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Abstract

Deep learning has improved vanishing point detection
in images. Yet, deep networks require expensive annotated
datasets trained on costly hardware and do not generalize
to even slightly different domains, and minor problem vari-
ants. Here, we address these issues by injecting deep van-
ishing point detection networks with prior knowledge. This
prior knowledge no longer needs to be learned from data,
saving valuable annotation efforts and compute, unlocking
realistic few-sample scenarios, and reducing the impact of
domain changes. Moreover, the interpretability of the priors
allows to adapt deep networks to minor problem variations
such as switching between Manhattan and non-Manhattan
worlds. We seamlessly incorporate two geometric priors:
(i) Hough Transform — mapping image pixels to straight
lines, and (ii) Gaussian sphere — mapping lines to great
circles whose intersections denote vanishing points. Ex-
perimentally, we ablate our choices and show comparable
accuracy to existing models in the large-data setting. We
validate our model’s improved data efficiency, robustness to
domain changes, adaptability to non-Manhattan settings.

1. Introduction

Vanishing point detection in images has non-vanishing
real-world returns: camera calibration [1, 9, 21], scene
understanding [18], visual SLAM [13, 33], or even au-
tonomous driving [28]. Deep learning is an excellent ap-
proach to vanishing point detection [7, 8,67, 69], where all
geometric knowledge is learned from large annotated data
sets. Yet, in the real-world, there are several factors that
complicate deep learning solutions: (1) Manually annotat-
ing large training sets is expensive and error prone; (2)
Training models on large data sets require costly compu-
tational resources; (3) Practical changes to data collection
cause domain shifts, hampering deep network generaliza-
tion; (4) Slight changes in the problem setting require a
complete change in deep network architectures. Thus, there
is a need to make deep learning less reliant on data, and its
architectures more robust to variants of the same problem.

In this paper, we add geometric priors to deep vanishing
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(ii) Gaussian sphere

(i) Hough Transform

Image domain

Figure 1. We add two geometric priors: (i) Hough Transform
and (ii) Gaussian sphere mapping, for vanishing points detection.
We transform learned image features to the Hough domain, where
lines are mapped to individual bins. We further project the Hough
bins to the Gaussian sphere, where lines become great circles and
vanishing points are at the intersection of great circles. Each color
represents a set of image lines related to a vanishing point. Adding
geometric prior knowledge makes our model data-efficient, less
dependent on domain-specifics, and easily adaptable to problem
variations such as detecting a variable number of vanishing points.

point detection. Using geometric priors is data-efficient as
this knowledge no longer needs to be learned from data.
Thus, fewer annotations and compute resources are needed.
Moreover, by relying on priors, the model is less sensitive to
particular idiosyncrasies in the training data and generalizes
better to domains with slightly different data distributions.
Another advantage of a knowledge-based approach is that it
is interpretable, and thus the architecture is easy to adapt to
a slightly different problem formulation.

We add two geometric priors, see Fig. 1: (i) the Hough
Transform and (ii) a Gaussian sphere mapping. Our train-
able Hough Transform module represents each line as an
(offset, angle) pair in line polar coordinates, allowing us
to identify individual lines in Hough space [15]. We sub-
sequently map these lines from Hough space to the Gaus-
sian sphere, where lines become great circles, and vanishing
points are located at the intersection of great circles [4]. The
benefit of using great circles is that lines are mapped from
the unbounded image plane to a bounded unit sphere, fa-
cilitating vanishing point detection outside the image view.
Both the Hough Transform and the Gaussian sphere map-
ping are end-to-end trainable, taking advantage of learned
representations, while adding knowledge priors.

978-1-6654-6946-3/22/$31.00 ©2022 IEEE
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This paper makes the following contributions: (1) we
add two geometric priors for vanishing point detection by
mapping CNN features to the Hough Transform, and map-
ping Hough bins to the Gaussian sphere; (2) we validate our
choices and demonstrate similar accuracy as existing mod-
els on the large ScanNet [12] and SceneCity Urban 3D [70];
(3) we show that adding prior knowledge increases data-
efficiency, improving accuracy for smaller datasets; (4) we
demonstrate our ability to tackle a different problem vari-
ant: detecting a varying numbers of vanishing points on
the NYU Depth [45] dataset, where the number of van-
ishing points varies drastically from 1 to 8; (5) we show
that adding prior knowledge reduces domain shift sensitiv-
ity, which we validate by cross-dataset testing.

2. Related work

Geometry-based vanishing point detection. Vanishing
points occur at intersections of straight lines. Lines can
be found by contour detection [71] or a dual point-to-line
mapping [30]. The common approach, however, is using an
explicit straight-line parameterization in the Hough Trans-
form [40), ]. We exploit this straight-line parameteri-
zation as prior knowledge in a Hough Transform module.
Combining lines to vanishing points can be done by mea-
suring the probability of a group of lines passing through the
same point [57], voting schemes [19,64], or hypothesis test-
ing by counting the number of inlier lines such as J-Linkage
[59] used in [ ]. Other approaches see vanishing point
detection as a grouping problem by applying line cluster-
ing [3, ], expectation-maximization [1, 14, ], or
branch-and-bound [5, 1. While these methods work
well, they do not exploit prior knowledge of the 3D world.
A strong geometric prior for vanishing points is mod-
eled by the Gaussian-sphere [4, 10]. A line in an image
represents a great circle on the Gaussian-sphere and the in-
tersections of great circles on the sphere denote vanishing
points, detected as local maxima [4,51]. Mapping lines to
the Gaussian sphere shifts the problem from the unbounded
image plane to the constrained parameter space defined by
the Gaussian sphere [10, ]. Constraining the search
space is a form of regularization, and is particularly bene-
ficial for limited-data deep learning. We exploit this prior
knowledge by incorporating the Gaussian sphere mapping.

Learning-based vanishing point detection.  Vanish-
ing point detection can be learned from large annotated
datasets [7, &, ]. Tt is effective to split the problem
in separate stages: line detection, inverse gnomonic projec-
tion, network training and post-processing, as in Kluger et
al. [25]. Conic convolutions on hemisphere points, pro-
vided further improvements, in Zhou et al. [69]. In con-
trast, rather than focusing on accurate large-scale deep mod-
els, we consider challenging real-world scenarios, such as:

>

s

k) s
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limited training samples, cross-dataset domain switch, and
non-Manhattan world.

Robustness to domain shifts. Classical solutions to van-
ishing point detection [17, ] are built exclusively on
prior-knowledge. Such methods are data-free, and thus de-
signed to work on any domain. Yet, they cannot take ad-
vantage of expressive deep-feature learning for vanishing
point detection [38,69]. On the other hand, deep models are
notoriously sensitive to distribution shifts between training
and test [29, 39]. Active research on this includes: domain
adaptation [50, ], domain generalization [68], multi-
domain learning [36, 52], etc. Such solutions entail signif-
icant changes to the deep network model, adding complex-
ity for practical real-world applications. Hence, we focus
on a single method which does not requiring large model
changes for robustness to minor domain shifts. Our goal
is to combine the robustness of knowledge-based methods,
with the power of deep representation learning.

s

k]

Manhattan versus non-Manhattan world. The Manhat-
tan world assumes exactly 3 vanishing points. This assump-
tion has been proven useful for orthogonal vanishing point
detection [2, 5, 44, 63]. However, the Manhattan assump-
tion does not hold in several real-world scenarios such as
non-orthogonal walls and wireframes in man-made struc-
tures. Vanishing point detection in non-Manhattan world
is done by robust multi-model fitting [26], horizon line
detection [66], branch-and-bound with a novel mine-and-
stab strategy [32], Bingham mixture model fitting [31] or
non-maximum suppression on the Gaussian sphere [38].
In our work, we refrain from adding explicit orthogonal-
ity constraints, which makes our method applicable to non-
Manhattan scenarios as well. We rely on the Hough Trans-
form and the Gaussian sphere to map pixel-wise representa-
tions to the entire hemisphere. And using a clustering algo-
rithm we detect multiple vanishing points simultaneously.

3. Geometric priors for VP detection

General outline of our approach. Fig. 2 depicts the overall
structure of our model. We build on two geometric priors:
(i) Hough Transform, and (ii) Gaussian sphere mapping. A
CNN learns image features, which are then mapped to a line
parameterization via Hough Transform. We project the fea-
tures of parameterized lines to the Gaussian sphere where
spherical convolutions precisely localize vanishing points.

(i) Hough Transform. Similar to [
stack hourglass network [40] to extract image features, F’
to be mapped into Hough space [37], HT. The HT space
parameterizes image lines in polar coordinates using a set
of discrete offsets p and discrete angles 6, defining a 2D
discrete histogram. In practice, a set of pixels (z(%), y (7))
along a line indexed by i, vote for a line parameterization to

], we use a single-
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Figure 2. Overview: The model starts from in input image, and predicts vanishing points on the Gaussian hemisphere by relying on two
geometric priors: (i) Hough Transform, and (ii) Gaussian sphere mapping. We use a convolutional network to learn features which are then
mapped to Hough space, where each bin is a line. We filter the Hough space and project Hough bins to the Gaussian hemisphere and apply
spherical convolutions to find vanishing points. We indicate the size of the learned features above, where the last dimension is the number

of channels. We sample 32,768 points on the hemisphere using the Fibonacci lattice [

], resulting in features maps of size 32,768. Our

model learns to classify spherical points as vanishing points or not using a binary cross-entropy loss. There is no intermediate supervision.

which they all belong:

HT(p,0) =Y F(pcosf —isin0,psinf +icosf) (1)

K2

The Hough Transform module starts from an [H x W] fea-
ture map F' and outputs an [N, x Ny| Hough histogram HT,
where N, and Ny are the number of sampled offsets and
angles in Hough Transform. We set H=128, W=128,
N,=184, and Ny=180. This results in [IN,x Ng] possi-
ble line parameterizations. We find the local maxima in
the Hough domain by performing a 1D convolutions over
the offsets. This removes the noisy responses in the Hough
space, as in Fig. 2. We refer the readers to [37] for details.

(ii.1) Gaussian sphere mapping. The Gaussian sphere is
a unit sphere centered at the camera origin, O. Vanishing
points on the sphere are represented as normalized 3D line
directions .

Starting from a bin in the Hough domain (pap,045),
corresponding to a line direction in the image plane AB,
we want to map this to the Gaussian sphere. Two image
points A and B sampled from a line represented by its HT'
bin (pap,04p), together with the camera center O, form a
plane 1 as depicted in Fig. 3(a). The plane 1) is described
by its normal vector:

ﬁ)—(n n n)—iﬁX@
I akan

I

@)

This normal vector 7’ is the only information we need to

map the image line direction @ to the Gaussian sphere.
The spherical coordinates («, 5) describe a point on the

Gaussian sphere, where « is the azimuth defined as the an-

gle from the z-axis in the xz plane, and § is the elevation
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representing the angle measured from the zz plane towards
the y-axis, as shown in Fig. 3(a). The intersection between
the plane v and the Gaussian sphere is a great circle. This
great circle represents the projection of the image line direc-
tion /@ on the Gaussian sphere. Intersections of multiple
great circles are potential vanishing points, see Fig. 3(b).
We compute the projection of the image line direction
AB, by estimating the elevation S as a function of the az-
imuth v and the normal vector 77 [51]:
1 —Ngsina —n, cosa

ﬁ(a,ﬁ) =tan~ ,

Ny

3)

where we uniformly sample « in the range [—7/2, 7).

Because the Gaussian sphere is symmetric we only need
a hemisphere. We sample N points on the Gaussian hemi-
sphere using a Fibonacci lattice [20] and then project lines,
corresponding to bins in the Hough space, to these N sam-
pled sphere points. For each line parameterization in Hough
space (p, ), we first compute its normal vector . We,
then, estimate its corresponding («, ) spherical coordi-
nates using Eq. (3). We subsequently assign each (c, 3)
pair to its nearest neighbor in the sampled points from the
Fibonacci lattice, by computing their cosine distance. To
parallelize this process, we precompute the projection of all
Hough line parameterizations onto the sampled sphere lo-
cations. This mapping is stored in an [N, x Ny x M] tensor,
where [V, x Ny] is the number of line parameterizations in
Hough space and M is the number of sampled azimuth an-
gles a. We set N=32,768 and M=1,024.

(ii.2) Spherical convolutions on the hemisphere. We em-
ploy spherical convolutions to predict vanishing points. We
treat the points sampled on the hemisphere as a point cloud
and use EdgeConv [62] to convolve over the hemisphere.
EdgeConv operates on a k-nearest neighbor graph on the
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(a) The Gaussian sphere

Figure 3.

Gaussian sphere representations for vanishing points [4,

vanishing point_ —~ — ~

- -
4

’

Image plane

(b) Vanishing points on the Gaussian sphere

Gaussian sphere

]: (a) The Gaussian sphere is a unit sphere located at the camera

center, O. Points on the sphere are encoded by two angles: (a, 3) the azimuth and the elevation, respectively. A line segment AB in
the image plane together with the camera center O forms a plane ), highlighted in blue. To define the mapping from the image to the
sphere, we only need to know the normal 7 to the plane v. (b) Image lines are projected as great circles on the sphere. The intersection

of multiple great circles on the sphere represents a vanishing point.

HEdgeCom

[32768] x 64

“IEdgeCun’L‘

EdgeConv |—-|EquCom
L}

dgcCom
[32768] x64

Figure 4. Spherical convolutions on the hemisphere. We use
EdgeConv [62] for precise vanishing point localization on the
Gaussian sphere. The concatenation of the previous feature maps
is fed into the final layer to produce a prediction.

V
Output
[32768] x1

[32768] x64

Input
[32768] 64

points. It learns to represent local neighborhoods by ap-
plying a non-linear function to the neighbors’ features, and
then aggregates those features with a symmetric operator.
The neighbors’ features are localized by subtracting the fea-
tures of the centroid. Like [62], we take the per-feature
maximum over the neighbors to aggregate edge features.

As shown in Fig. 4, the spherical part of our model con-
tains 5 EdgeConv modules [62]. Each EdgeConv mod-
ule transforms neighboring features with a fully connected
layer, a BatchNorm layer [22] and a LeakyReL U activation.
We use N=32,768 nodes on the hemisphere and compute
the 16 nearest neighbors for each node. We concatenate the
features maps from previous layers and feed them into the
last EdgeConv layer to produce the final prediction.

Model training and inference. We train the model using
the binary cross-entropy loss. For each annotated vanishing
point, we label its nearest neighbor in the sampled points
as +1 and the others as 0. Because the number of positive
samples is considerably lower than the negative samples,
we compute two separate average losses over the positive
and the negative samples, and then sum these. There is no
intermediate supervision or guidance.

During inference, we use DBSCAN [16,49] to cluster all
points on the Gaussian sphere based on the cosine distance.

6096

Figure 5. Multi-scale sampling on the hemisphere. We sam-
ple points at three scales for detecting vanishing points in the
Manhattan world, as in [69]. Blue indicates sampling at the first
scale, while green indicates fine-grained sampling at the following
scales. The red crosses are the predictions at each scale.

The eps parameter of DBSCAN [49] is set to be 0.005. The
point with the highest confidence in each cluster is the pre-
diction. We rank all predictions by confidence.

Multi-scale sampling with the Manhattan assumption.

For the Manhattan world, we know beforehand that there
are only 3 orthogonal vanishing points, therefore in this sce-
nario, we can use a multi-scale sampling strategy to reduce
computation, as in [69]. Here, we sample points and ap-
ply spherical convolutions at 3 scales: 6 ~ {90°,13°,4°}
and N = {512,128,128}, where 6 controls the sampling
radius and NNV indicates the number of sampled points re-
spectively. Fig. 5 displays the multi-scale sampling. The
spherical convolution networks share the same architecture
while processing different number of samples. We provide
details in the supplementary material.

4. Experiments

Datasets. We evaluate on three datasets following the Man-
hattan world assumption: SU3 (SceneCity Urban 3D) [70],
ScanNet [12], YUD [14], as well as the NYU Depth [45]
dataset which does not follow the Manhattan world as-
sumption. The SU3 dataset contains 23K synthetic images,

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2023 at 15:07:59 UTC from IEEE Xplore. Restrictions apply.
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Figure 6. Exp 1: Model choices. We show the effects of the two
geometric priors quantitatively on the ScanNet-1% subset. Adding

HT layers and spherical convolutions outperforms the baselines,
thus demonstrating the effectiveness of geometric priors.

which are split into 80%, 10% and 10% for training, vali-
dation and testing respectively. The ScanNet has more than
200K real-world images, among which 189,916 examples
are used for training. The “ground truth” VPs are estimated
from surface normals as in [69], thus being less precise than
other datasets. In the NYU Depth dataset, the number of
vanishing points varies from 1 to 8 across images, making
it more challenging. The NYU Depth dataset has 1,449 im-
ages, approximately %200 and %20 smaller than the Scan-
Net dataset and the SU3 dataset, respectively, further in-
creasing the difficulty of training CNN models. We addi-
tionally demonstrate the effect of geometric priors on the
small-scale YUD dataset with only 102 images. Detailed
comparisons are in the supplementary material. Unless
specified otherwise, we use the ground-truth focal length
on SU3, ScanNet and YUD for the Manhattan assumption.

Evaluation. On the SU3, ScanNet and YUD datasets (Man-
hattan assumption), we evaluate the angle difference be-
tween the predicted and the ground-truth vanishing points
in the camera space, as in [20, ]. We then estimate
the percentage of the predictions that have a smaller angle
difference than a given threshold and compare the angle ac-
curacy (AA) under different thresholds, as in [38,69]. We
use the ground-truth focal length to exploit the orthogonal
constraint. On the NYU Depth dataset we follow [26] and
first rank detected vanishing points by confidence, and then
use the bipartite matching [1 1] to calculate the angular er-
rors for the top k predictions. After matching, we generate
the recall curve and measure the area under the curve (AUC)
up to a threshold, e.g. 10°.

il

Baselines. We compare our model with J-Linkage [17],
Contrario-VP [55], Quasi-VP [34, 35], NeurVPS [69] and
CONSAC [26] on SU3, ScanNet and YUD. On the non-
Manhattan NYU Depth dataset we only compare with J-

6097

HT (# of angles)
90 180
77.1 79.3

Sphere (# of points)
8K 16K 32K
733 774 793

AA@3°

Table 1. Quantization analysis on SU3-10% subset. Denser
samplings improve performance. In practice, we uniformly sam-
ple 180 angles from [0, 7) for HT, and 32K points on the sphere.

Linkage, T-Linkage [42], CONSAC and VaPid [38], as
the other models rely on the Manhattan assumption. J/T-
Linkage, Contrario-VP and Quasi-VP are non-learning
methods, employing line segment detection [60]. NeurVPS
and our model are end-to-end trainable, while CONSAC
needs line segments as inputs. We follow the official im-
plementations and use the default hyperparameters to repro-
duce all results. We do not consider the baselines [ ]
due the lack of code/results on certain datasets.

bl bl

Implementation details. We implement our model in Py-
torch [48], and provide the code online . Our models are
trained from scratch on Nvidia RTX2080Ti GPUs with the
Adam optimizer [24]. The learning rate and weight decay
are set to be 4 x 10™% and 1 x 107°, respectively. To
maximize GPU usage, we set the batch size to 4 and 16
when using multi-scale sampling. On the SU3 and NYU
Depth datasets, we train the model for a maximum of 36
epochs, with the learning rate decreases by 10 after 24 train-
ing epochs. On the ScanNet dataset, we train for 10 epochs
and decay the learning rate by 10 after 4 epochs. On the
YUD datset we use pre-trained models on SU3.

4.1. Exp 1: Evaluating model choices

We evaluate on a subset of ScanNet containing 1% of
the data, and provide the results in Fig. 6. Model (1) is
a non-learning baseline using a classic line segment detec-
tor (LSD) [60] and non-maximum suppression (NMS) on
the sphere. Model (2) replaces the NMS with spherical
convolutions, but still shows inferior result as LSD fails
to detect reliable line segments. Model (3) combines a
Canny-edge detector, Hough Transform and spherical con-
volutions. Comparing (3-5) indicates the added value of
learning semantics from images, rather than using classic
edge detectors. Comparing (4-5) shows the effectiveness
of backpropagating through Hough Transform. Comparing
(5-8) exemplifies the added value of spherical convolutions.
Our method combines both classical and deep learning ap-
proaches into an end-to-end trainable model.

We also evaluate the impact of quantizations numerically
on the synthetic SU3-10% subset, which contains precise
VP annotations, thus making quantization a crucial factor.
As shown in Tab. I, fine-grained sampling is essential for a
better result.

'https://github.com/yanconglin/VanishingPoint_
HoughTransform_GaussianSphere
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Datasets SU3 [70] ScanNet [12] YUD [14]

Metrics Params FPS AAQ@3° AAQ5° AAQ@3° AAQ@5° AAQ10° AAQ@3° AAQ5° AAQI0°
J-Linkage® [17] — 1.0 82.0 87.2 15.7 273 43.0 60.8 71.8 81.5
Contrario-VPT [55] — 0.6 64.8 72.2 12.0 214 353 58.6 70.7 81.8
Quasi-VP [34] — 290 75.9 80.7 14.7 253 394 58.6 61.0 74.0
CONSACT [26] 02M 3.0 86.3 90.3 15.8 24.6 36.0 61.7 73.6 84.4
NeurVPS [69] 22M 0.5 93.9 96.3 24.0 41.8 64.4 524 64.0 71.8
Ours ™ 5.5 84.0 90.2 24.8 42.1 63.7 60.7 74.3 86.3
Ours* SM 230 84.8 90.7 22.9 39.8 62.4 59.5 72.6 85.4
Ours' ™ 55 81.7 88.7 222 38.8 59.9 59.1 72.6 84.6

Table 2. Exp 2: Manhattan world. Angular accuracy on SU3, ScanNet and YUD datasets. Ours achieves the best results on the the
YUD dataset, and is competitive on the larger ScanNet and SU3 datasets. Ours™ adopts the multi-scale sampling strategy, thus being
significantly faster. T assumes unknown focal length, thus making the Manhattan assumption no longer applicable. Ours' shows a constant
decrease over Ours across datasets, indicating the usefulness of the orthogonal constraint. Supplementary material provides qualitative
visualizations. We conclude that adding priors does not reduce accuracy in the large scale setting.

=== 0urs-7M Quasi-VP —— J-Linkage —— CONSAC —— Contrario-VP —-== NeurVPS-22M
1o AA Curve on SU3 dataset AA Curve on ScanNet dataset 1o AA Curve on YUD dataset
e I BT i s 1.0 T = T T = i =
08 — | 08 . 0.8 i -
) ) / o L
=) ! =) =) 4
@M 061 r # @© 0.6 '3 (C 0.6 4
i) ] - ’ + y
c Ny c / c i
o ) 9] / o /
g 0ati i Y oa / 5 0.4
a |/ & / a
0.2 0.2 ," 0.2
0.0 0.0 0.0 T T T T
0.0 0.5 1.0 15 2.0 25 3.0 0.0 25 5.0 75 10.0 125 15.0 175 20.0 0 2 4 6 8 10
Angle difference Angle difference Angle difference

Figure 7. Exp 2: Manhattan world. AA curves on on the ScanNet, SU3 and YUD datasets containing 3 orthogonal vanishing points.
Learning-based approaches outperform methods relying purely on line segments and grouping, validating the power of representation
learning. Our model shows comparable results to the best performing NeurVPS on ScanNet, while using 3x less parameters. On the
smaller YUD dataset, our model slightly exceeds state-of-the-art. Generally, with ample data, our approach is comparable to others.

4.2. Exp 2: Validation on large datasets The prediction error on the more realistic ScanNet dataset is
significantly larger for all methods. On the ScanNet dataset,
NeurVPS and our model are visibly better than methods re-
lying on predefined line segments as inputs. The main ad-
vantage of NeurVPS and our model is their ability to learn
useful feature representations directly from images. On the
SU3 dataset, NeurVPS exceeds the other methods in the
low-error region (from 0° to 1°). J-Linkage, Quasi-VP and
CONSAC have similar results, and all of them stabilize at
1°. On SU3 our model is less accurate in 0°-1°, yet it com-
pensates at > 1°. Our inferior performance in 0°-1° range
results from the quantization errors in Hough Transform
and the Gaussian sphere mapping. On the small-scale YUD
dataset [ 4], our model achieves comparable accuracy with-
out fine-tuning, and exceeds the other methods in the > 2°
area, indicating the generalization ability of our model in
the small data regime. We conclude that our model using
prior knowledge performs similar to existing solutions.

We validate that adding prior knowledge does not dete-
riorate accuracy when there is plenty of data. We compare
to five state-of-the-art baselines [17, 26, 34,55, 69] on the
ScanNet, SU3 and YUD datasets. On the ScanNet and SU3
datasets, we train all learning models from scratch on the
full training split. On the YUD dataset, we use the pre-
trained models on SU3 without fine-tuning. For CONSAC
and J-Linkage, we select top-3 predictions. We also mea-
sure the inference speed on a single RTX2080 GPU. Multi-
scale sampling Ours* achieves 23 FPS, a large speedup over
the vanilla design, as we utilize the orthogonality for effi-
cient sampling.

Tab. 2 shows the AA scores on the ScanNet, SU3 and
YUD datasets, while Fig. 7 depicts AA curves for varying
angle differences. The SU3 dataset is easier as most im-
ages contain strong geometric cues (e.g. sharp edges and
contours); this is no longer the case in the ScanNet dataset.
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Figure 8. Exp 3.(a): Reduced data. We report AA @10° on various subsets of the ScanNet and SU3 datasets, and indicate the number of
parameters in the legend. On the ScanNet dataset, we outperform other methods on the 10%, 5% and 2.5% subsets. Our model degrades
gracefully when reducing the training samples from 20K to 1K on the SU3 subset, while NeurVPS has a drastic drop in accuracy. CONSAC
achieves top results on SU3 due to pre-extracted line segments, but fails on ScanNet because of inaccurate line detection. There is a similar
trend for the baselines relying on line segment detection. Our model predictions are stable having small variances (+0.50 and +0.43 on
the 1% subsets of ScanNet and SU3 respectively) across 3 repetitions. This experiment validates the data efficiency of our model.

4.3. Exp 3: Challenging scenarios
4.3.1 Exp 3.(a): Reduced data

We evaluate data efficiency by reducing the number of
training samples to {10%, 5%, 2.5%, 1%} on the ScanNet
dataset, resulting in approximately 20K, 10K, 5K and 2K
training images. Similarly, we also sample the SU3 dataset
into {50%, 25%, 10%, 5%, 2.5%, 1%} subsets. We train all
learning models from scratch using the default hyperparam-
eters on each subset.

In Fig. 8 we compare the AA scores at 10° with state-
of-the-art methods. We use our vanilla design without the
multi-scale sampling speedup. The first thing to notice is
that non-learning methods are robust to data reduction. Yet,
non-learning methods cannot take any training data into ac-
count, and thus they do not perform as well when more data
is available, as we validated in the previous experiment. On
the ScanNet dataset, our model visibly exceeds the other
methods on the 10%, 5% and 2.5% subsets. In compar-
ison, NeurVPS suffers from large accuracy decreases on
small training data subsets. When decreasing the number of
samples to 2K (1% subset), we still achieve competitive ac-
curacy when compared to the non-learning methods, while
NeurVPS fails to make reasonable predictions due to the
lack of data. This shows the capability of our model to learn
from limited data, thanks to the added geometric priors.

The NeurVPS model has x3 more parameters than our
model due to its fully-connected layer with 16M parame-
ters. For fairness, we also consider ‘NeurVPS-7M’ with
reduced fully-connected layers, having a similar number of
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Datasets NYU Depth [45]

top-k = #gt top-k = #pred
AUC @5° @10° @5° @10°
J-Linkage [17] 4930 61.28 5448 68.34
T-Linkage [42] 4338 58.05 4748 64.59
CONSAC [26] 4946 65.00 5437 69.89
CONSAC [26]+
DLSD [37] 46.78 61.06 4994 65.96
VaPiD [38] - 69.10 - -
Ours 5592 69.57 57.19 71.62

Table 3. Exp 3(b): Non-Manhattan scenario. We report AUC
scores on the NYU Depth dataset. Here “top-k = #gt” indicates the
k most confident predictions where k is the number of annotated
instances [26], while for “top-k =#pred” all predictions are used
for evaluation. Our model exceeds state-of-the-art when detecting
a varying number of vanishing points.

parameters with our model. Both NeurVPS variants per-
form similar on various subsets. On the SU3 dataset the
accuracy of NeurVPS decreases significantly when reduc-
ing the training dataset size, despite its superiority on the
large training subsets. In comparison, our model degrades
gracefully when training data decreases from 20K to 1K.
Notably, on the 1% subset, with only 200 images for train-
ing, we are still able to achieve comparable performance
with non-learning methods.
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AUC on NYU Depth dataset
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Figure 9. Exp 3.(b): Non-Manhattan scenario. We plot the re-
call curve on the non-Manhattan NYU dataset. Our method out-
performs state-of-the-art, illustrating the ability of the model to
detect a varying number of vanishing points. See supplementary
material for qualitative visualizations.

4.3.2 Exp 3.(b): Non-Manhattan scenario

We compare with state-of-art methods in a more realistic
non-Manhattan scenario with limited annotated data. CON-
SAC [26] uses the line segment detection in [60]. We also
consider a variant of CONSAC with the more recent line
segment detector in [37].

Fig. 9 and Tab. 3 display the recall curve and the AUC
values on the NYU Depth dataset, respectively. Our model
consistently outperforms state-of-the-art baselines, and the
improvement is more pronounced for larger angular differ-
ences. Although achieving the second-best result, VaPiD
[38] assumes a constant number of instances and requires
non-maximum suppression, which often results in over- and
under-prediction. Our model outperforms existing methods
by exploiting geometric priors, while not limiting the num-
ber of vanishing points detected.

4.4. Exp 3.(c): Cross-dataset domain switch

We conduct cross-dataset test on multiple datasets, as
displayed in Tab. 4. We compare with NeurVPS and CON-
SAC, which achieve top accuracy on individual datasets.
When generalizing from synthetic dataset to the real-world
(e.g. from SU3 to YUD), our model shows comparative re-
sults to CONSAC, which relies on prior line segment detec-
tion, making it robust to domain shifts. We observe a sim-
ilar trend on real-world datasets (e.g. from NYU to YUD).
However, on the challenging ScanNet dataset, Ours exceeds
CONSAC, indicating the advantage of learning semantics
over using pre-extracted lines. In contrast, NeurVPS does
not transfer well to another dataset. This validates the ro-
bustness of the two priors in tackling domain shifts.
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Synthetic - real-world data

Train SU3 [70]

Test ScanNet [12] YUD [14]

Models Ours NeurVPS CONSAC OQurs NeurVPS CONSAC

AAQ@3° 15.2 11.1 10.1 60.7 53.8 61.7

AAQ@5° 259 20.3 17.3 74.3 65.6 73.6

AAQ10° 39.5 355 27.2 86.3 79.7 84.4
Real-world data

Train NYU Depth [45]

Test ScanNet [12] (AA) YUD [14] (AA) YUD+ [14] (AUC)

Models Qurs CONSAC Qurs CONSAC Qurs CONSAC

@10° 33.6 30.3 83.2 82.7 714 75.0

Table 4. Exp 3.(c) Cross-dataset domain switch. “Train” and
“Test” specify the training and test datasets. CONSAC uses pre-
extracted lines, thus being accurate on YUD/YUD+. However,
its accuracy is lower on ScanNet due to the lack of reliable lines.
In comparison, Ours is more accurate on both ScanNet and YUD
without tuning. Our geometric priors improve the transferability
of the model across datasets.

5. Conclusion and limitations

This paper focuses on vanishing point detection rely-
ing on well-founded geometric priors. We add two geo-
metric priors as building blocks in deep neural networks
for vanishing point detection: Hough Transform and Gaus-
sian sphere mapping. We validate experimentally the added
value of our geometric priors when compared to state-of-
the-art Manhattan methods, and show their usefulness on re-
alistic/challenging scenarios: with reduced samples, in the
non-Manhattan world where the challenge is to predict a
varying number of vanishing points without the orthogonal-
ity assumption, and across datasets.

Limitations. Despite of these improvements, our model
also has several limitations. We pre-compute offline the
mapping from images to the Hough bins and to the Gaus-
sian sphere by fixing the size of the Hough histogram, as
well as the Fibonacci sampling. However, these samplings
introduce quantization errors which set an upper bound on
accuracy. This is the primary reason for the limited accu-
racy on the SU3 dataset in the low-error region. A future
research avenue is exploring an analytical mapping from
image pixels to the Gaussian sphere. In addition, our model
still relies on hundreds of fully labeled samples for training.
One might consider testing the added geometric priors in an
unsupervised or weakly-supervised setting.
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