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1 Introduction

When entering 21st century, the environment issue is one of the key challenges that human
beings are facing. It has been estimated that in Europe, around 72% of the carbon emissions are
produced by road transportation, and most of these vehicles are powered by fossil fuel which is not
eco-friendly[1]. According to the statistics of International energy agency, the ICE-based(internal
combustion engine) vehicles would be phrased out by seventeen countries in the way of adopting
more environmentally friendly vehicles and zero-emission vehicles by 2050 gradually[2]. Moreover, the
European Commission also has set a goal of "no net emissions of greenhouse gases by 2050” which is
commonly said as the European green deal[l].

To begin with, the shared mobility could be considered as one possible solution for the emission
reduction. Based on the research conducted by Tikoudis[3], if the shared mobility service is operated
in urban area, it could contribute to the average elimination of 6.3% of passenger transport emissions.
Additionally, it also helps to improve the efficiency and quality of residence’s life in cities[4]. In the
literature, a huge amount of papers regarding this service can be found, and the majority of existing
applications are car-sharing system(CSSs)systems (CSSs), electric CSSs (eCSSs), bike sharing systems
(BSSs) and autonomous connected electric vehicle (ACEV)-based CSSs and electric light vehicles. The
station-based(one-way and round-way), free floating and hybrid system are the three main categories
of the CSSs. The station-based CSSs means picking up and dropping off cars are only allowed in
stations. For one-way station-based, the users are required to use shared mobility at the predefined
stations provided by the car-sharing providers and the drop-off station could be different from the
pick-up station while the round-way station-based CSSs requires the drop-off and pick-up stations
must be the same[5]. The free floating is the most flexible one as the shared mobility can be accessed
by users in any place of the service area and return it at the any idle parking area under the control of
car-sharing providers. The last one is the hybrid system which is the combination of the first two kinds
of station-based CSSs. Most car-sharing companies choose the one-way CSSs in which the customers
could pick up and drop off vehicles at the specific charging stations, but this leads to a challenging
system operation problem: how can we balance the distribution of vehicles?, which has widely aroused
the researchers’ concern[6][7].

For the initial stage, car-sharing companies mainly used the ICE-based vehicles to operate
the CSSs, but recently the concept of CSSs with EVs is one of the hottest topics in transportation
research field as it has the potential to create a more sustainable and greener urban transport system.
In 2019, the total GHG emission produced by the ICE-based vehicles was twice the amount emitted
due to the electricity generation for consumption by the same number of EVs in that year[2], which
shows its high potential of reduction in emission. Thanks to the favourable policies, investment,
and subsidies from the authority, increasing level of public acceptance, lower cost of EV production
and better battery, and well-developed infrastructure such as charging stations to support EVs, the
global mobility market split is shitting from other ways to EVs[8]. However, considering the explosive
market growth and large-scale adoption of EVs, finding the way of balancing the supply and demand
in energy system is crucial otherwise some problems like risk of grid overload[9] could be triggered.
A smart grid system can help handle the large-scale EVs integration and control to minimize the
pressure of energy system[10]. What’s more, only 5% of average duration(EVs working life cycle) has
been chosen as a transportation mode, which is mainly used for weekdays commuting and weekends
traveling[11]. For the rest of their time(95% remaining), or in other words, the idle time, they are
parked in the parking.Therefore, other secondary applications of EVs are needed to be developed
through appropriate management and control when they are not demanded by users, particularly the
EVs are connected with the grid, ie., when the power demand is high, the EVs can provide the energy
back to the grid; and use the excess power to recharge the EVs battery. It is going to say that the
EV battery is treated as a kind of power storage, which forms the basic concept of Vehicle-to-Grid
technology. Moreover, the V2G technology has been proved it could bring about various benefits. It
creates a new business way of involving the EVs owners and power grid together and makes revenues
for both.

Furthermore, the objective of the integration of V2G technology is to make profits when the
demand is high and price is also high, the EVs sell the power back to the grid while the demand and



price are low, they buy the power in. This means in our case there would be a volatile electricity
price during operation. Therefore, a dynamic usage price suggestion fluctuating with the electricity
price(or based on the fixed reference EV usage price obtained from electricity price) could be made
which helps maximize the syetem profits.

Based on the authors’ knowledge, there is limited number of researchers focusing on the V2G
and CSSs especially combined with the dynamic usage price scheme(DUPS). So this paper is going to
propose an Mixed integer linear model(MILP) for a one-way electric cars sharing system considering
V2G and DUPS. It will determine the optimal schedules of EVs charging and discharging, distribution
of EVs at a certain location and find the suggested EV usage price per time step during defined oper-
ation period. Furthermore, maximizing the sum of car-sharing service revenues and V2G revenues is
made as the objective function based on the providing service for customers and power sales/purchase.
The electricity price variation and mean expected daily reference customer demand have been pre-
pared and proposed as well as the relation between usage price and expected customer demand. In
particular, the model can be used for V2G CSSs profits evaluation when the car fleet and system size
are fixed.

The rest of paper is organized as follows: the next section will summarize the literature review
about the concepts discussed in this paper. Section 3 introduces the proposed mathematical formu-
lation. Section 4 focused on the model application and results analysis about a real-case network of
Delft. The last part concludes the finding and work limitation.



2 Literature review

2.1 Car-sharing system key performance indicators

The first outputs of our model is the start-of-day distribution, so as I mentioned above, one of
the main challenge is the one-way CSSs vehicle relocation. Because of the imbalanced demand-supply
at various stations, there could be some cars accumulating at some stations where the trip demand is
low while at the same time, other stations do not have enough cars available for users[12]. Therefore,
the efficient rebalancing strategies to place the vehicles at the right places and right time are required.
Previous research on car relocation challenge can be divided into two categories: the operator-based
strategies and user-based strategies. For operator-based strategies, CSSs operators are responsible
for the car relocation. [13] proposed a three-phase optimization-simulation model to balance the car
relocation problem. This model finds the optimal vehicle relocation strategies in the first stage which
was divided into a set of practical parameters like staff relocation, location threshold, etc. The last
phrase would evaluate the performance of the strategies found. For user-based strategies, the users can
decide where the vehicles will be relocated. [14] proposed an optimization model for the operation of
one-way car-sharing system. In particular, it can determine the rejecting/accepting orders, relocations
of EVs and staff movements.

In order to evaluate the performance of vehicle distribution among different locations, the key
performance indicators are necessary. The first KPIs are ’zero vehicle time’ or ’full port time’, which
represents a station without parked vehicles and the parking pot is full of reserved cars respectively[13].
Both KPIs reduce the attractiveness of CSSs, cause there is no service available for other users. What’s
more, some other KPIs introduced in the literature are “acceptance ratio”, "average fleet usage”,
"number of trips” and "number of relocations”. The “acceptance ratio”[15] is obtained from the
completed reservation divided by the total reservations, which indicates the service quality of CSSs.
The "average fleet usage”[16] got from the vehicles used in system divided by total fleet implies the
service quality and efficiency of CSSs. Additionally, "number of trips”[17] provides the actual number
of reservations that have been satisfied, which is a good indicator in evaluation of the service level for
meeting customers’ demand. The last one is the "number of relocations”[18] which helps to evaluate
the performance of applying some relocation strategies.

For our proposed model, we use the "number of trips” to define the first KPI which is transferred
to ”CSSs revenues”.

2.2 V2G technology concept

In 1992, the V2G concept was first introduced by Kempton and Letendre. This concept means
the technology could make electricity to be transferred between EVs and grid bidirectionally. The EVs
batteries are regarded as a kind of energy storage, when the energy demand is high, it sends the energy
back to the grid to relieve the demand pressure of grid system. There is some literature proving that
various benefits could be brought about by applying V2G technology on EVs, which can be classified
into three parts. Firstly, they are technical advantages which include virtual power plant (VPP),
frequency and voltage regulations, spinning reserve, peak shaving, load leveling, reduction of intermit-
tence and renewable energy curtailment, renewable energy storage and congestion mitigation[19]. For
environmental benefits, it reduces the carbon emissions when the technology combined with renewable
power source[20] and CSSs. Finally, it leads to the social and economic benefits. For EV owners, V2G
reduces the total ownership cost of EVs[12] and makes new revenues by selling/purchasing the energy
stored in the batteries to/from the power grid according to the dynamic electricity price all the day.
For grid operators, the EVs batteries serve as a new source for energy storage and it provides a great
solution to the grid congestion and reduction in the risk of grid overload. What’s more, the V2G can
help office or estate owners manage the local peak shaving and load leveling.

Currently, the application of V2G technology is challenging and still at very initial stage, even
though some pilot projects show the positive results by allowing the bidirectional power transformation
between cars and grid. Some ongoing projects are Direct Solar DC V2G Hub @Lelystad[21] and V2G
@ home Bidirektionales, Netherlands[22],etc.



2.3 Car-sharing system with V2G

In the literature, researchers[23] in 2012 first introduced the concept of Vehicle to grid combined
with car-sharing system by developing a agent control architecture to achieve the goal of maximizing
EVs charging involving the car-sharing operators, grid operators and renewable resources. A MPC
model was proposed by|[24] , and it optimizes the V2G charging/discharing, routing and relocation
of automated electric cars at the same time. [25] introduced a static relocation strategies for CSSs
considering vehicle-to-grid technology, which suggests the start-of-day distribution, use of V2G and
meets the customers’ demand simultaneously. Finally, a two-stage stochastic integer linear program
was created[26] to assess the profitability of EVs CSSs considering V2G. The objective function was
to minimize total cost solved by a linear-decision-rule-based method which optimizes the schedule of
EVs fleet, battery charging, electricity selling together.

Therefore, what we understand from the literature is that the V2G profit is one of the important
KPIs for V2G Car-sharing system performance evaluation. However, there is not doubt that it could
lead to the reduction in the number of satisfied orders as if the shared EVs sell their energy back to
the grid, the SOC of EVs would be lower, which means the EVs may be not available for users and the
system is rejecting users. But according to the statistics mentioned above, around 95% of the working
life cycle of one EV is spent in parking area, it is worthwhile to integrate V2G technology allowing the
sales of power when the power price is high. So another KPI used in our objective function is "V2G
profits” obtained by selling/purchase of power.

2.4 Dynamic usage price scheme

A price strategy can be divided into two parts, which are dynamic and static price strategy.
The trip price determined by the trip characteristics (origin, distance and duration) and context like
time of day, SOC, congestion, etc can be regarded as dynamic. If the price only depends on the trip
characteristics or context, it is static[27].

When it comes to the customers in sharing service economy, the dynamic usage price (DUPS) is
an essential element since the users are always price sensitive[28]. If the trip price is increasing, indeed
there would be lower users’ demand/intention to use. So the problem related to how to balance
the usage price and users’ intention to use needs a more intelligent solution to control so that it
can optimize the profits. The previous study[29] developed a EVs routing optimization model that
considers the transportation and power system while the electricity price is changing over time. The
model minimizes the total distribution cost of EV route under the constrains of battery capacity,
charging time and the influence of vehicle loading on the energy consumption per mile. Moreover,
a Mixed integer nonlinear mathematical model is proposed by Jorge[30] which maximizes the profit
in the way of finding optimal trip price in one-way CSSs and they pointed out that how the trip
price strategies leading to reducing fleet imbalance can help to maximize the profit. Shuyun et al.[12]
introduced a dynamic price scheme for a large-scale EV sharing network with the V2G technology,
which solves the distribution of EVs imbalance problems and does the station-based users demand
prediction.

In this paper, we took into account the dynamic usage price(DUP) scheme which makes the
proper price suggestion for CSSs operators and balances trade-off between the users demand and usage
price.

3 Proposed Optimization model

In this section, a mixed integer linear programming for smart start-of-day EVs distribution and
schedules of charging and discharging of the one-way station-based eCSSs considering the optimal EV
usage price and V2G technology has been proposed. Additionally, we introduced the detailed model
description and assumption in the following section.



3.1 Model description and assumption

Sets Definition
K=(@1,..,i,...5) set of stations
T = (1,...,ts,te,...T") set of time steps
V=(1,2,.V) set of EVs
set of time-space network nodes, and the i; represents station i € K at time
A: (11,12,.. s U1y - ¢, ,ST)

stepteT
set of time-space aggregated expected demand where the element Ciot j

Y. represents the reference number of users leaving from station ¢ at time step

t € T with i, € A to station j € K

after the price is varied, the estimated number of users leaving from station ¢ at
time step t € T with i; € A to station j € K

Z; element Z; represents maximum parking places at each station i € K

travel time matrix with element D;; representing the travel time from origin

Dij 1 € K to destination j € K
e estimated energy unit price sets with e; representing the energy price
at time stept € T
Parameters Definition
Q Battery energy capacity(kWh)
I energy charging rate(percentage): the amount of SOC increasing per time
¢ step during charging state
I, energy discharging rate(percentage): the amount of SOC decreasing per time
step during discharging state
E. energy transfer efficiency of charging state(percentage)
Ey energy transfer efficiency of discharging state(percentage)
a consumption rate per time step of EV battery during a user trip (percentage)
SOChaz the capacity of EV battery(percentage)
SOCin the lower bound of EV battery(percentage)
ts start of operating time
te end of operating time
Do EV usage reference price per time step
U upper bound of the dynamic suggested EV usage price
Eiemand Carsharing elasticity of demand
Decision variables Definition
continuous variable(percentage) which represents the state of charging of
SOCY . .
vehicle v € V at time step t € T’
i continuous variable(€/time step) which represents the suggested EV usage
it

fee for EV departing from station ¢ € K to j € K at time stept € T
i continuous variable which is the product of p; * x7, ; by adding the constrains
binary variable; by, = 1, when vehicle v € V' is charging at station ¢ € K during

U

b time step t € T, and 0 otherwise

WY binary variable; w}, = 1, when vehicle v € V' is on stand-by at station i € K
% during time step t € T, and 0 otherwise

g0 binary variable; s; = 1, when vehicle v € V' is discharging at station i € K
b during time step t € T, and 0 otherwise

v binary variable; s{, = 1 when vehicle v € V' is going from station ¢ € K
(2¥]

at time step t € T to station j € K, and 0 otherwise

Table 3.1: Definition of notations

All the sets, decision variables and parameters used in the proposed model has been listed in
table3.1 above.



There are a set of Car-sharing system stations K and a set of vehicles V' in the system. Every
station ¢ has been assigned with limited number of parking places which is z;, and it should be noted
that this also means the number of V2G-enabled charging equipment equals to z;. Additionally, the
location and number of charging stations, capacity of each charging station and the available electric
vehicles are constant in our case. The energy capacity of each EV is set to be Q and as required,
the EVs only can be picked up and dropped off at a predefined station based on the reservation.
Furthermore, for the operation time, we divide the entire time of one day into 2 parts which are
“operating time from ¢4 to t.” and "non-operating time”. The EVs only can be used by users during
the operation time. Therefore, the states "working” and ”inactivation” are used to define the EVs and
the state of EVs must be one of them. For inactivation, the EVs are plugged in or just on stand-by,
while working means the EVs are serving the users. During the working state, our CSSs is making one
of our KPIs "CSS revenues” by getting revenues from users. The time-space network is represented
by a set of time-space nodes i; € A(statin i and time step t) and time-space aggregated customer
demand matrix C(reference demand before price varies) which is based on the real data where Cg j
represents the number of customers planning to reserve a EV going from station i to station j at time
step t are used to generate the EV trips. According to the customers demand, the reserved vehicle
v will be travelling through the time-space network arc(i;,j) when the value of decision variable T
equals to one, while zero indicates no EVs have been reserved to traverse a specific arc. So the first
optimal output of our model is the EVs distribution at the start of operation, which is on the basis of
the static relocation. What is more, when the EVs are being used by customers, we consider a fixed
battery energy discharging rate a to describe the reducing rate of SOC per time step due to trips.
Last but not least, the travel time is represented by the element D;; meaning the number of time
steps are needed for EV to travel from origin i to destination j(or traverse the arc(i,j)). Finally, in
our case, because of the energy price variation, we consider finding the optimal dynamic usage price
per time step(p;) which means it suggests the optimal usage price at a specific time step for EV that
is reserved to travel from i to j within the operation period so that the model could optimize our
total profits. Note: Only when there exists car-sharing demand, the DUP scheme will be activated.
The suggested usage price per time step(p;,;) is the second model output. However, the users are
usually price sensitive, we assume that if the price is higher/lower than a reference price(pg) , the
customers’ demand in using EV would be reduced/increased. This relation between demand Cj,; and
usage price p; will be explained by a mathematical formulation by introducing a car-sharing demand
elasticity( Egemand)- Then the CSS revenues can be obtained by getting the summation of travel time
of each trip multiplied by its specific p;,;.

The state ”inactivation” consisting of 3 possible phases: charging, discharging and stand-by
would lead to the V2G revenues. Firstly, it is the fact that EV battery charging and discharging
process should be a non-linear pattern, and in some previous study like vehicle routing problem, the
charging/discharging process is always explained by mathematical formulations which are fixed-rate,
linear or non-linear charging patterns. Considering the high requirements for linear or non-linear
function in computation time and their application in a real large-scale network and limitation of
computation equipment, it would be reasonable to only analyse the constant charging function in our
case. Therefore, by taking the transfer efficiency into account, we can easily get the the exact amount
of energy purchased/sold from/to grid which are @ x E. x I. and E4* Q * I; during time step t with
the estimated electricity unit pricee;. And the SOCY of vehicle v at time step t demonstrating the
battery charging state will be increased or decreased by the charging/discharging rate(I. and I;) during
inactivation state. For the stand-by phase, EVs are not going to do anything and their SOC keeps
constant. The EVs discharging, charging and stand-by states would be controlled by our model, so a
detailed schedule about these three phases of each EV at each time step within the operation period
is the third output of our model. The state of EVs in the system at each time step is represented by
the binary variables},, w;, and b7,. The difference between the energy purchase cost and sales revenues
is the V2G profits.



3.2 Model formulation

maxz ZZij*Dij+Z Z(et*Ed*sft—et*bft)

veEV ir€A jek vEV i1 €A

subject to:

Yij Suxw,Vip€e Ajje KiveV

'L]’
yitj Spitj,VZtEA,jGK,UEV

Yieg = Pij —ux (1 —zj;),Vipe A, je KiveV
Yij > 0,Vipe A, je KiveV

Epemand * Czotj * (pitj - pO)

Czt] > ngj o —05,Vi;e A,je K
ED d * CO .k i — Do
Clt] < Cg] eman ;(]) (plt] p ) + 057\7“ c A,] c K
E %O % (p; . —
Cg] Demand it] (pZt] p()) Z O,Vit c A7] cK
bo
Citj =0,Vi; € A,j € K, CS&J =
doab;<cijVir€ AVjEK,i# ]
veV
Z Z x%j =1
€K jeK
Sati= Y w itk o WEV Vi€ At>2
JEK jthjiEA\jyéi

(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

SOCY |+ EexI. Y b —I; Y st—a Y Y af;*Dij=8S0C YoeV,teT,t>2

i€K|i;€A i€Kli;€A i€K|ir€ A jEK |j#i

Z foﬂ <z,Vip €A

veV jeK
v v v
by, +s;, +w; =x;;,Yve Vi€ A

SOCy < S0CH,Yv eV
SOChin < SOCY < SOCh4z, Vv € VNt ET
b, s, wi, €0,1,Vv e V,Vi; € A
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3.18
3.19

The formulations(3.1-3.19) above are the proposed optimization model to maximize the total
profits, taking into consideration the "V2G profits” and ”Car-sharing system revenues” which are the
revenues from 1)energy purchase and sales; 2)serving customers’ trips introduced in section 2. It
should be noted that when the EVs are selling or buying the energy to/from grid, the EV owners need
to cover the cost of energy transfer loss, which means during sale process, we consider the transfer
efficiency F4 in the second term(energy sales revenues) of our objective function while no transfer
efficiency used in the third term(energy purchase cost). Moreover, a varied energy price of a day and
EV dynamic usage price(DUP) are considered in our model. In particular, the varied energy price
is an important influential factor when trying to maximize the V2G profits while the dynamic usage

price would affect the CSSs service revenues obtained from customers.



The formulations(3.2-3.19) are the constrains that our objective function is subject to. Equations(3.2-

3.5) are essential for adding the new continuous variable y;, ; to replace the product of z7,; * p; which
are a binary variable and a continuous variable in objective function to represent a reserved trip of
vehicle v travelling from station i to j at time step t with suggested EV usage price p;,j, if 27 ; * pj,j is
directly used in objective function, it would become a non-linear problem which hugely enhances the
complexity in the process of finding solutions. Constrains (3.6) and (3.7) compute the new estimated
demand Cj,; resulting from the EV usage price change based on the mean expected reference cus-
tomers’ demand C’Z»Ot ;- We assume that the demand is the continuous function of EV usage price with
a known car-sharing price elasticity to the mean expected demand FEgemand, and these two formula-
tions also ensure the calculated demand is always integer. The calculated demand should be positive
or none, and that is why we use constrain (3.8) and (3.9). Constrain (3.10) assigns the EVs on the
basis of customers demand Cj,; that is planning to travel from station i to j at time step t. And it
should be noted that the users’ demand only occurs during the operation time from starting time 5 to
ending time t.. Additionally, the situation when i = j is excluded as there is no user demand for trav-
elling at the same station (Cj,; = 0). Constrain (3.11) guarantees that a arc(i1,j) has been chosen by a
vehicle v to transverse at the start of the day(t=1) leading to the start-of-day EV distribution. And as
noted, i could equal to j if the vehicle stays at the same parking station. Constrain (3.12) ensures the
continuous conservation of vehicle flows at each node of time-space network. Constrain (3.13) defines
the SOC of each vehicle v at each time step, which is calculated by residual SOC at previous time
step (SOCY_; and sum of other three terms representing the energy change during two possible EV
states. The inactivation state is represented by the first and second term which are energy purchase
from the power grid and energy sales of EV batteries back to the power grid, while the third term
indicates the working state in which the energy of EVs batteries is consumed by serving customers.
Constrain (3.14) defines the maximum number of parking places at each station i, and the number of
EVs assigned at each station should not exceed the capacity of this station z;. Constrain (3.15) makes
sure that during inactivation state, there is only one phase can be selected by the vehicle v. These
phases are charging, discharging and stand-by when z} ; = 1 the EVs are parked in parking lot and not
used by users. Constrain (3.16) ensures that the SOC of the EV at the start of operation(t=1) should
not exceed the SOC of the same EV at the end of operation(t=T). Since this condition guarantees
that with the goal of maximizing the V2G profits as much as possible, the system should avoid the
situation that it always gives the capacity of battery defined(SOC),4,) to the SOCY at the start of
operation and the lowest value(SOC,;y,) to the SOCY. at the end of operation time. Constrain (3.17)
limits the SOC of each vehicle v at any time step within the technology-allowed range which has lower
and upper bound (SOC,;, and SOC),4,). Finally, the domain of each decision variable is defined by
the constrains (3.18,3.19).



4 Case study

4.1 Numerical experiment with small-size case

Before starting to apply my model to the real case-study network, I tested the proposed model
under three different scenarios with a small-size dataset to understand if it works well and evaluate
its performance and computation time.

Parameters Selected values | Literature

Do 0.3€/min [31]

Edemand -1.5 [30]
u(upper bound of EV usage price) 30€/h -
Z 6 -

a 4% /h [32]
I./1; 0.444/h -
E./E, 0.9 -

Table 4.1: Parameters used in experiment case

The data used for the small size test are set as follow (or see table 4.1 above): I assume there
are 5 parking stations in the network and its parking capacity Z is 6 each. Then for test only, non-
operation time is not taken into account while the operation period is divided into 10 time steps(1h=1
time step). Moreover, the EV fleet size are fixed which are equal to 12. And the predefined mean
energy price(see figure 4.2) fluctuates between 0.02€/kWh and 0.025€/kWh along the day (This is a
assumed changing trend for test only). The reference EVs usage fee per time step pg is selected to
be 18€/time step(h)[31]. What’s more, as stated before, a dynamic EV usage price(DUP) strategy is
considered in this model to help increase the profitability of CSSs. Considering the model complexity
and computation time, the static price scheme is applied, which means the price only depends on
the trip context. For our case, the price is only related to the time of day and expected demand
and its value is restricted within range from 0 to u=30€/time step(h) . And the estimated travel
demand after varies usage price in this model, is explained by a elastic formulation by applying a
price elasticity Egemand Which is set equal to -1.5[30] to reference demand Dy. Last but not least, all
the parking stations in our system are installed with fast-charging CHAdeMO connectors supporting
V2G technology which is a DC charging protocol. It can be used for charging E-bus and EVs[33]
with power varying from 6 to 400kW. The EV battery, Nissan Leaf 2020, is selected in this simulation
with a energy capacity of 40 kWh as it has a quite consistent performance in bi-directional charging.
Furthermore, based on the capabilities of Nissan Lear 2020 EV battery[32], the maximum kilometers
that can be reached by the EVs are 270km. And I assumed that the type(size) of EV that will be
used in test is in a small size with a low running-speed. The average EV speed is set equal to be
10km/h, which means the energy consumption rate per time step when they are serving users is
a=4%. Additionally, since there is no reference regarding the charging and discharging rate of Nissan
Leaf battery, the charging rate I. and discharging rate I are both set to be 0.444 per time step with
the same transfer efficiency E.=0.9(since there would be energy loss during transformation). Finally,
the assumed reference travel demand and travel time data are listed in following table 4.3 4.2.

Destination j Origin i

1 2 3 4 )
1 0 2 1.5 2.6 3.15
2 2 0 1 1.25 2
3 1.5 1 0 1 1.5
4 26 125 1 0 1
5) 3.15 2 1.5 1 0

Table 4.2: Travel time for each pair of origin and destination



origin i | timestep t | destination j | travel demand
1 2 2 5
2 5 5 5
3 8 5 5
3 9 1 5
3 9 4 5
2 9 1 5
4 1 5 5
5 5 1 5
5 4 1 5

Table 4.3: Travel demand used for test

Then I used software Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64) to solve the pro-
posed MILP model. For the test experiment, there is no time limit and gap limit had been set as I
tried to get the most optimal solution. With these settings, the software finds the optimal solution
with the tolerance gap equal to 0.50%, and the objective function value for V2G-DUP is 1025.7€ which
is the sum of CSSs revenues(1013.5€) and V2G profits(12.2€).

For the purpose of seeing any existing improvements, the obtained results have been compared
with a scenario(V2G) only with V2G technology and a scenario(Base) without V2G technology and
dynamic EV usage price scheme(DUP). The "Base” is set up by making all the decision variable s},
to be 0 which indicates that during inactivate state, there is no energy transferred back to grid. All
the results are shown in following table 4.4 4.6 4.5.

CSSs revenues  Energy purchase FEnergy sale Objective value V2G profits

Base 787.5 7.2 0 780.3 -7.2
V2G 787.5 28 48 807.5 20
V2G-DUP 1017.12 29.44 41.6 1029.28 12.16

Table 4.4: Profitability comparison

timestep t from station i to station j suggested usage price estimated demand

2 2 19.2
24
26.4
28.8
28.8
28.8
19.2
26.4
24

—
(@)

T = O © 00 © Ot
U U I W W W N N
— = O = O = Ot
W N Ot = = =N W

Table 4.5: Suggested EV usage fee per time step at a specific time step t from station 7 to j for
V2G-DUP

Based on the tables above, the ranks for the optimal values of 3 objective functions are V2G-
DUP, V2G and Base where the highest value generated by V2G-DUP is 1025.68€ which is the sum
of CSSs revenues obtained from serving users and V2G profits calculated by the difference between
energy purchase and energy sale. Except the base scenario where V2G is not integrated, V2G and
V2G-DUP both produce the positive V2G profits, which means for these two scenarios, the energy sale
would cover the cost of charging during operation time and even improve the profit for EV owners.
Moreover, one important output of my model is the suggested EV usage price at a specific time step.
As we can see from table4.5, it should be noted that the suggested scheme is only activated when
there is demand existing at a certain time step, so they are time step 1,2,4,5,8,9 in test case. The
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new suggested prices are all higher than the reference price which is 18€ but lead to reducing (45-
23)/45=48% of travel demand while enhancing 27.5% of total profits compared with that of V2G.
And after varied demand, all travel requests have been satisfied while for V2G and Base, only 22 of
45 total demand has been served. Therefore, the results seem to be acceptable as our goal is to earn
total profits as many as possible.

Base V2G V2G-DUP
vehicle v assignment at start vehicle v assignment at start vehicle v assignment a't st'art
of day of day of day(station i)
1 4 1 1 1 3
2 1 2 4 2 1
3 1 3 1 3 4
4 1 4 3 4 1
) 4 5 4 5) 1
6 3 6 3 6 1
7 4 7 4 7 4
8 1 8 1 8 1
9 4 9 4 9 4
10 1 10 1 10 3
11 4 11 1 11 4
12 3 12 4 12 4

Table 4.6: EV assignment at start of day

Table4.6 listed the EV assignment at start of the operation time for three scenarios and its main
goal is to meet the users demand.

The solution of "V2G-DUP” can be represented by the EV movements in the time-space net-
work(see table 4.7),which shows the location of each vehicle v at a certain time step. Each cell in the
table represents the parking station i at a time step t and the number inside the cell means the vehicle
orders. As stated in section 3.2, constrains (3.10-3.12) guarantee that the EV must go through the
time-space network based on the value of decision variable z7 ;. For instance, if x?ﬂ = 1, the vehicle
9 transverses arc(1,2) at time step 2(can be seen in table4.7) which also means one travel demand has
been satisfied by vehicle 9. What is more, by checking table4.7 and 4.5, we find that almost all the
estimated demand has been satisfied and all EVs are used at least once during operation.

time step
Station i 1 2 3 4 ) 6 7 8 9 10
375’8? 3’5?87 17274’ 17274’ ]"2747 17274’
L 9,10 9,10 4,6,11 6,11 6,11 6,11 6,11 1,2,4,6,8,12
3,5,8, 3,5,8, 3,5,8,

2 9.10 9.10 9.10 8,10 8§10 8,10 8,10 11

3 7,12 7,12 7,12 7,12 7,12 7,12 712 7,12 7,12 10

4 1,2,4,6,11

1,24, 1,24,
) 611 6,11 1,2,5,6,11 1,2 3,59 3,59 3,59 35,79 3,5,7,9

Table 4.7: EV movements in the time-space network during operation for "V2G-DUP”
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Figure 4.1: SOC variation of each EV at each time step

Another output of my model is the smart schedule of EV energy purchase/sale on the basis of
electricity price variation and I present the SOC of each EV at each time step within the operation
time. This smart scheduling can be found easily in figure 4.1 and 4.2: almost all the charging phases
are taking place between time step 2 and time step 4 or 5 where the energy price is low while the
discharging phases mostly occur at time step 5 to 7 with a high energy price. This is reasonable as
one of our goal is to propose a smart charging/discharging operation to control the energy purchase
and energy sale when the energy price e; is low and high, respectively.

0.25 4 —— Electricity price

0.20

0.15

Electricity price

0.10

0.05

2 4 6 8 10
timestep

Figure 4.2: Predefined energy price variation along the time step
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4.2 Application to real case: the city of Delft
4.2.1 Generating extra cuts to the problem

When finishing the test experiment in section 4.1, we found the computation time of the pro-
posed mathematical model is quite long with such a small size of data. Therefore, considering the
potential high computation time, the following constrains are imposed to accelerate the Branch and
bound search.

Y oal;<LVii€eAveV (4.1)

JEK|i#]

The constrain (4.1) is used to generate the extra cuts to the problem, and it should be noted that
this does not change the solution space but helps tight the feasible domains by removing the non-
integer solutions during the process of branch-and-bound relaxation method, which would reduce
the computation time of finding optimal solution. It imposes that there is always only one variable
representing the movement of vehicle v going through arc(i,j) serving one traveler can be selected to
equal to 1. Even though the constrain(3.12) has been defined to maintain the flow conservation, the
sum of left hand side of it is the same as the sum of the right side. But it may happen that each
variable is within its domain but the value of sum on two sides exceeds one during the brand-and-
bound search process. By adding this bound constrain(4.1), the relaxation process can avoid that
situation and accelerate computation.

4.2.2 Symmetry breaking constrains

Another technique applied to reduce the computation time is the symmetry breaking valid
inequalities, which has been proved in lots of literature that inputting variables’ orders can have a
good influence on the computation performance in solving the vehicle routing problem. Since for my
case, all the EVs are homogeneous, giving orders indeed could help avoid the situation of searching
some branches which are the same but only differ in vehicle orders. The symmetry breaking constrains
are defined as follow:

S D aty Dy < Y Y alita Dy e Vo2 (42)

it€AjeK iw€AjeK

This set of constrains breaks the symmetry by arranging the vehicle order based on the total travel
time it would spend in satisfying travel demand ensuring that vehicle v that is going to travel for a
longer time will be ordered first. This gives an order to our decision variables.

It should be noted that there must be some more techniques about the valid inequalities that
will help accelerate the computation process, but talking about that seems to be out of scope of our
research.

4.2.3 Setting up the real case

The proposed model is applied to the Delft city in the province of South Holland, Netherlands.
Because of the limitation of data availability, a quasi-real case-study is applied. The goal of the case
study is to test the model’s performance and to get a rough understanding of the effects that may
be induced by the application of V2G and Dynamic EV usage price in urban CSSs. The mobility
dataset(2007/2008) is obtained from the Dutch mobility database which is collected by Dutch govern-
ment and used for mobility behaviour research. The data consists of the individual daily movements
on the basis of household with personal information regarding departure and arrival time, trip pur-
pose, transport mode, trip dates(day, month and year), and origin and destination(post code). Until
2008, the trips of each household in delft were recorded, which are around 69635 in total on one day.

Then the dataset needs to be filtered and aggregated to obtain the daily mean expected reference
travel demand C° of Delft city since it is not possible to analyze 69635 trips. The assumption is that
a mobility-sharing company is operating shared EVs in Delft with operation period from 7:00am -
21:00pm and all the travel demand is expected to be satisfied. Furthermore, only trips by cars and
taxi are considered leading to the current total number of trips are reduced to 16,140 which is still a big
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number. According to the previous research, actually in survey, each surveyed household represented
20 real households where an expansion coefficient of u; = 20 is applied. Therefore, to derive the actual
expected car-sharing demand in Delft, the real 16,140 trips are divided by 20 which means only 807
trips have been taken into account in my model. What is more, the assumed time step is 1 hour, so our
demand is aggregated based on 1h intervals. Figure 4.3 shows the final filtered expected car-sharing
reference demand of one day in Delft (The number represents the potential total car-sharing requests
at a certain time step, but single request may differ in origin and destination).

—— Expected car-sharing demand of one day

100

travel demand

Time step

Figure 4.3: Number of car-sharing requests per time step

\ Image © 2015 DigitalGlobe

150

Image ©,2015 Aerodata International Surveys

Figure 4.4: Satellite map of Delft[34]
The transport network of Delft has been simplified into 61 road links and 46 centroids based
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on the satellite map of Delft, see figure 4.4(used by Correia and van Arem|[34]). Our hypothesis
is that all EVs and charging stations have been equipped with V2G technology. Furthermore, the
entire administrative region of Delft is divided into 13 boroughs officially which are 1: Delftse Hout,
2: Vrijenban, 3: Binnenstad, 4: Hof van Delft, 5: Voordijkshoorn, 6: Wippolder, 7: Voorhof, 8:
Buitenhof, 9: Schieweg, 10: Tanthof-Oost, 11: Ruiven, 12: Tanthof-West, 13: Abtswoude[35] (figure
4.5), so I assume each centroid of borough would have a CSSs parking station with bi-directional
charging columns.

r.A

r12.000

- 8.000

- 6.000

- 4.000

+2.000

Map of the municipality Delft with the population per borough in 2022, AliCharts.info.
© Map data by the CBS & ESRI Netherlands, map background by Stamen & OSM.

Figure 4.5: 13 Boroughs of Delft[35]

The filtered dataset is classified on the basis of the origin/destination OD travel demand matrix.
Each pair of OD among 46 centroids in simplified network in figure 4.4at a certain time step with
number of expected requests has been well-specified. Then assignment of the location of centriod of 46
centriods on the official segregation map is done according to their geographical coordinates, in other
words each borough will have some origins/destinations assigned based on the real location. For more
detailed information, you can check figure4.6 and table4.8 showing the assignment of ODs where the
black nodes indicate the origin or destinations of my filtered dataset. It is assumed that the expected
car-sharing customers departing within the specific borough will use the CSSs parking station located
in the center of that borough. So based on these assumptions, the dataset was finally aggregated to
derive the expected car-sharing reference demand matrix C° among 13 boroughs in Delft at each time
step. For instance, the car-sharing requests of borough 1:Delftse Hout should be the sum of centroid
24 and 1 requests. It should be noted that all our shared EVs are reserved in advance by users.
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Assigned centroids at each borough

1: Delftse Hout
2: Vrijenban
3: Binnenstad
4: Hof van Delft
5: Voordijkshoorn
6: Wippolder
7: Voorhof
8: Buitenhof
9: Schieweg
10: Tanthof-Oost
11: Ruiven
12: Tanthof-West
13: Abtswoude

1, 24
2,17
25, 19
46, 28, 3
39, 4
29, 2, 10
44,9, 23
40, 43, 42
16, 34, 32, 8, 14, 33
38, 37, 22
30, 31, 41
20, 21, 27, 45
26, 5, 6, 36, 35, 11, 7, 12, 13, 15

Table 4.8: Assignment of centroids in each borough of Delft

Figure 4.6: The assignment of ODs and potential location of stations of Delft

Since the assumed parking station location is at the centoid of each borough, the coordinates of
them are known which can be used for minimum distance calculation by applying Dijkstra’s algorithm
in the real network. Then I divide the minimum distance between two stations by the assumed EV
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average speed and by 1 hour which is the duration of one time step in our case to get the pairs of
travel time among different stations(travel time matrix D).
Some other assumptions and considerations used in our application are listed as follow:

1. The capacity of parking places at each station is 10, Z = 10

2. The EV battery model used in this case study is the same as the setting in test experiment such
as parameters a, Eg, E., etc. Readers can check table4.1

3. For my case, the whole day is divided into 24 time steps with duration of 1h each. The operation
time is chosen to last from time step 7 to time step 21, and the rest of day is the non-operation
period.

4. Other parameters like reference EV usage fee and its upper bound remain the same as Small-size
test

The last important part that should be introduced in our model is the variation of electricity price
model along the day. My assumption is that the expected electricity prices can be estimated from
the average energy market in Germany. Therefore, a estimated hourly electricity prices model was
proposed based on the German energy web[36]. The figure4.7 shows the fluctuations of energy unit
prices e; along the day which varies between 0.039 and 0.068 Kwh per Euro.

—— Estimated energy unit price variation model
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Figure 4.7: Estimated electricity unit price variation along the day

4.2.4 Perform the sensitivity analysis

Regarding the sensitivity analysis, I am going to set up several scenarios under different condi-
tions. So 2 values of Demand elasticity (Egemand) and 2 types of vehicle fleet coefficients have been taken
into account. We define a new parameter vehicle fleet coefficient N here, which means the number of
trips that one EV needs to serve in the system to help reach the goal of our objective function. Firstly,
2 different fleet coefficients N7, No would be combined with the same three scenarios as small-case
study which are Base-N1, Base-N2, V2G-N1, V2G-N2, V2G-DUP-N1 and V2G-DUP-N2 as there is
N0 Eyemand considered in Base and V2G. Then from the combination of N1, N2 and E;em and> Eﬁeman &
four scenarios would be evaluated for V2G-DUP only(V2G-DUP-N1-E}_ . V2G-DUP-N2-E} .
V2G—DUP—N2—Eé€mmd and V2G—DUP—N2—E§emand. The scenarios with corresponding parameters are
illustrated in table4.9 .
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N(trips/vehicle) Demand Elasticity

Base-N1 16 -
Base-N2 20 -
V2G-N1 16 -
V2G-N2 20 -
V2G-DUP-N1 16 -1.5
V2G-DUP-N2 20 -1.5
V2G-DUP-N1-E2 16 -2
V2G-DUP-N2-E2 20 -2

Table 4.9: Parameters values used in different scenarios

Because of the limitation of the computation ability of my computer, the tolerance gap is set
equal to 0.1 and time limit is equal to 10h.

4.2.5 Results analysis

The computation process has been finished in the same equipment as the one in test experiment,
and all the scenarios will be conducted under the same reference car-sharing demand. However, it
should be noted that for one-way station-based CSSs, a huge number of shared cars are needed for
fully satisfying the total demand, if there is no vehicle relocation operation during operation time[37].
That is why we choose the fleet coefficients as the sensitivity parameters to see if fleet size has any
impact on the performance of our proposed model. Moreover, we assume that the unsatisfied travel
demand will be served by other transport modes like public transport, other car-sharing system or
private cars. The following tables and figures will show the outputs of my proposed model:

and from different perspective of view, we can make various observations.

CSSs revenues  Energy purchase Energy sale V2G Profits Objective value

Base-N1 649.8 12.48 0 -12.48 637.32
Base-N2 948.6 18.72 0 -18.72 929.88
V2G-N1 626.94 134.128 246.896 112.768 739.708
V2G-N2 891 217.352 410.48 193.128 1084.128
V2G-DUP-N1 1001.958 124.416 158.352 33.93601 1035.894
V2G-DUP-N2 1445.148 194.4 246.656 52.25601 1497.404
V2G-DUP-N1-E2 907.8046 116.912 151.376 34.464 942.2686
V2G-DUP-N2-E2 1319.275 191.024 243.088 52.064 1371.339

Table 4.10: The results of defined scenarios

From the table4.10, some findings could be made as follow. Firstly, from an total profit point
of view, by comparing the Base scenarios with all other scenarios, an obvious increasing in objective
revenues could be found. In particular, applying V2G technology only could increase total profits a
bit than baseline while applying V2G and dynamic usage price scheme performs better in maximizing
profitability of car-sharing company than Base and V2G. And the biggest improvement on total profits
is 1497.404-637.32=860.084€ by comparing results of Base N1 and V2G-DUP-N2, which increased
around 135%. Therefore, as a car-sharing company, increasing fleet size and deployment of DUP
seems to be good at resulting in greater profitability. The best performance appears to be the scenario
V2G-DUP-N2 with the highest objective revenues among 8 scenarios. But it doesn’t mean it is the
best solution of the operation strategy for the car-sharing company in Delft as they have two different
sensitivity parameters, and one of them(fleet size) will undoubtedly lead to higher initial investment
in EVs purchase. Furthermore, taking out the the scenarios with the same parameters like Base-N1,
V2G-N1, V2G-DUP-N1, V2G-DUP-N1-E2(or Base-N2, V2G-N2, V2G-DUP-N2, V2G-DUP-N2-E2)
and making comparisons, we found that indeed increasing the fleet size(N) would improve the total
profits as it always leads to more CSSs revenues, but lower total profits will be made after decreasing
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the demand elasticity from -1.5(E1) to -2.0(E2). This is true and easy to be interpreted since more
EVs in the system can satisfy more travel requests and higher £ would have a higher penalty in
balancing demand loss and usage price increase, which also means the FF = —1.5 performs better in
our proposed model.

Secondly, we are going to talk about the V2G profits. For the first four scenarios(without DUP
scheme), the obtained CSSs revenues are always higher than the V2G Profits. This is because the
parameter reference EV usage price pg is set higher than the biggest difference between two varied
electricity prices along the day, which means the priority of our CSSs always focuses on serving travel
requests and the energy sale state should occur only if there is no refused demand increase. But when
DUP is applied(for last four scenarios), the same situation take places: CSSs revenues are greater than
V2G Profits. This implies the application of DUP in our model doesn’t change the service priority of
our system. What is more, we found that the energy purchase of Base costs much less than any other
scenarios. Since two Base doesn’t allow the energy sale, there would be no energy purchase happening
when the energy price is low and then energy sale back to the grid when energy price is high. The
most interesting observation is that the V2G Profits are all positive for the scenarios with V2G, which
means the V2G technology can fully cover the charging costs of the EVs on that day and it will not
be negatively influenced by the application of DUP.

Energy bought from  Energy sold back .
grigél(operition) to gri%i(operation) Net energy transfer(operation)

V2G-N1 1744 3136 1392
V2G-N2 2800 5232 2432
V2G-DUP-N1 1136 1936 800
V2G-DUP-N2 1712 3008 1296
V2G-DUP-N1-E2 1008 1808 800
V2G-DUP-N2-E2 1664 2944 1280

Table 4.11: Net energy transfer during operation time(kWh)

Based on the table 4.11 above, some observations can be made. To start with, by comparing
net energy transfer of all scenarios, we found the V2G-N2 leads to the highest value which is 2432kWh
while the lowest net energy transfer(800kWh) is made by V2G-DUP-N1 and V2G-DUP-N1-E2. This
net energy transfer during operation is a very significant value as the electricity demand is always high
at the same time, sending the power stored in the EVs battery back to the grid when the EVs are not
reserved by the users indeed helps release the pressure of electricity supply during peak hour. Sorting
out the scenarios with similar parameters(V2G-N1, V2G-DUP-N1 and V2G-DUP-N1-E2; V2G-N2,
V2G-DUP-N2 and V2G-DUP-N2-E2) and making comparisons, we observed that for scenario with
V2G only, increasing net energy transfer can be realized by expanding fleet size. But after deployment
of DUP scheme, a sharp decrease in net energy transfer is found. For instance, the results of V2G-
DUP-N2 and V2G-DUP-N2-E2, which are 1296 and 1280, were reduced by around 50% compared
with that of V2G-N2(2432kWh). Moreover, another finding is that after applying DUP, increasing the
fleet size(N) doesn’t make much sense in improving net energy transfer while enhancing the demand
elasticity nearly shows no impact on the net energy transfer. This can be explained by the fact
that because the flexibility of usage price and varied demand, more cars would be used for serving
travel requests with higher potential profits instead of energy purchase and sale, leading to less energy
transferred back to grid. According to the reference[38], the average energy consumption per household
per day in EU would be about 16kWh. This means considering the EV fleet in each scenario, one EV
probably could meet at least one(V2G-DUP-N1 and V2G-DUP-N1-E2) households’ energy demand
during peak hour while for V2G-N2, this number ups to 2. Therefore, from the perspective of local
government, if they want a more constant energy supply and to release the pressure of energy supply
during peak hour which would also help extend the life cycle of energy grid, they’d better consider
V2G-N2 regardless of EVs purchase costs.
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V2G-DUP-N1 V2G-DUP-N2
(Origin,time, | Reference Estimated demand Suggested EV Estimated demand Suggested EV
destination) demand usage price usage price
(1, 8,9) 26 1 29.76923077 6 27.46153846
(4, 13, 11) 24 2 29.25 4 28.25
(5, 17, 6) 44 0.5 30 8 27.95454545
(6, 20, 12) 21 2 29.14285714 6 26.85714286
(10, 8, 7) 30 0.5 30 75.5 0
(4, 10, 11) 33 2 29.45454545 6 28
(4, 16, 12) 24 0.5 30 60.5 0
(4, 21, 12) 14 1 29.57142857 35.5 0
(13,7, 11) 21 27.42857143 53 0
(13,9, 2) 40 10 27.15 10 27.15
(13, 15, 8) 15 38 0 38 0
(2, 10, 13) 40 6 28.35 6 28.35
(2, 18, 12) 31 4 28.64516129 4 28.64516129
(2, 19, 3) 22 51 2.454545455 55.5 0
(3, 18, 12) 31 8 27.09677419 10 26.32258065
(11,9, 4) 33 2 29.45454545 5 28.36363636
(11, 11, 4) 33 3 29.09090909 5 28.36363636
(11, 12, 13) 21 ol 1.142857143 53 0
(11, 16, 12) 33 2 29.45454545 0.5 30
(9, 11, 12) 39 51 14.46153846 0.5 30
(9, 12, 12) 42 51 15.57142857 81 7
(8, 14, 13) 15 1 29.6 4 27.2
(12,7, 4) 24 51 4.75 60.5 0
(12, 7, 11) 33 51 11.63636364 81 0.727272727
(12, 11, 9) 42 51 15.57142857 81 7
(12, 18, 4) 14 1 29.57142857 1 29.57142857
(12, 21, 2) 62 10 28.16129032 10 28.16129032
Sum 807 456.5 760.5

Table 4.12: Suggested usage price and estimated demand 1

Note: Because the limitation of computation ability of the equipment, the optimal solutions
are not reached. The calculated values of estimated demand could be float instead of integer.

In this section, the observations are made on the basis of table4.12 4.13 and table4.10. First
of all, nearly all scenarios with DUP and fleet size increase would have a lower value of demand
except V2G-DUP-N1-E2, which indicates that the proposed model is at the expense of reduction in
car-sharing demand (market share(mode split)) by increasing the average usage price to achieve the
goal of reach the maximum total profits for the car-sharing company. The results show that our model
performs well in increasing total profits: the average usage prices(€/timestep) of each scenario are
22.8(V2G-DUP-N1), 17.2(V2G-DUP-N2), 14.9(V2G-DUP-N1-E2) and 26.4(V2G-DUP-N2-E2) with
decrease in demand by 43.4%, 5.7%, -15.6% and 90% respectively compared with reference values,
but leading to improvement in total profits in all scenarios with maximum increase of 1497.404-
929.88=567.524€(61%) for comparison of scenario V2G-DUP-N2 and Base-N2. Therefore, regardless
of other market pitfalls of low market share, under the objective of maximizing total profits, adjusting
EV usage price to cater the specific conditions(travel time, energy prices, etc) on the expense of travel
demand seems to be acceptable for our case. Moreover, comparing the results of V2G-DUP-N2 and
V2G-DUP-N2-E2 with the same fleet size(N) but differing in demand elasticity(E) to V2G-DUP-N1
and V2G-DUP-N1-E2, we found the scenario with high fleet size(N) and lower E would focus more on
the maximizing the EV usage price, and vice versa. Lower demand elasticity means there is high level
of demand loss penalty in usage price increasing, so when the fleet size is high and there is always
unsatisfied demand existing, the system would maximize the usage price as much as possible to adjust
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the estimated demand to get close to the service ability of our system(fleet size). Meanwhile, it indeed

helps increase the total profits.

V2G-DUP-N1-E2 V2G-DUP-N2-E2
(Orig‘in,t.ime, Reference Estimated demand Suggested‘EV Estimated demand Suggested.EV
destination) demand usage price usage price
(1, 8,9) 26 50 9.865384615 6 25.09615385
(4, 13, 11) 24 50 8.4375 4 25.6875
(5, 17, 6) 44 50 16.875 8 25.46590909
(6, 20, 12) 21 4 25.5 6 24.64285714
(10, 8, 7) 30 50 12.15 1.42E-14 27.15
(4, 10, 11) 33 2 26.59090909 6 25.5
(4, 16, 12) 24 50 8.4375 0 27.1875
(4, 21, 12) 14 0 27.32142857 0 27.32142857
(13,7, 11) 21 50 5.785714286 1 26.78571429
(13,9, 2) 40 10 24.8625 10 24.8625
(13, 15, 8) 15 45.5 0 0 27.3
(2, 10, 13) 40 7 25.5375 7 25.5375
(2, 18, 12) 31 3 26.27419355 3 26.27419355
(2, 19, 3) 22 50 6.75 0 27.20454545
(3, 18, 12) 31 10 24.24193548 10 24.24193548
(11,9, 4) 33 50 13.5 4 26.04545455
(11, 11, 4) 33 4 26.04545455 ) 25.77272727
(11, 12, 13) 21 50 5.785714286 1 26.78571429
(11, 16, 12) 33 50 13.5 1.42E-14 27.13636364
(9, 11, 12) 39 50 15.57692308 0 27.11538462
(9, 12, 12) 42 50 16.39285714 2.84E-14 27.10714286
(8, 14, 13) 15 45.5 0 0 27.3
(12,7, 4) 24 50 8.4375 0 27.1875
(12, 7, 11) 33 50 13.5 1.42E-14 27.13636364
(12, 11, 9) 42 50 16.39285714 2.84E-14 27.10714286
(12, 18, 4) 14 425 0 0 27.32142857
(12, 21, 2) 62 10 25.62096774 10 25.62096774
Sum 807 933.5 81

Table 4.13: Suggested usage price and estimated demand 2

Finally, I’d say the best performance of combination of N and E in our case is V2G-DUP-N2

as it leads to the highest total profits which are the objective of our proposed model. However, if we
consider it from other points of view, the one(V2G-DUP-N1-E2) with highest potential demand would
be the most suitable strategy. For example, from local policy point of view, the government wants to
achieve their goals of less congestion or emissions, the more people are willing to use shared EVs the
better the goal could be reached; or from the perspective of new car-sharing company in Delft, at the
initial stage of operation of shared cars, they indeed want to get as higher market share as possible.
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From figure 4.8 to 4.13, some considerations are made. These are one of the outputs of our
model which is smart charging and discharging phases control according to the variation of energy
price along the day thanks to the V2G technology. And for all the scenarios, the trend of charging
and discharging looks the same. The results are in line with our hypothesis: the EV batteries charging
phases mostly take place three times a day when the electricity is low based on the estimated electricity
price variation(figure 4.7), These three charging periods are from timestep 0 to 5, 12 to 14 and 18
to 20. Regarding the impact of fleet size N on discharging and charging, the SOC of scenarios with
higher N fluctuates more between maximum and minimum value for more times while lower N1 leads
to more stable charging and discharging phases during the day.

1 2 4 5 7 8 9 10 11 12 13

Base-N1 0 100 00 1.0 O O O O O 9 10 10
Base N2 0 10 10 10 0 10 O O O O 10 10 10
V2G-N1 0 100 10 0 O 10 1 O O O O 10 9
V2G-N2 0 10 10 10 10 10 O O 3 O &8 10 9
V2G-DUP-N1 1 10 8 4 0 2 0 0 O O 5 10 10
V2G-DUP-N1 110 8 4 0 2 0 0 0 O 5 10 10
V2G-DUP-N1-E2 | 0 10 10 2 0O 4 O O O O 4 10 10
V2G-DUP-N2-E2 | 6 10 10 10 8 6 O O O 0O 10 10 10

Table 4.14: The optimal assginment of EV at the start of day for each scenario

The last outputs of my proposed model is the optimal EV assignment at the start of the day,
which may be helpful for us to manage the fleet distribution. For all the scenarios with the same fleet
coefficients(N), the EV assignment looks almost the same as the reference demand pattern is fixed
for them. Therefore, the optimal EV assignment seems not to be affected by the deployment DUP or
increasing the fleet size as well as the V2G technology.

5 Conclusion and limitation

The proposed model in the paper is the first kind of this report that is trying to combine the
V2G technology and dynamic EV usage price in EV sharing system to maximize the total profits
for shared-mobility company, although there are already some literature starting to talk about the
profitability of integration of V2G combined with CSSs. My mathematical model which is a mixed
integer linear programming helps determine the optimal EV assignment at the start of day, suggested
usage price for each time step when there exists the car-sharing requests and the smart control for
shared EVs discharging and charging phases. The total profits as my objective function consists of
CSSs revenues and V2G profits which are got from serving travelers and energy purchase and sale
based on the electricity price variation along the day. So this model could probably be used to assess
the profitability of daily EV-sharing system operation with fixed fleet considering V2G and dynamic
usage price. The model was applied to a test experiment and a real case of Delft city in the Netherlands
with the estimated energy price variation model, mean expected reference car-sharing demand and EV
batteries charging model. Additionally, I set up different scenarios to conduct a sensitivity analysis by
varying the fleet size(N) and demand elasticity(E) applied in the DUP. Moreover, the scenarios with
CSSs(only energy purchase allowed) only and with CSSs and V2G are also included in the analysis
to help me understand any improvement caused by the deployment of DUP and impacts of varying
parameters.

We found that deployment of DUP combined with V2G would significantly improve the total
profitability of electric vehicles owners and benefit the local energy supply infrastructure with some
degrees of car-sharing demand loss. In particular, the higher demand elasticity(E) performs better in
balancing the demand loss and usage price increase to maximize the total profits in our case. From the
profitability point of view, thanks to the V2G and DUP, V2G profit from difference between energy
purchase at high price and sale at low price and better CSSs revenues are made. And the bigger the
difference is, the better the V2G profits would be. For the local energy supply infrastructure(power
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grid) point of view, the net energy transfer during energy consumption peak hour indeed releases the
pressure of power grid since some energy would be provided by EV which helps extend the life cycle
of power grid. But the best results of the net energy transfer was found in scenario without DUP.
Furthermore, I observe the combination of demand elasticity (E) and fleet coefficients (N) determines
the focusing attention of my model, which indicates the scenario with higher E and higher N would
focus more on maximizing the usage price while lower E and lower N would lead to the maximum
varied estimated demand under the objective of maximizing the total profits. The DUP will also
adjust the reference demand to some degree to approach the service ability of our CSSs system by
avoiding or reducing some trips with very short travel distance(in our case, it is the short travel time)
that do not make many CSSs revenues compared with the long distance trips. Therefore, it is possible
to conclude that in the future, the shared EV company can design such a mobile application that will
gather the total demand and make proper usage price so that the real amount of demand is getting
closer to the service ability to maximize the total profits.

However, because the limitation of the project time, during the process of research, I also
found a lot of limitations and problems that need to be addressed. Firstly, more cost terms maybe
need to be considered in the model like emissions, costs for EV purchase and etc, as for my case, I
used different fleet size to conduct the simulation, which will indeed increase the fixed investments.
Moreover, the optimal combination of fleet coefficient(N) and demand elasticity(E) is not found, even
though we get the considered parameters that lead to best performance on total profits, that is not
the optimal combination of E and N. So, one of the future work could be to adjust my model into a
multi-objective function to find both total profits and best combination of N and E with fixed travel
demand. In addition, the dynamic usage price used in my model is only associated with the fixed
reference demand. But in fact, it can be related with more influential factors such as time of day,
SOC, congestion, etc. The travel time among stations can also be varied because of the congestion or
queuing at station. The model could also be improved by combining shared EVs with the operation of
other transport modes, since the DUP scheme could reduce the users’ willingness to use shared EVs,
but the actual total travel demand still exists. The reduced car-sharing demand can be potentially
satisfied by other transport modes such as PT, E-bike and etc. The enhanced model will consider the
bigger mobility system in the city which possibly would lead to more benefits for more stakeholders.
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