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Surface-related multiple leakage extraction using local
primary-and-multiple orthogonalization

Dong Zhang1, D. J. (Eric) Verschuur1, Shan Qu1, and Yangkang Chen2

ABSTRACT

Accurate multiple removal remains an important step in seismic
data processing sequences. Most multiple removal methods, such
as surface-related multiple elimination (SRME), consist of a
multiple prediction step and an adaptive subtraction step. Due to
imperfect circumstances (e.g., coarse data sampling) or built-in
assumptions (e.g., 2D method versus 3D data), multiple leakage
is commonly observed in the results. More aggressive adaptive
multiple subtraction can reduce the leakage problem, for example,
by using small local windows and a long filter length, but at the
risk of severely damaging the primaries due to overfitting. In con-
trast, conservative adaptive subtraction with large or global win-
dows and a short filter length can preserve most primary energy
while tending to have more multiple leakage because of under-
fitting. Assuming that the primaries and multiples do not correlate

locally in the time-space domain, our solution to this problem is to
extract the leaked multiples from the initially estimated primaries
using local primary-and-multiple orthogonalization (LPMO)
rather than restoring the damaged primaries. Our framework
consists of two steps: an initial primary estimation step and a
multiple leakage extraction step. The initial step corresponds to
conservative SRME (or an equivalent method) that produces
the initially estimated primary and multiple models. The second
step is based on LPMO to retrieve the leaked multiples from the
estimated primaries via a time- and space-varying weight function
that is estimated from the local correlation of predicted multiples
and residual multiples in the estimated primaries with the help of
shaping regularization. In this way, we can obtain a better primary
model that has much less leaked multiple energy and less primary
damage at the same time.We find good performance of our frame-
work via two synthetic data examples and one field data example.

INTRODUCTION

Surface-related multiples have been regarded as coherent noise and
removed before the subsequent processing workflows for decades
(Ryu, 1982; Hampson, 1986; Verschuur and Berkhout, 1997; We-
glein et al., 1997; Chen et al., 2017). Meanwhile, exploration geo-
physicists gradually realized that these multiples (note that we refer
to multiples as only surface-related multiples in this paper and that
internal multiples are beyond the scope of this research) are able to
see through the earth multiple times and, therefore, carry valuable
physical information about the subsurface (Verschuur, 2006). Multi-
ples are treated nowadays as useful signals as well and can be directly
included into imaging algorithms (Brown and Guitton, 2005; Zhang
and Schuster, 2013; Lu et al., 2015; Davydenko and Verschuur, 2017,
2018; Nath and Verschuur, 2017). Although full wavefield imaging

(including primaries and all types of multiples) can be achieved, it is
still desired to estimate primaries and multiples first and then image
them separately, due to the crosstalk of multiples during imaging, the
challenges in shallow-water scenarios, and the benefits for conven-
tional primary-oriented processing.
Surface-related multiple elimination (SRME) has already been

proved to be a powerful tool for primary and multiple estimation
with the help of its data-driven engine and the strong physics behind
it (Verschuur et al., 1992; Berkhout and Verschuur, 1997). Specifi-
cally, SRME first predicts the multiples based on a multidimen-
sional convolution process from the data themselves without any
prior knowledge about the subsurface and then it adaptively sub-
tracts the predicted multiples from the original data using the mini-
mum-energy criterion (Verschuur and Berkhout, 1997). Moreover, a
full-waveform inversion-based primary and multiple estimation
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scheme is proposed by van Groenestijn and Verschuur (2009a,
2009b), which is known as estimation of primaries by sparse inver-
sion (EPSI). Lin and Herrmann (2013) further propose a robust
version of EPSI based on L1-norm minimization. Concretely, the
multiple prediction and adaptive subtraction process is replaced
by a full-waveform inversion process, in which the primary impulse
response and source wavelet are the unknowns. Another inversion
approach called closed-loop SRME (CL-SRME) with different
parameterization, being the primary and surface operator, is pro-
posed by Lopez and Verschuur (2014, 2015), and it combines
the robustness of SRME with EPSI. Although the inversion
schemes enjoy more physical consistency, they lack computational
efficiency, which is the bottleneck for wide industry application.
SRME, in many cases, will still be the preferable choice in terms
of computational cost.
Among all of the difficulties of SRME, surface-related multiple

leakage is a long-standing problem for primary and multiple estima-
tion (Verschuur, 2006). The leaked multiple energy will undoubtedly
damage the subsequent migration and interpretation accuracy. Fur-
thermore, this leaked energy is even more challenging for the already
difficult shallow-water scenario due to the strong impact of missing
near offsets (Hargreaves, 2006; van Groenestijn and Verschuur,
2009a, 2009b; Jin and Wang, 2012; Hung et al., 2014; Kostov et al.,
2015; Lopez and Verschuur, 2015; Zhang and Verschuur, 2019).
Multiple prediction and adaptive subtraction are indispensable ingre-
dients for SRME, and both of them could lead to the multiple leakage
issue. In fact, multiple prediction is the most robust part of SRME
because of its fulfillment of strong physics, but it still requires densely
sampled data (near-offset data for the 2D situation and undersampling
in the crossline direction with near offsets missing for 3D data), which
is always difficult to satisfy in the real world (Dragoset and Jericevic,
1998). Otherwise, the sampling issue results in phase and amplitude
errors for the predicted multiples. Thus, with the inaccurate predicted
multiple model, it is more likely to limit the performance of adaptive
subtraction and leave some amount of multiple leakage afterward.
Much effort on data interpolation is spent to feed densely sampled
data to SRME. Kabir and Verschuur (1995) propose to restore the
missing offsets with the parabolic Radon transform based on partial
normal moveout corrected common-midpoint gathers. Interferometric
interpolation methods are also available and are effective for 2D cases
(Wang et al., 2009; Hanafy and Schuster, 2014). Van Dedem and
Verschuur (2005) introduce a sparse inversion interpolation approach
for 3D surface-related multiple prediction. Van Groenestijn and
Verschuur (2009a) present an EPSI-based approach to reconstruct
near-offset data by using multiples. Dragoset et al. (2010) describe
on-the-fly interpolation for 3D SRME application. Lopez and
Verschuur (2015) propose to use the focal domain constraint to in-
terpolate missing data within the CL-SRME framework. Zhang
and Verschuur (2019) propose to use the data reconstruction power
of full wavefield migration as a better input for CL-SRME.
Adaptive subtraction, on the other hand, is the most problematic

step in SRME, or other prediction and subtraction methods, due to
its harsh assumption that primaries and multiples should not corre-
late anywhere. Multiple leakage occurs when primaries and multi-
ples partially correlate, which is usually unavoidable. The core of
adaptive subtraction is estimating a matching filter to correct for the
amplitude and phase distortions. Spitz (1999) indicates the pitfalls
of the L2-norm adaptive subtraction process in which some part of
the multiples is not orthogonal to the primaries. Many researchers

have reported different approaches to improve the adaptive subtrac-
tion by relaxing its original assumption or replacing it. Guitton and
Verschuur (2004) propose to use L1-norm instead of L2-norm adap-
tive subtraction when the primaries are much stronger than the mul-
tiples. Building on the work of Spitz (1999), Guitton (2005) shows
on field data that the pattern-based subtraction method is less sen-
sitive to the overlap between primaries and multiples; however, this
method has difficulties when multiples and primaries are parallel to
each other (Verschuur, 2006). Fomel (2009) proposes regularized
nonstationary regression-based adaptive subtraction without break-
ing the data into local windows. Xue et al. (2016) introduce a non-
linear adaptive multiple subtraction method using the amplitude-
preserving high-order sparse Radon transform. Hermann and
Verschuur (2004) present a sparse curvelet-domain subtraction ap-
proach by iteratively shrinking the curvelet coefficients. Attracted
by its effectiveness, several extended curvelet-based techniques are
proposed (Hermann et al., 2008; Wang et al., 2008; Neelamani et al.,
2010). However, the computational efficiency is currently the main
drawback of curvelet-based methods, and they also suffer the risk of
dimming primaries while removing multiples. In addition to the
marine acquisition, Kelamis and Verschuur (2000) introduce a very
detailed and much more difficult application of the adaptive multi-
ple subtraction for land seismic data.
Despite all of the efforts mentioned above, surface-related multi-

ple leakage can still be seen in the results of SRME-predicted pri-
maries. The reasons behind this are, first, the data reconstruction can
never be perfect, which leads to phase and amplitude errors in the
predicted multiples. Second, the assumption of adaptive subtraction
that primaries and multiples do not correlate is often not met.
Essentially, the imperfections of adaptive subtraction directly lead
to multiple leakage in the estimated primaries. It tends to be either
underfitting or overfitting for the subtraction step regardless of the
forced constraint. Underfitting results in more severe multiple
leakage, whereas overfitting can alleviate multiple leakage to some
extent. However, overfitting is unfortunately the main cause for pri-
mary energy damage because removing more multiples usually comes
along with damaging primaries. The ability of least-squares adaptive
subtraction strongly depends on the size of local windows and the filter
length. A small window size and a long filter length, which is called
standard SRME in this paper, lead to better multiple removal, but at the
same time cause more primary damage. For primary-oriented process-
ing, the best one can achieve during the trade-off is to protect the pri-
maries as much as possible and, as a result, leave some amount of
multiple leakage. That is, the local windows for SRME should be rel-
atively large and the filter length for adaptive subtraction should be
relatively short. We call this type of SRME conservative SRME. More
specifically, note that in this paper, conservative SRME indicates the
L2-norm adaptive subtraction step in the last iteration with large local
windows or even global windows and a short filter length, in which the
primaries are not damaged, whereas surface-related multiple leakage is
relatively more severe. In contrast, standard SRMEmeans the L2∕L1-
norm adaptive subtraction step in the last iteration with small local
windows and a long filter length, in which the multiple leakage is alle-
viated, whereas the primary damage is relatively more severe. Instead
of solving the leakage issue within SRME itself, it might be much
easier and more effective if another external extraction step is included
after conservative SRME to compensate for multiple leakage.
To this end, multiple leakage can also be seen as one type of sig-

nal leakage if we temporarily treat multiples as our useful signal.
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Signal leakage is a long-standing problem in the field of random
noise attenuation (Gülünay, 2017; Chen et al., 2018). Most studies
try to propose more advanced denoising algorithm by introducing
more solid assumptions. However, the fact that signal leakage al-
ways exists should be kept in mind regardless of the algorithms.
An extra external step to compensate for signal leakage might there-
fore be preferable. Chen and Fomel (2015) propose to extract the
leaked signal from random noise using an extra local signal-and-
noise orthogonalization step and show very promising results, in
which traditional f-x deconvolution is used as the initial denoising
operator. In addition, successful applications on removing ground-
roll noise and blending noise based on local orthogonalization are
reported (Chen et al., 2015: Chen, 2015). Inspired by the concept of
local orthogonalization, we propose a new framework for primary
estimation and surface-related multiple leakage extraction using
local primary-and-multiple orthogonalization (LPMO) to comple-
ment conservative SRME. This local orthogonalization assumption
is equivalent to assuming that the primaries and multiples do not
correlate locally in the time-space domain. In this paper, we focus
on standard and conservative SRME with least-squares adaptive
subtraction. The proposed framework mainly consists of two steps:
an initial primary estimation step and a multiple leakage extraction
step. The initial step corresponds to the conservative SRME (or an
equivalent method), which produces the initially estimated primary
and multiple models. The second step is based on LPMO to extract
the leaked multiples from the estimated primaries via a time- and
space-varying weight function that is estimated from the local cor-
relation of predicted multiples and residual multiples in the esti-
mated primaries with the help of shaping regularization, which
can be regarded as an external remedy for correcting the initially
predicted primaries and multiples from conservative SRME. Thus,
we can obtain better primary and multiple models for subsequent
processing steps. Preliminary results are shown in Zhang et al.
(2019a). Fair comparisons with standard SRME are also provided
to display their different behaviors in this paper. We demonstrate the
good performance of our proposed two-step framework on two syn-
thetic and one field data set. Above all, the proposed framework
could make the conventional adaptive subtraction process easier
to parameterize and could also be beneficial for the subsequent
quality control (QC) step.
We organize this paper as follows: First, we present a brief review

of SRME and some important aspects for adaptive subtraction. The
LPMO is then introduced in detail, which together with a conservative
SRME primary estimation approach forms our proposed two-step
framework. Two synthetic examples are provided to describe and
compare the proposed approach with standard SRME. In addition,
a comprehensive investigation on shallow-water field data is presented
to demonstrate the effectiveness of the proposed framework. A dis-
cussion part on the important aspects of the algorithm is also included
at the end.

REVIEW OF SRME

SRME or specifically iterative SRME is briefly reviewed in this
section. Let P represent the monochromatic total upgoing wave-
fields from all sources recorded at the surface and P0 denote the
primary wavefields. The terms P0 and P are in the detail-hiding no-
tation (Berkhout, 1982), where vectors (the columns of the matrix)
represent monochromatic shot records. The core engine used for all
SRME-based algorithms can be expressed as follows:

P0 ¼ P − P0AP ¼ P −M; (1)

where A is the surface operator, being defined as S−1R∩, i.e., the
surface reflectivity from below combined with the inverse source
properties. Surface multiples M can be predicted based on P0AP.
Traditional SRME based on equation 1 is an iterative approach (Berk-
hout and Verschuur, 1997) in the way that Pkþ1

0 ¼ P − Pk
0A

kþ1P,
where k represents the iteration number, which is typically 2 or 3.
The adaptive subtraction step for SRME is implemented in the

time domain using a minimum-energy constraint:

E ¼
X
t;xr;xs

½pðt; xr; xsÞ − aðkþ1ÞðtÞ � m̂ðkþ1Þðt; xr; xsÞ�2; (2)

where pðt; xr; xsÞ, m̂ðkþ1Þðt; xr; xsÞ, and aðkþ1ÞðtÞ represent the
total upgoing wavefields, the unadapted multiples (i.e., −P0P),
and the surface operator in the time domain, respectively. The length
of the surface operator is also known as the filter length, which is
capable of controlling the trade-off between underfitting and overfit-
ting. The terms xr and xs are the source and receiver locations of
seismic data. For the standard SRME, the predicted multiples are first
matched and subtracted in a global window during the first one or
two iterations. Small local windows and a long filter length are then
used for adaptive subtraction in the last iteration to better remove the
multiples (Verschuur and Berkhout, 1997). It is worth noting that
small local windows and a long filter length for standard SRME can
damage the primaries, although more multiples are removed due to
overfitting. On the other hand, for conservative SRME when the last
iteration of adaptive subtraction is still implemented in a global win-
dow or large local windows with a short filter length, it leads to a
more conservative result with much less primary damage and rela-
tively more multiple leakage due to underfitting. However, we sug-
gest and use conservative SRME for primary-oriented processing to
avoid hurting the primaries, although there is more multiple leakage.
Then, the leaked multiples can be further extracted by the algorithm
discussed in the next section.

LPMO

The proposed LPMO should directly follow the initial primary and
multiple estimation step and can be regarded as an external remedy
for correcting the initially predicted primaries and multiples from
conservative SRME. Now, we rewrite the initial estimated primary
and multiple relation in the time domain using the vector notation:

p ¼ p0 þm; (3)

where p is the total upgoing wavefield. The terms p0 andm represent
the initial estimated primaries and multiples using any prediction
method (conservative SRME in this paper), respectively. Based on
the assumption that the final estimated primaries ~p0 and multiples
~m should be orthogonal, we are capable of orthogonalizing them by

~m ¼ mþ w ∘ m; (4)

~p0 ¼ p0 − w ∘ m; (5)

where w is the LPMO weight and ∘ denotes the Hadamard product
(i.e., sample-by-sample multiplication). This local orthogonalization

Multiple leakage extraction using LPMO V83
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assumption is equivalent to assuming that the primaries and multiples
do not correlate locally in the time-space domain:

X
~p0 ∘ ~m ≈ 0: (6)

The LPMO weight can be estimated by solving the following uncon-
strained minimization problem:

min
w

kp −m
zfflffl}|fflffl{p0

− w ∘ mk22: (7)

The above minimization problem uses weighted multiples to
match the leaked multiples in the initially estimated primary model
in a least-squares sense. By forcing a smooth constraint to the un-
constrained minimization problem in equation 7, we thus obtain a
constrained optimization problem:

ŵ ¼ argmin
w

kp0 −Mwk22 þ SðwÞ; (8)

where M ¼ diagðmÞ and SðwÞ denotes a smooth constraint oper-
ator. Furthermore, with the power of shaping regularization (Fomel,
2007b), we are able to solve the least-squares problem:

ŵ ¼ ½λ2Iþ T ðMTM − λ2IÞ�−1T MTp0; (9)

where λ is a scaling parameter and T represents a triangle smooth-
ing operator that fulfills the role of a smooth constraint operator
SðwÞ. The symbol ½·�T denotes the matrix transpose. To make our
solution more stable and to avoid unphysical results, we apply an
additional thresholding operator and median filter to the estimated
LPMO weight:

w̄ ¼ FTðŵÞ; (10)

where T is a thresholding operator that forces the weight to have
values within 0 to 1 and F is a median filtering operator. The current

LPMO weight range is very robust, and a more detailed description
will be shown in the “Discussion” section. Therefore, we can sub-
stitute our final estimated weight w̄ back into equations 4 and 5 to
obtain the final results.

RESULTS

We have investigated our proposed two-step framework on two
synthetic data sets and one field data set. For all the examples, a
conservative SRME followed by the LPMO is applied to obtain
the best result. In contrast, we also provide the standard SRME
results as the comparison.

Lens-shaped synthetic data example

We first test our proposed two-step framework, namely
conservative SRME followed by LPMO, on a 2D synthetic lens-
shaped model, which consists of a water layer, a high-velocity
lens-shaped body overlying a target layer. The sources and receivers
are placed covering the whole surface with a lateral interval of 20 m.
For this 2D synthetic model, full wavefield numerical data are pro-
duced using full wavefield modeling (FWMod) (Berkhout, 2014)
based on the velocity model in Figure 1a and the reflectivity model
in Figure 1b. Figure 2 presents the modeled ground-truth wave-
fields, in which the true multiples and primaries are used as refer-
ence data.
Initially predicted multiples and primaries using conservative

SRME with a global subtraction window are displayed in Figure 3a
and 3b, respectively. The filter length for the global adaptive
subtraction is 28 ms. Note that due to some overlapping energy be-
tween multiples and primaries and global window adaptive subtrac-
tion, there exists obvious multiple leakage in the initially estimated
primary model shown in Figure 3b. In addition, the amplitude of the
estimated multiples in Figure 3a is weaker than the true multiples in
Figure 2b due to this leakage. However, these leaked multiples can
be well detected by the proposed LPMO where in this example, the
smoothing radius of the triangle smoothing operator is 2 time sam-
ples, the thresholding ranges from 0 to 1, and the size of the median
filter is 5 time samples � 5 traces. The final estimated LPMOweight
according to equation 10 is shown in Figure 3c. We can clearly
recognize the shape of leaked multiples from the estimated weight.
Thus, we use the estimated LPMO weight to extract the leaked
multiple energy. After LPMO, the final estimated multiples and pri-
maries are presented in Figure 4. Figure 4a and 4b are exactly the
same conservative SRME results as Figure 3a and 3b, and they are
only used for a better comparison. The most obvious multiple leak-
age spots indicated by the yellow arrows are successfully extracted
in the final primary model as shown in Figure 4e. At the same time,
we can also observe the final estimated multiples in Figure 4d ex-
tract back their leaked energy; thus, they are now more accurate and
close to the true multiples in Figure 2b. To test the improvement of
our proposed framework, we propose to use the so-called local sim-
ilarity map (Fomel, 2007a) as an effective measure to evaluate the
surface-related multiple leakage extraction performance. After cal-
culating the local similarity between estimated primaries and multi-
ples before and after LPMO, we are able to better judge whether the
surface-related multiple leakage is extracted or not. A high similar-
ity value means a high correlation between the two data sets. From
the local similarity maps, shown in Figure 4c and 4f, it can be con-
cluded that the leaked multiple energy at approximately 0.2 and
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Figure 1. A 2D lens-shaped synthetic model. (a) Velocity model.
(b) Reflectivity model.
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0.6 s has been successfully extracted due to the low similarity ob-
served around these areas after LPMO. At the same time, it is worth
noting that there still exist some high-similarity areas between the
final predicted multiples and primaries after the proposed LPMO
step in Figure 4f. The reason for this is that these high-similarity
areas indicate the local overlapping areas between multiples and
primaries. Although the overlapping areas cannot be solved due
to the violation of the initial assumption, they are well protected
from damage by the proposed method through the thresholding

process and the smoothing operator. We also provide a single-trace
comparison at offset −60 m in Figure 5. The black line denotes
the modeled true primaries. The green and red lines represent
the conservative SRME primaries and the primaries after LPMO,
respectively. It is clear that the leaked multiples visible in the green
line are effectively extracted and the red line is closer to the true
primaries.
Next, we will introduce a fair comparison between the proposed

framework and the standard SRME. In detail, we provide two
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Figure 3. Initially predicted (a) multiples and (b) primaries using conservative SRME with a global subtraction window. (c) The estimated
LPMO weight based on (a and b). The surface-related multiple leakage can be effectively detected by the LPMO weight.
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standard SRME results: the L2-norm standard SRMEwith a 240 ms
� 25 traces local subtraction window size and the L1-norm standard
SRME with a 240 ms � 25 traces local subtraction window size
(Guitton and Verschuur, 2004). The filter length for local subtrac-
tion windows is 28 ms. Although this filter length is the same as the
global subtraction window case, it is actually much more powerful
due to the use of small local windows. The estimated primary results
are shown in Figure 6a and 6b, respectively. For comparison, the
final estimated primaries from the proposed framework are also dis-
played in Figure 6c. From Figure 6, we can see that compared to the
proposed primaries, the L2-norm and L1-norm standard SRME re-

sults exhibit more multiple leakage indicated by the yellow arrows
and at the same time more primary damage indicated by the red
arrows. Note that the L1-norm result seems to be slightly better than
the L2-norm result in terms of preserving primaries, and it is also
better at extracting multiple leakage at approximately 0.2 and 0.6 s.
Essentially, small local subtraction windows and a long filter length
in standard SRME lead to more primary damage for the adaptive
subtraction although the multiple leakage of standard SRME is bet-
ter than the conservative SRME result. The proposed two-step
framework to extract surface-related multiple leakage, however,
exhibits less primary damage and less multiple leakage.
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Figure 4. (a and b) Initially predicted multiples and primaries using conservative SRME with a global subtraction window, respectively.
(d and e) Final estimated multiples and primaries after LPMO, respectively. (c and f) Local similarity maps before and after LPMO, respec-
tively. The yellow arrows indicate where the leaked multiples are extracted.
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Complex salt synthetic data example

The second synthetic example is a more complex salt model,
which has 201 shots and 201 receivers with a lateral interval of
15 m. The velocity model is shown in Figure 7, and it consists of
a shallow water layer, shallow layers, a high-velocity salt layer, and
deep target layers. The data set is generated by acoustic finite-differ-
ence modeling. Figure 8a and 8b show the true full wavefield and
the reference primaries, respectively. It is obvious that the surface-
related multiples are strong and the deep primaries are severely in-
terfered by the multiples. Note that the amplitude of the primaries in
the full wavefield is slightly smaller than the reference primaries
due to the deghosting process that was applied to the full wavefield.
The proposed two-step framework is applied to this data set. Ini-

tially estimated multiples and primaries by the conservative SRME
with a global subtraction window are displayed in Figure 9a and 9b,

respectively. The filter length is 40 ms. Compared to the reference
primaries in Figure 8b, the multiple leakage is very obvious in the
initially estimated primary model. Figure 9c demonstrates the final
estimated LPMO weight that shows a good correlation to the leaked
multiples. In this example, the smoothing radius of the triangle
smoothing operator is 2 time samples, the thresholding ranges
from −0.5 to 0.8, and the size of the median filter is 5 time
samples � 5 traces. Interestingly, the negative weight in this example
means that there exist phase-shift errors during conservative SRME;
therefore, this part of the leaked multiple needs to be extracted by
negative weights. Figure 10 displays the surface-related multiple
leakage extraction results before and after LPMO. The conservative
SRME-predicted multiples and primaries shown in Figure 10a and
10b are only displayed for better comparison. The final estimated
primaries after LPMO are presented in Figure 10e, in which the
leaked multiples are extracted, indicated by yellow arrows. The
black arrows indicate the extracted multiple leakage with phase-
shift errors. In addition, the final estimated multiples in Figure 10d
show the restoration of leaked energy compared to that in Fig-
ure 10a. Similarly, the local similarity maps in Figure 10c and
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Figure 5. Single-trace comparison before and after LPMO. The
black line denotes the true modeled primaries, the green line denotes
the conservative SRME primaries, and the red line denotes the pro-
posed primaries after LPMO.
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Figure 6. Comparison to the standard SRME. (a) L2-norm standard SRME primaries with a 240 ms � 25 traces local subtraction window size.
(b) L1-norm standard SRME primaries with a 240 ms � 25 traces local subtraction window size. (c) The proposed primaries after LPMO
(for comparison purposes). The yellow arrows in (a and b) denote the more severe multiple leakage compared to those in (c). The red arrows in
(a and b) denote the primary damage compared to those in (c).
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Figure 7. Complex salt velocity model.
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10f are used to better demonstrate the multiple leakage extraction
improvement before and after LPMO. Moreover, a single-trace
comparison at offset 0 m as shown in Figure 11 is provided to dis-
play the effect of the proposed framework in detail. The black line
indicates the reference primaries, the green line indicates the
conservative SRME estimated primaries, and the red line indicates
the primaries from the proposed two-step framework. It can be seen
that these primaries (the red line) are closer to the reference primar-

ies (the black line) and the larger amplitude of the leaked multiples
(the green line) at approximately 0.6 s can be easily misinterpreted
as primary energy.
A fair comparison with the standard SRME is carried out, and it is

shown in Figure 12. The L2-norm and L1-norm standard SRME
primaries with a 320 ms � 25 traces local subtraction window size
are shown in Figure 12a and 12b, respectively. The filter length for
the L2- and L1-norm cases is 56 ms, which is longer than the global

subtraction case. For better comparison, our pro-
posed two-step framework primaries are presented
in Figure 12c. Compared to our proposed primar-
ies, the yellow arrows indicate more leaked multi-
ples in Figure 12a and 12b. However, in terms
of the amount of multiple leakage, the standard
SRME results all seem better than the conser-
vative SRME result in Figure 10b due to overfit-
ting. Meanwhile, the red arrows in the standard
SRME results denote more primary damage than
the proposed primaries, which is the main draw-
back of the standard SRME. Still, we can find that
the L1-norm standard result seems better than the
L2-norm standard result with respect to primary
preservation.

Field data example

We present an example of the proposed two-
step framework applied to a North Sea data set
from the Nelson field as shown in Figure 13,
and a comprehensive investigation is shown in this
section. The data are extracted from a 2D dual-
sensor towed-streamer line with 25 m source
spacing and 12.5 m receiver spacing. From the

–1000 0 1000
Offset (m)

0

0.2

0.

a) b)

4

0.6

0.8

1

T
im

e 
(s

)

–1000 0 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

Figure 8. Modeled reference data. (a) True full wavefield after deghosting. (b) Reference
primaries.
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Figure 9. Initially predicted (a) multiples and (b) primaries using conservative SRME with a global subtraction window. (c) The estimated
LPMOweight based on (a and b). The surface-related multiple leakage can be effectively detected by the LPMOweight. Note that the negative
weights come from phase-shift errors during conservative SRME.
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dual-sensor data, the upgoing wavefield is obtained (Cambois et al.,
2009). By using reciprocity, shot interpolation, and near-offset
reconstruction (Kabir and Verschuur, 1995), a split-spread data set is
obtained, from which a fixed-spread subset is selected with 201
sources and 201 receivers. The source and receiver spacing is 12.5 m,
where sources were interpolated from the original 25 m grid. The
water depth is approximately 100 m, which is relatively shallow. The
same data are used in Baardman et al. (2010) for inversion-type
SRME. From Figure 13, it can be seen that surface-related multiples

are clearly present and that the primaries are strongly interfered by the
multiples.
Initially predicted multiples and primaries using conservative

SRME with large local subtraction windows (500 ms � 80 traces)
are displayed in Figure 14a and 14b, respectively. The filter length is
20 ms. Due to the fact that 3D data can never be perfectly repre-
sented by a 2D theory and given unavoidable interpolation errors,
surface-related multiple leakage is obvious in the initially predicted
primary model. Besides, the shallow-water scenario makes the
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Figure 10. (a and b) Initially predicted multiples and primaries using conservative SRME with a global subtraction window, respectively. (d
and e) Final estimated multiples and primaries after LPMO, respectively. (c and f) Local similarity maps before and after LPMO, respectively.
The yellow arrows indicate where the leaked multiples are extracted, and the black arrows indicate where the phase-shift leaked multiples are
extracted.
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problem even more difficult. The proposed LPMO weight is dis-
played in Figure 14c, in which we are able to effectively detect
the shape and position of the leaked multiples. In this example,
the smoothing radius of the triangle smoothing operator is 2 time
samples, the thresholding ranges from 0 to 1, and the size of
the median filter is 3 time samples � 3 traces. After LPMO, the
final estimated multiples and primaries are presented in Figure 15.
We are confident about the first-order surface-related multiple leak-
ages indicated by the yellow arrows. Therefore, the most obvious
multiple leakages at approximately 0.7 s are effectively extracted in
the final primary model shown in Figure 15e, while we can also
observe the final estimated multiples retrieved some of their leaked
multiple energy shown in Figure 15d. Here, we also use local sim-
ilarity maps to measure whether the leaked multiples are extracted
or not. From the local similarity maps shown in Figure 15c and 15f,
it can be seen that we have successfully extracted the leaked multi-

ples especially at approximately 0.7 s. A detailed single-trace com-
parison at 87.5 m is shown in Figure 16. The blue line denotes the
full wavefield, the green line denotes the conservative SRME pri-
maries, and the red line denotes the primaries from the proposed
framework. We can clearly see that the conservative SRME primar-
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Figure 11. Single-trace comparison before and after LPMO. The
black line denotes the reference primaries, the green line denotes
the conservative SRME primaries, and the red line denotes the
proposed primaries after LPMO.

–1000 0 1000
Offset (m)

0

0.2

0.4

0.6

0.

a) b) c)

8

1

T
im

e 
(s

)

–1000 0 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

–1000 0 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

Figure 12. Comparison to the standard SRME. (a) L2-norm standard SRME primaries with a 320 ms � 25 traces local subtraction window
size. (b) L1-norm standard SRME primaries with a 320 ms � 25 traces local subtraction window size. (c) The proposed primaries after LPMO
(for comparison purposes). The yellow arrows in (a and b) denote the more severe multiple leakage compared to those in (c). The red arrows in
(a and b) denote the primary damage compared to those in (c).
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Figure 13. Field data shot record with surface-related multiples.
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ies (the green line) at approximately 0.7 s contain strong leaked mul-
tiples that can be easily misinterpreted as primaries. After LPMO, the
proposed primaries (the red line) at approximately 0.7 s become
much smaller than the conservative SRME primaries (the green line).
Similar observations can be made when selecting the −150 m
common-offset gathers as presented in Figure 17. All of the yellow
arrows in Figure 17b and 17c represent the improvement of the
leaked multiples for the proposed framework. Moreover, a stacked
section comparison before and after LPMO is provided in Figure 18
to demonstrate the effectiveness of the proposed method. Compared
to the stacked section of the full wavefield shown in Figure 18a, the
conservative SRME primaries in Figure 18b have already removed
lots of multiple energy, but some amount of leaked multiples indi-
cated by the yellow arrows are still there. After LPMO, the proposed
primaries in Figure 18c display much less multiple leakage, which is
better for accurate interpretation.
We also demonstrate the advantages of the proposed framework

by providing a fair comparison with the standard SRME shot gath-
ers and the stacked sections in Figure 19 and 20. The local subtrac-
tion window size is 160 ms � 25 traces for standard SRME, and a
longer filter length of 44 ms is used. From the shot gather compari-
son, it can be seen that the standard L2-norm SRME primaries in
Figure 19a and the L1-norm SRME primaries in Figure 19b display
slightly more multiple leakage than the proposed primaries indi-
cated by the yellow arrows. Because of the small local subtraction
windows and a long filter length, they are definitely better than
the conservative SRME primaries shown in Figure 14b in terms of
multiple leakage. Furthermore, the obvious primary damage indi-
cated by the red arrows in the L1- and L2-norm standard SRME
results reveals the overfitting of standard SRME, which can se-
verely affect the subsequent imaging and interpretation accuracy.
The standard SRME stacked sections in Figure 20a and 20b show
the negative influences of the damaged primaries as indicated by the
red arrows, in which the primary energy is dimmed in general

compared to the proposed primaries in Figure 20c. Besides, the
multiple leakage in the standard SRME results is still slightly more
than that in the proposed results, as indicated by the yellow arrows,
although it is already better than conservative SRME.

DISCUSSION

The essential differences between a one-point matching filter and
the proposed LPMO step are more broadly discussed here including
the computation of weights subject to smoothing, scaling, thresh-
olding, and median filtering. First, the proposed framework can be
considered as a one-point nonstationary matching filter, which is
capable of adapting to the complex nonstationary seismic data. Sec-
ond, obtaining a one-point nonstationary filter requires solving a
highly underdetermined inverse problem. For this type of inverse
problem, the shaping regularization is able to control the smooth-
ness and deliver fast convergence, which is indicated by equation 9.
The smoothing radius used in the constraint operator SðwÞ contrib-
utes to the final resolution of the estimated weights. Furthermore,
the scaling parameter λ usually can be set as kMTMk22. The thresh-
olding and median filtering operators in equation 10 are especially
designed for the multiple leakage extraction problem, which is not
needed for the random noise removal case. Thresholding of the es-
timated LPMO weights is highly necessary, due to the complex
behavior of multiples and primaries, whereas median filtering is
purely for obtaining a more stable result and avoiding outliers.
The thresholding range is the key parameter in the proposed

framework. In the theory part, we mention that after shaping regu-
larization, we obtain the estimated LPMO weights and then apply a
thresholding operator T on the weights to force them to usually have
values within 0 to 1. The logic behind it is shown in Figure 21. The
yellow line indicates the estimated multiples from the conservative
SRME. Usually, we can safely assume that the amplitude of the
leaked multiple should be smaller than that of the estimated multi-
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Figure 14. Initially estimated (a) multiples and (b) primaries using conservative SRME with large subtraction windows. (c) The estimated
LPMO weight based on (a and b). The surface-related multiple leakage can be effectively detected by the LPMO weight.
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ple, which means that the estimated weights should be smaller
than 1. As mentioned before, the overall LPMO can be seen as a
one-point nonstationary matching filter (Chen and Fomel, 2015)
and the objective function only cares about the minimum energy
after matching and subtraction. More importantly, the algorithm it-
self cannot tell the difference between leaked multiples and primar-
ies. Therefore, there is a tendency for the algorithm to use estimated
multiples to match the primaries, which will result in quite large
weights (i.e., w > 1) due to the fact that primaries usually have a
much higher amplitude than the estimated multiples. Thus, a thresh-
olding operator can help the algorithm focus on the leaked multiple

energy of interest. It is necessary to be aware of other special
situations regarding the thresholding operator. First, as mentioned
in the complex salt model example, the estimated LPMO weight
introduces some negative values as shown in Figure 9c. This is be-
cause of phase-shift errors when predicting the multiple model.
Thus, in this case, the multiple leakage and the estimated multiple
model might have opposite polarity, which can be compensated by
introducing negative weights. Second, real data always have some
sampling issues (e.g., near offsets missing and crossline under-
sampling). Even the most advanced interpolation approaches still
bring some reconstruction errors to the data, and then those errors
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Figure 15. (a and b) Initially predicted multiples and primaries using conservative SRME with large subtraction windows, respectively.
(d and e) Final estimated multiples and primaries after LPMO, respectively. (c and f) Local similarity maps before and after LPMO, respec-
tively. The yellow arrows indicate where the leaked multiples are extracted.
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might result in the relatively weaker amplitude of the predicted
multiples. Therefore, combined with phase-shift errors and 2D/3D
effects, there might be a chance that the estimated multiples are
weaker than the multiple leakage. Weights larger than 1 can then be
tested to determine the performance. Based on our experience, the
robust range for the thresholding operator T is between 0 and 1.
When there are still some obvious phase-shift multiple leakage left,
the range can be revised to between −0.5 and 1. For the field data
set, the upper limit of the thresholding operator should be smaller
than 2 based on our experience.
Smoothing is also an important part in shaping regularization. In

this paper, the triangle smoothing operator is used in shaping regu-
larization-based inversion. The sampling in time for the lens-shaped
model and field data is 4 ms, whereas the sampling for the complex
salt model is 8 ms. The smoothing radius of the triangle smoothing
operator for all of the examples is set as 2 time samples for higher
resolution. The range for smoothing radius based on our experien-

ces can range from 2 to 10 time samples depending on the desired
resolution.
The proposed framework is still based on the basic assumption

that the primaries and multiples should not correlate. Thus, it is
worth noting that some red areas in the local similarity maps are
unchanged before and after LPMO. These high-similarity areas in-
dicate where the multiples and primaries are highly correlated and
overlapped, which violates the initial assumption of most adaptive
subtraction methods. Therefore, most methods in the literature
fail to correctly extract the leakage if it exists in these areas. For
our proposed approach, its multiple leakage extraction power is
within the limitation of the orthogonal assumption. However, if
the conservative primary estimation (e.g., the conservative SRME)
is used and followed by LPMO in our proposed framework, the
primary damage can be kept to a minimum compared to other stan-
dard methods.
As for the computational time consumption, it depends on the

actual situations and is relatively difficult to compare. In general,
most time consumption for the standard SRME comes from the
parameter tuning of the adaptive subtraction. Practitioners have
to test a set of different window sizes and filter lengths to find
the desired optimal setting, which is usually a tedious process. Be-
sides, some amount of time is required to compare different results
and the trade-off between multiple leakage and primary damage has
to be decided by the practitioners. Therefore, all of the parameter
tuning-related time consumption is hard to estimate. As for the pro-
posed framework, the LPMO definitely takes some extra time for
inversion (e.g., it is approximately 10 times more expensive for the
field data example), but it saves practitioners time from fine-tuning
the parameters. Above all, we could also consider the LPMO as an
extra QC step to evaluate whether the multiple energy is leaked
or not.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

–400

–200

0

200

400

600

A
m

pl
itu

de

SRME primary
Proposed primary
Fullwave

Figure 16. Single-trace comparison at offset 87.5 m before and
after LPMO. The blue line denotes the full wavefield, the green line
denotes the conservative SRME primaries, and the red line denotes
the proposed primaries after LPMO.
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Figure 17. Common-offset gather comparison at offset −150 m. (a) Common-offset gather of the input. (b) Common-offset gather of the
initially predicted primaries by conservative SRME with large subtraction windows. (c) Common-offset gather of the final estimated primaries
after LPMO.
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From almost-perfect-world synthetic examples, the leaked
surface-related multiples may not seem to have strong influences
on primaries due to the relatively small amplitude. However, real-
world field data with 2D/3D effects and interpolation errors always
tend to show much more obvious and severe surface-related

multiple leakage. The proposed two-step framework thus can be
a quite helpful toolbox to attack the multiple leakage without
damaging primaries. Meanwhile, it can also be regarded as another
tool in the toolbox of various multiple prediction and subtraction
techniques.
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Figure 18. Stacked section comparison. (a) Stacked section of the input. (b) Stacked section of the initially predicted primaries by conservative
SRME with large subtraction windows. (c) Stacked section of the final estimated primaries after LPMO.
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Figure 19. Shot gather comparison to standard SRME. (a) L2-norm standard SRME primaries with a 160 ms � 25 traces local subtraction
window size. (b) L1-norm standard SRME primaries with a 160 ms � 25 traces local subtraction window size. (c) The proposed primaries after
LPMO (for comparison purposes). The yellow arrows in (a and b) denote the more severe multiple leakage compared to those in (c). The red
arrows in (a and b) denote more primary damage compared to those in (c).
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For very complex field data, extracting leaked multiples in the
shot domain might not be enough, therefore, multidomain LPMO
is suggested (Zhang et al., 2019b). The common-offset domain is an
appropriate choice, in which we might observe the leakage with less
effort. The whole framework is exactly the same as the shot-domain
extraction based on LPMO. The only difference is to sort the data to
the common-offset domain in advance.
Our proposed two-step framework based on LPMO aims to solve

the surface-related multiple leakage problem for all of the existing
primary and multiple estimation approaches. That is, as long as
there is multiple leakage in the estimated primary model, our pro-
posed LPMO can be attached to any primary estimation approach.
For example, more advanced inversion-based CL-SRME or EPSI is,
to some extent, able to alleviate the multiple leakage problem, but it
may still suffer from such multiple leakage, especially for complex
coarsely sampled field data with 2D/3D effects. Therefore, we can
regard either CL-SRME or EPSI as our primary estimation engine

for the initial step, and then the second step, LPMO, as a remedy can
be applied to extract the leaked multiples. Moreover, model-driven
multiple prediction approaches (e.g., model-based water-layer de-
multiple [Wang et al., 2011]) can also be attached by the proposed
LPMO step as long as the adaptive subtraction is involved.
Currently, there is no requirement of broadband data for our pro-

posed framework. In terms of the leakage as a function of frequency,
a possible solution might be that the low-frequency components can
be processed with large local windows in the adaptive subtraction,
whereas the high-frequency components can be processed with
smaller local windows. The proposed LPMO step could be further
applied to low- and high-frequency components with different
parameter settings. Further research is needed to investigate this is-
sue in detail.

CONCLUSION

We have introduced a new two-step framework for surface-re-
lated multiple leakage extraction, and we thus obtain a better esti-
mated primary model. This two-step framework using LPMO is
highly efficient for leaked multiple extraction and can work for vari-
ous multiple prediction methods. Conservative SRME is used as the
initial estimation step followed by LPMO as the remedy to correct
the estimated primaries and multiples. Applications to two synthetic
data sets and one field data set demonstrate the good performance of
the proposed framework for primary estimation compared with the
standard SRME results.
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