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At low ionic strength counterions cluster nonuniformly around a linear, highly charged 
micelle. The miceUe is regarded as a finite line charge with relatively fewer countefions 
condensing on the two ends, The end contribution to the electrostatic free energy is positive, 
so that the micelles shorten upon addition of simple salt to the solution. 

It is reasonable to approximate a linear charged micelle by a finite line 
charge when the ionic strength is low so the Debye screening length exceeds 
the micellar diameter. For a line considerably longer than the Debye length the 
electric double layer is virtually homogeneous along its midsection. The 
electrostatic potential exerted by the line charge weakens close to the ends, the 
regions of nonuniformity being about a Debye length long. As has recently 
been pointed out [1], this end effect implies that a linear micelle should grow as 
we add salt to the solution. The electrostatic interaction between micelles also 
displays an end contribution that has been elaborated in ref. [2]. 

The reasoning above is unequivocal for a micelle of low charge density when 
the Deb3,e-Hiickel approximation is legitimate. On the other hand, if the 
charge density is high, counterions are expected to cluster around the micelle. I 
erroneously argued that one need then merely renormalize the charge density 
in the end effect [1, 2]. In this note I reexamine the problem pointing out that 
counterion condensation may be inhomogeneous enough to change the sign of 
the end effect. Instead of growing, highly charged micelles should shorten upon 
increasing the salt concentration. 

Ideally, one would like to investigate the potential exerted by a finite line 
charge with the help of the nonlinear Poisson-Boltzmann equation or a similar 
continuum approximation. Analytical calculations on short rods do exist [3] but 
none on the electric inhomogeneity of finite rods much longer than the Debye 
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radius. In the work by Safran et al. on polyions without salt [4], each charged 
rod is viewed as consisting of three independent and separate entities namely a 
cylinder without end effects and two hemispherical caps. In our view this is a 
severe approximation to an inherently nonlinear problem. In a globally correct 
analysis Ramanathan and Woodbury showed that counterions condense on a 
rod a Debye length long, to about the same extent as on an infinite line charge 
of similar charge density [3]. Nevertheless, the counterion distribution may be 
nonuniform. This effect is here investigated for finite long lines. Counterions 
are postulated to be condensed inhomogeneously onto the finite line charge 
while the effective or renormalized electrostatic interactions are treated in the 
Debye-Hiickel approximation. Although not exact, our results should be close 
to lead terms within a Poisson-Boltzmann theory at low ionic strength. 

The micellar solution has a permittivity D and a temperature T. A relevant 
electric scale is the Bjerrum length Q = q2/DkB T in terms of the elementary 
charge q. A 1-1 electrolyte of concentration c is added to the solution in excess 
so that the Debye screening length A equals (8"trQc) -1/2. Whether or not 
counterions cluster around a (finite) line is determined by the charge density 
parameter ~, which is the linear charge density v of the micelle scaled by Q. If 
the length L of the line charge is much larger than the Debye length 
counterions should condense [5, 6] on its midsection when ~ > 1. Near the two 
ends the counterion distribution is nonuniform, so we introduce the renormal- 
ized or effective charge density sO(s)--Qvcff(s), which is a function of s the 
micellar contour distance from one end. In the midsection we set ~(s)= 1 in 
accordance with the usual theory of counterion condensation [5, 6]. By balanc- 
ing the electrostatic forces against the decrease in entropy arising from the 
nonuniform distribution we can ascertain ~(s) close to the ends of the micelle. 

Let point P be at a distance p from the line charge with s being the 
projection of P onto the line. The electrostatic potential ~(p, s) at P is given by 

L 

qlq,(p,s)l _- [ dt ~:(t) e x p { - [ ( t -  s) 2 + p2]~/2/A} 
. (1) 

0 

This is a superposition of Debye-Hiickel potentials exerted by the renormal- 
ized charge distribution. In reality the micelle has a nonzero radius a, so it 
makes sense to adopt the line chargc approximation only when A >> a. The 
fraction of condensed counterions is proportional to ~ -  ~:(s), which gives rise 
to an ideal mixing entropy. We may write for the chemical potential of a 
condensed counterion situated on the micellar surface 

IZi = i% + kBT  log[~ - ~(s)] - q[~(a, s)l = constant, (2) 

where /x 0 is an unimportant constant. Since the system is in equilibrium, the 
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chemical potential is independent  of s. Eq. (2) expresses a Bol tzmann dis- 
tribution. It must conform to the following boundary condition: i f  L >> A >> a at 
low ionic strength, ~(s) is unity and qlq, I/kBT 2 log(A/a) along the midsec- 
tion defined by a ,~ s <~ L - A. In effect the midsection has the electric prop- 
erties of an infinite line charge [5, 6]. 

In order  to assess eq. (2) analytically I shall focus on the limit of very high 
charge density (~" >> 1). Al though the regime 1 ~< ~ ~< 2 is of particular interest, 
it is outside the scope of this note. We want to solve the integral equation (2) 
to leading order  regarding the quantity w --- log(A la) as a large parameter .  Eq. 
(1) is then rewritten as 

qlO(a,s)[ 
k n T  

[w + log(s/a)] ~(s) + 

s + A  

I ""?, -7  for 
" (3a)  

s+h 

2w~:(s) + I dt ~(t) - ~:(s) J ~ ~l for A ~ < s ~  < ½ L .  

s-a+. (3b) 

A zero-order solution to eqs. (2) and (3) is derived by setting the integrals in 
eq. (3) equal to zero. Then for s I> A, ~:(s) must be equal to unity because of 
the boundary condition ment ioned above. Next, eqs. (2) and (3a) show that 
~:(s) remains of the order of unity along the entire contour. Hence we may set 
l o g [ ~ - ~ ( s ) ] - ~ l o g ~ - ~ ( s ) / ~  in eq. (2) so that the ideal mixing term is 
negligible compared with the potential because w >> 1. Accordingly, the zero- 
order effective potential is virtually constant along the micellar length. The 
zero-order solution to eq. (2) is simply 

f 2w ~o(s) = w + log(s/a) " a <~ s <~ A.  

1,  A<---s<-½L, 
(4) 

with ~o(s) = ~o(L - s) for a <~ s ~< L - a. 
It is now possible to prove that the integrals in eq. t.~)'"" may be -" . . . . . .  "~--' "- ILll 1~  1 K ; ~ d l  IdlK:;U 111 

the calculation of the micellar end effect. For instance, let us focus on the case 
a ~< s <~ A. The  function ~0(s) is monotone decreasing or constant in the interval 
a ~ s <~ ½L, which permits us to establish the following bounds: 

O~  

$ 

f dt ~°(t) - ~°(s) 
$ - - t  

a 

s 

l" ~o(a)  - ~:o(s) 
J dt  s a = ~:°(a)-  ~:°(s) ~< 1,  
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2s 2s 

f f ,02( s, ~ ° ( t ) -  se°(s) > dt sty(s)= O> dt t ' - -s  2w ' 
$ S 

s+A 

f dt 6°(t) - ~°(s) 
t - - $  

2s 

log(A/s) 

>2w f d/~ ([w + ~ + log(2s /a) ]  - i  
o 

= - ~(w-I log2(A/s)). 

- [w + log(s/a)] -1} 

The last inequality is obtained via the substitutions t = s(1 + x) and p, = log x 
and the fact that log(i + x) ~< log(2x) for x ~> 1. Hence in eq. (3a) the absolute 
magnitude of the integral is smaller than the zero-order term by a factor 
ranging from about w -2 log2(A/s) to w -1. In other words, in a large section of 
the interval a <~ s ~< A, eq. (4) represents the leading solution to our integral 
equation. As s tends to a, eq. (4) is not very accurate but the relative effect of 
this region diminishes as w increases. Therefore, the integrals calculated below 
should be estimates correct to the leading order. A similar error analysis 
applies to eq. (3b). 

In order to establish the impact on growth, we need to calculate the 
electrostatic free energy of the micelle (the entropy from the nonuniform 
counterion distribution is a higher order term). Within the limitations outlined 
above, it is given by 

L L 

kBT = ~ O - . ,  j ds dt t ~ - -  ~+a--2l  T/i 
0 o 

L - a  L -a  

qltb(a,s)lo=wQ -l -J ds ~:o(S). (5) ½Q-~ ~ ds ¢0(s) ka T 
a a 

This consists of an extensive part proportional to L and a positive end effect, 
which can be expressed as 

A 

kaTf~nd -~2wQ-' ds [~:0(s ) - 11~ --Q (6) 
a 

to leading order. The integral is evaluated by the substitution s = a exp(w - x) 
and an asymptotic expansion for large w. Note that eq. (6) bears a minus sign 
[1] when the micelle has a low charge density ( ~ <  1). 
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Eq. (6) implies a "growth" law [1] 

A 
n log L = constant + Q ,  (7) 

where n is a constant related to the degrees of freedom the amphiphiles lose on 
micellization. This expression states that a very highly charged micelle de- 
creases in length as salt is added to the solution. This is caused by counterions 
clustering nonuniformly around the micelle: relatively fewer counterions con- 
dense on the ends than on the midsection. Our arguments should be valid 
when the ionic strength is low enough. We require that the two dimensionless 
parameters ~" and w = log(A la) be substantially greater than unity a l t h o u g h  this 
regime may not be easily accessible in experiments. Sometimes miceiles do 
shorten with increasing ionic strength [7] but under conditions that do not seem 
to correspond to the requirements posed here. 

One premise in our simplified analysis is that the form of the entropy of the 
sheath of condensed counterions is ideal (see eq. (2)). This is actually quite 
plausible from a physical point of view. The external field exerted by the bare, 
highly charged line is so high that it induces a dense clustering of counterions. 
In this limit, density fluctuations are very small, so that the entropy reduces to 
a functional of the single particle density. At low ionic strength the removal of 
even one counterion from one of the ends entails an increase in the free energy 
many times kBT. On a more formal level Fixman [8] in an exhaustive analysis 
has concluded that the Poisson-Boltzmann equation is accurate at low salt 
concentration. Hence, within our context, a Boltzmann ansatz like eq. (2) is 

reasonable. 
Of course, it remains to be seen how well the simple theory based on eq. (2) 

can stand up to a more exacting, nonlinear analysis. Furthermore, it is of great 
interest to discover under what conditions the end effect (eq. (6)) changes sign, 
This probably happens when the charge parameter ~ is in between unity and 

two .  
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