subset 

of these vectors. This is called attention mechanism, and it relieves the 

computational load from squashing all the information from the source sentence 

into a single fixed-length vector. Concretely, they used a bi-directional RNN both 

as an encoder during sequence annotation and a decoder during context 

searching from the source sentence. An example result is depicted in Fig. 2.2.1-5. 

 

 
Fig. 2.2.1-8: Example translation result for English – French word matching using approach 

proposed by [Bahdanau et al. (2015)] 
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A variation for neural machine translation has been introduced by [Vaswani et al. 

(2017)] where they called their model Transformer network. While the work of 

[Sutskever et al. (2014)] relied on sequence aligned recurrence, [Vaswani et al. 

(2017)] exploited the self-attention mechanism, where the attention mechanism 

can be related to different positions within a source sentence instead of one. 

Their model was extended into Pre-trained Bidirectional Encoder 

Representations from Transformers (BERT) by [Devlin et al. (2018)] by leveraging 

the bidirectionality of the Transformer network which was previously only 

made for the left-to-right direction.  

 

One interesting approach in supervised learning is transfer learning where a 

machine learning model that has been trained to solve certain task (e.g., face 

recognition) can be retrained and repurposed for another task (e.g., object 

detection). An example for this approach has been demonstrated by [Goodfellow 

et al. (2014)] on a generative adversarial network (GAN). The network consists of 

a generator and discriminator that behave in an adversarial way and can be 

trained in semi-supervised mode [Kingma et al. (2014)], i.e., a generalization from 

a small amount of labelled data for a large but unlabeled dataset.  

 

In terms of unsupervised learning, there are works that have been performed by 

the computer science and machine learning community, although these works 

are very much overwhelmed by deep learning. One of the most popular 

unsupervised techniques that is very often used for data compression as well is 

clustering. Originally proposed by [MacQueen (1965)] by using k-means, i.e., data 

are partitioned into k-clusters under the assumption that each data point that is 

close to the nearest mean is assumed to belong to that cluster. The resulting 

cluster is called a Voronoi tessellation. 

 

Beside clustering techniques, another unsupervised learning technique which is 

also commonly used for data compression is called principal component 

analysis (PCA). Originally proposed by [Pearson (1901)] in early 19th century, PCA 

can be done by either using singular value decomposition (SVD) or by performing 

eigenvalue decomposition on the covariance matrix. The method has been 

refined several times, e.g.: by [Ke and Kanade (2005)] who proposed alternative 

convex programming for robust L1-Norm factorization, [Johnstone and Lu 

(2009)] who discussed consistency and sparsity for high-dimensional PCA, and 

[Markopoulus et al. (2014)] who generalized multiple L1-maximum projection 

components. 

 

While many of the works are proposing novel techniques and methodologies, 

[Locatello et al. (2019)] challenged some common assumptions in unsupervised 

learning regarding disentangled representations. Disentangled representations 

are narrowly defined variables of observation features which are encoded in a 

separate dimension, i.e., these are models that capture the very low-level features 

of a given observation in such a way that if one feature changes, the others remain 

unaffected. They first argued that “unsupervised learning of disentangled 

representations is fundamentally impossible without inductive biases”, trained 
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more than 12.000 models that covered many prominent methods and metrics, 

and concluded that there seems to be no such thing as fully disentangled methods 

without supervision. 

 

Semi-supervised learning can be regarded as a generalized form of both 

supervised and unsupervised learning because one can either fully supervise the 

model during the training – or let the model find to learn the distribution without 

any prior label and in semi-supervised mode, both approaches are combined in 

a single training pipeline. One early empirical study on the semi-supervised 

approach involving variations of Bayes classifiers on multiple datasets and 

common benchmarks can be read in the work performed by [Guo et al. (2010)]. 

Furthermore, [Bengio et al. (2013), Reddy et al. (2018), Li and Liang (2019)] 

provided a literature review on recent semi-supervised techniques. 

 

One common problem in semi-supervised approach is the duality between 

quasi-omnipresence of unlabeled data and sparse availability of labeled data 

which is tied to the expensive cost of labelling all possible datasets. [Triguero et 

al. (2015)] provided an extensive survey on self-labeling techniques covering the 

taxonomy of methodologies, multiple software packages, and various empirical 

studies. An example of such self-labeling approach is proposed by [Benato et al. 

(2018)]. In this example, they used projected feature space with a CNN-based 

encoder-decoder system to propagate the dataset labeling. 

 

Briefly speaking, in deep learning, what people are interested in is in particular 

the feature representation of the input dataset. For this reason, the International 

Conference of Learning Representations (ICLR) has been invented as a research 

venue by the deep learning community since 2013 and consequently, many of the 

ICLR papers are mostly concerned with feature learning. For representation 

learning, the importance of mutual information (MI) maximization should be 

pointed out and this is reiterated by [Tschannen et al. (2020)], although they also 

argued that MI properties are highly dependent on used inductive bias, i.e., the 

choice of encoder-decoder architecture and its parametrization. [Ozair et al. 

(2019)] introduced the Wasserstein dependency measure instead of common KL-

divergence in the mutual information. Similar to the Hellinger-Bhattacharyya 

distance, the Wasserstein distance measures the similarity between two 

probability distributions, which can be regarded as a generalization of the 

Euclidian and the Mahalanobis distance. They argued that the Wasserstein 

measure captures a more complete representations in the mutual information 

estimator. The state-of-the-art of MI maximization in word representation can be 

read in [Kong et al. (2020)]. 

 

It is also important to incorporate the inductive bias as well such that a proper 

architecture is selected. Inductive bias was reiterated again by [Shen et al. (2019)] 

on their work regarding ordered neurons in an LSTM network for different tasks 

such as language modeling and logical inference. [Kolesnikov et al. (2019)] argued 

that “standard architecture design recipes do not necessarily translate from the 

fully supervised to the self-supervised setting and architecture choices which 
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negligibly affect performance in the fully labeled setting, may significantly affect 

performance in the self-supervised setting”. 

 

[Misra and Maaten (2019)] introduced Pretext Invariant-Representations in self-

supervised mode, in such a way that the neural network learns representations 

from both the original image and its invariant transform and clustered the output 

in a memory bank about whether an image transform is similar or dissimilar. 

When training such a large dataset, sometimes either time or space becomes 

limited. [Goyal et al. (2019)] proposed to scale different dataset axis such as pre-

training dataset size, model capacity, and the related problem complexity. 

 

Not only for visual problems, but self-supervised learning can also (and probably 

should) be used for multi-modal problems. [Patrick et al. (2020)] introduced 

generalized data transformation (GDT) in the audio-visual representation 

learning problem to allow choice as to whether the transform is invariant or 

distinctive and to derive the conditions which the transformation combinations 

must obey. Their framework approach is depicted in Fig. 2.2.1-9. 

 

 
Fig. 2.2.1-9: Schematic overview of GDT. A: Hierarchical sampling of GDT for the audio-visual 

problem. B: The network learns the invariant and distinctive transformations. C: Result example 

showing which pairs are repelling and attracting. [Patrick et al. (2020)] 

 

Finally, when talking about machine learning paradigms, one should not forget 

reinforcement learning (RL), where the central task is to influence agent behavior 

in an environment in order to maximize cumulative rewards. The formal 

introduction into reinforcement learning can be seen in [Busoniu et al. (2010), 

Mohri et al. (2018), François-Lavet et al. (2018)]. In short, in reinforcement 

learning an agent collects information through a sequence of actions by 

interacting with the environment. 

 

One early application of reinforcement learning was proposed back in the early 

90’s by [Littman (1994), Tesauro (1995)] for playing games and these have been 
extended in recent years for many games such as chess or AlphaGo [Szita (2012), 

Lai (2015), Tang et al. (2017), Shao et al. (2018)] where the agent learns how to 

maximize the reward by winning the game. Further application of reinforcement 

learning can be seen in the domain of robotics and humanoids such as 

demonstrated by [Kormushev et al. (2013), Gu et al. (2017), Liu et al. (2018)], and 

for autonomous vehicle such as cars and unmanned aerial vehicles (UAV) [Ng 

(2003), Munoz et al. (2019), Becker-Ehmck et al. (2020), Ravi Kiran et al. (2020)]. 
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An extensive survey on reinforcement learning on robotics can be read in [Kober 

and Peters (2014)]. 

 

2.2.2. Computational Intelligence for Optimization  

 

The selection of technical and process parameter optimization for SHM such as 

number, location, and shape of the sensors, optimal excitation and sampling 

frequency, or even the geometry and constituent material of the structure, etc. 

can be regarded as a subset problem of a discrete mathematical optimization: it is 

a selection of the best element from a set of possible elements, i.e., finding a 

maximum (or minimum) and if possible, globally. The generalized problem in 

optimization can be formulated as the finding a non-convex function with non-

linear programming technique for multi-objective optimization. From there, 

many special cases can be derived, e.g., for solving single objective linear 

problem with simplex algorithm. 

 

The manifold of neural networks has been reviewed in very extensive way in the 

previous section – so it will not be further discussed here. Both evolutionary 

computing and swarm intelligence are methods that are very often used to solve 

optimization problems, and both can be regarded as metaheuristic methods. 

Generally, when solving an optimization problem, depending on the nature of 

the problem complexity, one can discretize these methods into one of these four 

approaches, including some of the common sub-techniques [Bianchi et al. (2009), 

Brinkhuis and Tikhomirov (2005), Cook et al. (1998)]: 

 

- Nonlinear programming: function-based (such as line-search and 

interpolation), gradient-based (such as Trust region, Quasi-Newton, and 

conjugate gradient), and Hessian based methods. 

- Convex optimization: linear programming (such as simplex and interior-

point methods), quadratic programming – both are special case of non-

linear programming where the functions to be solved are either linear or 

quadratic. 

- Combinatorial optimization: Dynamic programming, Brute-force, Greedy 

method, Integer programming, State-space search, Graph algorithm 

- Metaheuristics: Evolutionary algorithm (such as genetic algorithm), 

Simulated annealing, Swarm intelligence (such as ant colony, bee colony, 

and particle swarm optimization), Tabu search 

 

Unfortunately, in the optimization community there are fewer resources and 

publications unlike the machine and deep learning domain. Nevertheless, one 

particular optimization technique, which is the gradient based method, serves as 

a fundamental backbone in many machine learning techniques especially for 

backpropagation in neural networks and gradient ascent for expectation 

maximization (EM) in other ML techniques, such as hidden Markov models 

(HMM) [Stamp (2017)] and mixture models [Marin et al. (2005)]. Most of modern 

deep learning optimization is done through gradient descent and its variant. 
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Some other optimization techniques beside gradient descent are the Levenberg-

Marquardt and Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods including 

its variant limited-memory BFGS (L-BFGS) [Nocedal and Wright (2006)]. Further, 

there is also Newton’s method, but it requires a twice differentiable function since 
it needs to calculate the Hessian matrix H, making it mostly impractical to 

optimize a large network. 

 

Some well-known problems within combinatorial optimization are the vehicle 

routing problem (including the travelling salesman problem and the route 

inspection problem), the knapsack problem and the art gallery problem. One 

obvious method to solve a combinatorial problem is the exhaustive search 

(commonly known as brute force) which visits all possible options in the search 

space. Depending on the problem class complexity (i.e., P for polynomial time vs 

NP for non-polynomial time in a Turing machine), this option can be viable when 

the search space is extraordinarily small. In most real-world cases, brute force is 

computationally infeasible since the time complexity will be factorial – the time 

complexity is denoted as 𝓞(n!) – see Fig. 2.2.2-1, where n is the number of possible 

elements in the search space. The list of complexity of some common algorithms 

can be read in [BigOCheatSheet (online)]. 

 

 
Fig. 2.2.2-1: Time complexity as a function of all possible elements in the search space. 

[BigOCheatSheet (online)]. Ideally, an algorithm can be considered feasible in many real-world 

problems if its computational complexity is less than O(n²), and possibly less than O(n log n). 

 

Thus, we may rely on metaheuristics search algorithms such as the evolutionary 

algorithm to find a solution for many combinatorial problems. As summary, there 

are currently four mainstream approaches: 1). Evolutionary computing methods 

such as the genetic algorithm, neuroevolution and differential evolution, 2). 

Physically inspired methods such as simulated annealing and its variations, 

quantum annealing and stochastic tunneling, 3). Swarm intelligence-based 
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methods such as ant colony, bee colony, and particle swarm optimization, and 4). 

Socially inspired methods such as tabu search and its variants. 

 

An application of adaptive differential evolution for dynamic optimization has 

been demonstrated by [Trojanowski et al. (2011)], where they modified the 

mutation operator to be based on an α-stable distribution. A similar approach on 

modified mutation has also been proposed by [Azad et al. (2011)] but they also 

implemented self-adaptive control parameters that influence the generated 

population at each run. This approach is related to what has been proposed by 

[Lourenço et al. (2013)]. In their work, a rule that defines how many individuals 

should be selected and how they should be chosen in order to adjust the selective 

pressure. The algorithm was tested on the knapsack problem. 

 

[Forstenlechner et al. (2017)] proposed a similarity-based crossover technique 

by calculating the similarity measures such as Hamming and Levenshtein 

distance depending on the variable used. [Abbood and Vidal (2017)] introduced 

several different mutation operators in the co-evolution algorithm which they 

called the “Fly Algorithm”. The algorithm was tested for reconstructing a 
computed tomography (CT)-scan of cancer patient. A comparison of some of the 

adaptive selection techniques has been performed by [Jankee et al. (2015)].  

 

On the application side, an evolutionary algorithm can be combined with a graph 

search algorithm such as A* for drone path planning for a surveillance mission in 

an urban environment as proposed by [Ghambari et al. (2019)]. The objective was 

to find the shortest path under the constraint that the drone must maintain a safe 

distance when flying between the obstacles. 

 

A similar UAV path planning has also been proposed by [Arantes et al. (2016), 

Ellefsen et al. (2016)]. In similar way, [Ragusa et al. (2017)] also proposed an 

enhanced path planning for autonomous flight with a mini drone, the so-called 

micro aerial vehicle (MAV). They mentioned that common limitations of using 

GAs for path planning in a simulated environment are that the environment is 

discrete, and that the UAV motion is monotonic. 

 

A genetic algorithm was also employed to optimize aircraft approach trajectories 

[Vormer et al. (2006)] and to solve automated taxi routing in an airport, such as 

proposed [Brownlee et al. (2018)]. They recognized that aircraft taxiing not only 

causes unnecessary fuel burn, but it also frustrates passengers and airport 

resources. For this reason, their algorithm was designed to minimize the taxiing 

time and they validated the approach using an example at 3 international major 

airport hubs. 

 

Another interesting application of an evolutionary algorithm in an aerospace 

related domain beside path planning is to optimize the winglet design such as 

proposed by [Teixeira et al. (2016)], where several decision variables are fed into 

the algorithm to optimize two objectives: the ratio of drag-lift coefficients, and the 

wing root bending moment coefficient. This approach was similar to the later 
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work by [Gewehr and Sousa (2019), Zhang et al. (2020)], although the later 

implemented in the winglet configuration for a solar-powered aircraft. 

 

In metaheuristics by swarm intelligence, one of the commonly used methods is 

the ant colony optimization algorithm (ACO) which is a probabilistic multi agent-

based technique that is inspired by the behavior of real ants for solving 

computational problems with high complexity such as vehicle routing. [Melo et 

al. (2013)] divided the ant colony system (ACS) for solving the dynamic travelling 

salesman problem (TSP) – which is an NP-hard problem – into several cases that 

can have different selection strategies.  An example of a real-world application of 

ACS optimization for logistics and transportation domain was proposed by [Luo 

et al. (2019)], where they aimed to minimize CO2 emissions of transportation 

vehicles from home health care (HHC) companies. Not only for logistics, but ant 

colony optimization (ACO) has also been used for path optimization of multiple 

UAVs during Minimum Time Search (MTS) missions [Carabaza et al. (2017)]. 

While this can be used for military and defense-related topics, fortunately the 

example they gave was for a simulated search and rescue mission for a lost hiker. 

 

Interestingly, ACO can also be used for optimizing recurrent neural networks 

such as LSTM and has been demonstrated by [El Said et al. (2018)]. In this work, 

they basically evolved the LSTM network by letting the artificial ants choose the 

best connections between the hidden layers. This technique can be viewed as a 

regularization for overfitting prevention that used metaheuristics search instead 

of a regular neuron dropout. The example results of their work for vibration 

prediction from a single test flight that compares optimized and non-optimized 

LSTM architecture is given in Fig.2.2.2-5. 

 

 
Fig. 2.2.2-1: Comparison between vibration prediction from unoptimized and ACO-optimized 

LSTM network. [El Said et al. (2018)]. 

 

Besides the ACO, artificial bee colony (ABC) algorithm, originally proposed by 

[Karaboga (2005)], is also commonly used for search metaheuristics. Rather than 

using a pheromone trail, in ABC the employed bee goes to a food source, evaluates 

the nectar amount and dances in the beehive. An onlooker bee watches the dance 

and goes to the food source and examines it. If the food source is abandoned, the 

employed bee (which then becomes a scout) will continue to search for a new 
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food source. The algorithm was slightly modified by [Consoli and Pavone (2013)] 

to solve the graph coloring problem and by [Wang et al. (2016)] for searching k-

Nearest-Neighbor Fields (k-NNF). 

 

As an alternative to the artificial ant and bee colony is the more generic particle 

swarm optimization (PSO), which was originally proposed by [Kennedy and 

Eberhart (1995), Shi and Eberhart (1998)], is also commonly used for many 

optimization problems. Many of the PSO variations do exist such as novelty 

driven PSO [Galvao et al. (2015)], where “the particles are driven only towards 

instances significantly different from those found before” to avoid local optima, i.e., 

they assigned the best position of particle to be the one that has the highest 

novelty instead of the best fitness. 

  

PSO has also been used to optimize hyperparameter selection in a neural 

network, as demonstrated by [Lorenzo et al. (2017)]. This can be related to the 

work of [El Said et al. (2018)], although in this case they only used a standard CNN 

instead of LSTM for validation of their work. Not only for hyperparameter 

optimization in supervised learning, [Nguyen et al. (2018)] used PSO for feature 

selection in transfer learning with a domain adaptation approach. As for real-

world PSO applications there are several interesting works that have been 

proposed such as: filter parameter selection for image denoising [Wang et al. 

(2017)] by employing a structural similarity index to calculate the intensity 

parameter. This approach was similar to a more recent work proposed by 

[Portelli and Pallez (2019)]. Recently, [Mohamed and Otero (2020)] used PSO for 

solving a multi-objective approach for market timing in a financial portfolio 

optimization such as value at risk (VaR), transactions count, and annualized rate 

of returns (AROR), where the solution set was presented as a Pareto set. 

 

Another possible metaheuristic that is still used sometimes (although now 

outdated) is the tabu search. Originally proposed by [Glover (1986)], tabu search 

is a local neighborhood search, i.e., after taking a certain solution, it checks the 

value of its immediate neighbors. If it turns out that one of the neighbors is better 

than the current solution, then it will be taken as the best solution. This procedure 

is repeated until the termination condition is met. For this reason, tabu search is 

rarely employed as and apart from the contribution from [Sghir et al. (2013)] who 

used tabu search for the winner determination problem (WDP) and [Abdelkafi et 

al. (2017)] who used hybrid iterative tabu search for a quadratic assignment 

problem (QAP). Otherwise there seems to be not many works involving tabu 

search anymore. 

 

The same is also valid for simulated annealing (SA) methods, which was 

originally proposed by [Pincus (1970)]. SA was inspired by the annealing process 

in metallurgy: after heating a metal at very high temperature, the slow cooling 

process ensures that the atoms have enough time to rearrange themselves 

according to the law of thermodynamics to form stable crystals because this 

results in a low-energy state – which is equivalent to the global optimum in 

metaheuristics. SA can be used to find the global optima of multivariable 
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functions. In comparison to the genetic algorithm however, SA normally 

performs worse as it can incorporate a candidate solution that is not improving, 

while genetic algorithm only accepts an evolving candidate. 

 

There were not so many recent works involving SA apart from [Hung et al. 

(2008)], who demonstrated a multi-objective SA for PID controller design. [Mu et 

al. (2015)] proposed a memetic algorithm using combined SA and greedy 

optimization for community detection in networks. They argued that combining 

a global search with a locally concentrated SA will generate an algorithm with a 

better search ability. [Larsen et al. (2016), Larsen (2019)], used SA in combination 

with a pheromone-based perturbation strategy to identify important network 

substructures in the domain of biology, especially for protein structure 

comparison and studying human disease. 

 

2.3. General Problem Statement & Objective 

 

This section summarizes the general problem recognized from both the SHM & 

NDT community and computer science community. In the latter part of this 

section, the main research problem formulation will be described and then 

further broken down into several sub-problems. 

 

2.3.1. Recognized Problems in SHM & NDT 

 

For diagnostic applications, particularly in NDT, several applications of deep 

learning – which is largely based on CNN for crack visual detection – have been 

proposed. These works are generally focused on surface inspection of structures 

have been proposed by: [Zhang et al. (2016), Cha et. al (2017), Chaiyasarn et al. 

(2018), Fan et al. (2018), Panella et al. (2018), Pauly et al. (2017)] and many more. 

Besides for surficial crack detection at surface, there are several other works 

involving CNN in NDT, such as for optical phase boundary detection in 

shearography proposed by [Sawaf and Groves (2014)], welding detection using 

X-Ray images by [Hou et al. (2018)], and damaged steel and CFRP using infrared 

(IR) images by [Yousefi et al. (2018)]. 

 

In similar way, deep learning has also brought some wave of excitement to 

diagnostic SHM, although there are less works exploiting deep learning for 

diagnostic SHM in comparison to NDT. In recent years several works that 

incorporate deep learning in SHM has been proposed by of [Ebrahimkhanlou 

and Salomone (2019)] who used deep autoencoder (deep AE) for acoustic 

emission (AE) source localization, [Choy (2018), De Oliveira et al. (2018)] who 

used CNN for processing electromechanical impedance (EMI), and [Azimi and 

Pekcan (2019)], who used CNN for damage identification and localization of 

vibration sensor data in civil infrastructure. 

 

However, as CNN is a discriminative model that is specifically tailored to learn 

how to solve certain task, once the model is trained, its parameters are fixed for 

solving that particular task only. Consequently, when the particular task is 
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slightly changed (e.g., recognizing a car in autonomous driving instead of 

recognizing a face in Facebook), a new deep learning model must be created. 

Hence, transfer learning might be a temporary solution, albeit it requires a 

pretrained model based on a large dataset. In SHM- NDT, such large datasets are 

not publicly available, and it is hardly feasible to perform transfer learning. It has 

been tried for recognizing crack image as has it been proposed, and in Lamb wave 

based SHM there was a trial done [Liu and Zhang (2019)] although there is a doubt 

on the efficacy of transferring image parameters for audio or acoustic wave signal 

processing. This is because the pre-trained model was trained specifically for 

recognizing images that has a physical origin of photon particles which is a 

fundamentally different physical phenomenon from an acoustic wave. While the 

network may finally learn the features from the time-frequency spectrogram, I 

also think that there would be no advantage of using pre-trained image 

recognition models in comparison to classical random start weights. 

 

Another approach using online active learning has been proposed by [Bull et. al 

(2019)]. They recognized that the lack of descriptive labels made conventional 

supervised learning infeasible, and they proposed a novel adaptive learning 

process that updates the learning algorithm as soon as a new class of data is 

discovered by calculating the entropy. This approach bridges the gap of lack of 

labelled data temporarily, however it will fail at some point due to the 

incapability of the models to capture all possible cluster distributions since these 

tend to be infinite in nature. 

 

Conclusively, while we shall appreciate the numerous works that propose deep 

learning approaches for SHM and NDT, a theoretical foundation that formalizes 

the utilization of deep learning for NDT and SHM is currently lacking. Some 

insight into understanding why deep learning might work for acoustic wave 

signal modelling for applications in structural diagnostic is needed. Further, the 

practicality of SHM still encounters many technical questions, and one of them is 

robust pattern recognition for signal classification for damage detection, which 

might not be robust in case of sub-optimal sensor topology, that is, when not 

enough wavefront is captured by one of the sensors within the sensor network. 

As previously described in chapter 2.1.2, currently there is only a limited amount 

of research in terms of sensor topology optimization. Much research has been 

placed on optimizing sensor positions with some good result, but to move 

forward it must be scalable on the SHM level. 

 

2.3.2 Recognized Problems from Computer Science, Machine and Deep Learning 

Community 

 

As for technological advancement from the AI and computer science community, 

we shall acknowledge that this advancement can clearly bring an improvement 

in the SHM and NDT community. One string that is attached to many of the works 

done in these communities is that many of the advanced techniques proposed are 

limited to publicly available benchmarks, such as: 
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• Image recognition and computer vision: handwriting recognition 

database (MNIST), MS-COCO, ImageNet, CIFAR-10 and CIFAR-100, Open 

Images and Street View House Numbers (SVHN). 

• Text data: Amazon reviews, The Reuters Corpus, WordNet, Internet Movie 

Database (IMDB) Reviews, Sentiment140, and Twitter100k. 

• Sound data: TIMIT, Common Voice, AudioSet, and Clotho. 

 

They are rarely exposed to unusual, non-publicly available data such as Lamb 

wave signals and its representation since both SHM and NDT are quite niche 

areas in engineering. Thus, it is natural that they might not even be aware of what 

Lamb wave SHM is. For this reason, we can easily identify that it might be 

worthwhile to investigate further the treatability of Lamb wave signals with the 

advances brought by the computer science and AI community. 

 

Before getting deeper into the investigation, one question that should be asked is 

what would be the starting point? Of course, it is a wish from many people not to 

have supervision bias, but without any incorporation of domain knowledge, 

meaningful research should (and probably can) not be conducted. Revisit the 

theorem proposed by [Locatello et al. (2019)] regarding unsupervised learning of 

disentangled representations: 

 

Theorem 2.3.2-1. [Locatello et al. (2019)] 

1

2

2

For 1, let ~  denote any distribution which admits a density ( ) ( )

Then, there exists an infinite family of bijective functions : sup( ) sup( ) 

( )
such that 0 almost everywhere 

d

i
i

i

j

d P p p

f

f u

u

=

 =

→


 



z z z

z z

,
 (i.e.  and ( ) are completely entangled)

and ( ) ( ( ) ) sup( ) (i.e. they have the same marginal distribution)

i j
f

P u P f u u =   

z z

z z z

 

 

Proof: See Appendix A. 

 

Corollary: Theorem 2.3.2-1 essentially shows that without inductive biases both 

on models and data sets (e.g., from prior knowledge), the task is fundamentally 

impossible, i.e., biases are the part of solution when dealing a real-world problem 

with machine learning. 

 

That practically means, it is up to the SHM-NDT community to explore and 

exploit whether the advanced machine learning and computational intelligence 

techniques brought by the AI community can be employed to push the desired 

improvement in predictive maintenance. 

 

2.3.3. Diagnostic Decision Logic and Isomorphism in Finite Automata 

 

Rather than going directly with engineering details, we shall start with the 

formalism and mathematical logic. It consists of 6 separate different areas: logic, 

model theory, computability, set theory, proof, and Gödel’s Incompleteness 
theorem. While not everything can be described in a detailed way, we can refer 
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to [Li (2010), Mendelson (1997), Shoenfield (2010), Boolos et al. (2002)]. The above-

mentioned literatures introduce the formal systems and quantifiers and help 

understand propositional calculus and first-order logic (FOL). The semantics of 

FOL is that interpretation is based on the context and its syntax consists of 

variables and quantification (e.g., ‘for all: ∀’, ‘there exists: ∃’). The four 

fundamental elements of formal systems are: 

 

1. A finite set of symbols 

2. A grammar rules 

3. A set of axioms 

4. A set of inferencing rules 

 

In computational linguistics, Chomsky hierarchy represents the hierarchical 

class of languages that are accepted by the different abstract machines. As such, 

the formal languages represented in the hierarchy can be described as formal 

grammar. The abstract machines (often called automata) are computational 

models which follow a predetermined sequence of instructions. [Chomsky 

(1956)] classified the grammar, automaton, and language as shown in Table 2.4.1-

2. Type-3 grammar is also contained by type-2 grammar, and type-2 grammar is 

contained by type-1 grammar, and type-1 grammar is contained by type-0 

grammar. In the same way, every regular language is recursively enumerable, 

and every finite-state machine is a special case of Turing machine, and so on. 

 

Grammar Language Automaton 

Type-3 Grammar Regular Finite state machine 

Type-2 Grammar Context-Free Pushdown automaton 

Type-1 Grammar Context-Sensitive Linear-bounded automaton 

Type 0-Grammar Recursively Enumerable Turing machine 
Table 2.4.1-1: Chomsky hierarchy 

 

Without going too deep into theoretical computer science, the formalism in 

aircraft maintenance logic goes this way: many parts of the Airbus A320 have 

been designed to be damage tolerant. Let us simplify the assumption by stating 

that the inspection technique has a detection limit of a crack longer than 5 cm, i.e., 

a crack ≥ 5 cm is said to be a damage. When a certain sub-structure is damaged, it 

needs to be repaired so that the aircraft is airworthy. In this situation, the binary 

input: {Damage, NOT-Damage} can be associated with two possible finite states: 

{Airworthy, Repair}. This formulation can be translated into the simplest model 

of automaton: the finite state machine (FSM). The formal definition of an FSM for 

the binary diagnostic SHM is a quintuplet {∑, Q, q0, δ, F}, where: 

 

∑ are input alphabet, finite ∅-set of symbols ⊇ {Damage, NOT-Damage} 

Q is a finite ∅-set of states ⊇ {Airworthy, Repair} 

q0 is an initial state, ϵ Q ⊇ {Airworthy} δ is the state-transition function, δ : Q x ∑ → F 

F is the set of final states, ϵ Q ⊇ {Airworthy} 
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An example of FSM is deterministic finite automata (DFA), see Fig. 2.3.3-1a, while 

the state transition function for a given input is depicted in Fig. 2.3.3-2b. With this 

logic, whenever there is a damage, the next following state will be {Repair} and if 

it is still damaged, it will stay in {Repair}, otherwise it will return to the state 

{Airworthy}. 

 

 
Fig. 2.3.3-1: a). Deterministic finite automaton (DFA) for diagnostic SHM binary logic, b). state 

transition function δ for the input alphabet {Damage, NOT-Damage}. The final state is represented 

as double circle, which in this case is {Airworthy}. 

 

A finite sequence of the input alphabet is called a string and an n-set of strings is 

called a language L ⊇ Ln. For brevity, {NOT-Damage, Damage} will be abbreviated 

as as {0, 1}, respectively. As such, an example of strings that can be accepted by 

the binary diagnostics DFA are: 

 

• The aircraft was never used so that it has no accumulated damage over 

time such that L1 = {0, 00, 000, 0000, 00000, ….} 

• The aircraft was flown, and it has accumulated damage, but directly 

repaired afterwards such that L2 = {010, 10, 0110, 01110, 10010, ….} 

 

On the contrary, an example of strings that will be rejected the DFA are: 

 

• The aircraft was flown, and it has accumulated damage, but never directly 

repaired afterwards such that L3 = {01, 001, 011, 0011, 000011, ….} 

• The aircraft has already been damaged just after it was produced such that 

L4 = {1, 11, 111, 1111, 11111, ….} 

• Further, we can define a language L5 ⊆ L4 for a situation where the aircraft 

has been damaged after the production, repaired directly afterwards, but 

damaged during the service and not repaired such that L5 = {1101, 1001, 

1101, 100011, …} 

 

As previously said, the above situation is simplified for a binary diagnostic only. 

In real-world situation, when we are not satisfied with the binary diagnostics as 

many would like to regress during the aircraft lifecycle, we can slightly extend 

the FSM into three states and a 3-input alphabet as described in Table 2.3.3-1: 

 

∑ : {NOT-Damage, Damage-Threshold 1, Damage-Threshold 2} 

Q : {Airworthy, Damage Growth, Repair} 

q0 : {Airworthy} 

F : {Airworthy, Damage Growth} 

Table 2.3.3-1: Three states diagnostics FSM with 3 input alphabets 
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For brevity, the set {NOT-Damage, Damage-Threshold 1, Damage-Threshold 2} is 

abbreviated as {0,1,2}. In the situation above, the state {Airworthy} is associated 

only for {0}, and when the input alphabet is {1}, the state would be {Damage 

Growth}. When the input state is {2}, the state would be {Repair}. The initial state 

would be {Airworthy} and the final states can be {Airworthy} or {Damage 

Growth}. Depending on how the airworthiness is regulated by the governmental 

agency, there are multiple paths possible during damage growth. The applicable 

logic here is to assign a multiple possibility when the state is {Damage Growth}. 

Such FSM is called non-deterministic finite automaton (NFA). The NFA diagram 

and its state transition function is given in Fig. 2.3.3-2. 

 

 
Fig. 2.3.3-2: a). Non-deterministic finite automaton (NFA) for non-binary diagnostic logic, b). state 

transition function δ for the input alphabet {0, 1, 2}. 

 

There are several situations that can be associated with the non-determinism 

during damage growth state: 

 

• After the state {Damage Growth} has been reached, suddenly the SHM 

measurement gives {0} (i.e., no damage at all) when in fact this is probably 

illogical since the damage state does not return to the baseline without 

repair, which indicates high probability of a measurement error. In this 

case, two possible states {Airworthy, Repair} will follow – indicated by the 

lower red arrows in Fig. 2.4.1-2a. An example of such a string would be 

either {000110} or {001102}. 

• After the {Damage Growth} state has been reached, an aircraft operator 

can choose to let the damage grow until it reaches the second threshold 

where it has to be repaired or the operator chooses to repair it directly. 

This case is indicated by the upper red arrows in Fig. 2.4.1-2a. An example 

of such a string would be either {011111} or {000012}. 

 

We can see that for the single NFA described above, there exists 4 equivalent DFA 

depending on which string is accepted – i.e., on the logic path the aircraft operator 

would like to choose. Further, the diagnostic NFA can still be expanded into 5 

different states and 3 damage thresholds as depicted in Fig. 2.3.3-4 and by its 

formal definition in Table 2.3.3-1. In this case, it is interesting to think what state 

transition function δ can be applied to this logic and what kind of strings can be 

accepted / rejected by such automaton. 
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Fig. 2.3.3-4: NFA for 5-states diagnostic logic with 4 input alphabets. Red arrows indicate the 

multiple next possible states. 

 

∑ : {NOT-Damage, Threshold 1, Threshold 2, Threshold 3} 

Q : {Airworthy, Damage Growth, Warning, Re-Check, Repair} 

q0 : {Airworthy} 

F : {Airworthy, Damage Growth, Warning} 
Table 2.4.1-4: Five states diagnostics FSM with 4 input alphabets 

 

2.3.4. Research Problems Formulation 

 

Narrowing down this statement for NDT and SHM domain, it would mean that 

instead of focusing on automated decision making, AI should be used as decision 

support to accelerate decision making in the MRO industry. A concrete example 

of this can be demonstrated by automated damage detection to help to decide 

whether an aircraft should be repaired or not. Acknowledging the state of the art 

in NDT & SHM and the recent advances from the CS and ML community, the high-

level question that should be asked from the NDT & SHM community is: is it 

feasible to incorporate computational and artificial intelligence as a design tool for 

an automated diagnostic as a decision support for predictive maintenance – and if 

so, in what way? Surely there are different ways to do so, and I hypothesize that it 

is certainly feasible although it might not always be the easy way. 

 

To answer this question, we shall break down the problem into several 

manageable sub-problems, and the proposition are: 

 

1. The design complexity and parameter optimization, particularly on 

sensor placement methodologies for both deterministic and semi-

stochastic approaches according to what extent the structure is designed 

based on the premise that sensor network topology affects the damage 

detection capability and the overall SHM performance. In this proposal, 

the investigation can be rephrased as which different sensor network 

topologies are needed to understand the trade-off between the strategies and 

if possible, to propose a compensation technique? 
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2. Deep learning for SHM, i.e., an investigation as to whether deep learning 

can be used to treat the Lamb wave signal – and if so, whether it has certain 

theoretical justification. What would be the pros and cons when using deep 

learning to treat Lamb wave signals and what would be the consequences for 

design and manufacturing of SHM system? Further considerations on 

certain aspects from computational neuroscience for processing the 

Lamb wave signal could also be considered. 

 

3. Eventually and worthy to be considered as a research direction as well: 

when combining the sub-problems to reconstruct the final solution: Given 

a certain sensor topology, what would the training behavior look like from for 

different sensors and how do different signal representation will affect the 

training behavior? 

 

In relation to the research problem formulation described in Section 2.3.3, we 

shall start with a simplified solution: problem discretization in binary mode, i.e., 

whether a damage is being detected or not. After that, we can further refine our 

precision with regressive discretization, i.e., taking different possible damage 

states into consideration. The following chapters 3 - 7 will follow one of these case 

studies streams. 
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Appendix A [Locatello et al. (2019)] 
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3. Theoretical Background 

 

In this chapter, the theoretical background that is necessary to understand the 

discussion will be described. The organization of this chapter is as follows: the 

theoretical background of Lamb wave propagation and its numerical simulation 

is given in section 3.1. In section 3.2, I will describe deterministic and heuristic 

approaches for discrete optimization. Section 3.3 concerns the signal processing 

of time-series signal, and in section 3.4, I will elaborate on some theoretical 

perspectives from computational neuroscience. Finally, in section 3.5, the theory 

and some assumptions of some commonly used machine and deep learning 

algorithms will be described. 

 

3.1. Lamb Wave and Simulated Propagation 

 

This section contains four sub-sections: In sub-section 3.1.1 I will describe the 

physics of Lamb waves while the simulation of Lamb wave propagation with 

numerical modelling is given in sub-section 3.1.2, while sub-section 3.1.3 will 

describe the piezoelectric effect which is needed to excite the Lamb wave. 

Finally, in sub-section 3.1.4, a brief discussion on the attenuation of Lamb wave in 

different materials in order to justify the selection of certain excitation 

parameters is given. 

 

3.1.1. Acoustic Wave in Plate-Like Structure 

 

Acoustic waves in bulk mode propagates in solid media both as longitudinal and 

transversal waves. In 3-dimensional space, the acoustic wave propagation can 

be described by the general wave equation: 

 

1 2 3
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p p p p

c t x x x
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(3.1.1-1) 

 

In Eq. 3.1.1-1, c is the speed of sound, p is mechanical pressure, t is time, and x1 … x3 

are the spatial coordinate signifiers. A longitudinal wave oscillates in the 

direction of the propagation, while a transversal wave oscillates perpendicular 

to its direction of propagation. In isotropic media, the longitudinal bulk wave 

speed cL and transversal bulk wave speed cT are defined as [Su and Ye (2009)]: 
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+ −

= = = =
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(3.1.1-2) 

 

Further, in Eq. 3.1.1-2, E is the Young modulus of the material, ν is Poisson’s ratio, λLamé is the Lamé constant, ρ is the material density, and μ is the shear modulus of 

the plate. For a damage tolerant aircraft substructure such as an aluminum 

fuselage, the material can be regarded as a thin isotropic and homogenous plate, 

i.e., when one geometrical dimension is significantly smaller than the other two 

dimensions as can be seen Fig. 3.1.1-1. 



 

56      Chapter 3. Theoretical Background 

 
Fig. 3.1.1-1: Thin plate with a length L, width W, and thickness 2h << (L,W) in the Cartesian 

coordinate system [Su and Ye (2009)]. The wave propagation direction is parallel to x1 and x2. 

 

When the plate thickness 2h is approximately the same as the wavelength (i.e., 2h 

 λwave), the general wave equation from Eq. 3.1.1-1 can be simplified as given in Eq. 

3.1.1-3 [Su and Ye (2009)], where u is the particle displacement and f is the body 

force in the xi direction, respectively. 

 

λ ρ ρ
Lamé , ,

( +µ) µ ( , 1,2,3)
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To solve Eq. 3.1.1-3, we need to first to decompose it into two uncoupled parts 

under the plane strain condition with the displacement potentials method which 

is based on the Helmholtz theorem [Rose (1999), Achenbach (1973)] that takes the 

longitudinal and transversal wave velocity cL and cT into account: 
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(3.1.1-5) 

 

Where the scalar potential ϕ and vector potential ψ are defined as: 

 

ω = + −
1 3 2 3 1

[ sin( ) cos( )]exp[ ( )]A px A px i kx t  (3.1.1-6) 

ω = + −
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A1, A2, B1 and B2 are four constants determined by the boundary conditions. The 

relation between the non-dimensional parameters p and q, wavenumber k, 

angular frequency ω, wavelength λwave and longitudinal and transversal bulk 

wave velocities cL and cT is given by: 

 

ω ω π
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(3.1.1-8) 

 

A Lamb mode is the result of the wave being constrained by two surfaces with a 

thickness on the same magnitude as the wavelength combined with interference 

phenomena that creates a standing wave pattern in the thickness direction while 
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propagating in horizontal direction [Giurgiutiu (2014)]. Due to this property, a 

Lamb wave contains both longitudinal and transverse components, i.e., the 

particle motions are in parallel and perpendicular directions to the propagation 

direction, respectively. The general description of Lamb waves in an isotropic 

and homogeneous plate is given by [Su and Ye (2009)]: 

 

λ λ
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+ + −
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(3.1.1-9) 

 

Eq. (3.1.1-9) can be split into two equations by substituting Eq. (3.1.1-7) and (3.1.1-8) 

to obtain the symmetric and anti-symmetric characteristics of the Lamb wave, 

respectively: 
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(3.1.1-10) 

 

The symmetric and anti-symmetric characteristics of Lamb waves refers to the 

particle displacement u1 and u3 relative to the plate mid-plane, as depicted in Fig. 

3.1.1-2a-b, respectively. Since the symmetric Lamb mode (S-Mode) has a quasi–
pressure displacement field, it is sometimes referred as the compressional Lamb 

wave mode, and it is sensitive to defects anywhere in the thickness direction 

[Marcos (2011)]. The anti-symmetric Lamb wave (A-Mode) has a quasi-flexural 

displacement field, and it is sometimes referred as a bending Lamb mode and it is 

more sensitive to defect in wave propagation direction such as surface cracks or 

delamination [Guy et al. (2003), Liu et al. (2013)]. 

 

 
Fig. 3.1.1-2: a). Symmetric Lamb wave (S-Mode) and b). Anti-symmetric Lamb wave (A-Mode).  [Pant 

et al. (2013)] 

 

Lamb waves are dispersive, i.e., their velocities are dependent on the wave 

frequency and plate thickness. The fundamental symmetric and anti-symmetric 

Lamb modes (referred as the A0-Mode and the S0-Mode, respectively) are always 

present during the propagation, whereas at a higher frequency or for thicker 

plates (or the combination both), the higher order Lamb modes (A1, S1… A2, S2…) will 
also occur. During propagation, these wave modes will reflect and then overlap 

with each other as soon as the wave front touches each free boundary.  

 

The solution of Eq. (3.1.1-10) describes the dispersive behavior of the Lamb waves, 

and it can be numerically calculated by combining Eq. (3.1.1-8) and Eq. (3.1.1-10) 

with the material properties and plate thickness. Further, the solution can also be 

drawn as a dependency of wave velocity as a function of frequency-thickness 
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product for each Lamb mode and therefore it is referred as a dispersion curve. An 

example of a dispersion curve for symmetric and anti-symmetric Lamb modes 

with the normalized phase velocity in an aluminum plate is depicted in Fig. 3.1.1-

3a-b, respectively. At higher frequency-thickness, A0 and S0 modes become 

nearly without the dispersion as can be seen from Fig. 3.1.1-3a-b. Above 2000 

[Hz•m], the velocity of A0-Mode is quasi-constant and not very much affected by 

either the frequency or the plate thickness anymore. The same behavior can be 

observed for the S0-Mode above 3000 [Hz•m], see Fig. 3.1.1-3a. 

 

 
Fig. 3.1.1-3: Dispersion curve for a). S-Modes and b). A-Modes in aluminum plate [Su and Ye (2009)]. 

Less dispersive region is marked in dashed box. 

 

In bulk waves, each individual wave travels with certain phase velocity and the 

overall envelope shape of the wave amplitudes travels with the group velocity 

[Su and Ye (2009)]. Analogously, each Lamb mode propagates with a different 

phase velocity cP. The wave packet of Lamb modes propagates at the group 

velocity cG, which is defined in Eq. (3.1.1-11).  
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The dispersion curve can also be drawn in terms of group velocity or 

alternatively in wavenumber, as in Fig. 3.1.1-4a-b, respectively. It is important to 

understand the dispersion relation of the group velocity since “it is the actual 
velocity captured in experiments” [Su and Ye (2009)]. 

 

 
Fig. 3.1.1-4: Lamb wave dispersion curve for an aluminum plate in terms of a). group velocity [Zhao 

et al. (2017)] and b). wavenumber-thickness [Masserey and Fromme (2008)]. 
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3.1.2. Simulated Lamb-Wave Propagation in Finite Element Environment 

 

For exactly calculating the Lamb wave propagation behavior in a plate, an 

analytical model must be built. However, building an analytical model for many 

engineering structures is difficult as many engineering applications are driven 

by complex systems and their physics is very likely to be governed by 

multivariate Partial Differential Equations (PDEs). Therefore, when analytically 

solving multivariate PDE for real-world structures, most of the times 

simplifications are used resulting in either of following consequences: 

 

1. The analytical solution quality is reduced since it becomes imprecise, or 

2. The solution is guaranteed only for certain increment of the structure, thus 

making it not scalable from the holistic perspective 

 

For this reason, full-analytical solutions for complex structures are many times 

computationally heavy and numerical solutions are often sought in those cases. 

According to [Giurgiutiu (2014)], for complex geometries, “the numerical methods 
represent the only viable approach to understanding the multiple reflections and 
diffractions of the ultrasonic waves within the component”. 

 

There are different mathematical ways one can obtain numerical solutions of 

Lamb waves such as Finite element method (FEM), Finite difference method 

(FDM), Elastic Finite integration technique (EFIT) and spectral FEM (SFEM) 

[Ostachowitz et al. (2012)]. FEM is de facto the most popular numerical analysis 

method thanks to its flexibility of being adapted to many different engineering 

problems, i.e., not only for Lamb wave propagation. For this reason, most of the 

numerical analysis software packages that are commercially available for wide-

public are FEM based. 

 

FEM developments are based on the Hamilton's principle, which states that the 

motion of the system within certain interval vanishes under infinitesimal 

variations of the displacements and formulated as [Duczek et al. (2014), Cerniglia 

et al. (2010)]: 

 

1. Lagrangian function in the volumetric integral area Ω, which describes the 

difference between the kinetic energy and the elastic strain energy 

2. External work over volumetric area Ω and surficial integral area Γ 
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v s
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(3.1.2-1) 

 

In Eq. (3.1.2-1), ρ is the material density, u and ü are the particle displacement 

vectors in the material and their corresponding accelerations, respectively, ε is 

the strain tensor, and Cijkl is the stiffness matrix of the material. The external 

forces can be classified as surface load FS and volume load FV. After some 
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calculations described in [Zienkiewicz et al. (2005)], Eq. (3.1.2-1) can be written as 

the well-known equation of motion: 

 

+ + =
a

Mu Cu Ku F  (3.1.2-2) 

 

In Eq. (3.1.2-2), M is the structural mass matrix; C is the structural damping matrix; 

K is the structural stiffness matrix; Fa, is the vector of applied loads; andu is the 

particle velocity. For metals in the elastic deformation zone (such as Lamb waves 

propagation), the structural damping can be neglected, thus Eq. (3.1.2-2) can be 

regarded as dependent of particle displacement and acceleration only. To 

numerically solve the PDE in Eq. (3.1.2-2), the geometry involved is divided into 

mesh elements over which the equation can be approximated [Zienkiewicz et al 

(2005), Wriggers (2008)].  

 

A mesh element is a spatial discrete representation of the geometry. For a three-

dimensional problem, there are four element types: brick, tetrahedral, prism, and 

pyramid. In most commercial FE software, two computationally feasible 

polynomial approximation methods exist: linear (p=1) and quadratic (p=2). Both 

determine the number of nodes in each element type (see Fig. 3.1.2-1). 
 

 

 

Fig. 3.1.2-1: Mesh Element Type. Top: Linear Mesh (p = 1), Bottom: Quadratic Mesh (p = 2) 

  

To reach a better calculation result, the mesh can be refined by decreasing the 

distance between each node so that the size of the mesh element becomes 

smaller, thus increasing the required number of elements to cover the whole 

geometry. This is called h-type refinement, where h signifies the mesh element 

size. There is another refinement called p-type refinement [Gopalakrishnan et al. 

(2008)], which in contrast to the h-type, focuses on higher order p-polynomial 

approximations such as cubic (p=3), quartic (p=4), and so on. Higher order p-type 

refined finite element is also called spectral element (SE) or p-FE. Deep research 

into p-FE methods for application in Lamb wave propagation has been 

investigated by [Pahlavan (2012)], however this did not involve any commercial 

FE software, since at the moment there was no such SE-FE software available in 
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the market. The finite element size, he is derived from the smallest wavelength 

λmin. In the linear case, [Moser et al. (1999)] recommended 20 nodes per 

wavelength for good spatial resolution, which can be written as: 

 

λ
= min

20e
h  

(3.1.2-3) 

 

Beside the spatial discretization, the time discretization of equation Eq. (3.1.2-2) is 

needed as well. The minimum requirement to ensure numerical stability of time 

integration is sufficed by the Courant-Friedrich-Lewy (CFL) condition [Duczek 

et al. (2014)]: 

 

 =  =
CFL rec

max

1
,

20
G

h
t t

c f
 

(3.1.2-4) 

 

The CFL condition stipulates that the wave should not travel more than one 

element width h in a single time increment ΔtCFL. For the Newmark time 

integrator, the recommended time step Δtrec is 20 increments per cycle of the 

maximum frequency fmax as given in Eq. (3.1.2-4), so that solutions can be 

calculated in efficient manner, especially for ultrasounds with frequencies in the 

MHz [Cerniglia et al. (2010), Gresil et al. (2012)]. 

 

3.1.3. Piezoelectric Actuator and Sensor 

 

There are several transducer technologies that can be used for generating Lamb 

waves, such as conventional and air-coupled piezoelectricity, electromagnetic, 

and laser transducer [Su and Ye (2009), Boller et al. (2004), Döring (2011), Güemes 

and Ostachowitz (2013)]. For application in ultrasonic SHM, the most common 

method is to use a conventional piezoelectric patch of type lead zirconate titanate 

or piezoelectric wafer active sensor (PWAS, Fig. 3.1.3-1 a-b) due to their relatively 

cheap price and their lightweight. 

 

 
Fig. 3.1.3-1: a). piezoelectric patch mounted on a structure, b). typical thin cylindrical PZT patch 

[Budoya et al. (2017)] 

 

Piezoelectricity effect was discovered by Jacque and Pierre Curie in the 1880s. “It 
is an anisotropic property of crystalline materials and results from non-uniform 
charge distributions within a crystal’s cells.” [Boller et al. (2004)]. This property 

can manifest itself in two ways: 
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1. Direct piezoelectric effect, which occurs in the materials where an 

electrical charge is generated due to an applied mechanical force 

2. Inverse piezoelectric effect which is the occurrence of an internal strain 

due to an applied electrical field. 

 

The inverse piezoelectric effect is used for generating acoustic waves, while the 

direct piezoelectric effect is used for detecting acoustic waves – see Fig. 3.1.3-2 a-

b for illustrations. 

 

 
Fig. 3.1.3-2: a). direct piezoelectric effect, b). inverse piezoelectric effect [Mishra et al. (2018)] 

 

There are several material groups which exhibit these properties. The most 

common are the piezoceramics with Perovskite structure (ABO3), such as: BaTiO3, 

CaTiO3, and SrTiO3. Piezoceramic sensors are particularly attractive for damage 

detection in a structure because they can be used both as actuator and sensor 

(sender and receiver) and this allows both passive and active damage detection. 

The most commonly used transducers come from this group: the PZT (lead 

zirconate titanate) or Pb[ZrxTi1-x]O3, with 0≤x≤1. The second group is the 

piezoelectric polymers, material being the polyvinylidene fluoride (PVDF). Also, 

some natural materials like quartz, topaz, dry bone, and silk exhibit 

piezoelectricity. Furthermore, III-V and II-VI semiconductors are also 

piezoelectric due to their crystal asymmetry. 

 

The electromechanical effect in piezoelectricity is described through the 

tensorial piezoelectric constitutive equations [Gresil et al. (2012)]:  

 

= +E

ij ijkl kl kij k
S S T d E  (3.1.3-1) 

ε= + T

j jkl kl jk k
D d T E  (3.1.3-2) 

 

where, Sij is the mechanical strain; Tkl  is the  mechanical stress; Ek  is the  electrical 

field; Dj is  the  electrical  displacement; sE
ijkl is  the  mechanical  compliance  of  the 

material  measured  at  zero  electric  field, εT
jk is  the  dielectric  permittivity 

measures  at  zero  mechanical  stress,  and dkij  represents  the  piezoelectric 

coupling effect. 
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3.1.4. Lamb Wave Attenuation 

 

Like Rayleigh waves, the energy of plate waves dissipates during propagation, 

and this is also the case for Lamb waves and in-plane shear horizontal (SH)-

waves. This phenomenon is called attenuation and it can be observed with a 

gradually decreasing of the signal amplitude [Su and Ye (2009)].  When Lamb 

waves propagate inside the absorptive material, their energy is absorbed by the 

material, which results from friction between material particles, thus converting 

the wave energy to heat during propagation [Luangvilai (2007)]. 

 

In the presence of material inhomogeneities such as stiffeners, corrosion, crack, 

rivet holes, etc. the attenuation is more pronounced. S-Mode Lamb waves tend to 

travel farther than the A-Mode due to their dominant in-plane particle 

displacement, whereas the energy of an A-Mode is partially leaking out along the 

free surfaces due to its dominant perpendicular particle displacement. The 

relatively high attenuation of the A-Mode becomes more pronounced when the 

structures are immersed in water or buried in soil [Wilcox et al. (2005)]. The time-

harmonic solution to Eq. 3.1.1-3 can be written as: 

 

ω=  −( , ) exp[ ( )]u x t A i t kx  (3.1.4-1) 

 

Where in Eq. (3.1.3-1), A is the amplitude of the Lamb wave. The measured signal 

power P at point x after having an original excitation signal power P0 in a plate 

that has the geometrical attenuation factor α which is proportional to 1/√x and 

material attenuation coefficient β is given in Eq. (3.1.4-2). Alternatively, it can also 

be expressed in energy E as a function of original excitation energy E0 as given in 

Eq. (3.1.4-3) [Ono and Gallego (2012)]. 

 

α β α
0

1
[ exp( )] , whereP P x

x

 
=  − =  

 
 

(3.1.4-2) 

β
0

1
exp( 2 )E E x

x

 
=   − 

 
 

(3.1.4-3) 

 

The amplitude of Lamb waves signals in a plate decay at a rate that is 

proportional to the inverse square root of the propagation distance. The ratio 

between amplitudes A(d1) and A(d2) of distances d1 and d2 at two points along the 

propagation path is given by Eq. (3.1.4-4). Due to the consecutive attenuation, [Su 

and Ye (2009), Konstantinidis et al. (2006)] suggested to compensate the energy 

loss due to geometrical spreading by multiplying the signal amplitude with the 

square root of elapsed time as given by Eq. (3.1.4-5). 

 

21

2 1

( )
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dA d

A d d
=  
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='( ) ( )A t A t t  
(3.1.4-5) 
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The material attenuation β depends on frequency and thickness, e.g. for a 1-mm 

thick aluminum plate, the attenuation coefficient is between 2.2 – 17 dB/m for an 

excitation frequency between 0.5 – 5 MHz, where for a thermoplastic material 

such as polymethylmethacrylate (PMMA), the attenuation is higher by a factor of 

10 – 50x [Ono and Gallego (2012), Fig. 3.1.4-1a] due to its more pronounced 

viscoelastic property in comparison to metals such as steel [Fig. 3.1.4-1b] or 

aluminum which only exhibit negligible viscous properties. 

 

 
Fig. 3.1.4-1: a). Lamb wave attenuation as a function of frequency for aluminum and PMMA plate 

[Kasama et al. (2000), Ono and Gallego (2012)] and b). Decrease of Lamb wave amplitude of 

different frequencies in a steel plate as a function of propagation distance [Ono (2018)]. 

 

[Zhao et al. (2007)] gave another example of Lamb wave attenuation in an 

aerospace structure, where a transducer T is placed between rivet holes as 

depicted in Fig. 3.1.4-2a (Case 1). Given that the actuator T was excited by using a 

1.8 MHz excitation frequency, Fig. 3.1.4-2b illustrates the captured S0-mode Lamb 

wave signal from a series of sensors X that are located 20 – 200 mm away from the 

actuator T. In this case, they calculated that the average attenuation rate was 

0.044 dB/mm. In case 2, they placed a sensor series ∆ across the stiffeners, and 

using the same frequency and S0-mode excitation obtained an average 

attenuation of 15 dB per rivet row. The distance between the rivet rows was 6.5 

cm, meaning that the average attenuation was increased to 0.231 dB/mm. This 

calculation already included multiple scattering from the rivets. 

 

 
Fig. 3.1.4-2: a). Sketch of distribution of rivets and transducers in wing section (‘T’: actuator; ‘X’: 
sensor array in Case 1; ‘Δ’: sensor in Case 2); and b). integrated Lamb wave signals captured by a 

series of sensors in a straight line (Case 1) [Zhao et al. (2007)]. 



 

65 Chapter 3. Theoretical Background 

3.2. Signal Representation and Data Processing 

 

This section describes the different ways to represent the captured Lamb wave 

signal and the commonly used features to calculate the damage index that can be 

related to predict the physical damage state. The general formulation of SHM 

diagnostic can be categorized into quintuple D: {π, ψ, τ, λ, ω} where: 

 

1. π is the actor domain and contains the parameters that are needed to 

generate and measure the physical phenomenon of interest λ, 

2. ψ is the medium domain where the phenomenon of interest λ reigns, 

3. τ is the transitional domain, which separates the actor from the medium, 

4. λ is the phenomenon of interest, that is the physical phenomenon, which is 

observed in actor domain π, 

5. ω is the environmental domain which covers π, ψ, and τ, but are separated 

from them 

 

We consider here a typical Lamb wave experimental setup such as in Fig. 3.2-1 

[Wang et al. (2019)], where actor π consists of the computer, amplifier, controller, 

and PZT patch, medium ψ consists of the aluminum plate including any 

inhomogeneities inside such as fasteners, rivet holes, welded regions, cracks, or 

corrosion spots, transitional tuple τ consists of the glue layer between the plate 

and the PZT, λ is the propagating Lamb wave at a certain time, and ω includes the 

environmental factors such as temperature, humidity, or external vibration that 

might affect or interfere the behavior of the Lamb wave propagation. 

 

 
Fig. 3.2-1: Typical Example of Lamb Wave Experimental Setup [Wang et al. (2019)] where P are the 

sensing locations and D are the simulated defect locations. 

 

Obviously, the Lamb wave propagation cannot be seen with naked eye, and in 

fact, in many real-world situations where data is only recorded offline, we can 

only observe the signal shown in the computer. Human perception on what 

occurs in the medium domain ψ during the wave propagation λ is based on signal 

X that is recorded by the actor tuple π. When accounting for the environmental 

factor ω, human perception can clearly be distorted if the signal is distorted. The 

most direct formulation of Lamb wave propagation is: 
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λ π ψ τ ω π ψ τ ω λ−=  = 1( , , , ) , , , ( )f f  (3.2-1) 

 

In reality, the occurrence of Lamb wave propagation λ is rather inferred through 

the observation of signal X at time t in the oscilloscope or computer that is 

contained by the tuple π, so the formulation becomes: 

 

λπ ψ τ ω =(̂ , , , ) ( )f X t  (3.2-2) 

 

Assuming that the behavior between actor, environmental, and transition tuple 

is consistent during the observation time, the relationship between 

inhomogeneities i in the medium ψ can be simplified as: 

 

λψ (̂ ) ( ) ( )
i

f X t X t  (3.2-3) 

 

3.2.1. Signal Representation 

 

An example of Lamb wave signal in the time domain Xλ(t) from Eq. (3.2-3) at 100 

and 200 kHz excitation frequency in an aluminum plate is depicted in Fig. 3.2.1-

1a-b [Malaeb et al. (2018)], respectively. 

 

 
Fig. 3.2.1-1: Example of Lamb wave signal at a). 100 kHz and b). 200 kHz excitation frequency in 

aluminum plate [Malaeb et al. (2018)]. 

 

Such a signal representation as shown in Fig.3.2.1-1 is called a time-series as the 

amplitude data points are ordered in time order. A second way to represent the 

signal is to look at its frequency spectrum and to convert the time-series into 

frequency-domain spectrum. A fast Fourier transform (FFT) is commonly used to 

convert time-discrete signal into a frequency spectrum. Analogously, the 

frequency-domain spectrum can be re-converted into a time—series by using an 

inverse FFT (IFFT). The general equation of Fourier transformation in continuous 
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time t and its inverse in continuous frequency f are given in Eq. (3.2.1-1) and (3.2.1-

2), respectively: 

 

π( ) ( ) exp( 2 )X f X t i ft dt


−
=  −  

(3.2.1-1) 

π( ) ( ) exp( 2 )X t X f i ft df


−
=  −  

(3.2.1-2) 

 

Accordingly, the discretized Fourier transform and its inverse in discrete time tn 

and frequency fn can be described as: 
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(3.2.1-4) 

 

An example of the time and frequency representation of a Lamb wave signal 

measured by scanning laser Doppler vibrometer (SLDV) is given in Fig. 3.2.1-2 

[Tian and Yu (2014)]. 

 

 
Fig. 3.2.1-2: Time-domain Lamb wave signal from a). excitation PZT and c). SLDV scanning point 

located on the plate. Their frequency representation is depicted in b) and d), respectively [Tian 

and Yu (2014)]. More detail on SLDV technique can be read in [Tian et al. (2019), Schmitt et al. (2013), 

Pohl and Mook (2013)]. 

 

Both the time-series and its frequency representation can be joined to create a 

Time-Frequency Representation (TFR), sometimes known as Time–Frequency 

Distribution (TFD). There are several ways to achieve a TFR [Krammer and Jones 

(1994), Hlawatsch (1998), Legendre et al. (2000), Debnath (2002), Shin and Song 

(2000), Niethammer et al. (2000), Zemmour (2006), Kehtarnavaz (2008), Li et al. 

(2009), Harley et al. (2015), Zhang et al. (2015), Boashash (2016), Zoubi et al. (2019)]:  

 

1. Short-Time Fourier Transform (STFT) 

2. Wavelet Transform (WT) 
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3. (Smoothed-Pseudo) Wigner Ville Distribution (SPWVD) 

4. Hilbert-Huang Transform (HHT) 

 

STFT is probably the simplest way to represent the TFR. While the FFT does not 

provide any information about the change in the frequency spectrum over time, 

the STFT is also suitable for signals in which the frequency changes over time. 

With the STFT, a window function is applied to the time series, i.e., the window is 

shifted at each point in time and to the frequency to be considered and thus the 

absolute duration and bandwidth of the window remain constant. The resolution 

in the time and frequency domains are therefore dependent on the window size. 

The continuous form of the STFT coefficient for window length w at time t and its 

discretized version for a discrete time-step n ∈ ℤ are: 

 

π
( )

Fourier Transform Window function

STFT ( , ) ( ) exp( 2 ) ( )
X t
t f X t i ft w t dt



−

=  −  −  
(3.2.1-5) 

π
( )

Window functionFourier Transform

STFT ( , ) ( ) exp( 2 ) ( )
X t n n
t f X t i ft w t dt



−

=  −  −  
(3.2.1-6) 

 

Due to the time-frequency uncertainty, the resolution in the time domain is 

inversely proportional to the resolution in the frequency domain and therefore it 

is not possible to achieve the best possible resolution in the time domain and in 

the frequency domain at the same time (“No Free Lunch” principle). The STFT 

coefficients can be represented as spectrograms as depicted in Fig. 3.2.1-3. 

 

 
Fig. 3.2.1-3: Spectrogram of Lamb wave signals in pitch-catch configuration for (a) no defect, (b) 5%, 

(c) 35%, and (d) 80% through wall of electrical discharge machined (EDM) notches in aluminum 

plate with 1 mm thickness [Shin and Song (2000)]. 

 

To overcome the time-frequency trade-off, the wavelet transformation is used. 

The term wavelet describes the basic function used for the transformation. Like 

the STFT, a window function is applied to the time series signal. The window 

function, called the ‘mother wavelet’ must be selected according to the general 

representative shape of the time series waveform. However, instead of moving 

and modulating the window, the mother wavelet is shifted and scaled. 

 

As with the STFT, the scaling also results in a frequency shift, but at the same time 

as the frequency increases, the duration of the window is reduced. A WT can be 

regarded as a flexible size TFR pixel. This results in a more detailed temporal 

resolution at higher frequencies and a lower time resolution at lower frequencies. 

The continuous form of the wavelet transforms coefficient WT for a mother 
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wavelet function Φ with shifting factor b and scaling factor a at time t and its 

discretized version for a discrete time-step n ∈ ℤ is: 

 

( )

Continuous mother wavelet

1
WT ( , ) ( ) ( )

X t

t b
t f X t dt
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An example of a TFR of Lamb wave signal by wavelet transform is depicted in Fig. 

3.2.1-4 [Pramila et al. (2007)] where 3.2.1-4a depicts the signal in the time domain 

while where 3.2.1-4b represents the TFR of 3.2.1.4a. 

 

 
Fig. 3.2.1-4: a). Representation of Lamb wave signal in time domain and b). its representation in the 

time-frequency domain by using a wavelet transform [Pramila et al. (2007)]. 

 

The Wigner-Ville distribution (WVD) was introduced by Eugene Wigner in 1932 

in quantum physics to introducing quantum corrections to statistical physics 

with the objective of replacing the wave function in the Schrödinger equation by 

a probability density in phase space. The shared algebraic structure between 

time-frequency in signal processing and position-momentum in quantum 

physics made it possible to adapt WVD techniques for TFR analysis. 

 

Due to its origin in quantum mechanics, WVD can offer a very high resolution and 

thus detailed quasi-continuous TFR analysis. For calculating a WVD, first the 

non-stationary autocorrelated signal Xc(t) must be defined as given in Eq. (3.2.1-

7), where the bar signifies the complex conjugate. Then the Wigner distribution 

function for a given window length τ is given by Eq. (3.2.1-8). For a zero-mean time 

series (i.e., where µ(t) = 0), the Wigner function can be written as Eq. (3.2.1-9). 
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As per the “No Free Lunch” principle however, the WVD comes with the trade-off 

that it is computationally expensive. This matter becomes significant when the 

WVD is applied to a broadband signal and therefore makes it impractical in many 

signal processing applications. Several methods have been proposed to reduce 

this effort, and the most known one is called the smoothed-pseudo WVD 

(SPWVD) [Li and Liu (2008)]. An example of a SPWVD spectrogram of a Lamb 

wave signal is depicted in Fig. 3.2.1-5. 

 

 
Fig. 3.2.1-5: a). Time-domain Lamb wave signal containing overlapping higher multiple modes and 

b). its TFR by using SPWVD [Li and Liu (2008)]. 

 

The SPWVD is given by Eq. (3.2.1-10), where q is a lowpass function for a time-shift 

u and PW is the pseudo-Wigner-Ville distribution which is given by Eq. (3.2.1-11), 

where w is the selected window function. 
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3.2.2. Feature Extraction and Damage Index 

 

The multitude of signal representations either in time domain, frequency domain, 

or time-frequency domain can be analyzed in order to extract the relevant 

features that might be useful to interpret the physical condition of the relevant 

structure. According to [Su and Ye (2009)], feature extraction is “the process of 
identifying and picking up the damage-modulated properties and parameters in a 
signal which are called the features or characteristics of the signal”. In this aspect, 
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various approaches have been developed to define and extract the features to 

calculate the damage index (DI) that gives an indication of the presence of 

damage. There are several DIs that can be linked to physical damage [Michaels 

and Michaels (2007), Konstantinidis et al. (2006), Betz et al. (2006), Rizzo and 

DiScalea (2006)], for instance the energy distribution from an extracted signal 

envelope with a Hilbert Transform (HT), given in Eq. (3.2.1-12), the peak-to-peak 

amplitude, residual mean squared deviation (RMSD) from the baseline 

extraction, given in Eq. (3.2.1-12) and signal variance, given in Eq. (3.2.1-13). There 

are two variants of energy-based DI. Both are given in Eq. (3.2.1-13). The signal 

correlation-based DI is given in Eq. (3.2.1-15). In these equations, X(t) is the signal 

function in the continuous domain, xi is the signal from a baseline structure at 

discrete time i, τ is the window length and µ is the signal average, respectively. 

The subscript tilde denotes a signal from a damaged structure. 
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(3.2.1-15) 

 

Another way to extract features is to build a damage fingerprinting specification 

from the raw signal in either time-domain, frequency-domain, or time-frequency 

domain. The reason to do so is because in many cases, a raw signal contains many 

non-characteristic points. [Su and Ye (2009)]. They mentioned that “taking into 
account the most frequently occurring damage cases, a damage parameter 
database (DPD) hosting all DDF can be constructed for a particular type of damage 
in the structure under inspection, e.g., a crack or delamination”. For a Lamb wave 

SHM system consisting of a certain number of actuators and sensors, a series of 

feature vector pairs, termed as digital damage fingerprints (DDF) can be 

established for all the signals captured by the sensor network, and depicted as a 

flowchart in Fig. 3.2.2-2 [Su and Ye (2009)].  

 

 
Fig. 3.2.2-2: The flowchart of DDF-based signal processing for damage identification in Lamb wave 

based SHM [Su and Ye (2009)]. 
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3.3. Optimization and Search Metaheuristics 

 

Lamb wave mode conversion and scattering occur all the time and this not only 

leads to the fact that the signal interpretation becomes aggravated, but also that 

the ToF measurement of one specific wave mode will be more difficult. To 

suppress wave mode conversion and subsequent mode overlapping, an actuator 

should be put far from any edge, holes, or structural joints. Consider a mounted 

sensor network on a structure, a time-harmonic interfacial shear stress [Xu and 

Giurgiutiu (2007)] occurs during wave propagation as depicted in Fig. 3.3-1a-b. 

 

 
Fig. 3.3-1: Load on a plate due to the PZT actuation for a). Symmetric and b). Antisymmetric Lamb 

modes [Xu and Giurgiutiu (2007)]. The plate thickness is 2d, and the PZT diameter is 2a. In this 

figure, τ denotes the interfacial shear stress. 

 

The amount of shear stress depends on the sensor diameter and the loading 

condition. For more sensors and the use of sensors with larger radius, the larger 

will be the influence of the interfacial shear stress. Thus, one should aim to use the 

minimum number of sensors possible. For a pulse-echo configuration, a single 

PZT transducer is sufficient, whereas for the pitch-catch configuration the 

minimum number of PZT transducers is 2. The larger structure the structure is, 

the more transducers would be needed to cover the entire area of inspection. 

 

A larger number of sensors collects more data and when combined with 

appropriate signal processing techniques might decrease the probability of 

damage misdetection, but at the same time this could be uneconomical and 

provide redundant data. Thus, a compromise must be made between the number 

of PZTs to be installed and the sensor network performance. 

 

Briefly speaking, optimization is a branch of mathematics seeking to model, 

analyze and solve analytically or numerically problems which consist of 

minimizing or maximizing a function for a certain input set [Nocedal and Wright 

(2006)]. The quality of the results depends on 1). the basic assumptions of the 

model, 2). the choice of the variables that one seeks to optimize, 3). the efficiency 

of the algorithm and 4). the computing power available. When speaking about 

mathematical optimization, there are two general streams which depend on the 

domain range: continuous optimization and discrete optimization, which will be 

described in sections 3.3.1 and 3.3.2, respectively. 
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3.3.1. Fundamentals on Continuous Optimization 

 

In contrast to discrete optimization, in which the variables can take either 

Boolean or integer values, in continuous optimization, the variables in the model 

are allowed to take any value within a range of values, which are usually real 

numbers, although they can also be complex numbers. The formal definition of 

finite dimensional continuous optimization problems for searching minima can 

be written as: 

 

Definition 3.3.1-1. [Stein (2016), Nocedal and Wright (2006)] 

,
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Subsequently, to search for the function maxima, the objective function f(x) can 

simply be multiplied by -1. The solutions of the objective function f(x) are either a 

global or local extremum. The formal definition of global and local minima is 

given in Def. 3.3.1-2.  

 

Definition 3.3.1-2: Global and Local Minima [Nocedal and Wright (2006)] 
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In the same way, the global and local maxima can be simply re-defined by 

multiplying the objective function f(x) by -1. For convenience, the subsequent 

definitions will be limited to minima and any subsequent objective functions will 

be formulated as minimization problems. The best solution to any optimization 

problem is found when we reach a global minimum. But in many situations, this 
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is not feasible since many algorithms cannot practically visit many points. 

Depending on the functions, many algorithms are trapped in the manifold of local 

minima. The only way to be sure that the local minimum is a global minimum is to 

visit all possible points in the search space, making any algorithm to run this 

search in either take an indefinite time or space and it will be as worthless as a 

random generator, i.e., a blind search. Let revisit the No-Free-Lunch theorem on 

search and optimization proposed by [Wolpert (1997)]: 

 

Theorem 3.3.1-1: No Free Lunch in Optimization [Wolpert and Macready (1997)] 
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The consequence of the No-Free-Lunch Theorem can be interpreted in following 

ways [Ho and Pepyne (2002), English (2000)]: 

 

1. A general-purpose almost-universal optimizer can theoretically exist. 

That does not mean however, that it is necessarily practical. 

2. An algorithm may outperform another on a problem when neither is 

specialized to the problem. 

3. For almost all objective functions, specialization is essentially accidental. 

 

Examining all possible points in the neighborhood of point x* to make sure that x* 

is local minimum seems to be impractical as the function complexity can still trap 

the algorithm. However, there is a more efficient way to identify local minima if f 

is smooth, especially when f is twice continuously differentiable, we may predict 

whether x* is a local minimum only by examining the gradient ∇f(x*) and the 

Hessian ∇²f(x*). In essence, the study of minimization [Apostol (1974), Nocedal 

and Wright (2006), Bartle and Sherbert (2011)] is derived from Taylor’s theorem. 

In any case, all algorithms seek a point where the gradient ∇f vanishes. The most 

direct process to find the local minima is the method of steepest gradient, 

sometimes also called gradient descent: 
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In Eq. (3.3.1-1), η is the gradient step. Assuming that f is continuously 

differentiable, x* converges towards the local minimum. The adaptive gradient 

step size η at step i is defined as: 
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Gradient descent is the most used methods to find minima in many problems, 

including in operation research, schedule optimization, machine learning, and 

many more. Especially for many machine learning problems where the search 

space is often large, some stochasticity is often involved, in which the most 

common algorithm is called stochastic gradient descent (SGD) [Hoseini et al. 

(2019)], as given in Algorithm 3.3.1-1. 

 

Algorithm 3.3.1-1. Stochastic Gradient Descent. 
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3.3.2. Search Metaheuristics in Discrete Optimization 

 

Unlike continuous optimization where the variables are usually real numbers, in 

discrete optimization the input variables are restricted to only take discrete 

numbers, i.e., integers. If the objective function is linear, it is possible to solve the 

problem with linear programming. However, some real-world problems such as 

sensor placement has a non-linear optimization function – albeit simplification 

through integer variables and boundaries. Assume a section of fuselage panel 

with a size of 1 m² that can be discretized into a 100 cm x 100 cm grid with a 

resolution of 1 cm² for each grid pixel, then we have 10.000 possible placements 

for each transducer involved. For N transducers and L pixels, we have C 

combinations of possible placements: 

 

!

!( )!

L
C

N L N
=

−
 

(3.3.1-11) 

 

For 2 PZTs in 100 x 100 cm plate, there are 50 million placement combinations 

possible. For 3 transducers, the number of possible combinations jump to 167 

billion. It would be absurdly expensive to test all these combinations to 

determine which sensor network topology will minimize the missed detection 

rate, which alternatively can be rephrased as maximization of the probability of 

detection (PoD). For this reason, a smarter and more efficient way to find feasible 

local minima is necessary – this general framework is called (meta)-heuristics. 

Heuristics are a technique designed for solving a problem more quickly when 

classic a method such as Newtonian or gradient based algorithms are too slow, or 

for finding an approximate solution when classic methods fail to find any exact 

solution, while metaheuristic can be regarded as an expansion of this approach 
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such that the heuristic algorithms can be controlled and fine-tuned. According to 

[Sörensen and Glover (2013), Sörensen et al. (2018)], “a metaheuristic is a high-
level problem-independent algorithmic framework that provides a set of guidelines 
or strategies to develop heuristic optimization algorithms”. In no way should the 

definition be abused so that one might think metaheuristics can find the most 

optimum solution, because it never guarantees that a global minimum will be 

found, but rather that it can guarantee that the solution(s) found are part of the set 

of possible optima within the landscape of the objective function. Chapter 2 

mentioned some of the common metaheuristics: genetic algorithm (GA), 

simulated annealing (SA), and particle swarm optimization (PSO) which includes 

the ant- and bee-colony optimization. Before going deeper into metaheuristics, let 

us recall a very standard problem-solving heuristic: the greedy approach. An 

example of the greedy method is given in Algorithm 3.3.2-1. An algorithm is said 

greedy when it satisfies the following two conditions [Charlier (1995)]: 

 

1. The algorithm creates the solution in an incremental way. 

2. At each step of the sequence, the local minimum is selected. 

 

Algorithm 3.3.2-1. Greedy Method for Minimization [Martins and Ribeiro (2006)]. 
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Obviously, the greedy method is not always the best method. This not to say that 

for some problems, the optimal solution can be found with the greedy method, 

e.g., for determining the minimum number of coins when giving change. Assume 

that 0.86 € is given as a return from the following € coin denominations: {1¢, 2¢, 

5¢, 10¢, 20¢, 50¢, 1€, 2€}. 

 

Then, the minimum number of coins can then be broken down as 1x 50¢, 1x 20¢, 

1x 10¢, 1x 5¢, 1x 1¢ which sums up to 5 coins. Now assume with hypothetical € coin 
denominations: {2¢, 8¢, 10¢, 40¢, 60¢, 90¢, 1.50€} where 0.86€ is given as a return. 

Following the sorting greedy method, the given output would be: 1x 60¢, 2x 10¢, 

and 3x 2¢ which sums up to 6 coins. Obviously, it misses an alternative output: 2x 

40¢ and 3x 2¢, which only sums up to 5 coins. 
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In mathematics and computer science (CS), when an exhaustive search is 

infeasible, metaheuristics can be introduced to partially solve the problem. As 

explained in chapter 2 earlier, there are two metaheuristics mainstreams 

[Echevarría et al. (2019)] as depicted in Fig. 3.3.2-1: 

 

1. Non-population-based methodologies such as simulated annealing and 

tabu search 

2. Population-based methodologies, which can be divided into evolutionary 

algorithms and swarm intelligence. 

 

 
Fig. 3.3.2-1: Classification on Metaheuristics according to [Echevarría et al. (2019)]. MPCA: Multiple 

Particle Collision Algorithm, SIs: Swarm Intelligence, EAs: Evolutionary Algorithm, DE: 

Differential Evolution, MAs: Memetic Algorithm, SA: Simulated Annealing, PCA: Particle Collision 

Algorithm, TS: Tabu Search. 

 

Based on the number of papers in the literature review of chapter 2, we can see 

that evolutionary algorithms and swarm intelligence are the most commonly 

used metaheuristics, while simulated annealing has a smaller significance, and 

the popularity of tabu search has been declining. For this reason, three major 

search metaheuristics: Genetic algorithm (GA), particle swarm intelligence and 

simulated annealing (SA), will be subsequently described. 

 

GA is a biologically inspired algorithm from the Darwinian concept of natural 

evolution [Kramer (2017)]. Usually, a GA contains three main operators: mutation, 

crossover, and selection [Schmitt (2001)] and typically, the procedure starts with 

a given initial population that will be assessed against its fitness. Those 

individuals who have the best fitness are crossed-over to each other and/or a 

“genetic mutation” is applied e.g., by bit-flipping or replacement. The individuals 

who do not have the best fitness are not selected. This procedure is repeated 

several times until a specified certain termination condition is reached. A typical 

genetic algorithm is described in Algorithm 3.3.2-2. 
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Algorithm 3.3.2-2. Genetic Algorithm [Zaritsky and Sipper (2004)]  

Input parameter: set of blocks, Output: Superstring of set 

Setup initial values:

Set generation 0

Initialize population  to random individuals  from *

Do procedure ( , )

Until te

t

t

S S

t

P i S

S P

−



Evaluate_Fitness

1

rmination condition is reached:

Select individuals from 

ˆProcedure ( , )

Procedure ( )
Do ˆProcedure ( , )

ˆ

1

Definition procedure 

t

t t

t

t

t t

P

i P i P

i P

S P

P P

t t
+




 
 


 


 +

Crossover

Mutate

Evaluate_Fitness

Evaluate_F ( , ) :

For each individual :

Generate derived string ( )

All blocks from  that are not covered by ( )

* ( ) Concatenation of ( ) and Do

1
( )

* ( ) ²

t
S P

i P

s i

m S s i

s i s i m

fitness i
s i



  

 


itness

 

 

As defined in algorithm 2, there are 2 basic operations in a genetic algorithm: the 

mutation and the crossover operator. The mutation operator alters one or more 

values in the chromosome and its purpose is to preserve and introduce diversity, 

while crossover is used to combine the genetic information of two parents to 

generate new children. In practice, there are many other ways to conduct 

mutations and genetic operations. For a simplified illustration, only the most 

common methods are shown in Fig. 3.3.2-2. 

 

 
Fig. 3.3.2-2: Basic Operation of Genetic Algorithm: Mutated and Crossover from Parent Generation. 

[Ewald et al. (2020)] 

 

As an example, the chromosome input value can be encoded as a binary value {0, 

1}. In a single-point crossover, as shown in Fig. 3.3.2-2, the parent chromosome is 

divided into two sub-genomes (e.g. [1001] and [1010] from parent 1, and [0110] and 

[0101] from parent 2), and the genome information are permuted in order to 

derive the crossover children. 
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To create mutated children, two common methods are normally used: 

 

1. Bit string mutation (e.g. [10011010] from parent 1 into [10010010] as the 

mutated children 1) 

2. Bit-flip mutation (e.g. [01100101] from parent 2 into [01110001] as the 

mutated children 2). 

 

The mutation operation rate is required to be larger than 0 to avoid being stuck in 

a local minimum, but at the same time it is kept low in such way that the algorithm 

does not jump too fast from one optimum to another as both of these conditions 

make the search unnecessary long. 

 

The second metaheuristic method is particle swarm optimization (PSO) which is 

a nature-inspired algorithm that looks for a solution to an optimization problem 

based on biological swarm behavior, i.e., the individuals within a swarm try to 

stay within the group at all times to follow the group movement while 

maintaining a certain minimum distance from other individuals [Kennedy and 

Eberhart (1995), Shi and Eberhart (1998)]. Analogous to the natural phenomenon, 

in a PSO algorithm, a population of solution candidates is moved through the 

search space in order to obtain an approximately good solution to the problem. 

For this purpose, the position of each individual population must be recalculated 

in each iteration step. An example of PSO is given in Algorithm 3.3.2-3. 

 

Algorithm 3.3.2-3. Particle Swarm Optimization [Raza and Qamar (2016)] 
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The third metaheuristic method is called SA. The basic idea of SA is to simulate a 

cooling process that occurs during annealing in metallurgy. After a metal is 

heated, slow cooling ensures that the atoms have sufficient time to arrange 

themselves and form stable crystals to achieve a low-energy state which is close 

to the optimum. Adopting this natural process into a mathematical optimization, 

temperature T corresponds to a probability in which the intermediate 

optimization result may also deteriorate and the function to be minimized is the 
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energy E of the system. However, in contrast to a local search algorithm, SA can 

escape a local optimum. A simplified simulated annealing algorithm is described 

in Algorithm 3.3.2-4. 

 

Algorithm 3.3.2-4. Simulated Annealing [Fraga-Gonzalez et al. (2017)] 
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3.4. Machine and Deep Learning 

 

3.4.1. Statistical Learning Theory for Supervised Learning 

 

In short, machine learning is a field of study of artificial intelligence which is 

based on mathematical and statistical approaches to give computers the capacity 

to learn from data without being explicitly programmed. [Mitchell (1997)] defined 

the algorithm of machine learning as: “A computer program is said to learn from 
experience E with respect to some class of tasks T and performance measure P if its 
performance at tasks in T, as measured by P, improves with experience E”. Broadly 
speaking, the current field of machine learning concerns with the design, 

analysis, optimization, development and implementation of such algorithms. 

 

In this section, the most important concepts in statistical learning with the focus 

on supervised learning is highlighted.  As previously known, supervised learning 

is a branch of machine learning in which the learning algorithm tries to find a 

hypothesis that makes predictions that are as accurate as possible. A hypothesis 

is to be understood as a mapping function that assigns a presumed output value 

to each input value. For supervised learning, the basic assumption is that there 

exists an unknown probability distribution. Now, we must consider how to 

associate the probability distribution with machine learning. 

 

In general, when considering supervised learning, the following questions 

naturally arise: which learning problems can be solved efficiently and is it easier 

to solve some problems rather than others? How many N training samples do we 

need, and which parameters θ must be fine-tuned during the learning process? In 

computer science, the proper intuition would be the learnability of the function 
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itself, commonly known as the probably approximately correct (PAC)-learning 

framework. More concretely, the underlying assumption for the given 

assumption stated in Eq. (3.2-3) is that we know hθ: f(X) → ψ belongs to the concept 

class C, where hθ is a hypothesis function that belongs to the hypothesis space H. 

The PAC learning framework is given in Lemma 3.4.1-1. 

 

Lemma 3.4.1-1. PAC Learning. [Valiant (1984, 2013), Moran and Yehudayoff (2015)] 
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In Lemma 3.4.1-1, hθ can be thought as a function that can inversely map X into ψ. 

We denote the family of this function as generalizer H such that hθ ∈ H. As stated 

above, the assumption is that the universe tends to behave stochastically, thus H 

does not actually map the observation X into ψ directly but would rather map X 

into the joint probability density P(hθ|X). The formal definition of a 

(multidimensional) generalizer [Wolpert (1990, 1992)] is: 

 

Definition 3.4.1-2. Multidimensional Generalizer [Wolpert (1990, 1992)] 
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Generalization is one of the most important concepts in machine learning which 

can be informally defined as the model’s ability to adapt properly to unseen, 

independently and identically distributed (i.i.d) data drawn from the distribution 

used to create a machine learning model. The probabilistic nature of many 

physical phenomenon prohibits us from computing the true underlying risk, 

hence what we can compute is the number of mistakes on the training data, called 

the empirical error (sometimes also called as the training error), which has 

already been explained in Lemma 3.4.1-1. 

 

Normally, we may expect that the empirical risk is relatively small – otherwise, 

the learning algorithm will not be able to explain the training data. Under this 

assumption however, we cannot guarantee the training error will be 
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approximatively equal to the rest of the sample set X. We shall say that a classifier 

generalizes well if the difference between the true error and empirical error in 

Lemma 3.4.1-1 is small. Note that within this context, a good generalization 

performance does not necessarily mean that a classifier will have a small overall 

empirical error, but it rather only means that the empirical error is a good 

estimate of the true error. 

 

We may never be sure whether the model we created from the training sampled 

from the distribution is complex enough to represent the distribution or whether 

is too simple? In this case, we are talking about the bias-variance trade-off. Bias is 

the error resulting from incorrect assumptions in the learning algorithm. High 

distortion can cause an algorithm to fail to model the appropriate relationships 

between input and output, and this is called underfitting. For this reason, bias is 

also called approximation error. Variance is the error based on the sensitivity to 

minor fluctuations in the training data. A high variance causes overfitting: instead 

of modelling the input-output relation, the algorithm is rather memorizing the 

noise in the data. Mathematically, the total error can be summarized as: 

 

2

True Irreducible ErrorPredicted Predicted Avg. Predicted

Bias² Variance

Error( ) ( [ ( )] ( ))² [ ( ) [ ( )]]²
e

X h X f X h X h X  = − + − +   
(3.4.1-1) 

 

The total error can be decomposed into 3 different errors: 1). Bias, 2). Variance, 

and 3). Irreducible error. The irreducible error (sometimes called Bayesian error) 

is the error that cannot be removed [Kuhn and Johnson (2016)] due to statistical 

noise in the observations. If we choose a very large hypothesis space H ∋ hθ, the 

bias will be small because |H| will most likely contain all possible hθ that fit the 

input-output relation we would like to model. 

 

However, at the same time, since it contains all possible hθ, the distance between 

the incorrect prediction and the truth will also increase, thus making the 

estimation error (variance) larger. The same logic applies if we choose small 

hypothesis space H ∋ hθ. Thus, at this point, the “sweetspot” will be to find a 
balance between the bias and variance as depicted in Fig. 3.4.1-1a-b. 

 

 
Fig. 3.4.1-1. a). Bull’s eye model of four different scenarios representing combinations of both high 

and low bias and variance. b). Trade-off between bias² and variance. 
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Before going further, let us denote |Hn| as the cardinality of the hypothesis space 

H that contains all possible hθ with n sample points. Let the maximum number of 

hypothesis functions that can be distinguished S(H,n) be defined as: 

 

1
( , ) max{| | ,..., }

n n
S H n H X X X=   (3.4.1-2) 

 

The quantity S(H,n) is denoted as the shattering coefficient of the hypothesis 

space H with respect to sample size n. The shattering coefficient can be thought 

as “the number of ways that the function space can separate the patterns into two 
classes” [Luxburg and Schölkopf (2008)], i.e., the capacity measure of the 

hypothesis space. In other words, the larger the hypothesis space H, the larger 

shattering coefficient will be. From the PAC-Learning according to [Wolpert 

(1990, 1992)], we would like to know what is the quantifiable measure for 

generalization by using the shattering coefficient S? [Vapnik and Chervonenkis 

(1971), Devroye et al. (1996)] have already discussed and given a proof on the 

convergence bound. The generalization bound that we would like to hold with a 

probability of at least 1 − δ is defined as [Luxburg and Schölkopf (2008)]: 
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Eq. (3.4.1-3) tells us that if both the empirical risk Remp(hθ) and the square root term 

are small, then the total risk Remp(hθ) can be guaranteed with a probability of at 

least 1 − δ will be small. This means that even if the size hypothesis space |H| is 

small, it is not coincidence that some essential aspects of the problem have been 

captured. Whether a problem is hard to learn is entirely dependent on our prior 

knowledge, i.e., we must come up with a suitable function class. 

 

Another important concept in terms of generalization beside the shattering 

coefficient is the VC-Dimension (named after Vapnik and Chervonenkis), which 

is a measure of function capacity. The purpose of introducing the VC-Dimension 

is to “characterize the growth behavior of the shattering coefficient using a single 
number” [Luxburg and Schölkopf (2008)]. Simply speaking, a set of points are said 

to be shattered, if for each xn ∈ X, there exists a classifier hθ ∈ H such that xn = hθ ∩ 

X. I give a simple explanation using Fig. 3.4.1-2a-b. 

 

 
Fig. 3.4.1-2. VC-dimension of axis-aligned rectangles. (a) Examples of realizable dichotomies for 

four points in a diamond pattern. (b) No sample of five points can be realized if the interior point 

and the remaining points have opposite labels [Mohri et al. (2018)]. 

 

Formally, given a hypothesis space H, a dichotomy of a set X is defined as one of 

the possible ways of labeling the points of D using a hypothesis hθ ∈ H. A set D of n 
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≥ 1 points is said to be shattered by a hypothesis set H when H realizes all possible 

dichotomies of S, i.e.,when |Hn| = 2n. The VC-dimension of a hypothesis set H is 

defined the size of the largest set that can be shattered by H [Mohri et al. (2018)]: 

 

VC max{ | | 2  for some }n

H n
n H h=  =  

(3.4.1-4) 

 

The other important concept in supervised learning to measure the hypothesis 

capacity is the Rademacher complexity. Unlike the VC dimension, Rademacher 

complexity depends on the probability distribution. The Rademacher complexity 
captures the richness of a family of functions by measuring the degree to which a 
hypothesis set can fit random noise [Mohri et al. (2018)]. The formal definition of 

Rademacher complexity R is given as follows: 

 

Definition 3.4.1-3. Rademacher Complexity [Mohri et al. (2012)]. 
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The interpretation of Rademacher complexity is as follows: we know that the 

product σih(Xi) either takes value +1 if σi = h(Xi) and -1 if otherwise. The sum 

product will be therefore larger if σi coincides with h(Xi) on many data points and 

this means the hypothesis function h fits to the labels σi and thus the empirical 

error Remp will be minimized. If we now take the supremum into account, we look 

up on all possible hypothesis h within the hypothesis space H. Thus, we can 

expect that a model that generalizes well would have higher Rademacher 

complexity, i.e., Rademacher complexity measures how large the hypothesis 

space H is. Like the shattering coefficient, one can prove generalization bounds of 

the following form: with probability at least 1 – δ: 

 

emp

1ln( )
( ) ( ) 2

2n
R h R h

n 
 +  +R  

(3.4.1-4) 

 

The Rademacher complexity R, together with the VC-dimension [Goldberg and 

Jerrum (1995), Clayton (2014)] are a measure of richness of a class of real-valued 

functions – that is, the capability of generalizer L is related to how complex it is. 

There are many more capacity concepts, but the general form which most 

bounds take is composed of three different terms and have the following form: 

 

emp
( ) ( ) capacity( ) confidence( )R h R h H  + +   (3.4.1-5) 
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Finally, to wrap-up, the relation between generalization gap and capacity 

concept (here Rademacher R complexity is taken as an example) is formally 

defined in Def. 3.4.1-4. 

 

Definition 3.4.1-4. Generalization gap [Kawaguchi et al. (2017), Mohri et al. (2012), 

Balcan (2011)]. 
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3.4.2. Inductive Bias 

 

Prior knowledge is incorporated in the way we design the algorithm. This is 

related to inductive bias. Broadly and informally, there are four categories 

involving the prior knowledge [Luxburg and Schölkopf (2008)]: 

 

1. The formalization of the data space X, e.g., by its topology. Commonly, this 

is done by using a distance or a similarity function which tells us how 

“similar” different input values in X are. 

2. The loss function J. This function encodes what the “goal” of learning 
should be, e.g., we can weight errors on individual data points more 

heavily than on other data points.  

3. Assumptions on the underlying probability distributions, i.e., when we did 

not make any assumption, no matter what probability distribution 

generated our data, the generalization bounds would apply.  

4. Any deliberate hypothesis set construction in H, i.e., we encode our 

assumptions on how a useful a classifier might look. 

 

Briefly speaking, the inductive bias of a learning algorithm is the set of 

assumptions that the learning algorithm A uses to predict outputs for a given 

input that it has not yet encountered. Formally defined, the inductive bias of 

learning algorithm A is “any minimal set of assertions B such that for any target 

concept C and corresponding training data DC” [Mitchell (1997)] that the following 

formula holds: 

 

: ( ) ( , )
n n n
x X B x xD DA   

C C
├  (3.4.2-1) 
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Where C the target concept, DC set of training examples, xi is i-th instance of input 

set X, and A(xi,DC) the classification assigned to xi by A after training on set DC is.  

Consider following notations: 

 

yi: 
P: 
Q: 
L: 
H: 
ℍ: ΔQ(H ): ΔP(h): 

i-th instance of output space Y 

Probability distribution on X × Y 

Distribution on P 

Loss function that maps Y × Y → ℝ 

Hypothesis space which is a set of function h:  X → Y 

Family of hypothesis space where H ∈ ℍ 

Loss of hypothesis space H on Q 

Loss of function h on distribution P 

 

The loss function, also sometimes called the cost function, is the error between 

the actual and predicted output. For a regression problem, there are several 

functions that can be chosen such as mean squared error, average absolute 

deviation, or mean difference. For a classification problem, it is more common to 

choose loss functions that map an output probability between 0 and 1, such as 

cross-entropy error or hinge loss [Rosasco et al. (2003)]. The goal of bias learning 

is to find the hypothesis space H ∈ ℍ that minimizes ΔQ(H): 
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(3.4.2-2) 

 

Typically, minimizing ΔQ(H) cannot be done directly, therefore sampling n times 

from P according to Q is needed to yield: P1,…,Pn. Furthermore, we sample m times 

from X × Y according to each Pi to yield the pairs: {(xi
1,yi

1),…,(xi
m,yi

m)}. In the sequel, 

an (n,m)-sample is denoted by z and written as a matrix in Eq. (3.4.2-3). In order to 

choose a hypothesis space H ∈ ℍ, one needs to minimize the empirical loss on z Δz(H) as in Eq. (3.4.2-4). 
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The bias induced learning algorithm Â is then defined as [Baxter (2000)]: 
 

( , )

0, 0

ˆ : ( )
n m

n m

A X Y
 

 →  
(3.4.2-5) 

 

Which reads: the map that takes (n,m)-samples from the distribution X × Y as 

input to the hypothesis space H ∈ ℍ as the output. 
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3.4.3. Neural Network 

 

In neuroscience, a neural network is part of a biological nervous systems that 

forms a connection which “fires” when it gets a stimulus [Saladin (2016)], whereas 

in computational neuroscience, this natural phenomenon is imitated to model 

the biological network for which the mathematical model is often referred to 

artificial neural network (ANN) [Haykin (2009)]. In many models, neurons are 

arranged in layers one behind the other, also called single-layer perceptron 

(SLP). The first artificial neuron was introduced by [McCulloch and Pitts (1943)] 

as a logical threshold value element with several inputs and a single output. It 

took a Boolean variable, and thus can assume the states true and false and “fire” 
when the sum of the input signals exceeded a threshold value. [McCulloch and 

Pitts (1943)] showed that any simple propositional function (AND, OR, NOT) can 

be described by a combination of several such neurons as depicted in Fig. 3.4.3-1. 

 

 
Fig. 3.4.3-1. Depiction of a). biological neuron and its mathematical modelling as b). artificial neuron 

according to McCulloch and Pitts [Reed (2009)]. 

 

Until today, the fundamental assumption of learning rule relies on the Hebbian 

postulate [Hebb (1949)] which is based on the fact that the activation and 

inhibition of a synapse can be calculated as the product of pre- and postsynaptic 

activity. There is neuroscientific evidence that long-term potentiation and spike-

timing dependent plasticity (STDP) is the biological pendant to Hebb's postulate.  

In the SLP, there is only a single layer of artificial neurons, which also represents 

the output vector. Each neuron is represented by a neuron function and receives 

the entire input vector xn as a parameter. The binary output value of the 

perceptron is learned by adjusting the weights θn and bias b of each neuron: 

 

1 if: 0
Output 

0 otherwise

n n
n

x b  + = 



 

(3.4.3-1) 

 

Once the weights have been learned, a perceptron is also able to classify input 

vectors that differ slightly from the vector originally learned. This is precisely 

what makes the perceptron capable of classification, from which it owes its 

name. SLPs can be attached together to create a multilayer perceptron (MLP) 

which represents information flows from the input layer to the output layer via 

multiple layers. In the case where the information flows in one direction, the 

network is called a feedforward network as depicted Fig. 3.4.3-2a-b. 
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Fig. 3.4.3-2: Feedforward neural network in form of a). simple neural network or SLP and b). MLP, 

which is an example of a deep neural network. 

 

Training neural network will involve loss function minimization. As mentioned 

in Section 3.3.1, minimization is just another optimization problem. The output zm 

in layer m can be calculated from the input xn and weight θn at node n in layer m-

1, thus Eq. (3.4.3-1) can be rewritten as: 

 

( )m n n n
n

z x b y
 

=   +  
 
  

(3.4.3-2) 

 

Where φ is the activation function to be selected. This is typically either as 

sigmoid function, a hyperbolical tangent (tanh), or a rectified linear unit (ReLU).  

Per Def. 3.3.1-1, the optimization problem of loss function J can be simplified as 

Eq. 3.4.3-3 and with the chain rule, the relationship between loss function J and 

neural weight θ can be rewritten as Eq. 3.4.3-4. 
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(3.4.3-4) 

 

Since Eq. (3.4.3-4) involves the chain rule, we can imagine implementing this in 

multiple layers and therefore increasing the calculation steps each time we add a 

layer in the neural network structure. Since the loss is defined as the difference 

between the output and the input at the preceding layer, such an operation is 

therefore called backpropagation. There are many variants of how to do 

backpropagation, but for brevity, only the simplest form without additional 

algorithmic parameters is given. Concretely, the simplest loop to perform a 

weight update at step i with gradient descent is defined as: 

 

1 1i i i

mn mn mn mn

mn

J− − 
 =  +  =  − 


 

(3.4.3-5) 

 

The algorithmic procedure of Eq. (3.4.3-5) is given in Algorithm 3.4.3-1. 
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Algorithm 3.4.3-1: Gradient Update Procedure 
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Setup initial values:

Calculate ( )

Until termination condition is reached:
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If the size of the input layer is small (i.e., less than 1000 nodes), the weights of the 

network can be easily adjusted during the training. However, as the size of the 

input layer grows, the number of weights becomes large, and the training 

becomes unbearable. For this reason, the convolutional neural network (CNN), 

sometimes also called ConvNet was introduced in the computer science 

community. It turns out that CNN has been proven to be an extremely effective 

tool in the field of computer vision since it has less network weights to be trained 

and this approach became a foundation of modern computer vision. 

 

A CNN consists of multiple successively increasing refined data filters – the 

layers of a convolutional filter. Within the context of this analogy, the input data 

to a CNN, for instance a single black and white image can represented as a 3D 

tensor of size: height ×width × channels of pixel values ranging from 0 to 255. The 

transformations performed by each layer are parametrized by its neural weights 

and then, the loss is calculated. There are two types of layers that are normally 

used in CNN core architecture: the convolutional layer and the pooling layer. The 

core CNN is typically attached to the fully connected (FC) layer. The 

convolutional layer performs a convolutional operation to the input tensor that it 

receives from previous layer for feature extraction. The filter performs the 

process of feature extraction by sliding over the input data by several pixels 

which is also assigned and called the stride as depicted in Fig. 3.4.3-3. 

 

 
Fig. 3.4.3-3: Convolution operation in CNN using stride s = 2 and zero-padding 

 

CNN would theoretically accept an arbitrarily sized input, but it is normally used 

for data with a fixed input size. In reality there is no such thing as infinite space, 

i.e., we are practically limited to the current computational capacity. Thus, 

employing a CNN for data with variable length such as a time series (such as 
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weather forecast, stock market, speech signal, seismic/volcanic activity) and 

long-dependency input (such as long sentences, handwriting recognition, or 

language translation) will pose a computational problem for CNN. For this 

reason, a recurrent neural network (RNN) is developed. As the name says, an RNN 

is a neural network with recurrent connections, made up of interconnected 

neurons in which there is at least one recurring input cycle within the network.  

 

There are 3 most common variants in the RNN family: the original (referred to as 

vanilla) RNN, long short-term memory (LSTM), and gated recurrent unit (GRU). 

Like a feedforward network, the units are connected by synapses and the neural 

output is a nonlinear combination of its inputs. The differences between these 

three RNNs are the basic operation within its cell. Vanilla RNN has the basic 

recurrent operation: at time t, the input at time t Xt and pre-current input at time 

t-1 Xt-1 are added together to calculate the output at time t. 

 

When training such a network, the SGD method is often used. A deep neural 

network implementation will involve a very long chain of training, i.e., after a long 

backpropagation chain, the gradient starts to vanish. The LSTM method solves 

this problem by using three types of gates for: an input gate, a remember-forget 

gate and an output gate to enable a short-term memory that lasts for a long time. 

The operations within LSTM cells with the input at time t Xt, bias b, hidden state h, 

cell state c, weights θ and activation function φ are: 

 

Forget gate:

Input gate:

Output gate:

Cell state:

Hidden state:
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Instead of a single neural function, the LSTM module consists of the 

aforementioned gates. Briefly speaking, the input gate controls the extent to 

which a new value flows into the cell, the forget gate controls the extent to which 

a value remains in the cell or is forgotten and the output gate the extent to which 

it is in which the value in the cell is used to calculate the next module in the chain.  

 

A Gated Recurrent Unit (GRU) network is a variant of LSTMs introduced in 2014 

and it has comparable performance to that of LSTMs for the prediction of time 

series. The main difference is the number of parameters within the recurrent 

cells: the cell is only associated with a hidden state (no more cell state), while the 

input and forget gates of the cells are merged to become “update gate z” and the 
output gate is replaced by a “reset gate r”. The GRU cells operations are: 

 

Update gate:

Reset gate:

Hidden state:
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3.4.4. Hyperparameter Tuning 

 

A hyperparameter is a parameter that is used to control the training algorithm. 

Model M is constructed by a learning algorithm A using the training set 

Dtraining(xi,yi), where the learning algorithm is parameterized by a set of 

hyperparameters ϕ, i.e., M = A(Dtraining(xi,yi); ϕ). The formalized hyperparameter 

tuning problem is defined as [Claesen and De Moor (2015)]: 

 

test training
* argmin ( ; ( ; ))J D AD


 =   (3.4.4-1) 

 

Where ϕ* is the optimal hyperparameter, J is the selected cost function, and Dtest 

the test set. For neural network training, the most common hyperparameters are 

learning rate, number of training epochs, hidden layers & hidden units and types 

of activation function. A list of common activation functions for a Hadamard 

product z of transposed weights θT and input X are given in Table 3.4.4-1. 

 

Table 3.4.4-1: Commonly used activation functions with simplified graphical representation 

 

During backpropagation, the weights are adjusted until the error is minimized. 

The input data is generally divided into training sample groups called batches 

and reshuffled. A complete cycle of all input data after several reshuffling is 

referred to as an epoch. When applying the SGD during the training, it is likely 

that it will be slowed down in one of the local minima, especially for non-convex 

objective function. [Sutskever et al. (2013)] tackled this by adding momentum γ 

and it was further developed [Botev et al. (2017)] by adapting Nesterov 

accelerated gradient (NAG) to escape the local minima trap: 
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1 1

Momentum NAG
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(3.4.4-1) 

 

Where vi is the gradient update velocity at increment i and η is the learning rate. 

Another popular gradient descent is called Adam [Kingma and Ba (2015)], its 

variant RMSProp [Hinton et al. (2014)], Adagrad [Duchi et al. (2011)], and Adadelta 

[Zeiler et al. (2015)]. The difference between the gradient descent flavors is: 

 

• Adagrad adapts the learning rate to the parameters, i.e., it has a low 

learning rate for connection weights that are associated with frequent 

features and a higher learning rate for connection weights that are 

associated with infrequent features. 

• Adadelta is an Adagrad extension that seeks to reduce its “monotonically 
decreasing learning rate. […] Adadelta restricts the window of accumulated 
past gradients to a fixed size” [Zeiler et al. (2015)]. Another alternative 

denomination to Adadelta is RMSprop. 

• Adaptive Moment Estimation (Adam) is another method that computes 

adaptive learning rates for each parameter. Like Adadelta, Adam also 

“stores an exponentially decaying average of past squared gradients, and 
additionally it keeps an exponentially decaying average of past gradients 
similar to momentum.” [Ruder (2016)]. 

 

The formal definition of different SGD flavors is summarized in Table 3.4.4-2. The ε-factor (typically small at 10-8) is added to the flavors to avoid division by 0. 

 

Table 3.4.4-2:  Summary of adaptive SGD. In Adagrad, Gt,ii is a diagonal matrix where each diagonal 

element i,i is the square sum of the gradients up to time step t, whereas in RMSProp and Adadelta, 

E signifies the running average of the gradient. In Adam, vt is the exponentially decaying average 

of past squared gradients, mt is the exponentially decaying average of past gradients, and β1, β2 are 

the bias factor of the first and second moment of estimates, respectively. 
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3.4.5. Regularization 

 

To overcome the overfitting problem during training, a regularization technique 

is introduced. It is the process of regularizing the parameters that constrains, 

regularizes, or shrinks the coefficient estimates towards zero to prevent the 

algorithm from shaping an overly complex model. There are two categories of 

regularization: L1-Norm (sometimes called Lasso Regularization) and L2-Norm 

(also called Ridge Regression). In L1-Norm, the sum of the absolute values of each 

element in the weight tensor is summed. In short, in L1, we estimate the median of 

the distribution while in L2, we estimate the distribution mean instead. Table 

3.4.5-1 summarizes the regularized cost function J expressed in mean-squared 

error (MSE) and cross-entropy error (CEE). 

 

Table 3.4.5-1: L1 and L2-Norm for both MSE and CEE cost function input x and true output y, where 

θ is the weight parameter, hθ is the hypothesis function w.r.t θ, i.e., the predicted output, ϑ is the 

regularization factor, j is the weights index within sample i of a total of N-samples taken from the 

underlying distribution D(x,y). 

 

Another regularization methodology is called dropout which was invented by 

[Srivastava et al. (2014)]. When training the network, between 25% – 50% of the 

neurons in each layer of the network are randomly switched off to prevent the 

neighboring neurons from "co-approximating" each other too closely. A neural 

network of n units can be viewed as a collection of 2n possible thinned networks. 

An example of dropped out network is depicted in Fig. 3.4.5-1. 

 

 
Fig. 3.4.5-1: a). A standard neural net with 2 hidden layers. b). An example of a thinned net produced 

by applying dropout to the network on the left [Srivastava et al. (2014), Wang et al. (2018). 
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3.5. Features Learning and Invariant Representation 

 

Consider the following definition from an example of autonomous driving 

perception [Pendleton et al. (2017)]: “Environment perception is a fundamental 
function to enable autonomous vehicles, which provides the vehicle with crucial 
information on the driving environment, including the free drivable areas and 
surrounding obstacles’ locations, velocities, and even predictions of their future 
states […]”. We can adapt this for SHM in an analogous way: Perception in health 

monitoring is a fundamental function to enable the full functionality of 

autonomous damage evaluation, which provides the SHM system with crucial 

information on the changes in the sensory input such as change in amplitude, 

frequency, or phase-shift. 

 

Further, consider the human hearing process [Stöver and Diensthuber (2011)] 

which consists of two parts: 1). Conversion of mechanical (audio) waves that 

travel through the concha, malleus and cochlea into electrical stimulation by 

stereocilia and 2). Information processing that is carried by a neurotransmitter 

through auditory nerves [Petralia and Wenthold (2009)] into auditory cortex 

located in the temporal lobe of human brain. Part 1 is analogous to the conversion 

of an analog Lamb wave signal into an electrical signal by a piezoelectric 

transducer (PZT) thanks to the piezoelectric effect. Part 2 is analogous to SHM 

signal processing to extract information from the electrical signal to have a 

meaningful interpretation. 

 

The postulate of [Hebb (1949)] states that the connectivity between two neurons 

is determined by how strong they are linked to each other, i.e., the connectivity 

between two neurons increases if they are simultaneously activated and 

decreases otherwise [Wallisch et al. (2014)]. Practically, if the auditory cortex is 

fed with the same audio signal over time, at some point the brain would 

automatically recognize it. In this process, human brain is thought to create 

invariant representation on recognizing objects from different timeframe and 

locations [Quiroga et al. (2005)]. To help understand what invariant 

representation means, consider following lemmata: 

 

Lemma 3.5-1. The affine transformation of multivariable function composition O 

(trivial proof) 
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Lemma 3.5-2. The cumulative distribution function (CDF) as the estimate of 

invariant for affine transformation. [Liao et al. (2013)] 

Assume an observation , where  is a set of all possible observations. 

Furthermore, we consider transformation , where  is 2D affine groups 

that consists of all possible tranformations , such

X X

G G

T




t

x

g

 

 as translation, resizing, etc. 
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1
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Since each observation  has its own characteristic empirical , it also shows 

that these signatures could be used to discriminate between them. 
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Lemma 3.5-3. Invariant latent. [Feige (2019)] 
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The importance of these above-mentioned lemmas is following: 

 

1. Any (non)-dispersive acoustic wave signal (including body waves such as 

a P- and SV-wave and/or a surface wave such as Lamb-, Rayleigh wave, 

and SH-wave) can be regarded as a decomposable multivariable function 

of multiple polynomial functions and there exists an affine function that 

transforms the space of signal features to affine spaces of signal features, 

 

2. the transformation of each atomic representation of wave is invariant – 

these has been used e.g., in wavelet transformation, and 

 

3. in a more high-level waveform composition such as a longer time-series, 

the invariant latent can be explicitly calculated to provide the information 

needed to learn which wave packet within the time-series from all 

possible damage classes have in common – e.g., the first and second wave 

packet for similar damage sizes are all similar, i.e., having a cosine 

similarity 1.  

 

In March 2019, the innovator club at Merck proposed these research questions in 

the brain hack challenge that they called The Future of AI [Merck (2019)]. In one 

of the challenges, they were looking for a formalization of a cortical algorithm, a 

mechanism which might be able to imitate the pattern recognition process that is 

believed to be taking place in the grid neuron, which is in the mammal neocortex. 

In one of their core problems statements, two assumptions are made: 
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1. “Hierarchical structure: Entities are hierarchically structured, which 
means that an entity E is either fundamental (i.e., it cannot be broken 
down any further) or it is composed of other entities E1, E2, ..., Ei such that 
every perception p of E is associated with a set of perceptions p1, p2, ..., pi.” 

 

2. “Entity conservation over time: Subsequent perceptions in time are 
(usually) generated by the same set of entities.” 

 

For the hierarchical structure, entities are subdivided into smaller features, and 

an analogy for this assumption would be looking at one car which can be 

decomposed into a sub-structure such as a wheel, door, light, windshield, etc. The 

same analogy for human faces can be applied: nose, eyes, ears, etc. These sub-

features are in turn can be decomposed into smaller shapes such as the edges and 

circles. The idea is depicted in Fig. 3.5-1.  

 

 
Fig. 3.5-1: Structured hierarchical representations [Lee et al. (2011)] 

 

For the second assumption (conserved entity over time), ideally not only the full-

length signal but also the different observation perspective must be considered.   

An analogy for this assumption would be looking at a particular car, but it can be 

looked from different angles, e.g., from the front, left, back, etc. – see Fig. 3.5-2 to 

have an easy way to imagine this. But at the end, this car represents exactly only 

a single entity. 

 

 
Fig. 3.5-2: Representation of entity conservation over time [Ewald et al. (2022)] 

 

The above-mentioned assumptions are taken as an inspiration to model different 

various sensing perceptions: a guided wave signal from different sensing 

locations can be represented as smaller subset of features (e.g., single wave 

packets), or it could also be represented as holistic datapoints encompassing the 

conservation over time. This will be later discussed in chapter 6. 

 

Within this context, we must assume that each observation x ∈ X should 

correspond to at least an element y ∈ Y. The relational mapping between domains 

X and Y can at least describe in three characteristics: surjective, injective, and 

bijective. The formal definition is given in Lemma 3.5.1-4. 
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Lemma 3.5.1-4. The bijective relation maps an input space X into output sets Y 

(trivial proof) 

1 1

1 1

Consider : ,  where , , then  is  if for
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Depending on the case, be it either a discriminative or a generative problem, any 

of these three characteristics can be modelled in machine learning. When there 

is a one-to-one relation between both domains, then this relation is called 

bijective. Assuming that the relation between each parameter combination in the 

formal diagnostic and its corresponding label explained means that changing 

any parameters in the setup would cause the phenomenon λ to change. In other 

words, each λ is only unique to each parameter combination. For example, the 

change of the material, dimension, boundary conditions, sensor geometry, etc. 

and/or combination of these parameters, would cause λ to behave differently, so 

that the observation set X would also change. 
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4. Deterministic Approach Sensor Placement 

 

This chapter partially contains the work that has been published as: 

 

1. Ewald V, Groves RM, Benedictus R. Transducer Placement Option of Lamb 

Wave SHM System for Hotspot Damage Monitoring. MDPI J Aerospace. Vol. 

5: 39 (2018). 

 

Recall the formulated high-level research question in section 2.3.4: in what way is 

the incorporation of computational and artificial intelligence as a design tool for 

automated diagnostics within predictive maintenance feasible? One of the sub-

problems to address this research question is the investigation of the design 

complexity, particularly on sensor placement using deterministic and semi-

stochastic methods according to the purpose of its structural design. This 

objective can be broken down into two approaches: deterministic and semi-

stochastic. Based on the literature review in Chapter 2, following two streams of 

research in sensor positioning have been identified: 

 

1. Transducer placement for detecting hotspot damage from predictable 

locations based on fatigue analysis such as a rivet hole crack, and 

2. Transducer placement for detecting stochastic damage locations that are 

independent of fatigue analysis, such as hail impact or tool drop. 

 

As a full description of both approaches would be very lengthy, in this chapter, 

only the first approach will be described, i.e., when the consideration assumes a 

known damage location due to the original design of the concerned aircraft sub-

structure. In particular, we must consider following aspects [Ewald (2015)]: 

 

1. Crack growth law and critical crack size in a damage-tolerant aircraft sub-

structure. 

2. Numerical simulation of Lamb wave propagation in a plate-like structure 

to save experimental time. 

3. Data processing that involves signal subtraction of damaged from 

undamaged baseline structures. 

 

Chapter 4 is organized in following way: Section 4.1 briefly reviews the crack 

growth assumption within the damage tolerance framework, and in section 4.2, 

the methodology to model Lamb waves in the Finite Element (FE) environment is 

discussed. The simulated data processing methodology is given in sections 4.3 

and 4.4, while the results and discussion from the applied methodologies are 

given in Section 4.5. Finally, the conclusion of this chapter is given in Section 4.6. 

 

4.1. Lamb Wave and Crack Growth in Damage Tolerance Structure 

 

To understand deterministic sensor positioning for a predictable damage 

location, firstly, it is important to understand the concept of damage tolerant 

design. Recall that the definition of damage tolerance is “the ability of the structure 
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to sustain design limit loads in the presence of damage caused by fatigue, corrosion 

and other sources until such damage is detected and repaired” [Harris et al. (2003)]. 

The important key elements in damage tolerant design are: 

 

1. The assumption of initial damage existence, 

2. Damage growth in the material due to structural loading, and 

3. The critical damage size up to which the structure endures the loading 

before catastrophic failure. 

 

These three key elements are synchronous to the regions I, II, and III in a da/dN 

curve [Pugno et al. (2006)], which describes crack propagation rate as a function 

of stress intensity factor (SIF) range during fatigue cycle (ΔK), shown in Fig. 4.1-1. 

 

 
Fig. 4.1-1: Typical da/dN curve. ΔKth is threshold stress intensity factor range, KIC is the critical 

stress intensity factor in mode I crack propagation, C and m are Paris-Erdogan constants. 

 

The assumption of initial damage existence falls in region I of Fig. 4.1-1, where the 

crack growth is typically slow. This region can be covered by some advanced 

NDT and material characterization techniques such as X-Ray tomography 

[Schors et al. (2006)] or scanning electron microscopy (SEM) [Wang et al. (2005)]. 

After passing the threshold SIF range ΔKth, region II begins where the crack 

propagation rate is stable, and crack growth normally follows the Paris-Erdogan 

law [Pugno et al. (2003), Milella (2013)]/ In this region, the crack becomes much 

larger and sometimes can be seen with naked eye [McMaster (2010)]. This is the 

domain of interest for SHM and the majority of NDT methods. The critical crack 

length ac is typically connected with the critical stress intensity factor KIC. After 

transition between region II and III, the crack propagation rate becomes rapid 

and unstable until final failure. 

 

Lamb waves can interact with damage which has a size at least the half of its 

wavelength [Gilchrist (1999), Wang and Su (2014)], and since the critical damage 

tolerant size (which can be up to several hundred millimeters [Harris et al. 

(2003)]) is generally larger than the wavelength (which is typically less than 100 

mm), it is safe to assume that Lamb waves can also interact with the critical 
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damage. The SIF is generally higher in the area around the notch; thus, one can 

expect that a fatigue crack will initiates around a notch. For example, the changes 

in cabin pressure in an aircraft fuselage can be approximated by the internal 

pressure in a thin-walled cylinder where the hoop stress is two times larger than 

the axial stress [Richard and Sander (2008)]. Therefore, the crack orientation is 

expected to be orthogonal to the direction of the hoop stress. By knowing the most 

probable damage orientation and location and the critical damage size for a 

certain geometry, two FE simulation scenarios of wave propagation can be 

performed: 1). Lamb wave propagation in an undamaged structure as a baseline 

and 2). Lamb wave propagation in a critically damaged structure. 

 

4.2. Simulation of Lamb Wave Propagation with ABAQUS FE 

 

The theoretical foundation of simulated Lamb wave has been given in Section 

3.1.2. To reliably model an ultrasonic signal, the recommended number of mesh 

elements is 4 elements per A0- or 8 per S0-wavelength [Ewald (2015)]. The method 

for choosing the simulation parameters has been described in [Zienkiewicz et al. 

(2005)]. An example screen capture of Lamb wave propagation in ABAQUS 

simulation software is depicted in Fig. 4.2-1a–b, where a typical excitation signal 

is given Fig. 4.2-1c, and its response is given in Fig. 4.2-1d. Their respective 

frequency domain signals are given in Fig. 4.2.1e–f, respectively. 
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Fig. 4.2-1: Example of simulated Lamb wave propagation in ABAQUS FE for a). A0-mode and b). S0-

mode. The excitation signal and its responses captured in different sensing nodes (red and blue 

lines) are depicted in c) and d), respectively. The frequency domain responses by using FFTs of c) 

and d) are given in e) and f), respectively. 

 

For this work, the test object is an aluminum plate with a dimension of 600 mm x 

400 mm x 2 mm. The following parameters were chosen based on the study 

conducted in the previous work [Ewald (2015)]: ABAQUS explicit, generic 

aluminum properties (Young’s modulus of 70 GPa, Poisson ratio of 0.33, density of 

2700 kg/m³), quadratic brick mesh (C3D20) with a global mesh size of 1 mm, single 

node out-of-plane excitation with windowed 5 sine-cycle of central frequency of 

250 kHz with 1N concentrated force, dynamic implicit step, no boundary 

conditions imposed, time increment of 0.1 µs (i.e., the sampling frequency is 10 

MHz), total time period of 500 µs and a single nodal output precision. The crack 

can simply be modelled as an elliptical material discontinuity.  

 

The specification of the computer where the simulation was run was: Intel Xeon 

E5-1620 3.5 GHz (Quad-core 8-Threads), 32 GB DDR3-RAM, and NVidia NVS310M 

Graphic card (GPU acceleration was not activated). The wave propagation image 

can be later captured with automated script. The color vector of a single pixel is 

normally represented as an RGB array and can be used to represent different 

Lamb wave displacement amplitudes. The average displacement U is defined as:  

 

2 2 2

x y z
U u u u= + +  (4.2-1) 

 

where ux, uy, and uz are the displacements in x, y, and z-directions, respectively. 

Fig. 4.2-2 shows an example simulation of Lamb wave propagation 30 µs after 

excitation. No displacement (U = 0 nm) is shown as a blue pixel, while a 

displacement of 2.5 nm is shown in green, and a displacement of 5 nm is shown in 

red. The values in-between such as 1.25 nm and 3.75 nm are shown in cyan and 

yellow, respectively. 

 

This colormap ‘rainbow’ is the default colormap in ABAQUS. Note that this 
colormap is slightly different from the basic 3-bit RGB colormap depicted in Fig. 

4.2-2 as it has more color transitions, i.e., there are smoother transitions between 

blue and cyan, cyan and green, and so on. 
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Fig. 4.2.-2: Lamb wave propagation at 30 µs after excitation in an Al-7075-T6 plate with dimensions 

of 200 mm x 200 mm x 1 mm (shown in ABAQUS GUI Viewer) 

 

While this image processing procedure offers less displacement information as 

all displacement values are translated into an RGB array, this alternative 

procedure much faster, and more memory efficient rather than extracting data 

directly from the ABAQUS ODB binary file. 

 

4.3. Image Processing 

 

The Lamb wave propagation at a certain moment in the ABAQUS Viewer can be 

captured as an image. Fig. 4.3-2a-b shows Lamb wave propagation at t = 100 µs 

and 125 µs in an undamaged Al-7075 plate with 3 rivet holes, respectively. These 

are the baseline images. As can be seen from these figures, the wave reflection 

from the rivet hole is minimal, thus only showing a minimal amount of wave 

ripples. The scale of displacement magnitude is the same as depicted in Fig. 4.2-2. 

 

 
Figure 4.3-2: Lamb wave propagation at a). t = 100 and b). 125 µs in uncracked Al 7075 Plate. 

 

Fig. 4.3-3a-b show the wave propagation in the same plate but with a symmetric 

crack (from tip-to-tip, including the hole diameter of 10 mm) of 28 mm length in 

the middle of the plate (marked by a yellow rectangle). The images captured have 
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size of a 1210 x 807 pixels, so the resolution is 2 pixel/mm. These images are stored 

as an array with a size of 1210 x 807 x 3, where each pixel has 3 arrays, each 

containing a normalized floating value between 0 and 1 for each of the RGB 

colors. A similar pattern of Lamb wave propagation can be observed if the crack 

length differs by +/- 10%, as shown in Fig. 4.3-3c-d. In this case, the crack length is 

30 mm instead of 28 mm. However, if the crack is much larger, a notable change 

in the wave propagation pattern can be observed, as depicted in Fig. 4.3-3e-f. In 

this case, the crack length is 60 mm. 

 

 
Figure 4.3-3: Lamb wave propagation at a). t = 100 and b). 125 µs in an Al 7075 Plate with a 28 mm 

crack. In a similar way, the wave propagation for an Al-7075 Plate with 30 mm and 60 mm cracks 

at t = 100 µs and t = 125 µs are depicted in c – f, respectively. 

 

By subtracting the image of the cracked plate Fig. 4.3-3e from the baseline images 

in Fig. 4.3-2b, the reflected wave scatter image can be obtained, as shown in Fig. 

4.3-4a. In an analogous way, we can easily subtract Fig. 4.3-2b from Fig. 4.3-2f. 

Note the RGB values are subtracted rather than the displacement values. Pixels, 

for which there is no change in wave scatter are shown as black. In Fig. 4.3-4a, the 

reflected wave scatter is highlighted by the yellow rectangle, while the distorted 

transmitted wave is obtained as well (in the red rectangle) but is not clearly 

visible. 
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Fig. 4.3-4: Differential image of a). Fig. (4.3-3h – 4.3-2b) and b). Fig. (4.3-2b – 4.3-2h) 

 

For the further sections, only the results from the uncracked plate and the 

cracked plate of 60 mm crack will be shown for conciseness. Fig. 4.3-4b can be 

explained in the same manner: the corruptly transmitted wave scatter image is 

highlighted more (red rectangle), while the reflected wave scatter can still be 

seen (yellow rectangle) but is less visible. To highlight both the reflected and 

corrupted wave scatter, the two images shown in Fig. 4.3-4a – b can be joined to 

form a composite image, which can be either created either via addition or image 

fusion. In image addition, both images are simply added to each other. The second 

one is called image fusion and uses the ‘imfusion’ function in MATLAB, where the 
two images are firstly converted into greyscale mode, given a false color and then 

added mathematically. An example of image addition and image fusion are 

depicted in Fig. 4.3-5a – b, respectively. For the sensor placement procedure 

described in Section 4.4, the inverse fused image (Fig. 4.3-5b) is used so we can still 

see the representation of reflected and missing wave scatter. 

 

 
Fig. 4.3-5: a). Inverse of a). added image and b). fused images of Fig. 4.3-4. 

 

4.4. Blob Detection 

 

The wave scatter which was caused by both reflections and corrupted 

transmissions due to the crack front are represented by false color (i.e., green and 

magenta pixels in Fig. 4.3-5b. These pixels have a different color from the 

background (white). The region of interest is determined by using the MATLAB 

blob detection function to locate areas of adjacent green and magenta pixels. The 

larger the blob is, the larger the area of wave scatter. The sensor should be placed 

in the centroid of the largest blob, so that it will have a high probability of 

capturing a portion of wave scatter from cracks. 
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The blob detection algorithm is based on the Laplacian of Gaussian [MATLAB IPT 

Documentation, Kong et al. (2013), Lindeberg (1998)] with an 8-pixel connectivity 

kernel. The Gaussian function G of an input image f(x,y) and feature scaling σ is 

defined as: 

 

1 ² ²
( , , ) exp

2 ²

x y
G x y



 +
 =  − 

  
 

(4.4-1) 

 

The Laplacian operator ∇² is defined as: 

 

² ²
²

² ²
f f

x y

 
 = +

 
 

(4.4-2) 

 

By applying the Laplacian operator in Eq. (4.4-2) to the Gaussian function in Eq. 

(4.4-1), one obtains the Laplacian of Gaussian (LoG), as described in Eq. (4.4-3). 

Concretely, LoG is the edge of the blob and for this reason, many edge detection 

algorithm problems rely on LoG. 

 

4
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x y x y
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(4.4-3) 

 

Recall the definition of continuous optimization described in Section 3.3.1. Since 

the Gaussian function is a quasi-concave, it is continuously differentiable in ℝ. 

Within a blob, there are several anchors point candidates. The right centroid of 

the blob is found when the LoG reaches the maximum. Hence, the blob centroid 

xc, yc with the scale σc is the simultaneous local minimum of the LoG. The objective 

function to search the best centroid within the blob can be thus formulated as: 

 

( , , )
( , , ) argminmax ( ² ( , ))
c c c x y
x y G x y =   (4.4-4) 

 

For the blob detection, an 8-pixel connectivity kernel (Fig. 4.4-1a) is used because 

it is more suitable for a larger area since the diagonal neighbor is counted as well, 

while a 4-pixel connectivity kernel (Fig. 4.4-1b) is typically used for line and 

corner detection. In Fig. 4.4-1a – b, the meaning of -1 and 0 are pixels which are 

counted and are not counted as a neighbor of the center pixel, respectively. 

 

 
Fig. 4.4-1: Convolutional kernel of a). 8-pixel connectivity and b). 4 -pixel connectivity within 3x3 

convolution. 
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The blob detections from various time increments are depicted in Fig. 4.4-2a-d. 

As mentioned before, the sensor should be placed in the location with the largest 

change in signal over time, i.e., the largest blob. Since it generally contains more 

than a single pixel, the centroid can be calculated to determine the average pixel 

location that would receive wave scatter. In Fig. 4.4-2a-d, the largest and the 

second-largest blob centroids are marked by red and green dots, respectively. 

Blob boundaries are marked by the yellow polylines. 

 

 
Fig. 4.4-2: Detected blobs at a). 100 µs, b). 125 µs, c). 150 µs, and d). 175 µs. The largest and second-

largest blobs are marked in red and green, respectively. Arrows indicate the direction of 

movement of the blobs. 

 

The rest of the centroids are marked by blue dots. In order not to lose the 

overview, the reader is encouraged to compare Fig. 4.4-2a with Fig. 4.3-2a and 4.3-

3e, as well as Fig. 4.4-2b with Fig. 4.3-2b and 4.3-3f. The X-Y coordinates of the blob 

centroid and the blob size are summarized in Table 4.4-1.  

 

 

Time 

Frame 

Largest centroid Second-largest centroid 

Coord. 

[pixel] 

Coord. 

[mm] 

Area 

[pixel] 

Coord. 

[pixel] 

Coord. 

[mm] 

Area 

[pixel] 

100 µs 888;403 440;200 15910 716;403 355;200 12917 

125 µs 1031;402 511;199 29535 582;404 289;200 18794 

150 µs 1154;402 572;199 27067 445;401 221;200 8808 

175 µs 1111;405 551;201 24214 304;402 151;199 7949 

Table 4.4-1: Area and coordinates of the largest and second largest centroid. Units are in pixel and 

mm. Total area is in pixel. Average resolution is 2 pixel / mm. 

 

After a certain time, the wave pattern becomes more chaotic due to multiple 

reflections from the crack front, rivet holes, and plate edges so that more smaller 
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centroids will be born that are not exactly aligned with the mid Y-axis anymore. 

The detailed procedure in MATLAB to find to trace the blob is described in 

Algorithm 4.4-1. 

 

Algorithm 4.4-1. Blob Detection. 

0
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The smaller centroids imply that the potential energy capture by PZT is getting 

smaller and this will be aggravated by Lamb wave attenuation. This is the reason 

it is recommended to have ‘early wave scatter capture’ for hotspot SHM design. 
Typically, one can decide the best sensor position by considering the movement 

of the centroid per time increment, also known as ray tracing [Heinze et al. 

(2014)]. 

 

4.5. Results and Discussion 

 

In order to get a better overview, Fig. 4.4-2a – d was fused into a single image. An 

example result of this operation is depicted in Fig. 4.5.1, where each pixel contains 

information about the normalized intensity between 0 and 1 which is then 

mapped into the rainbow color scale. From Fig. 4.5.1, it can be subjectively judged 

that the best sensor position is between X = 44 cm and 57 cm and the second-best 

sensor position is between and X = 34 and 38 cm, while the vertical coordinate for 

both positions remain at Y = 20 cm. 

 

In order to demonstrate that the image processing algorithm also works for a 

different case of simulations, the case can slightly be modified the case for the a). 

the critical crack length to 30 mm, and b). the orientation of the crack by 8°. The 

whole procedure was repeated, and the results for the mentioned cases are 
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depicted in Fig. 4.5.2 and 4.5.3, respectively. From Fig. 4.5.2, it can be seen that the 

areas with higher pixel intensity (colored in red with value between 0.7 and 1) are 

smaller than those of Fig. 4.5.1. This is to be expected since the wave perturbation 

at the crack front due to a crack length of 30 mm is smaller than those of 60 mm. 

 

 
Figure 4.5.1: Fused image of Fig. 4.4.2a-d. The normalized intensity value is encoded between 0 and 

1 and is therefore unitless. Intensity value of 0 indicates no residual wave scatter, while intensity 

value of 1 indicates the maximum residual wave scatter.  

 

 
Figure 4.5.2: Fused image of differential images of a 30 mm crack. Intensity value convention from 

Fig. 4.5.1 applies. 

 

Meanwhile from Fig. 4.5.3, it can be seen that the crack orientation changes the 

direction of the reflected wave scatter, and it is still conforming with Snell’s law. 
However, it does not change the orientation of areas where the wave scatter is not 
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present. After cross validating with the original simulation data, it can be 

confirmed that angled crack only heavily influences the reflected wave scatter 

portion, but not the missing scatter portion (Fig. 4.5.4a-b, marked in yellow). 

 

 
Figure 4.5.3: Fused image of differential images of 60 mm crack with 8° orientation. Intensity value 

convention from Fig. 4.5.1 applies.  

 

 
Figure 4.5-4: Lamb wave propagation at a). t = 100 and b). 125 µs in Al 7075 Plate 

 

In this work, two best locations for placing the sensor are given. However, the 

number of sensors that are allocated for every case can be adjusted according to 

the manufacturer and/or aircraft operator requirement to achieve the required 

crack detectability. Furthermore, not only the number of sensors, but also the 

excitation frequency can be changed depending on the size of the critical crack 

that must be detected. A higher frequency means a shorter wavelength, thus 

enabling the wave to interact with a smaller critical crack length. 

 

It is to be noted that such a higher frequency Lamb wave will also be more quickly 

attenuated than the lower frequency Lamb wave. Therefore, in order to stabilize 

the SHM network performance, more sensors will be required. Nevertheless, 

when more sensors are employed, higher procurement costs are also expected 

due to more weight, more data processing capability, etc. This can be regarded as 
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the classical trade-off between SHM investment cost and SHM network reliability 

and the decision should be passed back to the aircraft manufacturer or operator 

according to their needs. 

 

4.6. Conclusion 

 

This work demonstrated a novel technique to design the sensor network 

topology for hotspot SHM by using differential images and a blob detection 

algorithm. While my image processing technique does not allow a quantitative 

approach to observe the nodal displacement, i.e., displacement from every single 

FE node, I believe this technique offers a more holistic view (Fig. 4.5.1 – 4.5.3) of 

where to place the PZT sensors on the structure to be monitored. 

 

Also, with this technique I believe that the sensor placement can be done more 

quickly without exhaustive data processing from simulation files for each 

surface while not sacrificing too much spatial resolution. In practice, even the 

extracted nodal data from the simulation must be interpolated, since in reality a 

PZT sensor would always occupy more than a single node (e.g., a typical PZT in 

our lab has a diameter of 1 cm, so would theoretically occupy about 78 FE nodes). 

Therefore, as concluding remark, hopefully this technique will help further 

research in sensor placement.  

 

Chapter 2 stated that the main research problem formulation of this dissertation 

is to investigate the feasibility of incorporating computational and artificial 

intelligence as a design tool for an automated diagnostic within predictive 

maintenance – and if so, in what way certainly? Essentially, to connect the 

discussion in this chapter to the feasibility, now we need to recall the sub-

research question defined in section 2.3.4: 

 

The design complexity and parameter optimization, particularly on sensor 

placement methodologies for both deterministic and semi-stochastic approaches 

according to what extent the structure is designed based on the premise that sensor 

network topology affects the damage detection capability and the overall SHM 

performance. In this proposal, an investigation of different sensor network 

topologies is needed to understand the trade-off between the strategies and if 

possible, to propose a compensation technique. 

 

In this chapter, the deterministic methodology for transducer placement for 

known damage location based on continuous optimization described in Section 

3.3.1 is used. While the methodology described in this chapter can easily be 

repeated for many different types of geometry and material properties to 

partially answer the design question on deterministic sensor placement, there 

are several issues that still need to be addressed: 

 

1. Experimental validation of the deterministic design of the sensor topology 

as in this chapter, only the simulation data from ABAQUS FE is used. 
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2. Stochastic strategy for non-predictable damage location, especially for 

quasi-instantaneous but abrupt-like events such as bird and/or lightning 

strike, tool drop, and hail impact. 

3. Bimodal utilization of deterministic and stochastic information of the 

network topology, i.e., when concerning the integration of both 

approaches since both damage type, be it on predictable or non-

predictable location are very likely to appear during aircraft operational 

lifetime. 

 

As a short conclusion, the three above mentioned topics are the starting point of 

the next chapter. 
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5. Holistic Sensor Network Topology Optimization 

 

This chapter partially contains the work that has been published in: 

 

1. Ewald V, Groves RM, Benedictus R. Integrative Approach for Transducer 

Positioning Optimization for Ultrasonic Structural Health Monitoring for the 

Detection of Deterministic and Probabilistic Damage Location. Intl J of 

Structural Health Monitoring. DOI: 10.1177/1475921720933172 (2020). 

 

In chapter 4 of this dissertation, we saw the deterministic sensor placement 

methodology.  In the last section of chapter 4, there were still several issues that 

still need to be addressed: 

 

1. Experimental validation of the deterministic design of the sensor topology 

as in this chapter, only the simulation data from ABAQUS FE is used. 

2. Stochastic strategy for non-predictable damage location, especially for 

quasi-instantaneous but abrupt-like events such as bird and/or lightning 

strike, tool drop, and hail impact. 

3. Bimodal utilization of deterministic and stochastic of the network 

topology, i.e., when concerning the integration of both approaches since 

both damage type, be it on predictable or non-predictable location are 

very likely to appear during aircraft operational lifetime. 

 

This chapter will address these issues one by one. Before going deeper into the 

strategy, we should take the influencing physical parameters into account when 

determining the objective function. This will be discussed in section 5.1. The 

stochastic strategy for sensor placement is described in section 5.2, while the 

bimodal topology is described in section 5.3 and the preliminary result are given 

in section 5.4. Section 5.5 gives the experimental validation of sections 5.2 and 5.3 

and finally, the conclusion and summary are given in section 5.6. 

 

5.1. Fitness Function 

 

As explained in [Ewald et al. (2020)], the deterministic approach would require 

too many simulations, and is computationally unfeasible, a situation that can be 

related to the art gallery problem [O’Rourke (1987)]. Thus, it would be useful to 

maximize the sensor coverage area to detect damages that occur within that 

coverage area. Hence, I propose a target function that describes the attenuation 

at a certain location in the propagation space of the Lamb wave. First, consider 

the measured signal power P in an infinite plate at point x where the original 

excitation signal power is P0 [Ono and Gallego (2012)] with the geometrical 

attenuation factor α which is proportional to 1/√r [Su and Ye (2009), Mizutani et 

al. (2014), Schubert and Herrmann (2011), Dentith and Mudge (2014), Kerber et al. 

(2010)], where r is the distance from wavefront to the point x: 

 

0
1= exp(- ) whereP P r
r

        (5.1-1) 
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The material attenuation β depends on frequency and thickness, e.g., for a 1-mm 

thick aluminum plate, the attenuation coefficient is between 2.2 – 17 dB/m for a 

frequency between 0.5 – 5 MHz [Ono and Gallego (2012), Kasama et al. (2000)]. For 

a given coordinate (xi,yj), we can construct an effective travel distance assigned 

in pixel value f(rij) by multiplying the total attenuation [αij·exp(-β·rij)] by the 

propagating distance rij from the wave propagation source so that it is 

comparable to a measured Lamb wave signal amplitude attenuation profile: 

 

0
1= exp(- ) where

1( )= [ exp(- )] whereij ij ij ij ij

ij

P P r
r

f r r r
r

    

     
 

(5.1-2) 

 

Where the distance rij is defined as the Euclidian distance from the wave 

propagation source at coordinate (xi,yj) up to an arbitrary pixel located in 

coordinate (x̂i,ŷj) and αij is the dimensionless geometric spreading correction 

factor at the distance rij, respectively: 

 

ˆ ˆ2 2= ( - ) +( - )ij i i j jr x x y y  (5.1-3) 

 

Consider a structural inhomogeneity such as rivet hole at the coordinate (x̃i,ỹj) 

that acts as secondary source since a Lamb wavefront is scattered at the rivet 

holes, where in my assumption, the scattering occurring at the rivet is considered 

lossless. A scattering efficiency could be included in the calculation if a reliable 

value is available. The secondary source emits a lower energy as the waves have 

lost energy in travelling from the source PZT to the rivet hole via the indirect path 

r ̃ij defined by: 

 

ˆ ˆ2 2 2 2
PZT-rivet rivet-pixel= + = ( - ) +( - ) + ( - ) +( - )ij i i j j i i j jr r r x x y y x x y y  (5.1-4) 

 

The pixel value in Eq. (5.1-4) for the secondary source can be rewritten in Eq. (5.1-

5). 

 

rivet-pixel

rivet-pixel

PZT-rivet rivet-pixel

( )= [ exp(- )]

1       = exp(- )

ij ij

ij

f r r r

r r
r r

   

 
     

ij

 

(5.1-5) 

 

where ᾶij is the recalculated geometrical spreading correction factor at the 

distance r̃ij. As an example, consider a resolution of 1 pixel that corresponds to 1 

cm in reality, the function values of Eq. (5.1-2) and (5.1-5) for different values of β 

with the distance rrivet-pixel = 0.25m are depicted in Fig. 5.1-1a – b, respectively. 

Remember that this pixel value is only a dimensionless construct that indicates 

the Lamb wave attenuation profile. The constructed pixel value is not only based 

on the attenuation profile (which goes toward +∞ very close to the source) but 

also to anticipate the near-field zone (NFZ), known as the dead zone since where 

it is difficult to evaluate any flaws within the NFZ. For simplicity, let us only 

consider the NFZ to be the area which is covered directly by the PZT. 

https://en.wikipedia.org/wiki/%C5%B6
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Fig. 5.1-1: Unitless pixel value of a). f(rij) and b). f(r̃ij) as a function of distance which is comparable to 

amplitude profile. For demonstration purposes, the curve in Fig. 5.1-1b is calculated based on r̃ij = 

0.25m + rivet-pixel. 

 

Depending on the modes, material, excitation frequency, and thickness, the 

attenuation β can vary between 0.001 to 0.005 dB/cm [Drinkwater et al. (2013)]. 

For instance, in CFRP woven (10-ply), an A0-mode Lamb wave excited at 285 kHz 

would only need to travel 85 mm until 90% decay, whereas in woven CFRP of 8-

ply, an S0-mode Lamb wave excited at 250 kHz, it would need to travel 1700 mm 

until 90% decay [Su and Ye (2009)]. 

 

Generally, the S0-mode tends to travel further than the A0-mode due to the fact 

that the A0-mode is dominated by perpendicular displacement relative to the 

wave propagation direction, thus it is leaking more energy to the surrounding 

environment [Su and Ye (2009)]. This is in contrast to the S0-mode which is 

dominated by the in-plane particle displacement, so that the energy is better 

conserved within the plate. For the consecutive scattering, [Su and Ye (2009)] 

suggested to compensate the energy loss due to geometrical spreading by 

multiplying the measured amplitude with the square root of the time elapsed: 

 

(̂ ) ( )f t f t t  
(5.1-6) 

 

Consider the example proposed by [Zhao et al. (2006)], where transducer T is 

placed between rivet holes as depicted in Fig. 5.1-2a (case 1). Given that actuator 

T was excited by using a 1.8 MHz excitation frequency, Fig. 5.1-2b illustrates the 

captured S0-mode Lamb wave signal from a series of sensors X that are located 20 

– 200 mm away from the actuator T. 

 

 
Fig. 5.1-2: Sketch of distribution of rivets and transducers in wing section (‘T’: actuator; ‘X’: sensor 
in Case 1; ‘Δ’: sensor in Case 2); and b). integrated Lamb wave signals captured by a series of sensors 

in a straight line (Case 1) [Zhao et al. (2007)]. 
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In this case, they calculated that the average attenuation rate was 0.044 dB/mm. 

In case 2, they placed sensor series ∆ across the stiffeners, and using the same 

frequency and S0-mode excitation obtained an average attenuation of 15 dB per 

rivet row. The distance between the rivet rows was 6.5 cm, meaning that the 

average attenuation was increased to 0.231 dB/mm. This calculation already 

included the multiple scattering across the rivets. 

 

As simplification, only the first appearance of the wave scattering until the wave 

is absorbed at the boundaries of the plate is considered. The calculated pixel 

score sij at pixel (x̃i,ỹj) for N transducers and B inhomogeneities can simply be 

defined as a summation of normalized function values f(rij) and f(r̃ij): 

 

|| ( ) || || ( ) ||
ij ij ij

N B

s f r f r  (5.1-7) 

 

The network score τ is simply the summation of all pixel scores, excluding the 

pixel P ϵ PN or PB, which are occupied by the transducers N and inhomogeneities 

B, respectively: 

 

1 1

, 

where 0 if  ( , ) ( , )

m n

ij
i j

ij N i j B i j

s

s P P x y P x y


 

(5.1-8) 

 

As a limitation, only the area directly below the PZT is considered as effective 

NFZ. The rivet hole is idealized as a “secondary actuator”, with the simplification 
that the wave scatter from the rivet hole is homogenously reflected to all 

directions, although in practice, it would depend on the direction of the coming 

wavefront. Thus, it is logical to set the pixel score to be 0 at those occupied pixels 

as they do not act as wave detection points. Additionally, Eq. (5.1-9) can be 

normalized to take any positive real number between 0 and 100: 

 

1 1

100 100
|| ||

( ) ( ( ))

m n

ij
i j

s
m n m n N B


  

(5.1-9) 

 

Examples of the network score mapping for transducers placed at coordinates 

20|40 cm and 115|10 cm in a plate with dimension of 120x80 cm are given in Fig. 

5.1-3a – b, respectively, while their alternative representations in 3D projection 

are depicted in Fig. 5.1-3c – d, respectively. In Fig. 5.1-3a – b, the sensor and rivet 

hole locations are red dots in locations indicated by white and black rectangles, 

respectively. 

 

Fig. 5.1-3a shows that the whole plate is better covered if the PZT is located at 

20|40 cm since the network score is 39.73, in comparison to Fig. 5.1-3b (PZT 

location at 115|10 cm) which has a network score of only 33.17. Our definition of 

coverage is any pixel location where a direct or scattered wave propagates. Thus, 

a network score of 39.73 can be considered as the average wave amplitude is 

39.73% of the maximum. Note that until Eq. (5.1-9), we shall not consider any 

signal processing parameters nor algorithm yet (except the anticipation towards 



 

121 Chapter 5. Holistic Sensor Network Topology Optimization 

the NFZ). The value of coverage level can be later adjusted once the thresholding 

parameter has been determined. 

 

 
Fig. 5.1-3: Mapped unitless pixel score sij and network score τ for transducer placement at a). 20|40 

cm and b). 115|10 cm. Fig. c) and d) are the alternative representations of the network score in 3-

dimensional projection. The white and black rectangles signify the sensor and rivet hole locations, 

respectively. 

 

Furthermore, the network score will decrease if the attenuation coefficient β is 

increased as depicted in Fig. 5.1-4a – b (cf. with Fig. 5.1-3a with β = 0.3). The 

attenuation coefficient depends on the material properties and excitation 

frequency [Ono and Gallego (2012)]. This implies that even if the material is the 

same, the network score will be lower if a higher excitation frequency is applied. 

 

 
Fig. 5.1-4: Mapped pixel score sij and network score τ for transducer placement at 20|40 cm for a). β 

= 0.1 and b) β = 0.7. The white and black rectangles signify the sensor and rivet hole locations, 

respectively. 

 

The best sensor network topology will reach a network score ||τ|| = 100. However, 

knowing that this is quite unlikely, the objective is defined as: 

 

( )( , )
(|| τ ||)argmax N

i jx y
 (5.1-10) 
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Eq. (5.1-10) reads, given N number of sensors, determine the coordinate (xi,yj) of 

each actuator N that maximizes the network score τ. Theoretically, the maximum 

value is the total amount of pixels without (N+B) as per Eq. (5.1-9). For example, a 

plate with a size of 120 x 80 cm and 2 mounted sensors and 3 rivet holes would 

have theoretical maximum score of 9600 – (2+3) = 9595, or 99.9479 if it is 

normalized by using Eq. (5.1-9). The interpretation of Eq. (5.1-10) means that at the 

maximum network score, a minimum attenuation is reached. Assuming that the 

PZT sensors are able to capture any wave scatter due to the damage occurring at 

anywhere on the plate and coupled to adequate signal processing, the sensor 

network will be able to detect and predict the damage location reliably. 

 

From Eq. (5.1-7 – 10), it is obvious that the network score is independent of the 

damage index DI. This at least eases the transducer placement search for the best 

fitness. However, to search for the best fitness, it would still take a lot of time even 

without determining the DI from experiment. The number of possible sensor 

placement combinations C of given N sensors, B inhomogeneities and L pixels is 

given by Eq. (5.1-11). 

 

 

As an example, assume each pixel size is 1x1 cm, then for a plate of 120x80 cm for 

a single sensor (N = 1) and 3 rivet holes (B = 3) in which there are C = 9597 possible 

combinations, the computation time for the brute force search with my PC 

specification is 2.57 seconds. However, for two, three, and four sensors the 

calculation time would increase from 3.4 hours to 15 months and to 3000 years, 

respectively. 

 

5.2. Methodology 

 

From Eq. (5.1-11), it is easily known that it is not feasible to look for all possible 

transducer locations since it may take indefinitely long. When an exhaustive 

brute force search takes too much time, normally a heuristic search is employed 

to find a close-to-optimal solution within a reasonable amount of time. To find a 

viable solution from such a large search space, one could consider the following 

approaches: 1). no prior knowledge was used during the decision making; thus, 

the decision probability is equally distributed over the decision set, 2). prior 

knowledge is used in the decision making and for sorting the decision options, 

and 3). no prior knowledge was involved at the beginning but is gradually 

incorporated as the decision-making process evolves. 

 

These approaches can be related to popular search techniques [Hopcroft et al. 

(2006), Rastrigin (1963), Kramer (2017), Schmitt (2001), Hung et al. (2008), 

Kennedy and Eberhart (1995)] such as: random search, greedy methodology 

some metaheuristics such as genetic algorithm (GA), swarm intelligence, and 

simulated annealing (SA). In this section, investigate these approaches to find a 

solution for Eq. (5.1-10) will be investigated. 

 

( )!

!( )!

L B
C

N L B N
 (5.1-11) 
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5.2.1. Global Random Search 

 

Global random search is the easiest method to use to solve a combinatorial 

problem. However, given a limited time constraint, it is also the least efficient 

since the optimal sensor position might not be found. The algorithm is very 

simple and can be demonstrated in only 4 lines of pseudocode, as shown in 

Algorithm 5.2.1-1. The random value in this case is a random position of xi,yj. 

 

Algorithm 5.2.1-1. Random Search 

+

Input parameter: random value from search space

Output: output function ( ),  decision variable {0,1}

Until termination condition is reached:

Calculate (random value)
Do

Update  if (random value )

X

Y f X w

f

w f

−
− =

 > (random value)f





 

 

The results of the global random sensor position search are depicted in Fig. 5.2.1-

1a – b. Fig. 5.2.1-1a depicts the search result for 3 sensors, while Fig. 5.2.1-1b depicts 

the result of a search of 6 sensors. While the result would normally change for 

each iteration, it is possible for the random search to converge with an increasing 

number of sensors (see Fig. 5.2.1-1c). Fig. 5.2.1-1c depicts the average network 

score after 10 searches for a 1 – 10 sensors search from 1 to 1000 iterations. 

 

 
Fig. 5.2.1-1: Found sensor network pattern by random search for a). 3 sensors and b). 6 sensors with 

black & white rectangles convention from Fig. 5.1-4, while c) depicts the distribution of the network 

score for a random search of 1 – 50 sensors after 1000 iterations. Error bars indicate the standard 

deviation of the network score during 1000 iterations. 
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As one can see in Fig. 5.2.1-1c, the random search algorithm starts to converge 

from 5 sensors with decreasing standard deviation (indicated by the error bars) 

towards an average network score of around 81, which means the plate is 81% 

covered by the wavefront should an impact happen anywhere on the plate. The 

computational time, as expected, is linear since the calculation effort is the same 

for every iteration. 

 

5.2.2. Greedy Search 

 

According to [Cormen et al. (2009)], “a greedy algorithm always makes the choice 
that looks best at the moment”, i.e., it makes a locally optimal choice in the hope that 

this choice will lead to a globally optimal solution”. For some problems, the 
greedy algorithm can provide an optimal solution, while in other cases it does not, 

because sometimes the selected solutions reach a local optimum. An example 

pseudocode of a greedy algorithm was shown in Algorithm 3.3.2-1 (Chapter 3). 

 

In the greedy algorithm, the function value will be sorted from the minimum to 

maximum, and the argument maximum is chosen as the optimal solution. For 

multiple sensors, the greedy algorithm will search the next optimal sensor 

position step by step. That is, the next sensor position is determined by the 

previous sensor position by considering the last previous sensor position. In 

practice, this will lead to locally optimal solutions that might still be globally 

optimal solution within a reasonable amount of time. 

 

The mode of operation of the greedy algorithm is depicted in Fig. 5.2.2-1a – d. The 

algorithm finds the best position of the first sensor (Fig. 5.2.2.1-a), then calculates 

the next best sensor position based on the position of the previous sensor.  

 

 
Fig. 5.2.2-1a – d: Found sensor network pattern by greedy methods for 1, 3, 5, and 7 sensors, 

respectively. The black and white rectangles convention applies. 
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As can be seen from Fig. 5.2.2-1a vs Fig. 5.2.2-1b, the greedy algorithm for 3 sensors 

search (network score = 72.28) performs better than a global random search 

(average network score = 62.26). This is expected because the random search 

does not have clear strategy to find the maximum except by saving the best 

possible solution for each iteration, while the strategy of finding the maximum in 

the greedy algorithm is by dividing the problem into smaller sub-problems. The 

greedy algorithm was able to determine the maximum theoretical network value 

thanks to the sorting function which in this case is 38.2033 as can be seen in Fig. 

5.2.2-1a. The problem with this approach is when more than 1 sensor search is 

applied, the required calculation time is comparable to 9600N for a plate size of 

120 x 80 cm, where N is the amount of the sensors. Sorting is therefore not always 

feasible for a multivariable search. 

 

5.2.3. Metaheuristics Search 

 

5.2.3.1. Genetic Algorithm (GA) 

 

Usually, a GA contains three main operators: mutation, crossover, and selection 

[Schmitt (2001)] and typically, the procedure starts with a given initial 

population that will be assessed against its fitness. Those individuals who have 

the best fitness are crossed-over to each other and/or a “genetic mutation” is 
applied e.g., by bit-flipping or replacement. The individuals who do not have the 

best fitness are not selected. This procedure is repeated several times until a 

specified certain termination condition is reached. A pseudocode example of GA 

has been described in Algorithm 3.3.2-2 in the chapter 3. For the sensor placement 

problem, the sensor coordinates xi,yj are first encoded as a chromosome (Fig. 

5.2.3.1-1) that will be assessed against the fitness function. The genome length is 

2N, where N is the amount of the sensors to be installed. 

 

 
Fig. 5.2.3.1-1: Sensor position as chromosome in genetic algorithm for N sensors 

 

Typically, the aircraft manufacturer or operator will determine how many 

sensors are to be installed based on the balance between cost, additional weight, 

POD / sensor network performance and safety. Generally, the more sensors that 

are installed means a higher Lamb wave coverage, but this also means higher 

costs and energy consumption, and more weight since every sensor is attached 

to a cable. Also, after a certain number of sensors, the coverage will only slowly 

increase up to the upper limit of the sensor network performance. The results 

from a genetic algorithm for 1 – 8 sensor searches are depicted in Fig. 5.2.3.1-1a – f, 

respectively. From these figures, one can clearly see that the genetic algorithm 

tends to outperform the global random search and greedy algorithms. For 

instance, for 3 sensor searches, the genetic algorithm reaches a network score of 

84.12 (Fig. 5.2.3.1-1c) after 21 seconds, while the greedy algorithm only reaches a 

network score of 72.28 (Fig. 5.2.2-1b).  
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Fig. 5.2.3.1-1a – f: Found sensor network pattern by genetic algorithm search result for 1, 2, 3, 4, 6, 8 

sensors. The black and white rectangles convention applies. 

 

The random search performed even worse as it reaches a network score of 62.26 

(Fig. 5.2.1-1a). Note that for the special case of a 1 sensor search, the genetic 

algorithm was successful in finding the maximum theoretical value of the sorting 

greedy algorithm, which is 38.2033 (cf. Fig. 5.2.1-1a to Fig. 5.2.3.1-1a) – thus there is 

no difference in this case between the greedy and the genetic algorithm, which 

proves that the construction of the genetic algorithm worked in a consistent way. 

 

However, it should be noted that the genetic algorithm performs slowly, 

especially when the number of sensors increases. While the greedy algorithm 

and random search give a result almost immediately, a search with a genetic 

algorithm for 6 sensors took almost 4 minutes. Not only that, but the more sensors 

are also employed, the more computer memory is needed, sometimes forcing 

earlier termination of the algorithm and resulting a lower score, such as in Fig. 

5.2.3.1-1f. 

 

In a larger plate where more sensors are to be installed, a genetic algorithm would 

deliver a high network score, however this will be neutralized by its slower 

performance. This is actually in line with the No Free Lunch Theorem proposed 

by [Wolpert and Macready (1997)]: “Given a finite set V and a finite set S of real 
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numbers, assume that f: V → S is chosen at random according to uniform 

distribution on the set SV of all possible functions from V to S. For the problem of 

optimizing f over the set V, then no algorithm performs better than a blind search.” 

 

5.2.3.2. Simulated Annealing 

 

As explained in chapter 3, simulated annealing (SA) is another heuristic method 

like GA. It was inspired by a process used in metallurgy, where steel blocks are 

slowly cooled down and reheated in alternating cycles in order to minimize the 

energy of the material. This method is thus used as an inspiration in the 

optimization problem to find the extrema of a function. For this sensor 

optimization method, the algorithmic approach is given in Algorithm 5.2.3.2-1. 

Note that in Algorithm 5.2.3.2-1, random(0,1) is a function that randomly takes any 

real number between 0 and 1. The search result obtained by using simulated 

annealing is depicted in Fig. 5.2.3.2-1a – f. 

 

Algorithm 5.2.3.2-1. Simulated Annealing 
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Fig. 5.2.3.2-1a – f: Found sensor network pattern by simulated annealing search result for 1, 2, 3, 4, 6, 

8 sensors. The black and white rectangles convention applies. 

 

Comparing these figures with GA (Fig. 5.2.3.1-1a – f), we can see that simulated 

annealing (SA) performs slightly worse than GA, but it is better than random 

search. 

 

5.2.3.3. Swarm Intelligence 

 

The last metaheuristics method being used is the swarm intelligence, which was 

inspired by biological swarm behavior. In this case, every individual within the 

swarm will act in accordance with certain simple rules, but the interaction or 

synergy between simple individual actions can result in various ways of 

collectively complex behaviors. The algorithmic approach for solving the sensor 

placement problem is given in Algorithm 5.2.3.3-1 and the search results for 

particle swarm optimization (PSO) are depicted in Fig. 5.2.3.3-1a – f. 

 

Algorithm 5.2.3.3-1. Particle Swarm Optimization 
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Fig. 5.2.3.2-1a – f: Found sensor network pattern by swarm intelligence for 1, 2, 3, 4, 6, 8 sensors. The 

black and white rectangles convention applies. 

 

5.3. Preliminary Results 

 

5.3.1. Comparison between Greedy Methods, Random Search, and GA. 

 

As a summary, a performance comparison of global random search (after 1000 

runs), greedy, and genetic algorithms (after 10 runs) is presented in Fig. 5.3.1-1, 

where only the standard deviation (stdev) σ from the random search is shown. 

Note that the stdev σ of the genetic algorithm (GA) is too small to be visualized in 

the graph.  

 

 
Fig. 5.3.1-1: Network score for random search algorithm of 1 – 8 sensors 

 

The stdev of the greedy algorithm is 0 because each step of the algorithm is a 

deterministic method in which no stochastic factor is involved. The x-axis 
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represents the number of sensors while the left y-axis represents the network 

score reached by each algorithm. The right y-axis represents the computational 

time needed for each algorithm. Neglecting the computation time, obviously the 

GA has the best performance from the three algorithms. However, taking the 

computation time into account, the greedy algorithm is competitive with the GA. 

Note that the right y-axis has a logarithmic scale. Conversely, the random search 

took the lowest computational time while it has the lowest network performance. 

 

It can be seen from Fig. 5.3.1-1, that GA starts to outperform the greedy algorithm 

from 3 sensors onwards, however the 10-run genetic algorithm took about 12 

times longer (about 264 seconds) than the greedy algorithm. Also, note that in Fig. 

5.3.1-1, the standard deviation for the GA cannot be shown as these are too small 

to be visualized (2.04 or less) 

 

One could argue about the best terminating conditions of these algorithms. For 

this reason, 4 different thresholds of network score are set: 80, 85, 90, and 95 

which can be understand as coverage levels between 80% – 95% of the surface – 

which when coupled with adequate signal processing can yield a global 

probability of damage detection (POD) of the network between 80% – 95%. The 

trade-off between the network score, number of sensors N, and the required 

computational time is presented in Table 5.3-1. For brevity, let us not consider the 

hardware weights and the potential data redundancy as well as the system 

energy and/or power required as the number of sensors increases. 

 

Algorithm 

Network Score: 

80 

Network Score: 

85 

Network Score: 

90 

Network Score: 

95 

N Time [s] N Time [s] N Time[s] N Time[s] 

Random 3 3.62 10 7.32 n/r n/r n/r n/r 

Greedy 4 26.03 6 37.95 8 44.96 n/r n/r 

GA* 3 132.09 4 268.64 4 268.64 10 1442.25 

Table 5.3.1-1: Number of sensors (N) and time needed to reach network score from 80 to 95. The 

result for random search is based on 1000 iterations, whereas for GA is based on 10 iterations. *n/r: 

not reached. (*): GA: Genetic Algorithm 

 

As can be seen in Table 5.3.1-1, neglecting the required computational time, it is 

obvious that the genetic algorithm has the best performance from the three 

algorithms, however, it also requires the most computational time. Conversely, 

the random search has the lowest computational time and the lowest network 

performance. 

 

5.3.2. Comparison between Metaheuristics 

 

Analogous to section 5.3.1, I will compare the results between the metaheuristics 

search result: genetic algorithm (GA), particle swarm optimization (PSO), and 

simulated annealing (SA). In order to save time, only 5 iterations instead of 10 are 

run. The results are given in Table 5.3.2-1. 
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 PSO GA SA 

N Mean Stdev Time Mean Stdev Time Mean Stdev Time 

1 36.9031 0.0068 53.4 38.2034 0.0000 26.2 34.7713 2.1256 14.5 

2 76.7108 0.0028 68.4 76.6800 0.0000 38.5 76.6192 0.0752 75.0 

3 84.1839 0.0036 149.8 84.1225 0.0012 81.1 83.1327 0.5466 79.2 

4 91.3353 0.0145 271.5 91.3135 0.0142 214.4 89.3785 0.9662 77.4 

5 92.1262 2.2475 570.7 92.5737 0.5127 468.9 87.0934 1.8111 192.4 

6 95.0607 0.1544 422.1 94.4081 0.8687 341.1 87.4289 0.9803 288.1 

7 93.9077 1.0875 845.8 93.1091 0.8386 461.7 88.9369 0.5013 338.4 

8 94.5158 0.8002 662.1 94.4317 0.0630 1102.8 87.9961 0.6909 523.8 

Table 5.3.2-1: Comparison of search results after 5 iterations by using 3 metaheuristics: Particle 

swarm optimization (PSO), genetic algorithm (GA), and simulated annealing (SA). N is the number 

of sensors. The time is expressed in [s]. 

 

As we can see from Table 5.3.2-1, both GA and PSO seem to outperform SA, 

especially for a search of more than 3 sensors. This is to be expected since below 

3 sensors, the search space is still relatively small, and SA only tracks a single 

solution at time. Accordingly, the computation time needed for SA is relatively 

lower than GA and PSO (Recall: No Free Lunch). Starting from 4 sensors however, 

SA seems to converge and is not able to reach a network score of 90. Conclusively, 

after 5 iterations only GA and PSO are able to reach a network score of 90 with a 

minimum of 4 sensors in a plate 120 cm x 80 cm, as given in Table 5.3.2-2. 

 

Algorithm 

Network Score: 

80 

Network Score: 

85 

Network Score: 

90 

Network Score: 

95 

N Time [s] N Time [s] N Time[s] N Time[s] 

PSO 3 149.8 4 271.5 4 271.5 6 422.1 

GA 3 81.1 4 214.4 4 214.4 n/r n/r 

SA 3 79.2 4 77.4 n/r n/r n/r n/r 

Table 5.3.2-2: Number of sensors (N) and time needed to reach network score from 80 to 95. Search 

results are based on 5 iterations. *n/r: not reached. 

 

5.4. Integrative Method 

 

The hotspot SHM design described in chapter 4 has the job of monitoring hotspot. 

On the contrary, the probabilistic approach for SHM described until section 5.3 

in this chapter is useful for detecting random damage locations. The proposed 

SHM system design is to integrate both approaches in one. This is because when 

aircrafts are in service, they are prone to both types of damages whose 

occurrence are likely to be independent of each other. 

 

The procedure described in chapter 4 can be reproduced for an aluminum plate 

with dimensions of 120 x 80 cm and the two best hotspot sensor locations were 

determined to be 45|40 cm and 80|40 cm. As a reference, the network score for the 

hotspot SHM configuration with the sensors located at 45|40 cm and 80|40 cm is 

52.22, as depicted in Fig. 5.4-1a. This is clearly inferior to a 2-sensor network 

generated by the genetic algorithm (cf. Fig. 5.2.3.1-1b). That means, the proposed 
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hotspot SHM network would have a relatively poor coverage for the detection of 

damage at a random location. 

 

 
Fig. 5.4-1: Sensor network score and topology for a) hotspot SHM network for detection of hotspot 

crack and b). stochastic SHM network for random impact detection. 

 

In an analogous way, the network pattern for detecting random damage locations 

depicted in Fig. 5.4-1b might have a relatively lower detectability for the detection 

of cracks from the rivet holes. As a side note, Fig. 5.4-1b is an exception: this sensor 

configuration might still have a good detectability of hotspot crack detection 

considering that the wave scatter from the rivet hole is coming in a perpendicular 

direction to the sensor. After first putting the two hotspot SHM sensors at 45|40 cm 

and 80|40 cm, the network score can be increased by adding several other 

sensors using the metaheuristics such as GA and PSO described in section 5.1 – 

5.3. As an example, a demonstration by adding 1, 2, 3, and 4 additional sensors 

using GA is depicted in Fig. 5.4-2a – d. Note that in these figures, the first and 

second-best hotspot SHM sensor coordinates are denoted by numbers 1 and 2, 

respectively and the locations do not change in every iteration.  

 

 
Fig. 5.4-2: Network score and topology for integrated SHM with 2 sensors for hotspot and a). 1, b). 2, 

c). 3, and d). 4 sensors for random damage detection, respectively. The first and second-best 

hotspot SHM sensors are denoted by number 1 and 2. 
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The black and white rectangles signify the rivet hole and stochastic SHM sensor 

network topology, respectively. It can be concluded from Fig. 5.4-2a – d, that the 

network scores are lower than those from the solution generated by the pure 

genetic algorithm, however I think that this hybrid approach is the most plausible 

way to compensate the conflicting objectives between hotspot and global SHM 

sensor placement. 

 

5.5. Experimental Validation 

 

5.5.1. Reproducing Hotspot SHM 

 

As described in section 5.4, a hybrid approach that combines hotspot and global 

SHM sensor network design was made for an aluminum plate of size 100 x 50 cm 

with 8 rivet holes using the simulation parameters given in [Ewald (2015)] to 

demonstrate that the algorithm works for different geometrical size. The hotspot 

location was assumed to be at 75|20 cm with a maximum damage tolerance size of 

a 16 cm fatigue crack (from tip to tip). The rest of the process is merely a 

reproduction of chapter 4 for different geometry. 

 

Fig. 5.5.1-1a – b depicts the wave propagation at t = 100 µs in the baseline and 

artificially cracked plate, respectively, where Fig. 5.5.1-1c is the subtracted result 

of Fig. 5.5.1-1a and 5.5.1-1b. There are several blob centroids of interest as depicted 

in Fig. 5.5.1-1c, marked by the blue dots, where the largest and second-largest 

blobs are marked by green and red dots, respectively. The fused images from 

wave propagation between 25 and 250 µs is depicted in Fig. 5.5.1-1d, and after 

averaging the blob centroids from all time frames, the best hotspot sensor 

coordinates found after using blob detection algorithm were 65|21 cm and 84|20 

cm. 

 

 
Fig. 5.5.1-1: Simulated wave propagation in a). baseline / pristine and b). artificially cracked plate. 

c). The subtracted result of image a) and b), where the centroids of largest and 2nd-larget blob are 

marked by green and red dots, respectively, d). Fused differential image from all time frames 

between 25 µs and 250 µs. 
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5.5.2. Experimental Setup 

 

After finding the hotspot sensors coordinates at 65|21 cm and 84|20 cm, the rest of 

the locations were determined by the GA since it has lower stdev than PSO as can 

be seen in Table 5.3.2-1. To minimize the number of PZTs used in the experiments, 

I tested two sample topologies: 1). 3 global + 2 hotspot sensors, and 2). 5 global + 2 

hotspot sensors. For conciseness, the first network will be denoted as the “3+2” 

network, while the latter will be denoted as the “5+2” network. The sensor 

coordinates determined by the genetic algorithm are depicted in Fig. 5.5.2-1a – b. 

 

 
Fig. 5.5.2-1: Sensor network pattern for a). 3+2 network (Scenario 1A) and b). 5+2 network (Scenario 

1B).  The red dots signify the hotspot sensors, and the blue dots signify the rest of the global sensors 

that are determined by the genetic algorithm (GA) since it has slightly lower stdev than the PSO. 

 

Multiple PZTs could additionally act as actuators to send excitation signals, and 

this would generate a larger dataset. Ideally, to reach the energy level that 

corresponds to the maximum network score, all actuators should be excited at 

the same time. For the 3+2 network, this would require 5 waveform generators 

and this amount of necessary hardware was not available, and thus for the sake 

of demonstration, only the hotspot sensor located at 65|21 cm is excited. This only 

corresponds a fraction of the previously described signal power was used. The 

available hardware during the test were a Picoscope 6402A oscilloscope, an 

Agilent Waveform generator 33500B, standard BNC cables, a radial PZTs 

American Piezo APC-850 (Ø 9.52 mm, thickness = 1 mm, resonance frequency fr = 

207 kHz), a desktop PC installed with Waveform Builder Pro and software from 

Picoscope. The experimental setup is depicted in Fig. 5.5.2-2. 

 

 
Fig. 5.5.2-2: Experimental Setup 
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As we have radial mode PZTs with a thickness smaller than the diameter, then 

normally it is the S0-mode which will be the predominant waveform that will be 

actuated and sensed by the PZT [Pohl et al. (2012)]. From 8 specimens, 2 plates 

must be assigned as baseline, otherwise the residual time-trace cannot be 

calculated. The baseline from the 3+2 and 5+2 network will be designated as 

Scenarios 1A and 1B, respectively. As scenarios 2 and 3 have very large and visible 

damage (almost 30 cm), we can expect that the 3+2 network will be more than 

sufficient to identify this damage, and accordingly since scenarios 6 and 7 have a 

hardly noticeable dent, the denser 5+2 network is assigned to them. Finally, to 

compare the damage localization performance from both networks, the 3+2 and 

5+2 network were assigned to scenarios 4 and 5, respectively. 

 

5.5.3. Impact Damage Setup 

 

To experimentally validate the sensor network configuration to detect both 

random and hotspot damage occurrences, several damage scenarios are tested 

as given in Table 5.5.3-1. An artificial fatigue crack was created by milling a slot 

adjacent to the rivet hole. The length of the artificial crack in product applications 

will be determined according to the damage tolerance criteria. For this study, it is 

assumed to be 8 cm from tip to tip, i.e., including the rivet hole with a diameter of 

1 cm. Due to the limitations of the dimensions of the fixation table of the impact 

tower (see Fig. 5.5.3-1a), the dimension of the plate is reduced to 100 cm x 50 cm 

(mentioned earlier in section 5.5.1) as depicted in Fig. 5.5.3-1b. 

 

Table 5.5.3-1: Damage scenarios tested by using aluminum 7075-T6 of size 100 x 50 x 0.2 cm.  

 

Depending on the impact type (hail impact, tool drop, ground collision), the 

impact energy could vary. For instance, a tool drop has a typical energy lower 

than 28 Joule [Li et al. (2016)], while hail impact energy during taxiing can reach 

up to 162 Joule [Li et al. (2016), USDOT-FAA (2017)] and this can reach 3900 Joule 

Sce-

nario 

Height 
h 

[m] 

Energy 
EImpact 

[J] 

Velocity 
v 

[m/s] 

Description of 
Impact 

Impact 
Epicenter 

[cm] 

Hotspot 
Crack 

Coordinates 
[cm] 

Sensor 

Network 

1A None 
These are baselines 

3+2 

1B 5+2 

2 2.0 80.4 6.3 
ca. ½ plate 

breaks 
27;24 None 

3+2 

3 2.0 80.4 6.3 
ca. ½ plate 

breaks 
27;24 75;20 

3+2 

4 1.7 68.4 5.8 
ca. ¼ plate 

breaks 
20;35 None 

3+2 

5 1.7 68.4 5.8 
ca. ¼ plate 

breaks 
20;35 None 

5+2 

6 1.6 64.3 5.6 only dent 27;24 75;20 5+2 

7 1.6 64.3 5.6 only dent 27;24 None 5+2 
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[Li et al. (2016)] during cruise. The TU Delft impact tower was operated at up to its 

height limit h = 2.0 m, which corresponds to an impact energy of 80.4 J, as given in 

Table 5.5.3-1. This impact energy was sufficient to cause a large visible damage on 

the test coupon (see Fig. 5.5.3-2a). 

 

 
Fig. 5.5.3-1: a). Impact test setup and b). Dimension of the specimen in mm (including the rivet holes) 

 

 
Fig. 5.5.3-2: Example of damaged aluminum plates from scenario a). 3, b). 5, and c). 7 of Table 5.5.3-

1, respectively. 
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The maximum mass m that can be attached to the impactor is 2.4 kg (made of 

Tungsten), making the total impact mass 4.1 kg (including the mass fixation. 

During the testing period, a spherical impactor shape and fixator holder with 

sharp corner were available and therefore these were chosen. This mass is 

slightly heavier than typical hail, but assuming that the potential energy is fully 

converted to kinetic energy, this corresponds to impact velocities between 5.60 

and 6.26 m/s – which is typically slower than hail impact even during taxiing. As 

an illustration, the damaged aluminum plates from scenarios 3, 5, and 7 are 

depicted in Fig. 5.5.3-2a – c. 

 

5.5.4. Damage Analysis 

 

To validate the consistency of each specimen setup, the cumulative correlation 

coefficient (CC) between the baseline and each damage scenario was calculated. 

The PZT pulsing actuation used was the trivial 5-cycles Hann sinusoid (at f = 200 

kHz) and the signal amplitude was recorded by the oscilloscope. As the hotspot 

sensor at 65|21 cm is used as an actuator, the only sensor which is available at the 

same location on every specimen is the one located at 84|20 cm. The normalized 

baseline signals, their envelope, and the corresponding cumulative CC are 

depicted in Fig. 5.5.4-1. 

 

 
Fig. 5.5.4-1: Baseline for scenario 1A and 1B at sensor located at 84|20 cm. 

 

The CC can be calculated for any time length, for instance the CC of the baseline 

signals and between the baseline envelopes until 300 µs are 0.9254 and 0.9366, 

respectively. This is to be expected, since even in an ideal experimental case, two 

similar and pristine plates can still have a difference in measurement due to their 

material properties or the presence of minor defects inside the materials. 

 

Moreover, background noise and vibration from nearby equipment in the 

laboratory can cause a low-frequency signal oscillation. Intuitively, we need to 

set a band pass the signal between half and double of the resonance PZT 

frequency (100 – 400 kHz) to isolate both the low and high-frequency noise. 

Theoretically, an optimization on the band pass is needed, however this was not 

included as it was not the main purpose of this study. Since the plate dimensions 

are 100 x 50 cm and assuming that the S0-mode is travelling at 5300 m/s, at 300 µs 

the wavefront would have covered a distance of 2.12m. 
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5.5.4.1. Hotspot Damage Detection 

 

There is neither a need for damage localization nor damage classification for 

hotspot SHM placement as both the location and critical damage size will have 

been predicted according to damage tolerance design. Logically, only the SHM 

detection function applies here. As can be seen from Fig. 5.5.4.1-1a, there is an 80% 

decrease in amplitude of both signals and envelope between 36 and 53 µs, which 

corresponds to a travelling distance of 19 cm for the S0-mode which is exactly the 

distance between the actuator and the sensor. 

 

Accordingly, the CC of the signals and the envelope drops below 0.3 at 36 µs. 

Assuming that the measurement instrument is working properly (e.g., no 

defective cables or equipment), such a huge decrease in amplitude (80%) clearly 

signifies the lack of wave scatter in the propagation path between sensor and 

actuator. As such, it can be assumed that the crack emerging from the rivet hole 

has already blocked a significant portion of the wave propagation path. Fig. 

5.5.4.1-1b can be explained in the same way. 

 

 
Fig. 5.5.4.1-1a). Amplitude time-series and the CC from Scenario 1A vs 3 and b). Scenario 1B vs 6 

 

5.5.4.2. Impact Localization 

 

While the detection of hotspot damage typically only requires an observation of 

amplitude change, impact localization also requires signal observation regarding 

phase shift to extract information to calculate the travel distance of a particular 

Lamb wave mode. 

 

As an example, a comparison of the signal waveforms, envelopes, and their 

corresponding CC between the baseline (Scenario 1A) and scenario 2 from 

network 3+2 at two different sensing locations are given in Fig. 5.5.4.2-1a – b. Since 

the CCEnvelopes only consider half of the signals and does not consider the 
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incremental variation of the amplitude within the envelope, it is less sensitive 

towards the time shifts in the original signal waveforms, as can be seen in Fig. 

5.5.4.2-1a between 60 – 90 µs, marked in red dotted rectangle. 

 

 
Fig. 5.5.4.2-1: Comparison between signals waveforms, envelopes, and CC of the scenario 1A 

(Baseline) and 2 (Damaged) at the sensor located at a). 84|20 cm and b). 38|41 cm. 

 

On the other hand, CCEnvelopes is quite sensitive towards amplitude change, 

especially when the amplitude suddenly drops, such as between 180 µs – 200 µs, 

marked in Fig. 5.5.4.2-1a in the purple dotted rectangle. During this period, CCSignal 

also drops, although it is occurring in less dramatic way, i.e., 0.9678 to 0.8713 for 

CCEnvelopes in comparison with 0.8337 to 0.7942 for CCSignal. Fig. 5.5.4.2-1b can be 

explained in the same manner. 

 

As stated in section 5.3, the CC of the baseline signals and between the baseline 

envelopes until 300 µs are 0.9254 and 0.9366, respectively. For this reason, we 

shall only consider that a damage would occur if the CC dropped below these 

numbers. 

 

However, the CC would not only drop just because of the damage, we shall also 

consider all error propagation factors, such as an inhomogeneous amount of 

applied superglue between the PZT and plate surface, geometrical tolerances 

such as length, width, thickness of the plate and the rivet holes, the exact 

coordinate of the sensor placement, potential micro-defects within the plate, etc.  

For this reason, it would be wise to consider a threshold CC that is slightly below 

these numbers, but still above 0.5 (CC = 0.5 means 50% correlation), otherwise all 

information that is contained below the threshold will be suppressed, too. 

 

Along with the objective stated in chapter 2 and [Thiene et al. (2016)], the purpose 

of this chapter is definitely not to propose a novel signal processing method or 

new feature to calculate DI, but rather to propose a sensor network placement 

method that is DI-free and can be coupled with any signal processing. 

 

As an example, let us take the threshold of CCEnvelope = 0.9 (which is <0.9254) and a 

CCSignal = 0.8 (which is < 0.9366) as an example. Thus, if both CC values drop below 

these thresholds, it is considered as significant. The original waveform and the 

signal envelope from the baseline (1B) and the damaged plate (scenario 5) and 

their CC captured by PZTs located at 12|40 cm and 11|12 cm is depicted in Fig. 

5.5.4.2-2a – b. After determining the threshold, the first thing to consider is the 

Time-of-Arrival (TOA). 
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Fig. 5.5.4.2-2: Comparison between signals waveforms, envelopes, and CC of the scenario 1B 

(Baseline) and 5 (Damaged) at the sensor located at a). 12|40 cm and b). 11|12 cm. 

 

Since both CC values are always changing at every time increment, it is wise to 

take the TOA where the CC either: 1). reaches its local optima or, 2). Stabilizes as a 

local plateau. For brevity, in both these cases CC is denoted as CC*. An example 

for case 1) is given in Fig. 5.5.4.2-2a, where the TOA of the CC*Signal and CC*Envelope 

are at 124.0 µs and 128.6 µs, respectively. An example for case 2) is given in Fig. 

5.5.4.2-2b, where the TOA of the CC*Signal and CC*Envelope is at 120.9 µs and 150.8 µs, 

respectively. The TOA of course might change if the threshold is lowered or 

raised. 

 

For simplification, let us consider only the TOA of the first local optima and the 

first local plateau. In future work, the desired technique can be combined with 

more advanced signal processing such as sparse reconstruction by sum-and-

delay technique [Nokhbatolfoghahai et al. (2019)], however in line with the 

objective: I would like to know how well the hybrid sensor placement method 

works if it is coupled with conventional signal processing. The localization of the 

impact damage can be triangulated by calculating the elliptical distance between 

the actuator and 2 different sensor positions, according to Eq. (5.5.4.2-1a – b). 

 

0 1 1 0 1
(Path ) Actuator Damage Damage Sensor Sensor

TOA
S S
d P P P P v  

(5.5.4.2-1a) 

0 2 2 0 2
(Path ) Actuator Damage Damage Sensor Sensor

TOA
S S
d P P P P v  

(5.5.4.2-1b) 

 

In Eq. (5.5.4.2-1a – b), dS0(Path1) and dS0(Path2) are the sums of the Euclidian distance 

from the actuator to the damage and the damage to the sensor indexed with 

location 1 and 2 measured from each position P of either the actuator or damage, 

respectively. PActuator, PSensor, and PDamage are the x- and y- coordinates of the 

actuator, corresponding sensor, and damage, respectively. vS0, and TOASensor are 

the velocity of the S0-wavemode and the time of arrival at the corresponding 

sensor location, respectively. PDamage can be obtained by solving Eq. 5.5.4.2-1a – b 

simultaneously. By repeating this step for all actuator – sensor pairs, a 

distribution of predicted PDamage can be obtained. For every solved quadratic 

equation, there are a maximum of 2 solutions. An example of these calculations 
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by using TOA from CC*Envelope for a single actuator – sensor pair is given in Table 

5.5.4.2-1. Note that the full table is too long to be presented here. 

 

Table 5.5.4.2-1: Predicted Damage Location based on TOA-Triangulation from Various 

Damage Scenario 

 

Not every single solution is useful, for instance in scenario 1A-3, the first 

predicted coordinate at 79|78 cm lies outside of the plate, thus the other solution 

which is at 16|25 cm is taken as the accepted predicted location. In scenario 1A-4, 

both solutions are complex roots so they cannot be considered anymore. In this 

case, only the roots that fulfill the constraint (i.e., positive real numbers within the 

dimensions of the plate) are taken as an accepted solution. The reason that 

sometimes there are no accepted solutions is because in Eq. (5.5.4.2-1a – b), all 

TOA(CC*) are multiplied by the S0-wavemode velocity, assuming that the 

dominant Lamb mode for excited radial PZT is the S0-mode. 

 

This is an oversimplification because generally, both fundamental Lamb modes 

are always present, i.e., after the wavefront comes in contact with any 

inhomogeneities such as rivet holes and plate boundaries, wave mode 

conversion occurs. To avoid this, a Lamb wave mode separation technique such 

as [Xu and Ta (2012)] can be used to sort in which group the TOA belongs to. For 

now, it is enough to consider all accepted predicted damage locations and to 

calculate the distribution of these predictions. 

 

The distribution of the predicted damage locations is summarized in Fig. 5.5.4.2-

3a – d, which shows predicted damage locations from scenarios 2, 4, 5 and 7, 

respectively. As can be seen from Fig. 5.5.4.2-3a and 4a, even a simple algorithm 

can easily localize a large damage size (about ½ of plate impacted, i.e., 30 cm), 

although there is an area that was not covered by the distribution as the damage 

itself is quite large. Furthermore, for the localization of smaller impact damage 

(about ¼ plate, i.e.  impacted in scenario 4 and 5) which are depicted in Fig. 5.5.4.2-

3b – c and Fig. 5.5.4.2-4b – c, respectively, the determination of damage location 

based on TOA calculation outputs provides a relatively reliable localization. 

 

This is in contrast with small impact, which barely causes a smaller dent on the 

surface where in this case, even the denser network is not able to predict the 

damage location in a sufficient manner as depicted in Fig. 5.5.4.2-3d and 5.5.4.2-

4d. 

Scenario 

x-y-Coordinate (in cm) of: 
 

TOA of CC*Envelope 

(in µs) from 

Predicted 

Damage x-y-

Coordinates (in Actuator Sensor 1 Sensor 2 Sensor 1 Sensor 2 

2 65|21 84|20 10|33 197.9 113.7 22|26 OR 21|39 

3 65|21 84|20 24|10 40.5 131.4 79|78 OR 16|25 

4 65|21 24|10 10|33 200.5 110.7 Complex Root 

5 65|21 84|20 12|40 202.3 128.6 21|31 OR 18|52 

6 65|21 35|7 36|41 208.9 150.8 22|56 OR 59|67 

7 65|21 84|20 12|40 204.3 131.4 21|31 OR 17|53 
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Fig. 5.5.4.2-3 (clockwise from top left): Damage localization result from scenario a). 2, b). 4, c). 5 and 

d). 7. 

 

 
Fig. 5.5.4.2-4 (clockwise from top left): Real plate from scenario a). 2, b). 4, c). 5 and d). 7. The blue 

rectangles indicates the impact damages where the red ellipse are the distributions of predicted 

damage locations. Note: the aluminum surface works like a mirror, giving unwanted reflection in 

the photo 

 

Taking a closer look into the quantification of the localization performance, I 

calculated several criteria as given in Table 5.5.4.2-2: 

 

1. Averaged Euclidian distance δ: the distance between each predicted 

damage location Px,y (which is just the distribution mean) and the epicenter 

of the actual damage epicenter Ax,y without considering the multi-site 

damage 
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2. Mahalanobis distance M: the distance between actual damage epicenter 

without considering the multi-site damage and the probability 

distribution of all predicted damage locations. 

3. Standard deviation σx and σy for both x- and y- axis 

4. Percentage R which is ratio between elliptical area covered by vertex σx 

and σy divided by plate size, which is 100 x 50 cm = 5000 cm², for scenario 

2, 4, 5, and 7: these elliptical areas can be seen in Fig. 5.5.4.2-4 already. 

 

Table 5.5.4.2-2: Euclidian and Mahalanobis distance between the predicted and actual impact 

epicenter 

 

As it can be seen from Table 5.5.4.2-2, the Euclidian distances between the 

predicted and actual epicenter varies between 5.0 cm and 14.3 cm. Note that in 

scenarios 2 – 5, the damage is quite large, i.e., not only dents and therefore it 

occupies multiple locations and the actual damage locations are covered by R. 

 

In scenarios 6 and 7, R is large, but the damage size is small (dents Ø = 1 cm), which 

poses a limitation of the damage detection algorithm, because the Lamb wave 

mode at this particular PZT frequency (200 kHz, wavelength λ = 2.65 cm) is not a 

good match with the damage size. The difference between scenarios 6 and 7 is 

only the artificial fatigue crack located at 75|20 cm for scenario 6 has been 

described in section 5.3.1. For scenario 7, the average error on Euclidian distance 

is 14.3 cm and the ratio R is 17.8%. 

 

Practically, when scaling this hybrid approach for a larger-sized structure (e.g., 5 

x 5 m), then at least 4 m² (about ⅙ or 16.7% of the surface) must still be scanned 

manually. As stated previously, the sensor network pattern is designed to work 

independently of any signal processing, thus, to increase accuracy in the future, 

the signals could be first separated by using method described in [Xu and Ta 

(2012)] and then processed further by using the delay and sum method for sparse 

reconstruction described in [Nokhbatolfoghahai (2019)]. 

 

It is often forgotten that the purpose of SHM is not to replace NDT completely, but 

to determine whether a further NDT inspection of a certain aircraft part is needed 

during unscheduled maintenance or not. Therefore, I believe that by reducing the 

inspection man-hours by at least 83.3%, we may think that the hybrid sensor 

placement method with a minimum number of sensors for hotspot and global 

damage detection contributes to design strategies for Lamb wave SHM. 

 

Scenario 
Ax,y 

[cm|cm] 
Px,y 

[cm|cm] 
δ 

[cm] 
M 

[unitless] 
σx|σy 

[cm|cm] 
R 

2 27|24 29|33 9.5 4.438*10-3 19|11 13.0% 

3 27|24 24|28 5.0 4.665*10-3 19|7 8.3% 

4 20|35 27|34 6.8 2.990*10-3 20|8 10.2% 

5 20|35 33|33 12.8 3.824*10-3 21|12 16.2% 

6 27|24 26|30 5.8 2.033*10-3 21|13 17.2% 

7 27|24 37|35 14.3 1.531*10-3 23|12 17.8% 
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5.6. Chapter Summary 

 

This chapter demonstrated that a sensor network topology for hotspot SHM for 

detection of predictable crack location can be merged with the probabilistic 

approach without sacrificing too much of the global sensitivity. To do so, first, the 

hotspot sensor locations are determined according to the largest centroid based 

on blob detection algorithm. Then, to determine the sensor positions for detecting 

random damage, 5 search algorithms were compared: global random search, 

greedy methodology, and 3 common metaheuristics: genetic algorithm (GA), 

particle swarm optimization (PSO), and simulated annealing (SA). 

 

Global random search has the lowest performance, and GA and PSO are on par, 

and they have the best performance, while the greedy methodology and SA have 

a search performance which lies in between GA/PSO and global random search. 

Accordingly, as per the No Free Lunch theorem, both GA and PSO took the most 

computational resources – this can be either in time or space while the random 

search took the least computational resources. Unsurprisingly, the required 

computational resources of the greedy method and SA also lie in between global 

random search and GA and PSO. 

 

Since the specimen size used in this work was not too large and the computational 

time for every iteration search was below 1 hour, the genetic algorithm is used to 

determine the integrated sensor network topology. This hybrid approach 

demonstrated that sensor networks can detect fatigue cracks and locate 

randomly occurring damage, if these do not occur at the same time. I believe this 

likelihood is small, but nevertheless, it might be interesting in future study to 

understand the probability of fatigue crack and impact occurring at the same 

time. 

 

Given the results in section 5.3 to 5.5, it is safe to think that the hybrid approach 

based on blob detection algorithm and search metaheuristics can partially 

address the sensor positioning problem in active ultrasonic SHM in scalable 

manner – especially when the detection requirement is not too high. However, for 

placing a much larger numbers of sensors in a larger and complex structure, the 

suggestion would be using the greedy algorithm instead of the genetic algorithm 

to compensate for the network performance and the computational effort 

required. 
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6. Deep Learning for Structural Health Monitoring 

 

This chapter partially contains the work that has been published in:  

 

1. Ewald V, Groves RM, Benedictus R. DeepSHM: A Deep Learning Approach 

for Structural Health Monitoring Based on Guided Lamb Wave Technique. 

Proc. SPIE Smart Structures + NDE: 10970, Denver (2019). 

 

2. Ewald V, Venkat RS, Asokkumar A, Benedictus R, Boller C, Groves RM. 

Perception Modelling by Invariant Representation of Deep Learning for 

Automated Structural Diagnostic in Aircraft Maintenance: A Study Case 

using DeepSHM. J Mechanical System and Signal Processing. Vol 165: 

108153 (2022). 

 

As stated previously in chapter 2, the high-level problem formulation that should 

be asked from the NDT & SHM community is: what is the feasibility of incorporating 

artificial intelligence (AI) as a design tool for an automated diagnostic within 

predictive maintenance – and if so, in what way? For this chapter, let us focus on 

the following lower-level research problem formulations mentioned in section 

2.3 of this dissertation: 

 

1. “Investigation whether deep learning can be used to treat the Lamb wave 

signal – and if so, does it have certain theoretical justification? What would 

be the pros and cons when of deep learning to treat Lamb wave signals and 

what would be the consequence for the design and manufacturing of the SHM 

system? Further considerations on certain aspects from computational 

neuroscience for processing the Lamb wave signal should also probably taken 

into account.” 

 

2. “When combining the sub-problems to reconstruct the final solution: given 

certain sensor topology, what would be the training behavior for different 

sensors and whether some perspective from computational neuroscientific 

could also be considered as well?” 

 

Section 2.4 introduced some formalism such as automata, logic, and their 

consequences for diagnostics. These formal concepts are important to 

understand so that we, the empirical science community which consists of 

physicists, chemists, and biologists and various types of engineers, do not merely 

accuse the formal science community (e.g., mathematicians, computer scientists, 

and software engineers) with prejudices such as “AI is a total Blackbox”. 
 

Understanding the concepts of rules, logics, and languages as well as high-level 

abstraction of (human) perception and common sense are sometimes 

unfortunately taken for granted by the empirical science community. Only when 

the formal concepts have been understood, one can successfully proceed to 

incorporate domain specific knowledge with a domain agnostic approach. 
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6.1. Research Outline Recap 

 

The theoretical background of machine and deep learning as well as features and 

invariant representations has been described in sections 3.4 and 3.5 of chapter 3. 

To begin this chapter, assume the following premises to determine the AI 

architecture strategy: 

 

1. More complexity in geometry and material properties would require 

enhanced signal processing to capture signal features, 

2. A pure physical model is normally more powerful, but typically requires a 

lot of effort and sometimes it also idealizes some assumptions that might 

not always correspond to the real-world situation, and 

3. A pure statistical model can only find correlation, but not causation (also 

known as the ‘black-box property’), thus conclusions are difficult to 
understand. Therefore, a compromise between a physical and a statistical 

model must be made in order to further progress the advancement of 

automated damage detection, be it in SHM or NDT. 

 

The previous work [Ewald at al. (2018a)] demonstrated how to bias CNN with 

appropriate aerospace domain knowledge for both NDT and SHM applications. 

This was also in line with the approach proposed by [Gardner et al. (2020)]. For 

SHM applications using active Lamb waves, I previously proposed a hybrid 

model called DeepSHM framework [Ewald et al. (2019)]. Specifically, it is a 

statistical signal modelling based on deep learning biased by a physical nature 

and easily worked for a complex signal classification. 

 

Like any other deep learning algorithm, the advantage of DeepSHM is its 

agnosticism: it treats any input, and it gives any output given the input, so no 

matter how complex the signal is, the classification accuracy is tendentially very 

high. The biggest disadvantage of DeepSHM is also its agnosticism: for any given 

bad input, the outcome would be a poor output, which is known in computer 

science as a Garbage in – Garbage out [Kim et al. (2016)] process. 

 

While deep learning would work given any input sequence, to align this research 

with the previous work and for this reason, the use of DeepSHM is limited solely 

for active Lamb wave based SHM. One specific problem that was encountered in 

[Ewald at al. (2019)] was that some of the algorithms could not make a distinction 

between signals that come from a slightly geometrically similar defect, i.e., 

statistically speaking, they come from the similar distribution. The reason for this 

was the physical limitation that one particular ultrasonic wavelength is in 

general only suitable for detecting damage in a certain size range. The proposed 

hypothesis to overcome this problem are: 

 

1. Applying broadband frequency excitation since this will involve a broader 

wavelength distribution. 

2. Varying the sensing locations to potentially obtain more information. 

 

To do so, a typical deep learning workflow will be performed: the classification 

performance metrics in the confusion matrix will be compared with given 
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captured signals from different sensing locations. One associated problem with 

signal processing with multiple sensing locations is that it could result in different 

sensor responses which might give conflicting predictions (e.g., no damage based 

on the response of one sensor and damage based on the response of the other 

sensor). This leads to the following research questions: 

 

1. How much do the varying sensing location and the different sensing 

representations of the time-frequency Lamb wave signal influence the deep 

learning training behavior? 

2. Given the ‘a posteriori knowledge’ from question (1), what consequences can 

be drawn for engineering applications in SHM and why should this approach 

work? 

 

This chapter is organized as follows: my thoughts about modelling SHM 

perception from a neuroscientific perspective is given in section 6.2. The 

necessary methodologies (such as generating data with simulation, signal pre-

processing, hyperparameter configuration, etc.) is given section 6.3. The results 

and discussion, as well as the concept validation are given in section 6.4 and 6.5, 

respectively. Finally, the conclusion is given in chapter 6.6. 

 

6.2. Theoretical Background 

 

The general formulation of diagnostic has been described in section 3.2 and the 

relationship between inhomogeneities i in the medium ψ can as a function of time 

dependent observable Xλ(t) containing phenomenon λ at time t is: 

 

λψ (̂ ) ( ) ( )
i

f X t X t  (6.2-1) 

 

The observable Xλ(t) is the measured signal and can be mathematically expressed 

in either vector form or more generically a finite-dimensioned observation 

tensor. Every observation X perpetually changes for any given domain 

parameters. Thus, it would be naturally logical to describe the behavior of X as 

probabilistic variables rather than as deterministic ones. For brevity, let us 

assume the null hypothesis hθ where the existence of λ is caused only by changing 

parameters in ψ. Due to the first assumption of the stochastic nature of 

observation X, the relation can be formulated via Bayes conditional probability P: 

 

( ( ) | ( )) ( ( ))
( ( ) | ( ))

( ( ))
i i

i

P X t h P h
P h X t

P X t
 

(6.2-2) 

 

Where in Eq. 6.2.1-3, P(hθ(ψi)|Xλ(t)) is the posterior probability of the existence of 

i-th inhomogeneities ψ given observations Xλ(t), P(Xλ(t)|hθ(ψi)) is the prior 

probability where Xλ(t) occurs given the hypothesis hθ. P(Xλ(t)) and P(hθ(ψi)) are 

the marginal probabilities of observing Xλ(t) and hθ(ψi) independently, 

respectively. Furthermore, in Eq. 6.2.1-3, θ is the fitting parameters (which in deep 

learning are normally called neural network weights) that are to be optimized 

during the learning process. Given the fact that in most of the case, the observable 



 

150 Chapter 6. Deep Learning for Structural Health Monitoring 

X is multi-dimensional, it is logical to formulate the problem as a multivariate 

distribution rather than a uni- or bivariate distribution. 

 

Further, let us consider the most suitable expression of the joint probability 

distribution. Naturally, there is an infinite number of possible combinations 

within ψ (e.g., for the length of a crack, the size of delamination, or corrosion 

depth) and that a very small variation within ψ normally only causes small 

variation. So, instead of a discrete probability mass distribution, the probability 

density function is the more suitable formulation for a joint distribution in 

diagnostics since it expresses the density of a continuous random variable. 

 

Recall section 3.4.1 from chapter 3: when considering any machine learning 

algorithms, the following questions naturally arise: which learning problems can 

be solved efficiently and which are easier to solve than others? How many N 

training samples do we need, and which parameters θ must be tuned during the 

learning process? In computer science, the proper intuition would be the 

learnability of the function itself, as explained from Lemma 3.4.1-1 [Valiant (1984, 

2013)]: The probably approximately correct (PAC)-learning framework [Valiant 

(1984, 2013), Gormley (2016), Moran and Yehudayoff (2016)]. 

 

[Mitchell (1997)] defined the algorithm of the machine learning process as: “A 

computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P if its performance at tasks in T, as measured by 

P, improves with experience E”. Specifically, this means that a trained algorithm, 

which is just the generalizer L in disguise from Def. 3.4.1-2 [Wolpert (1990, 1992)], 

that has learned during machine learning process E and is said to be able to 

generalize on the class of tasks T from a certain probability distribution, 

 

In the diagnostic realm, task T is the diagnostic itself, that is retrieving the 

information from the observable variables Xψ regarding the damage state, 

experience E is the iterative process for enhancing the algorithm to increase the 

accuracy performance of the trained algorithm that best generalizes the 

distribution over Xψ. The probability for the i-th class of information given the Xψ 

in k-dimensional Hilbert space is typically written as a logit or sigmoid function 

[Mitchell (1997), MIL-HDBK-1823 (2009)] and can be generalized in a SoftMax 

function: 

 

1

exp([ ( )] )
( ( ) | ( ))

exp([ ( )] )

T

i

i K
T

k
k

X t
P h i X t

X t

 
(6.2-3) 

 

The posterior of P(hθ(ψi)|Xλ(t)) is taking real value within [0, 1], but can also 

sometimes be expressed as percentage value. The posterior is maximized by 

minimizing the information difference, which can be referred to either as loss, 

cost or error between the predicted value hθ(ψi) and the true information 

contained X. The central task of machine learning is to minimize the loss function 

by iteratively adjusting θ. Depending on the problem formulation, different loss 

functions must be defined. For instance, in a regression problem, the mean 

squared error is typically chosen, while when looking further into a classification 
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problem, a cross-entropy loss is chosen since it maps a logistic output between 0 

and 1 and thus is an appropriate measure to calculate a similarity between two 

distributions. The cross-entropy H(p,q) between the true distribution p(Xψ) and 

the estimated distribution q(Xψ) is defined as [Rubinstein and Kroese (2004)]: 

 

( )

( , ) ( ( ) ) log ( ( ) ( ))
i i

X t

H p q p X t q X t h  (6.2-4) 

 

Within the context of classification problem, the minimization of the cross-

entropy loss Jθ for N training samples can be rewritten from Eq. 6.2-4 as: 

 

1

1
argmin min ( ) log ( ( ))

N

i

J p X q X h
N

 
(6.2-5) 

 

Depending on the algorithm complexity, θ can be infinitely dimensional, 

meaning that from Eq. 6.2-5, it can be easily assumed that learning in machine 

learning is a NP-hard as it contains a highly dimensional combinatorial problem 

that is ~O(θ!). While it is impractical to reach Jθ = 0, learning means we are striving 

for Jθ → 0, so there must be an upper limit where the probability measures 

converge [Sethuraman (1961)] given by Lemma 6.2.1-1, while the consequence 

can be summarized in Corollary 6.2.1-1. 

 

Lemma 6.2.1-1: Converging probability measure [Sethuraman (1961)] 



→ →  

1 2
Let  and ,  ,  ...,  be the sequence  of probability measures defined 

on a measurable space ( ,  ),  then  converges strongly to 

(  in symbols) if ( ) ( ) .
i

i i

C U P P

M V P

P P P P C P C C V

 

 

Corollary 6.2.1-1: A proper probabilistic generalizer (upwardly compatible HERBIE) 

is said to have an upper converging generalization bound if the probability measures 

over the defined measure spaces strongly converge according to Lemma 6.2-1. 

 

One statistical metric that is useful to indicate the upper convergence limit of the 

generalization bound is the statistical classification accuracy A, defined as: 

 

( )

TP TN
A

TP TN FP FN
 

(6.2-6) 

 

Where in Eq. 6.2-6, TP, TN, FP, FN is the true positive, true negative, false positive, 

and false negative rate, respectively. The definition of TP, TN, FP, and FN can be 

found in [Ting (2017)]. As mentioned before, it should be noted that often it is 

useful to influence the algorithm by domain knowledge, as demonstrated in 

previous work [Ewald et al. (2018a)]. 

 

Biasing the algorithm also includes determining the data distribution which is fed 

into the learning algorithm to have interpretable outcome and to avoid a Garbage 

in – Garbage out process. Therefore, it is very important to determine which task 

T the algorithm should perform at the beginning. For this reason, we can expand 
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the definition of an upwardly compatible generalizer in Def. 3.4.1-2 on deep 

learning by considering Def. 3.4.1-3 regarding the generalization gap and the 

Rademacher complexity R. As explained in section 3.4.1, the Rademacher 

complexity and VC-dimension [Goldberg and Jerrum (1995), Clayton (2014)] are 

a measure of the richness of a class of real-valued functions. To guarantee the 

upper bound of the generalizer, [Kawaguchi et al. (2017)] proposed a theorem via 

the validation error as given in Lemma 6.2.1-2. 

 

Lemma 6.2.1-2. Generalization bounds of deep learning via validation 

[Kawaguchi et al. (2017)] 
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Lemma 6.2.1-2 practically explains why deep learning could generalize well if the 

generalization bound is reached, which is guaranteed by the converging 

validation error despite possible sharp local minima or non-robustness. Thanks 

to corollary 6.2.1-1, we can now summarize the conclusion in corollary 6.2.1-2. 

 

Corollary 6.2.1-2: An upwardly compatible deep learning model reaches its upper 

generalization bound when the validation loss converges. 

 

[Kawaguchi et al. (2017)] mentioned following worst cases: 

 

,
sup 1

L i
 (6.2-7a) 

2

,
sup ( ) 1

L i
 (6.2-7b) 

 

Given a large hyperparameter cardinality (e.g., 106) and 1000 training epochs in a 

larger dataset Nval = 10000, the second and third terms of the equations sum up 

only to 6.94%: 

 

2

, ,
2 sup ln 2 sup ( ) ln

6.94%
3

val val

L i L i

val val
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(6.2-8) 

 

In the non-worst case, this figure decreases to 0.49%. Extrapolating this for the 

case where the dataset amount is way smaller (e.g., Nval = 100) with a less complex 
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deep neural network architecture with a smaller cardinality (e.g., 102) and 100 

training epochs, we have a probability of 0.9 that: 

 

( )
55.66%

val
N

L L S
R R  (6.2-9) 

 

This means that there is 55.66% chance that the model does not generalize. The 

implication of an upwardly generalizable of a diagnostic algorithm, is to increase 

the true positive (TP) and decrease the false negative (FN, equivalent to statistical 

error of type II) detection rate, thus maximizing the probability of detection 

(POD), sometimes called the sensitivity or recall rate, defined as: 

 

( )

TP
POD

TP FN
 

(6.2-10) 

 

The current standard practice for diagnostic NDT according to [MIL-HDBK1823 

(2009)] is a POD = 0.9 (or 90%) within 95% statistical confidence σ, although this 

might not be suitable for diagnostic SHM [Hayo et al. (2011)]. To be more generic 

with the formulation, we can redraw the proposition of [Ooijevaar (2014)] for an 

active Lamb wave SHM system, shown in Fig. 6.2-1. The processing framework of 

the observable Xψ containing damage information captured by the actor π using 

a trained deep learning to predict the hypothesis hθ(λ) can be seen in Fig. 6.2-2. 

 

 
Fig. 6.2.1-1: Diagnostic SHM by using an active guided Lamb wave as physical phenomenon. 

 

 
Fig. 6.2.1-2: DeepSHM Framework 
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Like any machine learning process, the central task of the DeepSHM framework 

is to find generalizable parameters θ to fit the correlation between Xλ(t) and hθ(ψi), 

where in guided Lamb wave SHM, hθ(ψi) is defined as the hypothesis of the 

damage information contained in medium domain ψ that is influenced by 

interaction between phenomenon Lamb wave (λ) and the damage itself. 

 

6.2.2. Model Abstraction of DeepSHM Behavior 

 

As SHM itself is inspired by biology, maybe DeepSHM should not just be capable 

of actuating and sensing, but it should have its own perception. Section 3.5 

mentioned the definition of machine perception by [Pendleton et al. (2017)]. The 

definition of machine perception can then be simply adapted for the SHM 

domain: Perception in diagnostic SHM is a fundamental function to enable the full 

functionality of an autonomous damage detection system, which provides the SHM 

system with crucial information on changes in the sensory input (such as changes 

in amplitude, frequency, or phase-shift). 
 

Interestingly for any ultrasound-based technology, such perception is similar to 

the hearing process in our brain. We might be staying in a room when someone is 

calling our name, but no matter what frequency or volume our name was called, 

we broadly understand it is our name. So, there must be an assumption of the 

existence of shared invariant features between each name calling. Same with 

Lamb waves, the recorded signals would be likely to have entirely different 

amplitudes, phase shift, and frequency from each other if it is recorded at 

different sensing location. 

 

The explanation of invariant representation and its importance to Lamb wave 

signal processing can be found in section 3.5 and Lemmata 3.5.1-1 – 3.5.1-4. Recall 

two assumptions made by The Future of AI challenges [Merck (2019)], in which 

they were looking for a formalization of the cortical algorithm, a mechanism 

which might be able to imitate the pattern recognition process that is believed to 

be taking place in the grid neuron, which is located in the mammalian neocortex: 

 

1. “Hierarchical structure: Entities are hierarchically structured, which 

means that an entity E is either fundamental (i.e., it cannot be broken 

down any further) or it is composed of other entities E1, E2, ..., Ei such that 

every perception p of E is associated with a set of perceptions p1, p2, ..., pi.” 

 

2. “Entity conservation over time: Subsequent perceptions in time are 

(usually) generated by the same set of entities.” 

 

The reason to consider this fringe idea from neuroscience is because it gives us a 

hint about how we should treat the SHM signals. Concretely, given any arbitrary 

structure with k-sensors, let us adapt these two assumptions as follows: 

 

1. Hierarchical Representation of signals. The signals can be captured 

anywhere in the structure, but they are represented separately. As such, 

treating such images would require multiple learners in parallel as no 

sensor data fusion is required because each node acts as an independent 

actor. Thus, multiple outputs come from k-sensory inputs forming k-
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possible perceptions. In this case, the invariant representation is the 

atomic decomposition of each observation. 

 

2. Conserved Entity over Time. In this case, the observable X(t) is represented 

as a single entity. Assuming a bijective projection as given by Lemma 3.5.1-

4, any arbitrary signal can only be associated with that structure, no matter 

where the sensors are placed. As such, k-sensory inputs can be 

represented in a stack of a k-dimensional array. Consequently, treating 

such images would only require a single model and thus DeepSHM would 

only act as a single actor. In this case, each layer of the k-dimensional 

image becomes the invariant representant of the whole observations. 

 

The experimental design in the next sections will follow either one of the above-

mentioned assumptions. 

 

6.3. Methodology 

 

This section will describe the methodology used to obtain the result. The 

simulation parameters to obtain a Lamb wave signal are described in section 

6.3.1. Section 6.3.2 explains the data processing method while in section 6.3.3, the 

input based on the assumptions of entity representation mentioned in section 

6.2.2 will be explained. The training setup and parameters such as hardware and 

libraries selection, loss function and hyperparameter optimization are described 

in section 6.3.4. 

 

6.3.1. Simulation Setup 

 

I would like to give the credit for the simulation part to my research colleagues 

from Saarland University, Germany: Aadhik Asokkumar, Dr. Ramanan Venkat 

and Prof. Dr.-Ing. Christian Boller since many works on simulation have been 

performed at the Chair of Non-Destructive Testing and Quality Assurance. As a 

study case for the preliminary concept DeepSHM, the case study was based on 

the previous works [Ewald et al. (2015, 2018a)] using aluminum 2024 (Al-2024) 

plate, a commonly used material in aerospace fuselage structures. 

 

Since the energy of the Lamb waves are mostly confined within the plate, they 

can be efficiently used to monitor a relatively large area and depending on the 

wavelength, it can be between less than a meter up to several meters [Wilcox 

(1998)]. Lamb waves are dispersive in nature and analytically the dispersion 

phenomenon can be expressed in terms of a wavenumber vs frequency relation 

[Rose (2014)], from which relationships such as phase velocity vs frequency and 

group velocity vs frequency, as shown in Fig. 6.3.1-1 (left and right, respectively), 

can be derived.  To save computational resources, the size of the aluminum plate 

is limited to 600 x 400 x 2 mm. Additionally, a crack with a full-length of 2a is 

assumed to grow from the rivet hole which is located at 400|200 mm, as depicted 

in Fig. 6.3.1-2. 
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Fig. 6.3.1-1: Dispersion diagram for Aluminum 2024 with a thickness of 2 mm. Red: Symmetric 

modes Blue: Anti-symmetric modes. The dispersion curves are generated using the German 

Aerospace Center (DLR) dispersion calculator [Huber (Online)] 

 

 
Fig. 6.3.1-2: Sensor positions are numbered from 1 – 8. The coordinates of each sensor position are 

written in brackets. A is the actuator and H are the rivet holes. All dimensions are expressed in mm. 

The sensor locations are numbered from 1 – 8. 

 

The half-crack length including the notch is denoted as a, which is measured 

from the center of the rivet hole. Due to space constraints, only three crack 

growth scenarios are demonstrated. They vary from 0 mm (pristine plate) up to 

200 mm length which is assumed to be the critical crack length acrit. The total 

crack length 2a in percentage as a proportion of 200 mm is presented for multiple 

classification scenarios in Table 6.3.1-1. 

 

Table 6.3.1-1: Classification scenarios with different percentage of crack length with reference to 

acrit = 200 mm 

Scenario 1 
6 damage classes: 

Baseline – 20% – 40% – 60% – 80% – 100% of acrit 

Scenario 2 
9 damage classes: 

10% – 20% – 30% of acrit with varying angle (0°, 15°, and 45°) 

Scenario 3 
15 damage classes: 

Combination of scenarios 1 and 2 
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To determine the hotspot sensing location, the previously developed blob 

detection algorithm [Ewald et al. (2018b)] was used. The algorithm to obtain the 

fused image of the wave propagation as depicted can be downloaded from the 

Github repository. The two sensing locations of the centroids with maximal blob 

area were used: at 1). 360|200 mm and 2). 510|200 mm. To compare the training 

performance, we can assign additional random sensing locations (numbered as 

location 3 – 8), see Fig. 6.3.1-2. 

 

In each simulation, there are two sub-simulations running: 1). The Lamb wave 

propagation in the mechanical regime, and 2). The piezoelectrical conversion 

from the mechanical regime into the electrical regime. Sub-simulation 1 runs only 

once because there was only one plate, however, sub-simulation 2 will take a 

longer time as the number of sensor position increases. Depending on the number 

of assigned PZT locations, the total simulation time varies between 6 – 12 hours. 

Since there are 6 crack length classes (including the baseline) in scenario 1, 6 

simulations must be performed, which will take at least 36 hours to complete. 

Accordingly, the complete scenario took approximately 54 hours to complete on 

an Intel Core i7 processor and 32 GB RAM. 

 

To reduce the simulation time and to ensure that there was enough space in our 

hard drive, in the simulation of scenario 1, only the sensors located at positions 1 

– 4 are simulated, as the classification scenarios for the crack lengths are more 

distant from each other (i.e., the simulation request in sensor location 5 – 8 was 

disabled). In scenario 2, however, classifications become more difficult because 

sensor signals from a plate with 10% acrit are similar to the one of 20% acrit, so I 

simulated the response from all 8 sensor positions, making each simulation twice 

longer due to the FE calculation of additional electromechanical conversion in 

the position 5 – 8. The combined sensor data from scenarios 1 and 2 are made into 

scenario 3, although due to the lack of the data of the other 4 sensors (i.e., sensor 

locations no. 5 – 8), only the 4 sensors data with the same location from scenarios 

1 and 2 (i.e., sensor locations no. 1 – 4) could be used. 

 

To generate the Lamb waves using the piezoelectric effect in the numerical 

model, COMSOL Multiphysics was used. The PZT has a diameter of 9.52 mm and 

a thickness of 1 mm, respectively. The material properties are Young modulus E = 

73.1 GPa, Poisson's ratio μ = 0.33 and density ρ = 2780 kg/m3 [Bauccio (1993)]. In 

COMSOL, the predefined PZT properties (orthotropic, Type 5A) are defined as 

follows (values in GPa): C11 = C22 = 120.35; C33 = 110.88; C44 = C55 = 21.05; C66 = 22.58; 

C12 = C13 = C23 = C21 = C31 = C32 = 75.1; the coupling matrix values are as follows 

(values in C.m-2): e15 = e24 = 12.3; e31 = e32 = -5.35; e33 = 15.78; and the relative 

permittivity matrix elements are as follows: ε11 = ε22 = 919.1 and ε33= 826.6 with 

density ρ = 7750 kg/m3. The excitation pulse is a chirped Gaussian pulse with a 

central frequency of 310 kHz and bandwidth of 100 to 500 kHz. 

 

To fulfil the Courant-Friedrichs-Lewy condition [Duczek et al. (2014)], a sampling 

frequency of 10 MS/s, which is 20 times above the Nyquist frequency to ensure 
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there are enough sampling points. This approach has been already validated by 

the time of arrival method and a previous experiment [Taltavull (2017)]. 

 

The simulation was modeled without considering external environmental 

influences, and human factors, which results in an identical output signal every 

time the simulation is repeated. As a data augmentation technique, a random 

white Gaussian noise was added to the sensor signals to make them closer to the 

signals obtained from an experiment. This method is demonstrated with a sensor 

signal obtained from the simulation in Fig. 6.3.1-3, from which we can consider 

that an SNR of 15 is quite noisy and an SNR of 25 to resemble a typical non-

averaged signal measured from an experiment. 

 

 
Fig. 6.3.1-3: Example of simulated signal without noise, with SNR = 15 (green) and SNR = 25 (blue) 

 

6.3.2. Data Pre-Processing 

 

This section covers the pre-processing method for the Lamb wave signal 

generated through the simulation described in section 6.3.1. As mentioned, zero-

mean noise was used to simulate external dynamic disturbances with varying 

SNR between 5 and 25. Note that zero-mean noise is used for a simplification and 

that the purpose of this work is not focused on the data augmentation technique, 

i.e., once a better noise representation is available, it can be used in a future study 

to generate a more realistic simulated signal. 

 

The signals from the sensors can be transformed from a 1D representation (time 

domain signal) into a 2D Time-Frequency representation (TFR) and signals from 

each crack condition will result in distinct images that can be fed into a CNN. 

There are quite a few methods that can be used to perform TFR for Lamb waves. 

The reassignment method is a technique used in TFRs to sharpen and to localize 

the frequencies nearer to their true regions along time of the signal [Niethammer 

et al. (2001)]. Therefore, we used the reassignment method implemented on Short 

Time Fourier Transform (STFT) in the Github repository of [Fedotenkova (2016)]. 

An example of such a transformation is shown in Fig. 6.3.2-1. 

 

 
Fig. 6.3.2-1: Example of normalized reassigned STFT. Black pixel signifies an STFT coefficient 

around 0 and it contains mostly noise and no meaningful information, where the white pixel 

represents an STFT coefficient close to 1, which contains the waveform information. 
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6.3.3. Entity Representation 

 

The entity representation is described in section 6.2.2 and there are two 

assumptions that can be made: 1). The entity is hierarchically represented over 

smaller sub-entities, and 2). The entity is conserved over time. This sub-section will 

describe how to represent the entity in each way. 

 

6.3.3.1. Hierarchical Representation in Multiple Sensor 

 

The analogy of a hierarchical representation of human face recognition is that a 

face consists of eyes, mouth, noses, ears, chin, etc. The eye consists of an eyebrow, 

pupil, iris, sclera, etc. In-line with this analogy when a larger entity can be broken 

down into smaller sub-entities, we can randomly sample the signal over a certain 

time window W and then pre-process the randomly sampled sequence by the 

method described in section 6.3.2. 

 

Examples of randomly sampled TFRs from a sensor that is located at 51|20 cm in 

an undamaged aluminum plate are depicted in Fig. 6.3.3.1-1a – d, where in these 

figures, W is varied between 20 and 320 µs and thus corresponds to a varying 

image size between 200 and 3200 pixels in length and between 7 and 253 pixels 

in width. The width represents the STFT coefficient of the frequency component. 

Applying a smaller window length would imply the probability that certain 

features that occur in other classes increase, leading to a higher invariant 

estimate. For data augmentation, the invariant transformation would be shifting 

the features to the left or right to represent small sensor displacements. 

 

 
Fig. 6.3.3.1-1: Spectrogram of randomly sampled signals from the sensor that is located at 51|28 cm 

over a convolution window length W of a). 20 µs, b). 40 µs, c). 80 µs, and d). 160 µs. 1 µs input length 

corresponds to 10 input samples. Sampling frequency = 10 MHz. The meaning of greyscale color 

scaling is analogous to Fig. 6.3.2-1. 

 

6.3.3.2. Conserved Entity over Time 

 

An ideal representation of the conserved time-entity signals would be a stack(s) 

of pre-processed data from all possible observation points, that is all signals are 

ideally captured by a grid neuron. However, this is very difficult to realize in SHM, 

particularly because in SHM one would typically only have small number of 

sampling observations (e.g., less than 10 sensors for a monitoring area of 1 m²). 

 

For ultrasonic based SHM, it might be possible in the future to combine an 

actuator PZT and a moving phased array (PA)-probe as a sensor that acts as a grid 

neuron, where the smallest discretization unit is the size of PZT actuator. 
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Nevertheless, we can only partially reconstruct the responses by simplifying the 

conserved representation, e.g., for 3 sensors, the pre-processed data from section 

6.3.2 can be visualized by stacking them together in an RGB array, depicted in Fig. 

6.3.3.2-1. For 4 sensors or more, the data cannot be visualized without reducing 

the information content – but it can be stacked in a k-dimensional array. 

 

Applying a larger window length means that the probability that certain features 

occur in other classes decreases (i.e., equivalent to a lower invariant estimate). 

For data augmentation, the invariant transformation would be left or right 

shifting the features to represent a small sensor displacement but also swapping 

the channels (e.g., the red, green, and blue channels first represent sensors 1,2,3 

respectively and then are swapped to represent sensors 2,3,1 respectively). The 

reason for this channel equivalence is because the feature representations of 

each channel will be summed together before being passed through to the next 

layer. To simplify: what would be the perception difference in hearing music 

when the left and right speaker of a stereo headset are turned around? 

 

 
Fig. 6.3.3.2-1: Feature representation of merged input signal from 3 sensors channeled in RGB array. 

 

6.3.4. Training Setup and Parameters 

 

6.3.4.1. Hardware 

 

The analysis was performed on a standard TU Delft PC, which is a Dell Precision 

T5810 running with Intel Xeon(R) E5-1620 3.5 GHz and 32 GB DDR-RAM running 

on Windows 10 which is equipped with an additional NVidia GPU GeForce 

GTX1080Ti to increase the computational performance. At the time of purchase 

(June 2018), the graphic card had the highest performance on the end-user 

market. At that time, this was sufficient large-scale GPU such as the NVidia DGX-

2 or the cloud services such as Azure or Amazon AWS. Another alternative for 

training a deep neural network would be a Field Programmable Gate Array 

(FPGA) as it promises even faster processing, but it would require hardware 

customization which is out of scope of this project. 

 

6.3.4.2. Software and Libraries 

 

At the time the experiment made (mid-2018), the software selection was decided 

for the de-facto market leader TensorFlow (developed by Google) and the Keras 

Wrapper API because they were the richest libraries available on Python market. 

An alternative library such as PyTorch is also available, albeit it was less rich than 
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TensorFlow, but recently gaining its popularity among the deep learning 

academics due to its simpler syntax. Some “academic friendly” scripting 
languages such as MATLAB and Julia have also launched their own GUI-based 

deep learning toolbox, making it is even more practical to use. 

 

6.3.4.3. Optimization 

 

Training a neural network is NP-hard and a hyperparameter grid search would 

take non-polynomial effort, so we shall prioritize converging iterative methods 

over search metaheuristics given the high dimensionality of parameters θ. When 

talking about converging iterative methods, the natural choice for a high-

dimensionality of θ would be the 1st order methods, also known as the gradient-

based method which is a single-dimensional Jacobian. Involving any second-

order methods (i.e., involving Hessian matrix) would likely be able to solve the 

problem faster than gradient-methods, however as there is no such thing as a free 

lunch, the Hessian method would also a require much larger amount of 

computational space (i.e., RAM/memory). 

 

Among the 1st order methods, some popular techniques are (L)-BFGS [Morales 

(2002)], Gauß-Newton [Shalev-Shwartz and Ben-David (2014)], the (steepest) 

gradient descent [Ruder (2016)], and Levenberg-Marquardt [Zayani et al. (2008)]. 

Like other libraries, currently only the gradient descent methods are 

implemented in Keras. The native optimizer is called stochastic gradient descent 

(SGD) with variable batch training size which supports momentum and Nesterov 

acceleration [Botev et al. (2017)] as given in Eq. (6.3.4.3-1) to escape local minima. 
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(6.3.4.3-1) 

 

In Eq. (6.3.4.3-1), δt+1 is the update vector for parameter θ at iteration t+1, η is the 

learning rate, J is the assigned cost function and γ is the momentum which is 

typically set to 0.9 [Srivastava et al. (2014)]. There are more optimizers available 

in Keras such as RMSProp, adaptive moment estimate (Adam) and its variants 

(Adagrad, Adadelta, Adamax, Nesterov-Adam). More detailed explanations of 

these techniques can be found in Keras documentation as well as [Géron (2017)]. 

 

6.3.4.4. Neural Network Architectures and Optimizers 

 

The convolutional filter of CNN is designed to capture spectrotemporal features 

of the TFR and after that, the learned filters are fed into a fully connected layer 

(MLP). Without capturing the spectrotemporal features, the information 

coherence within a certain time-frequency window will be lost. To demonstrate 

that spectrotemporal features are learned during the training, we must compare 

the training results from CNN+MLP and pure MLP architectures without 

convolutional kernel for each of the 3 different classification scenarios.   

 

Analogous to neural network parameters optimization, finding a suitable 

network architecture has an NP-hard property since the architecture 
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combinations are infinitely extendable and unfortunately, there is no strict rule 

to design the number of layers. Nevertheless, given the theoretical detail 

regarding function capacity in chapter 3, the network should be designed as 

compact as possible. Thus, it would be logical to start the choice of architecture 

with the less complex series. Therefore, the previous architectures from previous 

work [Ewald (2019)] are re-used, as described in Table 6.3.4.5-1. 

 

Table 6.3.4.5-1. Neural network architectures used. C(i): i-filter convolutional kernel; MP: 

MaxPooling layer; DO(j): dropout regularization with rate of j; D(k): dense (fully connected) layer 

with k-neurons, CL: Classification layer 

 

The utilization of more sophisticated CNN such as VGG-16 [Simonyan and 

Zisserman (2014)], inception layers [Szegedy et al. (2015)], or ResNet [He et al. 

(2016)] are out of scope of this work. 

 

The sample code can be cloned from the repository [Github (online)]. For training 

purposes, the data should be normalized between 0 and 1 to avoid an exploding 

gradient. For a deep neural network, it is recommended to always activate the 

dropout regularization and according to [Srivastava (2014)], 0.5 is the best rate 

found. The default parameter for the optimizers is presented in Table 6.3.4.5-2. 

 

Table 6.3.4.5-2. Default optimizers parameters in Tensorflow library. η: Learning rate, γ: neural 

momentum, ηdecay: learning rate decay, NESTEROV: Nesterov momentum parameter, β1, β2: 

exponential decay rate for 1st and 2nd moment estimates. 

 

6.4. Training Result  

 

The training results for the given parameters in section 6.3.3 are presented in this 

section and are organized as follows: 

 

• In section 6.4.1, the results and discussion for modelling DeepSHM as a 

hierarchical entity, as discussed in section 6.3.3.1, are presented, where the 

discussion includes the training results trained under both the SGD and 

Adam optimizers for different sensing locations in each given damage 

case scenario for variable window length. 

• In section 6.4.2, the results for modelling DeepSHM as a conserved entity, 

as discussed in section 6.3.3.2, that gets the input from fused sensor data, 

are presented. In this case, the training results for different sensing 

locations will be given, however as a consequence of the assumption of the 

conserved entity over time, only the full window length can be used. 

 

For sake of brevity, the training samples are limited to only 100 samples per class 

to see the network behavior. During the trial-and-error phase, I actually tried 

with 1000 samples first, but it took too long for preprocessing (about 2 days per 

MLP D(128)-DO(0.5)-D(16)-CL 

CNN 
C(8)-MP-DO(0.5)-C(16)-MP-DO(0.5)-C(32)-MP-DO(0.5)-D(16)-

DO(0.5)- CL 

SGD η = 0.01, γ = 0.0, ηdecay = 0.0, NESTEROV = FALSE 

Adam η = 0.001, β1 = 0.9, β2 = 0.999, ε = 10-8, ηdecay = 0.0, AMSGrad = FALSE 
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dataset). In our case, the input size varied between 251 x 7 pixels up to 4101 x 247 

pixels, depending on the dataset generated. 

 

6.4.1. Results of Hierarchical Representation 

 

6.4.1.1. Influence of Network Architecture and Sensor Locations 

 

To demonstrate the superiority of CNN in comparison to multilayer perceptron 

(MLP) to handle spectrotemporal data, first the training result of MLP handling 

the training set is presented. The MLP is trained for all the damage scenarios given 

in Table 6.3.1-1 with various reserved memory from 800 to 3200 input samples. 

For brevity, only the training results for the training and validation datasets from 

the presumably best sensor location are shown, which is the sensor at location 2 

(cf. Fig. 6.3.1-2). For simplification, the training process will be limited up to 50 

epochs only. The training results are depicted in Fig. 6.4.1.1-1a – f. 

 

Fig. 6.4.1.1-1a – f: Training results of MLP for signal from sensor 2 with various window length 

trained under Adam and SGD optimizer up to 50 epochs. 1 µs input length corresponds to 10 input 

samples. VACC = Final validation accuracy, VLOSS = Final Validation Loss. Note that the scaling is 

not uniform due to the default library settings. 

 

SGD and Adam optimizer shall be compared in this case. Adam uses the adaptive 

learning rate from the moments of the gradients estimates thus it is generally 

faster in finding the gradient path in the beginning epochs and keeps an 

exponentially decay of prior gradients average. On the other side, SGD is slightly 

a). MLP Scenario 1, Sensor 2, SGD, Length = 80 µs 
VLOSS: 3.7699 – VACC: 0.5500 

 
 

b). MLP Scenario 1, Sensor 2, Adam, Length = 80 µs 
VLOSS: 6.9666 – VACC: 0.2417 

 

c). MLP Scenario 1, Sensor 2, SGD, Length = 160 µs 
VLOSS: 3.1631 – VACC: 0.6500 

 

d). MLP Scenario 1, Sensor 2, Adam, Length = 160 µs 
VLOSS: 2.1606 – VACC: 0.4833 

 
e). MLP Scenario 1, Sensor 2, SGD, Length = 320 µs 

VLOSS: 13.4317 – VACC: 0.1667 

 

f). MLP Scenario 1, Sensor 2, Adam, Length = 320 µs 
VLOSS: 13.4317 – VACC: 0.1667 
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slower in finding an optimal gradient in the beginning epochs as it only computes 

the gradient without the estimate approximation. 

 

For a general training purpose, Adam is therefore recommended as it can find the 

gradient path faster. From Fig. 6.4.1.1-1a – b, for a window length of 80 µs, it can be 

seen that the MLP model quickly overfits regardless of the optimizer used. While 

the training accuracy reaches almost 1.0 (or 100%) in Fig. 6.4.1.1-1a – b, it can be 

seen that the validation accuracy stays below 0.6 (or 60%). This behavior is 

confirmed again in Fig. 6.4.1.1-1c – d, where the window length was extended to 

160 µs and in both cases, the difference between training and validation accuracy 

is more than 35%. 

 

When the window length was extended once more to 320 µs (see Fig. 6.4.1.1-1e – f), 

only a constant flat line over the whole training epoch was reached, meaning that 

the GPU was overloaded. This problem can be solved by adding more physical 

memory by using a better GPU until it meets a larger input dimension where we 

start another loop of using a more powerful GPU. With such an unacceptable 

training behavior, it is decided not to further proceed with exploiting the MLP 

since a simple MLP would highly be likely to fail to capture a spectrotemporal 

feature due to its lower function capacity. 

 

For the CNN architecture, the CNN was kept with 3 hidden convolutional layers 

attached to the same MLP. Then, each convolutional layer was followed by 

pooling and dropout layers as described in Table 6.3.4.5-1. In general, the network 

may learn the pattern representation after long training, however in reality, we 

always have a time-cost limit, and a training budget threshold must be 

determined depending on application and budget resources. To demonstrate a 

simplified training budget, assume limit the training epochs to 50. The training 

results from CNN trained both under Adam and SGD optimizer for damage 

scenario 1 (Table 6.3.1-1) are depicted in Fig. 6.4.1.1-2a – h, where in this case the 

CNN is trained to distinguish 6 different damage classes including one from the 

baseline. 

 
a). CNN Scenario 1, Sensor 1, Adam, Length = 320 µs 

VLOSS: 0.2251 – VACC: 0.9667 

 

b). CNN Scenario 1, Sensor 1, SGD, Length = 320 µs 
VLOSS: 0.1674 – VACC: 0.9917

 
c). CNN Scenario 1, Sensor 2, Adam, Length = 320 µs 

VLOSS: 0.0289 – VACC: 0.9850 

 

d). CNN Scenario 1, Sensor 2, SGD, Length = 320 µs 
VLOSS: 0.0563 – VACC: 0.9917 
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e). CNN Scenario 1, Sensor 3, Adam, Length = 320 µs 
VLOSS: 0.4638 – VACC: 0.9250 

 

f). CNN Scenario 1, Sensor 3, SGD, Length = 320 µs 
VLOSS: 1.3220 – VACC: 0.5167 

 
g). CNN Scenario 1, Sensor 4, Adam, Length = 320 µs 

VLOSS: 0.3490 – VACC: 0.9417 

 

h). CNN Scenario 1, Sensor 4, SGD, Length = 320 µs 
VLOSS: 0.1336 – VACC: 0.9917 

 

Fig. 6.4.1.1-2a – h: Training results of CNN for signal from sensor 1 – 4 in scenario 1 with window 

length of 320 µs trained with Adam and SGD up to 50 epochs. Sensor locations are given in Fig. 12. 

1 µs input length corresponds to 10 input samples. VACC = Final validation accuracy, VLOSS = 

Final Validation Loss. Note that the scaling is not uniform due to the default library settings. 

 

The highest validation accuracy reached was 0.9917 (or 99.17%) from data 

captured by sensors 1, 2, and 4 when optimized by SGD, while the lowest 

validation accuracy reached was 51.67% from data captured by sensor 3. 

However, when using Adam, the highest validation accuracy reached was 

98.50% from data captured by sensor 2 (which is presumably the best sensor 

position) followed by 96.67%, 94.17%, and 92.50% for sensors 1, 4, and 3, 

respectively. Because the Adam optimizer yields a better result than the SGD, 

from this point on, only the result of the trained network under Adam optimizer 

will be shown. 

 

For the classification of damage scenario 2, the PZT response was also simulated 

from sensor locations 5 – 8, because in this scenario, the CNN is trained to classify 

less distinguishable signals from each class as per Table 6.3.1-1. Normally, more 

sensor responses would give an advantage because there is more data available.  

Nevertheless, for brevity only the training results using Adam optimizer from 

sensor location 1 – 4 in Fig. 6.4.1.1-3a – d are shown, which can be directly 

compared to Fig. 6.4.1.1-2a, c, e, and g, respectively. 

 

The results depicted in Fig. 6.4.1.1-3a – d met the expectation because validation 

accuracy is on average lower than in scenario 1, ranging from 32.22% in sensor 3 

(where it also overfits – see Fig. 6.4.1.1-3c and sensor 3 is one of the worst PZT 

sensing locations) to 93.33% in sensor 1, depicted in Fig. 6.4.1.1-3a which is one of 

the best PZT sensing locations. This is to be expected, because if we look closely 

into scenario 2, it can be easily assumed that the TFR signal from the baseline 

plate and the damaged plate with a smaller crack length (e.g., only 10% acrit) and 

smaller deviated angle (i.e., 15°) are likely to be similar to each other, especially 

because the recording length was short (320 µs). Thus, the neural network would 

not be able to distinguish these TFR.  
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Nevertheless, unlike classical signal processing, the TFRs from better sensing 

locations such as sensor positions 1, 2, and 4 were able to be trained to reach a 

better validation accuracy (Fig. 6.4.1.1-3a, b, and d). As a side note, by doubling or 

even quadrupling the window length from 320 µs to 640 µs or 1280 µs, I believe the 

neural network will be very likely to be able to learn the distinguishing pattern 

between the TFR and thus further increase the validation accuracy. This is 

because in the later time-series response, the wave scatter from the crack would 

eventually travel through sensor location 3, too. 

 

While this might be an advantage of deep learning over classical signal 

processing, recall that doubling or quadrupling the. window length would 

require double or quadruple the amount of data storage. If one TFR image takes 

up 2 MB, doubling this would mean at least 4 MB. For small-scale research, this is 

surely not a problem but scaling this up on industrial level would mean double or 

quadruple the required investment for data storage. So, to be fair we shall not 

forget that in classical signal processing, multiplying the data storage might not 

be necessary. 

 
a). CNN Scenario 2, Sensor 1, Adam, Length = 320 µs 

VLOSS: 0.5129 – VACC: 0.9333 

 
 

b). CNN Scenario 2, Sensor 2, Adam, Length = 320 µs 
VLOSS: 0.5204 – VACC: 0.8833 

 

c). CNN Scenario 2, Sensor 3, Adam, Length = 320 µs 
VLOSS: 1.8719 – VACC: 0.3222 

 

d). CNN Scenario 2, Sensor 4, Adam, Length = 320 µs 
VLOSS: 0.8863 – VACC: 0.7278 

 

Fig. 6.4.1.1-3a – d: Training results of CNN for signal from sensor 1 – 4 in scenario 2 with window 

length of 320 µs trained with Adam optimizer up to 50 epochs. Sensor locations are given in Fig. 12. 

1 µs input length corresponds to 10 input samples. VACC = Final validation accuracy, VLOSS = 

Final Validation Loss. Note that the scaling is not uniform due to the default library settings. 

 

As previously mentioned in Table 6.3.1-1, damage scenario 3 is just the 

combination of scenario 1 (a very distinctive classification ranging from 0% – 

100% length of critical crack in each 20% step) and scenario 2 (a less 

distinguishable signal between each class with varying angled crack), the 

training results are slightly better than scenario 2, but worse than scenario 1. Note 

that in this case, only the data from the 4 sensors in scenario 2 which are located 

in the same location as in scenario 1 can be added to the training set. Also, the 

importance of sensor positioning is also now clearly highlighted. The training 

results are depicted in Fig. 6.4.1.1-4a – d. As mentioned before, sensors 1 and 2 are 

at one of the best sensing locations and thus, the validation training accuracy 
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reached was more than 0.9 or 90% (Fig. 6.4.1.1-4a – b), while sensor 3, which is 

located very far away from the crack location, only reached a validation 

accuracy of 43.67% (Fig. 6.4.1.1-4c). Again, this is far from surprising, because we 

can expect that at the sensing location occupied by the sensor 3, the accumulated 

energy from the scattered wave from the crack to be far less than that captured 

by sensors 1 and 2. The data from sensor 4, which is located close to the crack 

location but not directly placed along the wave scatter propagation path, reaches 

a final validation accuracy of 69.67%, as depicted in Fig. 6.4.1.1-4d. 

 
a). CNN Scenario 3, Sensor 1, Adam, Length = 320 µs 

VLOSS: 0.6909 – VACC: 0.9333 

 

b). CNN Scenario 3, Sensor 2, Adam, Length = 320 µs 
VLOSS: 0.4589 – VACC: 0.9367 

 
c). CNN Scenario 3, Sensor 3, Adam, Length = 320 µs 

VLOSS: 1.6451 – VACC: 0.4367 

 

d). CNN Scenario 3, Sensor 4, Adam, Length = 320 µs 
VLOSS: 1.1499 – VACC: 0.6967 

 

Fig. 6.4.1.1-4a – d: Training results of CNN for signal from sensor 1 – 4 in scenario 3 with window 

length of 320 µs trained under Adam optimizer up to 50 epochs. 1 µs input length corresponds to 10 

input samples. VACC = Final validation accuracy, VLOSS = Final Validation Loss. Note that the 

scaling is not uniform due to the default library settings. 

 

From all these experiments, we can safely conclude that one cannot rely solely 

on a deep or any other advanced machine learning algorithm to tackle a physical 

limitation and thus there must be a physical intervention (such as adding more 

PZT sensors until detectability convergence increases) to improve the result. The 

good news is, however, that the previous work regarding the sensor placement 

strategy for hotspot sensor placement using blob detection [Ewald (2018b)] can 

be used because a sensor placement strategy is still needed even when applying 

a sophisticated machine learning techniques such as deep learning. The bad 

news on the other side is that a hotspot sensor placement strategy is still needed 

– thus a design effort for an SHM sensor placement strategy is needed and there 

would be a cost for this both in time and money. 

 

6.4.1.2. Effect of the Convolution Window Length 

 

This scenario describes the influence of the reserved convolutional window 

length of the signal on the required time per training step and on the final 

validation accuracy (VACC). For brevity, only the data from the best sensing 

location is used, which is sensor 2. The convolutional window length varies 

between 10 µs to 320 µs sampled from the full signal as previously explained in 

section 6.3.3. All the scenarios are trained with Adam optimizer and to save time, 
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the training is limited to only 50 epochs. The results for all scenarios are 

summarized in Fig. 6.4.1.2-1a and Table 6.4.1.2-1, where it can be seen that at least 

a window length of 200 µs is necessary to surpass a 90% training accuracy 

threshold, while for the more difficult scenarios 2 and 3, a windows length of 320 

µs is needed. The computation time per time step varies between around 16 ms 

for TFR with up to 60 µs window length and increases quadratically as the 

window length is increased as depicted in Fig. 6.4.1.2-1b. 

 

Window 
Length 

[µs] 

Scenario 1: 6 classes Scenario 2: 9 classes Scenario 3: 15 classes 

Time / 
Step 
[ms] 

Final 
VACC 

Time / 
Step 
[ms] 

Final 
VACC 

Time / 
Step 
[ms] 

Final 
VACC 

10 16 0.1667 14 0.1111 14 0.0633 

15 16 0.1833 14 0.1111 14 0.0667 

20 16 0.1500 14 0.1278 15 0.0800 

25 16 0.1750 14 0.1167 15 0.0833 

30 16 0.1917 15 0.1444 15 0.0733 

40 16 0.2167 15 0.1556 17 0.0933 

50 16 0.3000 16 0.1389 18 0.0733 

60 25 0.3917 17 0.1611 20 0.0867 

80 28 0.4917 18 0.2111 22 0.2300 

100 24 0.5250 24 0.1811 28 0.2267 

120 29 0.6000 22 0.1611 33 0.3500 

160 46 0.7593 47 0.4889 54 0.3833 

200 67 0.9167 68 0.5086 70 0.5600 

320 185 0.9833 212 0.9044 190 0.9467 
Table 6.4.1.2-1: Effect of Window Length on Training Time per Epoch and Final VACC* at 50 

Epochs. *VACC = Validation Accuracy 

 

  
Fig. 6.4.1.2-1: a). The relation between final validation accuracy (VACC) and reserved window 

length in [µs]; b). The relation between time effort needed per training step and reserved window 

length in [µs]. 

 

6.4.2. Results of Conserved Entity over Time 

 

Now it is interesting to see the training behavior when the perception is modelled 

as a single entity conserved over time. The consequence for this assumption is 

that the training set consists of a k-dimensional data cube composed of multi-

layer full-length TFRs, e.g., see Fig. 6.3.3.2-1. Theoretically, the data cube should 

comprise all possible layers which represents all possible responses from each 

sensor. However, for brevity, the data cube is represented in 3-layers (meaning 

that only 3 sensor responses are used) so that it can easily be converted into an 

b) a) 
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image and trained with the libraries (Keras and Tensorflow). While Tensorflow 

can read bitmap (BMP) files, it is not recommended to convert STFT coefficient 

matrix into BMP since it took too much space. Thus, a portable network graphic 

(PNG) format, which is a lossless compression format, was chosen to balance 

between the information richness contained in BMP and the compression 

sparsity of JPEG format. Most of the ready-to-use deep learning libraries only 

support a 3-channel color image because many works in which the deep learning 

community are focused on using RGB images. By customizing the library, it is 

possible in the future to train an arbitrarily sized dataframe in Python, such as 

demonstrated by [Paoletti et al. (2018)] for classification of hyperspectral images 

by using CNN. Unfortunately, those works are in general very niche and often not 

made publicly accessible. 

 

For this section, several sensor responses are combined to create the 

representation. Since there are only 4 sensors in scenario 1, all possible 

combinations of the training behavior of the sensor response (1;2;3, 1;3;4, 1;2;4, and 

2;3;4) can be shown, as depicted in Fig. 6.4.2-1a – d. However, as there are too many 

possible combinations in scenario 2, only the result of several combinations are 

shown in Fig. 6.4.2-1e – h. The rest of the results are available in the dataset, or 

alternatively the readers can also download the code from the repository and try 

to run it. Finally, since scenario 3 is simply a combination of scenario 1 and 2, only 

4 sensor responses can be shown. The corresponding training results from 

scenario 3 are given in Fig. 6.4.2-1i – l. 

 
a). CNN Scenario 1, Sensor 1;2;3, Adam 

VLOSS: 1.5293e-04 – VACC: 1.0000 

 

b). CNN Scenario 1, Sensor 1;2;4, Adam 
VLOSS: 0.0021 – VACC: 1.0000 

 
c). CNN Scenario 1, Sensor 2;3;4, Adam 

VLOSS: 0.0031 – VACC: 1.0000 

 

d). CNN Scenario 1, Sensor 1;3;4, Adam 
VLOSS: 1.1921e-07 – VACC: 1.0000 

 
e). CNN Scenario 2, Sensor 2;4;6, Adam 

VLOSS: 2.1336e-06 – VACC: 1.0000 

 

f). CNN Scenario 2, Sensor 2;6;8, Adam 
VLOSS: 3.3180e-05 – VACC: 1.0000 
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g). CNN Scenario 2, Sensor 3;5;7, Adam 
VLOSS: 1.9950e-04 – VACC: 1.0000 

 

h). CNN Scenario 2, Sensor 3;6;8, Adam 
VLOSS: 9.7399e-04 – VACC: 1.0000 

 
i). CNN Scenario 3, Sensor 1;2;3, Adam 

VLOSS: 9.6724e-04 – VACC: 1.0000 

 

j). CNN Scenario 1, Sensor 1;3;4, Adam 
VLOSS: 0.0028 – VACC: 1.0000 

 
k). CNN Scenario 3, Sensor 1;2;4, Adam 

VLOSS: 0.0015 – VACC: 1.0000 

 

l). CNN Scenario 3, Sensor 2;3;4, Adam 
VLOSS: 0.0032 – VACC: 1.0000 

 

Fig. 6.4.2-1a – l: Training results of CNN for combined signal from various sensor combination in all 

damage scenarios trained under Adam optimizer up to 50 epochs. VACC = Final validation 

accuracy, VLOSS = Final Validation Loss. Note that the scaling is not uniform due to the default 

library settings. 

 

From all sub-figures in Fig. 6.4.2-1, it can be clearly concluded that modelling the 

SHM perception as a single conserved entity has a quickly converging training 

rather than modelling the perception as hierarchically ordered but separate 

entities. For the first case, it is obvious that the sensing locations now becomes the 

less important issue. There are clearly several different behaviors before the 

training accuracy reaches its 1.0 plateau as depicted in Fig. 6.4.2-1a – l. 

 

My assumption regarding on why CNN was able to capture the correlated 3D-

spectrotemporal features within certain regions in spectrograms is the existence 

of the correlated 3D-spectrotemporal features which turns out to be the evidence 

of invariant latent [Feige (2019)] in which the estimate is proposed in Lemma 3.5-

3. It is difficult to deductively prove the applicability of this lemma because 

neural network parameters can only propose correlations without explanatory 

power, but for the time being this is de facto accepted in the computer science 

community. A plausible explanation to my hypothesis has already been stated 

previously in section 6.2.2 regarding music recognition in the human brain. 

 

While a Lamb wave signal is not a music or a song, it is not merely random noise 

either – there is an interconnection between each particle wave movement 

during guided wave propagation because an acoustic wave in a continuum can 
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be regarded as harmonic motion and thus do not fall into a sudden singularity, so 

I assume the existence of locally connected spectrotemporal features between 

each layer in Fig. 6.3.3.2-1. We shall be aware that this assumption is of course not 

valid for randomly occurring singularities within a continuum – but normally we 

never expect sudden singularities within acoustic wave signals either (except 

when the sensor is broken, but that is a separate topic). 

 

It is difficult to understand what is happening inside the deep neural network, but 

I postulate that these local spectrotemporal features, while being very deeply 

embedded in the CNN model, are very distinct to each other for every different 

damage class. This was due to previous assumption that every different damage 

class would produce a varying, non-homogenous TFR at each different sensing 

location and therefore allow the neural network to easily capture these (cf. 

Rademacher complexity) and learn from them after several training epochs. 

Each TFR is then a special distinctive signature of each probability classes as 

supported in Lemma 3.5-2. 

 

In general, it is common to use a single-frequency centered Hann window as an 

excitation wave because it would be easier to analyze the sensor response based 

on single-frequency signal. As this has always been most of the case, the training 

results gives evidence that it might be an advantage to try out the less exploited 

and more “adventurous” chirplet-like excitation signal for Lamb wave SHM. The 

training results suggest that these distinctive spectrotemporal features within the 

representation that are more heavily augmented due to the quasi-chirplet 

excitation in comparison to when it is excited by simple Hann window signal, 

which in general produces more complex material response and thus more 

complex information embedded in the signal representations that helps the CNN 

to learn from this distinctive spectrotemporal information. Currently this is my 

speculation, so I think that there would be a future opportunity to quantitatively 

investigate this matter in more rigorous research. 

 

6.5. Concept Validation 

 

6.5.1. Result comparison with Random Noise Training 

 

To deliver further evidence regarding the invariant latent, a mock-up test is set 

up to compare the training behavior between 1). the simulated signal with added 

white Gaussian noise with varying SNR between 5 – 15 and 2). pure Gaussian 

white noise. The reason to do random noise training comes from statistical A/B 

testing. Without a trial like this, we will never know whether the network actually 

learns the pattern, or it merely remembers the noise behind the pattern. An 

example of TFR of Gaussian white noise is depicted in Fig. 6.5.1-1. The noise was 

trained under exactly the same training parameters as before and split into 6 

different folders like in scenario 1. 

 

 
Fig. 6.5.1-1: TFR of a white Gaussian noise with a length of 320 µs 
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The white noise training were repeated several times and give two sample results 

in Fig. 6.5.1-2a – b which depict the training behavior for a white noise signal with 

a window length of 320 µs. It can be seen from Fig. 6.5.1-2a – b that the networks 

failed to reach a validation accuracy of more than 60% even after 50 training 

epochs, while the training accuracy reached a value much higher than the 

validation accuracy. 

 
a). 1st run of random noise modelling 

 

b). 2nd run of random noise modelling 

 

Fig. 6.5.1-2a – b: Sample training results of random noise modelling. Note that the scaling is not 

uniform due to the default library settings. 

 

The distance between the training and validation accuracy is relatively far 

(between 20% and 40%), which is a clear sign of heavy network overfitting, yet 

this is not the most important fact. What is more important to know is that it failed 

to deliver a consistent result, i.e., the network did not learn anything from the TFR 

pattern because there is not locally connected spectrotemporal features in the 

TFR of a noise, indicating that the invariant latent assumption within the noise 

group does not hold. In fact, the network simply memorized the noise. More 

figures are available upon demand, or the readers are welcome to clone the 

repository [Ewald et al. (2019)] to self-experiment with it. 

 

6.5.2. Model Testing 

 

6.5.2.1. Hierarchical Representation in Multiple Sensors 

 

To test the validity of the models as to whether they can classify the signal or not, 

a confusion matrix must be calculated. As a sample result, the test results were 

shown from scenarios 1 and 2 for sensor 2 for convolutional window lengths of 80 

µs, 160 µs, and 320 µs which are depicted in Fig. 6.5.2.1-1a – f, respectively. Further, 

the labels “0” to “5” in Fig. 6.5.2.1-1a – c correspond to the damage condition of 

scenario 1 described in Table 6.3.1-1 with “0” as the baseline and “5” as the critical 
crack length acrit. The same logic applies for Fig. 6.5.2.1-1d – f from scenario 2 

described in Table 6.3.1-1, where in this case, “0” is the 0°-oriented crack with a 

length of 10% acrit and “8” is the 45°-oriented crack with length of 30% acrit. 

 
a). Model test result from Scen. 1 
Sensor 2, Window length = 80 µs 

 

b). Model test result from Scen. 1 
Sensor 2, Window length = 160 µs 

 

c). Model test result from Scen. 1 
Sensor 2, Window length = 320 µs 
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d). Model test result from Scen. 2 
Sensor 2, Window length = 80 µs 

 

e). Model test result from Scen. 2 
Sensor 2, Window length = 160 µs 

 

f). Model test result from Scen. 2 
Sensor 2, Window length = 320 µs 

 

Fig. 6.5.2.1-1a – f: Model test result from scenario 1 and 2 for sensor 2 with varying window length 

between 80 and 320 µs. 

 

The labelling itself is currently not important as this can be changed in the code. 

A diagonal with an average of 1.00 such as Fig. 6.5.2.1-1c corresponds to 100% 

POD. In Fig. 6.5.2.1-1f (marked in red rectangle), it is obvious that the CNN cannot 

correctly classify the smaller cracks, which in this case “0” is an 0°-oriented crack 

of 10% acrit, whereas “1” is a 15°-oriented crack of 10% acrit. This is to be expected 

since the captured signals from a setup where there are minimal differences in 

crack length and orientation will be likely similar to each other. For a detailed 

proof, the relative entropy and the cosine similarities between two time-series 

can be calculated, however this is not the focus of this work. As the result is very 

coherent to validation accuracy depicted in Fig. 6.4.1.2-1a, we can conclude that 

the generalization guarantee via Lemma 6.2.1-2 [Kawaguchi et al. (2017)] holds. 

 

6.5.2.2. Representation as Conserved Entity over Time 

 

When modelling the feature representation in a single conserved entity, the 

network does not seem to have a problem at all classifying the test data in an 

accurate way with 100% POD as depicted in Fig. 6.5.2.2-1a – c. The meaning of the 

labels “0” to “8” is analogous to our explanation in section 6.5.2.1. 

 

While more test results are available, for brevity only three example results are 

shown in Fig. 6.5.2.2-1a – c that depict result from scenario 2 for conserved entity 

representation that fused responses from sensor 1;2;3, 1;5;7, and 2;4;6, 

respectively. All other tests yield a 100% POD. Also, here I hypothesize that it 

learned the locally spectrotemporal features within the entity in a more subtle 

and concise way as there is more information embedded in this ‘data cube’. 
 

a). Model test result from Scen. 2 
Sensor 1;2;3 

b). Model test result from Scen. 2 
Sensor 1;5;7 

c). Model test result from Scen. 2 
Sensor 2;4;6

Fig. 6.5.2.2-1a – c: Model test results from scenario 2 for conserved entity representation that fused 

different sensor responses. 
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6.6. Conclusion 

 

6.6.1. Summary 

 

This chapter is an extension to the previous work [Ewald (2019)], in which the 

generalized idea about diagnostics was conceptualized and then formalized as 

the DeepSHM framework. In section 6.2, I elaborated my thoughts about 

perception from a neuroscientific perspective incorporated into the SHM and 

NDT domains, while the methodology used such as the numerical model, data 

pre-processing, and neural network training are described in section 6.3. The 

results and discussion are given by section 6.4, and the validation of the concept 

is given by section 6.5. 

 

6.6.2. Conclusion and Recommendation 

 

Before making any recommendation, recall the hypothesis stated in section 6.1: 

 

… that some of the algorithms could not make a distinction between the signals 
that come from slightly similar a distribution. I hypothesized that this problem 

might be overcome by: 

 

1. Applying broadband frequency excitation since broadband excitation 

frequency will normally invoke more variable wavenumber, and broader 

wavelengths. 

2. Varying sensing location to obtain more potential information. 

 

Based on the results, we can state that the CNN captures more information due to 

the varying sensing location and varying wavelength thanks to the chirplet-like 

excitation. However, this approach encounters its limit as well, as can be seen in 

Fig. 6.5.2.1-1f. It is possible to enlarge the excitation band frequency to include 

more information, however this would have two drawbacks: 1). A more 

expensive wideband PZT must be used, and 2). Assigning a human data analyst to 

analyze such a complex signal with traditional signal processing would require 

more time and it would be a disadvantage if we would like to understand and 

relate meaningful signal features to the physical domain of the structure.  

 

My recommendation is therefore to use the quasi chirp-like excitation only when 

it is coupled with advanced machine learning, which in any case is already a 

black-box. Employing a machine learning algorithm such as CNN requires a 

quality control of both input and output. Further, the following questions were 

stated the beginning: 

 

1. How much do the varying sensing locations and the different sensing 

representations of the time-frequency Lamb wave signal influence the deep 

learning training behavior? 

2. Given “a posteriori knowledge” from (1), what consequence can be drawn for 

the engineering application in SHM and why should this approach work? 
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Objectively I am firm that there is not a single ultimate answer, but that we can see 

the highly optimally located set of sensors give the most desired training 

behavior due to better response capture. On the other side, when the information 

is fused first from different sensing locations, that is in the case of conserved 

entity representation, it can clearly be seen that the sensing position does not 

matter anymore as has already been explained in section 6.4.2.  

 

Revisiting the term “no free lunch”, it is fair here to state that the training cost in 

terms of time also increases when the network must learn more parameters. At 

this moment, I believe decreasing the neural network size is the most feasible way 

to make deep learning for structural diagnostics is scalable for industrial 

production, with the caveat that limiting the amount of model parameters would 

risk that the training would be longer. In the worst case where the size of data is 

limited, this would lead into a less generalizable model. In future work, it would 

be of interest to investigate the scalability level of deep learning for SHM for a 

given data size, model parameters, and restrictions on physical memory. 

 

Also, another consideration that should be discussed is the actuator position. If 

the actuator position is changed, the signal representation also changes. While it 

is possible to determine the damage even if the actuator position has changed, the 

model needs to be changed as well. This is a limitation of deep learning where it 

learns the statistical distribution from given samples. This principle applies to all 

type of supervised networks such as MLP and its derivates, CNN and its 

derivatives (LeNet, VGG, ResNet, etc.), recurrent and its derivates (LSTM, GRU, 

RNN), etc. To ensure that the damage types from different actuator locations can 

be detected, there are two possibilities: 

 

1. A new model based on that actuator-sensor pair must be created, or 

2. The training data from all possible actuator-sensor pair must be included 

during the training. 

 

It is possible to train data coming with 2 sensors only and we can expect that the 

performance lies between a single sensor response and a 3-sensor response (cf. 

Section 6.5.2.1 and section 6.5.2.2). As mentioned, the entity is represented via two 

different perceptions: 

 

1. The behavior of Lamb wave propagation is sampled for a single sensor and 

different window lengths are applied to generate multiple perceptions, 

resulting in different chopped time-series which were converted via 

reassigned STFT to generate greyscale array (Fig. 6.3.3.1-1) 

 

2. The behavior of Lamb wave propagation is sampled in n-sensor locations 

(e.g., n = 3 in our case) with a full window length (full length is adjustable, 

but we have 400 µs). These time-series were again converted into 

reassigned spectrogram and joined together to form image in Fig. 6.3.3.2-1. 

It is possible to join signals from more sensors (n > 3), but of course these 

cannot be depicted as RGB images anymore. 
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Conclusively, the second perception modelling can be regarded as the extension 

of the first modelling and as academia, we might be tricked into thinking “higher 
performance = better” so we will be tempted to use more and more sensors data 
(n > 20) to improve performance, until we meet the big O in the time-space 

complexity. 

 

A further limitation in this current study is that only damage classification 

techniques being employed. For damage localization, the label in the datasets can 

be expanded with the location of the corresponding damages such as proposed 

by [Hu et al. (2020), Zhang et al. (2021)] and retraining the models. In this case, the 

model will be assigned to classification and regression tasks at the same time. 

Computationally, this is not a problem per se. However, the availability of the 

data in such case is very scarce so that the proposed DeepSHM may work well 

only in the medium to long-term run when enough data is available. 

 

For the short-term, some augmentation techniques and generative modelling 

should probably be incorporated to bypass the data scarcity. For a conservative 

industry like aerospace, this is a perfect pace because the industry and its people 

and process are moving slowly – this will provide enough time to the major OEMs 

to place a strategy on their investment and to make a right prioritization. 

 

Source codes and online Documentation 

 

Fedotenkova M. Available online https://github.com/mfedoten/reasspectro (Last online: FEB-
2020). 

Github repository. Available online https://github.com/vewald/DeepSHM (Last online: SEP-
2020). 

Keras Optimizers Documentation. Available online https://www.keras.io/optimizer (Last online: 
JUL-2020). 

PyTorch Documentation. Available online www.pytorch.org (Last online: AUG-2020). 

Tensorflow Documentation. Available online https://www.tensorflow.org (Last online: AUG-
2020). 
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7. Recurrent Modelling of Time-Frequency Signal 

 

This chapter partially contains the work that has been submitted as:  

 

1. Ewald V, Goby X, Venkat RS, Benedictus R, Groves RM. On Stability of 

Sequential Modelling in Data Driven Predictive Maintenance: A Study Case 

Using CNN-LSTM for DeepSHM. Intl J of Structural Health Monitoring (In 

Review) 

 

Chapter 7 will be divided as follows: The introductory part will be given in 

section 7.1, while the state-of-the art from which the research problems are 

derived will be described in section 7.2 and a short theoretical foundation on 

hybrid convolutional recurrent network will be given in section 7.3. Section 7.4 

covers methodology to generate the data which includes the simulation 

parameters, experimental setup, and data pre-processing methodology. The 

results will be discussed in section 7.5, and finally, the conclusions of this chapter 

will be given in section 7.6. 

 

7.1. Introduction 

 

In chapter 6, we have already seen a lengthy discussion about convolutional 

neural networks (CNN) and their training & test methodology. The data treated 

came from simulation and there was no experimental validation yet. The issue of 

scalability has also not been addressed yet, especially for a continuous stream of 

data. The objective of this chapter is to introduce recurrent modelling of time-

frequency signals, i.e., where the latent representation of the CNN is treated as 

continuous input. 

 

The previous CNN model introduced in chapter 6 poses a static behavior, i.e., it 

treats the input signals of certain given lengths, despite being hardly trainable 

on/for inputs of variable lengths. Practically, we will always be limited by the 

current available hardware. All deep learning libraries require a memory 

placeholder, that means the acceptable input size cannot be larger than the 

available physical memory. To overcome this, the computer science community 

has pioneered the recurrent models. As mentioned early in section 2.2.1 

regarding the advances made in machine & deep learning, the two algorithms 

which are currently most established (or maybe to say instead highly regarded) 

& commonly employed in sequence-to-sequence modelling [Hochreiter and 

Schmidhuber (1997), Cho et al. (2014), Vaswani et al. (2017), Devlin et al. (2018)] 

are: 

 

1. Recurrent neural network (RNN), with its vanilla variant, long short-term 

memory (LSTM), and gated recurrent unit (GRU) 

2. Transformer network various derivatives of it, such as Bidirectional 

Encoder Representations from Transformers (BERT), its lighter variant 

LiteBERT, and Generative Pre-trained Transformer (GPT)  
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Unlike textbooks, which can be effortlessly scanned & provided as an input to 

BERT, there is no such luxury within SHM & NDT, and even if the data happens to 

be available, the lack of annotations thereof remains, simply because the world 

of SHM-NDT is a relatively niche area in comparison to computer science. In this 

chapter, I would like to specifically address the usage of recurrent modelling for 

SHM-NDT applications.  

 

7.2. Related work to Recurrent Modelling in Predictive Maintenance 

 

Since most of the literatures have been covered in chapter 2, in this section only a 

select works related to health monitoring is taken into consideration. 

 

The earliest work I found for recurrent modelling for machine monitoring is from 

[Zhao et al. (2016)]. They compared various machine learning models from multi-

layer perceptron (MLP), support vector machine (SVM), and shallow and deep 

LSTM for treating time-series data from Computerized Numerical Control (CNC) 

milling machine to predict the tool wear. As a result, they concluded that 3-layer 

LSTM outperforms single layer LSTM which in turns outperforms MLP and SVM. 

They further extended the work by including convoluted bi-directional LSTM to 

treat the signal from the milling machine [Zhao et al. (2017)]. 

 

It is also interesting that they remarked that while a solely physics-based model 

such as the Paris or Forman crack growth model have been proven to be 

successful in industry, their performance is also highly tied to the “quality and 

accuracy of domain knowledge about the practical mechanical systems”. Further, 

they mentioned that “in real life, due to complexity and noisy working conditions, 

such high-quality domain knowledge is often unavailable, which hinders the 

robustness of these physics-based models” [Zhao et al. (2016, 2017)]. I also agreed 

with their argument against solely-physics-based models regarding their 

inability to be updated with on-line measurements, which limits the flexibility of 

the applications. 

 

Further, physics-based modelling can only consider the current known domain 

knowledge, which means it needs either an update or a completely different 

approach when new knowledge is discovered. While there is nothing wrong with 

that, but it just highlights the evolution of scientific process. For this reason, 

hybrid data-driven physics-based models, which are based on historical 

measured data as decision making support tool from the online data collected 

from sensors, are necessary to facilitate the Internet of Things (IoT). 

 

[He et al. (2019)] used a 2D CNN component to detect well rod pumping system 

faults and gradually changing faults, a special type of fault which only becomes 

apparent once irreversible damage has occurred. The framework consisted 

mainly of classifying the gradually changing state of the faults present in the 

pumping system based on visual information with various viewing angles. Their 

framework is depicted in Fig. 7.2-5. 
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Fig. 7.2-5: End-to-end 2D CNN-LSTM approach for detecting gradual changing fault in rod pump 

system proposed by [He et al. (2019)]. 

 

As seen in Fig. 7.2-5, the 2D CNN extracts features from the images. The extracted 

features are then amalgamated by LSTM component which enabled so-called 

“indicator diagrams” to be constructed. These indicator diagrams, along with a 

SoftMax classifier are used to establish a correspondence of the input data with 

the type of fault that might be present. Conclusively, their result delivered 

evidence of the effectiveness of the CNN-LSTM architecture in being able to learn 

characteristic spatiotemporal features in order to make accurate system fault 

predictions. A 1D CNN-LSTM hybrid model was also implemented by [Dang et al. 

(2021)] for the development of a data-driven SHM method incorporating various 

feature fusion such as the autoregressive model (AR), discrete wavelet 

transforms (DWT), and empirical mode decomposition (EMD). 

 

The work of [Shenfield and Howarth (2020)] for diagnostics and prognostics 

focused on a hybrid model consisting of an RNN path and a wide first-kernel 

Deep CNN (WDCNN). They claimed that this architecture is robust against 

variable environmental noise and has a low cost of time for both inference & 
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training. Training & testing was carried out for 4 different RNN type variants of the 

RNN-WDCNN architecture and of two simpler standard ML models. The end 

results obtained conclusively demonstrated that the LSTM-WDCNN variant 

performed the best across nearly the entire board of evaluations. 

 

[Chen et al. (2020)] proposed multi-scale CNN and LSTM model (MCNN-LSTM) 

to predict bearing faults given a raw vibration signal as an input. They applied 6 

convolutional layers followed by 2-LSTM layers and as a result, the F1-score 

varied between 95.10% to 99.45%. Further, they also tested the proposed model 

with various signals with SNR ranging from −2 to 10 dB and conclude that the 

average classification accuracy varies from 81.41 dB (SNR = 0) to 95.25 (SNR = 10). 

A very similar idea was proposed by [Zhang et al. (2021)], in which some 

finetuning and hyperparameters differ. 

 

[Huo et al. (2021)] proposed multi-attention parallel CNN-GRU (MAPCG) fault 

diagnosis by using variational modal decomposition of a rolling bearing as an 

input to the network. The classification accuracy of their proposed model is 

98.5% which is on average higher than other models such as pure CNN, pure GRU, 

and autoencoders.  Not only for acoustic emission signals, a hybrid CNN also-

LSTM architecture has been used in NDT-SHM domain for online defect 

recognition in CO2-welded joint, as proposed by [Liu et al. (2018)]. The algorithm 

converges at 300 epochs and the accuracy of defects detection in CO2 welding 

molten pool is 94%. 

 

Unlike pure time-domain recurrent modeling approaches such as AE signal 

classification [Haile et al. (2018)], bridge vibration health monitoring [Xiao et al. 

(2021)], or system temperature prediction [Mousavi and Gandomi (2021)], there 

have not been many works in the SHM-NDT domain that involve hybrid CNN-

recurrent models. Thus, we can safely conclude that there is currently a lack of 

usage of convoluted sequential modelling for treatment of Lamb wave signals. 

Moreover, there is currently no explanation on how these sequential modelling 

approaches will behave. For this reason, the purpose of this work is to: 

 

1. Demonstrate the capability of hybrid convoluted sequential modelling for 

treating the spectrogram of Lamb wave signal. 

2. Investigate of the stability behavior of convoluted-recurrent modelling for 

variable spectrogram length 

3. Perform the experimental validation of the model for the classification of 

Lamb wave spectrogram signals. 

 

7.3. Theoretical Foundation of Hybrid CNN-Recurrent Network 

 

As we know from chapter 3, CNN is a special class of feed-forward neural 

network, the hallmark of which being in the processing of data that is either 

visually or topologically represented. The two main layers which perform the set 

of key operations within a CNN are a convolutional layer and a pooling layer. The 

convolutional layer convolves multiple filters with raw input data and generates 
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features. The 2D feature map output F resulting from the convolutional operation 

is defined at pixel (i, j) as: 

 

( ) ( ) ( )=  = + +( , ) , ( , ) ( , )
m n

F i j K X i j X i m j n K m n  
(7.3-1) 

 

In Eq. 7.3-1, K is the 2D convolutional kernel of size m x n, and X is the 2D input 

signal. The activation function φ within the convolutional layers can be chosen 

from Table 3.4.4-1, although the current most popular activation function is the 

ReLU function since it offers a good balance between an accurate approximation 

and the computational cost of traditional non-linear activation such as 

hyperbolic tangent or sigmoid. The ReLU activation function is defined as: 

 

  =  =
ReLu
( ) ( ) max(0, )TX z z  

(7.3-2) 

 

In Eq. 7.3-2, z is the product of the transposed neural weight matrix θ and original 

input signal X. Next, the activated output is passed through a pooling layer which 

performs a down-sampling of the activated feature map. This yields both a slight 

improvement in computational performance and a slight boost to invariance to 

the transformed feature map representation [Lee et al. (2016)]. A commonly used 

pooling function is the max-pooling function, which selects only the maximum 

value within the feature matrix region obtained by the convolution filters. The 

resulting pooling value G is given by: 

 

( ) ( ) = =  max (0, ) max 0, ,
i i i i
G F K X i j  

(7.3-3) 

 

There are two ways to treat the down-sampled feature representation before it is 

passed through to the FC-layer at the end of the CNN component of the network: 

either via a flattening function can be employed in order to transform the input 

into a 1D flattened vector, or with global pooling (GP) layer in order to preserve 

the spatiality before the classification layer. In either case, the resulting classed 

representation is provided as input to the fully connected layer which adjusts 

feature map such that it can be input with a time-series representation to the 

recurrent segment of the hybrid network. As known from chapter 3, there are 

currently 3 types of recurrent network: the vanilla RNN, LSTM, and GRU. LSTM 

and GRU have the advantage over RNN that both have distinctive use of memory 

blocks and cell states, which are designed to deal with temporal relationships 

present in data. Since LSTM and GRU overperformed the vanilla RNN, the use of 

the vanilla variant will not be further discussed, and the work will focus on the 

LSTM and GRU variants in this chapter. The detailed mathematical operations of 

LSTM and GRU are given in Section 3.4.3. 

 

7.4. Methodology 

 

This section will describe the methodology used to generate the data, convert it 

into time-frequency domain signal that will be used as an input, and the 
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hyperparameter configuration to train the network. There are two ways to 

generate the data: via Finite Element (FE) simulation and lab experiment. Both 

methods have its own advantages and disadvantages, which are summarized in 

Table 7.4.1. 

 

Simulated Data Experimental Data 

Advantages: 

1. Easily reproducible 

2. Simulation parameters can be 

fine-tuned. 

3. Relatively “cheap” in terms of 
physical resources, i.e., only PC 

is needed as hardware. 

 

Disadvantages: 

1. Does not represent real-world 

data, thus needs to be the 

simulated signal noise. 

2. Relatively slow to calculate the 

response, i.e., highly depends 

on PC specification. 

3. Signal quality highly depends 

on selected methodology (e.g., 

FDM vs FEM, etc.) 

Advantages: 

1. Close to real-world operation 

data. 

2. Huge amounts of data can be 

easily and quickly captured 

(within several minutes) 

3. Only a standard PC is needed. 

 

Disadvantages: 

1. Relatively “expensive” in terms 

of hardware setup (waveform 

generator, PZT sensors, cables, 

oscilloscope) and materials 

2. Environmental conditions are 

not always easily reproducible. 

3. Lab & factory testing conditions 

do not always represent real-

world operational condition 

Table 7.4-1: Advantages and disadvantages of using simulation vs experimental data. 

 

Since the simulation methodology has been thoroughly described in Section 6.2.1, 

it will not describe in this section any further. Instead, only the methodology to 

generate the data with lab equipment will be described here.  

 

7.4.1. Experimental Validation 

 

The geometrical and physical parameters of the aluminum plate have been 

described in Section 6.2.1. For the experimental setup, the following hardware is 

available at the TU Delft Aerospace NDT Laboratory: PZT sensors from American 

Piezo (Material: APC-850, Ø = 9.52 mm, 1 mm thickness), standard BNC cables, 

waveform generator Agilent 33500B, amplifier Agilent 33502A, Picoscope 

Oscilloscope 7402, cutting machine, aluminum plate with 3 rivet holes. 

 

The crack is assumed to start from the middle rivet hole, and it is simulated by 

cutting from the middle rivet hole as only the geometrical change is of concern 

here. Note that this approach is valid only for active scheduled SHM where data 

is captured on-demand, i.e., thus in reality it is not suitable for online passive 

monitoring. The data was captured at baseline level, and increasingly in an 

incremental way at 20%, 40%, 60%, 80%, and 100% critical crack length acrit to 

simulate 6 distinctive damage classes. Several photos of the experiments are 

given in Fig. 7.4.1-1a – d. 
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Fig. 7.4.1-1: a). Position of the sensors relative to the 3 rivet holes, b). Experimental setup which 

consists of an aluminum plate, PC, waveform generator, oscilloscope, and amplifier, c). Simulating 

the crack propagation process with a cutting machine, and d). Setup of amplifier (top) and 

waveform generator (bottom). 

 

7.4.2. Sensor Placement 

 

The sensor placement methodology has been described in chapter 6. For brevity 

of this section, only the results for the two best sensing locations are taken: 

position 1, located at (360|200) mm and 2, located at (510|200) mm. The actuator is 

located at (200|200) mm, as can be seen in Fig. 7.4.2-1. 

 

 
Fig. 7.4.2-1: Sensor positions are numbered from 1 – 8. The coordinates of each sensor position are 

written in brackets. A is the actuator; and H are the rivet holes. All dimensions are expressed in mm. 

The sensor locations are numbered from 1 – 8 and a is the half crack length.  
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7.4.3. Reassigned Spectrogram 

 

To make a compromise between the time-resolution and frequency-resolution 

while keeping both with a relatively high resolution, a reassigned spectrogram 

methodology [Flandrin et al. (2002)] is used, which is based on multitaper 

technique to estimate the power spectrum of a stationary signal [Thomson (1982), 

Percival et al. (1993)]. As described in section 6.3.2, the reassignment method is a 

technique used in TFRs to sharpen and to localize the frequencies nearer to their 

true regions along time of the signal [Niethammer et al. (2001)]. Examples of the 

reassigned spectrograms are given in Fig. 7.4.3-1a – d. In each figure, the first, 

second, and third rows indicate the baseline signal, the signal from the damaged 

plate with 2a = 40% critical crack length acrit, and the signal from the damaged 

plate with 2a = 100% critical crack length acrit, respectively. The network 

topology and the crack location can be seen from Fig. 7.4.2-1. 

 
a). Sensor 1, f = 150 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row:  X(2a = acrit) 

 

b). Sensor 2, f = 150 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row:  X(2a = acrit) 

 

c). Sensor 1, f = 250 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row:  X(2a = acrit) 

 

d). Sensor 2, f = 250 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row:  X(2a = acrit) 

 

Fig. 7.4.3-1: Reassigned spectrogram for sensing location 1 and 2 with the actuation frequency f of 

either 150 kHz or 250 kHz. X(2a) indicates the spectrogram of the captured signal X for the plate 

with crack length of 2a. The geometrical configuration can is depicted in Fig. 7.4.2-1. 

 

When considering the entity representation described in section 6.3.3, the signal 

depicted in Fig. 7.4.3-1a can be joined together with Fig. 7.4.3-1b to create a joint 

representation, known as a conserved entity over time. The result is depicted in 
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Fig. 7.4.3-2a. This can be analogously applied for activation frequency f = 250 kHz, 

as depicted in Fig. 7.4.3-2b. 

 
a). Sensor 1 and 2, f = 150 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row:  X(2a = acrit) 

 

b). Sensor 1 and 2, f = 250 kHz. 1st row: X(2a = 0), 2nd row: X(2a = 40% acrit), 3rd row:  X(2a = acrit) 

 

Fig. 7.4.3-2: Reassigned spectrogram for joined captured signal at sensing locations 1 and 2 with the 

actuation frequency f of a). 150 kHz and b). 250 kHz. The nomenclature is analogous to Fig. 7.4.3-1. 

The image is saved as portable network graphic (PNG) to conserve the quality of information. 

 

In both examples, the blue channel is filled with the 0-matrix, the red channel 

represents data captured by sensor 1 and the green channel represents data from 

sensor 2. The convolutional operation is not affected by the color channel 

assignment, however, for the consistency only the red and green channel in the 

following section is used. 

 

7.4.4. Recurrent Training Mechanism 

 

At time tn, the reassigned spectrogram is divided into several sliding windows of 

different length s = 128 pixels, 256 pixels, 512 pixels, and 1024 pixels. The size of 

the input length into the network is s x spectrogram bandwidth (239 frequency 

components) x number of channels (either 1 or 3). The sliced spectrogram is put 

as an input into the convolutional layer of the neural network and the abstract 

representation from the convolutional layer serves as an input for the recurrent 

layer, which can be either LSTM or GRU. At time tn+1, the sliding windows are 

moved by several strides (e.g.: 10 x-pixels, i.e.: time-component) and the 

procedure mentioned before is repeated until the whole spectrogram is covered. 

 

7.4.5. Hyperparameters Configuration 

 

To understand the training stability of the network, we shall compare several 

hyperparameter configurations: 

 

1. Number of recurrent layers: 2 vs 4 

2. Type of recurrent layers: LSTM vs GRU 

3. Type of transition layers: Dense (Flatten) vs global pooling (GP) 

4. Dropout rate: 0.10 vs 0.25 vs 0.50 
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The logic to use 2 vs 4 recurrent LSTM and/or GRU layers is due to the vanishing 

gradient problem. In fact, LSTM and GRU are designed to tackle the problem RNN 

has by slowing down the vanishing gradient. However, if more LSTM / GRU 

recurrent layers are embedded, then the vanishing gradient is accelerated again 

and hence becomes counterproductive against the purpose for it is intended to. 

 

Without any dropout (i.e., 0.0) the network might be prone to overfitting, however 

when the dropout is = 1, then all neuronal parameters will be reset to some 

random vectors, rendering the training impossible. The goal is to find some sweet 

spots between these values without exhaustive search. Note that these 

combinational lists are not exhaustive, and practically it is almost impossible to 

cover all possible parameters due to combinatorial variations. 

 

7.5. Results and Discussion 

 

This section will cover the training results for the CNN-recurrent models to 

understand their training stability. As previously explained, there are two 

datasets: one from simulation and the other from the lab experiments. These 

training results will be discussed in sections 7.5.1 and 7.5.2, respectively. The 

discussion on what essential information as well as knowledge that can be 

extracted is given in section 7.5.3. Like any machine learning method, training a 

deep neural network involves stochasticity and sometimes it involves some 

anecdotal artifacts that might be difficult to verify a-priori. To make a conclusion, 

it is therefore wise to make a slightly larger-scale training to detect any consistent 

behavior rather than to focus on a certain random artifact. Some important 

notation in this section with regards to the data is: single-channel spectrogram 

(e.g., Fig. 7.4.3-1) denotes the converted time-series data from sensor 1 and 3-

channel spectrogram (e.g., Fig. 7.4.3-2) denotes the converted time-series data 

from sensor 1 and 2. The 3rd (blue) channel as mentioned in section 7.4.3 is a matrix 

filled with zero values. 

 

7.5.1. Simulation Dataset 

 

We start to discuss the training stability based on the selected hyperparameters 

given in section 7.4. Only a single hyperparameter selection is observed at one 

time while keeping the other parameters constant to isolate the observation, e.g.: 

when comparing two different networks with a different number of layers, the 

dropout rate and the type of layers should be kept the same. The result of training 

curves can be seen from attachment A. 

 

a. Comparison between 2-layer GRU vs 4-layer GRU, both networks have a 

dropout rate of 0.10 with flattening for transition (see figures in attachment 

A1 and A2): 

 

▪ It can be observed that the training curve of 2-layer GRU behaves more 

stably for a both single-channel (i.e.: Lamb wave response from single 

sensor location) and a 3-channel spectrogram (i.e.: Lamb wave 
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response from 3 different sensing locations), except for a sliding 

window length s = 512 pixels (Fig. A1-3). 

▪ For a shorter sliding window, the training of 2 channels data converges 

more quickly than that of single channel only (cf. Fig. A1-1 vs A1-5 and 

Fig. A1-2 vs Fig. A1-6). This can be confirmed by looking at Fig. A1-4 vs 

Fig. A1-8, although we can see that in Fig. A1-4, the convergence of the 

training curve is faster than that of Fig. A1-1 and A1-2. 

▪ From Fig. A2-1, we can see that training of 4-layer GRU failed for a single 

channel spectrogram with a sliding window length of s = 128, while s = 

512 and 1024 pixels fails after some epochs (Fig. A2-3 and A2-4, 

respectively). The 3-channel spectrogram with s = 256 pixels also fails 

after some epochs (Fig. A2-5). 

 

b. Comparison between 2-layer GRU vs 2-layer LSTM. Both networks have a 

dropout rate of 0.10 with flattening as transition layers (see figures in 

attachment A1 and A3): 

 

▪ It can be observed that the training of the 2-layer GRU is more stable 

than the LSTM. From attachment A, we can see that only training for 

single channel data with s = 512 pixels does not converge (Fig. A1-3), 

while from attachment B, we can see either some very rough training 

curves or that the training accuracy suddenly falls (Fig. A3-1, Fig. A3-2, 

Fig. A3-5 and Fig. A3-6). 

▪ For a sliding window length s = 512 and 1024 pixels for both single-

channel and 2-channel data, the difference of the training behavior 

between LSTM and GRU is not significant (cf. Fig. A1-4 vs A3-4, Fig. A1-

7 vs A3-7, and Fig. A1-8 vs A3-8). 

▪ Training with LSTM results in smoother training curve (cf. Fig A1-3 vs 

Fig. A3-3). 

 

c. Comparison between 2-layer LSTM with flattening and GP as transition 

layers (see figures in attachment A3 and A4): 

 

▪ No significant difference can be observed that except that for the GP 

layer, the training is slightly noisier, although it successfully converges 

for single-channel spectrogram with s = 256 and 512 pixels. 

▪ The training failed for a single-channel spectrogram with s = 1024 

pixels (Fig. A4-4), which might be due to a memory issue. 

▪ The training for a 3-channel spectrogram succeeds for both GP and 

flattening transition layers for s = 256, 512, and 1024 pixels (Fig. A3-6 to 

A3-8 and Fig. A4-6 to A4-8, respectively). However, it can be seen that s 

= 1024 pixels results in the smoothest training curve of all. 

 

d. Comparison between 2-layer LSTM with flattening layers as transition 

layer with varying dropout rate: 0.10 vs 0.25 vs 0.50 (see figures in 

attachment A3, A5, and A6): 
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▪ In general, it can be observed that training with a dropout rate of 0.25 is 

noisier than 0.10 and this is to be expected. At the same time, training 

with a lower dropout rate would mean that there is a fair likelihood that 

a dropout rate of 0.10 can also cause parameter overfitting. 

▪ Training with a dropout rate of 0.25 fails for a single-channel 

spectrogram with s = 128 as the window might be too short (Fig. A5-1 

and A5-5), and it behaves inconsistently for s = 256, 512, and 1024 pixels 

(Fig. A5-2 to Fig. A5-4), as well as for a 3-channel spectrogram with s = 

128 pixels (Fig. A5-5). The training convergence for 3-channel 

spectrogram starts at s = 256 pixels (Fig. A5-6 to A5-8). 

▪ Training with a dropout rate of 0.50 completely fails (see Fig. A6-1 to 

A6-8), likely due to the fact too many neurons are dropped in a such 

way that the network could not learn anymore during the training. 

 

7.5.2. Experimental Dataset 

 

Analogous to section 7.5.1, the description of the result is organized in the same 

manner. The difference here between Section 7.5.2 is that the dataset used is from 

the oscilloscope, as described in Section 7.4.1. The result of training curves can be 

seen from attachment B. 

 

a. Comparison between 2-layer LSTM with flattening layers as transition 

layers with dropout rate of 0.10 vs 0.25 (see attachment B1 and B3): 

 

▪ It can be observed from Fig. B3-1 and B3-5 that both training curves of 

the single-channel and 3-channel spectrogram with s = 128 pixels and 

dropout rate of 0.25 converge, while when using the dropout rate of 

0.10, the training failed as can be seen in Fig. B1-1 and B1-5. 

▪ From Fig. B3-5 to B3-8, the training for all 3-channel spectrograms with 

dropout rate of 0.25 successfully converge to >98% training accuracy, 

while for training with dropout rate of 0.10, only the training for the 3-

channel spectrogram with s = 512 and 1024 pixels converges. 

▪ The training for a single-channel spectrogram for s = 256 pixels and 512 

pixels failed (Fig. B3-2 and B3-3, respectively), while for s = 1024 pixels 

the curve converges to >98% training accuracy although the training 

itself is very noisy (Fig. B3-4). 

 

b. Comparison between 2-layer GRU with GP layer as transition layer and 

dropout rate of 0.10 vs 0.25 (see attachment B2 and B4): 

 

▪ From Fig. B2-1 and B2-2, it can be observed that the training for a single-

channel spectrogram with s = 128 and 256 pixels with dropout rate of 

0.10 converges, while when it is increased to 0.25, the training curve 

became very noisy. 

▪ From Fig. B2-5 to B2-7, it can be observed that the significant difference 

in training the 3-channel spectrogram for s = 128, 256, and 512 pixels, 
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respectively, lies in the noisiness of the training. However, when 

training the 3-channel spectrogram with s = 1024, it failed. 

▪ From Fig. B2-3, B2-4, B4-3, and B4-4, it can be seen that training the 

single-channel spectrogram with s = 512 pixels and 1024 pixels with 

dropout rate of 0.10 and 0.25 failed. 

 

c. Comparison between 4-layer GRU vs LSTM, both networks had a dropout 

rate of 0.25 and a GP layer as a transition layer (see attachment B5 and B6): 

 

▪ The training for both 4-layer GRU and LSTM fails in for all single-

channel spectrogram of all window lengths (s = 128, 256, 512, and 1024 

pixels) as depicted in Fig. B5-1 to B5-4 and B6-1 to B6-4, respectively. 

▪ On the contrary, when training a 3-channel spectrogram with a 4-layer 

GRU, the accuracy goes well above > 98% (Fig. B6-5 to B6-8) for all 

window lengths (s = 128, 256, 512, and 1024 pixels) albeit some noisiness 

in the training but this is to be expected since the 4-layer recurrent 

network is more difficult to train. 

▪ In the meanwhile, only the training with 4-layer LSTM for the 3-

channel spectrogram with s = 512 and 1024 pixels converged (Fig. B5-7 

and B5-8, respectively), while it failed to converge when s = 128 and 256 

pixels (Fig. B5-5 and B5-6, respectively). 

 

d. Comparison between 2- vs 4-layer LSTM with dropout rate of 0.25 and GP 

layer as transition layer (see attachment B3 and B5): 

 

▪ The training of the single-channel spectrogram with a 4-layer LSTM 

failed for all window lengths (s = 128, 256, 512, and 1024 pixels) as 

depicted in Fig. B5-1 to B5-4, while only the training with a 2-layer LSTM 

for a single-channel spectrogram with sliding window length of 128 

pixels was successful (Fig. B3-1). 

▪ It can be observed that training the 3-channel spectrogram with a 4-

layer LSTM only starts to converge when the spectrogram has the 

window length s = 512 pixels (Fig. B5-7 and B5-8). 

▪ Finally, the training of 3-channel spectrogram was successful for 2-

layer LSTM in for all window lengths (s = 128, 256, 512, and 1024 pixels) 

as depicted in Fig. B3-5 to B3-8, respectively. 

 

e. Comparison between 2- vs 4-layer GRU with a dropout rate of 0.25 and GP 

layer as transition layer (see attachment B4 and B6): 

 

▪ It can be observed that training a single-channel spectrogram with a 4-

layer GRU did not converge for all window lengths (s = 128, 256, 512, and 

1024 pixels), as depicted in Fig. B6-1 to B6-4, while training 2-layer GRU 

failed with window lengths s = 512 and 1024 pixels (Fig. B4-3 and B4-4) 

– most likely due to a memory issue. 

▪ It is worth mentioning that the spectrogram training with a 2-layer 

GRU results in very noisy training behavior (Fig. B4-1 and B4-2). 
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▪ No significant difference for training 3-channel spectrogram with 2-

layer and 4-layer GRU for all window lengths (s = 128, 256, 512, and 1024 

pixels) can be seen in Fig. B4-4 to B4-8 and B6-4 to B6-8, respectively. 

 

7.5.3. Discussion 

 

This section covers some essential observations found from section 7.5.1 and 

7.5.2: 

 

1. Comparison between the flattening function vs global pooling (GP) layer 

as transition layer between the convolutional feature and recurrent part: 

Using the flattening function typically results in more stable and smoother 

training curve, but this is to be enjoyed with caution as it might overfit 

more quickly than a GP layer. The GP layer averaged the final spatial 

features and by doing so, the convoluted features become more invariant, 

preventing the overfitting in the fully connected layers. At the same time, 

it may also introduce more noisy training behavior. 

 

2. The effect of varying dropout rates: a dropout rate of 0.10 generally causes 

the training curve to be smoother than a dropout out rate of 0.25, and a 

dropout rate of 0.25 is generally making the training curve smoother than 

that of 0.50. This is general knowledge, but not in coherence with Hinton’s 

group initial proposal [Srivastava et al. (2014)] that the dropout rate of 0.50 

is the best. Concludingly, the guideline stating that dropout should be 0.50 

cannot not confirmed as all trainings failed (attachment A6). 

 

3. Comparison between recurrent network mechanisms: The LSTM type is 

sometimes smoother than GRU when the dropout rate is set correctly, but 

from what we can observe from the result, the stability difference is 

minimal. The difference is only the computational memory used. Since 

only a very small amount of data is trained, no noticeable difference is 

observed. However, there is need for scalability study in the future. 

 

4. The effect of the number of layers: along with general deep learning 

knowledge, adding more layers allows a higher network complexity that 

increases the estimation capacity (cf. Rademacher complexity and VC-

Dimension from section 3.4.1). Allowing a higher complexity will allow a 

more complex pattern to be analyzed, however it also increases the 

likelihood of overfitting. Therefore, steering the network robustness by 

adding some regularization such as dropout is necessary to prevent 

overfitting. From the results, we can see that a 2-recurrent layer network 

has a better training stability than a 4-recurrent layer network. This is most 

likely due to the fact that the space-time coherence is becoming “blurrier” 
as the number of recurrent layers is increased. The pattern complexity 

that is available in the spectrogram, be it in the single or 3-channel, is likely 

to be far lower than estimation capacity of the 4-recurrent layer. 
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As a general remark, for this type of data, especially for a Lamb wave 

spectrogram, the suggestion is to use 2 recurrent layers with a dropout rate 

between 0.10 and 0.25. Both the flattening function and GP can be used 

interchangeably, but the preference should be given for the GP as it may result 

into more robust network albeit giving slightly noisier training. For the 

recurrent network type, we can safely conclude that both GRU and LSTM can 

also be used interchangeably except when it involves large-scale training 

where the GRU might be more computationally efficient than the LSTM. 

 

7.6. Conclusion 

 

This chapter aims to investigate the training stability of the hybrid convoluted 

sequential modelling by influencing the hyperparameters involved. The 

introductory part and the state-of-the art from which the research problems are 

derived is given in section 7.1 and 7.2. With briefly described theory on the hybrid 

network in section 7.3 (and partially some others which were mentioned in 

chapter 3), I hope to have given enough overview on the theoretical foundation, 

while the research methodology was given in section 7.4. All in all, this leads to 

the result and discussion given in section 7.5. 

 

As a reiteration from the beginning, hybrid data-driven physics models based on 

historical data to support decision making from the online data collected from 

sensors are necessary to facilitate the Internet of Things (IoT) and we know that 

due to the current limitation of non-recurrent CNN, a continuous Lamb wave 

signal from an aircraft cannot easily handled as a one-shot problem, but we must 

rather align to the problem nature of such signal, i.e., some sequential modelling 

should be involved. Revisiting the purpose of this work given at the end of section 

7.2, my conclusion is following: 

 

1. The hybrid convoluted sequential modelling has clearly a capability to 

treat the spectrogram of Lamb wave signal opening the potential not only 

for application in active SHM only, but it could be used for a solution that 

requires passive monitoring such as acoustic emission. 

 

2. Based on the investigation on stability of training behavior of convoluted-

recurrent modelling for a variable spectrogram length, we can safely 

confirm that training such a hybrid convoluted recurrent network is more 

difficult as none of the unstable training behavior (such as in attachment 

A6) occurs with non-recurrent CNN (cf. the results with chapter 6). 

 

3. To increase the training curve stability, there is the possibility to involve 

more channels in the spectrogram, although it would mean if it has more 

than 4-channels, a customization for the current deep learning software 

such as Tensorflow or PyTorch is needed as the image processing library 

can only take PNG at most (i.e., 4-channels including the alpha layer). 
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Attachment A 

 

Fig. A1: Training Curves of Simulated Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: GRU Type of transition layers: Dense (Flatten) 

Dropout rate: 0.10 Input: either 1 channel or 3 channels 

 

Fig. A1-1: s = 128 pixels, Data from sensor 1 

 

Fig. A1-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. A1-2: s = 256 pixels, Data from sensor 1 

 

Fig. A1-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. A1-3: s = 512 pixels, Data from sensor 1 

 

Fig. A1-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. A1-4: s = 1024 pixels, Data from sensor 1 

 

Fig. A1-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. A2: Training Curves of Simulated Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 4 

Type of recurrent layers: GRU Type of transition layers: Dense (Flatten) 

Dropout rate: 0.10 Input: either 1 channel or 3 channels 

 

Fig. A2-1: s = 128 pixels, Data from sensor 1 

 

Fig. A2-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. A2-2: s = 256 pixels, Data from sensor 1 

 

Fig. A2-5: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. A2-3: s = 512 pixels, Data from sensor 1 

 

Fig. A2-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. A2-4: s = 1024 pixels, Data from sensor 1 

 

Fig. A2-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. A3: Training Curves of Simulated Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten) 

Dropout rate: 0.10 Input: either 1 channel or 3 channels 

 

Fig. A3-1: s = 128 pixels, Data from sensor 1 

 

Fig. A3-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. A3-2: s = 256 pixels, Data from sensor 1 

 

Fig. A3-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. A3-3: s = 512 pixels, Data from sensor 1 

 

Fig. A3-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. A3-4: s = 1024 pixels, Data from sensor 1 

 

Fig. A3-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. A4: Training Curves of Simulated Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: LSTM Type of transition layers: GP 

Dropout rate: 0.10 Input: either 1 channel or 3 channels 

 

Fig. A4-1: s = 128 pixels, Data from sensor 1 

 

Fig. A4-5: s = 128 pixels, Data from sensors 1 and 2 

 
Fig. A4-2: s = 256 pixels, Data from sensor 1 

 

Fig. A4-6: s = 256 pixels, Data from sensors 1 and 2 

 
Fig. A4-3: s = 512 pixels, Data from sensor 1 

 

Fig. A4-7: s = 512 pixels, Data from sensors 1 and 2 

 
Fig. A4-4: s = 1024 pixels, Data from sensor 1 

 

Fig. A4-8 s = 1024 pixels, Data from sensors 1 and 2 
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Fig. A5: Training Curves of Simulated Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten) 

Dropout rate: 0.25 Input: either 1 channel or 3 channels 

 

Fig. A5-1: s = 128 pixels, Data from sensor 1 

 

Fig. A5-5: s = 128 pixels, Data from sensors 1 and 2 

 
Fig. A5-2: s = 256 pixels, Data from sensor 1 

 

Fig. A5-6: s = 256 pixels, Data from sensors 1 and 2 

 
Fig. A5-3: s = 512 pixels, Data from sensor 1 

 

Fig. A5-7: s = 512 pixels, Data from sensors 1 and 2 

 
Fig. A5-4: s = 1024 pixels, Data from sensor 1 

 

Fig. A5-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. A6: Training Curves of Simulated Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten) 

Dropout rate: 0.50 Input: either 1 channel or 3 channels 

 

Fig. A6-1: s = 128 pixels, Data from sensor 1 

 

Fig. A6-5: s = 128 pixels, Data from sensors 1 and 2 

 
Fig. A6-2: s = 256 pixels, Data from sensor 1 

 

Fig. A6-6: s = 256 pixels, Data from sensors 1 and 2 

 
Fig. A6-3: s = 512 pixels, Data from sensor 1 

 

Fig. A6-7: s = 512 pixels, Data from sensors 1 and 2 

 
Fig. A6-4: s = 1024 pixels, Data from sensor 1 

 

Fig. A6-8: s = 1024 pixels, Data from sensors 1 and 2 
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Attachment B 

 

Fig. B1: Training Curves of Experimental Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten) 

Dropout rate: 0.10 Input: either 1 channel or 3 channels 

 

Fig. B1-1: s = 128 pixels, Data from sensor 1 

 

Fig. B1-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. B1-2: s = 256 pixels, Data from sensor 1 

 

Fig. B1-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. B1-3: s = 512 pixels, Data from sensor 1 

 

Fig. B1-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. B1-4: s = 1024 pixels, Data from sensor 1 

 

Fig. B1-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. B2: Training Curves of Experimental Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: GRU Type of transition layers: GP 

Dropout rate: 0.10 Input: either 1 channel or 3 channels 

   

Fig. B2-1: s = 128 pixels, Data from sensor 1 

 

Fig. B2-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. B2-2: s = 256 pixels, Data from sensor 1 

 

Fig. B2-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. B2-3: s = 512 pixels, Data from sensor 1 

 

Fig. B2-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. B2-4: s = 1024 pixels, Data from sensor 1 

 

Fig. B2-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. B3: Training Curves of Experimental Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: LSTM Type of transition layers: Dense (Flatten) 

Dropout rate: 0.25 Input: either 1 channel or 3 channels 

 

Fig. B3-1: s = 128 pixels, Data from sensor 1 

 

Fig. B3-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. B3-2: s = 256 pixels, Data from sensor 1 

 

Fig. B3-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. B3-3: s = 512 pixels, Data from sensor 1 

 

Fig. B3-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. B3-4: s = 1024 pixels, Data from sensor 1 

 

Fig. B3-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. B4: Training Curves of Experimental Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 2 

Type of recurrent layers: GRU Type of transition layers: GP 

Dropout rate: 0.25 Input: either 1 channel or 3 channels 

 

Fig. B4-1: s = 128 pixels, Data from sensor 1 

 

Fig. B4-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. B4-2: s = 256 pixels, Data from sensor 1 

 

Fig. B4-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. B4-3: s = 512 pixels, Data from sensor 1 

 

Fig. B4-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. B4-4: s = 1024 pixels, Data from sensor 1 

 

Fig. B4-8: s = 1024 pixels, Data from sensors 1 and 2 
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Fig. B5: Training Curves of Experimental Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 4 

Type of recurrent layers: LSTM Type of transition layers: GP 

Dropout rate: 0.25 Input: either 1 channel or 3 channels 

 

Fig. B5-1: s = 128 pixels, Data from sensor 1 

 

Fig. B5-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. B5-2: s = 256 pixels, Data from sensor 1 

 

Fig. B5-6: s = 256 pixels, Data from sensors 1 and 2

 

Fig. B5-3: s = 512 pixels, Data from sensor 1 

 

Fig. B5-7: s = 512 pixels, Data from sensors 1 and 2

 

Fig. B5-4: s = 1024 pixels, Data from sensor 1 

 

Fig. B5-8: s = 1024 pixels, Data from sensors 1 and 2
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Fig. B6: Training Curves of Experimental Data with various sliding window lengths s from sensor 

locations 1 and 2 with following the hyperparameters: 

 

Number of convolutional layers: 7 Number of recurrent layers: 4 

Type of recurrent layers: GRU Type of transition layers: GP 

Dropout rate: 0.25 Input: either 1 channel or 3 channels 

 

Fig. B6-1: s = 128 pixels, Data from sensor 1 

 

Fig. B6-5: s = 128 pixels, Data from sensors 1 and 2 

 

Fig. B6-2: s = 256 pixels, Data from sensor 1 

 

Fig. B6-6: s = 256 pixels, Data from sensors 1 and 2 

 

Fig. B6-3: s = 512 pixels, Data from sensor 1 

 

Fig. B6-7: s = 512 pixels, Data from sensors 1 and 2 

 

Fig. B6-4: s = 1024 pixels, Data from sensor 1 

 

Fig. B6-8: s = 1024 pixels, Data from sensors 1 and 2 
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8. Conclusion and Future Works 

 

This chapter will briefly summarize the content of the PhD work in section 8.1, 

while section 8.2 will give the conclusions of the scientific work regarding the 

utilization of computational and artificial intelligence for applications in SHM 

domain. As a final word, the outlook and challenges of future AI-driven SHM 

system will be given in section 8.3. 

 

8.1. Result Summary 

 

To conclude the dissertation, I will provide a flashback into the results obtained 

during my research. 

 

Chapter 4 of covers the assumption of the damage growth within the damage 

tolerance, and the used methodology to generate and capture Lamb wave signal 

within a Finite Element (FE) environment. The data processing includes color 

theory, image processing, and blob detection was also given in this chapter. 

While the image processing algorithm proposed is not a quantitative approach, 

this technique can be regarded as a first step for studying sensor placement in a 

more holistic way. The methodology proposed depicts a deterministic solution 

that can be partially used for solving continuous optimization in sensor 

placement problem. This solution, however, does not end there. As the 

conclusion of chapter 4, the following issues were still to be addressed: 

 

1. “Stochastic strategy for non-predictable damage location, especially for 

quasi-instantaneous but abrupt-like events such as bird strike, …” 

2. “Bimodal utilization of deterministic and stochastic of the network topology, 

with regard to the integration of both approaches …” 

 

Therefore, a further approach was developed in chapter 5, in which I mentioned 

the important influencing physical parameters to determine the objective 

function that is to be minimized. Chapter 5 covers the stochastic strategy for 

sensor placement by using random search, greedy methods, genetic algorithm, 

simulated annealing, and swarm intelligence, and then elaborated the results 

from chapter 4 to create the bimodal topology for both predictable and non-

predictable damage locations. The experimental validation was also given in this 

chapter which results in following conclusive statements: 

 

• Global random search has logically the lowest search performance, while 

GA and PSO are on par, and they have the best performance. The greedy 

methodology and SA have a search performance which lies in between 

GA/PSO and global random search. 

• The hybrid approach that combines blob detection algorithm and search 

metaheuristics is a good fit to address sensor positioning problem in active 

ultrasonic SHM in a limited albeit scalable manner, especially when the 

detection requirement is not too high. 
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• Unsurprisingly, the hybrid approach described in chapter 5 fulfills its 

duty as long as the purpose of (active)-SHM is to complement NDT and not 

functioning as its replacement. 

 

In chapter 6, we saw the investigation on whether deep learning can be used to 

treat the Lamb wave signal. The chapter started with the main questions: “How 

does the varying sensing location and the different sensing representations of a 

Lamb wave signal influence the deep learning training behavior?” and “What 

consequence can be drawn for the engineering application in SHM and why should 

this approach work?”. To preliminarily answer these questions, the proposition of 

modelling SHM perception from a neuroscientific perspective has been made. 

Also included in chapter 6 is the concept and theoretical background such as 

converging the probability measure and generalization bound in deep learning. 

 

The approach to represent the entity of the captured Lamb wave signal in the 

time-frequency domain are either hierarchical (which only consists of a 

randomly sampled spectrogram) or a conserved entity over time (which consists 

multiple layers of spectrograms joined in an image). These entities are trained 

using the parameters listed in section 6.3.4, while the training results from both 

entity representations are given in section 6.4. To validate the hypothesis, a 

simple A/B Testing is conducted in section 6.5. The conclusions were: 

 

• An optimal sensor network topology will give the most desired training 

behavior due to a better response capture. However, as far as we can see 

from the results, when training the representation of the signals from 

multiple sensing locations in one single entity seemingly outweighs the 

previous assumption. Given the approximating capacity of a deep neural 

network as described before, we shall actually be not surprised. 

• The training cost in terms of time would increase when the network must 

learn more parameters. Currently, limiting the neural network size is very 

likely to be the only feasible way to make deep learning for structural 

diagnostics scalable for industrial application. 

 

Finally, chapter 6 also stated: “In the future work, it would be of interest to 

investigate the scalability level of deep learning for SHM for a given data size, model 

parameters, and restriction on physical memory”. Thus, this backlog was partially 

tackled in chapter 7 especially by taking sequential modelling into account. The 

methodology contains experimental setup, several simulation parameters, and 

data pre-processing which is basically the same as in chapter 6. 

 

Based on the conducted literature review, we can safely conclude that there have 

been not many works in SHM-NDT domain that involve the hybrid CNN-

recurrent models. As of 2021, the usage of convoluted sequential modelling for 

treatment of Lamb wave signal is practically limited and more importantly, there 

is currently no explanation on how these sequential modelling will behave. 

Section 7.5 divided the training results coming from 2 datasets: from experiment 

and from simulation. In each sub-section, we saw the comparison of the training 
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stability by modifying several hyperparameters. Based on the results, the 

conclusions of chapter 7 can be summarized as follows: 

 

• Hybrid convoluted sequential modelling can cope with the spectrogram 

of a Lamb wave signal as input, and as such it opens up the potential not 

only for application in active SHM, but also for continuous monitoring 

such as acoustic emission (AE). In fact, it will be even more useful to embed 

the spectrotemporal capture via a convolutional kernel in the model 

rather than relying only on a pure time-domain recurrent model. 

• The caveat is however: from the training results, it seems that training such 

a hybrid CNN-recurrent network is more difficult due to the unstable 

training behavior. Further, parallelization via GPU does not help because 

unlike convolutional operations that can be performed simultaneously, 

recurrent network operations are designed to follow each after. 

 

An approach to involve more channels in the spectrogram to increase the 

training stability is also proposed. This would mean that if the spectrogram has 

more than 4- channels, some software engineering works such as deep learning 

library customization is needed.  

 

8.2. Conclusion 

 

To conclude this dissertation in general, let us revisit the research purpose stated 

in chapter 2 which covers the state of the art in NDT & SHM and the recent 

advances from the CS and ML community. This resulted into a high-level 

question that should be asked from the NDT & SHM community is: 

 

What is the feasibility of incorporating computational and artificial 

intelligence as a design tool for an automated diagnostic within 

predictive maintenance – and if so, in what way?  

 

As already pointed out, to (partially) solve certain domains with the help of AI, we 

shall break down the main problem into several manageable sub-problems, 

commonly known as the divide and conquer strategy that has been regularly 

used in many aspects of human civilization. The smaller sub-questions are: 

 

1. “The design complexity and parameter optimization, particularly on sensor 

placement methodologies for both deterministic and semi-stochastic 

approach according to what extent the structure is designed based on the 

premise that sensor network topology affects the damage detection capability 

and the overall SHM performance, i.e., which different sensor network 

topologies are needed to understand the trade-off between the strategies and 

if possible, to propose a compensation technique? 

Two assumptions were made to answer question 1 and they naturally came from 

the structural design: A hazard in the structure can occur both in its weakest point 

due to design constraints or in another location that might be less predictable due 
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to the stochastic nature of the environment. Consequently, the sensor network 

topology problem is broken down into three possible approaches: 

 

• For the localized problem such as hotspot damage detection, we 

should maximize the sensor response based on the isolated location. 

• For a statistically less predictable damage location such as hail impact, 

the logical choice would be to maximize the detection area in such way 

that any sudden impact will be detected on the first instance. 

• In realistic world, both kinds of hazards would likely to occur. I 

therefore proposed to compensate both by using the combination of 

topology that have hotspot & global damage detection capability. 

 

2. “Utilization of deep learning for SHM, i.e., an investigation as to whether deep 

learning can be used to treat the Lamb wave signal – and if so, whether it has 

a certain theoretical justification. What would be the pros and cons when 

using deep learning to treat Lamb wave signals and what would be the 

consequences for design and manufacturing of SHM system?” 

 

To answer question 2 an assumption that a set of a labeled data is available must 

be made. Within the supervised learning approach, the relevant foundation 

needed to understand the concept of learning is given so that we shall know that 

the high accuracy or classification performance of the deep neural network is not 

merely because of network overfitting, since there is a baseline for the theoretical 

guarantee as demonstrated in chapter 6. Consequently, by now we should be 

aware of what deep learning can do (and what it is not). An A/B Testing is needed 

to ensure that the network does not simply overfit the noise. To summarize: 

 

• We can clearly see that the potential advantage of deep learning lies in 

its relatively high performance and currently as of 2022, it is still the 

best in-class for pattern recognition within supervised learning. Given 

the generalization guarantee via testing and validation, we know that 

at least the network is not simply memorizing the spectrogram.  

• On the negative side: Speaking from my personal experience working 

in industry and given the standard practice where many labelled data 

are hidden (i.e., not accessible in a public repository), we shall raise the 

doubt about the scalability of using the deep learning approach – not 

only for Lamb wave SHM, but also for other SHM-NDT related topics. 

 

3. “Eventually and worthy to be considered as a research direction as well: when 

combining the sub-problems to reconstruct the final solution: Given a certain 

sensor topology, what would the training behavior look like for different 

sensors and could a philosophical aspect from neuroscientific perspective be 

considered as well?” 

 

The answer to question 3 has been largely answered in chapters 6 and 7. Chapter 

discussed the training behavior from a single-layer and a 3-layered spectrogram 

for a given sensor topology. Also as mentioned earlier, this chapter highlighted 

the theoretical foundation which focused on the learning capacity and the 
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generalization gap via validation. Statistical A/B Testing was involved as well to 

ensure that the network does not overfit the input. 

 

Chapter 7 focused on the training stability of sequential modelling with varying 

hyperparameters. The hyperparameter selection can be regarded either as a 

guideline or an anchor for further a hyperparameter search study. The results 

from chapter 6 and 7 can be summarized in the following two statements: 

 

• The training behavior does not only depend on the network topology, 

but also the approach taken as to whether the network is fed with the 

whole signal representation such as ConvNet or whether it is modelled 

sequentially. The latter one has generally less stable training behavior 

and it takes more time to reach performance convergence, but it also 

depicts the only possible modelling approach for continuous input. 

• Taking the two entity representations inspired by the neuroscientific 

perspective into account (i.e., hierarchical representations of entity 

and conserved entity over time), the organization of the spectrogram 

clearly influences the training behavior in such a way that a more 

complex input pattern yields in a faster training convergence by 

creating a very distinctive pattern in each probability class. 

 

Finally, it is now the time to deliver a general conclusion for this PhD thesis. I 

stated in the beginning that there is nothing as a free lunch and as a staunch 

believer that there is really no such thing as a free lunch, not only in mathematics 

or computer science, but literally everything, I would like to point out both the 

strengths and weaknesses of employing AI and computational intelligence for 

designing SHM in predictive maintenance. The strength of using AI (especially 

deep learning and metaheuristics) as a design tool for SHM is: 

 

1. From the results, it is obvious that deep learning and metaheuristics 

empowered the search of design parameters, thus it is safe to say that both 

techniques are suitable methods for designing sub-SHM system. Guided 

by domain knowledge, it will help many aircraft designers to accelerate 

their work.  Note that we shall acknowledge that the domain knowledge 

here is not an option, but a requirement. 

2. Currently it is known that aircraft operations are not all about 

maintenance since aircraft maintenance only accounts for up to 20% of 

the operating expenditure (OPEX). Thus, even with a high-efficiency 

functioning system (e.g., 80% man-hours reduction), the total cost saving 

(TCS) from OPEX will be only account to 16%. On the bright side, this gives 

an opening for the aircraft designer to adapt and/or (re)-design the future 

of maintenance framework to include AI & computational intelligence 

elements. 

 

As always, with good news, there must be some bad news since otherwise our life 

might become too easy: 
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1. On the practicality aspect, some assumptions such as that data labels must 

be available is quite difficult to be fulfilled, if not absurd. While in-flight 

sensor data is typically available, they are mostly hidden and restricted to 

the OEM and getting an access to it another step of bureaucracy. As there 

is no to little public data available, the further development on using AI for 

SHM in aircraft maintenance will probably be hindered since it lacks 

(open) community support. 

2. Generally, as for many other AI techniques in other domains, the design of 

SHM by involving deep learning and/or metaheuristics is not immune 

from the computational capacity problem, thus the question of scalability 

is not yet answered since it was not the part of my PhD research. 

 

8.3. Research Outlook 

 

Looking forward, an approach using AI might not be yet ripe enough at a scalable 

level for industrial demand, however the good news is that there are still many 

challenges that lie ahead, and this shall not prevent further research and 

development. In fact, such challenges open a new research direction and will 

further encourage more science and engineering knowledge exploration. Within 

the short- to medium-term from an academic perspective (i.e., within 5 – 10 years 

although this is typically regarded as medium- to long-term from industrial 

perspective), the outlook I can describe given the general conclusion in section 

8.2 and considering the strength and weaknesses of employing ML/CI in SHM 

system design indicates 2 possible future work directions: 

 

1. On the scientific side, I suggest that future research should include a semi-

supervised approaches to generate more data labels from the known 

probability distribution. However, as it combines both supervised and 

unsupervised approach, another theoretical guarantee beyond the PAC 

framework and the generalization guarantees via validation that 

encompasses both learning methods, must be taken into consideration as 

well. 

2. On the application & engineering side: we shall put a tremendous research 

effort on scalability that encompasses the interface between big data 

management, software engineering, and SHM system as Internet-of-

Things (IoT) solution in order to prevent that the previous efforts stay only 

within labs and/or academia without proper industrial exploitation. 



AI-Assisted Design & Optimization for Predictive Maintenance 

Vincentius Ewald 


