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Summary

The computation of normalizing constants often brings (higher-dimensional) integrals, which could not be
computed analytically or are computationally expensive. Stochastic methods will be explored to find an estimate
for normalizing constants. These stochastic methods will be used to estimate the Bayes factor. With this Bayes
factor can be searched for a best fitting model to data.
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Chapter 1

Introduction

A density function describes the likelihood of an outcome for a random variable. By integrating this density
function over its entire support, we find the normalizing constant of the density function. Now, the density
function divided by the normalizing constant integrates to 1, making it a probability density function. A density
function is often higher dimensional, which results in integrals that are intractable to calculate analytically or
computationally too expensive to calculate. A numerical approach is needed to find an estimate for normalizing
constants. The numerical approaches to estimate normalizing constants in this thesis will be used to search for
the best fitting model to known data x, such that we can do accurate predictions based on this model. Finding
the best fitting model can be done using the Bayes factor.

The Bayes factor gives the strength of evidence in favor of one model compared to another model. The
Bayes factor is defined as the likelihood of model 1, l(M1), where l(·) is thus the likelihood function and M1

model 1, divided by the likelihood of model 2, l(M2). The likelihood of model 1 is equal to the probability of
data x knowing model 1, so l(M1) = p(x|M1) and l(M2) = p(x|M2). Thus when the Bayes factor is greater than
1, model 1 fits better to the data and when the Bayes factor is smaller than 1, model 2 fits better to the data.
By integrating over the whole parameter space Θ, the Bayes factor BF (M1,M2) can be rewritten as follows

BF (M1,M2) =
l(M1)

l(M2)
=

p(x|M1)

p(x|M2)

=

∫
p(x|θ,M1)p(θ|x)dθ∫
p(x|θ,M2)p(θ|x)dθ

.

The integrals gives a measure of the amount of evidence the data gives for the model, this could be interpreted
as a normalizing constant.

When we are not able to calculate the normalizing constant z analytically by integrating over the unnormal-
ized density function q(·), we can use a sampling method to find an estimate for z. The main idea of a sampling
method is that it gives an estimate ẑ of z based on random draws from the normalized density function p(·).
However, when it is not possible to take draws from p(·), we have to search for a proposal density p̃(·) from
which draws can be taken. This proposal density could be for example an analytical approximation of p(·) or
be obtained from a Markov Chain Monte Carlo (MCMC) method (Chapter 2.3).

Chapter 3 explores the sampling methods described in Gelman and Meng (1998). In Chapter 4 a Gaussian
field will be considered. A Gaussian field is a field, where the points on the field get an value from a Gaussian
distribution. In our setting are the points on this Gaussian field censored, as all points with negative value are
observed as zeros. Using a sampling method, an estimate will be searched for the probabilty that a specific
arbitrary point on the field is below a threshold. The approach is taken over from Stein (1992). It is in practice
often not known what model fits to such a field. In Section 4.6 the best fitting model to the observed data
points will be searched using the Bayes factor, where the approach is again taken over from Stein (1992).
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1.1 Notation
Throughout this thesis the following notation will be used:

Notation Description
q(ω) unnormalized density function
p(ω) normalized density function
p̃(ω) proposal density
z normalizing constant
r ratio of normalizing constants (r =

z1
z2

)

λ logarithmic ratio of normalizing constants (λ = log
z1
z2

)

−U(ω, θ) potential energy
α(·) arbitrary function
Φ(·) cumulative distribution function standard normal
l(·) likelihood function
L(·) Lagrangian
BF (M1,M2) Bayes factor between model 1 and model 2
T (·|·) Transition kernel/proposal distribution

We use a hat above the variable to denote that the variable is an estimate. So ẑ is an estimate of z.
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Chapter 2

Preliminary Theory

In this Chapter some theory that we will use later on will be explained. In Section 2.1 the Euler-Lagrange
equation will be proved. With the Euler-Lagrange equation the extreme value of a functional could be found.
In Section 2.2 is the Cauchy-Schwartz inequality proved. This inequality will be usefull for finding a lowerbound
to the variance of an estimator. In Section 2.3.1, a popular MCMC method will be introduced. This method is
tried in an example in Section 2.3.2 to draw from a normal distribution.

2.1 Euler-Lagrange equations
The Euler-Lagrange equation is useful for finding the extreme values of a functional. The Euler-Lagrange
equation will be proved following the steps of Boas (2005). Assume that we want to minimize I[f(x)] =∫ b

a
L(x, f(x), f ′(x))dx with respect to f(x). Here is L the Lagrangian and we will assume that it is twice

continuously differentiable. Define fϵ(x) = f(x)+ϵη(x), where η(x) is an arbitrary function with η(a) = η(b) = 0

and ϵ is a small perturbation such that fϵ(x) differs slightly from f(x). Then Iϵ =
∫ b

a
L(x, fϵ(x), f

′
ϵ(x))dx. For

the minimum I, we should have that
dIϵ
dϵ

= 0 for ϵ = 0. Now the Euler-Lagrange equation can be derived

dIϵ
dϵ

=
d

dϵ

∫ b

a

L(x, fϵ(x), f
′
ϵ(x))dx

(1)
=

∫ b

a

d

dϵ
L(x, fϵ(x), f

′
ϵ(x))dx

(2)
=

∫ b

a

∂L

∂fϵ

dfϵ
dϵ

+
∂L

∂f ′
ϵ

df ′
ϵ

dϵ
dx

(3)
=

∫ b

a

∂L

∂fϵ
η(x) +

∂L

∂f ′
ϵ

η′(x)dx

(4)
=

∫ b

a

∂L

∂fϵ
η(x)dx−

∫ b

a

∂L

∂f ′
ϵ

η′(x)dx

(5)
=

∫ b

a

[
∂L

∂f
− d

dx

∂L

∂f ′ ]η(x)dx.

In the first step Leibniz’ integral rule (Border (2016)) to interchange the differentiation and integration is used.
In step (2), the chain rule is used and in step (3) the derivatives of fϵ(x), f ′

ϵ(x) are calculated with respect to ϵ.
In step (4), integration by parts is used∫ b

a

∂L

∂f ′
ϵ

η′(x)dx = [
∂L

∂f ′
ϵ

η(x)]ba −
∫ b

a

d

dx

∂L

∂f ′
ϵ

η(x)dx = −
∫ b

a

d

dx

∂L

∂f ′
ϵ

η(x)dx,

as η(a) = η(b) = 0. In the last step (5) are the functions evaluated in ϵ = 0 and are the integrals taken together.

Hence, it can be concluded
dIϵ
dϵ

= 0 for ϵ = 0 if and only if
∂L

∂f
− d

dx

∂L

∂f ′ = 0 as η(x) is an arbitrary function.

This Euler-Lagrange equation extends for a problem that has more than one dependent variable f (Boas (2005)).
For a Lagrangian with two dependent variables f, g, so L(x, f(x), f ′(x), g(x), g′(x)) the following equations
should be solved to make

∫ b

a
L(x, f(x), f ′(x), g(x), g′(x))dx stationary
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d

dx

∂L

∂f ′ −
∂L

∂f
= 0

d

dx

∂L

∂g′
− ∂L

∂g
= 0.

2.2 Cauchy-Schwarz Inequality
Let f(x), g(x) be two integrable functions on interval [a, b] with f(x) is not the zero function. Define h(t) =∫ b

a
(tf(x)− g(x))2dx. Now expanding the square and using linearity of the integral gives

h(t) =

∫ b

a

(tf(x)− g(x))2dx = t2
∫ b

a

f(x)2dx− 2t

∫ b

a

f(x)g(x)dx+

∫ b

a

g(x)2dx.

Denoting the three separate integrals respectively A,B and C gives h(t) = At2−2Bt+C. From (tf(x)−g(x))2 ≥
0, follows that h(t) ≥ 0. We find h′(t) = 2At− 2B and h′′(t) = 2A, as A > 0 follows that h(t) has a minimum

in h′(t) = 0. Thus in t =
B

A
. Substituting this in h(t), gives

h(
B

A
) = (

B

A
)2A− 2

B

A
B + C =

AC −B2

A
.

From h(
B

A
) ≥ 0 and A > 0 follows that AC −B2 ≥ 0 ⇐⇒ B2 ≤ AC, which is the Cauchy-Schwartz inequality

(∫ b

a

f(x)g(x)dx
)2 ≤

∫ b

a

f(x)2dx

∫ b

a

g(x)2dx.

2.3 Markov Chain Monte Carlo
When it is not possible to take draws from a density or from an analytical approximation of this density, a
MCMC method could be used to generate draws. With such a method samples are being drawn and based on
an acceptance criterion, this sample will be accepted or rejected. As such a method proceeds, it generates a
chain of samples.

2.3.1 Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm is one of the most popular MCMC methods. The algorithm generates a
Markov chain of generated samples from p(ω), which we call the target distribution. In a Markov chain, each
generated sample does only depend on the previous generated sample and not on all generated samples before.
For the Metropolis-Hasting algorithm an initial guess ω0 is needed. We need to define an proposal distribution
(or transition kernel) T (ω′|ωt). Now given ωt, sample an ω′ from T (ω′|ωt). This ω′ could be seen as a proposed
sample for ωt. Based on the acceptance probability is this proposed sample either accepted or rejected. The
acceptance probability of this proposed sample for ωt is in the Metropolis-Hastings algorithm defined such that
the proposal distribution satisfies the detailed balance equation. When the detailed balance equation is satisfied,
the generated chain of samples converges to the target distribution [4]. The detailed balance equation states

p(ωt)P(ω′ → ωt) = p(ω′)P(ωt → ω′),

where P(ω′ → ωt) is the probability that ω moves to ωt in the algorithm. The acceptance probability of the
Metropolis-Hastings algorithm is defined as

A(ω′, ωt) = min
(
1,

p(ω′)T (ωt|ω′)

p(ωt)T (ω′|ωt)

)
.

Now, as P(ω′ → ωt) = T (ω′|ωt)A(ω′, ωt) we find
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p(ωt)P(ω′ → ωt) = p(ωt)T (ω
′|ωt)A(ω′, ωt)

= p(ωt)T (ω
′|ωt)min

(
1,

p(ω′)T (ωt|ω′)

p(ωt)T (ω′|ωt)

)
= min

(
p(ωt)T (ω

′|ωt), p(ω
′)T (ωt|ω′)

)
= p(ω′)T (ωt|ω′)min

(
1,

p(ωt)T (ω
′|ωt)

p(ω′)T (ωt|ω′)

)
= p(ω′)T (ωt|ω′)A(ωt, ω

′)

= p(ω′)P(ωt → ω′)

Hence, it can be concluded that the Metropolis-Hastings algorithm satisfies the detailed balance equation.
The generated Markov chain with this algorithm will thus converge to the target distribution. The steps are
summarized in Algorithm 1.

Algorithm 1: Metropolis-Hastings
Data: ω0 Initial guess
Set t = 0
Generate ω′ ∼ T (ω′|ωt)

Calculate A(ω′, ωt) = min 1,
p(ω′)T (ωt|ω′)

p(ωt)T (ω′|ωt)
Generate u ∼ Unif[0, 1]
if u ≤ A(ω′, ωt) then

ωt+1 = ω′

else
ωt+1 = ωt

end
Iterate t = t + 1

2.3.2 Example normal distributions
In this example is wanted to sample from a normal distribution. Define X ∼ N (2, 3) and use as proposal
distribution the random walk proposal. This random walk proposal is defined by adding a N (0, 1) random
number to the current draw, so ω′ = ωt + N (0, 1). Note that the random walk proposal is symmetric as the
probability of getting proposal ω′ from ωt is the same as getting ωt as proposal from ω′, as the normal distribution

is symmetric around 0. Thus, T (ω′|ωt) = T (ωt|ω′) and the acceptance probability is A(ω′, ωt) = min(1,
p(ω′)

p(ωt)
).

Chosing a symmetrical proposal distribution is the algorithm presented by Metropolis in 1953, this is called
the Metropolis algorithm. Later on in 1970 Hastings presented the algorithm for an non-symmetric proposal

distribution, which follows by adding the term
T (ωt|ω′)

T (ω′|ωt)
in the acceptance probability. This is called the

Metropolis-Hastings algorithm. Doing one million iterations of the described Metropolis algorithm with initial
guess ω0 = 2 we find in that the draws of the Metropolis algorithm fit the N (2, 3)-density [6].
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Figure 2.1: Draws Metropolis algorithm plotted on the normal density
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Chapter 3

Sampling Methods

Sampling methods are techniques used when the normalizing constant of a distribution of interest cannot be
calculated analytically or when the calculation is computationally expensive. These sampling methods use
draws from the target distribution to estimate the normalizing constant. It is not always possible to draw
from the target distribution, or from an analytical approximation of the target distribution. In this Chapter
we will assume that there are no difficulties with taking draws from the target distribution. In Section 2.3 a
method is discussed to generate draws using a MCMC method. The sampling methods work similarly with these
generated draws. In this Chapter, we will introduce three specific sampling methods: Path Sampling (Section
3.1), Importance Sampling (Section 3.2) and Bridge Sampling (Section 3.3). These three sampling methods are
found in Gelman and Meng (1998) and partly taken over.

3.1 Path Sampling

3.1.1 Path Sampling Estimate
The main idea of path sampling is that it generates a series of ’intermediate densities’ between the two target
densities. Based on samples from a path of these intermediate densities the ratio of normalizing constants of
the function q0(ω) and q1(ω) will be estimated.
Assuming the legitimacy of the interchange of integration with differentiation, and using scalar parameter
θ ∈ [0, 1] we find

d

dθ
log z(θ)

chain rule
=

1

z(θ)

d

dθ
z(θ)

=

∫
p(ω|θ)
q(ω|θ)

d

dθ
q(ω|θ)dω

= Eθ

[
1

q(ω|θ)
d

dθ
q(ω|θ)

]
= Eθ

[
d

dθ
log(q(ω|θ))

]
,

(3.1)

so we obtain λ =
∫ 1

0
Eθ[

d

dθ
log(q(ω|θ))]dθ, where Eθ denotes the expectation with respect to the target dis-

tribution. In statistical physics is − d

dθ
log(q(ω|θ)) known as the potential energy. We will define U(ω, θ) =

d

dθ
log(q(ω|θ)) to simplify the equations. Introducing density p(θ) =

p(ω|θ)
p(ω, θ)

and considering θ as a random

variable that is uniformly distributed on [0, 1], gives

λ =

∫ 1

0

Eθ[
d

dθ
log(q(ω|θ))]dθ =

∫ 1

0

∫
p(ω|θ)U(ω, θ)dωdθ

=

∫ 1

0

E[
U(ω, θ)

p(θ)
]dθ

= E[
U(ω, θ)

p(θ)
],
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where E is the expectation with respect to the joint density p(ω, θ). Using n draws (ω1, θ1), . . . , (ωn, θn) from the

target distribution p(ω, θ), the path sampling estimate is λ̂ =
1

n

∑n
i=1

U(ωi, θi)

p(θi)
, with corresponding variance

Var(λ̂) =
1

n

[∫ 1

0

Eθ[U
2(ω, θ)]

p(θ)
dθ − λ2

]
.

Extending this to the d-dimensional parameter space θ(t) = (θ1(t), . . . , θd(t)), where t ∈ [0, 1] an similar path
sampling estimator could be found. Define θ0 = θ(0) and θ1 = θ(1), which are respectively the startpoint and

the endpoint of the path. Define Uk(ω, θ) =
∂ log q(ω|θ)

∂θk
and θ̇k(t) =

dθk(t)

dt
. Using (3.1) and the chain rule to

differentiate we find

λ =

∫ 1

0

Eθ(t)[
d

dt
log q(ω|θ(t))]dt

=

∫ 1

0

Eθ(t)

[
d∑

k=1

θ̇k(t)Uk(ω, θ(t))

]
dt,

where Eθ(t) is the expectation with respect to p(ω|θ(t)). The corresponding path sampling estimator for λ is

λ̂ =
1

n

n∑
i=1

[
d∑

k=1

θ̇k(ti)Uk(ωi, θ(ti))

]
,

with variance

Var(λ̂) =
1

n

[∫ 1

0

∫ ( d∑
k=1

θ̇k(ti)Uk(ωi, θ(ti))

)2

p(ω|θ)dωdt− λ2

]
. (3.2)

3.1.2 Choosing the best path
As one wants to use the optimal path sampling estimator, it is needed to minimize the variance of this estimator.
Var(λ̂) = E(λ̂2)− E(λ̂)2, and E(λ̂)2 is independent of the path, so it suffices to minimize E(λ̂2).

E(λ̂2) =
1

n

∫ 1

0

∫
U2(ω, θ)

p2(θ)
p(ω|θ)p(θ)dωdθ

=
1

n

∫ 1

0

Eθ[U
2(ω, θ)]

p(θ)
dθ

=
1

n

∫ 1

0

(
√

p(θ))2dθ︸ ︷︷ ︸
=1

∫ 1

0

(√
Eθ[(U2(ω, θ)]√

p(θ)

)2

dθ

Cauchy-Schwartz
≥

(∫ 1

0

√
Eθ[U2(ω, θ)]dθ

)2

.

The greater or equal sign becomes an equality when

p(θ) =

√
Eθ[U2(ω, θ)]∫ 1

0

√
Eθ′ [U2(ω, θ′)]dθ′

.

This is thus the optimal prior density and the corresponding optimal variance is

Varopt(λ̂) =
1

n

[(∫ 1

0

√
Eθ[U2(ω, θ)]dθ

)
− λ2

]
.

10



3.1.3 Example Path Sampling with optimal path in (µ, σ)-space
In this example an optimal path between two normal densities, N (µ0, σ0) and N (µ1, σ1) will be searched for.
The path is denoted by θ(t) = (µ(t), σ(t)) with t ∈ [0, 1], which is thus have a two-dimensional path. Define
the startpoint and the endpoint respectively as θ0 = (µ0, σ0) and θ1 = (µ1, σ1). For any value of θ = (µ, σ), the
unnormalized density is given by

q(ω|θ) = exp(− (ω − µ)2

2σ2
).

So, the potential energy is given by

Uk(ω, θ) =
∂

∂θk

(
− (ω − µ)2

2σ2

)
Using (3.2) gives

Var(λ̂) =
1

n

[∫ 1

0

∫ ( 2∑
k=1

θ̇k(t)Uk(ω, θ(t))

)2

p(ω|θ)dωdt− λ2

]

=
1

n

[∫ 1

0

∫ (
µ̇
ω − µ

σ2
+ σ̇

(ω − µ)2

σ3

)2

p(ω|θ)dωdt− λ2

]

=
1

n

[∫ 1

0

Eθ

[(
µ̇
ω − µ

σ2
+ σ̇

(ω − µ)2

σ3

)2]
dt− λ2

]
(∗)
=

1

n

[∫ 1

0

µ̇2

σ4
Eθ[(ω − µ)2] +

σ̇2

σ6
Eθ[(ω − µ)4]dt− λ2

]

=
1

n

[∫ 1

0

µ̇2 + 3σ̇2

σ2
dt− λ2

]
.

In (*) the cross-product is neglected, as the central moments of odd order are equal to zero for normal distri-

butions. We minimize the variance with respect to θ
∫ 1

0

µ̇2 + 3σ̇2

σ2
dt and for this the Euler-Lagrange equations

(see Section 2.1) with L(µ, σ, µ̇, σ̇) =
µ̇2 + 3σ̇2

σ2
dt could be used, which gives
∂L

∂µ
− d

dt

∂L

∂µ̇
= 0

∂L

∂σ
− d

dt

∂L

∂σ̇
= 0.

Solving this system of equations and some tough calculations gives the optimal path θ(t) = (µ(t), σ(t)) with [5]:

µ(t) = R tanh(ϕ0(1− t) + ϕ1t) + C

σ(t) =
R√
3
sech(ϕ0(1− t) + ϕ1t),

where

R2 = (
µ0 − µ1

2
)2 +

3

2
(σ2

1 + σ2
0) +

9

4
(
σ2
1 − σ2

0

µ1 − µ2
)2

C =
µ0 + µ1

2
+

3

2

σ2
1 − σ2

0

µ1 − µ0

ϕt = tanh−1

(
µt − C

R

)
,for t = 1,...,d.

Now that the optimal path θ(t) is found, it is possible to write a program to find a path sampling estimator for
λ. For each path sampling estimate λ̂i draw firstly a ti uniformly from [0,1], then draw ωi from N(µ(ti), σ(ti)

2)

and estimate λ̂ as

λ̂ =
1

n

n∑
i=1

λ̂i =
1

n

n∑
i=1

[
µ̇(ti)

ωi − µ(ti)

σ(ti)2
+ σ̇(ti)

(ωi − µ(ti))
2

σ(ti)3

]
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Figure 3.1: Histogram of the λ̂i’s

We use startpoint θ0 = (0, 1) and endpoint θ1 = (5, 1) are used. In Figure 3.1 one million path sampling estimates
are plotted in the histogram (the script could be found at [6]). It could be noticed that the distribution of the
λ̂i’s looks symmetric around 0. Also λ̂ gives a value quite close to 0, namely -0.0036877. This agrees with the
expected logarithmic ratio of the normalizing constants of two normal densities, as the theoretical normalizing

constant of a normal is always
√
2π and thus λ = log(

√
2π√
2π

) = 0. With the help of the Central Limit Theorem,

we can state that the estimated value of -0.0036877 falls within the 95% confidence interval, which ranges from
-0.0196 to 0.0196. The error, square root of the variance of the estimator, is given by [5]√

nE(λ̂− λ)2 =
√
12[log(

D√
12

+

√
1 +

D2

12
)] = 4.0853,

where D is the difference between the mean values of the two normal distributions. In our code is found that
the square root of the variance is λ̂ = 4.0394

3.1.4 Example Path Sampling for two t-distributions
Let’s take a look at a similar example. Now will be searched for an estimate of the ratio of normalizing constants
of two t-distributions. It is known that the probability density function of the t-distribution is given by

p(ω|ν) =
Γ(

ν + 1

2
)

√
νπΓ(

ν

2
)

(
1 +

ω2

ν

)−
ν + 1

2
,

where ν is the degrees of freedom and Γ(·) is the gamma function. We will consider
Γ(

ν + 1

2
)

√
νπΓ(

ν

2
)

as the normalizing

constant and look whether we can approximate the logarithmic ratio with a path sampling estimate. The
unnormalized density function is here thus given by

q(ω|ν) =

(
1 +

ω2

ν

)−
ν + 1

2
.

The path in this example is denoted as ν(t). As minimizing the variance of the path sampling estimator will
cause a great calculation mess, a linear path will be used in this example, ν(t) = (1− t)ν0 + tν1. The unbiased
path sampling estimator for the logarithmic ratio of normalizing constants is here given as

λ̂ =
1

n

n∑
i=1

U(ωi, νi)

p(νi)
.

12



We can calculate the potential energy

U(ωi, νi) =
∂

∂ν
log q(ωi, νi)

=
∂

∂ν
− ν + 1

2
log(1 +

ω2

ν
)

=
ω2(ν + 1)

2ν2(
ω2

ν
+ 1)

−
log(

ω2

ν
+ 1)

2

As the prior distribution is a uniform distribution over the path, p(νi) =
1

ν1 − ν0
and the path sampling

estimator

λ̂i =

(
ω2
i (ν(ti) + 1)

2ν(ti)2(
ω2
i

ν(ti)
+ 1)

−
log(

ω2
i

ν(ti)
+ 1)

2

)
(ν1 − ν0)

For this example let the begin degrees of freedom ν0 = 2 and end degrees of freedom ν1 = 3. Generating
100000 path sampling estimates gave λ̂ = −0.0390323 [6], which is again close to the theoretical lambda
λ = −0.0388319 and in the 95% confidence level interval. In Figure 3.2 note that the path sampling estimates
are not symmetrically distributed around the theoretical lambda, which was the case for the normal densities
example. This is consistent with the characteristics of the t-distribution, which is known for its non-symmetrical
distribution around the mean and heavier tails.

Figure 3.2: Histogram of the λ̂i’s

3.2 Importance Sampling
In the past Section is found that path sampling relies on a path of intermediate densities. Importance sampling
relies on the target density, or a related density. In this Section, two importance sampling methods will be
discussed. The first importance sampling method uses a trial density which is completely known and different
from the target density. This could be for example an analytical approximation. The second importance
sampling method does not use an trial density, but relies on draws of the unnormalized density.

13



3.2.1 Importance Sampling estimator

Using the proposal density p̃(ω) ≈ p(ω) =
q(ω)

z
, we find

z =

∫
q(ω)dω

=

∫
q(ω)

p̃(ω)
p̃(ω)dω

= Ep̃(ω)[
q(ω)

p̃(ω)
].

This gives importance sampling estimator ẑ =
1

n

∑n
i=1

q(ωi)

p̃(ωi)
, where ω1, ..., ωn are draws of p̃(ω). This method

depends heavily on the choice of the proposal density and it is thus important to find a good proposal density.
The second importance sampling method searches an estimate for the ratio of normalizing constants of q0(ω)
and q1(ω). It will be shown that

E0[q1(ω)α(ω)]

E1[q0(ω)α(ω)]
=

∫
q1(ω)α(ω)

q0(ω)

z0
dω∫

q0(ω)α(ω)
q1(ω)

z1
dω

is equal to the ratio of normalizing constants. Here is E0 the expectation with respect to p0(ω) =
q0(ω)

z0
and

E1 the expectation with respect to p1(ω) =
q1(ω)

z1
.

E0[q1(ω)α(ω)]

E1[q0(ω)α(ω)]
=

∫
q1(ω)α(ω)

q0(ω)

z0
dω∫

q0(ω)α(ω)
q1(ω)

z1
dω

=
z1
z0

∫
q0(ω)q1(ω)α(ω)∫
q0(ω)q1(ω)α(ω)

=
z1
z0

.

(3.3)

Here is α(ω) an arbitrary function which satisfies that 0 <
∣∣∣∫Ω0∩Ω1

α(ω)p0(ω)p1(ω)dω
∣∣∣ < ∞, where respectively

Ω0 and Ω1 are the support of p0(ω) and p1(ω). Now with the draws (ω0i, i = 1, ..., n0) from p0(ω) and the draws
(ω1i, i = 1, ..., n1) from p1(ω) we obtain importance sampling estimator

r̂α =

1

n0

∑n0

i=1 q1(ω0i)α(ω0i)

1

n1

∑n1

i=1 q0(ω1i)α(ω1i)
. (3.4)

3.2.2 Finding the optimal α(ω)
As α(ω) is an arbitrary function in (3.4), it is interesting to search for the function that minimizes the variance
of this estimator. We search for the minimal relative square error. The numerator of (3.4) is denoted as η̄0 and
the denominator as η̄1. Similarly, for the theoretic ratio of normalizing constants define η0 and η1 to be the
numerator and denominator respectively. The relative square error is then given by

RE2(r̂α) =
E[(r̂α − r)2]

r2

=

E

[(
η̄0
η̄1

− η0
η1

)2
]

(
η0
η1

)2

14



Using the independence of η̄0 and η̄1, this can be rewritten to

RE2(r̂α) =
Var(η̄0)

η0
+

Var(η̄1)
η1

+O(
1

n2
).

We find

Var(η̄0) = Var

(
1

n0

n0∑
i=1

q1(ω0i)α(ω0i)

)

=
1

n0
(E0(η̄

2
1)− E0(η̄1)

2)

=
1

n0

[∫
p0(ω)q

2
1(ω)α

2(ω)dω −
(∫

p0(ω)q1(ω)α(ω)dω

)2
]

=
z21
n0

[∫
p0(ω)p

2
1(ω)α

2(ω)dω −
(∫

p0(ω)p1(ω)α(ω)dω

)2
]
.

Similarly,

Var(η̄1) =
z20
n1

[∫
p20(ω)p1(ω)α

2(ω)dω −
(∫

p0(ω)p1(ω)α(ω)dω

)2
]
.

Hence, combining these variances gives the following equation for the relative square error that needs to be
minimised.

RE2(r̂α) =

z21
n0

[∫
p0(ω)p

2
1(ω)α

2(ω)dω −
(∫

p0(ω)p1(ω)α(ω)dω
)2]

z21
(∫

p0(ω)p1(ω)α(ω)dω
)2 +

z20
n1

[∫
p20(ω)p1(ω)α

2(ω)dω −
(∫

p0(ω)p1(ω)α(ω)dω
)2]

z20
(∫

p0(ω)p1(ω)α(ω)dω
)2

=

∫
p0(ω)p

2
1(ω)α

2(ω)dω

n0

(∫
p0(ω)p1(ω)α(ω)dω

)2 − 1

n0
+

∫
p20(ω)p1(ω)α

2(ω)dω

n1

(∫
p0(ω)p1(ω)α(ω)dω

)2 − 1

n1

=

∫
p0(ω)p1(ω)α

2(ω)

(
p1(ω)

n0
+

p0(ω)

n1

)
dω(∫

p0(ω)p1(ω)α(ω)dω
)2 − 1

n0
− 1

n1
,

where the error term of O(
1

n2
) is neglected. Note that for minimizing the relative square error,

1

n0
and

1

n1
can be left out as these are not dependent of α(ω). Using Cauchy-Schwartz (Section 2.2), follows that the
denominator(∫

p0(ω)p1(ω)α(ω)dω

)2

≤
∫

p0(ω)p1(ω)

p1(ω)

n0
+

p0(ω)

n1

dω

∫
p0(ω)p1(ω)α

2(ω)

(
p0(ω)

n1
+

p1(ω)

n0

)
dω.

An equality (and thus have minimized the relative square error with respect to α(ω)) is found when

p0p1α
2

(
p0
n1

+
p1
n0

)
∝ p0p1

p0
n1

+
p1
n0

Thus

αopt ∝
1

p1
n0

+
p0
n1

∝ 1

rs0q0 + s1q1.

(3.5)
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Here is s0 =
n0

n0 + n1
and s1 =

n1

n0 + n1
. Now the problem is that r is not known and αopt cannot be used

directly. Substituting αopt(ω) in the importance sampling estimator (3.4) gives

r̂αopt =

1

n0

∑n0

i=1

q1(ω0i)

rs0q0(ω0i) + s1q1(ω0i)

1

n1

∑n1

i=1

q0(ω1i)

rs0q0(ω1i) + s1q1(ω1i)

=

1

n0

∑n0

i=1

l0i
rs0 + s1l0i

1

n1

∑n1

i=1

1

rs0 + s1l1i

,

(3.6)

where lmi =
q1(ωmi)

q0(ωmi)
. Using an initial guess r̂(0) > 0 and the fixed point iteration method, the importance

sampling estimate can be calculated iteratively.
The fixed point iteration method gives

r̂(t+1)
α =

1

n0

∑n0

i=1

l0i
r̂(t)s0 + s1l0i

1

n1

∑n1

i=1

1

r̂(t)s0 + s1l1i

, (3.7)

this will be called the fixed point estimator.
Now the question arises whether this fixed point estimator converges and whether it has the same error as
the original predictor. Meng and Wong (1996) found that for any initial guess r̂0, the fixed point estimator
converges to a unique limit r̂F with the following property for r̂

(t)
F ̸= r̂F

|r̂(t+1)
F − r̂F | < |r̂(t)F − r̂F | (3.8)

To prove this identity, we will first look at the limit. When the limit exists, there should be some point, for a t
large enough, that r̂(t+1) = r̂(t). Setting these terms equal to r, define

S(r|ω) =
n0∑
i=1

s1q1(ω0i)

rs0q0(ω0i) + s1q1(ω0i)
−

n1∑
i=1

rs0q0(ω1i)

rs0q0(ω1i) + s1q1(ω1i)
.

This formula could be obtained by rewriting (3.7) as r =
A(r)

B(r)
⇐⇒ rA(r)− B(r) = 0, where A(r) and B(r)

denote respectively the numerator and denominator. Thus, the root of S(r|ω) is equal to the limit of r̂(t), when
this converges.

dS(r|ω)
dr

= −
n0∑
i=1

s0s1q0(ω0i)q1(ω0i)

(rs0q0(ω0i) + s1q1(ω0i))2
−

n1∑
i=1

s0s1q0(ω1i)q1(ω1i)

(rs0q0(ω1i) + s1q1(ω1i))2

Without loss of generality, it can be assumed that q0(ω), q1(ω) ≥ 0. Thus
dS(r|ω)

dr
< 0,∀r and as S(0|ω) = n2 > 0

and S(∞|ω) = −n1 < 0, S(r|ω) is thus a strictly increasing function of r. We can thus conclude that S(r|ω)

has a unique root. To finally prove (3.8), we use following properties: rM(r) is strictly decreasing and
M(r)

r
is

strictly increasing in r. To show this differentiate these functions and then
d(rM(r))

r
< 0 and

d(
M(r)

r
)

r
> 0.

When r̂(t) > r∗, we find

r̂(t+1)

r̂(t)
=

M(r̂(t))

r̂(t)
<

M(r∗)

r∗
= 1

⇐⇒ r̂(t+1) − r∗ < r̂(t) − r∗
(3.9)

and
r̂(t+1)r̂(t) = M(r̂(t))r(t) > M(r∗)r∗ = (r∗)2

⇐⇒ r̂(t+1) − r∗ >
(r∗)2

r̂(t)
− r∗

=
r∗

r̂(t)
(r∗ − r̂(t)) > r∗ − r(t)

(3.10)
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Now with combining (3.9) and (3.10), could be concluded that

|r̂(t+1)
F − r̂F | < |r̂(t)F − r̂F |.

Analogous arguments give the same result for r̂(t) < r∗. Now the Global Convergence Theorem implies that r̂(t)
converges to r∗.

E(r̂ − r)2 =
Var(S(r|ω))
E2(S′(r|ω))

+O(
1

n2
)

Meng and Wong (1992) also found that the asymptotic relative mean square error is

RE2(r̂F ) =
1

n

∫ 1
p1
n0

+
p0
n1

dω − 1

n0
− 1

n1


The asymptotic relative mean square error is equal to the one we found earlier with optimal α(ω), but which
was not usable in practice as the estimator was dependent of r.

3.2.3 Example iterative importance sampling for two t-distributions
In Section 3.1.4 a path sampling estimate for the logarithmic ratio of normalizing constants is found for two t-
distributions. In the same setting we will search for an importance sampling estimate such that we can compare
the two sampling methods.

Testing some simulations [6], we note that r converges really quick in just five iterations even if an initial
guess is used which is far off. It is also noted that the estimate importance sampling estimate of r has some
outliers and a single estimate is thus not reliable. For the final script is the iterative importance sampling
method used 200 times with 15 iterations and initial guess of r(0) = 100. After that is averaged over the
founded r̂’s. In the calculation of each of the 200 r̂’s in (3.7), 1000 draws are taken from the t-distribution with
2 degrees of freedom and 1000 draws are taken from the t-distribution with 3 degrees of freedom. Averaging
these 200 r̂’s gives importance sampling estimate r̂ = 0.96241096. Now λ̂ = log(r̂) ≈ −0.03831, which is a little
bit further off the theoretical λ = −0.03883 than the path sampling estimate of Section 3.1.4.

To improve the accuracy of our estimate should be averaged over more than 200 r̂’s.

3.3 Bridge Sampling
The last of the three sampling methods that will be discussed is bridge sampling. Bridge sampling can be seen
as an combination of path sampling and importance sampling. The idea of bridge sampling is that it uses an
arbitrary unnormalized density q1/2(ω) ’between’ the unnormalized densities q0(ω) and q1(ω). In the setting of
(3.3), is α(ω) for bridge sampling defined as

α(ω) =
q1/2(ω)

q0(ω)q1(ω)
.

In Section (3.2.2) is already found how to choose the optimal α(ω). This implies that

qopt
1/2(ω) = αopt(ω)q0(ω)q1(ω)

=
p0(ω)p1(ω)z0z1

s0p0(ω) + s1p1(ω)

∝ p0(ω)p1(ω)

s0p0(ω) + s1p1(ω)

The optimal q1/2(ω) is thus the harmonic mean of p0(ω) and p1(ω). Now using this optimal bridge in α(ω),
(3.4) gives that

r̂ =

1

n0

∑n0

i=1

q1/2(ω0i)

q0(ω0i)

1

n1

∑n1

i=1

q1/2(ω1i)

q1(ω1i)
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3.4 Overview of the sampling methods
Now that three different sampling methods are discussed arises the questions when does one use which method
and which method is the best. Firstly, path sampling was discussed. For path sampling, a path needs to be
defined. This choice of this path is crucial as it affects the accuracy of the path sampling estimate. By using
multiple paths and averaging the estimates, the variance of the estimate could be reduced. With n draws (ωi, θi)
from the target distribution p(ω, θ), the path sampling estimate of the logarithmic ratio of normalizing constants
is given

λ̂ =
1

n

n∑
i=1

U(ωi, θi)

p(θi)
.

This method is thus useful when an efficient path could be chosen without too much difficulties.
Another sampling method that is explored is importance sampling. When it is possible to sample from a

proposal distribution that is closely related to the target distribution, but it is not possible to sample from the
target distribution, importance sampling is useful. By sampling from the proposal distribution and reweighting
the samples, importance sampling gives the estimate

ẑ =
1

n

n∑
i=1

q(ω)

p̃(ω)
.

The accuracy of importance sampling is highly dependent on the proposal distribution.
Lastly, bridge sampling is discussed. Bridge is a combination of path sampling and importance sampling.

By using importance sampling, the variance of the estimate using only a path sampling approach is reduced.
The accuracy of the estimate is thus less dependent on the choice of the path in comparison with path sampling.
The estimate given with bridge sampling is

r̂ =

1

n0

∑n0

i=1

q1/2(ω0i)

q0(ω0i)

1

n1

∑n1

i=1

q1/2(ω1i)

q1(ω1i)

.
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Chapter 4

Censored Data

In this Chapter, a Gaussian field W (x) will be considered. On this field all points are normally distributed.
Conditioned on the observed points, an estimate could be found for an unobserved point. The observations
are censored, only the positive values are observed and the negative values are set to 0. So the observed
data is Z(x) = W (x)+ = max(W (x), 0). The goal of this chapter is to determine numerically the conditional
distribution of an unobserved point conditioned on the observed points. The same approach will be used as in
Stein (1992).

In Section 4.1 all needed terminology will be defined for this Chapter. In Section 4.2 the conditional
distribution will be calculated under the assumption that the model from which Gaussian field is generated
is known. Two stochastic methods from Stein (1992) will be given to calculate this conditional distribution
numerically. In Section 4.3 these two methods are being tested. From Section 4.4 on will be assumed that we
do not have the knowledge from which model the data is generated. We use the Bayes factor to search for the
best fitting model. In Section 4.5 a method from Stein (1992) will be introduced to numerically approach the
Bayes factor. Lastly, in Section 4.6 are the results of this numerical method placed.

4.1 Setting
For the sake of notation suppose that x1, ..., xn are ordered so that z(x1), ..., z(xm) are positive and z(xm+1) =
... = z(xn) = 0. In this Chapter, n stands for the number of observations of the field, m is the number of
positive observed values and thus is n − m the number of censored values. Define u = (w(x1), ..., w(xm)) =
(z(x1), ..., z(xm)) and U = (W (x1), ...,W (xm)). Similarly, v = (w(xm+1), ..., w(xn)) and V = (W (xm+1), ...,W (xn)).
U is thus the positive part or known part of the data field and V is the censored part. The challenge is to
estimate an arbitrary point on the field knowing that U = u and V ≤ 0. A normal distribution conditioned on
an other normal distributions is again a normal distribution (Bishop (2006)). We can calculate the mean and
variance of W (x) conditioned on U = u and V = v as follows

µW (x)|U=u,V=v = µa +ΣabΣ
−1
bb (xb − µb) (4.1)

and

σ2
W (x)|U=u,V=v = Σaa − ΣbaΣ

−1
bb Σba. (4.2)

In these equations is the unknown part denoted by a and the known part is denoted by b. µa and µb are given
by the law of the random field W (·). The Σ’s are the covariance matrices. As example, we should have in this
calculation that Σbb is an nxn covariance matrix filled with all covariance betwee all observed points on the
field, as we have n known points.

4.2 Calculating the conditional distribution
Knowing the distribution of w(x) conditioned on U = u,V = v, we calculate the distribution of W (x) condi-
tioned on U = u,V ≤ 0, which is the restriction of the multivariate normal distribution to the negative orthant
of Rn−m.
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P(W (x) ≤ t|U = u,V ≤ 0) =

∫
(−∞,0]n−m Φ

( t− µW (x)|U=u,V=v

σW (x)|U=u,V=v

)
p(v|u)dν∫

(−∞,0]n−m p(v|u)dν
, (4.3)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution. As these integrals
are of dimension n-m, they are often intractable to calculate analytically and a numerical approach to approxi-
mate these integrals should be used. Stein (1992) proposes two methods.
Method 1:
Generate v1, . . . ,vN from N(µ, T ), where N(µ, T ) is the conditional distribution of W (x) given only U = u.
The vj ’s are thus simulations of the censored points. The naive estimate of (4.3) is then given by

∑N
j=1 Φ

( t− a− b′vj

τ

)
1{vj≤0}∑N

j=1 1{vj≤0}
. (4.4)

The a and b′ are respectively the dependencies on the conditional knowing U = u and V = v of u and v. The
expressions for them will be derived for simplicity in the case that we have a Gaussian field with expectation
zero as we will also use this in the example of Section 4.3. The expressions follow by splitting the covariance
matrices in block matrices with a ’u-part’ and a ’v-part’. From (4.1) we find that

µW (x)|U=u,V=v = ΣabΣ
−1
bb xb

=
(
Σtu Σtv

)(Σuu Σuv

Σvu Σvv

)−1(
xu

xv

)
=
(
Σtu Σtv

)( [Σuu − ΣuvΣ
−1
vv Σvu]

−1 −[Σuu − ΣuvΣ
−1
vv Σvu]

−1ΣuvΣ
−1
vv

−[Σvv − ΣvuΣ
−1
uuΣuv]

−1ΣvuΣ
−1
uu [Σvv − ΣvuΣ

−1
uuΣuv]

−1

)(
xu

xv

)
= (Σtu([Σuu − ΣuvΣ

−1
vv Σvu]

−1) + Σtv(−[Σvv − ΣvuΣ
−1
uuΣuv]

−1ΣvuΣ
−1
uu ))xu︸ ︷︷ ︸

=a

+ (Σtu(−[Σuu − ΣuvΣ
−1
vv Σvu]

−1ΣuvΣ
−1
vv ) + Σtv([Σvv − ΣvuΣ

−1
uuΣuv]

−1))︸ ︷︷ ︸
=b

xv

(4.5)

Method 2:
The second method is an importance sampling method (see Section 3.2.). Now generate ν1, . . . ,νN under some
proposal density h(·), which has support on (−∞, 0]n−m. Then the importance estimate of (4.3) is given by

∑N
j=1 Φ

( t− a− b′vj

τ

)p(vj |u)
h(vj)∑N

j=1

p(vj |u)
h(vj)

(4.6)

The method to generate the vj ’s is desribed in Section 4.2.1 and the choice of h(·) is given in Section 4.2.2.

4.2.1 Generating the vj’s
In method 2, we generate each vj point for point under the truncated conditional univariate normal distribution
given the positive observations and previously generated censored observations. Notationally, vector vq

j =
(v1j , . . . , vqj) is built given U = u and W (xm+k) = vkj for 1 ≤ k ≤ q − 1. We have W (xm+q) ∼ N(µqj =

αq + β′
qv

q−1
j , σ2

q ), where αq and βq are again respectively the dependency of the positive observed points and
the dependency of the censored points. They can be calculated in the same we as is done for a and b in (4.5).
As it is known that all vj ’s should be smaller or equal than 0, a method is needed which generates only negative
values from N(µqj , σ

2
q ). The following inverse CDF method is used

vqj = µqj + σqΦ
−1
(
UqjΦ

(
−µqj

σq

))
, (4.7)

where the Uqj ’s are arbitrary draws from Unif[0,1]. The standard inverse CDF method states that µqj +

σqΦ
−1(Uqj) gives a draw from N(µqj , σ

2
q ). Note that UqjΦ(−

µqj

σqj
) is a random draw from Unif[0,Φ(−µqj

σqj
)].
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Thus as Φ−1 is monotonically increasing we find that

UqjΦ(−
µqj

σqj
) ≤ Φ(−µqj

σqj
) ⇐⇒ Φ−1(UqjΦ(−

µqj

σqj
)) ≤ Φ−1(Φ(−µqj

σqj
)) = −µqj

σqj

Hence are all vqj generated from (4.7) indeed smaller or equal than 0.

4.2.2 Importance Estimate
In Stein (1992) are the importance weights defined as follows

dj =
p(vj |u)
h(vj)

=

n−m∏
q=1

Φ(−µqj

σq
),

which gives the importance sampling estimate

P̂N (W (x) ≤ t|U = u,V ≤ 0) =

∑N
j=1 djΦ(

t− µn+1,j

τ
)∑N

j=1 dj
, (4.8)

where µn+1,j = a+ b′vj .

4.3 Example Estimating Conditional Distribution
This example is taken over from Stein (1992) to look whether we can find the same results. The observed data
from a truncated Gaussian random field W (·) is showed in Figure 4.1. This field is an 6x6 square grid on [0, 1]2

with E(W (x)) = 0 and Cov(W (x),W (x′)) = e−|x−x′|,∀x, x′ ∈ [0, 1]2

Figure 4.1: Simulated Gaussian Field. Source: Stein (1992)

Using the techniques from Section 4.2, we can give a value to arbitrary points. We can for example calculate,
whether point A has a value smaller than a specific bound.

4.3.1 Method 1
Generating N = 10000 random vectors v1, . . . ,vN from the conditional distribution knowing only U = u, we
find that there is no vector vj for which all components are less or equal than zero [6]. Also is found that
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approximately 36% of the components of all vectors v are smaller or equal than 0. This implies that the chances
of getting a whole vector v of size n − m = 17 in our example smaller or equal than 0 are very small. Thus
1{vj≤0} = 0 for all j in our example. Now we can not find an estimate for (4.3) and method 1 does thus not
work in our example. When an example comes with less censored points n − m, is the probability of having
some vj ’s smaller or equal than zero higher and thus could this method work.

4.3.2 Method 2
We implement method 2 with N = 10000 as in Stein (1992) and search for the estimate that P(W (A) ≤ T |U =
u,V ≤ 0) for the T from which we have the estimates from Stein. To compare these estimates they are placed
next to each other in Figure 4.2.

Figure 4.2: Estimates of W (A) in comparison to the estimates from Stein. [6]

For small values of T is found that our estimates give an higher probability that W (A) is below this T and for
high values of T is found that our estimates give an lower probability that W (A) is below this T. Our W (A) has
thus a higher variance than the W (A) from Stein. This is also noted in Figure 4.3, where the similar estimates
for point B from Figure 4.1 are placed next to each other.

Figure 4.3: Estimates of W (B) in comparison to the estimates from Stein. [6]

4.4 Bayes Factor
In the preceding Sections is used that the model from which the points on the field are generated is known. In
a practical situation is this often not available in advance.
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From now on we will consider the model where E(W (x)) = m and Cov(W (x),W (x′)) = cKa(x− x′). Ka(·) is
a class of covariance functions with possibly vector valued a. Parameter θ = (m, c, a)′ is unknown. The goal is
now to find an estimate for the likelihood of θ. The likelihood is given by

l(θ;U = u,V ≤ 0) = pθ(U = u,V ≤ 0)

= pθ(u)pθ(V ≤ 0|U = u)

= pθ(u)

∫
(−∞,0]n−m

pθ(v|u)dv,

where the subscript θ means the distribution using model θ. With respect to an reference value θ0, we can
calculate the Bayes factor for model θ as follows

Bayes Factor =
l(θ;U = u,V ≤ 0)

l(θ0;U = u,V ≤ 0)
=

pθ(u)

pθ0(u)

∫
(−∞,0]n−m pθ(v|u)dv∫
(−∞,0]n−m pθ0(v|u)dv

. (4.9)

To choose a reference value θ0, for example a maximum likelihood estimation could be used.

4.5 Importance Sampling Estimate Ratio of Likelihood Function
Firstly it is needed to generate the vj ’s. For each θ for which an estimate for (4.9) is wanted, new µqj ’s and σq’s
need to be calculated for each model, as the µqj ’s and σq’s are dependent on the model θ. To compare between
the different models are the Uqj ’s equal for all θ.
Defining the importance weights as in Stein (1992)

dj(θ) =

n−m∏
q=1

Φ(−µqj(θ)

σq(θ)
)

gives importance sampling estimate
pθ(u)

pθ0(u)

∑N
j=1 dj(θ)∑N
j=1 dj(θ0)

. (4.10)

4.6 Example Estimating Likelihood Function

In this example the setting E(W (x)) = m, Cov(W (x),W (x′)) = ce−|x−x′| for the simulated field on Figure 4.1
will be used. The reference values m0 = −0.07 and c0 = 0.631 for m and c are chosen as approximate maximum
likelihood estimates based on preliminary simulations in Stein (1992). We will take this reference values over.
As done by Stein, we make an 21x21 grid for m and log(c). The gridpoints for m are from -2 to 2 with steps
from 0.2 and the gridpoints for log(c) are from -2 to 1 with steps of 0.15. For each θ = (m, log(c)) on this grid,
we calculate

µqj(θ) = m+ΣabΣ
−1
bb (xb −m)

and
σq(θ) = c− ΣabΣ

−1
bb Σba,

where the a denotes the points for which we compute the mean and deviation and b denotes all known points.
The covariance matrices are dependent on c. Using the same inverse CDF method as in Section 4.2.1 we generate

the vqj ’s. So, vqj(θ) = µqj(θ) + σq(θ)Φ
−1
(
UqjΦ

(
−µqj(θ)

σq(θ)

))
. Then for each θ on the grid, we calculate the d′js

and the distribution of u under model θ could be calculated. Now from (4.10) the importance sampling estimate
of the Bayes factor for each θ on the grid could be calculated. The Bayes factor is found to be the greatest on
the grid for θ = (0.2,−1.4) [6]. We thus conclude that the model θ = (0.2,−1.4) that fits the best to the data
considering all models from the grid.
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Chapter 5

Conclusion and Further Research

The goal of this research was to search for the best fitting model to known data x, such that accurate predictions
can be made based on this model. The Bayes factor is used to compare between models. We saw that it is
often not possible to calculate the Bayes factor analytically. This Bayes factor was written as the ratio of two
integrals such that a sampling method can be used to find an estimate of these integrals.

In Chapter 3, three sampling methods are explored, path sampling, importance sampling and bridge sam-
pling. These sampling methods can be used to estimate an integral, when the integral can not be calculated
analytically. To find the best estimator for each of these methods is searched to minimize the variance of the
estimator obtained by the sampling method. For example for the path sampling method, we used the Cauchy-
Schwartz inequality to find a lower bound for the variance of the estimator. Choosing the path in a convenient
way, we can equal the variance of the estimator to the found lower bound. Choosing the path in this way, we
have thus minimized the variance with respect to the path and have found the most accurate estimator.

In Chapter 4, a Gaussian field is considered. The observations on this field are censored, as all negative
values are observed as zeros. The conditional distribution is determined for the value of an arbitrary position
on the field. In Section 4.2 was used that the covariance structure and the Gaussian distribution from which
the points on the field get a value are known. In Section 4.4 was assumed that the covariance structure and
the Gaussian distribution from which points on the field get a value is not known. Now before we can find
the conditional distribution for the arbitrary points, a model which fits the best to the data has to be found.
Searching the best fitting model to the data was also the goal of the research. We used the Bayes factor to
determine, which model is the most likely to fit to the data. This Bayes factor was calculated using importance
sampling.

5.1 Further Research
Several things could be improved in this research. It would be interesting to analyse the choice of the sampling
method. Importance sampling was chosen in Stein (1992) to approximate the ratio of integrals from the Bayes
factor. A couple of questions arise from this choice. How is the used proposal function for importance sampling
found and could this function be improved? How accurate is the estimate that is found for estimating the
Bayes factor using importance sampling? It is also interesting to look at the computation time of importance
sampling, we found that for N = 10 in Section 4.6 the computation time was around half an hour. Stein used
N = 1000. Are there other possible sampling methods that could be chosen to lower the computation time?

In this thesis are models compared using the Bayes factor. There are a lot of other methods that could be
used to search for the best fitting model. Examples are the likelihood ratio test and the Akaike information
criterion. Using several methods could make the conclusion stronger.
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