TU Delft

The Impact of Realistic Laundering Subgraph Perturbations on Graph
Neural Network Based Anti-Money Laundering Systems

Trustworthy Financial Crime Analytics

Tom Joshua Clark!
Supervisor(s): Dr. Zeki Erkin!, Dr. Kubilay Atasu'

IEEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Tom Joshua Clark
Final project course: CSE3000 Research Project
Thesis committee: Dr. Zeki Erkin, Dr. Kubilay Atasu, Dr. Megha Khosla

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

As financial institutions adopt more sophis-
ticated Anti-Money Laundering (AML) tech-
niques, such as the deployment of Graph Neu-
ral Networks (GNNs) to detect patterns, laun-
dering behavior is likely to evolve. In this pa-
per, we present a novel perturbation framework
that models laundering as an evasion-based,
restricted black-box process. Our tool sys-
tematically alters labeled laundering subgraphs
through a set of parameterized graph actions
(intermediary injection, merging, and splitting)
designed to simulate realistic laundering adap-
tations. We apply our framework to one of
the AMLWorld synthetic transaction datasets
to generate multiple perturbed versions de-
fined by a set of parameterized preset config-
uration files. We then evaluate the impact of
these perturbations on two MEGA-GNN vari-
ants of the current state-of-the-art in tempo-
ral multigraph-compatible GNN architectures.
Our results show that realistic structural per-
turbations can impact performance and serve
as a valuable tool to evaluate model adaptabil-
ity and robustness. Our work aims to con-
tribute to a deeper understanding of the evo-
lutionary dynamics between AML systems and
laundering behavior.

1 Introduction

In this section, we provide an overview of the research
context and our motivation. We begin by looking at the
limitations of current Anti-Money Laundering (AML)
methods in detecting financial crime, and then briefly
discuss the future of AML investigations, where access
to complete transaction graphs (whether by regulatory
shifts or privacy-preserving technologies) could lead to
more effective detection of complex laundering schemes
and consequently influence the evolution of laundering
tactics. Finally, we describe our contribution, where we
approach AML from the perspective of an adversary
and introduce a framework to simulate and evaluate the
impact of evolving laundering behavior on graph-based
detection systems.

1.1 Financial Crime

Financial crime encompasses a broad spectrum of illicit
activities, including fraud, bribery, tax evasion, and
money laundering. As financial networks grow more
complex and interconnected, detecting and disrupting
these crimes has become increasingly difficult. Accord-
ing to the United Nations Office on Drugs and Crime,
the estimated amount of money laundered worldwide
in one year is 2-5% of global GDP [1]. Traditionally,
financial institutions have used Know Your Customer
(KYC) checks and rule-based monitoring methods

[2], which rely on predefined thresholds and struggle
to detect more elaborate money laundering tactics.
This has led to an emerging interest in using machine
learning methods for pattern recognition and anomaly
detection, such as Graph Neural Networks (GNNs),
which can analyze more complex relationships between
entities [3].

1.2 The Future of AML

Whether driven by regulatory changes that weaken
privacy protections or the adoption and viability of
privacy-preserving technologies that allow for shared
data access, it is becoming increasingly plausible that
AML investigations in the near future will have insights
into a comprehensive transaction graph rather than
only what is available from their institution. With
access to all transaction data, institutions would be
better positioned to detect cross-border schemes and
complex money laundering patterns and be better
able to leverage graph-based anomaly detection and
ML techniques. As AML investigations become more
effective, money laundering tactics are likely to evolve,
leading to the emergence of more complex laundering
patterns.

1.3 Contribution

The existing literature on Anti-Money Laundering
largely focuses on privacy-preserving methods or im-
proving detection techniques through machine learning
and graph-based models to identify suspicious patterns
[4]. However, none of the research approaches AML
from the perspective of a motivated adversary who can
strategically alter the structure of their accounts and
transactions to evade detection, and most overlook how
the widespread use of AML systems with access to a
full transaction graph could fundamentally alter money
laundering tactics. Our paper will instead introduce a
framework for systematically and realistically perturb-
ing laundering subgraphs, and demonstrate how these
perturbations affect the performance of state-of-the-art
GNNSs to help us better understand how advancements
in detection might influence the evolution of financial
crime and the value of robustness testing in developing
more resilient and adaptive GNNs.

1.4 Outline

The rest of this paper is structured as follows: In Sec-
tion 2, we provide an overview of the key concepts and
background necessary to understand the paper. Section
3 details our contribution to the research area and out-
lines our methodology. In Section 4, we describe the
experimental setup used in our research and report on
the results. Section 5 will analyze and reflect on the re-
sults of our research. In Section 6, we will conclude the
paper and discuss future work. Finally, Section 7 will
address responsible research considerations.

2 Background

In this section, we give an overview of the key concepts
relevant to our research. We begin by introducing
Graph Neural Networks (GNNs) and how they are used
to detect more complex laundering behavior. Then, we
describe the common typologies of money laundering
patterns in financial transaction graphs. Next, we
explain how synthetic data is used to provide realistic
transaction graphs for training and testing GNN models.
Finally, we introduce the concept of adversarial attacks
and their effectiveness on neural networks.

2.1 Graph Neural Networks

By using graph structure along with node and edge
features, Graph Neural Networks are an effective tool
for analyzing relational data. To update its state,
each node in the message-passing framework aggregates
information from its neighbors based on their connec-
tivity, edge features, and node features [5].

In recent years, the application of Graph Neural Net-
works (GNNs) to financial crime detection has attracted
growing attention [6], but despite their effectiveness,
standard GNNs often struggle to detect cycles and
work with directed multigraphs as they only aggregate
messages at the node level, making them limited in
their ability to detect subgraph patterns [7]. Recent
work on GNN architectures has approached these
problems with adaptations such as port numbering,
rﬁzverse message passing, and multi-edge aggregations [8;
7l.

2.2 Money Laundering Patterns

Transaction data can be modeled as graphs, where
nodes represent financial entities and edges represent
transactions between them. Within this graph repre-
sentation, several common money laundering patterns
emerge, as shown in Figure 1:

EH G O pERR

@) Fan-out (b) Fan-in (c) Gather-scatter (d) Scatter-gather (e) Simple cycle (f) Random (g) Bipartite (h) Stack

Figure 1: Laundering Patterns [9]

Much of the current literature on graph learn-
ing algorithms focuses on identification and
how GNNs can learn from fraud patterns [10;
11].

2.3 Synthetic Data

Access to real-world financial transaction data is limited
because of privacy regulations and, when available, is
often unlabeled or only partially labeled [9], making it

difficult to train or evaluate GNN models on realistic
laundering scenarios. Synthetic data generators address
this by creating configurable transaction graphs that
can model money laundering patterns and legitimate
behavior. More realistic transaction graphs can be
created by more sophisticated synthetic data generators
like AMLWorld, which use multi-agent-based modeling
to simulate how individual actors interact within a
financial network [9]. Available datasets are useful for
training and benchmarking GNNs, but state-of-the-art
data generators are not made publicly available, leading
to a lack of support for controlled experimentation
on specific laundering typologies or the modeling of
evolving behavior.

2.4 Adversarial Attacks

The sensitivity of neural networks can be exploited to
cause models to misclassify elements by making small
and intentional perturbations to the input data [12].
These attacks are typically either:

1. Poisoning attacks: target the model’s training
phase by injecting malicious data.

2. Evasion attacks: target the model’s inference phase
by modifying the data seen by the trained model to trick
it into misclassifying the data.

In white-box attacks, the adversary has access to com-
plete information about the model, including parame-
ters, input data, and labels, while in black-box attacks,
the adversary can only observe and interact with the
model’s inputs and outputs. In a restricted black-box at-
tack, the adversary has the additional constraint of only
controlling a subset of nodes in the graph [13]. Research
shows that for neural networks using graph data, the
accuracy of node classification significantly drops even
when performing only a few perturbations [14]. Notably,
adversarial examples that evade detection on one model
often also evade detection on other models trained for
the same task [15].

3 Contribution and Methodology

In this section, we place our contribution in the context
of the broader research area and lay out our methodol-
ogy. We begin by detailing our intended contributions
and motivation, before providing a comparison of the
existing transaction datasets and justifying which we
use. Next, we introduce the Graph Perturbation Frame-
work and describe the “Parameterized Actions” model.
Finally, we briefly outline the evaluation methodology
that we use for the experiment, which we elaborate on
in Section 4.

3.1 Contribution

Although adversarial attack frameworks on GNNs have
been well studied [16], including recently in the context
of fraud detection [17], the concept of modeling the
evolution of money laundering patterns as adversarial

behavior and perturbing labeled data is a novel approach
in AML graph learning. We reframe money laundering
as an evasion-based, restricted black-box adversarial
attack, where a criminal without knowledge about a
model’s parameters can manipulate nodes and edges
within their control to evade detection by maximizing
the misclassification of illicit transactions.

We present a framework for systematically making
graph perturbations with configurable parameters. It
is important that these perturbations are carefully tar-
geted to only affect nodes and edges that an adversary
would realistically control, and that they increase or
decrease complexity while preserving the overall shape
of the patterns. The value of our work is twofold:

1. Tooling Contribution: We introduce a graph
perturbation tool with configurable parameters that
allows researchers to simulate how an adversary may
plausibly alter their laundering patterns. This enables
“what-if” simulations and training of GNNs on new
data by altering available datasets.

2. Empirical Contribution: We run an experiment
with four distinct preset parameter setups to analyze
how graph perturbations that simulate adding or
reducing complexity to known laundering typologies
affect the performance of pre-trained GNNs.

3.2 Overview of Transaction Datasets

We do a brief comparison of some different commonly
used datasets in research.

The Elliptic Dataset [18] is a partially labeled graph
built on real-world Bitcoin transactions. It is valuable
as it contains real-world data, but is limited due to only
a small subset of nodes being annotated with ground-
truth labels, which restricts supervised learning and
evaluation. Additionally, the only detectable laundering
patterns are those already known and labeled, which
limits the ability to discover or evaluate against novel
or evolving behaviors.

AMLSim [19] is a multi-agent synthetic data generator
that produces fully labeled transaction graphs. It is
limited by the diversity of money laundering patterns it
can produce and by how accurately the generator simu-
lates the complexity of real-world financial behavior.
AMIWorld [9] is a set of fully labeled synthetic
datasets generated using a more advanced proprietary
multi-agent simulator. We build our graph perturbation
framework on AMLWorld because it directly implements
the laundering typologies we consider, and because the
underlying generator is not open source, making it a
compelling case for perturbation-based modifications.

3.3 Graph Perturbation Framework Setup

The algorithm begins by clustering nodes and edges
labeled “Is Laundering”, essentially creating subgraphs
that represent the laundering patterns within the larger
transaction graph. Any node connected to a laundering

edge is considered a laundering node, and we make the
assumption that all nodes and edges within each of
these laundering networks are under the control of an
adversary, who can manipulate the shape and flow of
these patterns (they may correspond to shell companies,
money mules, or layering entities in a laundering
network). The algorithm then further decomposes
the graph by identifying all “laundering-adjacent”
transactions, made up of the nodes and edges that
have a non-laundering transaction going to or coming
from the laundering subgraphs, such that we only ever
have to perform computations on targeted subsets
of the complete graph. The algorithm then makes
perturbations to these identified subgraphs based on
three actions, which are outlined in the next section.
We emphasize that we do not target any nodes or
edges outside of the laundering subgraphs, and only
make perturbations to subgraphs in isolation, so as to
ensure that each money laundering cluster is modified
and evaluated individually without the malicious entity
influencing other parts of the transaction graph. We
also ensure that the source and destination of illicit
funds within a laundering subgraph remain roughly the
same, as these reflect the real-world directional flow of
illicit funds and cannot be arbitrarily changed. Finally,
we only apply our perturbations to the test split, since
under our threat model, the adversary would not have
access to the transactions from other splits.

3.4 Parameterized Actions and
Configurability

Our perturbation framework implements parameterized
actions designed to simulate realistic adaptations of
money laundering behavior that can be used inde-
pendently or in combination. The user is prompted
to provide the file path to a configuration file, which
centralizes all parameters and settings for ease of use
and flexible control over perturbations. Users can
configure the following settings:

e inputfile: path to the input CSV file containing
the original transaction graph.

e outputfile: path to the output CSV file where the
perturbed graph will be saved.

e modification filter: when multiple actions are
applied consecutively, this determines which edges
subsequent actions will apply perturbations to.

e visualization: whether to visualize the input
graph and resulting graph. Only enable for small
input files.

e seed: optional seed for reproducibility.

e actions: an array of JSON objects where each
defines a single action. Each object supports the
following fields:

Action 1: Inject Intermediary Nodes (Depth
Perturbation)

This action adds one or more newly created intermedi-
ary nodes between two nodes connected by an edge.
On its own, this simulates the layering stage, where
transactions are routed through multiple entities to
obscure the laundering trail. Intermediary injection
increases the depth of the graph, which GNNs struggle
with due to difficulties aggregating information over
longer paths [7].

e percent: sets the percentage of eligible edges or
nodes to which we inject nodes, allowing the user to
control the intensity of perturbations.

e perturb_by_edges: if true, injects intermediary
nodes on a per-edge basis. If false, injects interme-
diaries between two connected nodes and reroutes
all edges between them through the intermediary.
See Figure 2.

e intermediary depth: number of intermediary
nodes to inject per selected edge or node.

Perturb by Edge

Perturb by Node

Figure 2: Inject Intermediary

Action 2: Merge Nodes (Consolidation)

This action consolidates multiple laundering nodes into
a single node.

On its own, this simulates integration, where funds are
gathered into fewer accounts. Merging reduces graph
complexity and changes degree distributions, hiding
identifiable flow patterns.

e percent: sets the percentage of eligible edges or
nodes to which we mark to be merged, allowing the
user to control the intensity of perturbations. Note
that it will not merge clusters with two or fewer
nodes.

e perturb_by_edges: if true, merges nodes that are
directly connected by an edge. If false, merges nodes
that share a common neighbor (eg two nodes both
connected to the same central node). This does not
reduce the total number of edges in the graph. See
Figure 3.

Perturb by Edge

—_—
®->E—0O @—0©
Perturb by Node
-
— |
®

Modified

Figure 3: Merge

Action 3: Split Nodes (Fragmentation)

This action fragments laundering nodes into multiple
smaller nodes by redistributing and creating edges.

On its own, this simulates smurfing, where funds
are broken down into smaller amounts and distributed
across different accounts. Splitting increases the number
of nodes and edges in the graph, which can obscure
laundering paths and create noise.

e percent: sets the percentage of eligible nodes to
split or edges to split from, allowing the user to
control the intensity of perturbations.

e perturb_by_edges: if true, splits nodes by individ-
ually rerouting edges to new nodes. If false, clones
target nodes and redistributes incoming and outgo-
ing edges from the original, resulting in a complete
bipartite connection between sources and destina-
tions for both original nodes and clones. See Figure
4.

e split_depth: number of new nodes to create from
each selected node (eg if set to 2, one node will be
split into three).

Perturb by Edge

oy
_ 4 AN \‘I
ON O0)
Perturb by Node
X
OB
—_— Lol \
@O

Figure 4: Split

Different configurations and combinations of these
actions can be used to simulate adding or reducing

complexity to the known money laundering patterns
we have identified in Subsection 2.2. Table 1 below
illustrates how our parameterized actions align with the
AMLWorld patterns:

Laundering Pattern
Fan-Out
Fan-In

Action Configuration
Split by Node

Merge by Node or Split by
Node

Merge by Node followed by
Split with split_depth > 1
Inject Intermediary followed
by Split by Node with mod-
ification_filter: modified
Lengthen with Inject In-
termediary with intermedi-
ary_depth > 1

Split by Node

Inject Intermediary by Edge
followed by Split by Node

Gather-Scatter

Scatter-Gather

Simple-Cycle/Random

Bipartite
Stack

Table 1: Laundering Patterns and Action Configurations
required to simulate

Our actions were carefully designed to increase or de-
crease the complexity of patterns while keeping the un-
derlying shape of the patterns intact. The only action
with a risk of pattern destruction is Merge in the case of
Scatter-Gather/Gather-Scatter or Fan-In/Fan-Out, as it
can reduce the number of nodes to below the minimum
required to form these patterns.

3.5 Evaluation

Our empirical contribution is performed by applying
four distinct “preset” parameter configurations (which
we will detail and motivate in the next section) to
the chosen dataset. FEach preset defines a different
perturbation strategy to simulate plausible changes in
money laundering behavior.

We run inference using two pre-trained MEGA-GNN
models on variations of five datasets: the original
AMLWorld HI_Small dataset, which consists of 5 million
transactions, 5,100 of which are laundering, and 78
perturbed variants generated by applying four different
presets. Specifically, Presets 1-3 were each applied
at four perturbation levels across six random seeds
(3 x4 x 6), and Preset 4 was applied without varying
the perturbation percentage across six seeds (1 x 6). We
then conduct a quantitative and qualitative analysis on
how these perturbations impact the performance of the
model. We measure the extent to which the F1 score
degrades under different perturbation strategies.

4 Experimental Setup and Results

In this section, we describe the setup used to evaluate
the effects of our graph perturbation framework. First,
we explain our choice of GNN architecture and introduce

the pre-trained models used for inference. Then we
define and motivate our parameterized action presets
and explain how they are applied to the AMLWorld
dataset to produce the perturbed variants. Finally, we
present the performance of the GNN models on both the
original and perturbed datasets, and compare the F1
scores across different laundering pattern complexities.

4.1 Selected GNN architecture

Financial transaction datasets are modeled as temporal
multigraphs, which comprise the complex money laun-
dering patterns found in the AMLWorld datasets that we
modify. There have been comparatively few GNNs intro-
duced specifically as solutions to this, such as ADAMM
[20], Multi-GNN [7], FraudGT [10], and MEGA-GNN
[8], as these are the only ones capable of directly han-
dling directed graphs with multiedges and self-loops [20].
We use MEGA-GNN as our GNN architecture because it
is the current state-of-the-art, outperforming other solu-
tions by up to 13% on AML datasets [8]. Specifically, we
run a MEGA-GNN Graph Isomorphism Network (GIN)
model and a MEGA-GNN Principal Neighbourhood Ag-
gregation (PNA) model that have been pre-trained on
the “HI-Small_Trans.csv” AMLWorld dataset with the
following settings:
python main.py --data Small HI --model
{MODEL} --emlps --reversemp —-ego
--flatten_edges --edge_agg type {MODEL}
--n_epochs 80 --savemodel --task edge_class
--unique_name {NAME}

where {MODEL} is either gin or pna.

4.2 Action Parameter Presets

We introduce four distinct presets to contrast the impact
on GNN performance for different structurally realistic
laundering behaviors (see Appendix B, Figure 7):

Preset 1-3 (7a)(7b)(7c): Apply a single action each:
Inject Intermediary by edge for Preset 1, Merge by edge
for Preset 2, and Split by node for Preset 3.

To create the different datasets, we vary the perturba-
tion percentage across four levels (0.2, 0.4, 0.6, 0.8), and
for each level, we apply six different seeds (50, 100, 150,
200, 250, and 300), resulting in 24 perturbed datasets
per preset.

Preset 4 (7d): Applies two actions sequentially. First,
injects intermediaries into 60% of edges, and then splits
40% of nodes that have an incoming or outgoing edge
modified or created by the injection action.

These actions add structural complexity to the shape of
clusters while maintaining the motifs of common money
laundering patterns. It is trivial to see how edge injection
followed by node splitting can result in fan-out or fan-in
patterns, but we also demonstrate in Figure 5 how it can
result in scatter-gather:

Figure 5: Scatter-Gather Pattern simulated with Preset
4

For this preset, only the seed is varied (50, 100, 150,
200, 250, and 300), yielding six perturbed datasets,
for a total of 78 perturbed datasets, plus the original
unperturbed HI-Small_Trans.csv

By introducing depth perturbations and fragmentation,
we disguise direct transactional relationships, impeding
the model’s ability to aggregate signals effectively, as
GNNs are known to struggle with detecting long cycles
and spread out patterns [7].

Each of these presets distort the original topology and
shape of the laundering subgraphs, making it harder for
GNNs to identify suspicious transactions.

4.3 Procedure

We use AMLWorld HI-Small Trans.csv as our base
dataset, which contains realistic, labeled financial
transactions and the money laundering patterns we
identified in the background section. We then train two
MEGA-GNN models (GIN, PNA) on the unmodified
dataset as described in Subsection 4.1. Next, using our
graph perturbation tool, we generate 3 (presets) * 4
(perturbation levels) * 6 (seeds) + 1 (preset)

*x 6 (seeds) = 78 modified versions of the test split of
the original dataset, the exact configurations of which
are detailed in Subsection 4.2.

Next, we recombine the splits and convert the datasets
into the format used by the GNN architecture with:

python format_kaggle files.py
data\{DIR}\augmented.csv

where {DIR} is the directory the dataset is stored in.
See Appendix A.2 for the full set of perturbation met-
rics at each percentage level, which includes statistics
about the number of clusters affected, laundering edges
perturbed, and the percentage change in laundering
transactions.

Using the two models that have been pre-trained on the
original data, we run inference on the 78 datasets, as
well as the original dataset six times for fair comparison
and standard deviation calculation, yielding a total of
168 sets of results:
python main.py --data{DATASET} --inference
--model {MODEL} --emlps --reversemp --ego
--flatten_edges --edge_agg type {MODEL}
--task edge_class --unique name {MODEL}

We then compare the resulting F1 scores across the
datasets to assess the impact of each perturbation
strategy on model performance.

4.4 Results

Transaction GIN PNA
Dataset

HI-Small (Origi- 73.32% £ 0.06 76.41% =+ 0.09
nal)

Preset 4 (In- 56.54% + 0.75 62.07% =+ 0.52
ject+Split)

Table 2: F1 Scores (%) for GIN and PNA on original
dataset and dataset perturbed by Preset 4

F1 Score vs. Perturbation Percentage

F1 Score (%)

—8— Preset 1 - GIN - Perturbation Level (%)

—A— Preset 1 - PNA :

—8— Preset2-GIN Original GIN: 73.32%

—&A— Preset 2-PNA e Original PNA: 76.41%
- —-- Preset 4 - GIN: 56.54%

—— Preset 3 - GIN
—A— Preset 3 - PNA - - - Preset 4 - PNA: 62.07%

Figure 6: Test F1 Scores (%) across perturbation levels

The results in Table 2 show the performance of the two
MEGA-GNN variants (GIN and PNA) on the original
dataset and the perturbed datasets produced using
Preset 4 (Inject followed by Split). Our results on the
unperturbed dataset are consistent with the results
obtained in the MEGA-GNN paper [8].

The results in Figure 6 show a plot of the F1 scores
across perturbation levels for each preset. Increasing
the perturbation level in Preset 1 (Inject) and Preset
2 (Merge) causes a decrease in performance for both
models, with Preset 2 (Merge) having the most negative
impact (especially at higher perturbation which results
in significant information loss). Preset 3 (Split) slightly
improves the performance of the GIN model and has

little effect on the PNA model.

The F1 score for Preset 1 (Inject) at perturbation
level 60% is 61.49% for the GIN model and 67.33% for
the PNA model, which are higher than the Preset 4
(Inject at perturbation level 60% followed by Split at
perturbation level 40%) scores of 56.54% for the GIN
model and 62.07% for the PNA model, which shows
that splitting does reduce performance when applied to
edges that have been perturbed by a previous action.

See Appendix A.1 for complete results for each preset, in-
cluding F'1 score, precision, recall, and their correspond-
ing standard deviations.

5 Discussion

In this section, we interpret the results of our experiment
in the context of realistic adversarial strategies. We then
revisit the threat model and discuss how well our pertur-
bation framework captures the behavior of laundering
evolution in transaction graphs. Next, we examine
the broader significance of our results and the appli-
cations of our tool. Finally, we discuss the limitations
of our perturbation framework and reflect on our results.

5.1 Interpretation of Results

Our results show that structural perturbations do im-
pact and degrade the performance of GNN models while
maintaining the operational plausibility and realism
of laundering patterns. By carefully designing pertur-
bations, we can modify existing AML datasets while
preserving their underlying pattern shapes, allowing us
to test the adaptability of GNNs against a much wider
range of datasets. MEGA-GNN, the current state-of-
the-art in AML architectures, is already fairly robust
against increasing the complexity of laundering patterns
within transaction datasets, as evidenced by its rel-
atively high F1 scores, even under heavier perturbations.

Increasing structural complexity decreases performance,
though not drastically, because the underlying patterns
are not destroyed, which is why high perturbation levels
of Preset 2 (Merge), where information is removed, does
more significantly degrade performance.

Interestingly, Preset 3 (Split) leads to a slight increase
in performance for both models, though the GIN
variant shows a more noticeable improvement than the
PNA. This is likely because splitting alone preserves all
original information and introduces cloned nodes, which
increases the neighborhood size, especially for larger
and more connected laundering patterns.

In Preset 4, when Split is applied after Inject (only
to nodes with edges perturbed by Inject), it results
in lower performance than applying Preset 1 (Inject)
at the same perturbation level, which suggests that
splitting does decrease performance when it amplifies
perturbations introduced by other actions.

The PNA model performed considerably better than
the GIN model on both the original dataset and the
perturbed datasets, which is expected since it combines
multiple aggregation functions and applies degree-
scalers, allowing it to adapt to varying graph topologies
[21]. Tt is also expected that the PNA model was slightly
less negatively impacted by Preset 1 (Inject), since a
model that is more capable of extracting information
from neighborhoods should be more resistant to added
complexity.

5.2 Threat Model

As explained in Subsection 3.3, our perturbations are
only applied to known laundering subgraphs, so we can
assume that all nodes and edges we apply perturbations
to are directly controlled by the adversary, which
supports the plausibility and relevance of our threat
model.

Furthermore, each of the three perturbation actions in
our framework was designed not to destroy the shape
of patterns, and to simulate established and plausible
money laundering tactics:

Intermediary Node Injection models the use of
layering to obscure the origin and destination.
Merging Nodes models integration, where funds are
re-aggregated into fewer accounts.

Splitting Nodes models smurfing, in which large sums
of money are split into smaller amounts.

Because these perturbations are only applied to laun-
dering subgraphs and correspond to known, real-world
tactics, we argue that our framework effectively sim-
ulates realistic laundering behavior. Our framework
allows us to explore how laundering strategies may
evolve in response to improved detection systems, since
as models become more effective at identifying known
patterns, adversaries are likely to adapt their laundering
strategies to evade detection. Our framework provides
a systematic way to simulate potential behavior, which
may provide insights into the potential direction of
future laundering techniques.

5.3 Broader Implications

Our perturbation framework serves as a tool to gen-
erate data for “what-if” scenarios, which allows us
to investigate how different laundering strategies may
change in response to improvements in graph-based
detection systems. By carefully designing structural
graph perturbations, we can evaluate the adaptability
of GNN models against a variety of modifications to
laundering patterns, which can help anticipate evolving
tactics in money laundering behavior. Since training
models on current-day datasets relies on the assumption
that behavior remains constant over time, we reiterate
the need for flexible and customizable synthetic data
generators. Our research contributes to a deeper
understanding of the evolutionary dynamics between
AML systems and laundering strategies by supporting

the development of AML tools that are more resilient
to previously unseen or deliberately evasive laundering
patterns.

5.4 Reflection

Our framework provides a valuable approach to examin-
ing how laundering behavior may evolve. By modeling
systematic pattern perturbations, we move toward a
more proactive approach to AML design, where we use
simulation to anticipate previously unmodeled threats
rather than only reacting to and detecting currently
known patterns.

On the other hand, our tool is limited in its flexibility
by being restricted to only three types of perturbation
actions, which are applied randomly within laundering
subgraphs based on the parameters set in the config-
uration file. There is currently no way to simulate
conditional or rule-based perturbations aside from our
modification filter, which only applies to successive
actions. Real-world laundering may be more context-
dependent, which might make it more challenging to
reproduce realistically through our actions.
Furthermore, while our actions respect causality, we
do not implement settings to manipulate timestamps
of modified or created transactions, which real-world
laundering may rely on.

Our experiment succeeds in demonstrating the value
of our perturbation framework and contributes to the
broader literature that examines the effects of structural
perturbations on GNNs. Furthermore, by using a seed
parameter that can be set in the configuration file
and providing automation scripts for perturbation and
inference in our repository, we ensure the reproducibility
of our research. On the other hand, our experimental
setup could benefit from applying our perturbations to
a broader range of graph sizes, laundering typologies,
or GNN architectures. Additionally, the presets used
to define our perturbations could have been more pur-
posefully designed and motivated. To better investigate
how different perturbations impact model performance,
future experiments could develop more established
presets that reflect researched laundering strategies.

6 Conclusions and Future Work

Our research fills a gap in the current AML literature
by approaching the problem from the perspective of
a motivated adversary who can modify the struc-
ture of their laundering patterns to evade detection.
Traditional AML research often overlooks how the
widespread use of GNNs with access to comprehensive
transaction graphs can fundamentally alter money
laundering behavior. We address this by introducing
a novel framework for systematically making realistic
perturbations to laundering subgraphs and evaluating
how these perturbations affect the performance of

state-of-the-art GNNss.

A clear next step in our research would be to design
presets with more action combinations and depth
perturbations to test at what level of complexity
performance begins to deteriorate more rapidly. Addi-
tionally, future work could expand on the capabilities
of our perturbation framework to simulate more varied
adversary behavior by exploring how perturbations
to specific laundering patterns (rather than to all
laundering subgraphs) affect detectability. Further-
more, additional actions or settings could be added
to rewire nodes or manipulate the flow of laundered
funds. Currently, nodes created by our actions do
not interact with any nodes that are not part of
their laundering subgraph and do not exhibit realistic
behavior other than what is inherited by the nodes
they are connected to. Our framework could bene-
fit from implementing rule-based perturbations that
apply consistent modifications across all instances
of identified patterns, allowing for more controlled
adversarial simulations. Finally, more experiments
could be designed to investigate how different actions
and types of perturbations affect the resilience and
generalization capabilities of various GNN architectures.

We began this research with the goal of investigating
the extent to which laundering subgraph perturbations
affects GNN performance, to which our main takeaway
is that realistic graph perturbations can degrade model
performance while maintaining plausible behavior by
preserving the shape of patterns, which highlights the
importance of evaluating model adaptability under var-
ious structural changes. The lack of customizable, re-
alistic, and fully labeled datasets remains a significant
issue in AML research, which our framework addresses
by enabling “what-if” simulations of potential laundering
behavior through the systematic perturbation of existing
synthetic datasets.

We advocate for a more proactive approach to design-
ing AML systems by utilizing robustness testing to con-
tribute to the development of solutions that are more
resistant to the continuously evolving landscape of fi-
nancial crime.

7 Responsible Research

7.1 Environmental Impact

Training GNNs requires significant computational re-
sources. For our experiments, all training (80 epochs
per model) was performed on a node with a single V100
GPU. Additionally, to reduce energy consumption, we
tested and debugged our perturbation tool on small sub-
graphs made from HI-Small_Patterns locally before using
the full HI-Small_trans dataset and running inference on
the DelftBlue HPC cluster.

7.2 Reproducibility

It is important to wus that our results can be
independently verified, so both the perturba-
tion framework and the pretrained GNN mod-
els used in our experiments are available at
https://github.com/tjcleric/AMLTerraform.

This repository contains the perturbation tool (ter-
raform.py), the JSON configuration files (presetl.json,
preset2.json, preset3d.json, and preset4d.json), the saved
model checkpoints (checkpoint_GIN.tar and check-
point_PNA tar), and miscellaneous scripts, including
automation tools for dataset generation and inference
(automate_perturbation.py and automate_inference.py).
Model training was done on DelftBlue’s V100 GPU node.

7.3 Ethical Consideration and Potential
for Misuse

This research project introduces a framework for simu-
lating money laundering behavior by applying pertur-
bations to known patterns, but by itself, it does not
help malicious actors create novel laundering schemes.
We only provide a systematic way to alter existing pat-
terns and observe how a GNN model responds to these
changes, which a motivated adversary would be able to
do without our tool simply by inserting their own crafted
laundering patterns into the dataset. Our contribution
lies in automating and parameterizing this process for
research purposes, and in evaluating how state-of-the-
art GNN architectures respond to these perturbations,
to support the improvement of laundering detection ca-
pabilities.

References

[1]
[2]

[10]

[11]

[12]

[13]

[14]

United Nations Office on Drugs and Crime, “Money laundering,” accessed: 2025-05-13. [Online]. Available:
https://www.unodc.org/unodc/en/money-laundering/overview.html

European Commission, “Anti-money laundering and countering the financing of terrorism at eu
level,” https://finance.ec.europa.eu/financial-crime/anti-money-laundering-and-countering-financing-terrorism-
eu-level_en, accessed: 2025-05-13.

H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph anomaly detection with graph neural networks: Current
status and challenges,” 2022. [Online]. Available: https://arxiv.org/abs/2209.14930

TU Delft, “Fintech - expertise,” https://www.tudelft.nl/fintech/expertisec1549679, 2024, accessed: 2025-06-08.
Archived at: https://archive.ph/GPmmT.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum
chemistry,” 2017. [Online]. Available: https://arxiv.org/abs/1704.01212

J. Nicholls, A. Kuppa, and N.-A. Le-Khac, “Financial cybercrime: A comprehensive survey of deep learning
approaches to tackle the evolving financial crime landscape,” IEEE Access, vol. PP, pp. 1-1, 12 2021.

B. Egressy, L. von Niederhdusern, J. Blanusa, E. Altman, R. Wattenhofer, and K. Atasu, “Provably powerful
graph neural networks for directed multigraphs,” 2024. [Online]. Available: https://arxiv.org/abs/2306.11586

H. Cagr Bilgi, L. Y. Chen, and K. Atasu, “Multigraph message passing with bi-directional multi-edge
aggregations,” 2024. [Online]. Available: https://arxiv.org/abs/2412.00241

E. Altman, J. Blanusa, L. von Niederhdusern, B. Egressy, A. Anghel, and K. Atasu, “Realistic synthetic financial
transactions for anti-money laundering models,” 2024. [Online]. Available: https://arxiv.org/abs/2306.16424

J. Lin, X. Guo, Y. Zhu, S. Mitchell, E. Altman, and J. Shun, “Fraudgt: A simple, effective, and efficient graph
transformer for financial fraud detection,” 11 2024, pp. 292-300.

Z. Tian, Y. Ding, X. Yu, E. Gong, J. Liu, and K. Ren, “Towards collaborative anti-money laundering among
financial institutions,” p. 4722-4733, Apr. 2025. [Online]. Available: http://dx.doi.org/10.1145/3696410.3714576

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Ounline]. Available:
http://arxiv.org/abs/1412.6572

J. Ma, S. Ding, and Q. Mei, “Towards more practical adversarial attacks on graph neural networks,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 4756-4766. [Online]. Available: https://arxiv.org/abs/2006.05057

D. Ziigner, A. Akbarnejad, and S. Gliinnemann, “Adversarial attacks on neural networks for graph data,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery amp; Data Mining,
ser. KDD ’18. ACM, Jul. 2018, p. 2847-2856. [Online]. Available: http://dx.doi.org/10.1145/3219819.3220078

F. Tramer, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “The space of transferable adversarial
examples,” 2017. [Online]. Available: https://arxiv.org/abs/1704.03453

X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural networks against adversarial attacks,” 2020.
[Online]. Available: https://arxiv.org/abs/2006.08149

J. Choi, H. Kim, and J. J. Whang, “Unveiling the threat of fraud gangs to graph neural networks:
Multi-target graph injection attacks against gnn-based fraud detectors,” 2025. [Online]. Available:
https://arxiv.org/abs/2412.18370

M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson, and C. E. Leiserson, “Anti-money
laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics,” 2019. [Online].
Available: https://arxiv.org/abs/1908.02591

T. Suzumura and H. Kanezashi, “Anti-Money Laundering Datasets: InPlusLab anti-money laundering data-
datasets,” http://github.com/IBM/AMLSim/, 2021.

K. Sotiropoulos, L. Zhao, P. J. Liang, and L. Akoglu, “Adamm: Anomaly detection of at-
tributed multi-graphs with metadata: A unified neural network approach,” 2023. [Online]. Available:
https://arxiv.org/abs/2311.07355

G. Corso, L. Cavalleri, D. Beaini, P. Lio, and P. Velickovi¢, “Principal neighbourhood aggregation for graph
nets,” 2020. [Online]. Available: https://arxiv.org/abs/2004.05718

10

A Full Perturbation Metrics and Extended Results
A.1 Results

Metric 20% 40% 60% 80%
GIN
Test F1 69.02% + 0.42 65.35% £ 0.29 61.49% + 044 57.76% £ 0.34

Test Precision

Test Recall

76.83% =+ 0.10
62.66% =+ 0.68

77.89% + 0.25
56.29% =+ 0.39

78.73% + 0.18
50.45% =+ 0.53

79.36% + 0.14
45.41% + 0.40

Test F1
Test Precision
Test Recall

72.79% £ 0.38
85.57% + 0.14
63.34% =+ 0.53

PNA

69.99% =+ 0.33
86.71% =+ 0.13
58.68% =+ 0.41

67.33% =+ 0.29
87.63% + 0.14
54.66% =+ 0.36

64.17% =+ 0.35
88.17% =+ 0.12
50.44% + 0.41

Table 3: Test performance metrics for Preset 1 (Inject) with GIN and PNA models across percentages.

Metric 20% 40% 60% 80%
GIN
Test F1 68.36% + 0.44 62.89% + 0.68 55.59% + 0.43 49.34% + 0.96

Test Precision

Test Recall

69.28% + 0.21
67.46% + 0.76

64.75% =+ 0.58
61.14% + 0.84

57.92% + 0.36
53.45% + 0.72

51.68% =+ 0.92
47.21% + 1.02

Test F1
Test Precision

Test Recall

73.35% £ 0.38
81.33% =+ 0.27
66.80% =+ 0.49

PNA

68.53% =+ 0.36
77.48% + 0.31
61.43% =+ 0.42

61.94% + 0.54
71.61% =+ 0.57
54.57% + 0.62

55.63% + 0.67
65.63% =+ 0.40
48.27% + 0.93

Table 4: Test performance metrics for Preset 2 (Merge) with GIN and PNA models across percentages.

Metric 20% 40% 60% 80%
GIN
Test F1 75.75% 4+ 0.63 77.56% £ 0.90 77.81% £ 0.60 79.22% + 0.58

Test Precision

Test Recall

80.32% + 0.57
71.67% + 0.81

84.29% + 0.38
71.84% + 1.34

87.31% + 0.42
70.18% =+ 0.88

89.62% =+ 0.12
70.98% =+ 0.89

Test F1
Test Precision

Test Recall

77.53% + 0.28
87.23% =+ 0.39
69.78% + 0.53

PNA

77.79% + 0.83
89.79% =+ 0.28
68.62% =+ 1.18

76.26% + 0.63
91.50% =+ 0.22
65.38% + 0.89

76.80% =+ 0.46
92.99% =+ 0.10
65.41% + 0.66

11

Table 5: Test performance metrics for Preset 3 (Split) with GIN and PNA models across percentages.

Metric GIN PNA

Test F1 56.54% 62.07%
Test Precision 83.50% 90.67%
Test Recall 42.74% 47.19%

Table 6: Test performance metrics for Preset 4 (Inject + Split) with GIN and PNA models.

Metric GIN PNA

Test F1 73.32% + 0.06 76.41% + 0.09
Test Precision 75.32% + 0.07 84.15% £ 0.10
Test Recall 71.42% 4+ 0.08 69.98% =+ 0.10

Table 7: Test performance metrics on original unperturbed dataset with GIN and PNA models.

Note that the standard deviations for inference on the original dataset are far lower than what was reported in the
MEGA-GNN paper [8] because, for their experiment, a new model was trained each time.

A.2 Perturbation Metrics

Metric P1 (Inject) P2 (Merge) P3 (Split)

Clusters Affected 32.70% + 2.04 10.97% + 0.23 32.87% + 1.95

Laundering Edges Per- 33.32% + 0.00 33.24% + 1.18 43.56% + 4.76
turbed

%A Laundering Trans- +19.99% + 0.00 -11.82% + 0.14 +29.54% + 4.59

actions

Table 8: Graph Perturbation Statistics at 20%.
Metric P1 (Inject) P2 (Merge) P3 (Split)
Clustetrs Affected 53.38% £ 2.09 13.42% +0.24 54.70% + 1.11

Laundering Edges Per- 57.12% =+ 0.00 37.54% + 1.17 73.41% + 1.39
turbed

%A Laundering Trans- +39.98% + 0.00 -25.48% + 0.17 +70.03% + 3.76
actions

Table 9: Graph Perturbation Statistics at 40%.

12

Metric P1 (Inject) P2 (Merge) P3 (Split)

Clusters Affected 69.32% + 1.09 17.13% 4 0.20 100.00% =+ 0.00

Laundering Edges Per- 74.97% + 0.00 39.78% + 1.44 93.82% + 1.22
turbed

%A Laundering Trans- +59.96% + 0.00 -40.42% 4+ 0.11 +125.56% + 8.79
actions

Table 10: Graph Perturbation Statistics at 60%.

Metric P1 (Inject) P2 (Merge) P3 (Split)

Clusters Affected 85.15% + 1.29 17.66% £ 0.55 100.00% =+ 0.00

Laundering Edges Per- 88.86% + 0.00 35.71% + 1.28 99.10% + 0.14
turbed

%A Laundering Trans- +79.95% 4 0.00 -51.50% =+ 0.07 +181.46% + 3.32

actions

Table 11: Graph Perturbation Statistics at 80%.

Metric Preset 4 (Inject followed by Split)
Clusters Affected 69.32% + 1.09
Laundering Edges Perturbed 84.55% =+ 0.08

%A Laundering Transactions +159.17% + 1.48

Table 12: Graph Perturbation Statistics for Preset 4 at 60% Inject followed by 40% Split

These tables show the statistics for perturbations introduced by each preset. These perturbations are applied only
to the test set, which comprises 20% of the total dataset. Note that for Preset 2 (Merge), the percentage of affected
clusters is much lower than the percentage of laundering edges perturbed because many clusters consist of only two

nodes, which P2 will not be applied to.

Note that for Preset 1 (Inject), when the percentage is set to 50%, this will cause 66.6% of edges to be modified,
since if you select the edge A — B, you end up with A—X—B, so two edges are modified for every one that isn’t.
Additionally, the number of edges perturbed and the change in the number of laundering transactions remain
constant because the exact number of edges that will be perturbed is deterministic (two for every one edge that is
selected). For merging, it depends on the number of incoming and outgoing nodes attached to each merged node.
Splitting is perturbed at the node level, rather than the edge level, so cloning a node with many incoming and

outgoing edges significantly increases the number of perturbed edges.

13

B Configuration Presets

"inputfile": "data/
unformatted_test_split.csv",
"outputfile": "data/augmented.csv",
"modification_filter": "any",
"visualization": O,
"seed": 50,
"actions": [
{
"type": "INTERMEDIARY",
"settings": {
"percent": 0.2,
"perturb_by_edges": true
}
}

(a) Presetl.json

"inputfile": "data/
unformatted_test_split.csv",
"outputfile": "data/augmented.csv",
"modification_filter": "any",
"visualization": O,
"seed": 50,
"actions": [
{
"type": "SPLIT",
"settings": {
"percent": 0.2,
"perturb_by_edges": false,
"split_depth": 1
}
}

(c) Preset3.json

"inputfile": "data/
unformatted_test_split.csv",
"outputfile": "data/augmented.csv",
"modification_filter": "any",
"visualization": O,
"seed": 50,
"actions": [
{
"type": "MERGE",
"settings": {
"percent": 0.2,
"perturb_by_edges": true
}
}

(b) Preset2.json

"inputfile": "data/
unformatted_test_split.csv",
"outputfile": "data/augmented.csv",
"modification_filter": "modified",
"visualization": O,
"seed": 50,
"actions": [
{
"type": "INTERMEDIARY",
"settings": {
"percent": 0.6,
"perturb_by_edges": true,
"intermediary_depth": 1
}
}’
{
"type": "SPLIT",
"settings": {
"percent": 0.4,
"perturb_by_edges": false,
"split_depth": 1
}
}

(d) Preset4.json

Figure 7: Configuration presets used for node perturbation.

14

