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Abstract
In this report, the bounded Maximum Parsimony distance will be considered when
applying three different reduction rules. The distance is a measure on how dissimilar
two trees are and is calculated based on the number of mutations that occur when
looking at heritable traits. The first rule considered, is the chain reduction. For this
rule, it is proven that the bounded MP distance is preserved after applying this rule.
This is done by adapting the proof from Steven Kelk et al. [10]. For the second rule
considered, the generalized subtree reduction, it is also proven that the bounded MP
distance is preserved after applying this reduction. Again, this is done by adapting the
proof in the paper by Steven Kelk et al. [10]. Then, at last, we looked at a new reduction
rule for the TBR distance, introduced by Steven Kelk and Simone Linz [12], the (2,1,2)-
reduction. In this report, it is shown with help of a counterexample that this rule does
not necessarily reduce the distance with one like it is the case for the TBR distance.
However, it can be concluded that the distance is either preserved or reduced with one.
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1 INTRODUCTION

1 Introduction

Phylogenetics is a study about the evolutionary relationships between species. Thus this
study looks at organisms that are probably related and searches for extinct species from
which the organisms originate. The best way to look at the relationships is with help of
a phylogenetic tree. In such a tree, you can see different species and their ancestors. To
make this tree, you can look at (dis)similarities between heritable traits like DNA (for
more information about phylogenetics, see [16]).
To compare different trees and to see how dissimilar they are, a distance is needed.
There are different distances like the Tree Bisection and Reconnection (TBR) distance
[1], [2] or the subtree Prune and Regraft (SPR) distance [3]. These distances are looking
at how many actions of a particular kind it requires to transform one tree into the other.
The specific action is dependent on the distance. However, there is a relatively new
distance that uses a different method, the Maximum Parsimony distance [9] or short
MP distance. To calculate this distance, you first assign some distribution of states to
the species, the leaves of the tree. This distribution can for example be based on the
DNA of the organism. The Parsimony score is then the minimum number of mutations
that occurs when also assigning a state to the ancestors, the rest of the nodes. The
Maximum Parsimony distance is the difference in mutations maximized over all possible
distributions [9]. There are two types of MP distances: unbounded and bounded. A
bounded MP distance is a MP distance where there is a bound on the number of states
used. An unbounded MP distance is the opposite, without bound on the number of
states used. In this report, mostly the bounded distance is considered. The concept
of the Maximum Parsimony distance feels more intuitive than the one from the other
distances, because the MP distance looks at mutations or differences between species.
Over time, organisms can transform into other species by mutations in the DNA, so it
make sense to look at this when finding the best possible tree. Moreover, the distance is
a metric which can be quite handy. However, this distance is NP-hard to calculate [9].
A solution to this can be to kernelize the problem, so to make the trees smaller without
changing the distance. There are different rules which can reduce the trees without
changing the TBR distance [11]. The MP distance is related to the TBR distance [6], so
the rules might also hold for the Maximum Parsimony distance. There are already some
results on this [10]), but in this report we will look further into these reduction rules.
The two most used rules are chain reduction and generalized subtree reduction. In this
report, we will show that the bounded MP distance is preserved after applying these
rules. We will do this by adapting the proof of unbounded MP distance from Steven
Kelk et al. [10]. We will also look into one other rule, the (2,1,2)-reduction. This rule
is a new rule introduced by Steven Kelk and Simone Linz [12]. Unfortunately, the MP
distance is not necessarily preserved for this rule. However, there is something we can
say about this: the distance is either preserved or reduced by one after applying the
rule.
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1 INTRODUCTION

This report will start with all the needed definitions on phylogenetic trees and on the
MP distance. Some more explanation on this will be given. Then, in section 3, 4 and 5,
the three reduction rules mentioned earlier will be explained. The report ends in section
6 with a conclusion and some ideas for further research.
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2 DEFINITIONS AND PRELIMINARIES

2 Definitions and preliminaries

The same definitions as the definitions in the article by Steven Kelk and Mareike Fischer
[9] and the article by Vincent Moulton and Taoyang Wu [14] are used, but will be stated
here again.

2.1 Phylogenetic trees

First some basic things about graphs. A graph consists of a set of nodes V and a set
of edges E that connect the nodes. The degree of a node v is the number of edges that
have v as an endpoint. In a graph you can denote a path. A path is a sequence of nodes
where consecutive nodes are connected by an edge. A graph can be connected, which
means that any node has a path to any other node. A tree is then defined as a connected
graph with no cycle. A cycle is a path that has the same endpoint as the starting point
of the path. An edge in a graph can be split which means that the edge is divided by a
node into two parts (see figure 1). Going back from the split edge to the original edge
means that you suppress the node (see figure 1).

uT1 T2

e

Figure 1: Two trees, where T2 is the tree with edge e split and T1 is the tree with node
u suppressed. T2 is a cherry.

An unrooted phylogenetic tree is an undirected tree T = (V,E) on some set of taxa X,
taxon is a group of organisms that are related. So the leaves of tree T are the taxa in
X. A rooted phylogenetic tree is a phylogenetic tree with one internal node specified as
the root. In such a tree, the parent of a node v is the node adjacent to v on the path
from v to the root. A child of a node w is then a node from which w is the parent.
A phylogenetic tree is binary if the root has degree 2 and the other nodes have degree
3 or 1. Thus a binary unrooted tree has only nodes with degree 1 or 3. A node with
degree 1 is called a leaf, so the set X is also called the leaf set or set of leaves. A cherry
consists of two leaves with their common parent. In figure 1 (and table 1), an example
of a cherry is shown.
If T is such a (binary) tree on a set of taxa X and Y ⊆ X, then a subtree T |Y is a
minimal connected subgraph of T such that T |Y contains all the elements in Y where
all nodes with degree two, except the root, are suppressed. So T |Y is a tree on taxa set
Y . In figure 2 an example of a subtree is shown.
A split A|B on taxa set X is a bipartition such that (i) A ∩B = ∅, (ii) A ∪B = X and
(iii) A, B 6= ∅. An edge e induces such a split if, after removing e, A is the set of taxa
appearing in one connected component and B is the set of taxa appearing in the other
component. In figure 2, there is a split A|B in tree T with A = Y and B = X \ Y . The
red edge e induces this split.
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2 DEFINITIONS AND PRELIMINARIES

x1 x2

x3

x4 x6x5 x7

x1 x2

x3

T T |Y
e

Figure 2: Tree T on leaf set X = {x1, x2, x3, x4, x5, x6, x7} and the subtree T |Y with
Y = {x1, x2, x3} ⊆ X. In tree T , there is a Y |X \ Y split which is induced by
the red edge e.

One way to represent a phylogenetic tree is the Newick format [4]. The Newick for-
mat is used to read trees in a computer program. The format uses parentheses to group
species together based on relations between them. In table 1, are some simple trees with
their Newick format.

Table 1: Some simple trees with their Newick format.

Newick format (a,b); ((a,b),(c,d)); ((a,(b,c)),d);

Tree a b a b c d

a

b c

d

2.2 The Parsimony score

A character on X is a surjective function f : X → C with C the set of states. An exam-
ple of such a character is shown in figure 3. This character is a function f : X → {red,
blue} where the leafs x1, x4, x6 and x7 are coloured red and the leafs x2, x3 and x5 are
coloured blue.
An extension on such a character f is a function g : V → C such that g(x) = f(x) for

all x ∈ X. In figure 3, two extensions of character f are shown, g1 and g2. g1 is the
extension where the leafs are coloured as indicated by the character and the rest of the
nodes are coloured blue. g2 is the extension where all nodes except the leafs are coloured
red.
In an extension, a mutation can occur. There is a mutation between node v and node w
if there appears a substitution in the edge vw i.e. g(v) 6= g(w). The number of mutations
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2 DEFINITIONS AND PRELIMINARIES

x1 x2

x3

x4 x6x5 x7 x1 x2

x3

x4 x6x5 x7

T T

with extension g1 with extension g2

Figure 3: Tree T on taxa set X = {x1, x2, x3, x4, x5, x6, x7} with character f : X → {red,
blue}. We have shortened blue to b and red to r. f assigns the colour red to
leafs x1, x4, x6 and x7 and the colour blue to leafs x2, x3 and x5. Two different
extensions are shown, g1 where all nodes except the leaves are coloured blue
and g2 where they are coloured red. The mutations are given by the dotted
lines. In the tree with g2, also the Fitch map is shown.

that appear in an extension g is denoted by ∆(g). Note that ∆(g) ≥ 0.
In both extensions in figure 3, some mutations occur. The dotted edges are the edges
where a mutation occurs. So ∆(g1) = 4 and ∆(g2) = 3.

The parsimony score lf (T ) is this number ∆(g) minimized over all possible extensions
g on the same character f . The extension that minimizes ∆(g) is called a minimum or
optimal extension. The Parsimony score is independent of the root and can also be calcu-
lated for unrooted trees. In the figure 3, two extensions were shown. ∆(g1) > ∆(g2), so
g1 is definitely not an optimal character and we know that the parsimony score lf (T ) ≤ 3.
Knowing the exact score is quite difficult, but there are algorithms to compute it.

A good algorithm to find the parsimony score of a tree and character is the Fitch algo-
rithm. We will shortly state Fitch algorithm for binary trees. If the trees are unrooted,
one can root it by splitting an arbitrary edge. For some internal node v, we denote its
two children by vl and vr. Then, first a Fitch map F : V → 2C \ {∅} is constructed:

1. For each leaf x, F (x) = {f(x)}.

2. For each internal node v where F (vl) and F (vr) already have been calculated:

F (v) =

{
F (vl) ∪ F (vr) if F (vl) ∩ F (vr) = ∅
F (vl) ∩ F (vr) otherwise.

(1)

An internal node v is called a union node if F (vl)∩F (vr) = ∅ and is called a intersection
node otherwise. The parsimony score lf is then equal to the number of union nodes [10].
In figure 4 the Fitch map for character f is shown. It is clear from the picture that there
are three union nodes, so lf (T ) = 3.
An extension f of character f is called a Fitch extension if (i)f(v) ∈ F (v) for all v ∈ V ,

and (ii) f(v) = f(vl) or f(v) = f(vl) if v is an union node and f(v) = f(vl) = f(vl)

8



2 DEFINITIONS AND PRELIMINARIES

x1 x2

x3

x4 x6x5 x7

{r, b}

{r} {b}

{b}

{b}

{r} {b} {r} {r}

{r}

{r}

{r, b}

{r, b}T

Figure 4: Tree T with its Fitch map and a Fitch extension. The Fitch map of the union
nodes is coloured red.

if v is an intersection node. Each Fitch extension is minimal, but not all minimal
extensions are Fitch extensions. You can also see this in figure 3. We determined that
the parsimony score is equal to 3 and we also found an extension g2 with ∆(g2) = 3. So
g2 is minimal. However, this extension is not a Fitch extension since g2(v) 6∈ F (v) for
some v ∈ V . There is a node which is coloured red, although the Fitch map is equal to
{b}, blue. In figure 4 a Fitch extension is shown. The number of mutations with this
extension is three. So this extension is minimum.
To find a Fitch extension, start with a node ρ and choose a state s ∈ F (ρ) where F is
a Fitch map. Let f(ρ) = s. Then for all nodes w, a child from v from which f(v) is
known, the Fitch extension is as follows.

f(w) =

{
f(v) if f(v) ∈ F (w)

Any state in F (w) otherwise.
(2)

Let T be a rooted binary tree on X and f a character on X. Let ρ be the root of T
and F the Fitch map induced by f . Note that for each state s ∈ F (ρ), there exists a
Fitch-extension f of f such that f(ρ) = s.

2.3 The maximal Parsimony distance (MP)

The maximum Parsimony distance between T1 and T2 is denoted as dMP (T1, T2) and
defined as dMP (T1, T2) = maxf |lf (T1)−lf (T2)|. This is the unbounded MP distance. We
will define drMP (T1, T2) as the bounded maximal Parsimony distance when the number
of states used in the character f is bounded by r (|C| ≤ r). In figure 3, we looked at the
parsimony score of tree T with character f . We can also take a different tree T ∗ on the
same set of taxa X and calculate the parsimony score with the same character f on this
tree. This is done in figure 5. As can be seen, the parsimony score of T ∗ with respect to
f is lf (T ∗) = 2. So the maximum parsimony distance is at least the difference between
the two scores, |lf (T )− lf (T ∗)| = |3− 2| = 1. Knowing the exact Maximum Parsimony
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2 DEFINITIONS AND PRELIMINARIES

distance is really difficult. In general, it is NP-hard to calculate [9].

x1 x2

x3

x4 x6x5 x7

T

x1

x2 x3

x4 x5

x6 x7

T ∗

Figure 5: Tree T with character f and a minimum extension g2 and tree T ∗ on the same
set of taxa X with character f and a minimum extension. The mutations are
given by the dotted edges. So the parsimony score of T is 3 and the score of
T ∗ is 2.

There are different properties of the MP distance. The MP distance is for example a
metric (see article [9]). Another useful property which we will use later in the proofs of
the reduction rules is the following lemma:

Lemma 2.1. Suppose that T1 and T2 are binary phylogenetic trees on the set X and Y
is a subset of X. Then drMP (T1|Y , T2|Y ) ≤ drMP (T1, T2) for r an arbitrary integer.

Proof. It is sufficient to prove the lemma for the case Y = X \ {x} with x ∈ X. Let
f be the optimal character on Y and assume without loss of generality that lf (T1|Y ) ≤
lf (T2|Y ). So drMP (T1|Y , T2|Y ) = lf (T2|Y )− lf (T1|Y ). Now look at the neighbour of x in
T1, call this node p. Root the tree by splitting an edge adjacent to p. Now call the other
neighbours of p, pl and pr such that pl is the root of the tree (see also figure 6). Consider
now a Fitch map F induced by f . Let f∗ be a character on X obtained from f by
assigning x to a state s in F (pr). The Fitch map of p is equal to F (p) = F (x)∩F (pr) = s
since F (x) ∩ F (pr) 6= ∅ and x and pr children of p. So lf∗(T1) = lf (T1|Y ), because no
extra mutation occur when adding x. Moreover, f∗ introduces two, one or no mutations
in T2. So lf (T2|Y ) ≤ lf∗(T2). Note that lf∗(T1) ≤ lf∗(T2). So by these inequalities and
the definition of the maximum Parsimony distance, we have

drMP (T1|Y , T2|Y ) = lf (T2|Y )− lf (T1|Y )

≤ lf∗(T2)− lf∗(T1)
≤ drMP (T1, T2).

10



2 DEFINITIONS AND PRELIMINARIES

x

Y1

Y2

Y1 Y2

T1

T ′1

p

pl

pr

pl

pr

x

Y ∗1

Y ∗2

Y ∗1 Y ∗2

T2

T ′2

Figure 6: Two trees on leaf set X and the same trees on leaf set Y = X \ x. So,
Y = Y1 ∨ Y2 = Y ∗1 ∨ Y ∗2 .

2.4 Less constrained roots argument

Let T1 and T2 be two phylogenetic trees each consisting of 2 subtrees as shown in figure
7. Let TA, TB, TC , TD be these subtrees. For P ∈ {A,B,C,D}, let eP refer to the edge
incoming to the root of TP ; let XP refer to the taxa in subtree TP ; let fP refer to the
character obtained by restricting f to XP ; and let FP refer to the set of states assigned
to the root of TP by the Fitch map induced by fP . Note that XA ∪ XB = XC ∪ XD.
Moreover, for both trees, we define the chain region of T to be the set of edges incident
to at least one red node. The red nodes are the nodes not in one of the subtrees. Let
mi, (i = 1, 2) be the number of union nodes among red nodes in Ti, which is the same
as the number of mutations occurring in the chain region of Ti for a Fitch-extension of
f . Then,

m1 = lf (T1)− lfA(TA)− lfB (TB)

m2 = lf (T2)− lfC (TC)− lfD(TD)

In addition, let p = m2 −m1 and then we have

drMP (T1, T2) = lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + p. (3)

We have now the following lemmas, the less constrained roots arguments:

Lemma 2.2. If lf (T1) < lf (T2) and FA ⊆ FC ∧ FB ⊆ FD for T1 and T2, then p ≤ 0.

Proof. Consider a Fitch-extension f1 of f to T1. Then by definition f1 assigns a state
a from FA to the root of TA, and a state b from FB to the root of TB. Since a ∈ FC
(FA ⊆ FC), we fix a Fitch-extension fC of fC to TC that maps the root of TC to a.

11



2 DEFINITIONS AND PRELIMINARIES

Similarly, we fix a Fitch-extension fD of fD to TD that maps the root of TD to b.
Now consider the extension f2 of f to T2 obtained by combining fC , fD, and exactly
mimicking f1 for the red nodes of T2. Then the number of mutations induced by f2 in
the chain region of T2 is exactly the same as that by f1 in the chain region of T1. In
other words, we have ∆(f2) = lfC (TC) + lfD(TD) +m1, from which we conclude that, if
(FA ⊆ FC) ∧ (FB ⊆ FD), then

drMP (T1, T2) = lf (T2)− lf (T1) ≤ ∆(f2)− lf (T1) = lfC (TC)+ lfD(TD)− lfA(TA)− lfB (TB).

In particular, this shows p ≤ 0.
If one of the subtrees is empty, add a tree with all states in the Fitch map of the root
(see figure 8). Adding this tree does not add any mutations in the chain region of the
tree since all states are contained in the Fitch map. So also in these cases, p ≤ 0.

FA

TA TB

eB

FB

T1

TC TD

eC eD
FC FD

T2

eA

Figure 7: Trees T1 and T2 on which lemma 2.2 is applicable when lf (T1) < lf (T2) and
FA ⊆ FC ∧ FB ⊆ FD.

Lemma 2.3. If lf (T1) < lf (T2) and FA ⊆ FC for T1 and T2, then p ≤ 1.

Proof. Consider a Fitch-extension f1 of f to T1. Then by definition f1 assigns a state
a from FA to the root of TA. Since a ∈ FC (FA ⊆ FC), we fix a Fitch-extension fC
of fC to TC that maps the root of TC to a. Now consider the extension f2 of f to T2
obtained by combining fC , a Fitch-extension of fD to TD, and exactly mimicking f1 for
the red nodes of T2. Then the number of mutations induced by f2 in the chain region of
T2 is exactly the same as that by f1 in the chain region of T1 plus one (at eD). In other
words, we have ∆(f2) = lfC (TC) + lfD(TD) + m1 + 1, from which we conclude that, if
(FA ⊆ FC), then

drMP (T1, T2) = lf (T2)−lf (T1) ≤ ∆(f2)−lf (T1) = lfC (TC)+lfD(TD)−lfA(TA)−lfB (TB)+1.

In particular, this shows p ≤ 1.
If one of the subtrees is empty, add a tree with all states in the Fitch map of the root
(see figure 8). Adding this tree does not add any mutations in the chain region of the
tree since all states are contained in the Fitch map. So also in these cases, p ≤ 1.

12



2 DEFINITIONS AND PRELIMINARIES

x1

x2 xk−1 xk

TC

eC

FC

T2

x1

x2 xk−1

xk

TC TD

eC eD
FC FD

T2 adjusted

Figure 8: Tree T2 from figure 11 and the same tree but adjusted with an extra subtree
TD such that FD contains all states. This does not change the number of
mutations in the chain region.

2.5 Tree Bisection and Reconnection distance (TBR)

A common used distance is the Tree Bisection and Reconnection distance, TBR distance
for short. The TBR distance (dTBR(T1, T2)) is the number of TBR moves that are needed
to transform one tree into the other. A TBR move consists of two parts. First, cut an
edge such that two components occur and suppress all nodes of degree 2. Second, split
an edge in both components and connect the two components again with a new edge
between the new created nodes. In figure 9, an example of a TBR move is shown. First,
the red line is cut such that two components occur and nodes u and v are suppressed.
This transforms tree T into T ′. Second, the blue lines are split with nodes u′ and v′ and
the two components are connected with a new edge between u′ and v′. This transforms
T ′ into T ′′. So tree T is transformed into T ′′ with one TBR move.

In the article by B Allen and M. Steel [1], it is proven that this distance is a metric,

u

v

u′ v′

T T ′ T ′′
1 2

Figure 9: One TBR move that transforms T into T ′′. The red edge is cut and nodes u
and v are suppressed in the first step. In the second step, the blue nodes are
split and the components are connected with a new edge between u′ and v′.

just like the MP distance. The TBR distance has already been investigated a lot. For
example, it has been proven that you can reduce two trees with help of chain reduction
or subtree reduction without changing its TBR distance [1]. Moreover, for five new
reduction rules, the TBR distance is reduced with one after applying these rules [12].
It is also shown that the TBR distance is in a lot of cases very close to the MP distance
[10]. In an article by Mark Jones et al. [6], it is shown that dMP (T1, T2) ≤ dTBR(T1, T2) ≤
2αdMP (T1, T2) with α a constant factor. So we suspect that the reduction rules that
apply for the TBR distance, also apply for the MP distance.
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3 CHAIN REDUCTION

3 Chain reduction

In this section we will look at chain reduction and we will prove that the bounded MP
distance is preserved after applying this rule.
First we will give the definition of chain reduction. For a leaf xi, let pi be the (unique)
neighbour of xi. Then an ordered sequence (x1, x2, ..., xk) is called a chain of length
k if (p1, p2, ..., pk) is a path in T . It is possible to have p1 = p2 and/or pk−1 = pk.
If this is the case, the chain is called pendant in the tree. A chain is common to T1
and T2 if it is a chain in both trees. Suppose two trees T1 and T2 have a common
chain X(k) = (x1, ..., xk) with k ≥ 5, then these trees can be reduced with use of chain
reduction. Let T ′1 and T ′2 be trees on leaf set X ′ = X \X(k) ∪ {x1, x2, xk−1, xk} where
T ′1 = T1 |X′ and T ′2 = T2 |X′ . T ′1 and T ′2 are said to be obtained by reducing the chain
X(k) to length 4. It can be proved that the unbounded Maximum Parsimony distance
is preserved when applying chain reduction [10]. In that proof the number of states is
increased, so this proof does not hold for the bounded MP distance. The question now
is if the bounded distance is also preserved.

Theorem 3.1. Let T1 and T2 be two unrooted binary trees on the same set of taxa X.
Let K be a common chain of length k ≥ 5. Let T ′1 and T ′2 be the two trees obtained by
reducing K to length 4. Then drMP (T1, T2) = drMP (T ′1, T

′
2) for r ∈ N.

The proof is based on the proof by Steven Kelk et al. [10].

Proof. In Lemma 2.1, it is proven that for all Y ⊆ X, drMP (T1|Y , T2|Y ) ≤ drMP (T1, T2).
This corollary in combination with the definition yields that drMP (T ′1, T

′
2) ≤ drMP (T1, T2).

So we only have to prove drMP (T ′1, T
′
2) ≥ drMP (T1, T2).

Without loss of generality, we may assume that drMP (T1, T2) > 0 (i.e., T1 6= T2) since
otherwise the claim clearly holds. Note that this implies X 6= K and whenever K is
pendant in a tree, at least one end of the chain is attached to the main part of the tree.
There are now three main cases to consider, the common chain is pendant in neither
tree, one tree or both trees.

I: the common chain is pendant in neither tree
Let f be a character that maximizes |lf (T1) − lf (T2)|. Without loss of generality, we

can assume that lf (T1) < lf (T2). So drMP (T1, T2) = lf (T2)lf (T1). The trees are not
necessarily rooted, but for the proof we root the trees somewhere between p2 and pk−1
(see figure 10).
Let TA, TB, TC , TD be the 4 subtrees of T1 and T2 as shown in figure 10. For
P ∈ {A,B,C,D}, let eP refer to the edge incoming to the root of TP ; let XP refer
to the taxa in subtree TP ; let fP refer to the character obtained by restricting f to XP ;
and let FP refer to the set of states assigned to the root of TP by the Fitch map induced
by fP . Note that XA ∪ XB = XC ∪ XD. Moreover, for each tree T ∈ {T1, T2, T ′1, T ′2}
we define the chain region of T to be the set of edges incident to at least one red node.
The red nodes are the nodes in the chain x1, ..., xk and their parents p1, ..., pk, as shown
in figure 10. Let mi, (i = 1, 2) be the number of union nodes among red nodes in Ti,

14



3 CHAIN REDUCTION

x1

x2 xk−1

xk

eA

FA

TA TB

eB

FB

T1

x1

x2 xk−1

xk

TC TD

eC eD
FC FD

T2

x2

x1

xk−1

xk

TA TB TC TD

x1

x2 xk−1

xk

eA

FA FB FC FD

eB eC eD

T ′1 T ′2

Figure 10: The chain reduction as applied in the case when the common chain K is
pendant in neither tree. Note that in T1 and T2 a dotted line is used to
denote the taxa {x3, ..., xk−2} which are removed by the chain reduction. All
the trees in the figure are unrooted, but for the purpose of proving correctness
of the chain reduction we have shown them as rooted. T ′1 and T ′2 must be
rooted exactly halfway along the chain, as shown. For T1 and T2 it is not so
important where the tree is rooted as long as the root is in the same part of
the chain in both trees.

which is the same as the number of mutations occurring in the chain region of Ti for a
Fitch-extension of f . Then,

m1 = lf (T1)− lfA(TA)− lfB (TB)

m2 = lf (T2)− lfC (TC)− lfD(TD).

In addition, let p = m2 −m1 and then we have

drMP (T1, T2) = lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + p. (4)

First we shall show that p ≤ 2. Fix a Fitch-extension f1 of f to T1, and consider
an extension f2 of f to T2 obtained by a minimum extension of fC to TC , a minimum
extension of fD to TD, and exactly mimicking f1 on the red nodes of T2. Then compared
with f1, the extension f2 creates at most two new mutations on the chain region, namely
on the edges eC and eD. In other words, we have ∆(f2) ≤ lfC (TC) + lfD(TD) + (m1 + 2).
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Together with lf (T2) ≤ ∆(f2) and lf (T1) = lfA(TA) + lfB (TB) +m1, this implies

p = lf (T2)− lf (T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

= lf (T2)−m1 − lfC (TC)− lfD(TD)

≤ ∆(f2)−m1 − lfC (TC)− lfD(TD)

≤ 2.

(5)

Now we will show that p ≥ 0 holds with r states. Let the states be (s1, s2, ..., sr). Given a
character f on X, we will write f∗ = f [a1, a2, ..., ak−1, ak] as shorthand for the character
on X obtained from f by leaving the states assigned to taxa in XA ∪XB = XC intact
and assigning states ai to the leaves xi for i ∈ {1, ..., k}. Now let f∗ = f [s1, s1, ..., s1, s1]
be a (not necessarily optimal) character. Consider a Fitch extension of f∗ to T1 and
T2 and let m∗i , i = (1, 2) be the number of mutations occurring in the chain region of
tree Ti considering the extension of f∗. Then three cases can occur, m∗1 = 0, m∗1 = 1 or
m∗1 = 2, since the only mutations that can occur are at eA and eB. Note that by the
same argument 0 ≤ m∗2 ≤ 2.
Case 1: m∗1 = 0. There is no mutation in the chain region for tree T1. Thus, we have

lf∗(T1) = lfA(TA) + lfB (TB) and lf∗(T2) ≥ lfC (TC) + lfD(TD). (6)

The optimality of f implies that lf (T2)− lf (T1) ≥ lf∗(T2)− lf∗(T1). Then by equation
6 and this inequality, we have

p = lf (T2)− lf (T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

≥ lf∗(T2)− lf∗(T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

≥ lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

= 0.

(7)

Case 2: m∗1 = 1. There is one mutation in the chain region for tree T1. Thus, we have

lf∗(T1) = lfA(TA) + lfB (TB) + 1. (8)

If there are one or two mutations in the chain region of T2, it is easy to show p ≥ 0. We
then have lf∗(T2) ≥ lfC (TC) + lfD(TD) + 1 and this leads to

p = lf (T2)− lf (T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

≥ lf∗(T2)− lf∗(T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

≥ lfC (TC) + lfD(TD) + 1− lfA(TA)− lfB (TB)− 1− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

= 0.

(9)

In the case that there is no mutation in the chain region of T2, s1 ∈ FC and s1 ∈ FD.
Since m∗1 = 1, we know that s1 6∈ FA or s1 6∈ FB but not both. Assume without loss of
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generality that s1 6∈ FA. Then some other state is in FA, assume s2 ∈ FA. Consider now
another character f∗∗ = f [s2, s1, ..., s1, s1]. The number of mutations in the chain region
of T1 is still one, since the only mutation occurs between x2 and its parent p2 or between
p1 and p2. But now there is also one mutation in the chain region of T2, one between
p1 and p2 or one between x1 and its parent p1. So lf∗∗(T2) = lfC (TC) + lfD(TD) + 1 and
lf∗∗(T1) = lfA(TA) + lfB (TB) + 1 and we have

p = lf (T2)− lf (T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

≥ lf∗∗(T2)− lf∗∗(T1)− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

= lfC (TC) + lfD(TD) + 1− lfA(TA)− lfB (TB)− 1− lfC (TC)− lfD(TD) + lfA(TA) + lfB (TB)

= 0.

(10)

Case 3: m∗1 = 2. There are two mutations in the chain region of T1. Thus s1 6∈ FA
and s1 6∈ FB and the mutations are at eA and eB. assumes s2 ∈ FA. Let f∗∗ =
[s2, s2, ..., s2, s2]. Now there is at most one mutation in the chain region of T1 (at eB)
and we have the same situation as in case 1 or as case 2. So also in this case, p ≥ 0.

By equation 4, the claim drMP (T ′1, T
′
2) ≥ drMP (T1, T2) follows from

drMP (T ′1, T
′
2) ≥ lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + p (11)

So to prove main case I, it is sufficient to show Equation 11. Then there are three cases
to consider, namely p = 0, p = 1 or p = 2, since 0 ≤ p ≤ 2. X ′ is the taxa of the trees T ′1
and T ′2, so X ′ = X \ {x3, x4, ..., xk−3, xk−2}. For short notation, we will write f [a, b, c, d]
to denote the character on X ′ obtained from f by leaving the states assigned to taxa in
XA∪XB = XC∪XD intact and assigning states a, b, c, d to x1, x2, xk−1, xk respectively.

Case 1: p = 0. Let f ′ = f [s1, s1, s1, s1]. Then like before there are three cases, zero, one
or two mutations in the chain region of T ′1. Define m′i, i = (1, 2) to be the mutations in
the chain region of T ′i .

• m′1 = 0. Since m′2 ≥ 0 and m′1 = 0, lf ′(T
′
1) = lfA(TA) + lfB (TB) and lf ′(T

′
2) ≥

lfC (TC) + lfD(TD). So we have

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB)

So equation 11 holds for this case.

• m′1 = 1. Since m′1 = 1, lf ′(T
′
1) = lfA(TA) + lfB (TB) + 1. If there is one or two mu-

tations in the chain region of T ′2, lf ′(T
′
2) ≥ lfC (TC) + lfD(TD) + 1 leads to equation

11. So we only have to prove equation 11 if m′2 = 0. In this case, s1 ∈ FC and
s1 ∈ FD and we know that s1 6∈ FA or s1 6∈ FB but not both. Assume without
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loss of generality that s1 6∈ FA. Assume s2 ∈ FA. Consider now another character
f ′′ = f [s2, s1, s1, s1]. The number of mutations in the chain region of T ′1 is still
one (between p1 and p2, or between p1 and x2), but now there is also one mu-
tation in the chain region of T2 (between p1 and p2, or between p1 and x1). So
lf ′′(T

′
2) = lfC (TC) + lfD(TD) + 1 and equation 11 holds.

• m′1 = 2. There are two mutations in the chain region, so s1 6∈ FA and s1 6∈ FB.
Assume s2 ∈ FA. Consider f [s2, s2, s2, s2]. Now there is at most one mutation in
T ′1 (at eB) and we have the same situation as in case 1a or 1b. So, equation 11
holds.

Case 2: p = 1. We will consider three subcases.

• FA \ FC 6= ∅. Let s1 ∈ FA \ FC and consider the character f ′ = f [s1, s1, s1, s1].
Let m′i, i = (1, 2) be the number of mutation that occurs in the chain region of
T ′i for character f ′. Then 0 ≤ m′1 ≤ 1 since there is only one mutation that can
occur, namely at eB (s1 ∈ FA). 1 ≤ m′2 ≤ 2 since there is at least one mutation
(s1 /∈ FC) and at most two (eC and/or eD). So there are only four possibilities.
For the possibilities m′1 = 0, m′2 = 1 and m′1 = 1, m′2 = 2, the difference m′2−m′1 =
1 and we have

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + 1

For m′1 = 0 and m′2 = 2, the difference m′1 −m′2 = 2 and we have

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + 2

≥ lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + 1

For m′1 = 1 and m′2 = 1, the difference m′1 − m′2 = 0. So we should look for
another character f ′′. We know that s1 ∈ FA, s1 6∈ FB, s1 6∈ FC , and s1 ∈ FD.
Assume s2 ∈ FB and let f ′′ = f [s1, s1, s1, s2]. Then m′′1 = 1 since there is only one
mutation, between pk−1 and pk. m

′′
2 = 2, because there is a mutation at eC and

one between xk and pk or between pk−1 and pk. Now the difference is one and we
have

drMP (T ′1, T
′
2) ≥ lf ′′(T ′2)− lf ′′(T ′1)

= lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + 1

• FB \ FD 6= ∅. This is symmetrical to the previous case.

• FA ⊆ FC ∧ FB ⊆ FD. This case cannot occur. By the less constraint roots
argument, lemma 2.2 in section 2.4, p ≤ 0 since FA ⊆ FC ∧ FB ⊆ FD. This
contradicts the assumption that p = 1.
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Case 3: p = 2. Then we have the following three subcases to consider.

• (FA \ FC 6= ∅) ∧ (FB \ FD 6= ∅). Let a ∈ FA \ FC and b ∈ FB \ FD. Take the
character f ′ = f [a, a, b, b] and let m′i, i = (1, 2) defined as before. If a 6= b, m′1 = 1
(between p2 and pk−1) and m′2 = 3 (eC , eD and between p2 and pk−1). If a = b,
m′1 = 0 and m′2 = 2 (eC and eD). In both situations, the difference between m′1
and m′2 is equal to two. Thus we have

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC) + lfD(TD)− lfA(TA)− lfB (TB) + 2

• FA ⊆ FC . This case cannot occur. By one of the less constraint roots arguments
2.3, p ≤ 1. This contradict p = 2.

• FB ⊆ FD. This case cannot occur since it is symmetrical to the previous subcase.

So in all cases, equation 11 holds. So main case 1 holds.

II: the common chain is pendant in exactly one tree
Without loss of generality we assume that K is pendant in T2 and that the situation is
as described in figure 11. Let f be an optimal character. TP , eP , FP , XP and fP for
P ∈ (A,B,C) are defined as before. The only difference now is that XC = XA ∪ XB.
Then we have two cases, lf (T1) < lf (T2) or lf (T1) > lf (T2).

Case 1: lf (T1) < lf (T2). So drMP (T1, T2) = lf (T2)− lf (T1). As in Equation 6 we have,

drMP (T1, T2) = lfC (TC)− lfA(TA)− lfB (TB) + p. (12)

In this case, p ≤ 1 because of the usual mimicking construction (i.e. copying the states
allocated to the red nodes in T1, to T2) used in the proof of Equation 5. That is, at most
one extra mutation incurs in T2 (i.e. on the edge eC).
We can prove p ≥ 0 by relabeling f to a new character f∗ = [a, a, ..., a, b]. If a = b, there
is no mutation in the chain region of T1 and at most one mutation in the chain region
of T2 (only possibility is at eC). So we have

lf∗(T1) = lfA(TA) + lfB (TB) and lf∗(T2) ≥ lfC (TC).

Since the optimality of f implies lf (T1)− lf (T2) ≥ lf∗(T2)− lf∗(T1), we have

p = lf (T2)− lf (T1)− lfC (TC) + lfA(TA) + lfB (TB)

≥ lf∗(T2)− lf∗(T1)− lfC (TC) + lfA(TA) + lfB (TB)

≥ 0.

(13)

If a 6= b, then there is exactly one mutation in the chain region of T1 (between pk−1 and
pk) and one or two in the chain region of T2 (between pk−1 and pk and/or at eC). Then

lf∗(T1) = lfA(TA) + lfB (TB) + 1 and lf∗(T2) ≥ lfC (TC) + 1
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Figure 11: The chain reduction as applied in the case when the common chain K is
pendant in tree T2. Like in fig. 10, the trees are unrooted but shown as
rooted and the dotted line denote the taxa {x3, ..., xk−2}.

and by the same argument as used for Equation 13, p ≥ 0 holds. Hence, in Equation 12,
we have p ∈ {0, 1}, and it remains to prove that

drMP (T ′1, T
′
2) ≥ lfC (TC)− lfA(TA)− lfB (TB) + p

holds, which will be done by considering two subcases.

Case 1.1: p = 0. Two cases are considered:

• FA 6⊆ FC . Let s1 ∈ FA \ FC . Note that s1 /∈ FB because otherwise the character
f∗ = f [s1, s1, ..., s1, s1] would lead to no mutations in T1 but one mutation in T2.
This contradicts p = 0, because p = m2 −m1 ≥ m∗2 −m∗1 = 1 where m∗i , i ∈ (0, 1)
is the number of mutation in the chain region of Ti considering the character f∗.
In other words, such an f∗ would give a larger parsimony distance between T1
and T2, which contradicts our choice of an optimal f . So this implies that the
character f ′ = f [s1, s1, s1, s1] leads to one mutation in T ′1 (at eB) and one in T ′2
(at eC). Then,

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC) + 1− lfA(TA)− lfB (TB)− 1

= lfC (TC)− lfA(TA)− lfB (TB)

and we are done.
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• FA ⊆ FC . If FA ∩ FB 6= ∅, then let s1 ∈ FA ∩ FB. Clearly s1 ∈ FC . Taking
character f ′ = f [s1, s1, s1, s1] yields no mutations in both the chain regions of
the trees T ′1 and T ′2. So the difference between the mutations is zero. Otherwise,
FA ∩ FB = ∅. In this situation, let s1 ∈ FA ⊆ FC and let s2 ∈ FB. Consider
character f ′ = f [s1, s1, s2, s2]. In this situation, there is one mutation in the chain
region of each tree. Again the difference is zero and for both cases it holds that

drMP (T ′1, T
′
2) ≥ lf ′(T2)− lf ′(T1)

= lfC (TC)− lfA(TA)− lfB (TB) + 0.

So also in this case, the claim holds.

Case 1.2: p = 1.

• FA 6⊆ FC . Let s1 ∈ FA \ FC . If s1 ∈ FB, then consider the character f ′ =
f [s1, s1, s1, s1]. This leads to no mutation in the chain region of T1 and one muta-
tion in the chain region of T2. Now suppose s1 6∈ FB. Suppose s2 ∈ FB and take
f ′ = f [s1, s1, s2, s2], this leads to one mutation in the chain region of T1 and two
in the chain region of T2. In both situations, the difference between the mutation
is one. So we have

drMP (T ′1, T
′
2) ≥ lf ′(T2)− lf ′(T1)

= lfC (TC)− lfA(TA)− lfB (TB) + 1.

• FA ⊆ FC . This case cannot happen by the less constrained roots argument (lemma
2.2 in section 2.4). Note that in this case there is no FD, so we define FD as the
set containing all the states (see figure 8 and the lemma). By lemma 2.2 p ≤ 0, a
contradiction. So we are done.

Case 2: lf (T1) > lf (T2). so drMP (T1, T2) = lf (T1)− lf (T2). In such a case we have

drMP (T1, T2) = lfA(TA) + lfB (TB)− lfC (TC) + p (14)

where p = m1 −m2. We have p ≤ 2, by the usual mimicking argument, but this time
the red nodes in T1 copy their states from T2 and not the other way round. (Nodes xk
and its parent pk in T1 should both be assigned the state that is assigned to xk in T2).
We can also show that p ≥ 0. Consider the character f∗ = f [s1, s1, ..., s1, s1]. There are
three cases, m∗1 = 0, m∗1 = 1 or m∗1 = 2. Note that m∗2 ∈ {0, 1}.

Case 2a: m∗1 = 0. Since there are no mutation in the chain region of T1, we know
that s1 ∈ FA and s1 ∈ FB. We will now consider three subcases.

• FC 6⊆ FA: So we know that there is a s2 such that s2 ∈ FC and s2 6∈ FA. Consider
the character f∗∗ = f [s2, ..., s2]. Then m∗∗2 = 0 and m∗∗1 ≥ 1, since s2 6∈ FA. So,

lf∗∗(T1) ≥ lfA(TA) + lfB (TB) + 1 and lf∗∗(T2) = lfC (TC).

21



3 CHAIN REDUCTION

Since the optimality of f implies lf (T1)− lf (T2) ≥ lf∗∗(T1)− lf∗∗(T2), we have

p = lf (T1)− lf (T2) + lfC (TC)− lfA(TA)− lfB (TB)

≥ lf∗∗(T1)− lf∗∗(T2) + lfC (TC)− lfA(TA)− lfB (TB)

≥ 1 ≥ 0.

(15)

• FC 6⊆ FB: This case is similar to the previous one. Consider the character f∗∗ =
f [s2, ..., s2] with s2 ∈ FC \ FB. Then m∗∗2 = 0 and m∗∗1 ≥ 1. So p ≥ 0.

• FC ⊆ FA ∧ FC ⊆ FB: Let s1 ∈ FC , then s1 ∈ FA and s1 ∈ FB. Consider the
character f∗∗ = f [s1, ..., s1]. In both chain regions are no mutations. So

lf∗∗(T1) = lfA(TA) + lfB (TB) and lf∗∗(T2) = lfC (TC).

leads to p ≥ 0 by a similar argument as Equation 15.

Case 2b: m∗1 = 1. So either s1 6∈ FA or s1 6∈ FB but not both. Assume first that
s1 6∈ FA. Let s2 ∈ FA. If s2 ∈ FB, then consider f [s2, ..., s2]. With this character, there
is no mutation in the chain region of T1. So we have the same situation as case 2a.
So assume s2 6∈ FB. Consider f∗∗ = f [s2, ..., s2]. This character leads to at most one
mutation in the chain region of T2 and one mutation in the chain region of T1 (at eB).
Then

lf∗∗(T1) = lfA(TA) + lfB (TB) + 1 and lf∗∗(T2) ≤ lfC (TC) + 1.

By a similarly argument as used by Equation 15, we have p ≥ 0.
Now assume that s1 6∈ FB. Let s2 ∈ FB. If s2 ∈ FA, then consider f [s2, ..., s2]. With this
character, there is no mutation in the chain region of T1. So we have the same situation
as case 2a. So assume s2 6∈ FA and consider the character f∗∗ = f [s2, ..., s2]. This leads
to at most one mutation in the chain region of T2 and one mutation in the chain region
of T1 (at eA). Then

lf∗∗(T1) = lfA(TA) + lfB (TB) + 1 and lf∗∗(T2) ≤ lfC (TC) + 1.

By a similarly argument as used by Equation 15, we have p ≥ 0.
Case 2c: m∗1 = 2. We know that m∗2 ≤ 1 (only possible mutation is at ec). So

lf∗(T1) = lfA(TA) + lfB (TB) + 2 and lf∗(T2) ≤ lfC (TC) + 1

and by a similarly argument as used by Equation 15, we have p ≥ 0.

So we know that p ∈ (0, 1, 2) and it remains to prove that

dMP (T ′1, T
′
2) ≥ lfA(TA) + lfB (TB)− lfC (TC) + p

holds for these p, which will be done by considering three subcases.

Case 2.1: p = 0. Two subcases will be considered.
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• FC 6⊆ FA. Let s1 ∈ FC \ FA. If s1 ∈ FB, then the character f [s2, s1, s1, s1]
with s2 ∈ FA leads to one mutation in the chain regions of both tree (between p1
and p2 for T1 and between x1 and p1 for T2) and the difference in the number of
mutations in the chain region is zero. If s1 6∈ FB, then the character f [s2, s2, s1, s1]
with s2 ∈ FA leads to two mutations in the chain regions of both tree (between
p2 and pk−1 and at eB for T1 and between p2 and pk−1 and at eC for T2). Again,
the difference in the number of mutations in the chain region is zero. So in both
situations,

drMP (T ′1, T
′
2) ≥ lf ′(T ′1)− lf ′(T ′2)

= lfA(TA) + lfB (TB)− lfC (TC)

and we are done.

• FC ⊆ FA. Let s1 ∈ FC (clearly s1 ∈ FA). If s1 ∈ FB, then the character
f [s1, s1, s1, s1] leads to no mutation in the chain regions of both trees and the
difference in the number of mutations in the chain region is zero. If s1 6∈ FB,
consider the character f [s1, s1, s2, s2] with s2 ∈ FB. This leads to one mutation
in the chain regions of both trees (between p2 and pk−1) and the difference in the
number of mutations in the chain region is again zero. So in both situations,

drMP (T ′1, T
′
2) ≥ lf ′(T ′1)− lf ′(T ′2)

= lfA(TA) + lfB (TB)− lfC (TC)

and we are done.

Case 2.2: p = 1. Consider the following subcases:

• FC 6⊆ FA. Let s1 ∈ FC \ FA. Note that s1 ∈ FB because otherwise the character
f [s1, ..., s1] would lead to no mutations in the chain region of T2 and two muta-
tions in the chain region of T1 (eA and eB), contradicting p = 1. So then the
character f ′ = f [s1, s1, s1, s1] leads to one mutation in the chain region of T ′1 and
no mutations in the chain region of T ′2. So we have

drMP (T ′1, T
′
2) ≥ lf ′(T ′1)− lf ′(T ′2)

= lfA(TA) + lfB (TB) + 1− lfC (TC)

= lfA(TA) + lfB (TB)− lfC (TC) + p

and we are done.

• So suppose FC ⊆ FA. Let s1 ∈ FC (clearly, s1 ∈ FA). Suppose first FC ⊆ FB, then
s1 ∈ FB. So consider the character f ′ = f [s1, s1, s2, s2] where s2 6∈ FB. Then there
are two mutations in T1 and one mutation in T2. Note that the case that there is
no state s2 6∈ FB cannot occur. Namely by the less constrained roots argument 2.2
and since FC ⊆ FA (lf (T1) ≥ lf (T2) and FD empty), p ≤ 0. So FB cannot contain
all states when FC ⊆ FA.
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So suppose next FC 6⊆ FB, which implies s1 6∈ FB. Consider f ′ = f [s1, s1, s1, s1].
Then there is one mutation in the chain region of T1 (at eB) and no mutation in
the chain region of T2. In both cases, the difference in mutations in chain regions
is one. Thus,

drMP (T ′1, T
′
2) ≥ lf ′(T ′1)− lf ′(T ′2)

= lfA(TA) + lfB (TB)− lfC (TC) + 1

= lfA(TA) + lfB (TB)− lfC (TC) + p

and we are done.

Case 2.3: p = 2.

• FC 6⊆ FA. Let s1 ∈ FC \ FA. If s1 ∈ FB, then we know that there is some other
state s2 6∈ FB, because otherwise all states are in FB and this cannot happen.
Namely FD ⊆ FB with FD containing all states like in figure 8. Then by the less
constraint roots argument (lemma 2.3 in section 2.4), p ≤ 1, contradicting p = 2.
So FC 6⊆ FA and s1 ∈ FC ∧ FB \ FA and s2 6∈ FB. Consider the character
f ′ = f [s1, s1, s2, s2]. With this character f ′ there are three mutations in the chain
region of T1 (eA, eB and between p2 and pk−1) and only one mutation in the chain
region of T2 (between p2 and pk−1).
If s1 6∈ FB, consider f ′ = f [s1, s1, s1, s1]. This leads to two mutation in the chain
region of T1 and no mutations in the chain region of T2. In both situations the
difference in mutations is two and so we have

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfA(TA) + lfB (TB)− lfC (TC) + 2

= lfA(TA) + lfB (TB)− lfC (TC) + p.

• Suppose now that FC ⊆ FA. This case cannot occur. By the less constraint roots
argument 2.3, p ≤ 1, contradicting p = 2.

III: the common chain is pendant in both trees
There are two main situations here: the chains are oriented in the same direction (Fig-
ure 12), and the chains are oriented in the opposite direction (Figure 13). Whichever
situation occurs, we can assume without loss of generality that lf (T1) < lf (T2), so
dMP (T1, T2) = lf (T2) − lf (T1) with f the optimal character. Everything is defined as
before and as in Equation 4 we have,

drMP (T1, T2) = lfC (TC)− lfA(TA) + p. (16)

Note that we have p ≤ 1 by the mimicking construction used in equation 5 (i.e. copying
the states allocated to the red nodes in T1, to T2. We will now show that p ≥ 0. Relabel
f to new character f∗ = f [s1, ..., s1] with s1 ∈ FA. Then there is no mutation in the
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x2 xk−1 xk
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x1

x2 xk−1 xkeA

FA FC

eC

T ′1 T ′2

Figure 12: The chain reduction as applied in the case when the common chain K is
pendant in both trees oriented in the same direction. Like in fig. 10 and fig.
11, the trees are unrooted but shown as rooted and the dotted line denote
the taxa {x3, ..., xk−2}.

chain region of T1 and at most one mutation in the chain region of T2 (at eC). So we
have

lf∗(T1) = lfA(TA) and lf∗(T2) ≥ lfC (TC).

Since the optimality of f implies lf (T2)− lf (T1) ≥ lf∗(T2)− lf∗(T1), we have

p = lf (T2)− lf (T1)− lfC (TC) + lfA(TA)

≥ lf∗(T2)− lf∗(T1)− lfC (TC) + lfA(TA)

≥ 0.

(17)

Hence, p ∈ (0, 1) and it remains to show that

drMP (T ′1, T
′
2) ≥ lfC (TC)− lfA(TA) + p

holds, which can be done by considering two cases.

Case 1: p = 0. In this case we can take f ′ = f [s1, s1, s1, s1] where s1 ∈ FA. Note
that s1 ∈ FC because otherwise f [s1, ..., s1] would lead to no mutations in the chain
region of T1 but one mutation in the chain region of T2, contradicting p = 0. So we
are done since s1 ∈ FC and s1 ∈ FC implies that there are no mutations in both chain
regions. So

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC)− lfA(TA).
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Figure 13: The chain reduction as applied in the case when the common chain K is
pendant in both trees oriented in a different direction. Like in fig. 10 and fig.
11, the trees are unrooted but shown as rooted and the dotted line denote
the taxa {x3, ..., xk−2}.

Case 2: p = 1. Consider two subcases, the case where the chains are oriented in the
same direction and where they are oriented in different directions.

Case 2a: the chains are oriented in the same direction. In this case, we will look at
two different subcases.

• FA 6⊆ FC . Let s1 ∈ FA \ FC . Consider the character f ′ = f [s1, s1, s1, s1]. Then
there is no mutation in the chain region of T1 and one mutation in the chain region
of T2 (at eC). Then

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC) + 1− lfA(TA)

= lfC (TC)− lfA(TA) + p

and we are done.

• FA ⊆ FC . This cannot hold by the less constrained roots argument, lemma 2.2 in
section 2.4. The lemma implies that p ≤ 0, contradicting p = 1.

Case 2a: the chains are oriented in different directions. Let s1 ∈ FA and s2 6∈ FC .
Note that there is always a state s2 6∈ FC since the case that all states are in FC cannot
happen. The less constrained roots argument (lemma 2.2 in section 2.4) implies p ≤ 0,
a contradiction.
So the chains are oriented in different directions and s1 ∈ FA and s2 6∈ FC . Now consider
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the character f ′ = f [s1, s1, s2, s2]. If s1 = s2, then there is no mutation in the chain
region of T1 and one mutation in the chain region of T2 (at ec). If s1 6= s2, then there is
one mutation in the chain region of T1 (between p2 and pk−1) and two mutations in the
chain region of T2 (at ec and between p2 and pk−1). In both situations is the difference
one and we have:

drMP (T ′1, T
′
2) ≥ lf ′(T ′2)− lf ′(T ′1)

= lfC (TC)− lfA(TA) + 1

In this section, we proved that we can reduce the length of a common chain to four.
This is the best we can do. In the article by steven Kelk et al. [10], it is shown that we
can not reduce the chain to length three. They showed a counterexample (figure 5, [10])
where the MP distance of the original trees are 2 and for the trees with common chain
reduced to length three, the distance is 1.
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4 GENERALIZED SUBTREE REDUCTION

4 Generalized subtree reduction

In this section, we will consider generalized subtree reduction. We will prove that this
reduction rule can be applied without changing the bounded MP distance.
In two trees T1 and T2 you can have a common pendant subtree ignoring root location
(i.r.l.) or/and a common pendant subtree. T1 and T2 have common pendant subtree i.r.l.
on X ′ ⊂ X if (i) for i ∈ (1, 2), Ti contains an edge ei that induces a split (X \X ′)|X ′ in
Ti and (ii) T1|X′ = T2|X′ .
Now assume for i ∈ (1, 2) vi is the endpoint of ei that is closest to X ′. Then vi can
be used as root for the tree Ti|X′ . Denote this rooted tree by (Ti|X′)ρ. T1 and T2 have
a common pendant subtree on X ′ if (T1|X′)ρ = (T2|X′)ρ. Clearly, if T1 and T2 have a
common pendant subtree, they also have a common pendant subtree i.r.l., but the other
war around is not always true.

In figure 14, two trees who have a common pendant subtree as well as a common

x1

x2

x3

x4

x5

x6

x7

ρ2ρ1

x1

x2

x3

x4

x5
x6

x7

ρ2ρ1

T2T1

Figure 14: Two trees, T1 and T2, with a common pendant subtree on {x1, x2, x3}, and
a common pendant subtree i.r.l. on {x4, x5, x6, x7}. Here ρ1 and ρ2 are the
roots of the subtrees.

x2

x3

x1 x1

(T1|{x1,x2,x3})ρ1

x2

x3

(T2|{x1,x2,x3})ρ1

Figure 15: The common pendant subtrees on {x1, x2, x3} from T1 and T2.

subtree i.r.l. are shown. The trees have a common subtree on {x1, x2, x3} as can be
seen in figure 15. The trees are exactly the same when rooted at ρ1. In figure 16, the
common subtree i.r.l. can be seen. As we can see, the trees are similar when they are
unrooted, but they are not the same when rooted at ρ2.
Now we can define generalized subtree reduction on two trees T1 and T2 on taxa set X.
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T1|{x4,x5,x6,x7} T2|{x4,x5,x6,x7}

(T1|{x4,x5,x6,x7})ρ2 (T2|{x4,x5,x6,x7})ρ2

x4
x5

x6

x7

x4 x4

x5

x5

x6
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x7

x7

x4

x5
x6
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Figure 16: The common pendant subtrees i.r.l. on {x4, x5, x6, x7} from T1 and T2.
First the unrooted version Ti|{x4,x5,x6,x7} and second the rooted versions
(Ti|{x4,x5,x6,x7})ρ2 .

Suppose T1 and T2 have a common pendant subtree i.r.l. on X ′ where X ′ ⊂ X and
|X ′| ≥ 2. We have two cases at which we can construct reduced trees T ′1 and T ′2.

• Traditional case: T1 and T2 have a common pendant subtree on X ′. Let T ′1 =
T1|(X\X′)∪{x} and T ′2 = T2|(X\X′)∪{x} where x ∈ X ′. (see figure 17)

• Extended case: T1 and T2 have no common pendant subtree on X ′ and |X ′| ≥ 4.
Let x, y, z be distinct taxa in X ′ such that in (T1|X′)ρ, x and y are on one side of
the root ρ, and z on the other, while in (T2|X′)ρ, x and z are on one side of the
root ρ, and y on the other. These taxa always exist because (T1|X′)ρ 6= (T2|X′)ρ.
Then let T ′1 = T1|(X\X′)∪{x,y,z} and T ′2 = T2|(X\X′)∪{x,y,z}. (see figure 18)

Theorem 4.1. Let T1 and T2 be two unrooted binary trees on taxa set X and suppose
T ′1 and T ′2 are reduced trees after applying generalized subtree reduction to T1 and T2.
Then drMP (T1, T2) = drMP (T ′1, T

′
2) for r an arbitrary integer.

Proof. Note that drMP (T ′1, T
′
2) ≤ drMP (T1, T2) follows from lemma 2.1 in section 3 and

the definition of generalized subtree reduction. It remains to show that drMP (T ′1, T
′
2) ≥

drMP (T1, T2).
We may assume drMP (T1, T2) > 0 as otherwise the theorem clearly holds. Let TA, TB,
TC and TD refer to the four subtrees of T1 and T2 as shown in figure 18 and figure 17.
For P ∈ {A,B,C,D}, let XP refer to the taxa in the subtree TP . Let XB = XD = X ′,
XA = XC = X \X ′. Note that T1|X′ = T2|X′ . That is, TB and TD are identical subtrees
ignoring the point at which each subtree is connected to the rest of its tree. As indicated
in the figures, we root T1 and T2 by subdividing the edge that connects each pendant
subtree to the rest of the tree. Let fP denote the character obtained by restricting f to
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4 GENERALIZED SUBTREE REDUCTION

XP , and let FP refer to the set of states assigned to the root of TP by the Fitch map
induced by fP .
For i ∈ (1, 2), let mi = 0 if the root of Ti is an intersection node, and mi = 1 otherwise
(i.e. the root is a union node). Then we have

lf (T1) = lfA(TA) + lfB (TB) +m1 and lf (T2) = lfC (TC) + lfD(TD) +m2.

Note that we also have lfB (TB) = lfD(TD) because TB and TD are (from an unrooted
perspective) identical. Let f be an optimal character for T1 and T2 and assume that
lf (T1) < lf (T2), as the other case is symmetrical. So drMP (T1, T2) = lf (T2)− lf (T1). Let
p = m2 −m1. Then we have

drMP (T1, T2) = lf (T2)− lf (T1)

= (lfC (TC) + lfD(TD) +m2)− (lfA(TA) + lfB (TB) +m1)

= lfC (TC)− lfA(TA) + p

(18)

Now we know by definition of p, that p ≤ 1 since m2 ≤ 1 and m1 ≥ 0. Now we will
show that p ≥ 0. Let s be a state such that s ∈ FA. Consider now the character f∗

obtained from modifying f by reassigning all the taxa in X ′ to the state s (note that
lfB (TB) = lfD(TD) = 0). Then we have lf∗(T1) = lfA(TA). Note that lf∗(T2) ≥ lfC (TC).
So we can conclude that drMP (T1, T2) ≥ lf∗(T2)− lf∗(T1) ≥ lfC (TC)− lfA(TA), and hence
p ≥ 0.
In order to show drMP (T ′1, T

′
2) ≥ drMP (T1, T2), by Equation 18 it suffices to show that

drMP (T ′1, T
′
2) ≥ lfC (TC)− lfA(TA) + p (19)

for p ∈ {0, 1}. We will now consider the two cases, the traditional case and the extended
case.

I: The traditional case
To shorten notation we will write f [a] to denote the character on (X \ X ′) ∪ {x} ob-

tained from f by leaving the states assigned to taxa in XA = XC = (X \X ′) intact and
assigning state a to x. We have two cases:
Case 1: p = 0. Let s ∈ FA and consider the character f ′ = f [s]. Then lf ′(T

′
1) = lfA(TA)

and lf ′(T
′
2) ≥ lfC (TC). This implies

drMP (T1, T2) ≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC (TC)− lfA(TA).

(20)

Equation 19 follows from this and we are done.
Case 2: p = 1. Consider two subcases.

• FA 6⊆ FC . Let s ∈ FA \ FC and consider the character f ′ = f [s]. Then lf ′(T
′
1) =

lfA(TA) and lf ′(T
′
2) = lfC (TC)+1. Now equation 19 follows from a similar argument

as equation 20 and we are done.
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TA TB TC TD

FA FB FC FD

T1 T2

TA TC

FA FC
x x

T ′
1 T ′

2

Figure 17: The generalized subtree reduction in the traditional case. That is, (T1|X′)ρ =
(T2|X′)ρ. The trees are rooted in the edge between the common pendant
subtree and the rest of the tree.

• FA ⊆ FC . This case cannot occur. By the less constrained roots argument, lemma
2.2, if FA ⊆ FC ∧ FB ⊆ FD, then p ≤ 0. In this case, there is no FB and FD.
However, we can define them as the set containing all states (so FB ⊆ FD) in the
same way as figure 8 and described in the lemma. So p ≤ 0, a contradiction to
p = 1. And we are done.

II: The extended case
To shorten notation we will write f [a, b, c] to denote the character on (X \X ′)∪{x, y, z}
obtained from f by leaving the states assigned to taxa in XA = XC = (X \X ′) intact
and assigning states a, b, c to x, y, z respectively. We have two cases:
Case 1: p = 0. Let s ∈ FA and consider the character f ′ = f [s, s, s]. Then lf ′(T

′
1) =

lfA(TA) and lf ′(T
′
2) ≥ lfC (TC). This implies

drMP ≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC (TC)− lfA(TA).

(21)

Equation 19 follows from this and we are done.
Case 2: p = 1. Consider two subcases.

• FA 6⊆ FC . Let s ∈ FA \ FC and consider the character f ′ = f [s, s, s]. Then
lf ′(T

′
1) = lfA(TA) and lf ′(T

′
2) = lfC (TC) + 1. Now equation 19 follows from a

similar argument as equation 21 and we are done.

• FA ⊆ FC . Let s1 ∈ FA, then clearly s1 ∈ FC . Let s2 6∈ FC . There is always such a
state s2 since otherwise FC will contain all states, which cannot occur since then
m2 = 0. So p = m2 −m1 = 0−m1 ≤ 0, contradicting p = 1.
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Figure 18: The generalized subtree reduction in the extended case. That is, |X ′| ≥ 4,
T1|X′ = T2|X′ but (T1|X′)ρ 6= (T2|X′)ρ. The trees are rooted in the edge
between the common subtree and the rest of the tree.

Consider now the character f ′ = f [s2, s2, s1]. This character f ′ introduces one
mutation in the chain region of T ′1 and two mutations in the chain region of T ′2.
So we have

drMP ≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC (TC) + 2− lfA(TA)− 1

= lfc(TC)− lfA(TA) + p.

(22)

and we are done.
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5 (2, 1, 2)-reduction

In a recent article by Steven Kelk and Simone Linz [12], five new reduction rules are
introduced. In this section, I will look into the (2, 1, 2)-reduction.
Let T1 and T2 be two binary untooted trees with two common chains of length 2, C1 =
(a, b) and C2 = (c, d). Then a (2, 1, 2)-reduction can be applied if T1 has cherries (b, x)
and (c, d) and T2 has cherries (a, b) and (d, x) for some element x ∈ X \(C1∪C2). Such a
(2, 1, 2)-reduction is the operation of deleting x from T1 and T2, i.e. we set T ′1 = T1|X\{x}
and T ′2 = T2|X\{x}. (see figure 20)
In the article by Steven Kelk and Simone Linz ([12]), it is proved that the TBR distance
is reduced by one after applying any of the new rules including the (2, 1, 2)-reduction
rule. Since the Maximum Parsimony distance has some relation to the TBR distance [6],
it is likely that also the MP distance is reduced by one after applying this rule. However,
it turns out that there are some cases for which it does not necessarily hold. Namely
for the case where FA = {s1}, FB = {s1}, FC = {s2}, FD = {s1, s2} and the number
of mutations among red nodes is 1 in the reduced trees (see figure 20 and the text in
the proof of theorem 5.1 for the definitions) and the case where FA = {s1}, FB = {s1},
FC = {s2}, FD = {s2} and the number of mutations among red nodes is 2 in the reduced
trees. So instead of proving that the MP distance is reduced by one after applying the (2,
1, 2)-reduction rule, we found an example where the distance is preserved after applying
(2,1,2)-reduction, a counterexample, as shown in figure 19.
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Figure 19: Two trees and the reduced versions of them after applying the (2, 1, 2)-
reduction rule with a character f , and optimal extensions. The dotted lines
are the lines where a mutation occurs, the red lines have both endpoint
coloured red and the blue lines have both endpoints blue. This is a coun-
terexample of theorem 5.1.
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In the figure, there is an example of a character that gives a distance of 3 for both
the reduced trees as the original trees. To verify that the distances are indeed equal,
we used the java code from Steven Kelk [7] that calculates the Maximum Parsimony
distance between certain trees (for more programs which calculates MP distances, see
the site of Steven Kelk [8]). The program formulates a ILP, integer linear program (see
[15] for more information about this). An ILP can easily be solved with help of a solver.
We used GLPK package for this [13]. The program from Steven Kelk uses the Newick
representation of a tree (see section 2). The Newick format of the trees from figure 19
are shown in table 5.

Trees Newick format

T1 ((u4,(u3,(u2,(u1,(a,(b,x)))))),(u5,(u6,(u7,(u8,(c,d))))));
T2 ((u2,(u1,(u4,(u3,(a,b))))),(u7,(u8,(u5,(u6,(c,(d,x)))))));
T ′1 ((u4,(u3,(u2,(u1,(a,b))))),(u5,(u6,(u7,(u8,(c,d))))));
T ′2 ((u2,(u1,(u4,(u3,(a,b))))),(u7,(u8,(u5,(u6,(c,d))))));

Note that the code only calculates maxf (lf (T2)− lf (T1)) where T1 is the first tree given
in the text document and T2 the second. So we have to calculate the distance twice
and take the maximum of these. Also, we can specify the number of states used, in
this case we will look at the d2MP . It turns out that indeed the distances are equal,
d2MP (T1, T2) = d2MP (T ′1, T

′
2) = 3 (see appendix for the outcome of the program). So the

distance is not always reduced by one after applying the reduction rule, but maybe it is
always preserved.
Unfortunately, it does not. We run the software also for the MP distance with three
states, d3MP . It gives a distance of 4 for the original trees and 3 for the reduced trees. So
d3MP (T ′1, T

′
2) = 3 = 4−1 = d3MP (T1, T2)−1. Now we can also conclude that the distance

is not always preserved after (2,1,2)-reduction.
Despite that the distance is not always reduced by one after applying (2,1,2)-reduction,
we can say something about the (bounded) MP distance after applying this rule.

Theorem 5.1. Let T1 and T2 be binary unrooted trees and let T ′1 and T ′2 the trees obtained
from T1 and T2 respectively by applying (2, 1, 2)-reduction. Then drMP (T1, T2) − 1 ≤
drMP (T ′1, T

′
2) ≤ drMP (T1, T2) for any integer r.

Proof. From lemma 2.1, we know that drMP (T ′1, T
′
2) ≤ drMP (T1, T2) since the leaf set

from T ′1, T
′
2 a subset is from the leaf set of T1 and T2. So now we have to prove that

drMP (T ′1, T
′
2) ≥ drMP (T1, T2)− 1.

Let f be the optimal character. Assume without loss of generalization that lf (T2) ≥
lf (T1). So we have drMP (T1, T2) = lf (T2) − lf (T1). Let TA, TB, TC and TD be the
subtrees in T1 and T2 as shown in figure 20. For P ∈ {A,B,C,D}, let XP refer to the
taxa in subtree TP . Note that XA ∪XB = XC ∪XD. Let uP refer to the point where
the cherries are connected to the rest of the tree (see figure 20. Let fA,B refer to the
optimal character obtained by restricting f to XA and XB, and let FA,B refer to the
set containing pairs of states (s1, s2). A pair (s1, s2) is in FA,B if there is a minimum
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Figure 20: The (2, 1, 2)-reduction.

extension of fA,B that assigned s1 to uA and s2 to uB. Define FA as {s1 : (s1, s2) ∈ FA,B}
and FB as {s2 : (s1, s2) ∈ FA,B}. Define fA,B, FC,D, FC and FD similarly. Moreover,
for each tree T ∈ {T1, T2, T ′1, T ′2} we define the chain region of T to be the set of edges
incident to at least one red node. The red nodes are the nodes a, b, c, d, x and their
parents, as shown in figure 20. Let mi, (i = 1, 2) be the number of mutations occurring
in the chain region of Ti for a minimum extension of f . Then,

m1 = lf (T1)− lfA,B
(TA)− lfA,B

(TB)

m2 = lf (T2)− lfC,D
(TC)− lfC,D

(TD)

In addition, let p = m2 −m1 and then we have

drMP (T1, T2) = lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + p. (23)

First we are going to prove p ≤ 3. Consider an optimal extension f1 of f to T1. Let
f2 be an extension obtained by combining a minimum extension of fC,D to TC and TD
and exactly mimicking f1 on the red nodes of T2. So the parents of c and d in T2 both
get the same state assigned to it as the parent of c in T1. Now there are two cases, the
parents of a and b in T1 have the same state assigned by f1 or they don’t. In the first
case, let the parent of a in T2 have the same state assigned to it as the parents of a and b
in T1. In this case, compared with f1, the extension f2 creates at most three mutations
extra on the chain region of T2, namely at eC , at eD and between x and the parent of
d. So we have ∆(f2) ≤ lfC,D

(TC) + lfc,D(TD) + (m1 + 3). Together with lf (T2) ≤ ∆(f2)
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5 (2, 1, 2)-REDUCTION

and lf (T1) = lfA,B
(TA) + lfA,B

(TB) +m1, this implies

p = lf (T2)− lf (T1)− lfC,D
(TC)− lfC,D

(TD) + lfA,B
(TA) + lfA,B

(TB)

= lf (T2)−m1 − lfC,D
(TC)− lfC,D

(TD)

≤ ∆(f2)−m1 − lfC,D
(TC)− lfC,D

(TD)

≤ 3.

(24)

In the other case, where the parents of a and b in T1 have another state assigned by f1, let
the parent of a and b in T2 have the same state as the parent of a. Now, compared with f1,
the extension f2 creates at most four mutations extra on the chain region of T2, namely
at eC , between b and its parent, at eD and between x and the parent of d. Note that the
chain region of T2 has also one mutation less compared to T1. In T1, there is a mutation
on the edge between the parent of a and the parent of b, which cannot occur in T2 since
this edge does not exist in T2. So again we have ∆(f2) ≤ lfC,D

(TD)+ lfC,D
(TD)+(m1+3)

and this implies p ≤ 3 by the same arguments as in equation 24.
Now we will show p ≥ 1. Let f∗ be the character obtained from f , by reassigning taxa
a, b, x to a state s1 and reassigning c, d to a state s2 with (s1, s2) ∈ FB. Now there are
two cases, s1 = s2 and s1 6= s2.
In the situation that s1 6= s2, there is no mutation in the chain region of T1 and at least
one mutation in the chain region of T2 (between x and its parent). So we have

lf∗(T1) = lfA,B
(TA) + lfA,B

(TB) and lf∗(T2) ≥ lfC,D
(TC) + lfC,D

(TD) + 1. (25)

The optimality of f implies that lf (T2)− lf (T1) ≥ lf∗(T2)− lf∗(T1). Then by equation
25 and this inequality, we have

p = lf (T2)− lf (T1)− lfC,D
(TC)− lfC,D

(TD) + lfA,B
(TA) + lfA,B

(TB)

≥ lf∗(T2)− lf∗(T1)− lfC,D
(TC)− lfC,D

(TD) + lfA,B
(TA) + lfA,B

(TB)

≥ 1.

(26)

In the case that s1 = s2, let s3 6= s1 an existing state and consider the character f∗∗

obtained from f , by reassigning taxa a, c, d to s1 and reassigning b, x to s3. Then there
is one mutation in the chain region of T1 (between the parent of b and the parent of a)
and at least two mutations in the chain region of T2 (between b and its parent (or a)
and between x and its parent). So we have

lf∗∗(T1) = lfA,B
(TA) + lfA,B

(TB) + 1 and lf∗∗(T2) ≥ lfC,D
(TC) + lfC,D

(TD) + 2. (27)

The optimality of f implies that lf (T2)− lf (T1) ≥ lf∗∗(T2)− lf∗∗(T1). Then by equation
27 and this inequality, we have

p = lf (T2)− lf (T1)− lfC,D
(TC)− lfC,D

(TD) + lfA,B
(TA) + lfA,B

(TB)

≥ lf∗∗(T2)− lf∗∗(T1)− lfC,D
(TC)− lfC,D

(TD) + lfA,B
(TA) + lfA,B

(TB)

≥ 1.

(28)
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5 (2, 1, 2)-REDUCTION

By equation 23, the claim follows from

drMP (T ′1, T
′
2) ≥ lfC,D

(TC) + lfC,D
(TD)− lfA,B

(TA)− lfA,B
(TB) + p− 1 (29)

So to prove the theorem, it is sufficient to show Equation 29. Then there are three cases
to consider, namely p = 1, p = 2 or p = 3, since 1 ≤ p ≤ 3. X ′ is the taxa of the trees T ′1
and T ′2. For short notation, we will write f [sa, sb, sc, sd] to denote the character on X ′

obtained from f by leaving the states assigned to taxa in XA ∪XB = XC ∪XD intact
and assigning states sa, sb, sc, sd to a, b, c, d respectively.

Case 1: p = 1. Let (s1, s2) ∈ FA,B and consider the character f ′ = f [s1, s1, s2, s2].
Then there is no mutation in the chain region of T ′1, so lf ′(T

′
1) = lfA,B

(TA) + lfA,B
(TB).

Note that lf ′(T
′
2) ≥ lfC,D

(TC) + lfC,D
(TD). Thus,

drMP (T ′1, T
′
2) = lf (T ′2)− lf (T ′1)

≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC,D

(TC) + lfC,D
(TD)− (lfA,B

(TA) + lfA,B
(TB))

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + p− 1

(30)

and we are done.

Case 2: p = 2. We will consider two subcases.

• FA 6⊆ FC . Let (s1, s2) ∈ FA,B with s1 6∈ FC . Consider the character f ′ =
f [s1, s1, s2, s2]. With this character there is no mutation in the chain region of
T ′1 and at least one mutation in the chain region of T ′2 (at eC). Then we have

drMP (T ′1, T
′
2) = lf (T ′2)− lf (T ′1)

≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC,D

(TC) + lfC,D
(TD) + 1− (lfA,B

(TA) + lfA,B
(TB))

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + p− 1

(31)

and we are done.

• FA ⊆ FC . Let (s1, s2) ∈ FA,B (clearly s1 ∈ FC). Now two situations can occur.
First assume that (s1, s2) 6∈ FC,D. Consider in this situation the character f ′ =
f [s1, s1, s2, s2]. With this character there is no mutation in the chain region of T ′1
and at least one mutation in the chain region of T ′2 (at eD or at eC). Then we have

drMP (T ′1, T
′
2) = lf (T ′2)− lf (T ′1)

≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC,D

(TC) + lfC,D
(TD) + 1− (lfA,B

(TA) + lfA,B
(TB))

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + p− 1.

(32)
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5 (2, 1, 2)-REDUCTION

So we are done.
Now assume that (s1, s2) ∈ FC,D. This situation cannot occur. Consider a
minimum extension f1 of f to T1 that maps s1 to uA (and s2 to uB). Since
(s1, s2) ∈ FC,D, there exists a minimum extension fC,D of fC,D to TC and TD
that assigns s1 to uC and s2 to uD. Consider now an extension f2 obtained
from combining fC,D and exactly mimicking the red nodes of f1 to T2. Then
the mutations in the chain region of T2 is equal to the number of mutations
in the chain region of T1 plus one (between x and its parent). In other words,
∆(f2) = lfC,D

(TC) + lfC,D
(TD) +m1 + 1. So we have

drMP (T1, T2) = lf (T2)− lf (T1)

≤ δ(f2)− lf (T1)

≤ lfC,D
(TC) + lfC,D

(TD) +m1 + 1− (lfA,B
(TA) + lfA,B

(TB) +m1)

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + 1.

This shows in particular p ≤ 1, a contradiction.

Case 3: p = 3. We will consider two subcases.

• FA ⊆ FC . This case cannot occur. Consider a minimum extension f1 of f to T1.
Then this f1 assigns a state a from FA to uA. Since a ∈ FC , there exists a minimum
extension fC,D of fC,D to TC and TD such that this extension fC,D assigns the state
a to uC . Consider now an extension f2 obtained from fC,D and exactly mimicking
f1 to the red nodes of T2. Then the mutations in the chain region of T2 is less or
equal to the number of mutations in the chain region of T1 plus two (between x
and its parent and at eD). In other words, ∆(f2) ≤ lfC,D

(TC)+ lfC,D
(TD)+m1 +2.

So we have

drMP (T1, T2) = lf (T2)− lf (T1)

≤ δ(f2)− lf (T1)

≤ lfC,D
(TC) + lfC,D

(TD) +m1 + 2− (lfA,B
(TA) + lfA,B

(TB) +m1)

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + 2.

This shows in particular p ≤ 2, a contradiction.

• FA 6⊆ FC . Let (s1, s2) ∈ FA,B with s1 6∈ FC . Now we will prove that s2 6∈ FD.
Suppose that s2 ∈ FD. Then consider a minimum extension f1 of f to T1 that
assigns the state s1 to uA and s2 to uB. Since s2 ∈ FD, there exists a minimum
extension fC,D of fC,D to TC and TD such that this extension fC,D assigns the state
s2 to uD. Consider now an extension f2 obtained from fC,D and exactly mimicking
f1 to the red nodes of T2. Then the mutations in the chain region of T2 is less or
equal to the number of mutations in the chain region of T1 plus two (between x
and its parent and at eC). In other words, ∆(f2) ≤ lfC,D

(TC)+ lfC,D
(TD)+m1 +2.
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5 (2, 1, 2)-REDUCTION

So we have

drMP (T1, T2) = lf (T2)− lf (T1)

≤ ∆(f2)− lf (T1)

≤ lfC,D
(TC) + lfC,D

(TD) +m1 + 2− (lfA,B
(TA) + lfA,B

(TB) +m1)

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + 2.

This shows in particular p ≤ 2, a contradiction. So s2 6∈ FD.
So we know that for all pairs (s3, s4) ∈ FC,D, s1 6= s3 and s2 6= s4. Consider the
character f ′ = f [s1, s1, s2, s2]. This character leads to no mutations in the chain
region of T ′1 and two mutations in the chain region of T ′2 (at eC and eD). Thus we
have

drMP (T ′1, T
′
2) = lf (T ′2)− lf (T ′1)

≥ lf ′(T ′2)− lf ′(T ′1)
≥ lfC,D

(TC) + lfC,D
(TD) + 2− (lfA,B

(TA) + lfA,B
(TB))

= lfC,D
(TC) + lfC,D

(TD)− lfA,B
(TA)− lfA,B

(TB) + p− 1

(33)

and we are done.

So we proved drMP (T ′1, T
′
2) ≥ drMP (T1, T2)− 1 and the theorem holds.
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6 CONCLUSION

6 Conclusion

The Maximum Parsimony (MP) distance is a distance between two trees [9]. There are
two types of MP distances, unbounded and bounded. In this report, only the bounded
distance is considered. The MP distance is related to the TBR distance [6]. For the TBR
distance there are some reduction rules that reduces the trees without changing its TBR
distance [1], [2]. This is quite handy, because it makes the calculations easier. Since there
is a relation between the two distances, we suspected that these reduction rules can also
be applied without changing the Maximum Parsimony distance. In this report, three
different reduction rules were considered, chain reduction, generalized subtree reduction
and (2, 1, 2)-reduction.
By chain reduction, a common chain except two leaves at the beginning and two at the
end of the chain can be deleted from both trees. So the common chains of the trees are
then reduced to four (see exact definition in section 3). In paper [10], it was proven that
the unbounded MP distance is preserved after applying chain reduction. We have used
this proof and adapt it, to prove that also the bounded Maximum Parsimony distance is
preserved after applying chain reduction. The chain in this case is reduced to length four
which is the best we can do. In the paper by Steven Kelk et al [10], a counterexample
for reduction of the chain to length three was given.
The second reduction we considered, is the generalized subtree reduction. The exact
rule is dependent on the type of subtree. The subtree can be a pendant subtree ignoring
root location (i.r.l) or just a pendant subtree. The subtree is not i.r.l. when the subtrees
are also common when rooted at the end of the edges that induces the split. In this case,
you can reduce the tree by removing the whole subtree except one leaf. For the pendant
subtree i.r.l., you can remove the subtree except three leaves (see exact definition in
section 4). In paper [10], it was proven that the unbounded MP distance is preserved
after applying subtree reduction. Like chain reduction, we have adapt this proof, to
prove that also the bounded Maximum Parsimony distance is preserved after applying
generalized subtree reduction.
At last we considered a rule from the paper [12], the (2, 1, 2)-reduction. (see exact
definition in section 5) In that paper, only a proof that the TBR distance is reduced
by one after applying this rule, is given. So to prove that this is also the case for the
MP distance, we used the same methods as used in the proofs for the chain reduction
and subtree reduction. However, it turned out that the MP distance is not necessarily
reduced with one after applying (2, 1, 2)-reduction. We found a counterexample, see
figure 19 in section 5. We do know that the bounded MP distance is either preserved or
reduced with one after applying (2, 1, 2)-reduction.
There is a lot more you can investigate on this subject. It is for example interesting to
see if the MP distance is preserved or reduced with one after applying (2, 1, 2)-reduction
for all bounds. The counterexample given, works only for a bound of two. So can we
say more about the MP distance on three states after applying (2, 1, 2)-reduction? And
what about the unbounded MP distance?
In paper [12], in total five reduction rules are introduced. So another thing to look into
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6 CONCLUSION

is what is happening with the MP distance after applying the other four rules.
Furthermore, it is interesting to see if the kernel changes, now we know that these
rules can/cannot be applied. The kernel is a problem that is the same as your original
problem but easier to solve/calculate. The size of the kernel, time to solve the problem,
is related to a parameter, for example the MP distance (see for more information on
kernels [5]). With the proof in section 3 in this report, it is already proven that there
exist a kernel for d2MP which was not known before. This is done by Elise Deen, Leo
van Iersel, Remie Janssen, Mark Jones, Yuki Murakami and Norbert Zeh and will be
published in a forthcoming paper.
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Appendices

Result Program
maxf (lf (T2)− lf (T1) for two states:
Long-step dual simplex will be used
+ 285: mip = not found yet <= +inf (1; 0)
+ 2915: >>>>> 1.000000000e+00 <= 8.000000000e+00 700.0% (158; 23)
+ 8564: >>>>> 2.000000000e+00 <= 5.000000000e+00 150.0% (443; 147)
+ 13428: >>>>> 3.000000000e+00 ¡= 4.000000000e+00 33.3% (536; 416)
+ 18794: mip = 3.000000000e+00 <= tree is empty 0.0% (0; 1941)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 1.9 secs
Memory used: 2.2 Mb (2269812 bytes)

maxf (lf (T1)− lf (T2) for two states:
Long-step dual simplex will be used
+ 277: mip = not found yet <= +inf (1; 0)
+ 3511: >>>>> -1.110223025e-16 <= 7.000000000e+00 (186; 39)
+ 5066: >>>>> 2.000000000e+00 <= 6.000000000e+00 200.0% (260; 71)
+ 6532: >>>>> 3.000000000e+00 <= 6.000000000e+00 100.0% (283; 174)
+ 15142: mip = 3.000000000e+00 <= tree is empty 0.0% (0; 1355)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 1.5 secs
Memory used: 1.6 Mb (1662090 bytes)

maxf (lf (T
′
1)− lf (T

′
2) for two states:

Long-step dual simplex will be used
+ 283: mip = not found yet <= +inf (1; 0)
+ 2566: >>>>> 2.000000000e+00 <= 7.000000000e+00 250.0% (131; 26)
+ 11659: >>>>> 3.000000000e+00 <= 3.000000000e+00 0.0% (285; 395)
+ 11659: mip = 3.000000000e+00 <= tree is empty 0.0% (0; 1255)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 1.2 secs
Memory used: 1.7 Mb (1807938 bytes)

maxf (lf (T
′
2)− lf (T

′
1) for two states:

Long-step dual simplex will be used
+ 283: mip = not found yet <= +inf (1; 0)
+ 2566: >>>>> 2.000000000e+00 <= 7.000000000e+00 250.0% (131; 26)
+ 11659: >>>>> 3.000000000e+00 <= 3.000000000e+00 0.0% (285; 395)
+ 11659: mip = 3.000000000e+00 <= tree is empty 0.0% (0; 1255)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 1.2 secs
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Memory used: 1.7 Mb (1807938 bytes)

maxf (lf (T2)− lf (T1) for three states:
Long-step dual simplex will be used + 436: mip = not found yet <= +inf (1; 0)
+ 6855: >>>>> 1.000000000e+00 <= 1.000000000e+01 900.0% (256; 17)
+ 16234: >>>>> 2.000000000e+00 <= 9.000000000e+00 350.0% (610; 57)
+ 25121: >>>>> 3.000000000e+00 <= 8.000000000e+00 166.7% (896; 168)
+ 57508: mip = 3.000000000e+00 <= 7.000000000e+00 133.3% (1905; 526)
+ 59024: >>>>> 4.000000000e+00 <= 7.000000000e+00 75.0% (1963; 537)
+ 93685: mip = 4.000000000e+00 <= 7.000000000e+00 75.0% (2360; 1650)
+127789: mip = 4.000000000e+00 <= 7.000000000e+00 75.0% (3144; 1951)
+167308: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (3702; 2468)
+204530: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (4088; 3011)
+241730: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (4486; 3518)
+278029: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (4858; 4023)
+323826: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (4645; 5805)
+380363: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (3406; 9717)
+434861: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (2317; 13364)
+486363: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (1338; 17036)
Time used: 60.0 secs. Memory used: 16.1 Mb.
+538886: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (404; 21039)
+559671: mip = 4.000000000e+00 <= tree is empty 0.0% (0; 23297)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 65.9 secs
Memory used: 16.3 Mb (17116189 bytes)

maxf (lf (T1)− lf (T2) for three states:
Long-step dual simplex will be used
+ 430: mip = not found yet <= +inf (1; 0)
+ 2605: >>>>> 3.000000000e+00 <= 1.100000000e+01 266.7% (85; 4)
+ 36056: mip = 3.000000000e+00 <= 8.000000000e+00 166.7% (1148; 186)
+ 69177: mip = 3.000000000e+00 <= 7.000000000e+00 133.3% (2178; 386)
+ 81687: >>>>> 4.000000000e+00 <= 7.000000000e+00 75.0% (2554; 467)
+113703: mip = 4.000000000e+00 <= 7.000000000e+00 75.0% (2524; 2074)
+148156: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (2983; 2502)
+181066: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (3355; 2921)
+213672: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (3682; 3348)
+245319: mip = 4.000000000e+00 <= 6.000000000e+00 50.0% (4008; 3772)
+285871: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (3961; 5078)
+334283: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (2967; 8141)
+382409: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (2041; 11312)
+428021: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (1147; 14593)
Time used: 60.0 secs. Memory used: 13.6 Mb.
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+479303: mip = 4.000000000e+00 <= 5.000000000e+00 25.0% (261; 18437)
+493799: mip = 4.000000000e+00 <= tree is empty 0.0% (0; 20091)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 63.8 secs
Memory used: 13.8 Mb (14522315 bytes)

maxf (lf (T
′
2)− lf (T

′
1) for three states:

Long-step dual simplex will be used
+ 418: mip = not found yet <= +inf (1; 0)
+ 2645: >>>>> 1.000000000e+00 <= 1.000000000e+01 900.0% (95; 4)
+ 3757: >>>>> 2.000000000e+00 <= 9.000000000e+00 350.0% (130; 23)
+ 41295: mip = 2.000000000e+00 <= 7.000000000e+00 250.0% (1420; 244)
+ 79505: mip = 2.000000000e+00 <= 6.000000000e+00 200.0% (2756; 539)
+115795: mip = 2.000000000e+00 <= 6.000000000e+00 200.0% (3975; 818)
+122917: >>>>> 3.000000000e+00 <= 5.000000000e+00 66.7% (4228; 874)
+166737: mip = 3.000000000e+00 <= 5.000000000e+00 66.7% (3354; 4125)
+208230: mip = 3.000000000e+00 <= 5.000000000e+00 66.7% (3813; 4761)
+248111: mip = 3.000000000e+00 <= 5.000000000e+00 66.7% (4316; 5401)
+310023: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (2968; 9860)
+367334: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (1738; 14241)
+423706: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (595; 19057)
+455060: mip = 3.000000000e+00 <= tree is empty 0.0% (0; 22261)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 49.3 secs
Memory used: 14.1 Mb (14777302 bytes)

maxf (lf (T
′
1)− lf (T

′
2) for three states:

Long-step dual simplex will be used
+ 418: mip = not found yet <= +inf (1; 0)
+ 2645: >>>>> 1.000000000e+00 <= 1.000000000e+01 900.0% (95; 4)
+ 3757: >>>>> 2.000000000e+00 <= 9.000000000e+00 350.0% (130; 23) +
41579: mip = 2.000000000e+00 <= 7.000000000e+00 250.0% (1433; 246)
+ 78510: mip = 2.000000000e+00 <= 6.000000000e+00 200.0% (2729; 529)
+109797: mip = 2.000000000e+00 <= 6.000000000e+00 200.0% (3767; 774)
+122917: >>>>> 3.000000000e+00 <= 5.000000000e+00 66.7% (4228; 874)
+163251: mip = 3.000000000e+00 <= 5.000000000e+00 66.7% (3320; 4078)
+197517: mip = 3.000000000e+00 <= 5.000000000e+00 66.7% (3706; 4599)
+233673: mip = 3.000000000e+00 <= 5.000000000e+00 66.7% (4157; 5156)
+285055: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (3587; 7932)
+342297: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (2262; 12298)
+397605: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (1130; 16690)
+452588: mip = 3.000000000e+00 <= 4.000000000e+00 33.3% (49; 21853)
+455060: mip = 3.000000000e+00 <= tree is empty 0.0% (0; 22261)
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INTEGER OPTIMAL SOLUTION FOUND
Time used: 52.8 secs
Memory used: 14.1 Mb (14777302 bytes)

47


	Introduction
	Definitions and preliminaries
	Phylogenetic trees
	The Parsimony score
	The maximal Parsimony distance (MP)
	Less constrained roots argument
	Tree Bisection and Reconnection distance (TBR)

	Chain reduction
	Generalized subtree reduction
	(2, 1, 2)-reduction
	Conclusion
	Appendices

