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Abstract
Unlike traditional blur filters, the bilateral filter ex-
hibits non-linear blur behaviour as its kernel size
increases. This atypical blur behaviour makes it
challenging to find a good σr. This paper investi-
gates the underlying reasons for this behaviour and
proposes methods to align the bilateral filter’s blur
scaling linearly with its spatial filter size. Using
local frequency analyses to quantify blur levels, we
introduce an approach that finds the best σr through
iterative search. Results demonstrate that the pro-
posed method effectively counters the atypical blur
behaviour. However, the proposed method does not
perform sufficiently when handling very large ker-
nel sizes. The proposed method can be used to
abstract away the σr parameter when seeking lin-
ear blur behaviour in the bilateral filter. Further re-
search is needed to make it functional for very large
kernel sizes.

1 Introduction
Filtering is an operation used to modify images by applying
a specific mathematical operation to each pixel. The goal of
filtering is often to enhance certain aspects of the image, such
as reducing noise, sharpening edges, or blurring details. A
key concept in image filtering is the kernel, which is typically
a square matrix of numbers; see Figure 1. Each number in the
kernel represents a weight.

Figure 1: A visualisation of a 7x7 Gaussian kernel.

The kernel is placed over pixels in the image, and their val-
ues are multiplied by the corresponding kernel weights. The
products are summed to compute a weighted average, which
is used to update the central pixel’s value in the output im-
age. A popular noise reduction technique is the Gaussian blur,
which utilises a 2D bell-shaped distribution as the kernel; see
Figure 1. When applied to an image, the Gaussian blur re-
sults in a smoothed version of the original image, an example
of which is shown in Figure 2.

This paper is about bilateral filtering [10] which blurs im-
ages while preserving edges. To blur an image while keeping

Figure 2: Left: Image with noise. Right: Image denoised using
Gaussian blur.

edges, the bilateral filter multiplies two Gaussian kernels: the
spatial kernel which weighs spatial distance, and the range
kernel weighing difference in intensity. The range kernel
aims to prevent blurring across edges by only averaging pix-
els in the kernel with similar intensities. The output of the bi-
lateral filter centered at current pixel p is formally expressed
as:

BF [I]p =

∑
q∈S Gσs

(∥p− q∥)Gσr
(|Ip − Iq|)Iq∑

q∈S Gσs
(∥p− q∥)Gσr

(|Ip − Iq|)
(1)

Where BF [I]p represents the pixel intensity at position p af-
ter bilateral filtering. S are the pixels that fall under the kernel
neighborhood. q is a pixel that falls under the kernel. Ip and
Iq are the intensity values at pixels p and q respectively. G is
the Gaussian function. σs and σr are respectively the spatial
and range standard deviations. The bilateral filter has several
parameters that control its behaviour:

• σs: The spatial sigma changes the standard deviation of
the Gaussian spatial kernel. A larger value means that
farther pixels will influence each other.

• σr: The range sigma changes the standard deviation of
the Gaussian range kernel. A larger value means that
more different intensities will be mixed together.

• ‘Diameter‘: The diameter of the kernel that is used dur-
ing filtering. In this paper, we use OpenCV’s approach
of computing it from the spatial sigma using the formula
‘diameter = 2 * round(spatial sigma * 1.5) + 1‘ [8]. Note
that when we refer to ‘spatial filter size‘, we are con-
sidering both the kernel diameter and spatial sigma as a
single parameter.

As with standard blur filters like a Gaussian blur, one
would expect the image to get more blurred when increasing
the spatial filter size. But this is not the case for the bilateral
filter. This phenomenon is illustrated in Figure 3.

As you increase spatial filter size, the bilateral filter starts
blurring more and more, as expected. This lasts up to a cer-
tain spatial filter size, the elbow point, depending on the im-
age. Increasing the spatial filter size even more after that point
results in the image getting less and less blurred. This phe-
nomenon will hereafter be referred to as the atypical blur be-
haviour. In our observations of different test images, the blur
level tends to decrease from a σs higher than 9. The reasons
for this are discussed in Section 3.
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Figure 3: Left: Image bilaterally filtered with parameters σr = 75
and σs = 5. Right: Image bilaterally filtered with parameters σr =
75 and σs = 29.

The bilateral filter has a multitude of applications, such as
denoising in medical imaging or movie restoration and tone
mapping [3]. When the bilateral filter is used to denoise med-
ical images, it often uses small spatial filter sizes. This pa-
per aims to explore methods to ensure the bilateral filter be-
haves predictably with larger spatial filter sizes. Therefore,
this research could potentially expand the filter’s applications
in medical imaging to include larger spatial filter sizes. Tone
mapping applications often use a large σs, as large as 2% of
the image diagonal [3]. ”This property is quite important be-
cause the user does not have to set a complex parameter” [3].
When testing different images, the atypical blur behaviour
has been observed starting at σs 9, meaning that images with
as small diagonals as 450 pixels could already exhibit the
atypical blur behaviour. Choosing the perfect range sigma for
the bilateral filter is therefore challenging because the filter
displays different behaviour depending on spatial filter size.
This brings us to the research question.

This paper’s main question is: how to adapt the bilateral fil-
ter to have its perceived blur scale linearly with respect to its
spatial filter size? The first sub-question of the paper is: Why
does the bilateral filter exhibit this atypical blur behaviour?
Next, we answer the sub-question: How do we measure per-
ceived blur? The second sub-question, inspired by the similar
approach researched by Liu et al. [5], is how to adapt the
range kernel of the bilateral filter to counter the atypical blur
behaviour.

After discussing related work in Section 2, Section 3 delves
into why the bilateral filter exhibits the atypical blur be-
haviour. After which, Section 4 reports the research done on
how to measure blur level of images filtered by the bilateral
filter. Thirdly, Section 5 reports the development of an algo-
rithm that automatically chooses the value for the range sigma
parameter. Iterating upon the findings of the first algorithm,
the development of a second algorithm that uses image con-
tent will be reported on in Section 6. Sections 4, 5 and 6 are
complemented with their own results and discussion section.
Section 7 discusses the integrity, reproducibility and ethics of
this paper. Lastly, Section 8 is dedicated to concluding the
paper, highlighting limitations and making recommendations
for future work.

Figure 4: Comparison of normal, σs = 3, and very high, σs =
100, spatial kernels. The x-axis represents ∥p − q∥, and the y-axis
represents the output weight.

2 Related Work
Most work on adapting the range kernel has focused on mak-
ing a faster bilateral filter implementation [1][4]. Fredo Du-
rand and Julie Dorsey researched differences between influ-
ence functions for kernel types such as Gaussian and Huber
[3]. This is useful to this paper because they also looked into
blurring behaviour per influence function, stating: ”We can
see that larger influences of outliers result in estimates that
are more blurred and further from the input pixels” [3].

Our work is also related to the contributions by Tao Dai and
Weizhi Lu, who developed an adapting bilateral filter that ad-
dresses the sensitivity of the standard bilateral filter’s range
kernel to noise [2]. Dai and Lu’s work assumes that lever-
aging the difference between the noisy image and a denoised
estimate will enhance denoising performance. However, their
paper does not delve into the atypical blur behaviour.

Liu et al. [5] developed an adaptation of the bilateral filter
that automatically chooses a range sigma based on local noise
levels. Liu et al.’s approach is based on the assumption that
noise levels are the primary factor affecting the performance
of vision algorithms. This work relates to our paper as we also
develop an algorithm that chooses a range sigma, but based
on local intensity similarities instead of local noise levels.

Mir et al. conducted an empirical evaluation of blur met-
rics for digital cameras [7]. Their findings showed the effec-
tiveness of simple first-derivative-based blur metrics. Pertuz
et al. focused on comparing blur metrics for depth recovery
and 3D reconstruction in computer vision [9]. However, the
compared metrics in these related works do not mention the
bilateral filter in any way, which could mean that their re-
searched metrics might not perform well for images filtered
with the bilateral filter.

Marziliano et al. introduced a blur metric for images that
analyses the spread of edges in an image [6]. Their metric
shows promise in enhancing autofocus capabilities in cam-
eras. Their metric was validated through subjective percep-
tual experiments, which inspired the method of validating the
researched metrics in this work.

3 Explanation atypical blur behaviour
We analysed the formal definition of the bilateral filter (see
Equation 1) to find out why the atypical blur behaviour exists.

As σs increases, the spatial Gaussian function becomes
wider. This means that pixels further away from the cen-
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Figure 5: Left: Small black and white kernels drawn on two neigh-
bouring pixels. Right: Big black and white kernels drawn on two
neighbouring pixels

tre pixel p will have higher weights than they would with
a smaller σs. Now take σs very high. This ensures that
Gσs

(∥p − q∥) evaluates to the same output for different in-
puts ∥p − q∥ with negligible deviation, see Figure 4. The
filter simplifies to:

BF [I]p =

∑
q∈S Gσr (|Ip − Iq|)Iq∑
q∈S Gσr (|Ip − Iq|)

(2)

Another influence increasing σs has is indirectly increasing
the kernel size, adding more pixels q to S. A larger S implies
that neighbouring pixels have more similar neighbourhoods
than if S were smaller; see Figure 5. This holds true for sim-
ilarities such as Jaccard similarity or overlap coefficient.

With Equation 2 and the finding about increased neigh-
bourhood similarity, we will conclude our explanation. Take
neighbouring pixels p1 and p2. With a high kernel size, their
neighbourhoods S1 and S2 are similar with negligible differ-
ence, say S. This means that for p1 and p2 the only difference
in BF [I]p is Ip and therefore the input of the range kernel
|Ip − Iq|. This results in different weights for the same pixels
q in S. Which in turn makes BF [I]p1 output a different value
than BF [I]p2. This explains why neighbouring pixels keep
the same structure instead of getting blurred.

GB[I]p =

∑
q∈S Gσ(∥p− q∥)Iq∑
q∈S Gσ(∥p− q∥)

(3)

Lets contrast this to the predictable behaviour of the Gaus-
sian blur, Equation 3, with high kernel sizes. The fact that
neighbourhoods of neighbouring pixels are similar also holds
for the Gaussian blur. This means that for p1 and p2 the only
difference in GB[I]p is the location of p. But because p1
and p2 are neighbours, that difference is very small. This re-
sults in similar weights for the same pixels q in S. Which in
turn makes GB[I]p1 output a value similar to GB[I]p2. This
explains why these neighbouring pixels obtain similar values
and get blurred.

4 Measuring blur
This research aims to improve the bilateral filter for linear
blur scaling with kernel size. We define linear blur scaling
by looking at the Gaussian blur, which does get more blurred
as you increase its kernel size. The Gaussian blur serves as
a good baseline since it is a standard blurring filter and peo-
ple are well known with its behaviour. Therefore, it can be
deemed to have predictable blur behaviour. In this paper, we
defined linear scaling perceived blur as: the slope of the Gaus-
sian blur levels. This means that our implementation should

try to match the slope of the Gaussian blur levels at each filter
size interval.

After reading existing papers comparing blur metrics [7]
[9] we picked four different blur metrics to try; Laplacian
variance, gradient magnitude, local frequency analysis and
the Brenner focus measure. These specific metrics were cho-
sen to try and cover the most characteristics of all available
blur metrics. The Laplacian variance for its simplicity and for
being fast to compute. The gradient magnitude because it is
more comprehensive but still simple to compute. The local
frequency analysis was included because it involved a differ-
ent perspective on detecting blur by using frequencies. And
lastly, the Brenner focus measure because it was specifically
designed to measure focus, the antonym of blur.

Laplacian Kernel =

[
0 1 0
1 −4 1
0 1 0

]
(4)

The Laplacian variance metric is based on the observation
that sharp images have more rapid intensity changes, while
blurred images have fewer rapid intensity changes due to
the smoothing effect of the blur. After convolving an im-
age with a Laplacian kernel (see Equation 4), the resulting
image will have high values at edges and low values in flat
regions. A lower resulting variance indicates fewer areas of
rapid change, meaning the image is more blurred.

Sobel Kernel (x-direction) =

[−1 0 1
−2 0 2
−1 0 1

]
(5)

The way the gradient magnitude metric models blur is
by measuring intensity transitions, also known as gradients.
Smoother transitions indicate more blur. By convolving an
image with Sobel kernels in both the x and y directions (see
Equation 5 for the x direction Sobel kernel), we obtain the
gradients along these directions. Then we take the mean of
these gradients. A lower mean gradient magnitude indicates
fewer pronounced edges, meaning the image is more blurred.

The local frequency analysis metric measures blur by
analysing the frequency content of local regions in the image.
The idea is that blurred images have more energy concen-
trated in lower frequencies, while sharp images have more
energy distributed across higher frequencies. We divide the
image into small blocks and perform a Fourier transform on
each block to obtain its frequency spectrum. A higher ratio of
low-frequency energy to total energy indicates more blur. By
averaging these ratios across all blocks, we obtain an overall
measure of the image blur.

The Brenner focus measure measures image sharpness by
calculating squared differences in pixel intensities between
neighbouring pixels along both horizontal and vertical di-
rections. This approach emphasises rapid intensity changes
or edges, whereas the gradient magnitude metric focuses on
overall intensity changes across the image.

4.1 Method
When looking for the correct blur metric, it is important that
the metric is accurate to the perceived blur. This means that
the metric should result in a higher blur with small increases
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Figure 6: Grid of image filtered with the bilateral filter. Ascending
σs ∈ [0, 40] along the horizontal axis, ascending σr ∈ [0, 40] along
the vertical axis. Subjective contour lines are drawn, grouping im-
ages with similar perceived blur together. Images inside the yellow
contour line are the most blurred.

in spatial filter size, up to the elbow point. Increasing the
spatial filter size even more after that point should result in the
blur levels decreasing. To evaluate the effectiveness of these
blur metrics on bilaterally filtered images, we first made a
grid of images filtered with the bilateral filter, with increasing
sigmas along both axes in domains σs, σr ∈ [0, 40]. On a
subjective basis, contour lines were drawn on the image grid,
grouping images with the same perceived blur levels together;
see Figure 6. Lastly, we made a contour plot for every blur
metric, with the same parameter domain as the image grid.
Then the contour plots were compared to the contours of the
image grid.

4.2 Results and discussion
Figure 7 shows the contour plots for all four blur metrics.
The metrics measure an increasing blur level with an increas-
ing σr. This observation can be attributed to the fact that
increasing σr in bilateral filtering results in more smoothing
across intensities, thereby reducing the sharpness of edges
and transitions and reducing higher frequencies in the image.
However, only the local frequency analysis metric captures
decreasing blur levels with increasing σs, which shows that
the local frequency analysis metric does identify the atypi-
cal blur behaviour. A reason why these metrics do or do not
capture the atypical blur behaviour is left for further research.
When comparing the metric contour plots in Figure 7 to the
subjectively drawn contour lines in Figure 6, we determined
that the self-drawn contour lines matched most closely the
shape of the local frequency analysis metric. Additionally,
this metric also captures the atypical blur behaviour, which is
a strong requirement. Therefore, we will develop our algo-
rithm in Section 5 using the local frequency analysis metric
to measure blur.

5 Brute force algorithm
Using the local frequency analysis method to quantify blur
that matches our perception, we focus on the main question:
how to adapt the bilateral filter to have its blur level scale lin-
early with kernel size. As stated in the first paragraph of Sec-
tion 4, we made our definition of linear scaling the slope of

Figure 7: Contour plots of different blur metrics. Top left: Lapla-
cian variance. Top right: gradient magnitude. Bottom left: local
frequency analysis. Bottom right: Brenner focus measure. Ascend-
ing σs ∈ [0, 40] along the horizontal axis, ascending σr ∈ [0, 40]
along the vertical axis. Images inside the yellow contour line are the
most blurred.

Figure 8: Kernel sizes and their blur levels measured for the normal
bilateral filter in red, Gaussian blur in blue and the developed algo-
rithm in green.

the Gaussian blur levels. When increasing spatial size, the bi-
lateral filter behaves predictably until the elbow point. There-
fore, after identifying the elbow point, the algorithm should
alter the bilateral filter’s blur levels to follow the same slope
as the Gaussian blur level.

One way to alter blur level is by increasing σr, as can be
seen in Figure 7. When you increase σr, the Gaussian range
kernel becomes flatter. This means that the intensity differ-
ences between pixels have less influence on the weighting.
In the limit as σr approaches infinity, the range kernel func-
tion Gσr

returns the same value for every input. Meaning the
bilateral filter turns into a regular Gaussian filter. The follow-
ing algorithm builds upon this knowledge to map a σr to a
specified spatial filter size to make the blur scale linearly.
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Figure 9: Spatial filter sizes and their corresponding σr values cho-
sen by the algorithm.

5.1 Method
The first step of this algorithm is blurring the image using
Gaussian blurs iterated over kernel sizes ∈[1, specified filter
size]. Each iteration the blur level is measured and saved.
The second step of the algorithm is blurring using the bilat-
eral filter and iterating over the same kernel sizes. To choose
the best σr the algorithm compares the slope of the bilateral
filter’s blur levels between successive kernel sizes. When it
detects the slope of the blur levels decreasing, it identifies the
spatial size where the elbow point is located. From the elbow
point onwards, σr is increased slightly to increase the slope
of the bilateral filter’s blur levels. When the slope matches
the slope of the Gaussian blur levels at that same filter size,
it accepts the current σr. Incrementing σr in very small steps
ensures that the lowest existing sufficient σr is detected while
still matching the slope of the Gaussian blur levels.

The preliminary results in Figure 8 show that by increasing
σr, the blur levels can be increased in a controlled manner to
accurately recreate the slope of the Gaussian blur. However,
when specifying a large kernel size, the algorithm takes a very
long time. This happens because the search includes bilater-
ally filtering many times with large kernel sizes.

Noting Figure 9, the values of σr seem to relate linearly to
the kernel size. This linear relationship was consistently ob-
served across multiple test images, indicating a general pat-
tern. This pattern inspires a simple improvement to the per-
formance of the brute force algorithm. We can extrapolate
σr values for each kernel size by sampling blur for only a
few small kernel sizes and then fitting a line through these
samples. For multiple images, this method gave reliable es-
timates for chosen σr when taking samples of kernel sizes
∈ [1, 19]. This specific domain was determined by testing
the time taken and the approximated error to the fully brute-
forced sigma value. This improvement means that the algo-
rithm only has to brute force search the corresponding σr for
kernel sizes up until nineteen, after which it extrapolates the
σr that corresponds to the specified kernel size. This im-

Figure 10: Kernel sizes and their blur levels measured for the nor-
mal bilateral filter in red, Gaussian blur in blue and the developed
algorithm in green. The developed algorithm uses extrapolated σr

values.

Figure 11: Left: image filtered with normal bilateral filter, kernel
diameter = 51, σr = 10 and σs = 17. Right: image filtered with
brute force algorithm, kernel diameter = 51, starting σr = 10 and
blur metric = local frequency analysis.

provement means that the algorithm no longer has to bilat-
erally filter images with kernel sizes higher than nineteen.

5.2 Results and discussion
Using the code available at this GitHub repository, with pa-
rameters: max kernel size = 51, starting σr = 10, blur metric
= local frequency analysis, the results in Figures 10 and 11
were obtained.

For the smallest kernel sizes, there is little difference be-
tween the algorithm and the normal bilateral filter. The al-
gorithm detects that there is no need to increase σr. After
the elbow point, the blur level slope matches the slope of the
Gaussian blur level slope. Which, according to our definition
of linear blur scaling, means that the blur levels scale linearly
with respect to kernel size.

This partly answers the main research question. The re-
sulting image in Figure 11 is clearly more blurred than its
counterpart with the normal bilateral filter. However, when
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Figure 12: Image filtered with brute force algorithm, kernel diameter
= 125, starting σr = 10 and blur metric = local frequency analysis.

specifying a large kernel size with this algorithm, the result-
ing image lacks the distinctive edge preservation of the bilat-
eral filter and instead resembles the Gaussian blur to a greater
extend; see Figure 12. This implies the ineffectiveness of this
adaptation in a scenario such as denoising a noised step func-
tion. One would use the bilateral filter to filter out noise while
preserving the step. For very large kernel sizes, this adapta-
tion will result in the step not being preserved.

This brute force algorithm can be useful in scenarios where
users do not know which σr to choose, but know that their σs

is relatively high. In such cases, the algorithm abstracts away
the complexity of manually selecting σr. However, there
is a risk associated with deploying this algorithm in impor-
tant fields such as medical imaging. While the atypical blur
behaviour would not be an issue, the brute force algorithm
may unpredictably blur details that the normal bilateral filter
would not blur.

After attempting this approach, we concluded that it does
not achieve the desired bilateral blur effect. We found that
for very large specified kernel sizes, the chosen σr was large
enough to eliminate the influence of the range kernel, render-
ing the algorithm ineffective.

6 Adapting σr algorithm
The brute-force algorithm finds the correct σr to counter the
atypical blur behaviour. However, for very large kernel sizes,
the characteristic edge preservation of the bilateral filter gets
lost. This section reports on the failed development of a new
algorithm that tries to counter the atypical blur behaviour
while also preserving edges. This algorithm’s approach is to
lower the range sigma for each pixel based on how close it is
to an edge. For a noised step function, this should result in
the function getting flattened, except when nearing the noised
step.

6.1 Method
Firstly, we preprocess the image to find the edges. We do this
in a novel way: for each pixel p in the image, the mean inten-
sity µ of the neighbourhood Sp of size k × k is considered.
Then the difference between µ and Ip is computed. A higher
difference indicates that pixel p is located near more pixels
with another intensity. Therefore, it is closer to an edge or
step.

Figure 13: Left: Image filtered using the brute-force algorithm, ker-
nel diameter = 151, starting σr = 10 and blur metric = local fre-
quency analysis. Right: Image filtered using the adapting σr algo-
rithm, kernel diameter = 151, base σr = 142, k = 8

Next, for each pixel p, an adaptive range sigma σr(p) is
calculated based on the obtained differences. Pixels that are
very similar to its neighbourhood Sp are assigned the σr com-
puted by the previous algorithm. Whereas more different pix-
els receive a lower σr(p). This adaptive σr(p) ensures that the
bilateral filter blurs linearly in areas with similar structures
and blurs less near areas with different structures.

Lastly, the image gets filtered using the normal bilateral
filter. But with a different σr(p) for each pixel.

6.2 Results and Discussion
When first running the brute-force algorithm, using the code
available at this GitHub repository, with parameters: max
kernel size = 151, starting σr = 10, blur metric = local
frequency analysis, the resulting σr is 142. Then running
the adapting σr algorithm with max kernel size = 151, base
σr = 142 and k = 8. Results in Figure 13

The resulting image has some edges that are preserved
compared to its counterpart with the brute force algorithm.
However, not all edges are preserved and there are some very
unpleasant artifacts. After attempting this approach, we con-
cluded that it does not imitate the desired bilateral blur effect.

7 Responsible Research
The code used to obtain most results for this project can be
found at https://github.com/BramyBoyGG/Research-Project-
Bilateral-Filter-Blur. The code does not integrate any form of
randomness, which means that the results in Subsection 5.2
and Figure 7 can be exactly reproduced using the provided
code and the parameters specified in the figure captions. It
should be noted that the results in Subsection 4.2 largely de-
pend on Figure 6, where the blur level groupings were created
subjectively. This makes exact reproduction of these results
challenging. However, the full version of Figure 6 is avail-
able on GitHub, allowing for review of the contour lines. To
improve transparency, the failed attempt to develop an algo-
rithm that counters the atypical blur behaviour while preserv-
ing edges is also reported in 6. The code required to obtain
the results in this section is not added to the complementary
GitHub repository. Reasons for this include time constraints
and the poor results.
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The images of peppers [12] and mandrill [11] were ob-
tained from the USC-SIPI Image Database. It should be noted
that the copyright status of these images is unknown, as in-
formation on the source has been lost. The algorithms in this
research require approximately an order of magnitude more
computing power than the normal bilateral filter. This in-
creased computational demand raises concerns regarding sus-
tainability, as it leads to higher energy consumption.

Lastly, it must be stated that although this project was con-
ducted for academic purposes, it was initiated as a mandatory
course in the CSE bachelor’s programme at TU Delft. In ad-
dition to the author stating that there are no external motiva-
tions, the integrity of the research process was supervised by
the experienced academics Prof.dr. E. Eisemann and MSc.
M.L. Molenaar.

8 Conclusions, limitations and Future Work
This paper focused on three areas: explaining the atypical
blur behaviour of bilateral filters, identifying effective blur
metrics, and adapting the bilateral filter to counter this be-
haviour. Firstly, analysing the formal definition of the bilat-
eral filter yielded two interesting properties. For large spatial
sizes, the bilateral filter’s equation can be simplified to ex-
clude the spatial kernel term. And for large spatial sizes, the
neighbourhoods of neighbouring pixels are practically simi-
lar. These properties were combined to form the explanation
of the atypical blur behaviour. This explanation was then con-
trasted with the typical blur behaviour of the Gaussian blur.

Secondly, after reviewing existing literature on blur met-
rics, we selected four different metrics for evaluation: Lapla-
cian variance, gradient magnitude, local frequency analysis
and the Brenner focus measure. We determined that the local
frequency analysis metric most accurately captured the atypi-
cal blur behaviour and closely matched perceived blur levels.

Thirdly, we developed a brute-force algorithm that adjusts
σr to ensure linear perceived blur scaling, effectively coun-
tering the atypical blur behaviour. Despite this success, this
algorithm behaves like a Gaussian filter for very large spatial
filter sizes. Losing its distinctive edge-preserving characteris-
tics. This makes the adaptation less effective for applications
for which one would use the bilateral filter. Iterating upon
the first algorithm, we attempted to develop a new algorithm
that addresses this limitation. This approach involved adjust-
ing σr for each pixel based on its proximity to edges. Despite
some success in preserving certain edges, the algorithm failed
to mimic the desired bilateral blur effect.

A point of future work would be improving the attempted
adapting σr algorithm. One could start by integrating known
methods of detecting edges, such as Sobel or Canny edge de-
tection, instead of the attempted novel way. Improving this
could result in an algorithm that counters the atypical blur
behaviour, while preserving edges like the bilateral filter. An-
other recommendation is to gain more understanding of the
atypical blur behaviour by experimenting with range kernels
other than Gaussian, such as the kernels used in the paper of
Durand and Dorsey [3]. With insight into this one might cre-
ate a specific range kernel that does not display the atypical
blur behaviour.
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