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ZORRO: Valid, Sparse, and Stable Explanations
in Graph Neural Networks

Thorben Funke , Megha Khosla , Mandeep Rathee, and Avishek Anand

Abstract—With the ever-increasing popularity and applications of graph neural networks, several proposals have been made to explain

and understand the decisions of a graph neural network. Explanations for graph neural networks differ in principle from other input

settings. It is important to attribute the decision to input features and other related instances connected by the graph structure. We find

that the previous explanation generation approaches that maximize the mutual information between the label distribution produced by

the model and the explanation to be restrictive. Specifically, existing approaches do not enforce explanations to be valid, sparse, or

robust to input perturbations. In this paper, we lay down some of the fundamental principles that an explanation method for graph neural

networks should follow and introduce a metric RDT-Fidelity as a measure of the explanation’s effectiveness. We propose a novel

approach Zorro based on the principles from rate-distortion theory that uses a simple combinatorial procedure to optimize for RDT-

Fidelity. Extensive experiments on real and synthetic datasets reveal that Zorro produces sparser, stable, and more faithful explanations

than existing graph neural network explanation approaches.

Index Terms—Explainability, graph neural networks, interpretability

Ç

1 INTRODUCTION

GRAPH neural networks (GNNs) are a flexible and power-
ful family of models that build representations of nodes

or edges on irregular graph-structured data and have expe-
rienced significant attention in recent years. GNNs are
based on the “neighborhood aggregation” scheme, where a
node representation is learned by aggregating features from
their neighbors. Learning complex neighborhood aggrega-
tions and latent feature extraction has enabled GNNs to
achieve state-of-the-art performance on node and graph
classification tasks. This complexity, on the other hand,
leads to a more opaque and non-interpretable model. To
alleviate the problem of interpretability, we focus on
explaining the rationale underlying a given prediction of
already trained GNNs.

There are diverse notions and regimes of explainability
and interpretability for machine learning models – (a) inter-
pretable models versus post-hoc explanations, (b) model-
introspective versus model-agnostic explanations, (c) out-
puts in terms of feature versus data attributions [23], [28]. In
this work, we aim to explain the decision of an already

trained GNN model, i.e., compute post-hoc explanations for a
trained GNN. Additionally, we do not assume any access to
the trained model parameters, i.e., we are model-agnostic or
black-box regime. Finally, our explanation attributes the
reason for an underlying GNN prediction to either a subset
of features or neighboring nodes or both.

There has been recent interest in designing explainers for
GNNs that produce feature attributions in a post-hoc man-
ner [30], [40], [44] where a combination of nodes, edges, or
features is retrieved as an explanation. We introduce some
essential notions of validity, sparsity, and stability for
explaining GNNs and argue that many of the existing works
on explainable GNNs do not satisfy these principles. To sys-
tematically fill in the above gaps, we commence by formu-
lating three desired properties of a GNN explanation:
validity, sparsity, and stability. Fig. 1 provides an illustration
of these three properties.

Validity. Existing explanations approaches used for
explaining GNNs like gradient-based feature attribution
techniques select nodes or features [38] are not optimized to
be valid as well as being explanatory. An explanation is
valid if just the explanation (a subset of features and nodes)
as input would be sufficient to arrive at the same prediction.

Sparsity. It is easy to see that validity alone is not suffi-
cient for an explanation as the entire input is a valid expla-
nation [41]. Ideally, the explanation should only highlight
those parts of the input with the highest discriminative
information. Existing explanation approaches accomplish
this by outputting distributions or soft-masks over input fea-
tures or nodes [44]. However, humans find it hard to make
sense of soft masks and instead prefer sparse binary masks
or hard masks [1], [19], [27], [49]. We define sparsity as the size
of the explanation in terms of number of non-zero elements in the
explanation. A sparse explanation in the form of a hard
mask is, therefore, more desirable and reduces ambiguities
due to soft masks [15].
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Stability. Validity and sparsity, though necessary, are not
sufficient to define an explanation. In Section 3.1, we show
that the trivial empty explanation (all features are replaced
by 0s) could be a valid explanation for many cases. The high
validity observed in such cases is an artifact of a particular
configuration of trained model parameters. We would
rather expect that the model retains its predicted class with
only the knowledge of the explanation while the rest of the
information in the input is filled randomly. In other words, an
explanation should be valid independent of the rest of the
input. We say that an explanation is stable if the behavior of
the GNN is unaffected by the features outside of the expla-
nation. Most of the existing works do not consider stability
in their modeling of explanation approaches.

In this article, we introduce a new metric called RDT-
Fidelity which is grounded in the principles of rate-distor-
tion theory and reflects these three desiderata into a single
measure. Essentially, we cast the problem of finding
explanations given a trained model as a signal/message
reconstruction task involving a sender, a receiver, and a
noisy channel. The message sent by the sender is the actual
feature vector, with the explanation being a subset of
immutable feature values. The noisy channel can obfuscate
only the features that do not belong to the explanation.
The explanation’s RDT-Fidelity lies in the degree to which
the decoder can faithfully reconstruct from the noisy fea-
ture vector. Maximizing RDT-Fidelity while ensuring
explanation sparsity is NP-hard (for justification refer to
Section 5), and we consequently propose a greedy combi-
natorial procedure ZORRO that generates sparse, valid, and
stable explanations.

Accurately measuring the effectiveness of post-hoc
explanations has been acknowledged to be a challenging
problem due to the lack of explanation ground truth. We
carry out an extensive and comprehensive experimental
study on several experimental regimes [12], [30], [44], three
real-world datasets [43] and four different GNN architec-
tures [20], [21], [39], [42] to evaluate the effectiveness of our
explanations. In addition to measuring validity, sparsity,
and RDT-Fidelity, we also compare our approach with the
evaluation regime proposed in GNNExplainer [44], the
faithfulness measure proposed in [30] and the ROAR meth-
odology from [12].

First, we establish that ZORRO outperforms all other base-
lines over different evaluation regimes on both real-world
and synthetic datasets. Based on ZORRO’s explanation, we
retrieve valuable insights into the GNN’s behavior: different
GNN’s derive their decisions from different large portions

of the input, and more available features do not mean more
relevant features; the GNN’s base their classification on dif-
ferent scales on the local homophily; multiple disjoint
explanations are possible, i.e., GNN’s classification is
derived from disjoint parts of the network (duplicated infor-
mation flow).

To sum up, our main contributions are:

� We theoretically investigate the key properties of
validity, sparsity, and stability that a GNN explanation
should follow.

� We introduce a novel evaluation metric, RDT-Fidelity
derived from principles of rate-distortion theory that
reflects these desiderata into a single measure.

� We propose a simple combinatorial called ZORRO to
find high RDT-Fidelity explanations with theoreti-
cally bounded stability. We release our code at
https://github.com/funket/zorro.

� We perform extensive scale experiments on synthetic
and real-world datasets. We show that ZORRO not
only outperforms baselines for RDT-Fidelity but also
for several evaluation regimes so far proposed in the
literature.

2 RELATED WORK

Representation learning approaches on graphs encode
graph structure into low-dimensional vector representa-
tions, using deep learning and nonlinear dimensionality
reduction techniques. These representations are trained in
an unsupervised [10], [18], [25] or semi-supervised manner
by using neighborhood aggregation strategies and task-
based objectives [20], [39].

2.1 Explainability in Machine Learning

Post-hoc approaches to model explainabiliy are popularized
by feature attribution methods that aim to assign importance
to input features given a prediction either agnostic to the
model parameters [28], [29] or using model specific attribu-
tion approaches [3], [38]. Instance-wise feature selection (IFS)
approaches [7], [45], on the other hand, focuses on finding a
sufficient feature subset or explanation that leads to little or
no degradation of the prediction accuracy when other fea-
tures are masked. Applying these works directly for graph
models is infeasible due to the complex form of explanation,
which should consider the complex association among
nodes and input features.

Fig. 1. Illustration of validity, sparsity, and stability. The GNN F takes the feature matrix X, which is illustrated as a grayscale matrix, and the relations
from the graph G, which is not shown for simplicity, to predict the class label (1). An explanation selects the most important inputs from the feature
matrix responsible for the prediction, which we illustrate as red rectangles. The validity of an explanation is the property to preserve the prediction if a
fixed baseline value replaces all not selected values. The sparsity is the number of selected elements, where fewer elements are desirable. Lastly,
stability is the property to preserve the prediction if all not selected values are perturbed. Existing methods only optimize for validity and sparsity.
However, even trivial explanations can be valid and sparse.
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2.2 Explainability in GNNs

Explainability approaches for explaining node level deci-
sions include soft-masking approaches [11], [22], [24], [31],
[32], [44], Shapely based approaches [8], [48], surrogate
model based methods [13], [40], and gradients based meth-
ods [17], [26], [30]. Soft-masking approaches like GNNEx-
plainer [44] learns a real-valued edge and feature mask
such that the mutual information with GNN’s predictions is
maximized.

An example of a surrogate model based method is
PGMExplainer [40] which builds a simpler interpretable
Bayesian network explaining the GNN prediction. Others
adopt existing explanations approaches such as Shapely [8],
[48], layer-wise relevance propagation [32], causal
effects [22] or LIME [13], [17], to graph data.

The key idea in gradient based methods is to use the gra-
dients or hidden feature map values to approximate input
importance. This approach is the most straightforward solu-
tion to explain deep models and is quite popular for image
and text data. For graph data, [26] and [30] applied gradient
based methods for explaining GNNs, which rely on propa-
gating gradients/relevance from the output to the original
model’s input.

Another line of work that focuses on explaining decisions
at a graph level includes XGNN [46] and GNES [11]. XGNN
proposed a reinforcement learning-based graph generation
approach to generate explanations for the predicted class
for a graph. GNES jointly optimizes task prediction and
model explanation by enforcing graph regularization and
weak supervision on model explanations. Other works [14],
[16] focus on explaining unsupervised network representa-
tions, which is out of scope for the current work or are spe-
cific to the combination of GNNs and NLP [31].

Most of the existing approaches for explaining GNNs are
based on soft-masking methods [11], [22], [24], [26], [32],
[44]. However, soft masks are typically hard for humans to
interpret than hard masks due to their low sparsity and
inherent uncertainty [1], [19], [27], [49]. Only a few hard-
masking approaches for GNNs exist. PGMExplainer [40]
defines explanation in terms of relevant neighborhood
nodes influencing the model decision and does not consider
node features. PGExplainer [24] employs a parameterized
model to generate soft edge masks with node representa-
tions (extracted from target GNN) as input. Unlike our
approach, PGExplainer is not model agnostic. Like PGMEx-
plainer, it also does not generate a feature-based explana-
tion. SubgraphX [48] optimizes for Shapely values based on
a Monte Carlo tree search.

3 PROPERTIES OF GNN EXPLANATIONS

3.1 Defining GNN Explanation, Validity and Sparsity

We are interested in explaining the prediction of the GNN
FðnÞ for any node n. Specifically, we consider the task of
node classification. We note that for a particular node n, the
subgraph taking part in the computation of neighborhood
aggregation operation, see Eq. (5), fully determines the
information used by GNN to predict its class. In particular,
for a L-layer GNN, this subgraph would be the graph
induced on nodes in the L-hop neighborhood of n. For brev-
ity, we call this subgraph the computational graph of the query

node. We want to point out that the term ”computational
graph” should not be confused with the neural network’s
computational graph. For a brief description of GNNs in gen-
eral, see Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2022.3201170.

Let GðnÞ � G denote the computational graph of the
node n. Let XðnÞ, or briefly X denotes the feature matrix
restricted to the nodes of GðnÞ, where each row corre-
sponds to a d-dimensional feature vector of the corre-
sponding node in the computational graph. We define
explanation S ¼ fFs; Vsg as a subset of input features and
nodes. In principle, S would correspond to the feature
matrix restricted to features in Fs of nodes in Vs. We quan-
tify the validity and sparsity of S as follows.

Definition 1 (Validity). The validity score of explanation S is
1 if FðSÞ ¼ FðXÞ and 0 otherwise.
In literature, the validity of an explanation is usually com-

puted with respect to the baseline 0, i.e., we set values of all
features not in S to 0. An alternative is to use the average of
the feature scores instead. As we discuss in Appendix D.3,
available in the online supplemental material, our validity is
related to one of themetrics from [36], [37], [47].

Definition 2 (Sparsity). The sparsity of an explanation is mea-
sured as the ratio of bits required to encode an explanation to
those required to encode the input. We use explanation entropy
to compare sparsity for a fixed input and call this the effective
explanation size.

In contrast to other sparsity definitions, such as in [47]
our definition of sparsity is more general. It can be directly
applied for both hard-masks and soft-masks without the
need for any transformation. Without loss of generality, we
can assume that an explanation is a continuous mask over
the set of features and nodes/edges where the mask value
quantifies the importance of the corresponding element. We
state the upper bound of the sparsity value in the following
proposition.

Proposition 1. Let p be the normalized distribution of explana-
tion (feature) masks. Then sparsity of an explanation is given
by the entropy HðpÞ and is bounded from above by log ðjMjÞ
whereM corresponds to a complete set of features or nodes.

Proof. We first compute the normalized feature or node
mask distribution, pðfÞ for f 2M. In particular, denoting
the mask value of f bymaskðfÞ, we have

pðfÞ ¼ maskðfÞP
f 02M maskðf 0Þ :

Then HðpÞ ¼ �P
f2M pðfÞlog pðfÞ which achieves its

maximum for the uniform distribution, i.e., pðfÞ ¼ 1
jMj . tu

3.2 Limitations of Validity and Sparsity

We illustrate the limitations of previous works, which are
based on maximizing validity and sparsity of explanations
by a simple example shown in Fig. 2. The example is
inspired by the example for text analysis from [4].

The input is a graphwith node set V ¼ fv1; v2; v3; v4g. Each
node has a single feature, with the value given in the Figure.
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Let us assume that these feature values lie in the range from
�2 to 3. For any node v, we define the model output in terms
of simple sum (aggregation) of feature values, fðvÞ of itself
and its two hop-neighborhood. For example,

Fðv1Þ ¼ 1; if fðv1Þ þ fðv2Þ þ fðv3Þ þ fðv4Þ � 0;
0; otherwise:

�

Now we wish to explain the prediction Fðv1Þ ¼ 1.
Consider an explanation fv1; v3g. Clearly it is valid expla-

nation with a validity score of 1, if we set the not selected
nodes’ features to 0. But if we set fðv4Þ ¼ �2; fðv2Þ ¼ 0, the
explanation fv1; v3g is no longer valid.

Similarly, the empty explanation, S ¼ ;, is the sparsest
possible explanation which has a validity score of 1 when
all feature values are set to 0. However, for a different reali-
zation of the unimportant features, say for fðv2Þ ¼ �1 and
rest all are set to 0, the validity score is reduced to 0.

We want to emphasize that a particular explanation
fv1; v3g or an empty explanation might be valid for an indi-
vidual configuration of the features of not selected vertices
but not for others. However, a proper explanation should
explain the model’s prediction independent of the remain-
ing input configuration.

This subtle point is usually ignored by existing explain-
ability approaches, which only evaluate an explanation for
a specific baseline of the irrelevant part of the input. In con-
trast, we propose stability, which takes into account the var-
iance of the validity of an explanation over different
configurations of the input’s unselected parts.

Definition 3 (Stability). Let Y be a random variable sampled
from the distribution over validity scores for different realiza-
tions of X n S. Let VarðYÞ denote the variance of Y. We define
stability gðSÞ of an explanation, S as

gðSÞ ¼ 1

1þVarðYÞ :

Note that gðSÞ 2 ð0; 1� holds and achieves, on the one
hand, maximum value of 1 if VarðYÞ ¼ 0, i.e., when the
explanation is completely independent of components in

X n S. On the other hand, the stability will also be equal to 1
if the validity of an explanation for all realizations is equal
to zero. Mathematically, we need to ensure a high expected
value of Y in addition to its low variance. Therefore, we
need another metric along with stability.

To account for the stability of explanations, we introduce
a novel metric called RDT-Fidelity which has a sound theo-
retical grounding in the area of rate-distortion theory [35]. We
describe RDT-Fidelity and its relation to rate-distortion the-
ory and stability in the next section.

4 RATE-DISTORTION THEORY AND RDT-FIDELITY

Rate-distortion theory addresses the problem of determin-
ing the minimum number of bits per symbol (also referred
to as rate) that should be communicated over a channel so
that the source signal can be approximately reconstructed at
the receiver without exceeding an expected distortion, D.
Mathematically we are interested in finding the conditional
probability density function, QðSjXÞ, of the compressed sig-
nal or explanation S given the input X such that the
expected distortionDðS;XÞ is upper bounded.

inf
QðSjXÞ

IQðS; XÞ such that EQðDðS; XÞÞ � D�; (1)

where IðS; XÞ denotes the mutual information between
input X and compressed signal S and D� corresponds to
maximum allowed distortion. Note that Eq. (1) requires
minimization of mutual information between X and S.
Mutual information will be minimized when S is
completely independent ofX.

In our explanation framework, the compressed signal S
corresponds to an explanation. The effect of minimizing the
mutual information between the compressed signal and the
input, see Eq. (1), would amount to minimize the size of S.
A trivial solution of the empty set is avoided by restricting
the average distortion of S in the second part of the objec-
tive. In particular, compressed signal (explanation) should
be such that knowing only about the input on S and filling
in the rest of the information randomly will almost surely
preserve the desired output signal (or class prediction).

In particular, for graph models, the explanation S which
is a subset of input nodes as well as input features, is most
relevant for a classification decision if the expected classifier
score remains nearly the same when randomizing the
remaining inputX n S.

More precisely, we formulate the task of explaining the
model prediction for a node n, as finding a partition of the
components of its computational graph into a subset, S of
relevant nodes and features, and its complement Sc of non-
relevant components. In particular, the subset S should be
such that fixing its value to the true values already deter-
mines the model output for almost all possible assignments
to the non-relevant subset Sc. The subset S is then returned
as an explanation. As it is a rate-distortion framework, we
are interested in an explanation (compressed signal) with
the maximum agreement (minimum distortion) with the
actual model’s prediction on complete input. This agree-
ment, what we refer to as RDT-Fidelity is quantified by the
expected validity score of an explanation over all possible
configurations of the complement set Sc.

Fig. 2. In this synthetic example, we approximate the (node) classifica-
tion of v1 by GNN with a rule based on the sum of the node featuresP

fðviÞ. All given explanations are valid (when the unselected input is
set to 0) and sparse. However, we see that in a) the explanation fv1; v3g
has the same stability as the trivial mask. Example b) highlights that
selecting additional elements may not decrease the stability and that
even two disjoint explanations are possible.
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4.1 RDT-Fidelity

To formally define RDT-Fidelity, let us denote with YS the
perturbed feature matrix obtained by fixing the components
of the S to their actual values and otherwise noisy entries.
The values of components in Sc are then drawn from some
noisy distribution, N . Let S ¼ fVs; Fsg be the explanation
with selected nodes Vs and selected features Fs.

LetMðSÞ, or brieflyM, be the mask matrix such that each
elementMi;j ¼ 1 if and only if ith node (inGðnÞ) and jth fea-
ture are included in sets Vs and Fs respectively and 0 other-
wise. Then the perturbed input is given by

YS ¼ X 	MðSÞ þ Z 	 ð1�MðSÞÞ; Z 
 N ; (2)

where 	 denotes an element-wise multiplication, and 1 a
matrix of ones with the corresponding size.

Definition 4 (RDT-Fidelity). The RDT-Fidelity of explana-
tion S with respect to the GNN F and the noise distribution N
is given by

FðSÞ ¼ EYSjZ
N 1FðXÞ¼FðYSÞ
� �

: (3)

In simple words, RDT-Fidelity is computed as the expected
validity of the perturbed input YS .

Note that high RDT-Fidelity explanations would be sta-
ble by definition, i.e., their validity score would not vary sig-
nificantly across different realizations of Sc.
Theorem 1. An explanation with RDT-Fidelity p has stability

value of 1
1þpð1�pÞ .

Proof. Let Y be the random variable corresponding to valid-
ity score for an explanation S. Note that

EðYÞ ¼ EYSjZ
N 1FðXÞ¼FðYSÞ
� � ¼ p;

where YS and Z are as defined in Equation (2).
Note that Y can be understood as a sample drawn

from a Bernoulli distribution with a mean equal to RDT-
Fidelity value, i.e., Y 
 BerðpÞ The variance of a Bernoulli
distributed variable Y is given by pð1� pÞ. The proof is
completed then by substituting the variance in the defini-
tion of stability. tu
Theorem 1 implies that for RDT-Fidelity greater than 0.5,

the stability increases with an increase in RDT-Fidelity and
achieves a maximum value of 1 when RDT-Fidelity reaches
its maximum value of 1. Therefore, to ensure high stability,
it suffices to find high RDT-Fidelity explanations. As stabil-
ity is theoretically bounded with respect to RDT-Fidelity,
we do not additionally report stability in our experiments.
Note that to find non-trivial explanations, we need to maxi-
mize RDT-Fidelity together with the sparsity constraint on
the explanations. This constraint would, in turn, make the
optimization problem NP-Hard. Consequently, we propose
a greedy solution as described in the next section.

5 MAXIMIZING RDT-FIDELITY

We propose a simple but effective greedy combinatorial
approach, which we call ZORRO, to find high RDT-Fidelity
explanations. By fixing the RDT-Fidelity to a certain user-
defined threshold, say t, we are interested in the sparsest

explanation, which has a RDT-Fidelity of at least t. In partic-
ular, the problem of finding the sparsest explanation now
reduces to finding a minimum subset of features and nodes
with RDT-Fidelity of at least t. It has already been shown
in [6] that the problem of selecting the minimum feature
subset is NP-Hard.

The pseudocode is provided in Algorithm 1. Let for any
node n, Vn denote the vertices in its computational graph
GðnÞ, i.e., the set of vertices in L-hop neighborhood of node
n for an L-layer GNN; and F denote the complete set of fea-
tures. We start with zero-sized explanations and select as
first element

argmax
f2F

FðVn; ffgÞ or argmax
v2Vn

Fðfvg; F Þ; (4)

whichever yields the highest RDT-Fidelity value. We itera-
tively add new features or nodes to the explanation such
that the RDT-Fidelity is maximized over all evaluated
choices. Let Vp and Fp respectively denote the set of possible
candidate nodes and features that can be included in an
explanation at any iteration. We save for each possible node
v 2 Vp and feature f 2 Fp the ordering RVp and RFp given by
the RDT-Fidelity values Fðfvg; FpÞ and FðVp; ffgÞ respec-
tively. To reduce the computational cost, we only evaluate
each iteration the top K remaining nodes and features
determined by RVp and RFp .

Algorithm 1. ZORRO ðn; tÞ
Input: node n, threshold t

Output: explanation, i.e., node mask Vs & feature mask Fs

1: Vn  set of vertices in GðnÞ
2: Fp  set of node features
3: Vr ¼ Vp, Fr ¼ Fp, Vs ¼ ;, Fs ¼ ;
4: RVp  list of v 2 Vp sorted by Fðfvg; FpÞ
5: RFp  list of f 2 Fp sorted by FðVp; ffgÞ
6: Add maximal element to Vs or Fs as in (4)
7: while FðVs; FsÞ � t do
8: ~Vs ¼ Vs [ argmax

v2topK ðVrÞ
Fðfvg [ Vs; FsÞ

9: ~Fs ¼ Fs [ argmax
f2topK ðFrÞ

FðVs; ffg [ FsÞ
10: if Fð ~Vs; FsÞ � FðVs; ~FsÞ then
11: Fr ¼ Fr n ffg, Fs ¼ ~Fs

12: else
13: Vr ¼ Vr n fvg, Vs ¼ ~Vs

14: return fVs; Fsg

As shown in Fig. 2, an instance can have multiple valid,
sparse, and stable explanations. Therefore, we also propose a
variant of ZORRO, which continues searching for further
explanations: Once we found an explanation with the desired
RDT-Fidelity, we discard the chosen elements from the fea-
ture matrix X, i.e., we never consider them again as possible
choices in computing the next explanation.We repeat the pro-
cess by finding relevant selections disjoint from the ones
already found. To ensure that disjoint elements of the feature
matrix X are selected, we recursively call Algorithm 1 with
either remaining (not yet selected in any explanation) set of
nodes or features. Finally, we return the set of explanations
such that the RDT-Fidelity of t cannot be reached by using all
the remaining components that are not in any explanation.
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For a detailed explanation of the details and the reasoning
behind various design choices, we refer to Appendix C, avail-
able in the online supplemental material.

The pseudocode to compute RDT-Fidelity is provided in
Algorithm 2. Specifically we generate the obfuscated
instance for a given explanation S ¼ fVs; Fsg, YS by setting
the feature values for selected node-set Vs corresponding to
selected features in Fs to their true values. To set the irrele-
vant values, we randomly choose a value from the set of all
possible values for that particular feature in the dataset X .
To approximate the expected value in Eq. (3), we generate a
finite number of samples of YS . We then compute RDT-
Fidelity as average validity with respect to these different
baselines.

Algorithm 2. FðVs; FsÞ
Input: node mask Vs, feature mask Fs

Output: RDT-Fidelity for the given masks
1: for i ¼ 0; . . . ; samples do
2: Set YfVs;Fsg, i.e., fix the selected values and otherwise

retrieve random values from the respective columns of X
3: if FðYfVs;FsgÞ matches the original prediction of the model

then
4: correctþ ¼ 1
5: return correct

samples

Theorem 2. ZORRO has the following properties.

1) ZORRO retrieves explanation with at least RDT-Fidel-
ity t

FðVs; FsÞ � t:

2) The runtime of ZORRO is independent of the size of the
graph. The runtime complexity of ZORRO for retrieving
an explanation is given by

Oðt �maxðjVnj; jF jÞÞ;
where t is the run time of the forward pass of the GNN
F.

3) For any retrieved explanation S and t � 0:5, the sta-
bility score is gðSÞ � 1

1þtð1�tÞ .

For the proof and the discussion on the choice of noise
distribution, we refer to Appendix C.2, available in the
online supplemental material.

Discussion. We note that the explanations returned by
ZORRO have high validity, sparsity, and stability. First, the
RDT-Fidelity, which ZORRO tries to maximize is, by defini-
tion, the expected validity of the perturbed input. An
increase in fidelity is, therefore, a result of an increase in
validity at individual realizations of the perturbed input.
Second, by Theorem 1 high fidelity explanations lead to a
higher stability score.

Relation to Counterfactual Explanations. A few recent
works focus on finding counterfactual explanations for the
task of graph classification [2] and link prediction [16]. The
goal is to find an explanation such that removing that expla-
nation leads to a change in the model’s decision. While it is
symmetrical to our goal of finding an explanation that best

preserves the prediction power of the model quantified via
RDT-Fidelity, we are different from the above works. First,
none of these works consider the node classification task for
which an explanation needs to be generated corresponding
to a query node. Therefore, it is not trivially clear if their
strategies would also always lead to sparse counterfactual
explanations for node classification. Second, we observe
that for node classification there are in fact multiple explan-
ations possible (see Appendix C.1), available in the online
supplemental material. Such phenomena have also been
observed for other data types, and models [5]. High fidelity
explanations, as in our case, therefore, cannot be directly
used as counterfactual explanations, at least for the task of
node classification. One can construct a counterfactual by
taking the union of multiple explanations.

6 EXPERIMENTAL SETUP

The evaluation of post-hoc explanation techniques has
always been tricky due to the lack of ground truth. Specifi-
cally, for a model prediction, collecting the ground truth
explanation is akin to asking the trained model what it was
thinking about – an impossibility and hence a dilemma.
There is no clear solution to the ground-truth dilemma.
However, previous research has attempted varying experi-
mental regimes, each with its simplifying assumptions. We
conduct a comprehensive set of experiments adopting the
three dominant existing experimental regimes from the lit-
erature – real-world graphs with unknown ground truth, remove
and retrain, and synthetic graphs with known ground truth.
Later on, we will reflect on the limitations of their assump-
tions and the threats they might pose to our results’ validity.

6.1 Evaluation Without Ground Truth

In the absence of ground truth for explanations, we can still
evaluate posthoc explanations using the desirable proper-
ties of the explanations introduced by us, i.e., sparsity, sta-
bility (quantified via RDT-Fidelity), and validity:

RQ 1. How effective is ZORRO as compared to existing methods in
terms of sparsity, RDT-Fidelity, and validity?

Note that these metrics are not always correlated. For
example, an explanation can have a high validity score but
low stability or RDT-Fidelity. In the following, we describe
the real-world datasets that we use to compare
explanations.

Datasets and GNN Models. We use the most commonly
used datasets Cora, CiteSeer and PubMed [43]. We evaluate
our approach on four different two-layer graph neural net-
works: GCN [20], graph attention network (GAT) [39], the
approximation of personalized propagation of neural pre-
dictions (APPNP) [21], and graph isomorphism network
(GIN) [42]. We evaluate these combinations with respect to
validity, sparsity, and RDT-Fidelity for 300 randomly selected
query nodes. To calculate node sparsity for those approaches
which retrieve soft edge masks, such as GNNExplainer, we
follow [30] and create node masks by distributing the edge
mask value equally onto the endpoint of the respective
edges. For example, if a particular edge ðu; vÞ the correspond-
ing edge mask has a value of 0.5, then nodes u and v would
be given a nodemask of 0.25 each.
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In Appendix D, available in the online supplemental
material, we provide additional experimental results in
which we investigate: i) the effect of the number of samples
used for calculating the RDT-Fidelity in ZORRO, ii) further
variations of the RDT-Fidelity threshold, iii) explanations
using four additional metrics proposed by [47], and iv) the
impact of larger computational graphs on explanation
approaches by using the Amazon Computers dataset [33].

6.2 Remove and Retrain

In this experimental regime, we follow the remove-and-
retrain (or ROAR) paradigm of evaluating explanations [12]
that is based on retraining a neural network based on the
explanation outputs. ROAR removes the fraction of input fea-
tures deemed to be the most important according to each
explainer and measures the change to the model accuracy
upon retraining. Thus, the most accurate explainer will iden-
tify inputs as necessary whose removal causes the most dam-
age to model performance relative to all other explainers.
Note that, unlike the other evaluation schemes, first, ROAR is
a global approach in that it forces a fixed set of features to be
removed. Second, ROAR involves retraining the model,
whereas other approaches have interventions purely on the
outputs of the trainedmodel.

RQ 2. How effective is ZORRO when its output explanations are
used for retraining a new GNN model?

6.3 Evaluation With Ground Truth

Although it is hard to obtain ground-truth data from real-
world datasets, previous works have constructed synthetic
datasets with known subgraph structures that GNN models
learn to predict the output label [44]. We consider the only
synthetic dataset proposed in [44] having features called BA-
Community. First, we create a community with a base Bar-
ab�asi-Albert (BA) graph and attach a five-node house graph
to randomly selected nodes of the base graph. Nodes are
assigned to one of the eight classes based on their structural
roles and community memberships. For example, there are
three functions in a house-structured motif: the house’s top,
middle, and bottom nodes. Following [44], only the class
assignments of the house nodes have to be explained, and the
respective house is regarded as “explanation ground truth”.

Node Features for Synthetic Graphs. Nodes have normally
distributed feature vectors. Each node has eight feature val-
ues drawn from Nð0; 1Þ and two features drawn from
Nð�1; :5Þ for nodes of the first community or Nð1; :5Þ other-
wise. The feature values are normalized within each com-
munity, and within each community, 0:01 % of the edges
are randomly perturbed. Note that for reproducibility, we
strictly follow the published implementation of GNNEx-
plainer. For the known ground-truth regime, we are inter-
ested in answering the following research question:

RQ 3. Are Zorro’s explanations accurate, precise and faithful to
available ground truth explanations?

6.3.1 Metrics

To compare against the known ground truth, we use vari-
ous metrics proposed earlier in literature for synthetic data-
sets – accuracy, precision, faithfulness.

Accuracy measures the fraction of correctly classified
nodes in the explanation. Note that only reporting accuracy
as a metric does not portray the complete picture. For exam-
ple, in our imbalanced dataset of five positive nodes (the
house motif), out of 100 other nodes in the computational
graph, high accuracy can be achieved by a trivial selection
of five neighbors or sometimes even none. Therefore, we
also report the precision value, which emphasizes the frac-
tion of correct predictions:

Precision is defined as the fraction of returned nodes that
are also in the explanation set. Precision provides more reli-
able results than accuracy when the input is much larger
than the explanation. To compute accuracy and precision
for baselines, we transform the baselines’ results into a node
mask of the five most important nodes, which is the size of
the explanation ground truth.

Faithfulness. Faithfulness is based on the assumption that
a more accurate GNN leads to more precise explana-
tions [30]. We measure faithfulness by comparing the expla-
nation performance of the GNN model at an intermediate
training epoch against the fully trained GNN (final model
trained until convergence). Specifically, we generate two
ranked lists corresponding to test accuracy and precision of
retrieved explanations at different epochs. We then com-
pute faithfulness as the rank correlation of these two lists
measured using Kendall’s tau tKendall.

6.4 Baselines and Competitors

For a comprehensive quantitative evaluation we chose our
baselines from the three different categories of post-hoc explan-
ations models consisting of (i) soft-masking approaches like
GNNExplainer, which returns a continuous feature and edge
mask and PGE [24] learns soft masks over edges in the graph
(ii) surrogate model based hard-masking approach, PGM [40],
which returns a binary node mask, iii) Shapely based hard
masking approach SubgraphX [48], which returns a subgraph
as an explanation, and (iv) gradient-basedmethodsGrad&Gra-
dInput [34] which utilize gradients to compute feature attribu-
tions. Specifically, we take the gradient of the rows and
columns of the input feature matrix X, which corresponds to
the features’ and nodes’ importance. For GradInput, we also
multiply the result element-wise with the input. In the case of
PGM, we use the author’s default settings to choose the best
node mask. Besides, we employ an empty explanation as the
naive baseline.We could only run SubgraphX for the small syn-
thetic dataset, due to its long runtime (see Appendix B), avail-
able in the online supplementalmaterial.

ZORRO Variants. For our approach ZORRO, we retrieved
explanations for the thresholds t ¼ :85 and t ¼ :98 with
K ¼ 10. All RDT-Fidelity values were calculated based on
100 samples.

We refer to Appendix B, available in the online supple-
mental material, and the available implementation for fur-
ther details of the models and the training of the GNNs.

7 EXPERIMENTAL RESULTS

In presenting our experimental results, we begin with RQ 1
that relates to the regime where we consider real-world
datasets but without ground-truth explanations in Sec-
tion 7.1. Continuing with the real-world datasets, we will
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discuss the global impact of explanation approaches when
GNNmodels are retrained based on the explanations in Sec-
tion 2. To our knowledge, we are the first to evaluate GNN-
explanation approaches in the retraining setup. Finally, in
Section 7.3, we will check the effectiveness of ZORRO on syn-
thetic datasets where ground-truth for explanations is
known.

7.1 Evaluation With Real-World Data

To answer RQ 1, we evaluate ZORRO’s performance on three
standard real-world datasets – Cora, CiteSeer and PubMed.
As discussed in the last section, real-world datasets do not
have accompanying ground-truth explanations. Instead, the
results of our experiments are summarized in Table 1 where
we compare the performance of various explanation meth-
ods in terms of validity, sparsity, and RDT-Fidelity.

Validity and RDT-Fidelity. We re-iterate that RDT-Fidelity
measures the stability of the explanations. The validity, on
the other hand, measures if the explanation alone retains
the same class predictions. We first observe that gradient-
based approaches obtain low RDT-Fidelity and validity
compared to other soft-masking baselines like PGM and
GNNExplainer. We observe that even the empty baseline
achieves validity in the same range of 0:11� 0:50 as gradi-
ent-based methods. Hence, selecting no nodes and no fea-
tures in the explanation, as done in the empty explanation

baseline, yields similar performance as the gradient-based
explanations. This result also establishes the superiority of
GNN-specific explanation methods as PGM and GNNEx-
plainer. Interestingly, while GNNExplainer outperforms
PGM for Cora in terms of validity, PGM finds overall more
stable explanations and shows higher RDT-Fidelity. On the
other side, PGE performs worst out of all masks-based
explainers.

Since ZORRO optimizes for RDT-Fidelity, we expectantly
deliver high performance for RDT-Fidelity. However, ZORRO

also convincingly outperforms all the existing baseline
approaches for validity even if it is not explicitly optimized
for validity. Additionally, a significant result here is that
our heuristic yet efficient greedy procedure is already suffi-
cient to produce near-optimal validity and RDT-Fidelity
values.

Node and Feature Sparsity.Note that we differentiate between
node and feature sparsity because explanation methods like
PGM do not produce feature attributions. Moreover, we report
the sparsity as the effective explanation size that is the entropy
of the retrieved masks. The larger the explanation size, the
lower will be the sparsity. First, we compare soft-masking
approaches, i.e., gradient-based approaches, PGE, andGNNEx-
plainer. We observe that the feature sparsity of GNNExplainer,
somewhat surprisingly, is less sparse than even gradient-based
approaches. Since PGE and GNNExplainer return soft edge

TABLE 1
Analysis of the Average Sparsity (Definition 2), RDT-Fidelity (Definition 4), and Validity (Definition 1) of the Explanations

Metric Method Cora CiteSeer PubMed

GCN GAT GIN APPNP GCN GAT GIN APPNP GCN GAT GIN APPNP

Features-Sparsity GNNExplainer 7.27 7.27 7.27 7.27 8.21 8.21 8.21 8.21 6.21 6.21 6.21 6.21
Grad 4.08 4.22 4.45 4.08 4.19 4.28 4.41 4.18 4.41 4.51 4.89 4.46
GradInput 4.07 4.25 4.37 4.08 4.17 4.29 4.33 4.17 4.41 4.51 4.92 4.47
ZORRO ðt ¼ :85Þ 1.91 2.29 3.51 2.26 1.81 1.84 3.67 1.97 1.60 1.52 2.38 1.75
ZORRO ðt ¼ :98Þ 2.69 3.07 4.34 3.18 2.58 2.60 4.68 2.78 2.55 2.58 3.21 2.86

Node-Sparsity GNNExplainer 2.48 2.49 2.56 2.51 1.67 1.67 1.70 1.68 2.7 2.71 2.71 2.71
PGM 2.06 1.82 1.66 1.99 1.47 1.59 1.10 1.54 1.64 1.16 1.62 2.93
PGE 1.86 1.86 1.78 1.94 1.48 1.40 1.36 1.41 1.91 1.81 1.85 1.92
Grad 2.48 2.34 2.25 2.35 1.70 1.61 1.55 1.60 2.91 2.76 3.11 2.73
GradInput 2.53 2.43 2.23 2.41 1.61 1.58 1.54 1.52 3.02 2.94 3.41 2.81
ZORRO ðt ¼ :85Þ 1.28 1.30 1.90 1.16 1.05 0.92 1.36 0.83 1.07 0.87 1.77 0.79
ZORRO ðt ¼ :98Þ 1.58 1.59 2.17 1.48 1.26 1.09 1.58 1.07 1.51 1.31 2.18 1.25

RDT-Fidelity GNNExplainer 0.71 0.66 0.52 0.65 0.68 0.69 0.51 0.62 0.67 0.73 0.67 0.72
PGM 0.84 0.77 0.60 0.89 0.92 0.93 0.73 0.95 0.78 0.69 0.74 0.96
PGE 0.50 0.53 0.35 0.49 0.64 0.60 0.51 0.61 0.49 0.61 0.56 0.50
Grad 0.15 0.18 0.19 0.17 0.17 0.19 0.28 0.18 0.37 0.43 0.42 0.37
GradInput 0.15 0.18 0.18 0.16 0.16 0.18 0.26 0.17 0.36 0.42 0.42 0.36
Empty Explanation 0.15 0.18 0.18 0.16 0.16 0.18 0.26 0.17 0.36 0.42 0.42 0.36
ZORRO ðt ¼ :85Þ 0.87 0.88 0.86 0.88 0.87 0.86 0.87 0.86 0.86 0.88 0.88 0.87
ZORRO ðt ¼ :98Þ 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.96

Validity GNNExplainer 0.89 0.95 0.83 0.84 0.87 0.92 0.58 0.93 0.60 0.81 0.71 0.87
PGM 0.89 0.90 0.64 0.94 0.95 0.95 0.76 0.97 0.86 0.80 0.62 0.97
PGE 0.51 0.54 0.34 0.45 0.62 0.59 0.54 0.62 0.51 0.61 0.57 0.48
Grad 0.26 0.25 0.15 0.18 0.28 0.25 0.12 0.26 0.36 0.49 0.50 0.38
GradInput 0.22 0.22 0.12 0.17 0.18 0.16 0.08 0.19 0.36 0.49 0.50 0.37
Empty Explanation 0.22 0.22 0.11 0.17 0.18 0.16 0.08 0.19 0.36 0.49 0.50 0.37
ZORRO ðt ¼ :85Þ 1.00 1.00 0.83 1.00 1.00 1.00 0.77 1.00 0.90 1.00 0.84 1.00
ZORRO ðt ¼ :98Þ 1.00 1.00 0.90 1.00 1.00 1.00 0.91 1.00 0.98 1.00 0.87 1.00

The smaller the explanation size larger is the sparsity. As stability can be directly derived from RDT-Fidelity and increases with RDT-Fidelity > 0:5 (see Theo-
rem 1), it suffices to compare RDT-Fidelity to ensure stability. PGM and PGE are not included in the feature sparsity because they don’t retrieve feature masks.
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masks, we compute the corresponding node mask as a sum of
the masks of the edges which contain the corresponding node.
In terms of node sparsity, PGE outperforms all other soft-mask-
based approaches. As PGE does not produce a feature mask, in
other words, it selects all features, feature sparsity is not pro-
vided. A low sparsity for soft-masking approaches implies a
near-uniform feature attribution and consequently lower
interpretability. On the other hand, explanations produced by
ZORRO and PGM are hard masks. Since PGM only retrieves
nodemasks, only a comparison based on node sparsity is possi-
ble. PGM outperforms with respect to node sparsity all soft
masking approaches. However, for all cases, but GIN, ZORRO

retrieves even sparser nodemasks.
We see that ZORRO produces significantly sparser explan-

ations in comparison to soft-masking approaches. Between
the variants of ZORRO, the explanations of ZORRO for t ¼ 0:85
are expectedly lower in sparsity than for t ¼ 0:98 that is a
more constrained version of ZORRO. However, note that a
lower sparsity comes with an advantage of higher RDT-
Fidelity and validity.

Key Takeaways. Our crucial takeaway from this experi-
ment is that ZORRO convincingly outperforms all other
explanation methods across all datasets and GNN models.
To answer RQ 1 quantitatively, we report the average
improvement of ZORRO ðt ¼ 0:98Þ (with respect to the
best performing baseline for each metric, model, and
dataset): ZORRO achieves a reduction of 72% and 94% in
the effective node, respectively, feature explanation size;
increase by 20% in RDT-Fidelity and 11% in validity of
explanations.

7.2 Evaluation With Remove and Retraining

We now present the results that estimate the global rele-
vance of explanations by adapting the ROAR technique as
already described earlier in Section 6.1. In our setup, given
(a) a training set, (b) a GNN model that we want to explain
and, (c) an explanation method, we retrieved explanations
for each node in the training set. Next, we sum all feature
masks corresponding to the retrieved explanations (of all
training nodes) and choose the top-k features based on the
aggregated value. For hard masks, this procedure is equiva-
lent to selecting the top-kmost frequently retrieved features.
Finally, we retrain the GNN model again on the same train-
ing set but with the selected top-k features. Fig. 3 reports the
performance drop in the model’s test accuracy after the

remove-and-retrain procedure. Note that the fewer features
are needed to achieve similar test accuracy, the better the
explanations’ quality.

We report our results for k 2 f1; 5; 10; 50; 100g most
essential features using GCN as the GNN and over the
CORA dataset. First, we observe that using only the top-10
important features using ZORRO (t ¼ :98) already achieves a
test accuracy of 0.72 compared to 0.79 on all 1433 features.
Selecting 100 features however using ZORRO (t ¼ :98), causes
only a minor performance drop of D < 0:01. Similar to
Table 1, Grad achieves slightly better results than GradIn-
put. Interestingly, GNNExplainer performs poorly, and the
possible reason for this is its non-sparse feature masks (as
seen in the previous section). Since PGM does not retrieve
feature masks, it could not be evaluated in this setting.

To answer RQ 2, we find that ZORRO effectively chooses
good global features, aggregated from ZORRO’s local expla-
nation, in comparison to other explanation approaches. Sur-
prisingly, the gradient-based methods outperform GNN-
specific GNNExplainer approaches. This is possible because
we are experimenting with feature masks (and not node
masks) and that gradient-based approaches are optimized
for non-relational models.

7.3 Evaluation With Ground-Truth

For synthetic datasets, unlike real-world datasets, we have
the liberty of having known ground truth explanations
(GTE). We report accuracy and precision of explanations by
comparing them against the GTE in Table 2. Note that for
soft masking approaches, like GNNExplainer, hard masks
need to be constructed by a discretizing step that is choos-
ing top-k important attributions. In our experiments, we
strengthen the soft-masking baselines by setting the k to
the exact size of the ground truth. In addition, we also
report the sparsity and RDT-Fidelity of corresponding
explanations.

We observe that while the gradient-based methods
achieve the highest accuracy, ZORRO achieves the best preci-
sion, sparsity, and RDT-Fidelity. The decrease in accuracy is
due to two reasons. First, the higher accuracy of gradient-
based methods is due to our decision to discretize the soft-
masking baselines by allowing them active knowledge of
the GTE size. On the other hand, ZORRO, natively outputs
hard masks agnostic to the GTE size. PGE performs worst

Fig. 3. Test accuracy after retraining GCN on Cora based on the top k
features. We repeated the retraining 20 times, report the mean, and
observed a variation of below.001.

TABLE 2
Performance of the Node Explanation on the Synthetic Dataset

Method Prec. " Acc. " Sparsity # RDT-Fidelity "
GNNExplainer 0.40 0.81 1.68 0.63
PGM 0.75 0.93 2.30 0.81
PGE 0.19 0.21 1.73 0.58
SubgraphX 0.72 0.94 1.25 0.82
Grad 0.87 0.95 1.61 0.70
GradInput 0.89 0.96 1.61 0.56
; - Explanation 0.00 0.84 0.00 0.55
ZORRO ðt ¼ :85Þ 0.95 0.90 0.65 0.91
ZORRO ðt ¼ :98Þ 0.90 0.90 1.04 0.98

The sparsity is calculated for the retrieved node mask. The high accuracy with
empty explanation by large size of negative set. This also points to the pitfall of
using Accuracy alone as the measure of evaluating explanations when ground
truth is available.
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in terms of precision and accuracy. SubgraphX retrieves
explanations similar to Grad, but has the drawback of very
high runtime, see Appendix B, available in the online sup-
plemental material. To fully answer RQ 3, we also com-
pared the achieved faithfulness of the explanation methods.
Table 3 shows the model’s and explainers’ accuracies at dif-
ferent epochs. Even at epoch 1 with random weights, we see
that the baselines achieve high precision on this synthetic
dataset.

ZORRO achieves the first accuracy peak at 200 epochs,
where the model still cannot differentiate the motif from the
BA nodes. A similar peak at epoch 200 is observed for the
GNNExplainer and GradInput. Moreover, the gradient-
based methods achieve the best or close to the best perfor-
mance for the untrained GCN. From these observations, we
conclude that the underlying assumption – the better the
GNN, the better the explanation – not necessarily need to
hold. In this synthetic setting, the GNN only needs to differ-
entiate the two communities, and all but one explanation
method can explain the house motif.

In conclusion, for RQ 3, ZORRO outperforms all baselines
in terms of precision and faithfulness while gradient-based
methods achieve the highest accuracy. Note that the good
performance of gradient-based approaches conflicts with
our conclusions when experimenting with real-world data.
We believe that this is a possible threat to be aware of while
evaluating explanations. Specifically, some explanation
methods perform admirably in more straightforward and
synthetic cases but are not robust and do not generalize
well when used in real-world scenarios. However, ZORRO is

quite robust to different types of models, data, and evalua-
tion regimes.

8 UTILITY OF EXPLANATIONS

One of the motivations of post-hoc explanations is to derive
insights into a model’s inner workings. Specifically, we use
explanations to analyze the behavior of different GNNs
with respect to homophily. GNNs are known to exploit the
homophily in the neighborhood to learn powerful function
approximators. We use the retrieved explanations by ZORRO

to verify the models’ tendency to use homophily for node
classification and identify the model’s mistakes.

Formally, we define the homophily of the node as the frac-
tion of the number of its neighbors, which share the same label
as the node itself. In what follows, we use homophily to refer
to the homophily of a nodewith respect to the selected nodes
in its explanation. True homophily is computed based on the
true labels of the neighbor nodes. Similarly, predicted homo-
phily is computed based on the predicted labels of the neigh-
boring nodes.

8.1 Wrong Predictions Despite High Homophily

We start to investigate the joint density of true and pre-
dicted homophily of a given node. In Fig. 4, we illustrate the
effect of connectivity and neighbors’ labels on the model’s
decision for a query node (for the PubMed dataset). Several
vertices corresponding to blue regions spread over the bot-
tom of the plots have low predicted homophily. These
nodes are incorrectly predicted, and their label differs from
those predicted for the nodes in their explanation set. The
surprising fact is that even though some of them have high
true homophily close to 1, their predicted homophily is low.
This also points to the usefulness of our found explanation
in which we conclude that nodes influencing the current
node do not share its label. So despite the consensus of
GNNs reliance on homophily, they can still make mistakes
for high homophily nodes, for example, when information
from features is misaligned (or leads to a different decision)
with that from the structure.

8.2 Incorrect High Homophily Predictions

We also note that for GIN and APPNP, we have some nodes
with true homophily and predicted homophily close to 1
but are incorrectly predicted. This implies that the node
itself and the most influential nodes from its computational
graph have been assigned the same label. We can conclude

TABLE 3
Experiments on Faithfulness According to [30] Measured With
Kendall’s tau tKendall of the Retrieved Explanation Precision and

Test Accuracy

Method 1 200 400 600 1400 2000 tKendall

GNNExplainer 0.50 0.54 0.41 0.40 0.37 0.40 �0:73
PGM 0.83 0.47 0.68 0.71 0.76 0.75 0.20
PGE 0.20 0.19 0.23 0.21 0.23 0.20 0.36
Grad 0.94 0.80 0.62 0.73 0.84 0.87 0.07
GradInput 0.88 0.89 0.78 0.79 0.87 0.89 0.07
ZORRO ðt ¼ :85Þ 0.00 0.92 0.88 0.93 0.94 0.94 0.73
ZORRO ðt ¼ :98Þ 0.00 0.90 0.85 0.84 0.87 0.90 0.47

To simulate different model performances, we saved the GCN model during
different epochs on the synthetic dataset. For ZORRO t ¼ :85, the ordering of
the explanations’ performances nearly perfectly align with the order of the
models performance.

Fig. 4. Dataset - PubMed. The joint distribution of the homophily with respect to the nodes selected in the ZORRO’s explanation (t ¼ :85) with true and
predicted labels. The orange contour lines correspond to the distributions for correctly predicted nodes, and the blue one corresponds to incorrectly
predicted nodes.
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that the model based its decision on the right set of nodes
but assigned the wrong class to the whole group.

8.3 Influence of Nodes With Low Homophily

Nodes in the orange regions on the extreme left side of the
plots exhibited low true homophily but high predicted
homophily. The class labels for such nodes are correctly pre-
dicted. However, the corresponding nodes in the explana-
tion were assigned the wrong labels (if they were assigned
the same labels as that of the particular node in question, its
predicted homophily would have been increased). The den-
sity of such regions in APPNP is lower than in GCN, imply-
ing that APPNP makes fewer mistakes in assigning labels to
neighbors of low homophily nodes. For example, there are
no nodes with true homophily 0, which incorrectly influ-
enced its neighbors. These nodes can be further studied
with respect to their degree and features.

9 CONCLUSION

We formulated the key properties a GNN explanation
should follow: validity, sparsity, and stability. While none of
these measures alone suffice to evaluate a GNN explana-
tion, we introduce a new metric called RDT-Fidelity that
along with a sparsity constraint reflects these desiderata
into a single measure. We provide theoretical foundations
of RDT-Fidelity from the area of rate-distortion theory. Fur-
thermore, we proposed a simple combinatorial procedure
ZORRO, which retrieves sparse binary masks for the features
and relevant nodes while trying to optimize for fidelity. Our
experimental results on synthetic and real-world datasets
show massive improvements not only for fidelity but also
concerning evaluation measures employed by previous
works.
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