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Abstract

In forensic investigations, an increasing amount of evidence is retrieved from digital devices. This evi-
dence is often extracted from devices using digital forensic platforms. The platforms are able to extract
digital traces from several types of files, originating from different applications, such as email applica-
tions from laptops or chat applications from smartphones. Developing support for a new file format
and adding it to a digital forensic platform is time-consuming and difficult. An alternative approach is
to integrate an existing digital forensic platform into another platform to extend its capabilities. This is,
however, not trivial because firstly, it is difficult to choose a platform to integrate. This difficulty stems
firstly from the fact that there exists no overview of open-source digital forensic platforms that can be
used to compare advantages and disadvantages of the platforms. The first aim of this thesis is there-
fore to provide an overview of available open-source digital forensic platforms. This overview is created
by means of online research. The second reason that it is difficult to choose a platform to integrate
is that it is difficult to assess whether the output of these platforms is accessible and structured such
that it can easily be integrated. The second aim of this thesis is therefore to determine what the best
method is to quantify the uniformity of the output of digital forensic platforms and to develop a proof
of concept implementing this method. Developing the uniformity metric is done by first dividing the
concept of uniformity into six sub-forms of uniformity. Conceptual methods to quantify each of those
forms are provided, and we present a concrete implementation of a proof-of-concept. The results of
this thesis imply that although development of digital forensic platforms is actively ongoing, developers
miss out on improving the digital forensic field as a whole by not considering the interoperability of the
platforms they develop.
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1
Introduction

Computers and smartphones are becoming more and more intertwined with our daily lives. We use
them for the most menial tasks, from checking train departure times to communicating with friends and
colleagues. While in use, these digital devices store various kinds of data, ranging from browser history
and WhatsApp messages, to the timestamp at which the last connection with a particular WiFi network
was made or when a phone was last plugged into a charger. Although this information is generally of
little use or even unavailable to regular users, it can be of vital importance in forensic investigations.
The time at which a phone last connected to a particular WiFi network, for example, places a phone at
a particular location at a particular time, which is information that helps a judge form a picture of what
events must have taken place.

The digital forensics process consists of three phases[4], namely acquiring data from a device, gaining
insight into and analysing the data in order to get relevant evidence, and lastly, reporting the found
evidence to the relevant organisations. The second step, gaining insight into and analysing the data,
revolves around the use of digital forensic tools. These tools generally take some sort of unstructured
data and produce digital traces, which may serve as evidence. There exist various digital forensic tools,
ranging from commercially available to open-source, and from being able to extract trace from a single
file, to ones that take entire disk images as input and extract traces from many filetypes. We refer to
open-source tools that are able to extract traces from multiple file types, open-source digital forensic
platforms.

The Netherlands Forensic Institute has developed the digital forensic platform Hansken. It is able to
extract traces from many different file formats and present these traces in a convenient user interface
in which forensic investigators can find relevant evidence for their case. From the viewpoint of the case
investigator, this can be phrased as Hansken ”supporting” a particular application. For example, the
case investigator cares only that he can view emails originating from Apple mail in Hansken, and the
name of the Apple mail database does generally not concern them. The process of adding support for
a particular application to Hansken consists of several steps, the first of which is finding out what files
the application stores its data in. Secondly, the structure and the meaning of the contents of these files
has to be understood so the third step, parsing the file, can be done. The results of parsing the file can
in turn be represented in Hansken as digital traces. In Hansken, all traces are represented in terms of
the Hansken trace model. The trace model lists the concepts that traces found in files can be mapped
to in order to be valid Hansken traces. Examples of concepts are ”email”, which is used to represent
any email message, or ”GPS”, which is used to represent a set of coordinates. These concepts all have

1



2 1. Introduction

certain properties; in the case of ”email”, this could be the email address of the sender, the timestamp
at which the email was sent, and several more. So, to show found traces in Hansken, a mapping has
to be created between the parsed data and the Hansken trace model. This would, for example in the
case of Apple mail, consist of mapping the column containing the email address of the sender of an
email to the ”email sender” property in Hansken.

To make sure that Hansken is able to gather as many traces from digital devices as possible, the
developers of Hansken are continually developing support for the extraction of traces from new or up-
dated applications. One approach to do this is to add support for applications by integrating existing
open-source digital forensic platforms that contain support for the application, into Hansken. This has
the advantage that it is no longer necessary to research what files an application stores its data in, how
the file is structured and what its contents mean, and to write a parser for the file. What remains is only
to create a mapping between the output of the integrated digital forensic platform and the Hansken
trace model.

Determining whether or not to integrate a particular platform into Hansken is not straightforward for
several reasons. Firstly, documentation of open-source digital forensic platforms is often incomplete.
The consequence of this is that is often unclear what applications or file types the platform supports,
and what the output of the platform means, which is crucial when creating a mapping from the output to
the Hansken trace model. Another problem is a lack of uniformity within the output of the digital foren-
sic platforms. To illustrate what this means, we introduce a running example1.1, This figure shows
the output of a fictional platform that supports Apple mail and Outlook mail. Although there are two
email databases in this example, their names, number of columns, the meaning of the columns, and
the formatting of the timestamp, are all different. These differences make creating a mapping from the
output of the platform to the Hansken trace model more involved. The Hansken trace model defines
one concept ”email” for both emails. Since the output of the platform is not uniform in its naming and
formatting, a time-consuming and error-prone mapping has to be made for each supported email ap-
plication.

The goal of this thesis is twofold. Firstly, we provide an overview of open-source digital forensic plat-
forms that provides the reader with information to help them decide whether or not to integrate the
platform into their own platform.
Secondly, we provide a definition of uniformity of the output of open-source digital forensic platforms,
as well as functions that can be used to compute the uniformity of such output. We also present a
proof-of-concept that is a concrete implementation of these functions.
Using this overview and uniformity metric, developers of Hansken can make a more well-founded de-
cision on whether or not to integrate a platform into Hansken. It also makes it possible to objectively
and consistently compare the uniformity of outputs, rather than basing it on intuition.

This thesis also aims to raise awareness within the digital forensic community about the interoper-
ability of the platforms that are developed. If developers would take the uniformity of the output of
the open-source digital forensic platforms they develop into consideration more, this would benefit the
entire open-source digital forensics community, since digital forensic knowledge can be reused more
easily, allowing developers to spend more time on developing support for new file formats or maintain-
ing support for existing formats.

1.1. Research Questions
The goals of this research are achieved by answering the following research questions.
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Figure 1.1: Running example displaying a lack of uniformity

RQ-1: What open-source digital forensic platforms are available and how do
they compare on certain relevant properties?
In this part of the research we create an overview of the various open-source digital forensic platforms
that are available. We discuss each platform based on several properties so we can make a well-
founded decision on what platform is suitable for integration into Hansken.

RQ-2: What is the best way to quantify uniformity of the output of open-source
digital forensic platforms?
The output of open-source forensic platform consists of sets of traces of many different concepts. With
uniformity of the output, we mean that if two traces represent the same concept (according to end users
of such platforms), they should be named and formatted similarly. We are not aware of a standardised
way to quantify such uniformity of a set of semi-structured data. So, we create a definition of this
uniformity, propose an approach for quantifying it, and argue for this currently being the best approach.
This quantification can then be taken into account by developers when estimating the time and effort
needed to integrate such output into Hansken.

RQ-2.1: How accurate is the uniformity metric developed in this thesis?
We assess the accuracy of our approach to quantifying uniformity by comparing it to uniformity values
assigned based on intuition by experts in the digital forensic domain. This tells us whether the approach
developed in this thesis is of value to domain experts.

RQ-3: Proof-of-concept
We implement a proof-of-concept which largely automates the process of computing uniformity. The
aim of this proof-of-concept is to show that the proposed uniformity metric can be successfully au-
tomated and used to evaluate the uniformity of output of digital forensic platforms. We assess the
perceived workload of using the proof-of-concept and its accuracy in sub-questions 3.1 and 3.2.

RQ-3.1
How do the perceived workloads of quantifying uniformity based on intuition, the approach introduced
in this thesis, and the proof-of-concept compare?

We evaluate the perceived workload of assigning a uniformity score to the output of a digital forensic
platform in three different ways, namely based on intuition, using the approach introduced in this thesis,
and using the proof-of-concept. By comparing the perceived workload of manually computing uniformity
and that of using the proof-of-concept, we can quantify whether the proof-of-concept reduces user effort,
thereby increasing the chance of it being adopted by users.

RQ-3.2
How accurate is the proof-of-concept compared to manually computed uniformity scores?
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We compare the uniformity scores assigned by experts from the digital forensic domain to those
resulting from the proof-of-concept. If we can determine that the results produced using the proof-of-
concept are similar to those produced by manually computing uniformity, we show that the proof-of-
concept produces accurate results.

1.2. Outline
The rest of this thesis is structured as follows. First, an overview of open-source digital forensic plat-
forms is provided and we present a comparison based on relevant properties. This chapter answers
research question 1. Next, in chapter 3, we introduce six types of uniformity, and for each type of
uniformity we introduce a function that can be used to compute that type of uniformity. We conclude
the chapter with an example uniformity computation. This chapter answers reserach question 2. In
chapter 4, we discuss the proof-of-concept. This PoC is a concrete implementation of the uniformity
functions introduced in chapter 3. This chapter answers research question 3. In Chapter 5, we discuss
the experiment that was conducted to assess the accuracy of the uniformity functions, the accuracy
of the PoC, and the perceived workload of computing the uniformity functions by hand and by using
the PoC. This chapter yields results that are used to answer research questions 2.1, 3.1, and 3.2 in
chapter 7, the discussion. We then proceed to discuss related work, discuss the results presented in
this thesis and answer research questions 2.1, 3.1, and 3.2. The last chapter contains a conclusion.



2
Overview of Open-source Digital

Forensic Platforms

The goal of this chapter is to answer research question 1, What open-source digital forensic plat-
forms are available and how do they compare on certain relevant properties?

We only take into consideration platforms that support multiple file formats. We do not set a spe-
cific minimum number of file formats that has to be supported by a program for it to be included here,
but rather intend this criterion to filter out programs that only support a single type of file. We start by
introducing parameters on which we base the discussion of the platforms. We then proceed with the
overview of digital forensic platforms.

2.1. Parameters
In this section, we discuss parameters on which we can base the discussion of open-source digital
forensic platforms. These parameters are identified in cooperation with the Hansken developers, who
are experts in the digital forensic domain.

Number of supported formats If Hansken supports more file types, it will produce a more complete
overview of digital traces found.

Last updated Software, and therefore potentially the traces produced by that software, can change
rapidly due to software updates. To make sure that the extraction of traces from files is sound, it is
important to update the platform when necessary. A platform not having been updated in a long time
might be an indication that it is outdated, which in turn might mean that it is not able to extract traces
in a sound and complete way from modern versions of the software for which it was intended.

Modularity The ability to only use required parts of a platform makes its use more flexible. If, for
example, Hansken can already extract traces from a subset of the file types supported by a platform,
the ability to integrate only a part of the platform might save the developers costly time.

Test data It is important that the results generated by the platform are forensically sound. It is there-
fore valuable if test data is included in repositories so the functioning of the tool can be verified against
that data.

5



6 2. Overview of Open-source Digital Forensic Platforms

# Supported Formats Last Updated Testdata Included

Plaso 219 9-6-24 Yes
IPED 56 29-6-24 Yes
iLEAPP & Co. 683 25-6-24 No
Dissect 29 27-6-24 Yes
Kuiper Many 5-6-24 No
mac_apt 48 16-6-24 No
iOS_sysdiagnose_forensic_scripts 14 8-11-19 No
Apollo 247 3-12-20 No

Table 2.1: Summary of results from the overview of open-source digital forensic platforms.

2.2. Platforms
In this section, we provide an overview of open-source digital forensic platforms. We discuss the plat-
forms based on the parameters introduced in the previous section. This overview contains information
on when a platform was last updated according to the platforms Github repository. This information
was up to date in August of 2024.

2.2.1. Plaso
PLASO is an open-source digital forensic platform that contains several sub-tools, each aimed at a par-
ticular task in the digital forensic process. The tool ”log2timeline” can be used to construct a timeline
of timestamps found in either a single file, or recursively found in a directory. The result of this process
is a PLASO storage file, which can in turn be inspected by using PLASO’s ”pinfo” tool. The PLASO
storage file can be post-processed using PLASO’s ”psort” tool. Using this tool, the storage file can be
queried and sorted, and it provides the possibility to run automatic analysis on the file.

PLASO is able to extract traces from many different file formats, such as various SQLITE databases,
PLIST files, and more. The source code is built up out of parsers for each of the supported file types,
and the code of each parser adheres to a similar structure. Since the overall goal of PLASO is to create
a timeline, all parsers create instances of ”events” that can go on this timeline. Depending on where the
event is created, it is enriched with traces specific to the file type the event was extracted from by the
parser. Since all parsers in PLASO adhere to a similar structure, it is relatively easy to extract a single
parser from PLASO’s source code and execute that parser standalone, or integrate it into a different
digital forensic platform.

What the output of PLASO means exactly is not specified, so this has to be found out by either reading
the source code or inspecting the output of PLASO. The consistent structure of the source code does
make it relatively easy to find out what traces are extracted from files, since the traces are, in each
parser, assigned in a function that has the same name in all parsers. This means the PLASO’s code
has good modularity.

The Github repository shows regular commits to PLASO’s source code, which can be an indication
that the forensic knowledge within the platform is kept up-to-date.

In conclusion, PLASO has several properties that make it an attractive choice for integration into other
digital forensic platforms, whether that be partially, or as a whole. Among these properties are the abil-
ity to run parsers standalone of the rest of the tool, the consistent structure of the code of the parsers,

https://github.com/log2timeline/plaso
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and the large number of parsers included in the platform.

2.2.2. IPED
IPED is an open-source digital forensic platform developed by the Brazilian police. It can be used
to extract and analyse traces from images of digital devices. It has an extensive user interface and it
contains many features, including data carving, image recognition, and displaying communication links.

The IPED platform is able to extract traces from well over 1000 different file types. The platform is
written in Java. Parsers generally implement the interface AbstractParser, which originates from Tika,
a framework which can be used to build parsers. Each parser is written in its own class, and the fact
that parsers implement this interface implies that they all adhere to a similar structure. This uniform
structure makes it easy to extract a single parser from the platform and to execute it standalone.

The IPED platform produces its output in XHTML format, but there is no formal description of what is
contained within those files. It is also possible to access IPED’s output in a structured manner by means
of a Lucene index. This information was kindly provided by the developers of IPED, who responded
quickly to questions asked on their GitHub discussion page. In general, IPED’s GitHub repository is
lively and it shows that commits are regularly made.

In conclusion, IPED is a valuable source of ready-made parsers and digital forensic knowledge in
general. The fact that parsers can be executed standalone and therefore integrated into other digital
forensic platforms easily makes the knowledge contained within it easily accessible. The fact that the
code of all parsers adheres to a similar structure also helps with this. All in all, this platform, whether
as a whole or in part, is a suitable candidate for integration into other forensic platforms.

2.2.3. Abrigoni’s Parser Collection
The Abrigoni GitHub account contains several digital forensic platforms, among which are iLEAPP and
ALEAPP. iLEAPP is a platform intended for parsing and extracting traces from files found on iOS and
iPadOS devices. Each parser generates a tsv file containing the parsed data, which makes the output
of this platform easily machine-readable.

The documentation on iLEAPP is extensive. It contains an overview of file types that can be parsed by
iLEAPP, and the source code generally contains a comment describing the knowledge based on which
that particular parser was built.

iLEAPP works by dynamically loading the parsers when it is executed. To allow this dynamic be-
haviour, all files containing a parser have to specify some information in a structured format specified
in the iLEAPP documentation. This format contains, among other things, the name of the parser’s entry
function, a description of the parser, and what file type it parses. The fact that iLEAPP loads the parsers
dynamically implies that the parsers have low coupling with the rest of the iLEAPP code, which in turn
means that it is probably relatively uncomplicated to execute the parsers standalone.

The Github repository that iLEAPP belongs to also contains various other open-source digital forensic
platforms, one of which is ALEAPP. The platform ALEAPP is intended for use on images retrieved from
Android devices. The parsers integrated in ALEAPP adhere to the same structure as those in iLEAPP,

https://github.com/sepinf-inc/IPED
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which makes them also easily standalone executable.

Aside from ALEAPP and iLEAPP, the Github account fromwhich these platforms originate also contains
a digital forensic platform to investigate the onboard computers of cars, Returns, andWindows artifacts.

In conclusion, the Github account from which these platforms originate contains a wealth of forensic
knowledge, and the developer clearly made an effort to standardise the code of the different parsers,
even across repositories. Either iLEAPP or ALEAPP are good candidates for integration into other
digital forensic platforms, mainly because of their consistent coding practices and ability to execute
parsers standalone.

2.2.4. Dissect
Dissect is an open-source digital forensic platform developed by the company Fox-IT. The developers
describe it as ”digital forensics and incident response framework”. It consists of various different tools
that can all be installed and executed standalone via PyPi, and the source code of the various tools is
available on Fox-IT’s Github repository.

The documentation on Dissect is extensive, which might have something to do with the fact that Fox-IT
is a commercial party. All parts of Dissect are well described. The documentation states that all libraries
are designed such that they are reusable. In combination with the fact that all libraries are intended for
standalone use, this means that it is straightforward to integrate the libraries into other digital forensic
platforms.

In the documentation, the parsers are called plugins and per plugin it is described what they parse,
and often also what is returned. This allows Dissect’s users to know beforehand what traces to expect
from certain parsers. Compared to other open-source digital forensic platforms, this level of documen-
tation is exceptional.

The documentation contains guidelines on how to develop plugins that can be used in Dissect, and
contributing these plugins is encouraged. Quality of contributed plugins is assured through a review
process and guidelines on what tests are expected of a new plugin. The option to export the output as
json is also included, which makes it easy to integrate Dissect’s output in other platforms.

The structure of all parser’s source code generally adheres to the same structure. This makes it rel-
atively uncomplicated to execute the parsers standalone or execute them dynamically from different
software.

In conclusion, the large number of file types supported by Dissect, their well-structured and clear source
code, and ability to execute parsers standalone, make this platform a good candidate for integration
into other digital forensic platforms, whether that be as a whole, or in part.

2.2.5. Kuiper
Kuiper is an open-source digital forensic platform that is essentially a free version of the commercially
available CyberBomah. At first glance, an interesting property of Kuiper is that it explicitly mentions that
it aims to be consistent: ”Depending on different parsers by team members to parse same artefacts
might provide inconsistency on the generated results, using tested and trusted parsers increases the
accuracy”. Some commits are visible on the Kuiper Github repository, but these seem to be minor bug-
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fixes and improvements, rather than adding support for new file types or keeping currently supported
file types up to date.

The source code of Kuiper contains a directory containing all parsers. The parsers are stored in subdi-
rectories and are accompanied by a file called ”configuration.json”. This file specifies the entry function
of the parser, which allows it to be dynamically loaded and executed by Kuiper. The ”configuration.json”
file also contains information on what file the associated parser supports. This is, for example, done
by means of a regular expression that matches on the name of the supported file.

The Kuiper documentation includes a guide on how to develop parsers for Kuiper, and from this docu-
mentation it becomes clear that the parsers themselves return a list of JSON objects. The fact that they
parsers return a list of JSON objects and are executable via a single interface function makes it so that
they can be executed standalone relatively easily. The documentation of Kuiper does not specify the
meaning of the output of parsers, so the meaning of the output has to be derived from the field names
of the JSON objects returned from the parsers.

Running Kuiper can be done via their provided Docker images. If the goal is to integrate Kuiper into
another digital forensic platform, however, it is most likely more convenient to pick the desired parsers
from the source code and integrate those directly. This is due to the limited API that Kuiper provides
and the fact that Kuiper stores its traces on a separate ElasticSearch server, which is included in the
Docker image. Running a particular parser and parsing the returned JSON file is less complicated.

In conclusion, the parsers integrated in Kuiper contain valuable digital forensic knowledge which can
either be used for development of other parsers, or the parsers can be used entirely and integrated
easily into other digital forensic platforms. Running an instance of Kuiper, however, is likely complex
and due to their limited API, automating the usage of Kuiper is probably too limited for extensive inte-
gration into other digital forensic platforms.

2.2.6. mac_apt
Mac_apt is used for examining iOS and MacOS devices and it is able to extract traces from many in-
teresting files. Contrary to many other platforms discussed in this overview, this platform provides an
explanation of its output. Per parser, it is described what the meaning of each field in the output is. It
can currently extract traces from 45 different types of files.

The Github repository of mac_apt shows regular commits, which might mean that the forensic knowl-
edge within it is either being expanded or maintained, which ensures good soundness and complete-
ness of the extracted traces.

Mac_apt currently also contains the tool ios_apt, which can be used to extract traces from relevant
files on iOS devices. Previously, these tools were available separately.

The parsers included in mac_apt are called plugins. The plugins are all written in Python and each
source code file contains properties of that particular plugin, such as a description and information on
the author. The plugins can easily be executed standalone by specifying the desired plugin to execute
and the file on which to execute it. This makes it uncomplicated to integrate a particular plugin into a
different digital forensic platform. The ability to execute the parsers individually makes it easy to inte-
grate only the desired parts of the platform.
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2.2.7. iOS_sysdiagnose_forensic_scripts
The Github repository iOS_sysdiagnose_forensic_scripts contains parsers for 14 sysdiagnose files
present on iOS devices. These sysdiagnose files are generally log files and they can contain infor-
mation relevant in digital investigations.

The parsers in this Github repository are all individually executable Python scripts. Contrary to many
other platforms in this overview, there is in this case no overarching program that loads and executes
parsers dynamically. In this case, all parsers have to be executed standalone. This makes this Github
repository arguably not a digital forensic platform, but rather a collection of useful scripts. Since the
tools parse relevant files and are structured similarly, it was decided to include it here regardless. The
scripts provide JSON output.

The last commit to the Github repository was five years ago. This means that before using these
scripts, it has to be verified whether they still produce sound and complete traces for current versions
of iOS. The scripts were verified using test data from iOS 12.

If verified properly, or executed on files originating from iOS 12, the scripts in this Github repository
might be interesting for integration into other digital forensic platforms. If, after investigation, it turns
out that they no longer produce sound and complete traces, it might be decided to use the forensic
knowledge within them to build new parser for current versions of iOS, since it is likely that at least part
of the forensic knowledge within the parsers is still relevant.

2.2.8. Apollo
Apollo extracts traces from databases present on iOS and MacOS devices. The platform essen-
tially consists of many SQL queries that can be loaded and executed dynamically on the appropriate
database. These SQL queries are specified in .txt files. The queries themselves contain a lot of valu-
able digital forensic information about the meaning of certain databases, which is not always obvious
from the databases themselves. The GitHub repository contains 132 queries. The last commit to the
repository was four years ago, but since the platform and version on which the query is supposed to
be executed are included, it can probably be assumed that the forensic knowledge embedded within
them is still relevant for application to files originating from those versions of the operating system. The
forensic knowledge has to be verified before adapting the queries or the information within them for
use on files originating from modern OS versions.

In conclusion, Apollo is an easy to use tool and the meaning of the results can easily be derived by
examining the SQL queries. The fact that the OS versions for which the queries are intended makes it
easy to determine whether the queries can be used on retrieved databases.

2.3. Conclusion
This chapter provided an overview of open-source digital forensic platforms, with a focus on their rele-
vance for integration into Hansken. The selection criteria used for evaluating these platforms—number
of supported formats, last update, modularity, and availability of test data—were identified in collab-
oration with Hansken developers to ensure alignment with practical forensic needs. This overview
therefore answers research question 1, ”What open-source digital forensic platforms are available and
how do they compare on certain relevant properties?”.

The analysis of various platforms revealed significant diversity in terms of supported file formats, mod-
ularity, and forensic documentation. Some platforms, such as PLASO and IPED, stand out due to
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their large number of parsers, structured codebases, and regular updates, making them strong candi-
dates for integration. Others, like Dissect, offer well-documented forensic tools designed for standalone
execution, facilitating their use in other forensic systems. Platforms like Kuiper and iLEAPP/ALEAPP
demonstrate structured and reusable parsers but may require additional effort for seamless integration.

Additionally, some platforms, such as Apollo and iOS_sysdiagnose_forensic_scripts, contain valuable
forensic knowledge but require verification due to infrequent updates. Despite this, their structured
forensic methodologies and documented outputs can still serve as useful resources for developing
new or improved parsers.

Overall, this chapter highlights the strengths and limitations of different open-source forensic platforms
and provides a structured comparison that can inform decisions regarding their potential integration
into Hansken.





3
Uniformity Functions

The goal of this chapter is to answer research question 2, ”What is the best way to quantify unifor-
mity of the output of open-source digital forensic platforms?”
To answer this question, we present six types of uniformity, and for each of those types, we provide
a set of functions that can be used to quantify that type of uniformity. We conclude with a sample
computation, in which the introduced functions are applied to a small synthetic output of a fictitious
digital forensic platform. In chapter 5, we discuss an experiment conducted in order to gather data that
helps us answer research questions 2.1, ”How accurate is the uniformity metric developed in this
thesis?”. An answer to RQ 2.1 is presented in chapter 7, ”Discussion”.

3.1. General Concepts
We introduce some basic concepts that will be used throughout the following chapter, as well as in the
rest of this thesis.

concept A concept is similar to a concept in the real world. In the digital forensic domain, concepts
are, for instance, an email with all its properties. In functions that take a concept as input, the type of
concept is denoted in the function signature as 𝒞.

property A property is a property of a concept. To continue with the example, a property of an
email would be the sender of an email. In functions that take a property as input, the type of property
is denoted in the function signature as 𝒫.

type A type can be thought of as a data type as known in programming. All values belonging to all
properties as described above are of some type.

Source of general knowledge The functions in this chapter require the possibility to determine
whether concepts, properties, and syntactic structures are similar. To do this, we introduce the source
of general knowledge. A source of general knowledge is any mechanism that can determine whether
concepts, properties, and syntactic structures are similar. Given two things to compare, it should re-
turn either ”true” or ”false”. Since things may be similar in one context but not in another, the source
of general knowledge makes use of a source of problem-specific knowledge, which is explained in the
next paragraph. In functions that require a source of general knowledge as input, it is denoted in the
function signature as 𝐾𝐺.

13
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Specifically for the function abstractionLevel, the source of general knowledge has to return an in-
teger representing the level of abstraction of a concept.

Source of problem-specific knowledge Things can be similar in one context, but not in another.
For instance, an email and a chat message can be similar in one context because they both are some
form of digital communication, but they can be not similar in a different context because they are origi-
nate from different software. This context is captured in the form of problem-specific knowledge. The
previously introduced source of general knowledge makes use of this problem-specific knowledge to
make an accurate decision as to whether two things are similar. In functions that require a source of
problem-specific knowledge as input, it is denoted in the function signature as 𝐾𝑃
The source of general knowledge and source of problem-specific knowledge are denoted in the sig-
nature of every function during the execution of which, a function is called that makes concrete use
of the knowledge sources. For clarity, we generally omit passing the knowledge sources down to the
similarity functions. The knowledge sources denoted when a similarity function is used.

3.2. High-Level Semantic
High-level semantic uniformity measures the degree to which the level of abstraction of concepts varies.
In the running example, both concepts are email messages originating from a specific mail client, and
it is valid to say that those concepts are therefore at the same level of abstraction. One is not more
concrete than the other. If, for instance, the concept ”apple_email” was changed to ”digital communi-
cation”, both concepts would not be on the same level of abstraction, since ”digital communication” is
more abstract than ”Outlook_mail_message”.

Intuitively, high-level semantic uniformity is high when all concepts are at the same level of abstraction.
In other words, there is only 1 unique level of abstraction in that case. To help us determine the level
of abstraction of a concept, we introduce the function 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙. The more unique levels of
abstraction, the lower the uniformity.

abstractionLevel ∶ 𝐶 × 𝐾𝑝 × 𝐾𝑔 ↦ ℕ (3.1)
abstractionLevel(c,kp,kg) = The level of abstraction of c according to 𝑘𝑝 and 𝑘𝑔. (3.2)

Now, abstractionLevel can be used to count the number of unique levels of abstractions. For this,
we introduce countAbstractionLevels.

countAbstractionLevels ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℕ (3.3)
countAbstractionLevels(𝑐, 𝑘𝑝, 𝑘𝑔) = |abstractionLevel(𝑎, 𝑘𝑝, 𝑘𝑔)|𝑎 ∈ 𝑐| (3.4)

With countAbstractionLevels, we can create a function to compute high-level semantic uniformity.
It’s output decreases when there are more than 1 unique levels of abstraction.

uniformityHLsem ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℝ (3.5)

uniformityHLsem(𝑐, 𝑘𝑝, 𝑘𝑔) =
1

countAbstractionLevels(𝑐, 𝑘𝑝, 𝑘𝑔)
(3.6)

3.3. Low-Level Semantic
Low-level semantic uniformity measures the degree to which similar concepts also have similar prop-
erties. A lack of low-level semantic uniformity exists in our running example. It can be argued that both



3.3. Low-Level Semantic 15

concepts are similar, since they are both some type of email message. They do, however, not have
the exact same set of properties, since ”apple_email” has the properties ”Sender” and ”Receiver”, that
contain the names of the sender and receiver of the email; ”Outlook_mail_message” has no such prop-
erties. So, we note that although both concepts are similar, when comparing ”Outlook_mail_message”
and ”apple_email”, there are two properties ”missing” from ”Outlook_mail_message”. This does not
hold the other way around, since there are no properties of ”Outlook_mail_message” missing in ”Ap-
ple_email”. The observation that properties can be missing from similar concepts forms the base of the
function to quantify low-level semantic uniformity, which we build towards in this section. This function,
uniformityLLsem, has the following signature:

uniformityLLsem ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℝ

The first helper function we introduce is propertiesOfConcept, which takes a concept and returns
the properties of that concept.

propertiesOfConcept ∶ 𝐶 ↦ 𝒫(𝑃) (3.7)
propertiesOfConcept(c) = properties belonging to concept 𝑐 (3.8)

Next, we introduce conceptSim, which can be used to determine whether two concepts are equal
according to a source of general knowledge and a source of problem-specific knowledge.

conceptSim ∶ 𝐶 × 𝐶 × 𝐾𝑝 × 𝐾𝑔 ↦ 𝔹 (3.9)

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑆𝑖𝑚(𝑝1, 𝑝2, 𝑘𝑝, 𝑘𝑔) = {
True iff 𝑐1 and 𝑐2 are similar according to 𝑘𝑝 and 𝑘𝑔
False Otherwise

(3.10)

Now we introduce groupSimilarConcepts, which takes multiple concepts and returns a set of sets
of concepts that are similar according to conceptSim.

groupSimilarConcepts ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ 𝒫(𝒫(𝐶)) (3.11)
groupSimilarConcepts(𝑐, 𝑘𝑝, 𝑘𝑔) = {𝑧 ⊆ 𝑐|∀𝑎, 𝑏 ∈ 𝑧, conceptSim(𝑎, 𝑏, 𝑘𝑝, 𝑘𝑔) ∧ 𝑧 ≠ ∅} (3.12)

As mentioned above, the function for computing low-level semantic uniformity relies on counting
how many properties are missing when are missing in one concept compared to another. To do this
for a particular set of similar concepts, we need to count how many properties are missing from all
concepts in the set compared to all other concepts in the set. To facilitate this pairwise comparison, we
create a function that given a set of concepts, creates all possible tuples of concepts in that set. We do
not want to compare concepts to themselves, so we need the concepts in the tuples to be not equal.
We do want to compare concepts in both directions, so given two concepts c1 and c2, we want the the
function to return (c1, c2) and (c2, c1). This leads us to the function 𝑡𝑢𝑝𝑙𝑒𝑠𝐹𝑟𝑜𝑚𝑆𝑒𝑡:

tuplesFromSet ∶ 𝒫(𝐶) ↦ 𝒫((𝐶 × 𝐶)) (3.13)
tuplesFromSet(𝑐) = {(𝑐1, 𝑐2)|𝑐1 ∈ 𝑐 ∧ 𝑐2 ∈ 𝑐 ∧ 𝑐1 ≠ 𝑐2} (3.14)

To construct a function that counts missing properties from concepts, we first need a function that
determines whether properties are similar. We call this function propertySim and it is defined as fol-
lows:
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propertySim ∶ 𝑃 × 𝑃 × 𝐾𝑝 × 𝐾𝑔 ↦ 𝔹 (3.15)

propertySim(𝑝1, 𝑝2, 𝐾𝑝, 𝐾𝑔) = {
True iff 𝑝1 and 𝑝2 are similar according to 𝐾𝑔 and 𝐾𝑝
False otherwise

(3.16)

Using this propertySim, we construct the function conceptContainsProperty. This function takes
as input a concept and a property, and it returns 1 if and only if the concept contains a property similar
to the input property, and 0 otherwise. It is defined as follows:

conceptContainsProperty ∶ 𝐶 × 𝑃 × 𝐾𝑝 × 𝐾𝑔 ↦ ℕ (3.17)

conceptContainsProperty(𝑐, 𝑝, 𝑘𝑝, 𝑘𝑔) = {
0 iff ∃𝑞 ∈ propertiesOfConcept(𝑐) ∧ propertySim(𝑝, 𝑞, 𝑘𝑝, 𝑘𝑔)
1 otherwise

(3.18)

Now that we have the ability to create tuples of concepts and to determine whether a property is
missing from a concept, we can craft a function that takes a tuple of concepts and counts how many
properties of the first concept are missing in the second concept. We call it countMissingProperties,
and it is defined as follows:

countMissingProperties ∶ (𝐶, 𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℕ (3.19)

countMissingProperties((𝑐1, 𝑐2), 𝑘𝑝, 𝑘𝑔) = ∑
𝑝∈propertiesOfConcept(𝑐1)

conceptContainsProperty(𝑐2, 𝑝, 𝑘𝑝, 𝑘𝑔)

(3.20)

As becomes clear from the definition, countMissingPropertiesworks because conceptContainsProperty
returns 1 if a property is missing. This allows us to use this relatively simple summation.

The next step is to use countMissingProperties to count how many properties are missing in a
set of tuples of similar concepts. This can be done using the function countMissingPropertiesInSet,
which is defined as follows:

countMissingPropertiesInSet ∶ 𝒫((𝐶, 𝐶)) × 𝐾𝑝 × 𝐾𝑔 ↦ ℕ (3.21)

countMissingPropertiesInSet(𝑐, 𝑘𝑝, 𝑘𝑔) = ∑
(𝑐1 ,𝑐2)∈𝑐

countMissingProperties(𝑐1, 𝑐2), 𝑘𝑝, 𝑘𝑔) (3.22)

Next, we need a function that counts the total number of properties of the concepts present in a set
of tuples of concepts. For this, we define the function countPropertiesInTuples:

countPropertiesInTuples ∶ 𝒫((𝐶, 𝐶)) ↦ ℕ (3.23)

countPropertiesInTuples(𝑐) = ∑
(𝑐1 ,𝑐2)∈𝑐

|POC(𝑐1)| + |POC(𝑐2)| (3.24)

In the above definition, POC is an abbreviation of propertiesOfConcept.
We can now create the function similarConceptsUniformity, which computes the uniformity of a

set of similar concepts.
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similarConceptsUniformity ∶ 𝒫(𝐶) ↦ ℝ (3.25)

similarConceptsUniformity(𝑐) = 1 − countMissingPropertiesInSet(tuplesFromSet(c))
countPropertiesInTuples(tuplesFromSet(c)) (3.26)

Finally, we can create the function uniformity𝐿𝐿𝑠𝑒𝑚, which computes the low-level semantic unifor-
mity of a set of concepts.

uniformity𝐿𝐿𝑠𝑒𝑚 ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℝ (3.27)

uniformity𝐿𝐿𝑠𝑒𝑚(𝑐) =
∑𝑡∈groupSimilarConcepts(c) similarConceptsUniformity(t)

|groupSimilarConcepts(c)| (3.28)

3.4. High-Level Syntactic
High-level uniformity measures the degree to which similar concepts are represented syntactically in a
similar way. For instance, in the running example, we see that both concepts are similar since they are
both emails, but that they have a different name, namely Outlook_mail_message and apple_email. This
is an example of a case with low high-level syntactic uniformity. Intuitively, we would have perfect high-
level syntactic uniformity if both concepts in the running example would have the same name, or in other
words, if there were one unique name. More generally speaking, high-level syntactic uniformity is high
when similar concepts have the same name. We quantify high-level syntactic uniformity by creating sets
of similar concepts, and counting the the uniquely occurring concept names. The more unique names
there are, the lower the uniformity. We can use this notion to create the function uniformityHLSyn,
which quantifies the high-level syntactic uniformity given a set of concepts.

uniformityHLSyn ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℝ (3.29)

uniformityHLSyn(𝑐, 𝑘𝑝, 𝑘𝑔) =
countSetsOfConcepts(𝑐)
countUniqueNames(𝑐) (3.30)

This function is defined in terms of the functions countSetsOfConcepts and countUniqueNames.
The first function, countSetsOfConcepts, is used to count how many sets of similar concepts exist
in some set of concepts. For instance, given the two concepts from our running example, it would
return 1, since both concepts are emails and there thus exists one set of similar concepts. Were
we to give countSetsOfConcepts also a ”phone call” as input next to the emails, it would return 2,
since emails and phone calls are not similar and therefore there are 2 sets of similar concepts. The
function countSetsOfConceptsmakes use of the function conceptSim, which can be used to determine
whether two concepts are similar.

countSetsOfConcepts ∶ 𝒫(𝐶) × 𝐾𝑝 × 𝐾𝑔 ↦ ℕ (3.31)
countSetsOfConcepts(𝑐, 𝑘𝑝, 𝑘𝑔) = |{𝑧 ⊆ 𝑐|∀𝑎, 𝑏 ∈ 𝑧, conceptSim(𝑎, 𝑏, 𝑘𝑝, 𝑘𝑔) ∧ 𝑧 ≠ ∅}| (3.32)

The next part of uniformityHLsym is equation 3.33, countUniqueNames. This function takes a set
of concepts as input and returns the number of uniquely occurring concept names in that set. It creates
a set of all unique names and returns the cardinality of that set. In the case of the running example,
countUniqueNames would return 2, since the names Outlook_mail_message and apple_email are
unique. The function countUniqueNames makes use of the function conceptName, which takes a
concept as input and returns the name of that concept.
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countUniqueNames ∶ 𝒫(𝐶) ↦ ℕ (3.33)
countUniqueNames(𝑐) = |{conceptName(𝑐)|𝑐 ∈ 𝐶}| (3.34)

conceptName ∶ 𝐶 ↦ 𝑠𝑡𝑟𝑖𝑛𝑔 (3.35)
conceptName(𝑐) = name of concept 𝑐 (3.36)

3.5. Low-Level Syntactic
Low-level syntactic uniformity measures the degree to which similar properties are represented syntac-
tically in a similar way. For instance, in the running example, we see that Outlook_mail_message has
the property ”Sender”, and apple_email has the property ”From_email”. These properties are similar
since they both represent the email address of the sender of an email. However, the name of the prop-
erties is different, which is an example of a lack of low-level syntactic uniformity. Intuitively, low-level
syntactic uniformity would be perfect if similar concepts also had the same syntactic representation.
In the case of the running example, this would mean that for both Outlook_mail_message and ap-
ple_email, the property containing the email address of the sender would have the same name. This
can be rephrased as all properties in a set of similar properties having the same name, thus there being
only 1 unique name. We can use this intuition to create a formula for quantifying low-level syntactic
uniformity, as shown in equation 1.4.

Given a set 𝑠 of properties, we first create subsets of 𝑠 containing properties that are similar ac-
cording to property_sim. For each of those subsets, we can count the number of uniquely occurring
property names. If that number is one, all properties in the subset have the same name, which indi-
cates good low-level syntactic uniformity. By taking the average of this value for each subset of similar
properties, we obtain a value for the low-level syntactic uniformity of all properties in the input.

To do this, we construct the function similarPropertyNameUniformity. This function takes as input
a set of properties. If all properties in the set have the same syntactic representation, it returns 1. Its
output gets closer to 0 the more unique syntactic representations the properties in the set have. We
define it as follows:

similarPropertyNameUniformity ∶ 𝒫(𝑃) ↦ ℝ (3.37)

similarPropertyNameUniformity(𝑝, 𝑘𝑝, 𝑘𝑔) =
1

1 + (countUniquePropertyNames(p) − 1) (3.38)

The above definition makes use of countUniquePropertyNames, which counts the number of
uniquely occurring property names within a set of properties. It in turn makes use of the function
propertyName, which takes a property as input and returns the name of that property. Using propertyName,
countUniquePropertyNames simply constructs the set of all property names and returns the cardinal-
ity of that set.

countUniquePropertyNames ∶ 𝒫(𝑃) ↦ ℕ (3.39)
countUniquePropertyNames(𝑃) = |{propertyName(𝑝)|𝑝 ∈ 𝑃}| (3.40)

We need a function that takes a set of properties, and creates subsets of properties that are similar,
according to propertySim. To do this, we introduce groupSimilarProperties:
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groupSimilarProperties ∶ 𝒫(𝑃) × 𝐾𝑝 × 𝐾𝑔 ↦ 𝒫(𝒫(𝑃)) (3.41)
groupSimilarProperties(𝑝, 𝑘𝑝, 𝑘𝑔) = {𝑧 ⊆ 𝑝|∀𝑎, 𝑏 ∈ 𝑧,propertySim(𝑎, 𝑏, 𝑘𝑝, 𝑘𝑔) ∧ 𝑧 ≠ ∅} (3.42)

We can now construct the function uniformityLLSyn, which computes the low-level syntactic uni-
formity of a set of properties. It takes as input a set of properties which it divides into sets of similar
properties. To each of those sets, the function similarPropertyNameUniformity is applied, and the
average of each of those applications is returned.

uniformityLLSyn ∶ 𝒫(𝑃) × 𝐾𝑝 × 𝐾𝑔 ↦ ℝ (3.43)

uniformityLLSyn(𝑝, 𝑘𝑝, 𝑘𝑔) =
∑𝑠∈groupSimilarConcepts(p,kp ,kg) similarPropertyNameUniformity(s)

|𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠(𝑝, 𝑘𝑝, 𝑘𝑔)|
(3.44)

propertyName ∶ 𝑃 ↦ string (3.45)
propertyName(𝑝) = The name of property 𝑝 (3.46)

3.6. Structural Syntactic
Structural syntactic uniformity is a measurement for the degree to which values of the same types, have
a similar syntactic structure. Note that this type of uniformity considers themost concrete things, namely
values, whereas the low-level and high-level uniformity deal with properties and concepts. An example
of a lack of structural syntactic uniformity can be found in the running example. The values in the
property ”Send_time” in ”Outlook_mail_message” are Unix timestamps, whereas those in ”Send_time”
in ”apple_email” are in a human-readable format. Since both these values are a timestamp, the values
are of the same type, namely timestamp, but their syntactic structure is different, which means there
is no structural syntactic uniformity. The function that computes structural syntactic uniformity takes as
input not a set of values, but a set of properties. This results in more readable functions. To bridge the
gap between properties and values within properties, we introduce the function propType.

propType ∶ 𝑃 ↦ 𝑇𝑦𝑝𝑒 (3.47)
propType(p) = Type of the values in property p (3.48)

We also need the ability to determine whether types are similar, so we introduce the function
typeSim, which can do exactly that. It bases its decision on a source of general knowledge and a
source of problem-specific knowledge.

typeSim ∶ 𝑇 × 𝑇 × 𝐾𝑝 × 𝐾𝑔 ↦ 𝔹 (3.49)

typeSim(𝑡1, 𝑡2, 𝑘𝑝, 𝑘𝑔) = {
True iff 𝑡1 and 𝑡2 are similar according to 𝑘𝑝 and 𝑘𝑔
False otherwise

(3.50)

We also need the ability to determine whether the syntactic structure of values of properties are
similar or not according to a source of general knowledge and a source of problem-specific knowl-
edge. This function, for instance, would be able to tell us that a human-readable timestamp and a Unix
timestamp have a different syntactic structure. We call it structureSim, and it is defined as follows:



20 3. Uniformity Functions

structureSim ∶ 𝑃 × 𝑃 × 𝐾𝑝 × 𝐾𝑔 ↦ 𝔹 (3.51)

structureSim(𝑝1, 𝑝2, 𝑘𝑝, 𝑘𝑔) = {
True iff the syntactic structures of 𝑝1 and 𝑝2 are similar according to 𝑘𝑝 and 𝑘𝑔
False otherwise

(3.52)

Next, we construct a function that takes a set of properties as input, and returns the number of unique
syntactic structures within that set. In the case of the set containing the two ”Send_time” properties,
this function would return 2, because the syntactic structures of the values within the properties are not
the same (Unix and human-readable) according to the previously introduced structureSim. We call
this function countStructuresPerSet.

countStructuresPerSet ∶ 𝒫 ↦ ℕ (3.53)
countStructuresPerSet(𝑝) = |{𝑧 ⊆ 𝑝|∀𝑎, 𝑏 ∈ 𝑧, structureSim(𝑎, 𝑏)}| (3.54)

The next step is to apply the function countStructuresPerSet to sets of properties that have the
same type. This is done using the function countStructuresPerType. It takes as input a set of proper-
ties, creates sets of similarly typed properties according to typeSim, applies countStructuresPerSet
to each of those sets, and returns the set of the results.

countStructuresPerType ∶ 𝒫(𝑃) ↦ 𝒫(ℕ) (3.55)
countStructuresPerType(𝑝) = {countStructuresPerSet(𝑧)|𝑧 ⊆ 𝑝 ∧ ∀𝑎, 𝑏 ∈ 𝑧, 𝑡𝑦𝑝𝑒𝑆𝑖𝑚(𝑎, 𝑏) ∧ 𝑧 ≠ ∅}

(3.56)

Now that we have countStructuresPerType, we can construct the function that computes structural
syntactic uniformity. This function is based on the intuition that one unique syntactic structure per set of
properties of the same typemeans high structural syntactic uniformity. If there aremore than one unique
structures, the uniformity decreases. We compute the structural uniformity for each set of properties
of similar types computing 1 over the number of unique syntactic structures, and taking the average.
This results in the following formula.

uniformityStructSyn ∶ 𝒫(𝑃) ↦ ℝ (3.57)

uniformityStructSyn(𝑝) =
∑𝑥∈countStructuresPerType(𝑝)

1
𝑥

|countStructuresPerType(𝑝)| (3.58)

3.7. Structural Semantic
Structural semantic uniformity is about the semantics that are embedded in syntactic structures. It
aims to compare whether the same amount of information is embedded within different structures that
both represent the same type of data. Take, for example, the columns ”Send_time” in the tables ”Out-
look_mail_message” and ”apple_email” from the running example. The value in ”Send_time” in ”Out-
look_mail_message” is a Unix timestamp, whereas that in ”apple_mail” is in a human-readable format.
The human readable format contains time zone information, which the Unix timestamp does not have.
This means that the syntactic structures hold different amounts of information. To quantify structural
semantic uniformity, we first need the ability to determine whether the types of the values belonging to
two properties are equal. For this, we can reuse the function typeSim, which was introduced earlier.
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We also need to be able to compare whether syntactic structures of values belonging to properties
contain the same information. To do this, we introduce the function embeddedSim:

embeddedSim ∶ P × P × Kg × Kp ↦ 𝔹 (3.59)

embeddedSim(𝑝1, 𝑝2, 𝐾𝑔 , 𝐾𝑝) =
⎧

⎨
⎩

True iff the syntactic structures of the values in 𝑝1 and 𝑝2
contain the same information

False otherwise
(3.60)

Next, we introduce the function countEmbeddingsPerSet. This function takes as input a set of
properties, and it returns the number of sets of embedded information. For example, when Out-
look_mail_message property Send_time and the apple_email property Send_time are used as input to
countEmbeddingsPerSet, it would return 2, since the syntactic structure of the Apple_email Send_time
contains a day, month, and timezone in human readable format. To construct countEmbeddingsPerSet,
we make use of embeddedSim. It looks as follows:

countEmbeddingsPerSet ∶ 𝒫(P) ↦ ℕ (3.61)
countEmbeddingsPerSet(𝑔) = |{𝑧 ⊆ 𝑔|∀𝑎, 𝑏 ∈ 𝑧, embeddedSim(𝑎, 𝑏)}| (3.62)

The next step is to apply countEmbeddingsPerSet to sets of properties that have the same gen-
eral type, such as, a set of properties that all contain timestamps. To do this, we construct the func-
tion countSimilarEmbeddingsPerType. This function takes as input a set of properties. It then pro-
ceeds to create sets of properties having same general type, such as timestamp, and then comput-
ing how many different embeddings there are in each of those sets. In the definition, we abbreviate
countEmbeddingsPerSet as CEPS. The function is defined as follows:

countSimilarEmbeddingsPerType ∶ 𝒫(𝑃) ↦ 𝒫(𝒩) (3.63)
countSimilarEmbeddingsPerType(𝑝) = {CEPS(𝑧)|𝑧 ⊆ 𝑝 ∧ ∀𝑎, 𝑏 ∈ 𝑧, typeSim(a,b) ∧ z ≠ ∅}

(3.64)

We can now use countSimilarEmbeddingsPerType to construct the formula used to compute
structure semantic uniformity. This formula, uniformityStructSem, is based on the intuition that if a set of
similarly typed properties contains different amounts of information embedded in the syntactic structure,
the uniformity is lower. The formula is defined as follows:

uniformityStructSem ∶ 𝒫(𝑃) ↦ ℛ (3.65)

uniformityStructSem(𝑝) =
∑𝑥∈CSEPT(𝑝)

1
𝑥

|CSEPT(𝑝)| (3.66)

3.8. Sample Computation
In this section, we present an example of the usage of the formulas introduced above. For this example,
we use an artificial output of some digital forensic platform.

Recall that in many of the functions introduced in the previous subsections, an external source of
general knowledge and an external source of problem-specific knowledge were required. In the rest of
this section, the author serves as both of those sources of knowledge in all functions that require it.
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Table 3.1: Table with data representing the concept ”chat”, containing data on chat messages

Message ID Chat ID Sender Receiver Send Time Message Content Read status
a3bb189e-8bf9-3888-9912-ace4e6543002 9876543210123456789 +1-202-555-0134 +61-2-9876-5432 August 13, 2024 09:15:30 AM EDT Hey, can we catch up later? true
4e8f4c26-cb7f-4d15-9a4c-6e29b5c3e3d2 1234567890987654321 +1-305-555-0199 +81-3-1234-5678 September 25, 2024 02:45:00 PM PDT Got it! I’ll send the report soon. false
e12f11f4-3d64-4b6f-8f65-dad1f249d012 4567890123456789012 +44-20-7946-0958 +34-91-123-4567 October 8, 2024 06:30:15 PM CST Thanks for the update! true

5a2d8e2c-8b79-4f85-8e26-91cbed6a2397 7890123456789012345 +33-1-70-18-99-00 +55-11-98765-4321 November 20, 2024 10:00:00 PM MST Are we still on for lunch? false
d8a6d8f2-53b4-46c4-b2ec-bf616e6a8b24 1122334455667788999 +49-30-12345678 +27-21-123-4567 December 31, 2024 11:59:59 PM EST Just a quick reminder about the meeting. true

Table 3.2: Table with data representing the concept ”email”, containing data on emails

Sender Receiver From_email To_email Send_time Subject Content
Andrew Baker Grace Wood andrew.baker@example.com grace.wood@example.com 1691894400 Action Required: Update Your Profile Dear Grace, Please take a moment to update your profile information in our system. It’s important to keep your details current. Best regards, HR Team
Chloe Davis Joshua Clark chloe.davis@example.com joshua.clark@example.com 1691980800 Team Outing Scheduled for Next Month Hi Joshua, We’re excited to announce a team outing next month! Stay tuned for more details. Cheers, Organizing Committee
Ryan Mitchell Mia Wright ryan.mitchell@example.com mia.wright@example.com 1692067200 Proposal Review Meeting Tomorrow Hello Mia, Just a reminder that we have a proposal review meeting scheduled for tomorrow at 10 AM. Please come prepared. Best, Project Manager
Lucy Evans Nathan King lucy.evans@example.com nathan.king@example.com 1692153600 Congratulations on Your Promotion! Hi Nathan, Congratulations on your well-deserved promotion! We look forward to seeing you excel in your new role. Best wishes, Your Team
Kevin Harris Sophie Hall kevin.harris@example.com sophie.hall@example.com 1692240000 Urgent: Response Needed by EOD Dear Sophie, This is an urgent request. Please respond to the attached email by the end of the day. Thank you, Kevin

3.8.1. High-level Semantic Example
We start by computing the high-level semantic uniformity of the sample output introduced earlier. Recall
that the high-level semantic uniformity of a digital forensic tool is high when the concepts in the output
are all at the same level of abstraction. We can compute it using equation 1.6, which makes use of
equation 1.5, countAbstractionLevels to determine the number of unique levels of abstraction of the
concepts in the input. First, we use abstractionLevel to determine the level of abstraction of each
concept in the input. Recall that this function uses a source of general knowledge and a source of
problem-specific knowledge, both of which in this case are the author.

abstractionLevel(chat, 𝑘𝑝, 𝑘𝑔) = 1

abstractionLevel(email, 𝑘𝑝, 𝑘𝑔) = 1

abstractionLevel(outlook_mail_message, 𝑘𝑝, 𝑘𝑔) = 2

As seen above, ”chat” and ”email” share the same abstraction level, while ”outlook_mail_message”
is at a lower level. Next, applying countAbstractionLevels to the set of concepts yields:

countAbstractionLevels({chat,mail, outlook_mail_message}, 𝑘𝑝, 𝑘𝑔) = 2

Finally, using this result in uniformityHLsem, we compute the high-level semantic uniformity:

uniformity𝐻𝐿𝑠𝑒𝑚 =
1
2 =

1
2

So, the high-level semantic uniformity of the sample data is 1
2 .

3.8.2. Low-level Semantic Example
We now compute the low-level semantic uniformity of the sample data. Recall that this type of uniformity
measures whether similar concepts also have the same properties. In the case of the sample data,
one might expect the concepts ”mail” and ”outlook_mail_message” (OMM) to have similar properties,
since the concepts both represent some type of email message.

We begin by applying the function groupSimilarConcepts to the set of concepts in the sample
output. The function groups the concepts by similarity based on conceptSim. Applying this function to
all possible pairs of concepts yields the following:

Table 3.3: Table with data representing the concept ”outlook_mail_message”, containing data on emails originating from Outlook

Sender Receiver Send_time Subject Content
johndoe@example.com sarah.wilson@example.com 2024-08-13T00:00:00.000 Meeting Reminder: Project Update Hi Sarah, Please find the latest project update attached. Let me know if you have any questions. Best, John
janedoe@example.com david.taylor@example.com 2024-08-14T00:00:00.000 Invoice #10234 Attached Dear David, Your invoice for this month is attached. Please review and let me know if there are any discrepancies. Thank you, Accounts Team
alex.smith@example.com olivia.martin@example.com 2024-08-15T00:00:00.000 Upcoming Webinar: How to Boost Productivity Hello, Don’t forget to register for our upcoming webinar on productivity hacks. It’s going to be a great session! Cheers, Webinar Team
emily.jones@example.com daniel.thomas@example.com 2024-08-16T00:00:00.000 Team Lunch This Friday Hi Daniel, Let’s gather for a team lunch this Friday at 12 PM. Please RSVP so we can make a reservation. Best, Emialy

michael.brown@example.com emma.lee@example.com 2024-08-17T00:00:00.000 Feedback on the Latest Design Hi Emma, I’ve reviewed the latest design and have a few suggestions. Let’s discuss in our next meeting. Best regards, Emily
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conceptSim(chat,mail, 𝑘𝑝, 𝑘𝑔) = False

conceptSim(chat,OMM, 𝑘𝑝, 𝑘𝑔) = False

conceptSim(mail,OMM, 𝑘𝑝, 𝑘𝑔) = True

Applying groupSimilarConcepts therefore looks as follows:

groupSimilarConcepts({chat,mail,OMM}, 𝑘𝑝, 𝑘𝑔) = {{mail,OMM} {𝑐ℎ𝑎𝑡}}
The next step is to determine whether similar concepts have similar properties. To do this, we

pairwise compare all similar concepts with each other and determine whether each of the properties
of the first concept is present in the second concept. To create the pairs of concepts to compare, we
use the function tuplesFromSet, as shown in equation 1.13. We apply it to each set in the output of
groupSimilarConcepts. Since there are no concepts similar to ”chat”, it has the same properties as
the concepts similar to it, vacuously holds. We can exclude it for the rest of the computation.

tuplesFromSet({mail,OMM}, 𝑘𝑝, 𝑘𝑔) = {(mail,OMM), (OMM,mail)}
We can now apply the function countMissingProperties each of those tuples, which counts the

properties that the first concept has, but the second one does not. It uses conceptContainsProperty to
determine whether a particular concept has a particular property. Recall that it returns 1 if the property is
present and 0 otherwise. For the sake of brevity, all applications of the function conceptContainsProperty
are explicitly stated. The function 𝑐𝑜𝑢𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 applied to the tuple (mail,OMM) yields
the following:

countMissingProperties(mail,OMM, 𝑘𝑝, 𝑘𝑔) = conceptContainsProperty(Sender,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Receiver,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(From_email,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(To_email,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Send_time,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Subject,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Content,OMM, 𝑘𝑝, 𝑘𝑔)
= 2

(3.67)

In the case of the properties Sender andReceiver, the function conceptContainsProperty returned
1 because the conceptOMM has properties containing the name of the sender and receiver of an email
message.

Applying countMissingProperties to the tuple (OMM, email) yields the following:

countMissingProperties(OMM, email, 𝑘𝑝, 𝑘𝑔) = conceptContainsProperty(Sender,OMM, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Receiver, email, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Send_time, email, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Subject, email, 𝑘𝑝, 𝑘𝑔)
+ conceptContainsProperty(Content, email, 𝑘𝑝, 𝑘𝑔)
= 0

(3.68)
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We can now use the function countMissingPropertiesInSet to count the total number of missing
properties in all tuples returned by tuplesFromSet.

countMissingProperties((email,OMM), (OMM, email)) =
countMissingProperties(mail,OMM, 𝑘𝑝, 𝑘𝑔)+
countMissingProperties(OMM, email, 𝑘𝑝, 𝑘𝑔)+
= 2

(3.69)

Next, we determine the total number of properties of the concepts in the tuples returned by tuplesFromSet
using countPropertiesInTuples (CPIT):

CPIT({(email,OMM), (OMM, email)}) =7 + 5
5 + 7 = 26

(3.70)

We can now apply the function similarConceptsUniformity (CSU) to the set {mail,OMM} as pre-
viously returned by groupSimilarConcepts. This looks as follows:

SCU({email,OMM}) = 1 − 2
26 ≈ 0, 92

Finally, we compute the low-level semantic uniformity of the sample data:

uniformity𝐿𝐿𝑠𝑒𝑚({email,OMM}) =
0, 92
1 = 0, 92

3.8.3. High-level Syntactic Example
Recall that high-level syntactic uniformity is high when similar concepts have the same name, and it is
computed using the following function:

uniformityHLSyn(𝑐, 𝑘𝑝, 𝑘𝑔) =
countSetsOfConcepts(𝑐)
countUniqueNames(𝑐)

The function countSetsOfConcepts takes as input a set of concepts and returns the number of sets of
similar concepts that exist in it. When applied to the sample data, it returns the following:

countSetsOfConcepts({outlook_mail_message,mail, chat}) = |{{outlook_mail_message,mail}, {chat}}| = 2

The next step is to compute the value of countUniqueNames on the sample data:

countUniqueNames({outlook_mail_message,mail, chat}) = |{{outlook_mail_message}, {mail}, {chat}}| = 3

We can now compute the high-level syntactic uniformity of our sample data using uniformityHLSyn:

uniformityHLSyn({chat, email, outlook_mail_message}) =
2
3 =

2
3

3.8.4. Low-level Syntactic Example
Next, we compute the low-level syntactic uniformity of our sample data. Recall that low-level syntactic
uniformity is about similar properties having the same name, and it is computed using the following
function:
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uniformityLLSyn(𝑝, 𝑘𝑝, 𝑘𝑔) =
∑𝑠∈groupSimilarProperties(p,kp ,kg) similarPropertyNameUniformity(s)

|groupSimilarProperties(𝑝, 𝑘𝑝, 𝑘𝑔)|
In this example, 𝑝 is the set of all properties in our sample data. We start by computing the value of

groupSimilarProperties with those properties as input. We denote the properties as the name of the
property, with the concept from which it originates in subscript. The concept outlook_mail_message
is abbreviated as OMM, and for brevity, not all applications of propertySim are explicitly stated.

groupSimilarProperties({Message IDchat,Chat IDchat,Senderchat,Receiverchat,Send Timechat

Message Contentchat,Read Statuschat,Senderemail,Receiveremail,
Receiveremail,From_emailemail,To_emailemail,Send_timeemail
Subjectemail,Contentemail,SenderOMM,
ReceiverOMM,Send_timeOMM,SubjectOMM,ContentOMM})
= {{Message IDchat}, {Chat IDchat},
{Senderchat}, {Receiverchat},
{Send Timechat,Send_timeemail,Send_timeOMM},
{Message Contentchat,Contentemail,ContentOMM}
{Read statuschat}
{From_emailemail,SenderOMM}
{To_emailemail,ReceiverOMM}
{Senderemail,}
{Receiveremail,}
{Subjectemail,SubjectOMM}}

We proceed with computing the nominator in the definition of uniformityLLSyn,

∑
𝑠∈groupSimilarProperties(𝑝,𝑘𝑝 ,𝑘𝑔)

similarPropertyNameUniformity(𝑠)

similarPropertyNameUniformity(Message IDchat, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Chat IDchat, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Senderchat, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Receiverchat, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Send Timechat,Send_timeemail,Send_timeOMM, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Message Contentchat,Contentemail,ContentOMM, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Read statuschat, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(From_emailemail,SenderOMM, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(To_emailemail,ReceiverOMM, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Senderemail,, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Receiveremail,, 𝑘𝑝, 𝑘𝑔)
+ similarPropertyNameUniformity(Subjectemail,SubjectOMM, 𝑘𝑝, 𝑘𝑔)

= 1 + 1 + 1 + 1 + 12 +
1
2 + 1 +

1
2 +

1
2 + 1 + 1 + 1 = 10
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We now have everything we need to compute the low-level syntactic uniformity of the sample data:

uniformityLLSyn(𝑝, 𝑘𝑝, 𝑘𝑔) =
10
12

3.8.5. Structural Syntactic Example
Next, we compute the structural syntactic uniformity of our sample data. Recall that structural syntactic
uniformity is high when values in properties of the same type have a similar syntactic structure. An
example of this is two timestamps, both denoted as a Unix timestamp. It is computed using the following
function:

uniformityStructSyn(𝑝) =
∑𝑥∈countStructuresPerType(𝑝)

1
𝑥

|countStructuresPerType(𝑝)|
Westart by applying countStructuresPerType to the sample data. We abbrevaite outlook_mail_message

as OMM.

countStructuresPerType({Message IDchat,Chat IDchat,Senderchat,Receiverchat,
Send Timechat,Message Contentchat,Read Statuschat,Senderemail
Receiveremail,From_emailemail,To_emailemail
Send_timeemail,Subjectemail,Contentemail,
SenderOMM,ReceiverOMM,Send_timeOMM,SubjectOMM,ContentOMM})
= {countStructuresPerSet({Message IDchat}),
countStructuresPerSet({Chat IDchat}),
countStructuresPerSet({Senderchat,Receiverchat}),
countStructuresPerSet({Send Timechat,Send_timeemail,
Send_timeOMM})

countStructuresPerSet({Message Contentchat,Contentemail,
ContentOMM,Subjectemail,SubjectOMM}),

countStructuresPerSet({Read statuschat}),
countStructuresPerSet({Senderchat,Receiverchat}),
countStructuresPerSet({From_emailemail,To_emailemail)
SenderOMM,ReceiverOMM})}

= {1, 1, 1, 3, 1, 1, 1, 1}

In the above calculation, we can see that there is only a single set containing properties with values
have the same type as well as different syntactic structures, namely {Send Timechat, Send_timeemail,
Send_timeOMM}. The values of property Send Timechat are in a human-readable format, the val-
ues in Send_timeemail are Unix timestamps, and those in Send_timeOMM are formatted according to
ISO8601. This has a negative impact on the structural syntactic uniformity.

We proceed with using the output of the above computation in the function uniformityStructSyn,
where we denote the set of all properties in the sample data as 𝑝:

uniformityStructSyn(p) =
1
1
+ 1

1
+ 1

1
+ 1

3
+ 1

1
+ 1

1
+ 1

1
+ 1

1
+

8
≈ 0.92

So, the structural syntactic uniformity of our sample data is approximately 0.92.
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3.8.6. Structural Semantic Example
We proceed with the last sample computation, namely that of the structural semantic uniformity of our
sample data. The structural semantic uniformity of our sample data is high when values of the same
type have syntactic structures that allow the embedding of the same information.

We start by computing the value of countSimilarEmbeddingsPerType applied to the sample data.
This function creates sets of properties that have values of the same type, and for each of those sets,
it counts how many unique information embeddings are present in that set.

countSimilarEmbeddingsPerType({Message IDchat,Chat IDchat,Senderchat,Receiverchat,
Send Timechat,Message Contentchat,Read Statuschat,Senderemail
Receiveremail,From_emailemail,To_emailemail
Send_timeemail,Subjectemail,Contentemail,
SenderOMM,ReceiverOMM,Send_timeOMM,SubjectOMM,ContentOMM})
= {countEmbeddingsPerSet({Message IDchat}),
countEmbeddingsPerSet({Chat IDchat}),
countEmbeddingsPerSet({Senderchat,Receiverchat}),
countEmbeddingsPerSet({Send Timechat,Send_timeemail,Send_timeOMM}),
countEmbeddingsPerSet({Message Contentchat,Contentemail,ContentOMM,
Subjectemail,SubjectOMM}),

countEmbeddingsPerSet({Read statuschat}),
countEmbeddingsPerSet({Senderchat,Receiverchat}),
countEmbeddingsPerSet({From_emailemail,To_emailemail,
SenderOMM,ReceiverOMM})

}
= {1, 1, 1, 2, 1, 1, 1, 1}

(3.71)
In the above calculation, we can see that there is only a single set of properties of which the syn-

tactic structures of its values are capable of embedding different amount of information, namely the
set {Send Timechat, Send_timeemail, Send_timeOMM}. The difference lies in the fact the syntactic
structure of the values stored in Send Timechat contains an explicit time zone, whereas the syntactic
structures of the values in the other properties do not.

Using the result of the above computation, we can compute the value of uniformityStructSem on the
sample data:

uniformityStructSyn(p) =
1
1
+ 1

1
+ 1

1
+ 1

2
+ 1

1
+ 1

1
+ 1

1
+ 1

1
+

8
≈ 0.94

3.9. Conclusion
In this chapter, we presented six ways in which output of a digital forensic tool can manifest a lack
of uniformity, namely high-level semantic, low-level semantic, structural semantic, high-level syntactic,
low-level syntactic, and structural syntactic. For each of those types of uniformity, we presented a
function to quantify it, and we have shown how to apply those functions in an example. We have also
discussed the need that these functions have for sources of problem-specific knowledge and general
knowledge. These functions together serve as a way to quantify the uniformity of the output of open-
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source digital forensic tools, and therefore this chapter answers research question 2, ”What is the
best way to quantify uniformity of the output of open-source digital forensic platforms?”.



4
Proof-of-Concept

In this chapter, we answer research question 3 by creating a proof of concepts that implements the
uniformity functions introduced in chapter 2. Recall that the uniformity functions often make use of a
source of general knowledge and a source of problem-specific knowledge. Because we need concrete
instances of both these knowledge sources in an implementation of the uniformity functions, we start by
outlining several potential sources of general knowledge and problem-specific knowledge. We compare
advantages and disadvantages and choose the most suitable knowledge sources to be used in the
proof-of-concept. Next, we discuss the implementation, architecture, and workflow of the proof-of-
concept.

4.1. Knowledge Sources
In this section, we go over the various options that can serve as a source of general knowledge,
problem-specific knowledge, or both. We first discuss properties that these sources should adhere
to in order to be a suitable option for use in an implementation of the functions introduced in previ-
ous chapter. Next, we discuss various options and argue whether they do or do not adhere to these
properties, and we conclude with choosing the most suitable sources of knowledge for our usecase.

4.1.1. Requirements
Firstly, we want the knowledge sources to be usable for never-before-seen words. This means that if
the input data contains, for example, a column name that has never before occurred in the world, the
source of knowledge can still make meaningful decisions about it. In other words, we want the source
of general knowledge to be complete.
Secondly, we want the source of general knowledge to be sound. High soundness results in more
accurate quantification of uniformity.
Thirdly, we want the knowledge sources to be able to answer multiple types of queries. This would
allow for the use of a single source of domain knowledge for multiple functions, rather than needing a
separate one for each of them. This would mean, for example, having a source of general knowledge
that determine similarity of high-level concepts, as well as similarity of properties.

In the remainder of this section, we discuss various potential candidates for serving as a source of
general knowledge.

29
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4.1.2. Thesaurus

A thesaurus maps words to their synonyms, and possibly other relations such as broader or narrower
terms and antonyms. Thesauri are commonly available for natural language in many languages and
some are purpose built for domain-specific applications.

In the case of our running example, the high-level concepts ”Outlook_mail_message” and ”apple_email”
can be deemed similar by a thesaurus if it contains an entry that maps these words to each other. Con-
versely, if a thesaurus does not contain an entry for those words, it can not map them to each other.
The fact that a thesaurus can only operate on a fixed domain means that all terms for which it is queried
have to be known at the time the thesaurus is created. This in turn means that applying the thesaurus
to new data might not work because this data contains terms unknown at the time the thesaurus was
created.
An advantage of thesauri is that they can serve as a source of general knowledge and problem-specific
knowledge simultaneously because problem-specific knowledge is implicitly integrated in the general
knowledge when creating a thesaurus.

4.1.3. Ontology

An ontology describes objects and the relationships between them. An ontology can contain various
kinds of relations, such as hierarchical relationships that contain relationships between narrower and
broader terms, or relationships that specify that something is an instance of something else, or a syn-
onym. Despite these capabilities, an ontology shares limitations with thesauri, mainly the fixed domain
and the inherent inability to deal with never before seen words as input. Therefore, ontologies are not
a valid option for use as an external source of domain knowledge.

4.1.4. D4

The authors of [13] describe D4, a method for domain discovery. The aim of D4 is grouping columns
that are likely to draw their values from the same domain. Assuming that columns that draw their values
from the same domain have similar semantics, an attempt could be made to use D4 as a source of
general knowledge.

D4 relies heavily on the co-occurrence of values across columns to determine whether they draw their
values from the same domain. In experiments done with output of digital-forensic tools, D4 correctly
identifies the domain of WiFi network names, but not that of timestamps. This seems to be due to the
fact that several overlapping values exist between multiple columns containing WiFi network names,
but none between columns containing timestamps. Although this is inherent to the workings of D4, it
is counter-intuitive; WiFi network names words that are often not even present in natural language and
that are close to meaningless without context, but timestamps that are all formatted exactly the same
are missed.

It should be noted that discovering whether columns draw their values from the same domain is by
itself inadequate for properly determining whether columns have similar semantics; columns that con-
tain values from the same domain can have very different semantics, as is the case in, for example, the
”Sender” and ”Receiver” columns from the ”Outlook_mail_message” table from the running example.
In conclusion, D4’s heavy reliance on value co-occurrence makes it unsuitable as a source of general
knowledge. knowledge.
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4.1.5. Word Embeddings

Word embeddings map words to a vector space, where proximity indicates similarity. This approach
could be used to determine semantic similarity between column and table names. Traditional word
embedding techniques, however, struggle with out-of-vocabulary words. This is due to the nature of
these methods; if a word is not in the vocabulary during training, the method can not map it to a vector.
Therefore, similar to approaches discussed earlier, word embeddings are not suitable as a source of
general knowledge due to their inability to deal with out-of-vocabulary words. A correctly trained model
could have the advantage that it can serve as a source of general knowledge and problem-specific
knowledge simultaniously, since the desired level of abstraction can be embedded in the training data.

4.1.6. Thesaurus of Regular Expressions

Regular expressions can be used to compare the structures of values. The use of regular expressions
does come with some inherent potential flaws. For one, regular expressions can be either too strict, or
not strict enough. For example, when crafting a regular expressions that matches a set of timestamps
in a human readable format, such as 01-05-2024T10:51:15UTC, it is possible to create a regular ex-
pression that matches exactly the set of the provided timestamps, or create a regular expression that
matches all values in the universe. Crafting the correct regular expression therefore requires knowl-
edge about the meaning of the values to know what parts of the values are variable or fixed, whether
values are optional, or whether they can vary in length.

Regular expressions can be used to compare the syntactic structure of values. One way in which
this can be done is by creating a thesaurus of regular expressions. In such a thesaurus, regular ex-
pressions that match values of a particular type will map to regular expressions that match values of
the same type, but of a different syntactic structure. For example, the thesaurus can contain a mapping
from a regular expression that matches the values in ”Send_time” of ”Outlook_mail_message” in the
running example, to a regular expression that matches the human-readable timestamp format present
in the ”Send_time” in ”apple_email”. The thesaurus could also be implemented such that it maps regu-
lar expressions based on the embedded semantics of the values. In that case, the ”Send_time” values
from the running example would not be mapped to each other because they do not contain the exact
same amount of information.

Due to the extensive domain knowledge that this thesaurus contains, it can not be created in an au-
tomated way, but only by humans with problem-specific knowledge. It can therefore serve as both
general knowledge and problem-specific knowledge for 𝑠𝑡𝑟𝑢𝑐𝑡_𝑠𝑖𝑚 and 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑_𝑠𝑖𝑚. An advan-
tage of the use of the regular expression thesaurus is that it can be of high soundness, depending on
the care with which it was constructed. This quality can represent itself both in the quality of the regular
expressions, i.e. they match exactly the desired set of values, as well as it containing the knowledge
that values with a particular structure do or do not contain the same information.

A disadvantage is the inherent lack of flexibility of such a thesaurus. Since it functions as a map-
ping, any values that are not matched by a regular expression in it will not be recognised by it. If it can
be assumed that the data the thesaurus will be applied to always contains values of a similar nature,
this problem would not exist but the nature of the data considered in this thesis is inherently unpre-
dictable. Therefore, the thesaurus of regular expressions is not a valid for use as an external source
of domain knowledge.
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4.1.7. Learning Regular Expressions
Instead of creating a predefined set of regular expressions, regular expressions can be learned from
the data as well. This process is called induction of a regular language. Its goal is to learn a formal
description of a regular language based on a set of example strings. Current methods, however, fail to
generalise beyond literal matches of values. For example, a Python package exists that promises to
learn regular expressions given a set of example strings, but its result is simply a big regular expression
that matches all values literally.

If an accurate method to learn regular expressions from a set of data would exist that generalises
well, it could be very helpful when reasoning about the structures of sets of values. To what degree the
learning method should generalise is also dependent on the problem-specific knowledge, but presently
such a method does not exist. Therefore, induction of regular languages can now not be used as a
source of domain knowledge for 𝑠𝑡𝑟𝑢𝑐𝑡_𝑠𝑖𝑚.

4.1.8. Large Language Model
A recurring issue with the solutions proposed earlier is their inability to handle out-of-vocabulary words,
making them unsuitable for dealing with never-before-seen data. Large languagemodels such as GPT-
4 mitigate this problem; these models generally derive the meaning of unseen words well. Experiments
in the web interface of GPT3.5 show that it is able to answer queries such as ”Do columns with names
”email_sender” and ”emailSentBy” have the same meaning?”, despite it being likely that those column
names have never been seen before.

Another advantage of the use of LLMs is that they can take the data present in columns into account.
This would allow an LLM to conclude that although column names might be semantically close, based
on their contents they might have a different meaning. Looking at both data and column name simulta-
neously is something that the previously mentioned candidate-solutions are not capable of. LLMs are
also capable of answering queries related to the syntactic structure of values, which makes usable as
a source of general knowledge for the 𝑠𝑡𝑟𝑢𝑐𝑡_𝑠𝑖𝑚 function.

An advantage of the use of large language models as a source of general knowledge is also that
by means of prompt engineering, it can take problem-specific knowledge into account. If, for example,
the LLM is instructed to consider all things resembling emails to be similar, this is taken into account
by the LLM when asked whether the concepts ”Outlook_mail_message” and ”apple_email” are similar.

Although large language models are powerful, they do have several properties that complicate their
use compared to the solutions earlier described.

Firstly, there is the nondeterministic nature of large language models; an LLM might provide two differ-
ent answers to the same query, which in turn might result in inconsistent uniformity results.

Secondly, the output of large language models is not necessarily well-structured. Whereas the out-
put of comparing word embeddings is a clear number and that of querying a thesaurus simply a set of
synonyms, it is fundamentally unclear every time what the output of a large language model will look
like. This adds a layer of complexity to the use of large language models.

Thirdly, a large language model can make mistakes. Mistakes caused by erroneous prompt engi-
neering can sometimes be resolved, but mistakes caused by hallucination of the LLM are more difficult
to both detect and resolve.
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Despite these challenges, the ability of large language models to handle out-of-vocabulary words, com-
pare both table and column names and data values, and compare the structures of values, makes them
a good candidate for serving as a source of general knowledge and problem-specific knowledge in our
use case.

4.1.9. Domain Expert
A human domain expert can function as source of general knowledge and problem-specific knowledge.
The answers a domain expert provides to queries of similarity are likely to be very accurate for sev-
eral reasons. Firstly, a human can also deal with out-of-vocabulary words better than a thesaurus,
ontology, or word embedding. Secondly, a domain expert is likely to have the ability to accurately de-
termine semantic similarity despite a lack of syntactic similarity, both in the case of data values and
property and concept names. An example of this is similarity between the property ”Sender” from ”Out-
look_mail_message” and ”From_email” from ”apple_email”. Lastly, the domain expert per definition
has problem-specific knowledge which makes him a suitable candidate for being both a source of gen-
eral knowledge as well as problem-specific knowledge.

A disadvantage to this approach is the time it takes the human to answer the queries. The use of
a human as source of domain knowledge is promising, and we explore this option further in the next
subsection.

4.1.10. Domain Expert in the loop and LLM
Finally, we propose combining the human domain-expert as source of general knowledge and problem-
specific knowledge, with a large language model as source of general knowledge and explicit problem-
specific knowledge. This approach combines the advantages of both approaches and mitigates dis-
advantages, such as the time consumption of querying a human domain expert, and the mistakes the
large language model might make. For example, the prompts to the large language model can be
engineered such that the LLM provides a specific output when it is unsure of the answer it returns.
The human domain expert can in turn be queried to provide a definitive answer to the query. Bundling
the possibility to automate querying the LLM and its broad knowledge and ability to understand explicit
problem-specific knowledge, with the expert knowledge and context-awareness of a human domain
expert is the best option for use as sources of knowledge in the introduced formulas.

4.1.11. Abstraction
Earlier, we introduced the function 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑡𝑖𝑜𝑛_𝐿𝑒𝑣𝑒𝑙 that takes a concept, a source of problem-
specific knowledge, and a source of general knowledge and outputs and integer representing the level
of abstraction of this concept. This function can be implemented using a domain expert in combination
with a large language model as sources of knowledge, but as becomes clear from the source code of
the proof of concept, we choose to implement this function with only the domain expert as source of
knowledge. This is due to the fact that assigning an integer to a certain degree of abstraction requires
vast problem-specific knowledge that is hard to convey to a large language model in a prompt.

4.2. Motivation behind Proof-of-Concept
The proof-of-concept is a software tool that implements the uniformity functions introduced in chapter
2. Its aim is to automate the computations required for evaluating the uniformity of the output of a
digital forensic tool. As could be seen in the example uniformity computation in chapter 3, using the
functions could be a time consuming and error-prone endeavour. The PoC mitigates these problems.
By extension, the aim of the PoC is also to show that it is possible to implement the uniformity functions
in software, and that they can exist outside of their formal definitions.
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Figure 4.1: Workflow demonstrating querying mechanics

4.3. Architecture and Workflow
The proof-of-concepts is a software tool written in Python. It takes as input the output of the digital
forensic tool of which the uniformity is to be computed. This output is to be provided in separate .tsv
or .csv files, where each file represents a concept, the name of the file is the name of the concept,
the column names are the property names, and the values in the columns are the values belonging to
those properties.

4.3.1. Workflow
The PoC starts by reading the provided tool output and converting it to an internal representation of
concepts, properties, and values. This conversion is specific per tool output format, so if support for
a different format, for example SQLite databases, is required, the conversion capabilities need to be
extended. Next, computation of the values of the uniformity functions begin. If required, the domain
expert is asked. When all required queries to either GPT or the domain expert are finished, values for
each type of uniformity are returned. Figure 4.1 shows a high-level schematic of this process.
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4.3.2. Knowledge Sources
Recall that the uniformity functions rely on external sources of problem-specific knowledge and gen-
eral knowledge, and that earlier it was concluded that a large language model in conjunction with
a human domain-expert can serve as an effective source of both these types of knowledge. In the
uniformity functions, these knowledge sources are used to determine whether concepts, properties,
syntactic structures or embeddings are similar or not. Recall that all similarity functions, for example
ConceptSim, return a boolean.

All similarity functions are implemented in a similar way, and only differ in two aspects, namely the
input they take and the prompt they use to query GPT. For example, in the case of the implementation
of propertySim, the prompt contains instructions to GPT about how to interpret properties and how to
compare properties. The objects that are to be compared by GPT are appended to the prompt. The
format in which this is done depends on which similarity function is implemented. For example, when
comparing concepts, the prompt includes the name of the concept and the names of the properties,
whereas when comparing types of values, only values are appended.

The prompts also contain instructions that specify how the output should be formatted. In all prompts,
the GPT is instructed to return ”yes” in case the compared objects are deemed equal, ”no” in case the
objects are deemed not equal, and ”unsure” in case GPT can not make a confident decision. In case
”yes” or ”no” are returned, the similarity function simply returns either the boolean value True or False.
In case GPT outputs ”unsure”, the human domain expert is prompted to make a decision about the
similarity of the objects being compared. The domain expert is then presented with some represen-
tation of the objects that are being compared, and they can simply answer ”yes” or ”no” in response.
This answer is converted to either True or False and returned by the similarity function.

The subtle difference between this implementation and the formal definition of the similarity functions
introduced in chapter 2, is that the knowledge sources are presented as explicit parameters of the sim-
ilarity functions in the formal definitions, whereas the similarity functions in the proof-of-concept have
access to the knowledge sources directly from within their implementation. In other words, the similarity
functions in the PoC do not need to be passed the knowledge sources as explicit parameters.

In the case of the proof of concept, we opted to use OpenAI’s gpt-3.5-instruct model. Advan-
tages of this model are its high rate-limits and the fact that it is trained to be good at following particular
instructions rather than chat-completion. It is, however, not as advanced as OpenAI’s newer models,
such as GPT-4o.

4.3.3. Key Challenge: Overcoming High Response Time
One challenge in implementing the proof of concept is the time required for a request to OpenAI’s API,
which takes approximately 0.3 seconds. While this is relatively fast, it becomes problematic when the
tool is applied to large datasets requiring numerous comparisons.

A potential solution is to make simultaneous API requests using multiple threads, thus increasing the
number of requests that can be processed per second. However, the proof-of-concept is inherently
single-threaded. It heavily relies on grouping similar items - such as concepts or properties - by as-
signing them to lists based on similarity functions. Since these groupings are constantly updated,
multi-threading is not feasible. To address this, we constructed a mapping that stores the results of
pre-computing the output of the similarity function for each possible comparison in parallel. This map-
ping acts as a cache, allowing for rapid similarity assessments by storing API responses for all potential
queries.
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While this approach may lead to more API requests than strictly necessary, we believe the result-
ing speedup justifies this trade-off. Another drawback is the potential to hit rate limits with OpenAI’s
advanced models due to the frequent queries. However, the high rate limits of gpt-3.5-instruct help
mitigate this issue. Therefore, to successfully implement these functions using external knowledge
sources, the PoC needs to use the knowledge sources in such a way that their output can be con-
verted to a boolean.

4.3.4. Source Code
The source code of the proof-of-concept can be found in the following Github repository:
https://github.com/luukvancampen/uniformity.

To run the tool, the following steps have to be taken:

• Create an OpenAI account and create an API key. This key is used to query GPT-3.5.

• In the users virtual environment, the environment variable OPENAI_API_KEY needs to the Ope-
nAI api-key

• (Optional) Change the prompts in prompts.py so they accurately reflect the users opinion on
when objects should be deemed similar

• Execute the Main() function in Main.py

• When the user is asked whether two objects are similar, provide an answer

The README of the repository also contains instructions on how to run the tool.
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Experiment: Accuracy of Uniformity

Functions and PoC

The goal of this chapter is to elaborate on the conducted experiment and the results that followed. The
results are discussed in the Discussion chapter, and they are used in the conclusion chapter to answer
the following research questions:

• RQ-2.1 How accurate is the uniformity metric defined in this thesis?

• RQ-3.1How do the perceived workloads of quantifying uniformity based on intuition, the functions
introduced in this thesis, and using the proof-of-concept compare?

• RQ-3.2How accurate is the proof-of-concept compared to manually computed uniformity scores?

In order to answer these questions, an experiment was conducted, consisting of three steps. First,
a group of experts from the digital forensics domain are asked to intuitively assign uniformity values to
a synthetic output of a fictitious digital forensic tool. The uniformity scores assigned during this step
serve as a baseline to compare the scores assigned in the second step to. Secondly, the experts
are asked to compute uniformity values for the same output using the introduced uniformity functions.
Comparing the values resulting from this step to the values resulting from the first step allows us to
answer research question 2.1. Lastly, the experts use the proof-of-concept to assign a uniformity value
to that same output. Comparing the uniformity scores resulting from this step to those resulting from
step 2 allows us to answer research question 3.2. After each step, the experts are asked to fill out the
NASA-TLX, which serves as an indication of the effort required to do the task. This allows us to answer
research question 3.1.

In remainder of this chapter, we further elaborate on the design of this experiment and the rationale
behind it. We also discuss potential shortcomings.

5.1. Experiment Design
In this section, the design and rationale behind the conducted experiment is elaborated on.

5.1.1. Fictitious Digital Forensic Tool Output
The fictitious digital forensic tool output was crafted such that it displays a lack of five of the six types
of uniformity introduced in this thesis. The data does not show a lack of high-level syntactic uniformity.
It consists of five concepts (”chat”, ”email”, ”outlook_mail_message”, ”wifi”, and ”wifi”), with properties
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that fit these types of concepts. There are five rows of data in each concept, which in this experimental
setting is enough to draw conclusions about the all relevant aspects of the data. A lack of each type of
uniformity is represented in the data in the following ways:

• High-level semantic: the concepts ”email” and ”outlook_mail_message” are not at the same
level of abstraction, because ”email” is more abstract. This is therefore a lack of high-level se-
mantic uniformity.

• Low-level semantic: the concepts both named ”wifi” are similar concepts since they both repre-
sent connections to wifi networks, but they do not have the same properties. This can therefore
be considered a lack of low-level semantic uniformity.

• Structural semantic: the timestamps in the ”Send Time” property of the concept ”chat” has a
resolution of seconds, whereas the timestamp ”Last Connected” in (one of) the ”wifi” concepts,
has a resolution of nanoseconds. This displays a lack of structural semantic uniformity, because
both these properties contain values of the type ”timestamp”, but their structure does not allow
storing the same amount of information. This can therefore be considered a lack of structural
semantic uniformity.

• Low-level syntactic: both ”wifi” concepts have properties that contain the name of the wifi net-
work to which was connected. In one ”wifi” concept, this property is called ”SSID”, in the other it
is called ”Name”. This therefore constitutes a lack of low-level syntactic uniformity.

• Structural syntactic: the ”email” concept has the property ”Send_time”, which contains values
that are timestamps formatted as Unix timestamps. A property that also contains timestamps
is ”Send Time” of the concept ”chat”, but those timestamps are formatted in a human-readable
way. This displays a lack structural syntactic uniformity because values of the same type are
represented using a different syntactic structure.

The fictitious data can be found in the Github repository linked in the chapter on the proof-of-concept.
It is important to remark that these lacks of uniformity are in the end solely lacks of uniformity based

on the opinion of the author. This is due to the fact that the uniformity functions all rely on an external
source of knowledge to judge whether concepts, properties and syntactic structures are similar. One
person might state that the sample data is perfectly uniform because all concepts represent things in
the universe, and the syntactic structures of the timestamps are all similar because they are shorter
than 100 character. However, because the author is familiar with the digital forensic domain and the
level of abstraction at which the experts in the digital forensic domain operate, it is valid to assume that
the participants in the experiment consider these instances of lacks of uniformity to be judged as such
as well. This fictitious digital forensic tool output is therefore valid for use in the experiment.

5.1.2. Participants
The participants in this experiment are software developers working to maintain the forensic knowledge
contained in Hansken. These software developers have extensive experience in creating mappings be-
tween various types of data and the Hansken trace model. While creating these mappings, they have
come across various problems regarding uniformity of data that has to be mapped. Due to this experi-
ence, it can be stated that they are experts in this domain.

5.1.3. NASA-TLX
To evaluate the subjective workload of computing the uniformity value of a dataset, the NASA-TLX[8]
was used. The NASA-TLX is widely used to compute the subjective workload of doing a particular
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task. In the first part of the questionnaire, participants are asked to rate the perceived workload of a
task based on six scales. In the second part, they are asked to pairwise compare the six scales to
determine which scales are the most important to the participant. This weighting is then applied to the
results of the first part to compute a subjective workload score. The use of the NASA-TLX allows us to
answer research question RQ-3.1.

5.2. Process
In this section, the individual steps conducted during the experiment are discussed.

5.2.1. Preparing the Experts
The digital forensic experts we first introduced to the six types of uniformity introduced in this thesis, by
means of a presentation and examples of each type of uniformity. The experts were also thought the
meaning of the terms ”concept”, ”property” and ”type” in the context of this experiment. The experts
having an understanding of these types of uniformity is vital for the first task in the experiment, namely
assigning uniformity values based on intuition.

5.2.2. Assigning Uniformity Scores Based on Intuition
As the first step in this experiment, the digital forensic experts were asked to assign uniformity score to
the fictitious tool output based on their intuition. The values intuitively assigned by the experts serves
as a baseline for assessing the quality of the uniformity functions introduced in this thesis. This step
was concluded with the participants filling out the NASA-TLX for this task.

5.2.3. Assigning Uniformity Scores Based on the Created Functions
As the second step in this experiment, the experts were asked to compute uniformity scores using the
functions introduced in this thesis. The values resulting from this can, in turn, be compared to the values
resulting from the previous step. This provides an insight into the differences between the intuition of the
experts and the results they obtain when using the introduced functions. Since there is nothing else to
compare the output of the uniformity functions to, this is also the best metric regarding the correctness
of the created functions. This step in the experiment allows us to answer research question 2.1. The
closer the values resulting from this step are to the values resulting from the previous step, the more
support there is that the functions created in this thesis are accurate. This step was concluded with the
participants filling out the NASA-TLX.

5.2.4. Assigning Uniformity Scores Using the Proof-of-Concept
As the final step in the experiment, the experts were asked to use the proof-of-concept to compute
uniformity scores. The resulting values can be compared to the values resulting from the previous
step. The closer the values resulting from the proof-of-concept are to the values resulting from the
previous step, the more support there is that the results produced by the proof-of-concept are accurate.
With this comparison, we can answer research question 3.2. Finally, this step was concluded with the
participants filling out the NASA-TLX.

5.3. Results
In this section, we present the results obtained from executing the experiments described in the previ-
ous chapter. Recall that the participants of the experiment performed the following three tasks:

• Assign uniformity scores to a synthesized digital forensic tool output based on their intuition, and
fill out NASA-TLX
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Table 5.1: Results obtained by digital forensic expert 1.

Expert 1 Intuition Developed metric Proof-of-concept

High-level Semantic Uniformity 0,9 0,5 0,5
High-level Syntactic Uniformity 0,5 0,75 1,0
Low-level Semantic Uniformity 0,3 0,79 1,0
Low-level Syntactic Uniformity 0,3 0,86 0,14
Structural Semantic Uniformity 0,3 0,81 0,97
Structural Syntactic Uniformity 0,2 0,68 0,96

Average Uniformity 0,42 0,73 0,76

Perceived workload 39,7 59,7 43,3

• Assign uniformity scores to a synthesized digital forensic tool output using the uniformity functions,
and fill out NASA-TLX

• Assign uniformity scores to a synthesized digital forensic tool output using the proof-of-concept,
and fill out NASA-TLX

The results of these steps are gathered in tables 5.1, 5.2, and 5.3. Each table contains the results
obtained by a single participant, and each column contains the results obtained in a single step of the
experiment. The last row in each table shows the perceived workload for each task.

5.3.1. Uniformity Based on Intuition
The values in the ”Intuition” columns of tables 5.1, 5.2, and 5.3 show that the digital forensic experts
assigned varying levels of uniformity when basing this value on intuition alone. For two of the experts,
the perceived workload when assigning uniformity values based on intuition, is relatively high when
compared to that of using the proof of concept. For one expert, this task incurs a slightly lower perceived
workload compared to that of using the proof-of-concept.

5.3.2. Uniformity Based on Developed Metric By Hand
For participants 2 and 3, the uniformity values obtained using the developed metric by hand are more
consistent than those obtained when assigning uniformity scores based on intuition. The uniformity
value assigned by participant 1 is significantly higher than the one assigned by them when basing
the value on intuition. Using the developed metric by hand to compute uniformity incurs the highest
perceived workload for two of the participants. One participant found it to incur a lower perceived
workload than assigning uniformity scores based on intuition.

5.3.3. Uniformity Using the Proof-of-concept
The uniformity results obtained by the experts when using the proof-of-concept are close together. For
expert 1, the obtained score is close to that obtained when expert 1 assigned a uniformity value based
on the developed metric. For participant 2, the value obtained using the proof-of-concept is closer to
that obtained when basing the value on intuition, rather than using the developed metric by hand. The
use of the proof-of-concept incurs a significantly lower perceived workload for all participants compared
to the perceived workload incurred by using the developed metric by hand. For experts 2 and 3, the
perceived workload is also significantly lower than that incurred by assigning uniformity scores based
on intuition.
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Table 5.2: Results obtained by digital forensic expert 2.

Expert 2 Intuition Developed metric Proof-of-concept

High-level Semantic Uniformity 0,8 0,5 0,33
High-level Syntactic Uniformity 0,7 0,6 1,0
Low-level Semantic Uniformity 0,5 0,56 1,0
Low-level Syntactic Uniformity 0,6 0,85 0,51
Structural Semantic Uniformity 0,8 0,95 0,96
Structural Syntactic Uniformity 0,8 0,86 0,97

Average Uniformity 0,70 0,52 0,80

Perceived workload 64,7 57,7 39,0

Table 5.3: Results obtained by digital forensic expert 3.

Expert 3 Intuition Developed metric Proof-of-concept

High-level Semantic Uniformity 0,4 0,33 0,5
High-level Syntactic Uniformity 0,4 0,75 1,0
Low-level Semantic Uniformity 0,4 0,45 1,0
Low-level Syntactic Uniformity 0,4 0,5 0,5
Structural Semantic Uniformity 0,2 0,75 0,97
Structural Syntactic Uniformity 0,6 0,35 0,97

Average Uniformity 0,40 0,52 0,82

Perceived workload 65,3 77,0 25,7





6
Related Work

In the following subsections, we will present an overview of work done in fields related to data integration
and other topics related to this thesis.

6.1. Schema Document Complexity
Basci and Misra[2] propose a metric for determining the complexity of an XML schema document by
means of entropy. This complexity mostly relates to the structure of the schemas, and it does not
consider the semantics of elements in a schema. Pušnik et al. propose a novel quality measuring
approach and also define six aspects of schema quality. As argued earlier, the goal is using uniformity
of output of digital forensic tools as guideline for the time required to integrate that tool into Hansken.
This required time can be regarded as difficulty as well; a non-uniform output is more difficult to map
to the Hansken trace model. The ability to quantify the complexity of an XML schema could provide
similar information, especially because relations between objects in the schema are also regardedwhen
determining complexity. Therefore, if digital forensic tools would provide XML schemas of their output,
quantifying their complexity could prove to be a useful guideline when determining the complexity of
integrating the tool. However, since we do not have XML schemas describing the output of tools, this
approach is not a valid solution to our problem.

6.2. Semantic Integration
Semantic integration is an umbrella term related to data integration and schemamatching; more specif-
ically, Noy et al.[12] specify the problem as solving many semantic-heterogeneity problems, such as
”matching ontologies or schemas, detecting duplicate tuples, reconciling inconsistent data values, mod-
elling complex relations between concepts in different sources, and reasoning with semantic map-
pings”. This thesis touches on the topic of semantic heterogeneity in the uniformity functions. We
essentially aim to quantify the degree of semantic heterogeneity. It is therefore worthwhile to explore
this topic further in the remainder of this section.

Bergamaschi et al.[3] propose an approach to the integration and query of multiple heterogeneous
information sources, containing structured and semi-structured data. Their approach, MOMIS, does in-
formation integration based on the conceptual schema, or metadata, of the information sources, and on
certain architectural elements. The first of these architectural elements is a common object-oriented
data model, which is used to describe source schemas for integrating purposes. The second archi-
tectural element consists of one or more wrappers to translate schema descriptions into the common
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object description language, and the final element is a mediator and a query processing component.
The approach in the paper makes use of a common thesaurus which is constructed from the ODL
descriptions. It is made clear that the creation of the common thesaurus is a semi-automatic process.
The relations that the thesaurus is supposed to capture are more complicated than simple semantic
relatedness; the thesaurus is supposed to tell whether words are synonyms, broader terms, or related
terms. The first step when integrating the semi-structured data is associating an object pattern with
each set of objects having the same label in the source graph. This means making groups of objects
where the objects have the same attributes. The objects from the structured schema and the object
patterns are translated to an object description language. The process also includes the building of
the mediator integrated global schema. In this step, Object Description Language objects that have a
semantic relationship in different sources are identified. For all possible pairs of objects, a numerical
value between 0 and 1 is determined, the affinity coefficient. This is based on the terminological rela-
tionships in the common thesaurus. Affinity coefficients determine the degree of semantic relationship
of two classes based on their names and attributes. The global affinity coefficient is a linear combi-
nation of the name affinity coefficient and the structural affinity coefficient. A hierarchical clustering
algorithm is used to classify ODL classes according to their degree of affinity. The affinity coefficients
determined in this process could be a valid technique for use in the uniformity functions introduced in
this thesis. The function conceptSim could be implemented using this approach by choosing a certain
limit for the affinity value, above which the function would return true, and below which it would return
false. The technique proposed in this paper relies on meta-information about the data. In the context
of this thesis, where the input data can be of vastly different formats, we have no guarantees about the
availability of such data, which means we can not be sure that it is possible to construct the common
object-oriented data model, let alone in an automated manner.

Castano and De Antonellis[5] propose a computer-aided, affinity-based schema unification method.
Their method works by means of analysis of schema elements in order to identify elements with affinity
in different source schemas. Affinity is the level of semantic relationship between elements in different
schemas. This approach assumes the existence of an explicit and well defined schema. For structural
affinity, names, domains, and cardinalities are taken into consideration. For name affinity, the authors
rely on the semantic contents of names of schema elements. To capture the semantic relatedness of
words, a thesaurus is used. A thesaurus in this context is a sort of dictionary that specifies the relations
between words, such as whether they are synonyms, bigger terms, or narrower terms. The affinity
function is capable of considering the strength and length of paths between objects in the thesaurus.
An example from the paper is the path between Individual and Professor; Individual is synonym of
Person, and Person is a bigger term of Professor. This results in a path length of two. For analysing
the structure of objects, the concept of semantic correspondence is introduced. Semantic correspon-
dence between objects can be determined when the name affinity between objects is higher than 0.
Semantic correspondence between properties can be done in two ways, namely by means of name
affinity or analysing the domain of properties (domain compatibility). Properties that have both name
and domain compatibility have stronger correspondence than is the case when there is only name
compatibility. The different relations described in the thesaurus used in this approach could be of use
in the uniformity functions in this approach, specifically in that of high-level semantic uniformity. If two
concepts can be compared in such a thesaurus, it could become clear instantly whether concepts are
at the same level of abstraction, since a bigger term can be considered more abstract and vice versa,
or concepts are synonyms. This would remove the need for the function abstractionLevel, since the
level of abstraction of individual concepts no longer has to be determined. At the same time, the need
for a thesaurus is a limitation, since it would have to be constructed for digital forensic tool of which the
uniformity is to be determined, which makes this approach inflexible. This limitation was also discussed
in the chapter on possible knowledge sources. It is also not always straightforward to determine the
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domain of properties. For instance, it required problem-specific knowledge to realise that an integer is
a Unix timestamp, and that therefore the domain of a property containing such values is vastly differ-
ent than that of a property containing values that are actual integers. Since the approach described
by Castano and De Antonellis assumes the existence of a schema describing the data, it is a valid
approach in their case, but since we can not assume to have a schema, we can not use it.

6.2.1. Domain Incompatibility Problem
The domain incompatibility problem is described by Czejdo et al.[7]. This problem can manifest itself in
multiple forms. First, there could be the issue of semantically similar entities having a different name.
Secondly, the domain of semantically similar attributes might be incompatible; an example of this could
be one table defining ID as a 9-digit string and another as an 11-digit string. Thirdly, there may not be a
one-to-one mapping available between attributes and a many-to-one or vice versa mapping will have to
be created. An example of this could be one database schema splitting addresses into a street, house
number, and zip code, whereas this might all be a single column in a different schema. The authors
propose to solve this problem by using extended abstract data types in schema definitions and by aug-
menting the relational model ”connectors”. Note that the provided example on the difference in how
addresses are stored, can be a case of a lack of low-level semantic uniformity when the concepts to
which these columns belong are similar. For example, if there is a ”subscriber” table with the columns
”street”, ”house number”, and ”zip code”, and another ”subscriber” table with the column ”address”,
the concepts represented by those tables can be semantically similar, but they do not have the same
properties. Therefore, the amount of effort or complexity it takes to reconcile this difference using the
approach proposed by Czejdo et al., could serve as an indication of the degree of low-level semantic
uniformity of data. A disadvantage of this is that it would require an objective way to measure effort
or difficulty or complexity of employing their approach, which is not straightforward. The approach of
Czejdo et al. also relies on the availability of well-defined schema that describes the data, which is not
always available in the case of the output of digital forensic tools. Therefore, although the techniques
described in by Czejdo et al. are interesting, it is not possible to employ their solutions in quantifying
uniformity of the output of digital forensic tools.

Sheth et al.[14] explore the topic of semantic proximity. They define semantic proximity of two ob-
jects to be a four tuple consisting of a context, abstraction, the domains of the two objects, and the
states of the objects. The context is considered because two objects can be semantically similar in one
context and not in another. In case the objects do not have semantic proximity in either all or no cases,
the contexts in which the objects have semantic proximity has to be specified. The abstraction is used
to refer to a mechanism used to map the domains of the object either to each other, or a common third
domain. Domains refer to sets of values from which the objects can take their values. The state of an
object can be thought of as a record of an object in a database. The notion that objects can be se-
mantically near in one context and not in another, captured in this thesis in the form of problem-specific
knowledge. The role of the problem-specific knowledge is to work in conjunction with the source of gen-
eral knowledge to make decisions on whether object are semantically near. The authors also describe
problems that arise in schema integration that can be related to types of uniformity introduced in this
thesis. For example, the authors mention naming conflicts, which are semantically similar attributes
(properties in this thesis), having different names. This relates to low-level syntactic uniformity. Union
compatibility conflicts, which is similar concepts having different attributes, and schema-isomorphism
conflicts, which is concepts having a different number of attributes, are also mentioned. These types of
conflict are quantified in this thesis as low-level semantic uniformity. Furthermore, the authors mention
data representation conflicts, data scaling conflicts, and data precision conflicts, which can be related
to the two types of structural uniformity. An interesting direction for future work could be to explore
whether it is valuable to further refine the types of uniformity so these three types of conflicts can be



46 6. Related Work

quantified on their own. The authors also mention conflicts that can arise when an explicit database
schema is present, namely default-value conflicts and attribute integrity constraint conflicts. Because
the the output of digital forensic platforms generally does not include a schema, these conflicts are not
relevant for this thesis.

6.2.2. Schema Conflicts and Data Conflicts
Kim et al.[9] make the distinction between schematic and data conflicts in a multi database system.
It is argued that a database is defined by its schema and its data. Schema conflicts result from the
use of different schema definitions in the multiple databases, and data conflicts are due to inconsistent
data in the absence of schema conflicts. Although generally no explicit schema is available in the data
considered for this thesis, one might be derived, and therefore we can still have schema conflicts. The
authors state that there are two causes for schema conflicts, namely the use of different structures to
represent a semantically similar entity type, the second cause is the use of different specifications for
the same structure. This could be, for example, the use of different names and data types for semanti-
cally equivalent tables or attributes. The paper also discusses table-versus-attribute conflicts, causes
by data being stored as attributes in one schema and in a table in another. A similar situation could
probably occur in the data considered in this project.

Data conflicts can arise due to two situations: conflicting data constraints and different representa-
tions of the same data. In the context of this thesis, the first of these problems can per definition not
occur, since an explicit schema is generally not present, and therefore neither are constraints. The
latter of the problems is highly relevant to this thesis. The paper notes that it is also very well possible
to have a combination of the problems mentioned above.

6.3. Semi-structured Data and Similarity
Recall that the uniformity functions introduced in chapter 2 all rely on functions that determine whether
either concepts, properties, or syntactic structures are similar. These functions work by accessing
sources of general knowledge and problem-specific knowledge to make decisions about similarity. In
literature, other techniques are presented to determine similarity of concepts and properties. In this
section, we discuss some of these approaches. We start out by providing discussing the concept of
semi-structured data, and argue why the output of open-source digital forensic platforms is generally
semi-structured. This serves as a foundation for the discussion of techniques from literature to deter-
mine similarity of concepts and properties.

6.3.1. Properties of Semi-Structured Data
Abiteboul et al.[1] outline several properties of semi-structured data. These properties are the data
being irregular, the data having an implicit structure, the structure being partially present, the structure
being only indicative, the data having an a-posteriori data guide, a rapidly evolving schema, and the
data being self-describing.

The first property of semi-structured data is that it is irregular, which means that some records omit
fields, whereas others record additional information. The output of digital forensic platforms generally
seems to adhere to this property; the fields of objects that originate from the same place might not be
the same. For example, one picture might have exif data, whereas another might not. If we consider
this from a more general view, we can of course have the situation that entities that have similar se-
mantics do not all have the same fields, but this is more related to the uniformity and it is not so much
what is meant in this context with irregularity. This principle can be seen in the running example. We



6.3. Semi-structured Data and Similarity 47

can generally expect to see similar fields in all instances of ”Outlook_mail_message”, but we see that
”Apple_email” and ”Outlook_mail_message” have different fields.

The second property of semi-structured data is that its structure is implicit, which is the case with the
output of digital forensic platforms. For instance, wha the data shown in the running example means
can be derived from examining the column names and column contents, but a specification of what the
data means is missing. Intuitively, one could consider the data to have an explicit structure, since gen-
erally the field names are provided. This is, however, not what makes data structured, since parsing
is required to obtain the actual data and the correspondence between the parse-tree and the logical
representation of the data is not always immediate.

The third property of semi-structured data is that the structure could only be partially present. The
running example shows a case of this in the ”Content” column. The text within that column can be
unstructured, whereas the data in the other columns is structured.

The fourth property of semi-structured data is that it generally uses an indicative structure rather than a
constraining structure. A standard relational database generally follows a strict schema that can specify
what data is allowed in it, including types and possibly constraints. In situations where such a schema
is considered too restrictive, this approach might not work, and an indicative schema might be used,
which simply indicates the current type of the data.

The fifth discussed property of semi-structured data is the usage of an a-priori schema versus an
a-posteriori data guide. In the case of forensic data, the notion of a schema is often posterior to the
existence of data; this simply stems from the fact that forensic activities are always done after a fact.
The data in this thesis adheres well to this property, since the tools that generate the data are usually
purpose-built to gather information on a particular type of file that is preexisting.

The next relevant property of semi-structured data discussed is the rapid evolving of the schema. To
be able to find as much forensically valuable data as possible, changes in forensically valuable files
have to be implemented in forensic tools as well, thereby possibly changing the output and possibly
the schema.
Furthermore, Want et al.[15] state that semi-structured data can be self describing. This means that
each object can contain its own schema, and the distinction between schema and data is blurred.

In conclusion, the output of the digital forensic platforms can be considered semi-structured. The
biggest consequence of this is that there is no explicit schema available and we can not make any
assumptions about the values present in the data. The approach to quantifying uniformity that we
introduce later, revolves around this property.

6.3.2. Determining Similarity
The previous subsection concluded with the notion that the output of open-source digital forensic plat-
forms is generally semi-structured. In this subsection, we explore methods used in schema matching
that can be used to determine the similarity of concepts and properties when the data is not semi-
structured. These methods might be relevant in case the uniformity functions are applied to data that
is not semi-structured, and a different implementation of the similarity functions is desired.

Similarity in Schema Matching
Schema matching is the task of finding semantic correspondences between elements of two schemas.
In this section, we provide an overview of methods from schema matching used to find these semantic
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correspondences.

Melnik et al.[10] propose an algorithm that can be used for matching of diverse datastructures, such as
graphs. The authors propose converting database schemas to graphs and in turn using the matching
algorithm to identify corresponding elements between those graphs. The approach to matching the
graph makes use of string similarity and it uses a human domain expert as external source of knowl-
edge, since the correct match often depends on the information only available or understandable by
humans.

The fact that this approach involves the use of a database schema makes it unsuitable for applica-
tion to semi-structured data. However, the principle that two objects are similar if they have similar
neighbours, which is how the graph is used to determine semantic similarity, is relevant in the case of
semi-structured data. It might, for example, be possible to determine that tables are similar if they have
columns with similar names. The required problem-specific knowledge to determine whether high-level
concepts are similar can in this case come from the human domain expert. It is explicitly mentioned
that in some cases the knowledge whether concepts are semantically similar can only come from a
human domain-expert, which in essence is the same as requiring problem-specific knowledge.
Scalability of this approach might be problematic due to the human domain expert having to be queried
often.

Fernandez et al.[6] propose the building of a hypergraph that captures the syntactic relationships be-
tween data from different sources. The construction of this graph relies on the generation of signatures
of columns, which are ”summaries” that contain information about a column such as, content sketches,
cardinality, and data distribution. Relationships in the hypergraph are then constructed based on the
similarity of column signatures.

This approach leans heavily on syntactic similarity between data sources. This likely yields incom-
plete results in situations where there is semantic similarity, but no syntactic similarity, for instance in
the situation where timestamps are represented in different formats. This approach lacks the possibility
to take problem-specific knowledge into account. For example, this approach applied to the running
example might lead to inaccurate result due to low syntactic similarity, and there is no way to provide
the approach with problem-specific knowledge to solve this problem.

Zhang et al.[16], propose a way to cluster columns into attributes. In this context, attributes are strong
relationships between columns based on the common properties and characteristics of the values they
contain. The authors provide the example of distinguishing two columns containing values of the same
primitive datatype, namely integer, of which one contains phone numbers and the other social security
numbers. From this primitive datatype there is no indication that these columns might be semantically
related, but in the case of two columns that contain similar data, such as phone numbers, this seman-
tic relatedness can be discovered. This approach therefore determines semantic similarity between
columns that contain similar types of data based solely on characteristics of that data, but it disregards
other indications of semantic similarity, such as column names or table names. The authors explicitly
state that their approach does not make use of any external source of information, which might mean
that cases where semantic similarity is less obvious or not derivable from the data, are missed. This
also means that problem-specific knowledge can not be used to determine similarity of high-level con-
cepts in this approach.

Nargesian et al.[11] define the table union search problem and present a probabilistic solution for find-
ing tables that are unionable with a query table within massive repositories. The authors aim this
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approach on semi-structured data, despite not using this exact term; they note the absence of a strict
schema, which results in the need to consider attribute values to determine unionability. Contrary to
other approaches that use only value overlap or class overlap heuristically to find unionable attributes,
this paper defines attribute unionability using three statistical tests based on value overlap, annota-
tion of attributes with classes from an ontology and class overlap (semantic unionability), and natural
language similarity. To measure semantic unionability, attributes are mapped to classes by means of
an ontology. Natural language similarity is determined by means of word embeddings; each attribute
is assigned a set of word embeddings that can be compared to that of another attribute. The paper
presents a test that can be used to determine which of those metrics can be used best to determine
whether attributes are unionable.

As seen earlier, some knowledge about whether or not to match particular attributes can only be pro-
vided by a humanwho functions as an external source of knowledge. This approach attempts to capture
this external knowledge using an ontology and word embeddings, but this approach likely suffers from
a lack of performance in the case of out-of-vocabulary words. If a class is not present in an ontology
or in the training data of the word embedding, this approach might yield incomplete results. An on-
tology is, however, in principle well suited to capture problem-specific knowledge. Concepts that are
deemed similar by the problem-specific knowledge can be recorded as such in the ontology. Training
word-embedding such that concepts deemed similar by problem-specific knowledge is also possible,
but this process is probably very costly.





7
Discussion

7.1. Overview of Open-source Digital Forensic Platforms
Several lists of open-source digital forensic platforms can be found online, but these lists generally do
not provide the reader with additional information that can be used as a guideline to compare platforms
and gain more in-depth information about them. The overview presented in this thesis does provide
the reader with a brief analysis of the found platforms, both in terms of quantifiable metrics, such as
the number of file types the platform is able to extract traces from, and more subjective matters, such
as how well the code is structured. From this overview we can conclude that development of open-
source digital forensic platforms is actively ongoing, with several large platforms being the result of this.

Upon analysing the code structure of several of digital forensic platforms, we see that they are generally
structured in a very modular way. This way, a platform can be extended to support extracting traces
from a new type of file, without having to modify much existing code. Instead, if code adheres to a
particular structure, such as implementing a particular interface, the platform is able to utilise it without
much additional configuration. This has the benefit that is is generally very clear how the individual
parts of the code work, which makes it easy to extract the forensic knowledge implicitly embedded in
the code. Forensic knowledge in this context is the knowledge of where in a particular file certain infor-
mation can be found and what forensically relevant parts of a file mean. Therefore, if an open-source
digital forensic platform is able to extract traces from a type of file for which support is to be added
to a different platform, it might be worthwhile to consider integrating that specific part of the code, or
extracting the forensic knowledge and using that in a new implementation.

The overview presented in this thesis does not inform the reader about what specific file formats the
platform can extract traces. If the reader is interested to know whether a platform can extract traces
from a particular file, they have to resort to either the documentation of the platform or the source code.

To make the presented overview more complete, a list of files from which the platforms can extract
traces can be included. This will make it more obvious to the reader whether the platform contains
support for the files in which the reader is interested.

7.2. Uniformity Functions
We developed a definition of uniformity for the output of open-source digital forensic platforms. This
definition consists of six sub-forms of uniformity, for each of which we provide formal definitions of func-
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tions that can be used to compute them. We also provided an example of a computation on fictitious
data.

The six types of uniformity together with the formal definitions of functions to compute them serve
as an answer to research question 2, ”what is the best way to quantify uniformity of the output of open-
source digital forensic platforms?”

The field of digital forensics lacks a method to assess the uniformity of output of digital forensic plat-
forms. More generally, to the best of our knowledge, there does not exist an approach to assess the
uniformity of sets of semi-structured data. The uniformity functions can be a valuable addition to the
field of digital forensics in multiple ways. Firstly, the uniformity definitions can be taken into account
during development of digital forensic platforms. This might result in developers taking the uniformity
of their platforms output into consideration more, which in turn may lead to better interoperability of
platforms.

7.3. Proof-of-Concept
The uniformity functions introduced in chapter 2 are formal definitions, and the presented example
computation was done by hand, which was error-prone and much work, especially for large outputs of
digital forensic platforms. To show that the uniformity functions can be automated and that it is possible
to create concrete implementations of the formally defined functions, a proof-of-concept was created.
It was also shown that it is possible to find concrete instances for the sources of general knowledge
and problem-specific knowledge, which were left largely abstract in the definitions of the uniformity
functions.

7.4. Experiment: Accuracy and Perceived Workload of Uniformity
Functions and PoC

An experiment was conducted to obtain data that can be used to answer research questions 2.1 (How
accurate is the uniformity metric developed in this thesis), 3.1 (How do the perceived workloads of quan-
tifying uniformity based on intuition, the approach introduced in this thesis, and the PoC compare?),
and 3.2 (How accurate is the PoC compared to manually computed uniformity scores).

7.4.1. RQ-2.1: How accurate is the uniformity metric developed in this thesis?
To answer research question 2.1, ”how accurate is the uniformity metric developed in this thesis?”, the
experiment involved digital forensic experts assigning uniformity values to a set of data based on their
intuition. The idea behind this step is that the values assigned in this step can serve as a baseline
to which the values resulting from the next step in the experiment, the experts computing uniformity
values using the functions introduced in chapter 3, be compared. The results in figures 5.1, 5.2, and
5.3 show that the values obtained by the experts in the intuition step vary rather significantly for expert
1, but less so for experts 2 and 3. It is therefore hard to answer the research question based on this
data alone.

A possible explanation for the deviating results might be that the experts were not given any direc-
tion on how to assign uniformity values based on intuition, apart from that they could range from 0 to
1, and that 1 is the highest possible score. The inherent subjectivity involved with assigning the values
based on intuition can be a possible cause for the deviation.
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7.4.2. RQ-3.1: How do the perceived workloads compare?
The data required to answer research question 3.1, ”How do the perceived workloads of quantifying
uniformity based on intuition, the approach introduced in this thesis, and the proof-of-concept com-
pare?” was obtained by having the experiments’ participants fill out the NASA-TLX after each step of
the experiment. The results show that that experts 2 and 3 assign the lowest perceived workload to
the use of the proof-of-concept, whereas expert 1 assigns the lowest perceived workload to assigning
uniformity values based on intuition, but this perceived workload value is not significantly lower than
that resulting from the use of the proof-of-concept. For experts 2 and 3, there is no significant pat-
ter to discern between assigning uniformity values based on intuition and computing them using the
functions introduced in chapter 3. Using these values, we can carefully conclude that the use of the
proof-of-concept incurs the lowest perceived workload out of the three tasks the experts performed. It
must be noted, however, that the sample size is small, and more conclusive results can only be drawn
by repeating the experiment with more participants.

7.4.3. RQ-3.2: How accurate is the PoC compared to manually computed unifor-
mity scores?

To obtain the data required to answer research question 3.2, ”How accurate is the PoC compared to
manually computed uniformity scores?”, the experiments’ participants used the proof-of-concept devel-
oped in chapter 4 to compute uniformity scores. The results show that the uniformity values computed
by the experts when using the proof-of-concept are relatively similar, contrary to the values computed
manually by using the functions. In the case of experts 2 and 3, the difference between the uniformity
values obtained using the proof of concept and those obtained by manually computing them is nearly
the same. For expert 1, the values resulting from manually computing them and those obtained by use
of the PoC are nearly the same. The results obtained by expert 1 therefore support that the PoC is
accurate compared to manual use of the uniformity functions, whereas the values obtained by experts
2 and 3 support the contrary. It is therefore hard to give a uniquivocal answer to the research question.

An interesting direction for future work in this case is to have the participants of the experiment write
their own prompt to the large language model. In the current experiment setup, the prompts provided
to the LLM were written by the author, and they therefore reflect the authors intuition on whether cer-
tain concepts, properties, and syntactic structures are similar. If the participants would write their own
prompts, the results obtained by manually using the uniformity functions and using the PoC might be
more in line, and it might be possible to answer the research question using those results.

7.4.4. Limitation: Lack of Participants
In this subsection, we discuss some limitations of the research performed for this thesis.

Lack of Experiment Participants
A clear limitation of the conducted experiment is the lack of digital forensic experts available for this
experiment. Conducting the experiment with more participants would likely result in more unequivocal
results about the accuracy of the functions developed in chapter 2.

Incompleteness of Tool Output
A limitation of the way in which uniformity of open-source digital forensic platforms was determined in
this thesis is that it relies on the output of using the platform with a specific input. This means that if
the input to the platform is incomplete, it might result in a uniformity value that is not in accordance
with the value that would have been obtained had the tool been executed on a more complete input.
Imagine the case of the running example; if the input that resulted in the output shown in the running
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example would not have contained an instance of an Apple Mail database, this output would only have
contained traces found for Windows mail, which in turn makes the platform perfectly uniform.

Subjectivity
The uniformity metric relies heavily on the ability to determine whether concepts, properties, and syn-
tactic structures are similar, and we have shown that this in turn relies on problem-specific knowledge.
Since both these things can be subjective, the uniformity value resulting from the proof-of-concept is
inherently subjective as well, and it is difficult to establish a ground-truth about the accuracy of the
developed methods.



8
Conclusion

This thesis aimed to provide the reader with useful information that can help them decide what digital
forensic tool is best suited for integration into another digital forensic platform. This was done by
addressing three main research questions, and two sub-questions.

8.1. Research Questions
The first research question (RQ-1), ”What open-source digital forensic tools are available?” was ad-
dressed in chapter 2. We conducted review of various open-source digital forensic platforms found
online. This overview provides an insight into how suitable the platforms are for integration into another
platform, by considering both measurable properties such as the number of file types the platform ex-
tracts traces from, or when it was last updated, as well as assessments of how well the platforms are
documented or how their code is structured.

Our second research question (RQ-2), ”What is the best way to quantify uniformity of a set of semi-
structured data?” was explored in chapter 3. We introduced six types of uniformity, and provided formal
definitions of functions that can be used to quantify them. We concluded the chapter with an example
computation.

The answer to the third research question was provided in the form of a proof-of-concept, which is
a software tool that is a concrete implementation of the uniformity functions introduced in chapter 3.
We discuss various potential sources of general knowledge and problem-specific knowledge, and con-
clude that a large language model operating in conjunction with a domain expert is a valid choice for
these sources of knowledge in the PoC. Further design choices were discussed, and its usage was
described.

The necessary data to answer research questions 2.1, 3.1, and 3.2 is created using an experiment
described in chapter 5. In that chapter, the conducted experiment is discussed, and the results are
presented. In chapter 7, the results are interpreted and discussed, but it is not possible to draw un-
equivocal conclusions due to various reasons, among which is a small sample size.
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8.2. Future Work
In this section, we briefly discuss potential future work that could be done to further improve the process
of quantifying uniformity of semi-structured data.

8.2.1. Prompt Engineering
Although the prompts utilised in the implementation of the PoC have proven to be effective, an inter-
esting direction for further research and experimentation is to have participants in the experiment write
their own prompts. This ensures that the problem-specific knowledge of the experts is better conveyed
to the large language model, and the results obtained by use of these prompts in the PoC might be
more in line with the results obtained when computing the uniformity values manually. The participants
could experiment with the following:

Phrasing of Problem-Specific Knowledge As discussed, the prompts incorporate problem-specific
knowledge which is used as a frame of reference from which it can be ruled whether concepts are
similar. How this knowledge is phrased might be of influence on the quality of the prompt result.

Question Formulation After reading this thesis, the reader probably has a grasp of how vague or
subjective the concept of similarity is. Consequently, stating the question of whether things are similar
in a way that conveys the domain-experts intention, is difficult. Therefore, it is worth exploring whether
phrasing the question of whether things are similar to the large language model can be improved.

8.2.2. Optimising the Number of Queries in the PoC
The proof-of-concept in its current state makes many queries to either the OpenAI API or the domain
expert, namely almost quadratic with respect to the number of tables or number of columns. Because
rate-limiting is in place in the API, running the proof of concept generally takes a considerable amount
of time. Developing a smarter clustering algorithm or using a heuristic to limit the number of queries
made, will result in a lower running-time of the proof-of-concept.

8.2.3. Optimising Involvement of Domain-Expert
In the proof-of-concept, a choice has to be made on when to query the domain-expert. This can either
be when the large-language non-similarity, similarity, uncertainty, or a combination of those options.
Balancing the involvement of the domain-expert with the accuracy of the of the results of the proof-of-
concept is important. Investigating the optimal balance between minimising the number of queries for
the domain expert andmaximising the accuracy of the result can result in an improved proof-of-concept.
In this process, it is important to keep in mind that the optimal balance differs per use-case.
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