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TURBULENT STRUCTURE IN OPEN-CHANNEL FLOws
Abstract

Turbulent transport of momentum, heat and mass dominates many
of the fluid flows found in physics, engineering and the environ-
mental sciences. Intensive research on the dynamics of the wall
turbulence in boundary layer, pipe or channel, especially in an air
flow, has been performed by many investigators in the last twenty
years. On the other hand, in hydraulics or river mechanics,
we are rather concerned about the dynamics of turbulent open-channel
water flow since it dominates the turbulent friction law, turbulent
diffusion problem, sediment transport in the river field, the flow
characteristics near the hydraulie structures and so on.

Turbulence measurements in water flow were, however, begun only
eight years ago with the development of hot-film anemometers.

The detailed investigations on turbulent structure in open-channel
flows are still very insufficient, compared with those of air flows
in boundary layer or pipe.

So, in order to make clear the turbulent structure in open-
channel flows theoretically and experimentally, this thesis deals
systematically with the following seven problems:

(1) Measurements of basic quantities of turbulence
(2) Turbulent energy budget
(3) Structure of fluctuating Reynolds-stress

(4) Mechanism of turbulence-production



(5) Modelling of turbulent shear flow
(6) Interaction between main and seepage flows

(7) Turbulent structure with transpiration

Since it may be very difficult to completely solve these prob-
lems, we consider phenomenologically the fundamental and universal
characteristics in fully developed, two-dimensional turbulent open
channel flows, by making use of both the spectral and probability
density functions as statistically analytic tools.

As shown in Fig. A, this thesis consists of two parts, that is:
Part 1 deals with the turbulent structure over smooth and rough
solid beds, and Part 2 deals with that over permeable porous bed.

Firstly, Part 1 consists of six chapters. Chapter 1 is an
introduction of solid-wall turbulence. Chapter 2 deals with
theoretical consideration of turbulent structure, which can offer
some theoretical predictions or analytical techniques for the turbu-
lent mechanism. Chapter 3 describes the methods of turbulence
measurements in water flows, i.e. hot-film anemometer and hydrogen
bubble techniques. Chapter 4 deals with the problems of (1)
and (2) mentioned above. In this chapter we experimentally

investigate in detail the turbulent structure in terms of long-time

average. Chapter 5 deals with (3) and (4). That is, the

turbulent structure in terms of short-time average or the bursting

phenomenon is investigated by making use of the conditional

sampling technique and flow visualization. In Chapter 6,

By



we propose some new physical models of wall turbulence -on a basis
of the knowledge systematically obtained from the above investiga-
tions, and we try to explain the bursting phenomenon or turbulence
characteristics even quantitatively.

Next, Part 2 consists of three chapters. Chapter T is an
introduction of permeable-wall turbulence. Chapter-B deals with
(6), where an interaction between main and seepage flows which
occurs near the loose porous bed is considered phenomenologically.
Lastly, in Chapter 9 we make clear the turbulent structure with
suction or injection through the bed, and intend to grope our way
towards establishment of a reasonable control of turbulent flow
by such a transpiration.

Many results obtained theoretically and experimentally in
Part 1 and 2 are summarized at the end of this thesis as universal

conclusions of turbulent structure in open-channel flows.

The present paper is an abridged translation of the dissertation
(Zn Japanese) for the degree of Dr. Eng. in Kyoto University.
Some main parts of this dissertation have been already published
in English in Jour. of Fluid Mech., Proc. of Japan Soc. Civil Engrs
and others, where the more detailed descriptions of these results

were given.



PArRT 1 Turbulent structure over solid bed
Chapter 1 Introduction

Fig. 1.1 shows a brief history of researches of turbulence.

The enormous materials resulting from theoretical and experimental
investigations on solid-wall turbulence in air flow( boundary layer
or pipe flow) have become available at present. For example,
the summary of these materials is found in the well-known books
written by Monin & Yaglom(1971, 1975), Tennekes & Lumley(1971),
Rotta(1972), Hinze(1975) and others.

On the other hand, the sufficient materials of turbulence
characteristics in open-channel water flows have not been obtained
still now. It is very interesting even in practice to investi-
gate how the turbulent structure or the turbulence-production
mechanism(bursting phenomenon) in open-channel flows would be influ-
enced by the hydraulic parameters such as Reynolds number and Froude
number and the wall roughness.

Thus, in this part, some systematical measurements of turbulent
open-channel flows over smooth and rough beds have been done by
making use of singleé and dual-sensor hot-film anemometers and hydro-
gen bubble tracers in order to make clear the dynamics of turbulence
, from both viewpoints of energy budget (Chapter 4) and turbulence
production mechanism (Chapter §5). And subsequently, a few pheno-
menological turbulent models ( a renewal model, a ll-eddy model and

a combined model) have been proposed (Chapter 6).
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Chapter 2 Theoretical consideration on turbulent structure
2.1 Introduction
2.2 Basic equations of turbulent flow over smooth bed
2.2.1 Budget of mean-flow energy

As shown in Fig. 2.1, U, V, and W denote the components of
mean velocity, and u, v, and w the velocity fluctuation, and u', v!
and w' the r.m.s. values in x-(flow directional), y-(vertical to the
bed) and z-(spanwise) directions, respectively. The equations of

motion are given by

b= i et + v = (201)
Ut ¥ 3 ¥ S e — 3y 3
g R
UiV+V-£,=F ——l—a_-P a( w) +a( ") ............... (2 2}
dx dy Y 5 ay dx ay

Since |Ul»|¥|2Iwl=0 in the normal, two-dimensional flow, Egs.(2.1)

d (2.2) become

P=pg(h—y)cosf— p(vi—p T) eme (2-4)

where, h is the flow depth and 1,= snf— coes0+ 04/ 3= 15 the energy gradient.
Since the wall shear stress T, is defined as r /o= (—@w+ vaU/ay)| o LS
(Uy is the friction velocity), the Reynolds stress distribution

is given by

d +
= - (2+5)
U‘E R# as
where, g=,/, U'=v/, ang R,= W, /v> 1,

From (2.3), the energy equation of mean-flow is obtained as follows:

I‘:( dU By j TL;L .............................. (2-6)



vwhere, Uy is the bulk mean velocity.
Defining E=(aU/ay)? (direct-dissipatipn of the mean flow), p=—Tw aU/dy

(turbulence-production) and the Darcy-Weisbach's friction factor f

i'e' ).E(f/“'{v.’fzy} .................. (2_7) s
(2.6) yields B
J.’(P'i‘E)—I‘— d€=/—2—- ............ (2‘8)
(] U.’ f
or
R‘ x += v ..-....-.......(2.9)
[Mpre)gras’=g2 |

where, y'=uU,y/v , and the (+)-suffix denotes the dimensionless quan-
tity by U, and v in the following.
Now, by assuming the Prandtl's mixing-length model, that is:

—@= 22(dU/dy)? reeereeseneessnninans (2-10) "
(2.5) gives at_ 20— y'/R) I—.
a1+ J1+427F (1- y'/R,) 241)_

, and if R, is very large,

vt 2
= cnsssssssssnses (2012
dy* 1+/1+427 ( ) 3

The mixing-length ¢*=(,/v may be reasonably given by
van Driest(1956), as follows:

t=resyt, PE L= (= ) oo (2-13)

where Kk is a Karman's constant and A is a damping factor.
When y+ is very large, or Z+>>1, (2.12) yields a well-known logari-

thmic law, i.e. Ut=c"iny*+B (£t®»1) - (2:14)

When y* is very small, or 17<<1, (2.12) yields a velocity distri-

bution in the viscous sublayer, i.e. Ut=y* (2¥€1) o (2015)

A distribution combining (2.14) and (2.15) smoothly is numerically
obtained from (2.11) and (2.13) with k=0.l4 and A=2T.

Consequently, Fig. 2.2 shows some calculated curves of Reynolds
stress -w/v,? , the direct-dissipation Ev/U,' =p*and the turbulence-
production Pv/US =P . It should be noticed that P* < E* when
y'<%" and P* > E* when y*>,* , where 3,*=116 is a thickness of

viscous sublayer.



Fig. 2.3 shows the following results, that is:

+

4
' 4 y
dply )Efo Elay*, eip(y‘}sfo | AP TA— (2-16)

where, ¢=v,_/U,. R,=Un/v=¢R, .
¢y approaches to 9.24 at y*t>30, irrespective of the Reynolds

number Re. Since (2.9) becomes
v2/f = ¢£{R-) + ¢p“i.) seeenrens (2017) ,

f can be easily calculated, and is shown in Fig. 2.4, togather with

the Prandtl-Karman's formula, i.e.
V2/f =575 lgRe/f/2 +3.0 = (2:18) .

A good agreement between (2.17) and (2.18) should be noticed.

From the above results, the following relations can be obtained.

A : A
L Edy=9.24U3 Lpay‘—-.( 2/f—924) U3 o (2-19)
L]

2.2.2 Budget of turbulent energy

The basic equations of turbulent components can be written:

o u au au . Ou; du . . ;
U, t;+mj_‘+-‘q;‘,__)__ﬁ(i+_ﬁ)+2,(.&)(&)

ZEN dx; CEN 2 a.rj ox, ox; ox,
a P di -

+ — | Tt + 8,u )= —u Bl o=)  osesvecrnonsarsraninen (2-20)
a‘r* [ [T kT 11 2l K a‘rl

e au P Ou 1 8 Su?
- — + L N Dl e T
v ay #: 9= L3 2 ay(u v v ay) ................. (2.21)
p dv _ 1 8 f— pv aut
2oy %3 3;(”*”2',,—‘”7;) (2-22)

dy ay ] e (2+23)
where, e ,! (%)? u (_6:'3',?)1I & ('::i )’ ) >0 s k2RI

In the same manner, the equation in respect to Reynolds stress

can be written:

TS D (D)

+ (&) (3 (3)(%)) ;

dy o\ dy ox dx/\ dx
a a
+ — | ¥ + B = ST s .
oy [ = v 5y (2-25) \



Denoting q!Eu’+u2+w:. 'E‘l+‘!+‘! ...................... (2026)

and adding (2.21)-(2.23), the equation of turbulent energy can be

obtained as follows:

= -
v _ 3 |q%v . P .. -, (9 )] (2+27)
_m,._;....g-}.a—y-{_z_--{»p v ay P

With Tr=q?v/2 (diffusion of turbulent energy) and R=pv/p (diffusion
of pressure energy), (2.27) can be also written:

PA o @ (r,+n) 1 &, & _—
v,? N U, e \ Uy R,ae"(zu,’) )

When R, is very large, (2.28) can be approximated

P=¢+a(T,+R)/dy -+ (2030) .
From (2.19) and (2.30), the total energy loss is expressed by
A
In (E+ € )dy= U.! U-= ('0/‘) 'U- sEssssssmssansssens (2.3!)
Now, denoting
utv view ue v =££ — P Ov =p3w o f
Tﬂ°='-2_" T= 2 Tra='_2_’ P o dx ' Iy —ﬁ-_y' i 2 9z (2 322’
(2.21)-(2.25) become nearly to
P+W|= !l+aT|-1fa,
PVy= e+ d(Tey +R)/ By ¢ -+ (2:33)
PVy= ¢y + dTypy/ 0y
7 U P[0 v 9§ —
x+p(-¢§ E) _g(,:u+_) .................. (2-34) .

Well, since du/9x>0 correlates more strongly with p<O than p>0

according to the Bernoulli's equation, it may be suggested that
PVy+PVy=— PV > 0 ceeeeeeernsene (2035) .

From (2.33)-(2.35), an internal mechanism model of turbulent
energy flux may be considered, as shown in Fig. 2.5. This model
suggests strongly that -

(1) u'>v' and u'>w' (from (2.33))

(2) the re-distribution of turbulent energy among u', v' and

w' may occur in the smaller-scale turbulence.

(3) thus, an isotropic approximation may be valid in the



smaller-scale turbulence, and so the turbulent dissi-

pation is nearly given by

G = & = g =

—%:5;;(:_:)2 ......(2.38)
2.3 Spectral density function of turbulent energy
2.3.1 Relation between one- and three-dimensional spectra

Define three-dimensional spectrum E(k) and one-dimensional

spectrum S(k) in the following: J~}zs(*)d*__’z I-,ls(*]& .
0!:.'“; ,-—u.ov'", 1= v",

fn ? & E(k)&: __qz_ .................. (2'39) f:w;2 'S.,(*I)'ﬂ:'l = w!! ............... (2.40}
7

Then, in the isotropic turbulence we can obtain

su(k,)=J:¥(1——i‘;)a v (2041)

8S,(k,)
a9k, )

s,,u.)=s,,u.)=%(snu,)—x,
2.3.2 Distribution of one-dimensional spectrum *) =
The spectral space can be divided into three subranges, as |
described in the following.
(a) Productive subrange (large-scale eddy)
As shown in Fig. 2.5, there exists a strong interaction bet-
ween the large-eddy and mean flow, resulting in production
of turbulent energy. Its characteristic length is given
by a mean-eddy scale Ly(integral scale). In this sub-
range, Tchen(1953) gave a -1 power law that S, (k) ~k7'
(b) Viscous subrange (small-scale eddy)
This characteristic length is given by the Taylor microscale

A or the Kolmogoroff microscale n, as follows:

1= V15w o= 2, = (f: £ S (k) k) "V e (2043) = (/)Y s (2044)
)

This subrange may be divided into two stages: one is the ini-

tial stage where A is dominant (-3 power law) and another is

¥) Refer to our paper published in Proc. of JSCE, No.241, pp.155-
168, 1975.

=10~



the final stage where n is dcminant (-7 power law).
(¢) Inertial subrange (intermediate-scale eddy)
When the Reynolds number Ry=vLl./v is very large, there is
an intermediate subrange between (a) and (b) ranges (see (
2.52)), where the energy cascade process occurs and the -5/3
power law is valid:
S ())=Cu"2e VTS e (2047)

where, C is a Kolmogoroff's universal constant.

The above results are summarized in Table 2.1.
Well, we consider the overall distribution of spectrum.
Firstly, as an interpolated relation between (a) and (¢) ranges,

the following Karman's formula can be here adopted.

S0 =(2/x)L_(1+ (k/k)?) Y R (2+48)
Denote bo=al_ ', (@~1) v (2049) :
and, since (2.48) must coincide with (2.47) when > ,
e=Ke w3/ L e e (2050) where, K=(2/zC)¥" @A ssassissmosesssin [OREY)

From (2.43), (2.44) and (2.50), the following relations are obtained.

L/n=aV(2/xC)PRM , L /1=a¥*/ /15 (2/5C)A RV i (2052)
When Rp is infinitely large, L,» 2>y and then
I%Jnif.,[l-k(k/kn)']'wdk =B(1/2,1/3) L ko/x
X

sa=x/B(1/2,1/3)=0.746 - (2:53)
where, B(m,n) is the Beta function.
Next, as an interpolated relation between (b) and (c) ranges,

the following Heisenberg's formula can be also adopted.

12!. « E(k) = (.51_}]')"&}s VP g'%‘ﬁ(l + _3?2‘.; _v_: k* ) b carrernsniennnesssns (2054)

Since an isotropic approximation may be valid in both (b) and (c)

ranges (small-scale turbulence) as mentioned previously, the

following asymptotic relations are obtained by (z.41).

When TS _18 5 BayW ..
7 Sn(‘&) 55 ;’T(m) k 54 ...(2.55)
When k»n” 5 _ 2 1gKpey?
5_(*)_..‘3.‘?(2_&) e - (2-56) .

] Yo



By comparison with (2.47) and (2.55),
Ky=1(8/9)(55C/18) ¥t -woeree (257)

Moreover, the spectrum of k=L,*k must satisfy a second-order

relation (dissipation spectrum), that is:

2 )5/-‘

- Eﬁ
L AENOR L;'df=(£,/.l)’=-l% (;E' Ry

Well, the overall spectral distribution can be numerically
obtained by blending with (2.48) and (2.54), by using (2.41) and
(2.42), as described in the following flow-chart.

(1) Caleulate tentatively with a=0.746 (Eq.(2.53))

2 A A
==(1+ (k/a)?)=%h ; (0sk<08L_27)
S (K L7 ¥
“ * 55 3 (e _4 8 1 .
=9—ﬂafa {1'{"3’2‘) a(.:"-—-i‘_r -‘!)d:; (OBL,J ‘ét)
n k

where, B’ =(567/55)"¥B, ka=10(L./7) .
(2) Denoting /f'suu)L;:d;Eﬂ
if |B-1|>0.01, then renew o and re-calculate (1).
(3) If |B-1|<0.01, calculate the errors of ¢,=lp—1| and

=1 m,-rf:'o,,(i)ai -1
(4) Calculate S,(k) by using (2.42).

Fig. 2.6 shows these results obtained with C=0.5, which
satisfy accurately (2.40) and (2.61) since €g~10° and egq ~10°
at most. Fig. 2.7 shows the energy spectrum kS(k). When
i, 1s defined as f:msn(dekEO‘S » it should be noticed that iw=1,
where the energy is dominantly contained (productive subrange).
The dissipation spectrum D(k)=k?S(k) is also shown in Fig. 2.8.
The larger Ry is, the stronger the turbulent dissipation becomes

at the higher wave number.

2.3.3 Modelling of transport of turbulent energy
Many investigators since Richardson have recognized that the

turbulent energy produced in the productive subrange was transported

-12=



into the smaller-scale eddies via a cascade process, and eventually
dissipated into heat energy. This phenomenological change
process of energy may be analogous to that of 'water service', as
shown in Fig. 2.9. According to this model, the rate € of
turbulent dissipation can be evaluated from three different methods:
(A) 'Reservior'-method (corresponds to productive subrange)
Use e=K+v*/L: (Eq.(2.50)).
(B) 'Conduit'-method (corresponds to inertial subrange)
Use e= (¥ s, (0/c)¥  (Eq.(2.47)).
(C) 'Teyrminal tube'-method (corresponds to viscous subrange)
Use ¢=15vwﬂ:t%4ﬂa (Eq. (2.43)).

(C)-method corresponds, so to say, to a summation of 'the terminal
branch tubes'.

(B)-method corresponds, so to say, to 'a flow meter' set at any

section (k). Fig. 2.10 shows an universal constant C summari-
zed by Bradshaw(1967). From this figure, C=0.5 was here adopt-
ed. Consequently, when an existence of inertial subrange is

recognized, € can be easily evaluated from (B)-method.

(A)-method corresponds, so to say, to a measurement of 'outflow
from the reservior'. K can be determined from (2.51), and its
results are shown in Fig. 2.11. K decreases monotonously with
increase of Ry, and approaches nearly to a constant at Rp=1000.

Fig. 2.12 also shows the spectra at the lower Reynolds number,

which give the values of o and K. On the other hand, Rotta(1972)
obtained the values of K in the region of Rj= 0 - 85, in the
different method with the above. His results agree well with

our ones, as seen in Fig. 2.11. And, he gave the following

asymptotic relations, that is
15
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X —hiﬂldx 2K, (2-62)
K-ER';'_“._J(: 2(3r/2)Y2(55C/18) ¥, (1 =0.5) wwesemmeeeionuns (2-63)

(2.63) also coincides very well with our results.
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2.4 Subdivision of flow field and its turbulence characteristics*)
2.4.1 Subdivision of open-channel flow field
Since there may exist an analogy between spectral and wall-
turbulence spaces, as described in Fig. 2.13, an open-channel flow
field can be also divided into three subregions (see Fig. 2.1L),
in the same manner as spectral space.
(1) Wall region (y* < 100)
This region corresponds to an inner layer in boundary Llayer,
and is dominated by U, and Vv (inner parameters). As men-
tioned later, the bursting phenomenon occurs most remarkably
in this region.
(2) Free-surface region (0.6 < & £ 1.0)
This region corresponds to an outer layer, where the turbul-
ent characteristics are dominated by Upy,, and h (outer
parameters). '
(3) Equilibrium region (100R;' £ & £, 0.6) -
This is an intermediate region between (1) and (2) subregions, s
where a dynamically equilibrium state for turbulent energy

budget, i.e. P = g, is nearly realized.

Well, because it may be most reasonable to choose the rate of
dissipation € as an essential basic quantity (see Fig. 2.9 or 8:13),
we consider the turbulence characteristics in each region on a basis

of the above. f

2.4.2 Wall region (y*s 100)
We have confirmed experimentally that
ev/US =4, (yN) 7, (A is constant ) e (2464)

L= LU /v=s - (5. (A, is constant )« (2+65)
From (2.50),

/U, = Ay {}‘*} g F Ay = (AlA:/K)V’
u'/U, has a -1/6 power law since A; becomes nearly constant when Ry,

is very large (see Fig. 2.11).

*) Refer to our paper published in Proc. of JSCE, No.241,
pp.155-168, 1975.
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Next, assuming phenomenologically that

’

Fh_ =4,y ﬂ; ( Ay is a proportional constant ). (2:67) ;
we can al;';o obtain from (2.66)

Ur=ds(de—(y" P}, (y*>30) e cennes (2068)
By comparison between (2.14) and (2.68),

R O T T Tt SN — (2-69)
Thus, when k=0.l4, As becomes about 28.5. Fig. 2.15 shows the
curves of (2.14) and (2.68), togather with the van Driest's curve
by using (2.12) and (2.13). When y+>30, these curves coincide

fairly well with each other and the experimental values.

2.4.3 Free-surface region (0.65£51.0)

We have confirmed experimentally that
d{b’,“ = Bl (e-f + B') e TR R (2.70)

L./ b= By
where, E'Z1-E, By, B, and B3 are constant.
Thus, from (2.50),

1 3 /’
- (52)

i {F + B')w anssns (2-72)
Uy

By the way, (2.13) becomes no longer valid in this region, and
so by assuming that when the mean-eddy scale L35/his constant, the

mixing-length %&lso becomes constant, we can obtain from (2.11)

Ut —U= B P, B, =(2/3)(2/a)1 e (2:73) -
Since the energy budget in this region can be expressed as

T=dT, /oy=—e¢ from (2.30), the following relation can be also
obtained by assuming T,=g¢%/2~ v,%a¢/8y (Zagustin et al.(1969)'s hypo-

thesis):
d¥( ¢
_—(d:{:) =—Bs(&'+By). (Bg is constant) e (2074)

With the boundary conditions that £'=0 : d(1/h)/dE'=0, &'=1 : 1/h=0
and d(L/h)/E'=—=x,

*’/"'={‘/33lfl—f”)+Ba(1—.f')’(1+2e’}} .............. S (2:75)

where, By=2c/(1+2B,), By =B,/(1+2B,)

.



From (2.11) and (2.75), we can approximately obtain

0= [t (2 g )

2 &=l
. 2 3 el
e =l gs
- = [hnh I3 s/z_,_ : By ff_l e (2076)

Fig. 2.16 shows the results of (2.75) with k=0.4 and B,=0.0, 0.1
and 0.2, togather with the following experimental formula obtained
by Nikuradse: L/h=0.14 — 0.08£'2 — 0.066%% vt (2:77)

(2.75) agrees fairly well with (2.77), and their mixing-length becomes

neariy constant in the free-surface region, as described in (2.73).
Fig. 2.17 shows the distributions of velocity defect law obtained

from (2.73) and (2.76), togather with the numerical solution of

(2.11) ana (2.77). A very good agreement among them is noticeable

in this free-surface region.

2.4.4 Equilibrium region ( 100R;’ S€<0.6)

Although an existence of equilibrium region in a precise term
(i.e. P=¢) may not be expected when Ry, is comparably small, this
region becomes £ £ 0.6 by assuming that the turbulence may be nearly
in equilibrium state if |P—¢|/e<20% | Consequently, this region
is expected to have a similarity law or self-consistency in the
turbulent structure, in a same manner as inertial subrange.

Since its characteristic scales are Y and V775 , the dimensional

analysis gives AU =C (1= E)RED  eccrninnsssiinnes (2+78)

Or, bykgﬁing Yr/o=U, as a characteristic velocity scale,

‘hearly-
hj./U‘&:C:e-l ........................... (2.79) .

Because the exponent of & in Lx/h changes from 1/2 to 0 in this

region, we can obtain from (2.50) ang (2:78) ¢
s

Vol e (1= )W e-vh when L /i~¢wt
v, ~(1=¢)Wegip when L /s~ const. =+ (2:80)
or from (2.50) and (2.79)
mefwﬁ when L, /b~ eV
v, { ~tY vwhen L /s~ const. = (2-81)
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Next, since the energy budget in this region is

P4 dU* _ e
U_“‘= (l"‘f)d—é —F 5
by substituting (2.78) we can obtain
UNEU;M—U*=—C.(2U.=(1—J|TH+J'1_—_¢'}—1neJ ------------------ (2-82)

On the other hand, Karman obtained the following equation by choosing

¢ and j77, as characteristic scales and applying a similarity law:
UKEU;u_ Ut=—s"t (1= VT=¢) + JT=F ] eeeesesesnsssenienes (2083) .

And also, (2.14) of Prandtl can be extended into this region,

which results in Up=U,, —Ut=—=c""In§ e (2-84)
Consequently, Uy=* ,E%%L:f%ﬂ (2+85)
-1

Since C; is about 3 (see Chapter 4) and thus kCy; =1, (2.82) can be
deduced by averaging (2.83) of Karman and (2.84) of Prandtl weighted

with a ratio of 2 to -1. This fact suggests that this region
overlaps to some extent with the wall region. Fig. 2.18 shows
Uy» Uy and Up obtained from the above. And, their agreement

is also good.

2.4.5 Overall distribution of mean velocity

Since we will deal in detail with the overall distributions of
turbulence characteristics in Chapter 4, we here consider only
those of mean velocity. Because a fully developed open-channel
flow may be dominated by an active motion or local similarity, as
will be shown -in Chapter 4, the previous consideration on a basis
of the mixing-length theory is still valid. So, it is an essen-
tial work to determine accurately the distribution of mixing-length.
Fig. 2.19 shows the numerical solutions of (2.11) obtained by using
(2.77) multiplied by the damping factor of (2.13), togather with
the experimental values (see Chapter k). A good agreement bet-
ween the both 1is noticeable. And, it is concluded that even

(2.14) of Prandtl is applicable fairly accurately in y+ > 30.

] e



2.5 Turbulence characteristics over rough bed

In this section we have estimated the effect of wall-roughness
upon the turbulence characteristics, by comparison with those over
the smooth bed obtained in previous sections. However, some
estimations obtained in this section are omitted here since the

effect of wall-roughness will be in detail investigated in Chapter L.

2.6 Mechanism of turbulence-production and structure of
fluctuating Reynolds stress *)

2.6.1 Qualitative explanation of bursting phenomenon

Intensive experimental researches on the bursting phenomenon
have been performed by making use of visual methods or conditional
point-measurements since it was confirmed that the bursting process
played an essential role for turbulence-production mechanism near
the wall in a turbulent boundary layer(Kline et al. 1967, 1971),
a pipe(Corino et al. 1969) or an open-channel flows(Grass 1971). =
They found by flow visualization that a sequence of the bursting H
events had a quasi-cyclic process; that is, it shows a periodic
motion on the average in space and time, but not perfectly periodic
at one place in time nor at one time in space. For examplé,
Corino & Brodkey(1969) presented visual sketches of a sequence of
the bursting events near the wall as shown in Fig. 2.20.

On the basis of these gualitative results, some researchers
have attempted to obtain more quantitative knowledge about the
structure of the Reynolds Stress, i.e. turbulence-production, by
using point measurements. They divided the plane of u and v
into four quadrants, as shown in Fig. 2.21, in order to evaluate
the contribution of the ejections and sweeps to the Reynolds stress.

This section will show that the conditional probability
distribution of the Reynolds stress may be introduced theoretically

by making use of the cumulant expansion method for the two variables

*) Refer to our paper published in Jour. of Fluid Mech.,
vol.80, pp.99-128, 1977.
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u and v, in order to predict the magnitude of the contribution

to the Reynolds stress from each event.

2.6.2 Probability density function of fluctuating velocity

Denoting the joint probability function of 2 = u/u’and d = vfo’ by p(@, 1),
its characteristic function by ®(£, 7), the moment of #/2* by M;; and the corresponding
cumulant by Q;,, the following definitions can be given :

o(g,) = [[ explitae+ ) p(e.5)dnas (2.90)
1 ik
"”"’ﬁWW O, 7)|gmg=0 (2.91)
k
Q,k=i71_"_§§j‘;7¢1n¢(gsq)lﬁ—u-0' (2-92)

Expanding ®(£, 7) in a Taylor series about § = 7 = 0 yields

© 3 a n ’
O, 1) ",Eo%(ga_g'”%_’) QE T )gragr=o  (2.93)

Thus M, and Q,; correspond to the coefficients in Taylor expansions of ®(£, 7)
and In ®(£, 7) respectively. The relations between the moments and the cumu-
lants are successively obtained by making use of (2.91)-(2.93).

Now, since Mg =8 =0, My = =0, My, =9 = 1, My =" = 1 and My, =
w[u'v' = — R < 0 (correlation coefficient), the following can be obtained:

Q=1 Q=0 Qu=1 @u= —R, Q=M Qn=2My (2.94)
Quo = My —3, @y =My +3R, Qg2 = My, —2R2—1,....

Qi for j < k can be obtained by merely exchanging j and kin the terms of @, for
jzk

In turbulent phenomena the cumulants of extremely high order can usually
be neglected, and even in the theory of isotropic turbulence the fourth-order
cumulant terms are sometimes discarded, e.g. by Rotta (1972). This suggests
that approximation by the lower-order cumulants may be valid for phenomena
mainly depending upon lower-order moments, because a cu mulant is considered
to be a measure of the deviation from a Gaussian distribution.

Taking into account the cumulants of less than fourth order, the following
Taylor series can be obtained from (2,92)- (24' oL):

In®(E1) = - HE-2BEr+79+ T S*SLO (2.05)

Through an inverse transformation of (2.90 ) in which the terms of ®(£, 3) of less
than fourth order are taken into account, p(%,9) can be written as

p0.9)= - [ oEmewinagay

Qi #+G(4,9)

4
- G(ﬁ! 9) +j+§-3(_1)’+kj! k! aafaak (2-96)

=10



4
= G(2,9) [1 +’+E &?— H, (2, 9)] ’

taj! k! (2.97)
where G(f, 9) is the Gaussian distribution for two variables, defined as
_ 1 2% 4+ 2RAD + D*
G(a'9)=2___ﬂ(1—R2)iexp{_ 2(1_33) )I (2,98)

and Hj, (2,9) is a Hermite polynomial in two variables.

(2.97) represents a special form of joint probability density distribu-
tion of the Gram—Charlier type. According to Frenkiel & Klebanoff (1973), the
generalized Gram-Charlier distribution in the following form extended by
Kampé de Fériet (1966) should be used when higher-order terms are needed:

© i .
p(‘ﬁ, ﬁ) = G('ﬂ, a)’+k-°m ik (ﬂ, 0) "ij (ﬁ, ’9), (2 .99)

where A,(2, 9) is an adjoint Hermite polynomial in two variables (see Frenkiel &
Klebanoff 1973).
The probability distribution of one variable is much simpler and is derived in

the same manner as (2.96): :
f

ol 1 f
P(ﬁ}=G(a)+1§3(—1)’%3a—,9(ﬁ). G(ﬁ)swexp(--g), (2.100)

or p() = G() {1 +3Q50(2° — 30) + 7' Qyo(8* — 602 + 3)}. (2.101)

When all cumulants @y, in (2.97) or (2.101) with j+% > 3 are equal to zero,
the Gram-Charlier distribution becomes the same as the Gaussian one, and thus it
may be said that Q;, gives a measure of the skewness or intermittency of the
distribution.

Now consider the probability distribution p,,(w) of the normalized Reynolds
stress w = uv[uv. By a change of variables (o, 97) may be reduced to

pow) = [ 1000, ~ Rujt)da

R R'-’~w) © 22 + R2(w/0)?
_ar(l—Rz)iexP'(l—Rz fﬂ exP(_ 2(1— R%) )

: ; an

X [1 + X % 1 {Hy, (@, — Bw[2) + H;,. (-1, Rw[ﬂ)}] o (2.102)
itk=3]K:

Since Hj; is an odd function for when j+k is odd and vice versa, the third-order

cumulants in the correction term of p,(w), i.e. the second term in (2.102), vanish.

2.6.3 Conditional probability distribution of fluctuating
Reynolds stress

The third-order cumulants, which are closely connected with turbulent diffusion,

as will be mentioned later, are much more important quantities than the fourth-
order cumulants. Because they disregarded this third-order cumulant some
previous studies such as those by Lu & Willmarth (1973) and Antonia & Atl;inson
(1973) could find little obvious relation between the bursting process and the
probability distribution of the Reynolds stress.
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. From the above description, a conditional probability distribution should be

introduced in order to evaluate the effect of the third-order cumulants, while, for

simplicity, the fourth-ordor cumulants, which are less important, may be omitted.
We shall denote the probability distributions of each event shownin Fig. 2.21

by p,(w) (outward interaction), p,(w) (ejection), ps(w) (inward interaction)
and  P4(w) (sweep), respectively. Thercfore

(W) = Pa(w) +Pa(w) +Pa(w) +Paw)- (2.104)

From (2.96), p,(w)(@=1,...,4)canbe derived by using conditional calcula-
tion. FFor example, p,(w) becomes

Rexp (Rt) [
?z(w)=m ! OXP(-‘

[~ i Ma — AT~ Aaafe) + A U~ Ao

+43 (ilx)}] df (2.105)

i s(:[:r)“}

whore ¢ = Rw[(1—R?),
Ay = 1Qq +18Qs +3R?%Qy5 + 3 B%Qos,
4, = 3RQy + (R*+ ) Qo + (R+3R%) Q2 + 3 8%Q0s, (2.106)
Ay = 3Q50 +3RQy + (R*+1) Oy +3RQ;

and A% is A, with @, replaced by Q.
Now we havo the following mathematical formulae:

© a4 (Ha)? d =
L exvl-'—"%[q-)-]w”(tlx)“'f = e[ Ky (), (2.207)

K, () = 21K (1) + K, (), K_(0) = K, (1), (2.108)

where K, is tho vth-order modified Bessel function of the second kind. Hence
substitution of (2.106)-(2.108) into (2.105) yields

Pa(w) = pg(w) +¥=(w) (w>0). (2.109)
In the samec manner,
py(0) = Do) + ), Palw) = polw) =¥ <0, (211
Pa(w) = Pa(w) '_'n&--(w) (w > 0), (2.118)
” _ R K(|¢])
hero polw) = ﬂem“’—(l-mw (2.103)

R b - |
yrH(w) = 'E'Echl(ltl) (1|_£|R)z{(1+.R) (%-"“1”) |:’|'_ (2 3RS++D+)]’ (2.113)

V() = 2 oR Iy (1) (li—*mz[(l ~R) (S?—+D~) - (@ s+07))  (2.1)

and 8% =3(S, £ 8,) = $(Qos +@y0)y D* =3(D, £D,) = }(Qn £ @12)- (2.115)

=2 -



S, and S, are the skewness factors of « and v respectively, as S, = 2 and S, = 7°.
D, and D, correspond to turbulent diffusion in the z and y directions respectively,

as D, = 7.9 and D, = m and here we shall call them the diffusion factors.

Using the conditional probability p,(w) (v = 1, ..., 4) and (2.,10k4) , p,(w)

becomes 2pg(w), in which ¢* disappear; then p,(w) coincides with a distribution

directly derived from the Gaussian. These calculated results are shown
in Fig. 2.22. Thus it is suggested that yr* are very important terms
for the sequence of the bursting process and that they are closely connected
with the turbulent diffusion.

Next, taking into account the partition level H in the diagram of Reynolds
stress w = uv[uv according to Lu & Willmarth (1973), asshownin Fig. 2.21(b),
the contributions to the Reynolds stress can be associated with one of five events
including a hole event when |w| < H. The hole event is labelled event 5. Then the
time fraction T,(H) and the contribution to the Reynolds stress /5;(H) corres-
ponding to each event can be represented by

f:pi(w) dw (i =2,4),
T(H)={ (2.116)
pi(w)dw (2 =1,3),

-

bé 4
Te(IT) =f puw)dw = 1— 3, Ty(H) (the hole event) (2.117)
1 i=1

f: wpy(w)dw >0 (i = 2,4),
and RS(H)={ (2.118)
f wpy(w)dw < 0 (i =1,3),

— @

o 4
RS,(H) =J. wp,(w)dw = 1— 3, RS,(H) (theholeevent).(2.119)
b7 i=1

When H = 0, the above equations describe the contribution of each event given
by Fig. 2.21(a).When H > 0, it may be expected that the characteristics of each
event such as skewness and intermittency can be made clear. Also, some relation-
ships between the coherent vortex motion with turbulent production which was

observed by Corino & Brodkey (1969) or Kim et al. (1971) through flow visualiza-
tion and the data obtaincd in this study through point measurements may be
discussed by varying H as a parameter.

2.6.4 Behaviour of velocity fluctuations with a trigger level H
It is also interesting to investigate some conditional

probability distributions of u and Vv with a trigger level H.

Denoting the probability distribution of u which produces the

ejections with w=H by p,(ilB) , its average value &8 is given by

" 1 o, A A
u,(8) = 7)) 'J:-u'p,(u|8)du .......................... (2-120)
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The average value &,(#) of u which produces the sweeps with w=H
is also given in the same manner. Substitution of (2.97) and

(2.109) into (2.120) yields

VZE (2)+ 8,(2) _ ﬁx%(Z} - 3,(2)

a s Z - (2121) sy - T :
i ,(H) RO ETAT] ( . u,(H) e (2-122)
where, Z=RE/™, r=J/I-R* Boy = R(Qw +3Q1) /2+ {(2R* +1) 0n
+ Qos) /2
8,(2) == ((Boy Z+BnZ*)Ko(2) + Bi=(Qp+302)/6+R (30t
{ (B, Z+ BnZ?)K\(2)) /7° and (3—2R*)Qos ) /6
2,(2) = 2x¢™(H) * exp (—RZ)/R By = R(R?+3)(Qx +3Q2)/6+
(2.123) (3R? + 1)(Qos + 30“)/5
By = (3R?* +1)(Qx +3Qu) /6 +
R(R*+ 3)(Qos +3Q2)/6

Lastly, the conditional probability distributions plilw2m)

and p,(ile=g) OF u which produces the ejection and the sweeps with

w > H, respectively, are given in the followings by integrating

L (2.97) in respect of w > H :

P,(3|925)=2l—' exp (— %)J: (¢ (2)+ ¢,(2)) exp (_ -;)d.: ............ (2+125)
P(Gloz B =5 oo (- a—;)f;u. (= 6x(2)) e (- e (2-126)

where, x=R(ag/lal—|sl)/r
¢, (2) =1+ Qpl#®—3u(1=R*2)./r2} /6 — L(2RQs + Q12)(1— 22)/2s?

#(2) = "(RO” +Qﬂ)x}2" + (dl"ra_ Aa‘x)ff" seesnessiieans (26127)
Of course, (2.125) or (2.126) coincides with (2.101) when

H"—m(X"-w).
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Chapter 3 Method of turbulence measurement and its analysis
3.1 Introduction

The method of turbulence measurements, techniques or instruments
can be divided broadly into two groups : one is point-measurement
that a detecting element is introduced into the flowing fluid, and
another is flow visualization that a tracer or other indicator is
introduced into the fluid to make the flow pattern visible.
In this study, i.e. turbulence-measurements in water flow, as the
former method a hot-film anemometer and as the latter method a

hydrogen-bubble tracer are adopted here, respectively.

3.2 Properties of dual-sensor hot-film anemometers
3.2.1 Principle of hot-film anemometer

As shown in Fig. 3.1, in a hot-wire or hot-film anemometer
two basically different methods can be applied: (a) constant-current
method and (b) constant-temperature method. Since we adopted a
constant-temperature anemometer manufactured by DISA, only (b)-method
is considered here.

Well, an equation of heat transfer from cylindrical hot-film

sensor (see Fig. 3.2) was given by Kramers:

Noy=0.42 B4+ 057P2 P ROD oreeeeeene (341)  where,  Nu=ADA, R,=UDN, P=Covjk-
Since = _ﬂ_ T . I
N, T (3-2) 5
we can obtain E?— EL = A/U0%  coevevssemnensiisincnn, (3-3)
A'= Const. X kZ(D/v)%* BO¥ R (T,—= T,)
........................... (3-4)
E3=Const. X kl B*?Ry(To— Tu) -+oov: (3-5)

where, Tg and Ty, are temperatures of sensor and water, respectively.
(3.3) is an equation of calibration (U-E) in respect of a cylindrical
hot-film sensor, and thus a general calibration as to any configu-

ration of sensor (ex. see Figs. 3.3 and 3.4) can be given by

EJ_En: = A PP v (3'6)
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3.2.2 Directional sensitivity of hot-film sensor
We adopted a dual-sensor hot-film probe(DISA 55A89, as shown
in Fig. 3.4) in order to measure the turbulence intensities,

Reynolds stress and others.
Well, according to Hinze, the effective value of U can be

obtained approximately from the relation: U=UXcos?é+isin?) wwo.(3.7)
Distinguishing the dual-sensors as shown in Fig. 3.5,
¢I="2_{wl+‘)' d==”2_(v'__-’) -------------------- (3-8}
Since e®=¢=7%/4 , the following relations can be obtained from
(3-6) and (3.7) w:_ Eg) =(2 . cos’é-}-t'sin“’)”’ WRSS———
(E = E3 ) gm0 1+ &
Denoting (B} = E2,) Y™
(0)= | ——te i = corsenisesssans (8
v; (0) [(E.’-E.-’.),,.] (i=1, 2) (310)
2(cos® 8i+ Kysin® i )
% (0)= eos 1+ g'-sm 2 _2c0d 6i—¥, B < D 1))
’ or b=y
¥;— 2sin %

sesssssnsannnsanris (3! 11 )

An experiment of the directional sensitivity of this probe has
been performed in a homogeneous water flow (U=34.3 cm/s, u'/U=0.04).
Fig. 3.6 shows the experimental values, togather with the curves of
(3.2 And, the values of k? calculated by (3.12) are also
shown in Fig. 3.7. From these results, the average values of k
became equal to k;=0.12 and k;=0.21, which were of the same order to
those obtained by Hinze or Champagne et al. Consequently, the
cosine law, i.e. k=0 in (3.7), may be valid within the error of 5%.
' Then, the relations between the instantaneous velocity U=(u, v,
w) and the output voltage E are obtained in the followings.

From the cosine law,

— 2
- (T+7 ) -2 ~ (7-7)° P L, R e T
1= 2» 1+2(7+9] Ua=—5 1+2(7_Q (3-14)
Since T 37,3 e (3+15) 1in two-dimensional flow,’

T= (U, + U, INZ, 7= (T, — Ua)NZ where, El-pi=g0% (i=1,2)

................................. (3.16) ...........................;..... (3- 17)
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3.2.3 Calibration of dual-sensor hot-film anemometer

Firstly, we examined the temperature dependence of the electric
resistance of the hot-film, which results are shown in Fig. 3.8.
Fig. 3.9 shows the output voltages of anemometers in the still water
(i.e. U=0). These results agree well with (3.5), and give

E! =0.212(33.40— To), El=0.178(37.42=Tw) .ooovrreiurnismsasens (3-18)

Next, some calibrations as to the mean velocity were done by
using both a Pitot tube and a float in a homogeneous open-channel

flow. Since  F=u, ¥=¥¢50 , (3.16) and (3.17) become
El — El,= A (UNZ )m = 4; Um, A= AY2M/r (=1, 2)wenennn (3019)

Some typical results of these calibrations are shown in Fig. 3.10,
which agrees fairly well with (3.19). From this figure, the
exponent nj became nearly equal to 0.5 although it changed, speaking
strictly, a little with the velocity range. The values of the
calibration coefficient A(Tw) are also shown in Fig. 3.11.
They satisfy (3.4), and give 4, =0.138(3207-T,), 4,=0.122(35.72—T, )« (3:20).
From the above relations of (3.18)-(3.20), the calibration
curves of velocity-voltage can be easily determined. For example,

Fig. 3.12 shows the calibration curves of l-st sensor as a parameter

of the water temperature.

3.3 Effect of various factors on the properties of hot-film anemometer
3.3.1 Effect of the noise

Fig. 3.13 shows the data processing system constructed in this
study. Consequently, it is apprehended that some noises may be
involved into the analogue data of hot-film anemometers until they
are converted into the digital data.

Now, if U and Tw vary infinitesimally, the output voltage E

varies by  gr=(9E/oU) U+ ( BE/3T,) 4T, resenesiiieieen (30 21) .

When Tw is kept to be constant, (3.21) becomes

4u 4E; 2 L e
—0-== ¢=—7r—T, =1, 2 ) varsssanenessnanasinannnnnvensnevas { J222)
7] Ci E, ' ' m(1—EL/EL) (@
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C; is the sensitivity factor of the anemometers, and Fig. 3.1k

shows an example of Cj-curves calculated from (3.18)-(3.20) and

(3.22). If the noise is expressed by AE, AE/E describes the
noise-signal ratio of the analogue data. From this figure,
AU/U becomes nearly equal to (5-T)AE/E. That is, N-S ratio of

even only 1% in the instruments(see Fig. 3.13) causes that of
(5-7)% in the evaluation of velocity.
Thus, we made some devices to minimize the noise

involved into the analogue data.

3.3.2 Effect of the water temperature changes

Since the time required for the turbulence measurement at one
point is about two minutes, the water temperature changes during
this one-point measurement are negligible if its temperature is
nearly in the equilibrium state. But, if there are many points
measured by the anemometers, the water temperature goes up a little
gradually during all these measurements.

Now, when U is kept to be constant, (3.21) becomes

E: 4T, OE}, o4
4E; ® ( ° 4 yni ) s (3023)

[ —+ —

Ei 2(AUm + E},)\ 9T, 9Ty
If an identical calibration curve is used in spite of the water
temperature changes ATw, the effect of AE corresponding to ATw is
evaluated as if the velocity has changed. That is, the following

relation is obtained from (3.22):

wn_ 1 OE; . 04 SRR

= (v e <0 i)
Fig. 3.15 shows the results of (3.2L4) calculated by using (3.18) and
(3.19). Actually, the velocity is underestimated by about 20%
per the increase of ATw= 1°C if the effect of ATw on the calibration
curve is neglected.

By the way, a finite differentiation of (3.17) yields

U _ 1. 4AE dEN 4v_ 1y AE_ 4
— —L —)y — = - —— carserrevasrase
U ﬂq£‘+g q)Lf@&aq'Qé% s (3928)
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Since the variation of the sensitivity factor C; against the water
temperature changes is very small as seen in Fig. 3.14, AU/U or AV/U
(ex. the relative turbulence intensity u'/U or v'/U) can be evaluated
fairly accurately in spite of ATw.

In consideration of the above, a stable water temperature was
here maintained during the operating period by circulating water
throughout the day before the test began in order to diminish the
effect of its changes on the hot-film as much as posibie, and in
-result ATy; became within only 0.5°C at the end of all measurement tests.

Furthermore, the correction for the effect of water temperature was

done by using the calibration coefficients (ef.(3.18) and (3.20)).

3.3.3 Effect of the nonhomogeneity of velocity along the sensor
When the length 7 of the hot-film sensor is larger than the
microscale A of turbulence, the effect of the nonhomogeneity of
velocity along its sensor should not be neglected. In the same
manner as the description by Hinze, the following relations as to

V-type sensors(cf. Fig. 3.5) are obtained approximately:

- 1 1 = 1 d )
E=(i-3 W) E AR =i }

_1 i 1 — 1 d Cﬂjg
R= ARk (1= 3 () NE -t A ——

155 T o L A - d uf 1 N

=T 575 (1= 4)) o +(1- 5, W)

where, sufixes m and t denote the measured and the true values,
respectively. For example, since |dd/dy|~| di&/dy|~|d (u)/dy|= U/
(cf. 2.2) and our sensor has 1=1 mm, the above effect may be

within only 1% when h=8 cm.

3.3.4 Other effects

To diminish the effect of impurities in the water upon the
characteristics of the hot-film, the suspended materials in the
flow were filtered by gauzes. And, various devices have been
done as to insulation badness of probe connector by the submerged

water, sclf-vibration of the experimental channel and others.
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3.4 Hydrogen-bubble technique
3.4.1 Principle of hydrogen-bubble tracer and its analysis

As shown in Fig. 3.16, a fine platinum wire of d=50 um diameter
is stretched in the water in the direction of y- or z-axis.
This wire forms the negative electrode of a pulsed D.C. curcuit of
(100-500) volts, where in result hydrogen bubbles with a diameter
of (0.5-1.0)d are produced and they form the markers for flow visua-
lization. In order to obtain a marking in space (combined time-
streak markers), the wire has short sections at nearly regular inter-
vals(about 2 mm) coated for insulation.

Fig. 3.1T7 shows the data processing system for hydrogen-bubble
method. Any frame in 16mm films is enlarged by the film-projector

and the coordinates of some hydrogen-bubbles can be read to the limit Tﬁ
of 0.1mm by the instrument of digital coordinator. Fig. 3.18 shows e
an anslysis method of instantaneous velocity profile (single frame _
method). Denoting three bubble-points near the reference axis X, =
(x,/32100) by 1,2 and 3, the following approximation is obtained: =
u¢={”;]_:‘) ) m=(”;T") "“=(i,:-rx_') . "'=(1;%Q eesseseneias (3428) |

With a proportional allotment of (3.28) between d- and e-points,
1 1
y(i)= -s—{yg +aly—y)} | @)= -E{ud'l- a(u,— uwa) } , ()= _;_{m + a(ve— ug) ) (3429)

Where, as=(x—=)/(x,~ =) , AT is the pulse-time and S is the enlargement
N

rate of picture. Denoting the frame number by Jj, y4=)='ﬁgyh.jvﬂ.

Then, the instantaneous velocity (3(:,;),%(:,,)) at the point of (2rs %(#))

is obtained in the same manner as (3.29) (cf. Fig. 3.18(b)).

3.4.2 Effects of various factors upon the hydrogen-bubble method

The effects of various factors upon the hydrogen-bubble method
have been investigated (ex. effects of buoyancy, wake of the wire,
the read-error, response of the bubble, ete.). These results are

omitted here since they are similar to those obtained by Schraub et al.

References (Chapter 3)
1) Hinze, J. O.: Turbulence, McGraw-Hill, pp.73~  3) Schraub, F. A., Kline, S. J., Henry, J., Runstadler,

141, 1959. P. W. & Littell, A. : Use of hydrogen bubbles for

2) Bradshaw, P.: An introduction to turbulence and quantitative determination of time-dependent
its measurement, Pergamon Press, pp.85-133, velocity fields in low-speed water flows, Trans. of
1971. ASME, BE, pp.429-444, 1965.
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Chapter 4 Experimental consideration on turbulent structure
and energy budget

4.1 Introduction

In the recent turbulence research a 'self-consistent' characte-
ristic of turbulence has been noticed that a turbulence-characteristic
may be more closely related to another turbulence-characteristic
than mean-velocity one, that is, there may be a stronger interrela-
tion among the turbulence characteristics.

In this chapter, we investigate in detail the turbulence
intensities, Reynolds stress, spectral distributions, the rates of
production, diffusion and dissipation of turbulence,and others
in open-channel flows from the viewpoint of the self-consistency
of turbulence or similarity law mentioned above, and then we make
clear systematically the effects of the Reynolds number, the Froude
number and the wall roughness upon these turbulent structure and
the energy budget.

4.2 Experimental equipment and data analysis

Three groups of experiments on two-dimensional fully developed
turbulent flow in an open channel were conducted in a tilting flume
15m long, 50cm wide and 30cm deep, as shown in Fig. s I The chan-
nel slope could be changed by adjusting two jacks so that normal
flow could be obtained. A few baffles and screens to prevent the
occurrence of large-scale disturbances were set up at the entrance of
the channel, and consequently a fully developed turbulent flow was
obtained at the test section 9.5m downstream of the entrance.

As described in Table 4.1, first group (a) consisted of three
different kinds of the Reynolds number Re=Uph/v, i.e. Re=(1.2, 2.9,
h.6)x10h, where the Froude number FrEUm//gg- and the wall equivalent
sand roughness kgiksU*/v were kept to be nearly constant, i.e.lFr%O.T
and ki=0. Second group (b) consisted of five different kinds of
the Froude number (Fr=0.46-3.12), where Reé.3.2x10h and k;#o (smooth bed)
were nearly kept. Third group (c) consisted of four different kinds
of the wall roughness (k%s0, 9, 48, 136), where Rez9800 and Fr=0.16
were nearly kept.
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The three components u, v, and w of instantaneous velocity
were measured by using a set of constant-temperature anemometers with
a DISA type 55A89 dual-sensor hot-film probe, and a single-sensor
hot-film probe(see Fig. 3.3) was used to measure only u very near
the wall. Tts detailed description has been already given in
Chapter 3. The output signals of the anemometers were digitized
by using an A-D converter (see Fig. 3.13), and then some statistical
analyses were carried out by using a large digital computer, FACOM
230-T5, Data Processing Center, Kyoto University.

It is important how to determine the number N of samples and the

sampling frequency f=1/At at any measuring point on performing analog-

to-digital conversion. The maximum cutoff wave-number ke is given by
A —_— . = x SassssssEnEEnn -
If R, is over about a hundred, the spectral analysis becomes possible =

at least to the extent of the inertial subrange, as shown in Fig.2.6.
Thus, the sampling frequency f was chosen in each run so as to satisfy
this analytical condition. Since the bursting period Ty is nearly
equal to (2-3)h/Upgy as will be shown in Chapter 5, the total sampling
time T=N/f is given by

N
9 X (U"‘“)N---— e (402)
Ty  (200~300)\ U 50

Though the larger the sample size N is, the better the accuracy of
data analysis becomes, N=5000 was chosen in this study because of
the limitation of computer technique. Thus, this sample size (
T~100Tg) may be comparatively small but it includes the

characteristics of bursting phenomenon from this data analysis.

4.3 Universal characteristics of turbulence intensities *)
Tt has been confirmed in our previous paper(1975) or Chapter 2

that the turbulent energy EYYQ played an essential role in the tur-
bulent structure of an open-channel flow, and that its behaviour
showed a monotonous decrease with increase of &Zy/h. In detail,

the gradient of ET against £ might be nearly in proportion to itself

*) Refer to our paper published in Proc. of JSCE, No.261,pp.67-76,
1977 (in Japanese), or Trans. of JSCE, vol.10, 1979(in English).
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q2 in the equilibrium region, as similar to the properties of the
other kinds of energy such as thermal energy. Then,

3 = 1
d(@) _dlng) __ 0 .(43)

1
=2'——'—

q dé dé

The above conception may be also similar to that of Townsend(1961)
or Zagustin et al.(1969). By assuming that A is constant and
applying the results of Il-eddy model proposed in Chapter 6, the
following universal functions of turbulence intensities are obtained

from (4.3): o _ Ay v kY W ¢
U_“'Dl.m-?)' 'U-."'D! W( ?)sv_.—ﬂa'w(_? """" (4-7)

where, A and D; (i=1,2,3) are the experimental constants.

In this section, we discuss experimentally the validity of
(4.7) by systematically varying the Reynolds, the Froude numbers
and the wall roughness (cf. Table 4.1).

4.3.1 Mean velocity distribution and frictidn velocity

As a result of the preliminary experiment, it was confirmed
that the mean velocity over the rough bed as well as the smooth bed
(cf. Fig. 2.19) satisfied very well the logarithmic law,

ice. Ur=aemly/k)+C (6N € (B, =a In(A]) +B oo (2-87)

when an origin of the y-axis was reset at a point of ks/h below the
top of the roughness element.
Well, in the detailed discussion on the turbulent structure,
it is a very essential work to evaluate the friction velocity U,
accurately, as mentioned in Chapter 2. There are several methods
in the evaluation of Uy, that is:
(1) Energy gradient method

From (2.3), vl =+vel, . 1,=S—dh/dz - (4:6)
where, S i1s the bed slope.

(2) Log-law method
The friction velocity U} can be estimated by using the Karman

constant k=0.4 since the mean velocity satisfys the log-law.
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(3) Reynolds-stress method
The friction velocity U, can be evaluated from (2.5) by using
the measured Reynolds stress distribution.
(4)Velocity gradient method
By definition, vul=yv U/ ayl =, |
(5) Other methods
Preston tube method, direct-measurement of wall shear stress,

heat-transfer analogy method, etc.

only (3)-method is based on the turbulence characteristics.
Consequently, in consideration of the self-consistency of turbulence
we could here evaluate Ux most reasonably by making use of (3) Reyno-
1ds-stress method. And, the friction velocity Ug', Uy and Uy
evaluated from (1)-, (2)- and (3)-methods, respectively, are
summarized in Table 4.1. They agree well with each other within

the error of 30%.

4.3.2 Effect of the Reynolds number on turbulence intensities
Fig. 4.2 shows the effect of the Reynolds number on u'/U,

and v'/U*. In the region of E <0.5 our data are in good agreement
with the Laufer's data. (4.7) with A=2.0, D;=2.30 and D2=1.27
can fairly well explain these experimental results. However,

our data in £ >0.5 deviate over from the Laufer's data or the
curves of (4.7). As will be pointed out in 4.5, this deviation
may be due to a fact that the surface wave energy is included in
the measured turbulent energy more Or less, and that it corresponds
to the inactive turbulent component defined by Bradshaw(1967).
Tt should be noticed that near the critical-depth flow, i.e. Fr ~ 1,
the universal structure of turbulence may be broken down by an
inactive motion such as surface wave fluctuation.

By the way, Ljatkher (1967) approximated linearly the Navier-
Stokes' equation and obtained the following equations (i.e. a special
case of Orr-Sommerfeld's equ.) by assuming that the effect of the

Reynolds number might disappear when Re was Very large (This assum-
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ption may be valid, as seen in Fig. L.2):

d? Vy m(l—m) 1 toduy
- e e il gy = = e —
L {(U&) (1—a) ¢° } =0 " Ly T sereessinees (40 8)
where,
Uy Eff_-u(x. Y t) ep— i (kr+wt) dzdt, Ve Eff:. vz yo t) exp—i (kxtwt) drde oveveeenees (409)

(4.8) is based on an assumption that v, =-o/k=av and  U/Up.=¢".
Because (L4.8) is the Bessel's type differential equation in respect
of v,/VE, its solution is expressed by a summation of modified Bessel
functions. This theoretical curve is described by a broken line
in Fig. 4.2, and it should be noticed that this curve agrees fairly
well with (L.7). Furthermore, when the mean velocity is assumed
to be nearly linear, i.e. m=1, a special solution of (4.8) is
obtained: velks &) =D(k)+ ep— (kA) € - (4-10)
Consequently, (4.7) can be also deduced from (4.10).

To sum up, (4.7) may be a universal function on a basis of
not only the phenomenological consideration of (4.3), but also the

approximation of N-S eq. of (4.8).

4.3.3 Effect of the Froude number on turbulence intensities

Fig. 4.3 shows the effect of the Froude number on the turbulence
intensities. Except for Case G-2, the experimental values of u'/U*
v'/Uyx and W'XU* show universal characteristics irrespective of Fr,
and agree very well with (4.7) with A\=2.0, D;=2.30, Dp=1.2T7 and D=
iééi; This suggests that except for near the critical-depth flow,

the active component may be more dominant than the inactive one,
and thus that there may strongly exist the universality or similarity

in their turbulent structure irrespective of the Reynolds and Froude

numbers. We obtain from (L.7) some noticeable results that

v/ /u’ = Dy/D, =055, w'/u =Dy/D=0T1 = o (4-12)

utl/q_‘i =0.55, UH/? = 0_17' ml?/? = 0.28 isdsasnsssssssesrIsen (4. 13)
irrespective of y/h. This shows that the ratios of the re-dist-

ribution of turbulent energy become nearly constant from the wall
.region up to the free-surface as predicted in Chapter 2 or Fig. 2.5
,and that the tendency toward an isotropic turbulence, i.e. u'=v'=w'
may be suppressed even in the free-surface region.
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Next, Fig. L.} shows the turbulence intensities near the wall
by using v, Our data of u'/Ux agree well with Laufer's data
and indicate the maximum value 2.8 at yt =15, Although the data
of v'/Ux very near the wall could not be obtained here, they seemed

to vary monotonously with yt (in detail, refer to Chapter 6] «

From (4.7), s
U,

=D, ew(— ;—:). _U”:. =D,y m(—ﬁ% F“’: =D, ew(—‘;—:) (4-15)
(4.15) with R%=600 and 1600 is shown in Fig. 4.4, and this curves
agree well with the experimental values in the region of y+ >50.
By the way, Monin et al.(1971) proposed the following asymptotic
relations when Re is very large: «'/U,—23. VU, =09, o' /U~ 17 " (4+16)
On the other hand, when R,— (R,—~%) , (4.15) becomes

WU~ 23, VU121, [ULE3 i (4017)

An agreement between the both is very good. =
To sum up, (4.15) is very valid in vyt >50, but it is not
applicable to the region of y+ <50, where an universal function
will be considered anew in Chapter 6. Still, the power-type
universal functions((2.66) and (2.81)) obtained in Chapter 2 are

examined in Figs. 4.3 and L.h.

4.3.4 Effect of the wall roughness on turbulence intensities

Fig. 4.5 shows the effect of the wall roughness on the turbu-
lence intensities. These experimental values agree well with
those of Grass(19T71) obtained by using the hydrogen-bubble technique.
In the region of £ >0.3, this roughness effect may become fairly
weak, and consequently the experimental values still coincide well
with (L4.7) independently of the wall roughness. It should be,
however, noticed that this effect appears remarkably near the wall.

So, the experimental values near the wall are in detail shown
against yt in Fig. L.6. The values of u'/U, in the wall region
gradually decrease with increase of k;, but v'/U, and w'/U, are
hardly influenced by the size of roughness element. Though the

turbulence production over a smooth bed occurs mostly in a buffer-
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layer y+=10-30 by the ejections and sweeps due to the flow instabi-
1lity (see Chapter 5), a buffer-layer over a rough bed disappears
perfectly or partly into the roughness elements, and consequently
the turbulence would be produced in another way. Actually, the
position y;:(ls-eo) where u'/U, attains maximum becomes under the
top of roughness element when.k;/h >y;, i.e. ki >70 » and thus

its evident maximum of u'/U, appears no longer (see Case D-1).

A poor dependence of v'/U, and w'/U, on roughness may be due to their
1ittle contribution to turbulence production, so that both v' and
w' seem to change monotonously with y+ while u' shows the maximum
value. Well, such an effect of the wall roughness on u'/U, can
be phenomenologically explained as follows:

As shown in Fig. 2.5, u' has a direct relation to macro-scale
eddies which dominate the turbulence production. Antonia et al.
(1971), Chen et al.(197k4) and authors(1975) pointed out experimen-—
tally that the macro-scale L; near the wall decreased gradually

C S .
with enlargement of the roughness. Then, as kg increases, A, in

(2.65) or Az in (2.66) becomes smaller, and thus u'/U, also becomes

smaller. Actually, (2.66) is shown in Fig. 4.6 since it can be
predicted in 4.6.4 and 4.7.1 that A; becomes nearly equal to 4.36
for smooth bed and 3.7T7 for rough bed. This result suggests

strongly that the re-distribution of turbulent energy may tend
toward isotropy as the macro-scale eddy decays due to the roughness.
By the way, Ut as well as L; decreases with increase of k;, as
described in (2.87). Tmamoto(1971) suggested that (u.//v,)(W*") ™A
was a universal expression against y/h on a basis of a proportional
relation between U* and L;. Now, this expression of (u//U,)(U*)™
is examined against y+ in Fig. L.7T. It should be noticed that
(/U U™ has really a universal characteristic irrespective of
the wall roughness in the region of y' <70 where its effect on u'/U,
appears remarkably as mentioned the above. Furthermore, this
universal function(a thich line in Fig. 4.7) will be investigated

in Chapter 6.
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4.4 Relative turbulence intensity and Reynolds stress
4.4.1 Relative turbulence intensity u'/U

The characteristics of only u'/U are investigated here since
v'/U and w'/U are easily evaluated from (4.12).

Fig. 4.8 shows the values of u'/U obtained by varying only
the Reynolds number Re. In £ <0.1, u'/U decreases remarkably
with increase of Re, but in & >0.1 this effect of Re becomes weaker.

And, such a characteristic is also seen in the experimental curves

obtained by Laufer(1951) and Blinco et al.(1971). Now, the following

relation can be obtained from (2.1L4) and (4.7):
u 2.3 exp(—¢)

S A Ll I 1
U~ T metA(R,) ' AR S— R+ 55 e (4018)

The curves of (4.18) with k=0.4, R,=600 and 2000 agree well with the
experimental values in £ >0.1 (see Fig. 4.8) though (4.18) is invalid
very near the wall.

Next, Fig. 4.9 shows the values of u'/U obtained by varying only
the Froude number Fr. In spite of the wide variation of Fr, the
experimental values get nearly on a single curve, and thus they
show a good agreement with (L4.18) except for very near the wall.

Lastly, Fig. L4.10 shows the values of u'/U obtained by varying
only the wall roughness. Of course, the relative turbulence
intensity increases, especially very remarkably near the wall, with
enlargement of the roughness size. Now, From (2.87) and (L4.T)

we obtain u_" _ 2.3 exp(—¢) N LB 1))
U &' é—{s" m(k,/b)—C, (k1))

As shown in Fig. 4.10, the curves of (4.19) explain fairly well
the effect of the roughness.

4.4.2 Reynolds stress distribution

The measurement of Reynolds stress in a water flow was just
realized only eight years ago by McQuivey et al.(1969) who used a
'vawed film' technique of single-sensor. On the other hand, we
measured the Reynolds stress by making use of a dual-sensor hot-

film (ef. Chapter 3).
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Fig. L.11 shows the values of Reynolds stress obtained at each
group in Table L4.1. They show a universal distribution indepen-
dently of the Reynolds, the Froude numbers and the wall roughness.

Now, from (2.5) and (2.14) we obtain -—@ _
'F'—{l—“f}“ R
» £ 38

............ (4+20) i

(4.20) coincides fairly well with the measured values.

In other words, this fact confirms the validity of (3)-method in
the evaluation of U, mentioned in 4.3.1. Still, since -uv
very near the free surface became negative value in the case of
supercritical flow (Case G-3, -4, -5), the flow depth hg at which
-uv =0, was adopted here (hg/h=0.9 for Case G-5).

4.4.3 Correlation coefficients of Reynolds stress

A correlation coefficient of Reynolds stress is defined as
R=-uv/u'v', which is a measure indicating its self-consistency of
turbulence or similarity. ‘

Fig. 4.12 shows the values of R obtained at each group, i.e.
(a), (b) and (c) in Table L.1. In the wall region and the free-
surface region respectively, R increases and decreases monotonously
with y/h, while in the equilibrium region it remains nearly constant
, i.e. R 0.}k, The comparison with previous data in boundary layer
and pipe flows shown in Fig. 4.12 indicates that R displays the

universal characteristics, irrespective of the flow conditions and

the roughness. Now, such a curve of R can be predicted from
(k.7) and (4.20), as follows: pg=_% _ (1_5)_(‘va)ﬂ“44.3n
u’y 2.92 exp(—2¢)

As shown in Fig. L.12, (4.21) has a good agreement with the
experimental values though there is an application limit in this
equation.

Next, R,=-w/q’ 1is another coefficient indicating a correlation
between the Reynolds stress and turbulence, and its experimental
values are also shown in Fig. 4.13. | These variations are similar
to those of R in Fig. L4.12. That is, the value of Ry in the

equilibrium region becomes nearly constant, i.e. Rq =0.12- 0.16,

which corresponds to the value (Rq=0.15) in the boundary-layer
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calculation developed by Bradshaw et al.(1967).

More, from (4.7) and (4.20), we also obtain

— v (1—€&)— (xR, &)
R = T ..............A.........(4.22)
A 9.56 exp(—2¢)

(4L.22) explains fairly well the experimental values, as seen in

Fig. L4.13.

4.5 Effect of the surface wave on turbulent structure
According to the conception of 'active-inactive motions' pro-
posed by Bradshaw(1967), the active part is responsible for Reynolds
shear stress, while the inactive part does not contribute essentially
to this shear stress. The former shows a universal characteristic
or local similarity of turbulence, while the latter contributes to =
the transfer of a scalar quantity such as turbulent energy and ;
consists of a lower frequency part (a larger-scale eddy).
Actually, our data of Reynolds stress in Fig. 4.11 have shown fairly =

well a universal characteristic, while the turbulence intensities

il

near the critical-depth flow have shown some deviations from the
universal function of (4.T), as pointed out in Figs. 4.2 and k4.3.
This fact suggests strongly that the effect of surface wave near the
critical-depth flow upon its turbulent structure may be due to an
inactive part. S50, the validity of this suggestion is examined

in the following on a basis of the measurement of both surface-wave

and wall-pressure fluctuations.

4.5.1 Analysis of surface-wave fluctuations

The surface—wavé fluctuation h' was measured by a resistance-type
wave amplitude instrument, where two fine nickel wires of 0.lmm dia-
meter were stretched parallel to the y-axis in the water in the same
manner as the case of hydrogen-bubble wire. The hydraulic condi-
tions of this experiments (Group W) are those over the smooth bed
varying only the Froude number, as indicated in Table L4.2.

Fig. 4.14 shows the intensity E'Z of surface-wave fluctuation
and its relative intensity fﬁTEYh. The values of both v&'2 and

Vi'2/h increase rapidly with Fr and reach maximum near the critical-

=L0o-



depth, i.e. Fr=1, and then decrease with Fr in the supercritical flow.
Such a so-called resonant behaviour near the critical-depth may be

due to an inactive motion, as mentioned later.

By the way, the equation of free surface pattern can be linearly

approximated and in result it becomes

ir—prn Dl g 2t B (TP B 28 W oy weiaas)
T axt U, oxdt U, ot A Bz U, b at 3

where, S is the bed slope, B is the Boussinesq coefficient and N is

_the hydraulic exponent (N¥=7/3+(1+24/B)” ,B is the channel width).

Assuming N =H-ep i kz— wt) and w= k¥, + iw cesnaneenens (4024)
(4.23) gives ( ‘J)' _ (N=20)(1=F2(p— 286+ ¢*))

k_"-z FX(4p— N—2¢) =20 veerrereerseees (4225)

vhere, Vo/Un=¢ |
So, the existence conditions of the small amplitude wave of (L.24)

are given by $=N/2, ¢=28— N2 ~reeee (4-26) o=pt /p(p—1)+ F""" weesenenens (4027)
On the other hand, eliminating ¢ from (4.23) and (L.2L),

@k S(ka)? FA(N — =
-{:‘_ == G L4 ( 4)9N+ 4ﬂ) 4 srsamsssavsssesnanaara (4028}
m 8 (ka)* F? (A(28—1)F2+1) + st g

Consequently, denoting F, = ((N/2)* + p— pN)E - (4+29)

the wave of (4.24) becomes stable for F,<F,., , and unstable for

2Ty e Fig. L.15 shows a diagram of existence and stability of
the small disturbances, that is, the curves of (4.26), (4.27) and
(L.29) using B=1.02 and N=10/3. From this diagram, the critical-
depth flow (the.celerity ¢ of its wave is zero, i.e. F,=p"M =1 from
(4.27)) becomes stable because Fr,c=1.6. Unfortunately, this

small amplitude theory cannot explain the resonant behaviour in

Fig, b1k, Well, it has been observed since Boussinesq that the
'undular hydraulic jump'-like surface wave occurred near the critical
depth flow. So, such a low-frequency undulation may have a strong
correlation with the inactive part of turbulence, which will be

investigated furthermore.

Also, we examined the ratio 2 of the surface-wave fluctuation energy

= g



(ﬂ/2)yﬁ'_’

to the turbulent energy, i.e. g=  ——
o[l

.................. (4. 30)

v L

Applying (4.7), (4.30) yields 9=(qrp) * 73l ) = @-30)

L T

As shown in Fig. L4.1L, the variation of Q vs. Fr is similar to that
of the surface-wave fluctuation intensity. And, we understand
that the surface-wave fluctuation energy becomes in same order of

the turbulent energy near the critical-depth flow.

Next, the spectral analysis of the surface-wave fluctuation
was done by making use of the F.F.T. method (the sample size N was
chosen N=4096), and its raw results were smoothed by a digital
triangular filter, and then they were normalized by ETE.
Consequently, these analysis of the frequency spectrum F(f) satisfied

within errors of 2-3% the normalized condition that f:?(f)qh=l-
Now, these results of F(f) are shown in Fig. 4.16 as a parameter

of Fr. When Fr is so small as(1) or .2° shown in Fig. 4.16, F(f) =
has an evident peak at fp=2-3 (Hz), and for f >fi» it seems to

satisfy the -5 power universal law obtained by the wind-wave theory,

. 2
that is: th):a(J;—';) - Rl € 1)

Such a good agreement with a universal function of (4.32) may be

due to the active part (ef. Fig. L.1k). With increase of Fr (
(:),(:),(:)), the energy transfer from the higher frequency into the
lower one occurs remarkably, and consequently the lower frequency
part of F(f) becomes more dominant near the critical-depth flow.

On the other hand, in the supercritical flow( {6}, 7 , 8 ), the
higher frequency part of F(f) becomes more dominant again. Hence,
this fact suggests strongly that a lower frequency undulation occurs
really near the critical-depth and thus that its flow is dominated

by the inactive part, as pointed out previously.

4.5.2 Analysis of wall-pressure fluctuations
A pressure tap of 1lmm diameter was set flush on the smooth bed

in the center of the channel and its wall-pressure fluctuation p was

=l



measured by using a gauge-type pressure transducer. The hydraulic
conditions of this experiments (Group P) are indicated in Table .2,

Fig. 4.17 shows the intensity p'EV%Z-of wall-pressure fluctua-
tion and its relative intensity p'/P (P=pgh, see (2.4)). The vari-

ation of p' vs. Fr is similar to that of the surface-wave fluctuation

intensity. That is, p' shows an evident maximum near the critical-
depth. By the way, the dominant terms of the pressure equation
+
are given by o P \__, ¥ 20(s/U)) -+ (4+33)
¥ (puz) ot alz/h) :

where, 7 is the dimensionless Laplacian by h.
If the turbulent structure is dominated by the active part, the uni-
versal expressions of U*= mm. (& R,) and o /U,=Dy-ew(—¢), become valid,

and consequently the following universal function is also obtained

from (]-I- .33) $ P /oU2 = p'/vg =G(&, R,) e (4+34)
2

! U,
or, L= (51) 6000 B) = s (R)F} v (4035)

r
m

Although the friction velocity Ux in this experiments was evaluated
from (4.6), it could be concluded from Fig. 4.18 that its values
were fairly accurate (a thick line in Fig. 4.18 is given from (2.7),

as follows: u,{uvs«)==k-F:h o k= (/2R (GuR P eerisiniaas (4-36)

Now, Fig. 4.17 also shows the values of p'/To using this fric-
tion velocity Uy. As Fr increases, p'/Ty, deviates gradually from
a universal value G(0,Re) and reaches maximum at Fr=0.8. For Fr >
0.8, p'/To decreases monotonously with Fr and approaches again to
G(O,Re) at Fr=2.5. -This fact confirms that such a deviation from
G(0,Re) may be caused by the inactive part whose contribution is
most remarkable near the critical-depth, especially on the side of
subecritical range. Also, it has been recognized really that the
universal value G(0,Re) contributed by the active part was a function
of only the Reynolds number. For example, according to the Corcos
(196L4)' data (see Fig. 8.10), p'/To=G(0,R.)=2.5 at Re=3x10%.
Actually, our data of p'/To in the open-channel flow where |Fr-1| is
large and thus the active part is dominant, tend to approach to this

universal value.
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Next, the frequency spectra of wall-pressure fluctuations were
obtained in the same manner as 4.5.1, and they were shown in Fig. 4.19.
Unfortunately, the resonant phenomenon of the diaphragm in the pre-
ssure transducer occurred at about 5 Hz, and consequently these spec-
tral distributions were quite inaccurate. However, the values of
spectra in f <5 Hz may be reliable, and so Fig. 4.19 shows clearly
that the lower-frequency part of F(f) becomes more dominant near the
critical-depth (ex. (:),{E)), as similar to Fig. L4L.16. This fact
also indicates evidently the existence of the inactive motion near
the critical-depth.
4.6 Spectral distribution of velocity fluctuation and
characteristic eddy-scale *) =
4.6.1 Wave-number spectrum of each velocity component
Since it is very difficult to measure directly the wave-number

spectrum S(k) introduced in Chapter 2, S(k) must be even now esti-

mated from the frequency spectrum F(f) by applying the Taylor's -
frozen-turbulence hypothesis, 1.€. 84/at=—U 04/ax ---rerererereseserenes (4037) H
» Where A is the transferable quantity. As its application eriterion

, Lin(1953) gave the following relations:

(du/dt)?/{U?( 0u/0x)?) =5 (//U)?+ (4-38) and v aU/ay|l € |U Bufdz| -=weeeeeeeeee (4-39)
(4.38) is satisfactory with errors of 5% in the region of £ >0.1
for the smooth bed since u'/U <0.1 (see Figs. 4.8-4.10).
Next, applying that v/, . =¢" and L /a=vE (see 4.6.4), (4.39)
becomes ky>(1/7)  or L 3 (74E)" sasrnssinssinn CARRD)
Judging from (4.38) and (4.40), the validity of (4.37) may become
worse close to the wall. However fortunately, according to many
recent researches cited by Monin et al.(1975), the frozen-turbulence
approximation (4.37) may be applicable fairly accurately except for
the productive subrange, i.e. kIyx <1. Then, the following trans-

formation can be applicable: S(k)=(U/2x)+F(f) , k=2afJU rsessaeennes (4041)
Now, Fig. L4.20 shows an example of spectral distributions S(k)

of each velocity component which were estimated by using (L.41)

*) Refer to our paper published in Proe. of JSCE, No.?241,
pp.155-168, 1975.
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from F(f) obtained in the same manner (F.F.T. method) as Fig. L4.16.
Judging from this figure, the sampling number N was reasonably chosen
N=4096. Firstly, the distribution of S,(k) satisfys fairly well
the results summarized in Table 2.1. Since the Reynolds number Re
is comparatively small, the inertial subrange may be soO narrow (cf.
(2.52)) as to detect its existence or the local isotropy exactly.
However, the -5/3 power law is really satisfactorily recognized,

and thus the phenomenological model of Fig. 2.9 becomes here appli-
cable. Although the observed values in the lower frequency spectrum
may not be conclusive because of the analytic limitation of (4.%0),
they agree fairly well with the Karman's interpolated formula (2.48).
And thus, we could not here detect the multi-structure of spectrum,
i.e. the occurrence of a few kinds of cascade process among the diffe-
rent scales, whose occurrence has been reported in the field
experiments such as the atmospheric turbulence, the ocean or river
turbulence. This may be due to only a single influx of external
energy, i.e. an order-scale of Ly or h(mean-velocity scale): see

Fig. 2.9.

Next, as to Sy(k) and Sy(k), an evident existence of the -5/3
power law cannot be recognized in Fig. 4.20. Now, Sy(k) or S,(k)
for a small-scale eddy (ka >>1) calculated from each power law
of Sy(k) in Table 2.1 by using (2.42) is given by a dotted line in
Fig. L.20. Compared with the observed values, isotropy can be

recognized in the viscous subrange, as predicted in Chapter 2.

4.6.2 Spectral distribution normalized by Ly

In order to investigate systematically the spectral distribu-
tions on the different flow conditions, it is necessary to normal-
ize them by a suitable characteristic scale. As this scale,
Ly (macro-scale) or n(micro-scale) is usually chosen. Here, we
adopted Lx because of an easy comparison with the theoretical resu-
1ts obtained in 2.3.

Now, assuming that (2.48) is valid up to k=0, we can obtain

L-r:(x/z)_gu(o) ............... (4+42) .



However, for the present, (L.42) is considered to be a rough esti-
mate because of (L4.L40). And, all the analyzed results were plotted
by making use of X-Y plotter in the computer center, in the manner

as described in Fig. L4.21.

Fig. 4.22 shows the spectral distributions at the typical mea-
sured points of each region for the smooth bed. Since Rx =Py is
nearly equal to 500, the theoretical curve calculated with R;=500
in 2.3.2 is described by a thick line in Fig. L.22. Although the

effect of the noise involved may appear in the higher wave-number
part of L, +k=70 , this observed spectral distributions show a univer-

sal characteristic and agree well with the theoretical curve through-

out the subranges. The results for the rough bed shown in Fig.

4.23 are also similar to those for the smooth bed. In this manner,

all the results for the lower-velocity group, i.e. (c)-group in Table

L.1 showed a good agreement with the theoretical curve. =
Next, Fig. 4.2L4 shows the spectral distributions near the wall

(£50.18) and near the free-surface(£50.75) for the higher-velocity

group, i.e. (b)-group in Table L.1. Although the observed values

fall on a universal curve irrespective of Fr, they indicate some

systematic deviation from the theoretical curve calculated with

Ry=2000. But, since the existence of the -5/3 power law is still
recognized, the above deviation may be due to the inaccurate value

of Ly. So, we correct the value of Ly in the following. .
From (2.47), r.=clel /u*)P=(S (K/L)(kL)¥ ) '
From (2.50),

SC(el_Ju’ =C.
re=Clel /u)P=c. g rensen (40 44)
If the value of Ly is accurate, Yy, must coincide with vg.

So, if the value Yy measured from Fig. 4.24 is different from the
theoretical value Yt, Ly is corrected in the following so that yp

coincides with vt : AN AR € P2 0L L (4+45)
By the way, while C is nearly equal to 0.5 (ecf. Fig. 2.10), K is a
function of Ry, as shown in Fig. 2.11. From Fig. 4.25 which re-

plotted the variation of K, we obtain a simply approximated function:

K=K, + 3_983L'V= » Ko = 0691 [ 7T T (4+46)
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Now, the spectral distributions normalized by using Ex corrected
in this manner (see Fig. 4.21) are replotted in Fig. 4.26. Actually,
such corrected distributions show a good agreement with the theore-
tical curves with Ry=1000 or 2000 in the inertial subrange whose
observed values are most reliable. And, (a)-group in Table L.l
also showed the similar results.

To sum up, all these data have confirmed that the inertial sub-
range where the -5/3 power law was valid had the universal character-
istics irrespective of the Reynolds, the Froude numbers and the wall

roughness.

4.6.3 Local isotropy and dissipation spectrum

Fig. 4.27 (a) and (b) show the spectrum S (k) for the smooth and
the rough beds, respectively. Sy(k) as well as S,(k) becomes
universal fairly well when it is normalized by Ly. The agreement
with the theoretical curve obtained in 2.3 is very good in the range

of r_-i230 for the smooth bed and L.+ k220 for the rough bed.

This fact suggests that the isotropic relation, i.e. a local isotropy
may be fairly valid in the viscous subrange and that the tendency
toward isotropy may be a little stronger for the rough bed than the
smooth bed. This suggestion may not be contradictory to the results
obtained in 4.3 (e.g. Fig. L4.6).

Next, although the spectrum Suv(k) of the Reynolds stress is zero

for any wave-number k in the strictly isotropic turbulence, it is

essential to S,())#0 in the shear flow. Fig. L.28 shows the co-
spectra S,y(k) of -uv obtained by F.F.T. method. Though there are

fairly large scatters in the observed values, it can be recognized

that Syv(k) becomes smaller than Sy(k) in the range of L. k230,

This result also suggests that the tendency toward isotropy appears

in this viscous subrange. _
Lastly, the dissipation spectrum b,(k)=&?s(x) is shown in Fig. 4.29

» togather with the theoretical curves. Up to the inertial subrange

(the increasing part of D, (k) ~k' ), the observed values agree very well

with the theoretical curve. And also, in the viscous subrange

_hT_



an agreement between the both is comparatively good although the data

in this range may be little accurate.

4.6.4 Characteristic eddy-scales and their relations
Fig.4.30 shows the macro-scale Ly evaluated from (4.L42) and its

corrected value Ly by using (4.45), which were measured by a single-

sensor hot-film. McQuivey et al.(1969) also evaluated L, from
(4.42), while Raichlen(1967) evaluated it on a basis of the Dryden's
formula., i.e. Sn(”=(21'.r/")° {I+(‘L.r. E)2) =1 e, (4-47)

The both methods are almost identical. Evidently, the scatters
in the corrected values ix are very less than those in the values Ly.

From this figure, the following relations are obtained irrespective

Of Fri [ /h=B-e, (£506) .o (4°48) 5 Lg/B=Bs , (E20.6) e (4-49)

where, the universal constants B and B3 are both nearly equal to unity.

And, they confirm the validity of the theoretical consideration in 2.4.
Fig. 4.31(a) shows the data measured by a dual-sensor hot-film,

and of course they agree very well with the data measured by a single

one. Consequently, the data very close to the wall can be comple-
mented by using a single-sensor hot-film. Now, the effect of rough-
ness upon Ly was investigated in Fig. L4.31(Db). As expected previous-

ly, this effect appears evidently near the wall of & < 0.1. We(1975)
has already confirmed that the data of L; satisfied well (2.65) and
then gave A, =31 (for smooth bed) and 20 (for rough bed). Such a
characteristic that L, decreases with enlargement of the roughness
have also already reported by Engelund(1969), Antonia et al.(1971),
Chen et al.(197L4) and others. On the other hand, the roughness
effect becomes weaker over the equilibrium region, and then it is
considered that the universal functions (L4.48) and (4.L9) are satis-
factory in this region. Since the turbulent dissipation /v is
expressed by the universal function e(¢) irrespective of even the
roughness as pointed out later, (2.50) becomes

L/b=K+ (/U @ 7H(g) woevevee (4+50)

From (4.7), (L /m)k is finally a function of only £. Consequently,
adopting B=1.0 for the higher velocity group, then (L4.46) gives

_L8-
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B =1.1 for the lower velocity group. These result explains well
the variations in Figs. 4.30 and 4.31 (or see Fig. L.3L).

Next, the micro-scale Ay defined as 1,=u///(3u/0-)? can be evaluated
from the following three methods.

(1) Spectrum method : Evaluation from the dissipation spectrum Dy(k),
Ly 4= [[:'Du(k)dtj-v‘! "

(2) Probability method : Evaluation from the r.m.s.-value of du/dt
(or bMu/At) by using (4.37).

(3) Zero-crossing method : Assuming that u and du/dt are independentl
Gaussian, A\, is evaluated from A\x= U/TN, where N is the count
number of the zero-crossing ( i.e. u=0).

The superiority among their methods has been already examined in our
previous paper(1975), and consequently the spectrum method was adopted
here. Fig. 4.32 (a) and (b) show the micro-scale Ay observed in the
higher and the lower velocity groups, respectively. From (2.52),
(4.7) and (L4.48), the theoretical relation is obtained:

2 ¢ [15B
.= - tW ) C,= [——— e (4+51)
i “”(2 ) '~ J23KR,

As for the higher velocity group (Re :3x10h), approximating that Ay=A

(this approximation is fairly valid since the local isotropy may exist
in the viscous subrange, see 4.6.3), the curve of (L4.51) calculated
with B=1.0 and R¥=1600 is shown in Fig. L.32 (a). But, our observed
data deviate over in parallel from this theoretical curve. This is
caused by a fact that the spectral analysis in the viscous subrange
could be hardly done for the higher velocity group as shown in Fig.
L.26. The deviation in the Raichlen's(1967) data may be also due

to this reason. On the other hand, the Laufer's(195L4) data in air
flow are close to the theoretical curve because he sufficiently obtain-
ed the dissipation spectrum up to the fairly higher frequency, i.e.
foo=5-T kHz. As for the lower velocity group (Re 2lx10h), the observec
values obtained by author and McQuivey et al.(1969) show a comparative-
ly good agreement with (L4.51) using B=1.1 and Rx=600 since their dissi-
pation spectra were analized up to the viscous subrange (see Fig. 4.29).

Still, the better agreement with the observed data in the free-surface
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region is obtained if (4.49) is reasonably used instead of (L.48)
in (4.51). To sum up, it should be noticed that the micro=scale A,
satisfys fairly well the 1/3 power law, i.e. 3 /h=Cy €W e (4052) >
while the macro-scale Ly satisfys the 1/2 power law.

Next, the values of Ly/Ayx are shown in Fig. L4.33. (2.52) and

(4.46) yield L
L _ KRL =/i (Kot 3.98 RL-‘,:) ......................... (4+53)
] 15 15

The observed values for the lower velocity group are close to the
theoretical curve (4.53), while those for the higher velocity group
deviate below from this curve since Ay was overestimated.
Lastly, the relations among the characteristic eddy scales Ly, Ay
and n are shown in Fig. L.3L. That is, from (4.7) and (L4.48), -

Rp/Ry= 23V exp (—¢) -orcee (4054)

and from (2.}-I-ll-), r;/i.=R,'*"(eA/U.’}‘V‘=K'V‘RL“9‘-(L,/A) ................ (4-55)

The characteristic scale decreases monotonously with decrease of y/h
due to the wall restraint. It is recognized that the effect of the =
wall restraint may become weaker for the smaller-scale, and consequentl:

Lx, A and n yield the 1/2, 1/3 and (1/4-1/6) power laws, respectively.
Another noticeable characteristic is that the ratio of macro-scale to
micro-scale becomes larger as the Reynolds number R, or RL is larger

(compare the curves of R#=600 and 1600 in Fig. 4.3k4). This means

that the inertial subrange exists more wide as the Reynolds number is

larger. However, judging from Fig. L4.3k4, to the extent of the

Reynolds number in our experiments, both Lx/l and A/n are at most in
one'order, where the strict existence of the inertial subrange cannot

be expected as pointed out previously.

4.7 Turbulent energy budget in open-channel flow
4.7.1 Turbulent energy dissipation
We(1975) have already examined the superiority among three kinds
of the evaluation method of dissipation e proposed in 2.3.3.
To be brief, the accurate values of Ly and Ay cannot be easily obtained
, especially in very large Reynolds number, as have been poinfed out

in Figs. L4.30 and L4.32. Consequently, both (A) and (C) methods seem
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to be rough estimation. On the other hand, because the -5/3 power
law was recognized clearly in every spectral distribution (see 4.6),
it can be concluded that the (B)-method, i.e. (2.47), is most relia-
ble. This conclusion is also given by Grant et al.(1962), Bradshaw
(1967), Lawn(1971) and others.

Now, Fig. L4.35 (a) and (b) show the dimensionless distributions
of turbulent energy dissipation eh/U: eveluated from (2.47) for the
higher and lower velocity groups, respectively. The ‘observed values
of €h/U} in both groups indicate a similar variation, that is a uni-
versal distribution irrespective of the Reynolds, the Froude numbers
and the wall roughness. Above all, it should be noticed that the
effect of roughness upon Eh/U; is much smaller than upon u'/U, or Ly/h.

Well, the following universal functions were given in Chapter 2:

/UL =a,(y")"! (wall region) ***+e=vvv=-- (2.64)
AUl =c,(1-¢)¥ ¢ (equilibrium region)* <+ +*- (2.78)
AU =B,(& + B,) (free-surface region)******(2.70)

The curve of (2.78) with C1=3.0 is shown by a thin line (2) in Fig.
4.35, and really it agrees well with the observed values in the equi-
librium region. Also, the curve of (2.70) with B;=5 and B»=0.1

shows a good agreement with the observed values in the free-surface
region. Although the theoretical results in Chapter 2 are valid
in this manner, it is more desirable to obtain the overall universal
function of Eh/Ui from the same reason as the discussion of overall
spectral distribution in 2.3.2. For this purpose, by using (L.7)

as u'/U, and (4.48) as Ly/h, we can obtain from (2.50)

o _ 122 ep(—3¢)
BVE

B is equal to 1.0 and 1.1 for the higher velocity group(R,=1600) and

(4.55)

the lower one (R%=600), respectively. K(R) is determined from
(4.46) and (4.54), and then the curve of (L4.56) is indicated by a thick
line (O in Fig. L4.35. Throughout the flow field except for very

near the wall, (L4.56) coincides very well with the observed values.

Moreover, the curves of (4.56) for both groups become nearly identical
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because of the small variation of K vs. Ry, (see Fig. 2.11), and this
shows the independence of the dissipation Eh/U: on the Reynolds number
s, as mentioned above.

Next, Fig. L4.36 shows the dimensionless distributions of dissipa-
tion €+E€v/U; in the wall region. Although we here could not obtain
the data in the viscous sublayer, Laufer(1954) succeeded in the measu-
rement very near the wall in air pipe flow, i.e. y+5;0, and hence his
data are replotted in Fig. 4.36. The observed values of et also
show well a universal characteristic. That is, they attain the
maximum near the sublayer edge 6;210, and then decrease monotonously
with increase of y*. The theoretical curves of (L.56) and (2.78)
are indicated in Fig. L4.36 by solid lines @ ana ED, respectively.
The observed values show a better agreement with (2.78) than (4.56)
because (L.7) or (4.56) becomes inapplicable near the wall of y*<50,
as mentioned in 4.3.3. On the other hand, when Rx is very large, =
(2.78) becomes nearly equal to (2.64) in the wall region, and thus
it is confirmed that the dissipation et over the sublayer edge can be
given by (2.6k4) or (2.78), namely the -1 power law of y*. Then,

A; becomes nearly equal to C;=3.0.

4.7.2 Production and diffusion of turbulent energy
The turbulent energy production P= -uvoU/dy is easily obtained
from the measured Reynolds stress and mean velocity distributions.

Over the equilibrium region, the theoretical distribution is given

from (2.14) and (4.20), as follows: P (1__5* 1 )(‘E)‘l.u(4ﬁ7)
_ U: kR, &

The observed values of P and its theoretical curve of (4.57) are
both shown in Figs. 4.38 and 4.40, as mentioned later.

It is necessary for the explanation of the turbulence production
mechanism to investigate the distribution of its production Pt EPU/U;
in the wall region. However, since P* in this region could not be
measured, only its theoretical curve calculated from (2.5), (2.12)
and (2.13) (after van Driest) was plotted by a broken line (:) in

Fig. 4.36. The variation of P* is similar to that oft ¥,
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In detail, the turbulent production P, the turbulent dissipation €
and the direct-dissipation E are nearly equal to each other at the
sublayer edge y'= 10 (ef. 2.2.1 or Fig. 2.2). In the sublayer
(y*< 10), they show E> €> P, i.e. the deficiency of turbulent energy.
In the buffer layer (lO§_y+§_30), they show P> €, i.e. the sufficiency
of turbulent energy. And, in the log region( y*> 30, see Fig. 2.15),
they show P~ €, i.e. the equilibrium state of turbulent energy.

Next, we consider the turbulent energy diffusion Tp= azv/2.
Although the correlation between v and w could not be measured in our
experiments, the following approximation may be valid,because

wiv= v°v according to Laufer's experimental results:

T,= L;=m ------------ (4-59)

Fig. 4.37 shows the observed values of Ty evaluated from (L.59) for
the both groups. Although there are some scatters in the data
of Fig. 4.37(a), our data show & universal distribution in spite of
the wide variation of Fr, and they agree well with Lawn's data.
According to Lawn and author, the effect of the Reynolds number upon
T./Uf is also very small ( Laufer's data may be inaccurate in this
respect ). On the other hand, the effect of the roughness upon
Ty/U; appears evidently near the wall, as seen in Fig. 4.37(b).
That is, as the roughness becomes larger, the maximum value of Tr
decreases gradually and its distribution becomes flatter. In this
manner, Tr/U} becomes nearly universal in respect of the Reynolds
and Froude numbers, while it is evidently influenced near the wall
by the roughneés. "So, because the diffusion Tr will have a close
connection with the turbulence-production mechanism, as predicted in
2.6, the effect of the roughness upon this mechanism will be in detail
investigated in Chapter 5.

Incidentally, the diffusion Ty in the free surface region can be

expressed by a universal function since the roughness effect may dis-

appear. Then, from Zagustin's hypothesis and (2.75), we can obtain
T, _7By\ d!/ B
7R =(;;) o =(;f) s/ (¢ +2Bo(1-¢) ) issisassions (4960)
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Since B;=5 and B,=0.1 as mentioned in 4.7.1, (4.60) yields
T U = &'(58 +1) /2 ~wwsenseiss (4461)
Of course, (L4.61) satisfys the relation that T= d0Tr/dy= -€ in the free-
surface region. The curve of (4.61) is shown by a solid line (3
in Fig. L.3T7T. Actually, it has a good agreement with the observed

values in this region.

4.7.3 Turbulent energy budget
Since the turbulent production P, the dissipation € and the diffu-
sion T= 9Tr/dy were obtained in the previous section, the relationship
among them, i.e. the turbulent energy budget can be considered here.
According to the theoretical results in 2.2, when R, is very

large, the turbulent energy equation in the main flow region is given

by —P—A.z—‘i-{-i& _a_._E_) ........................ .
[T ae(u:)+'ae(vf (ed)

Since it is very difficult to directly measure the pressure energy
diffusion R'= OR/Qy, we here estimate R' from (L4.62), that is:
Rl P miwsasssswaoave AR (4+63)

Fig.'h.38 shows the turbulent energy budget over the smooth bed.
It indicates the similar characteristics as Laufer's results about the
pipe flow experiments. In the region of £ <0.7, the production P
becomes nearly equal to the dissipation €. Consequently, the trans-
port of kinetic energy T plays only secondary rcle in the turbulence
behaviours and is nearly balanced by the transport of pressure energy
Bl Since for & >0.7 the production P and the pressure diffusion R'
are scarcely recognized, the dissipation € is nearly balanced by the
transport of kinetic energy T.

From (L4.62) and these experimental results,

_ |4 " n Y2 - A T
0= {P"e)dy-_—. {(p~— t)dg + (P—e)dy+ dy
= L] L1 y2 J

—

W

Wall ﬁegion Equi. Re. Free-Surface Region

That is, ff(ﬁ—ddy:J*t—ﬂdy>0 »+ (4+64)
¥y2

(4.64) concludes that the energy excess range where P > g exists

near the wall, while the energy deficiency range where € > P~ 0
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éxists near the free surface. Between two ranges there exists

the intermediate range where the energy flows under a dynamically

equilibrium state so that P = €, as already shown in Fig. 2.13.
By the way, from (2.28), the turbulent energy equation in the

wall region is given by Pv _ e Tv  Rv_ 9 3
U," U: U: U: 3y+’ ﬁ?) beresssasaaresanannn (4'65)

Expanding the velocity in a Taylor series about y+=0 yields

7 =% sii

q 1 du dw

2U . s 'E' ay+ )D +(ay+)u } 3'-1-34_ O(y‘-’} ......................... (4'67)
»

Since /(3.%,7 =03 and Hauw*/oy®? =01 according to Hinze(1975),
(L.67) becomes  J2/202 = 0.05y*2 + 0(y*) oeeene (4-68)

Consequently, the rate v,=-02(¢%/202)/0y" of work by the viscous stress
becomes nearly equal to VT=—O.1 very close to the wall. Thus ,

Vip in the wall region must not be neglected because it is of the same
order as the production P* or the dissipation €%, as seen in Fig. L.36.

Fig. 4.39 replots the turbulent energy budget in the wall region,
where the values of P, €, T and Vg were obtained by Laufer(195k).

P is roughly balanced by €. The sum of T and Vp is roughly balanced
by R'. In detail, the sublayer (y+ <10) is the deficiency range

(P < €) of the turbulent energy. The buffer layer (10< yt< 30)

is its excess range (P > €), and the log region (y* >30) is its equi-
librium range (P = €), as mentioned previously. The excess turbu-
lent energy in the buffer layer is transported into the sublayer by

the pressure diffusion (R' < 0), and also into the free-surface region
by the kinetic energy diffusion (T < 0). Consequently, the turbulent
budget among them balances itself.

Next, Fig. 4.4O shows the turbulent energy budget over the rough
bed. Although this budget relation over the rough bed is nearly
similar to that over the smooth bed, the roughness effect appears
in the diffusion terms T and R' near the wall. Though the turbu-
lence production mechanism over the rough bed is, at present, still
unknown, its mechanism may be quite different from that over the
smooth bed, since the buffer layer (the excess range of the turbulent

energy) exists no longer over the rough bed. A clue to make clear
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its mechanism will be given in Chapter 5.

Lastly, Fig. 4.41 shows the relationship between the production P

and the dissipation e.

Although there are a little scatters in the

observed values, the values of |P-€|/€ become nearly equal to 0.2 in

the equilibrium region, and then in the free-surface region they

increase up to 1.0, i.e. P = Q.

The curve (D) in Fig. 4.41 which

was calculated from (L4.56) and (4.57), agrees well with the observed

values, and thus it explains well the relationship between P and .
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Chapter 5 Experimental consideration on mechanism of
turbulence production

5.1 Introduction

The physics of wall-turbulence have now been established in at
least a qualitative sense through experiments and refined data analy-
sis, as pointed out by Mollo-Christensen(1971). Kline et al.(1967)
and Kim et al.(1971) discovered the bursting phenomenon, in which
ejections played a predominant role, by making visual studies of the
mechanism of turbulence production by the hydrogen-bubble technique.
Also, Corino & Brodkey(1969) and Grass(1971) found by flow visualiza-
tion that sweeps are prominent near the wall. This suggests that
sweeps may be as important as ejections for turbulence production.
This was verified by Nychas et al.(1973) and Offen & Kline(197L4,-75).

On the basis of these qualitative results, some researchers
(Lu & Willmarth 1973, Brodkey et al. 19Th,etc.) have attempted to
obtain more quantitative knowledge about the structure of the Reynolds
stress, i.e. turbulence production, by using  point measurements.

In this chapter, we also experimentally investigate the mechanism
of turbulence production in open-channel flows by means of both condi-
tional point-measurements and flow visualization, on the basis of the
theoretical predictions of 2.6 and the previous results mentioned above.
5.2 Probability distributions of the velocity fluctuations and

the instantaneous Reynolds stress *)

5.2.1 Probability density function of velocity and
its higher moments

The data plotted in Fig. 5.1 are the probability densities measu-
red in each region of turbulent flow over a smooth bed. Data were
sampled by dividing the region -3 < i, ¥ < 3 into 40 cells, where
i=u/u' and ¥=v/v'. When the skewness factor S and the flatness
factor F are given, the Gram-Charlier distribution (2.96) is deter-

mined by using the following relations from (2.94):

Oﬂ=FH_3E W — ]
Qo =F,—3=71"—3

Ou=5,55. Om=5.—=-‘5 }

*) Refer to our paper published in Jour. of Fluid Mech.,
vol.80, pp.99-128, 1977.
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Now, the experimental values of S and F for u and v are shown in
Fig. 5.2, together with data obtained in a boundary layer by Gupta &
Kaplan(1972) and in an oil flow by Kreplin(1973, quoted in Eckelmann
1974). Owing to the deficiency of measurements in the vicinity of
the wall, it is difficult to make a definite remark about the differe-
nce in the values of these quantities in free-surface flow and in
boundary-layer flow. But, except for the free-surface region, a good
agréement between the two may be observed. In the free-surface region
both |S| and |F| have their maximum values, while they increase mono-
tonously in the outer layer of the boundary-layer flow. This discre-
pancy may be due to the presence of large-scale intermittency in the
boundary-layer flow.

It is noteworthy that S, and Sy are almost symmetrical with respe-
ct to each other about the axis S=0 (Gaussian) for any value of y+,
and change sign at y+=10. Also, Fig. 5.2 suggests that the Gram-
Charlier distribution should be taken into account in both the wall
and the free-surface regions because the deviation from the Gaussian
distribution becomes larger in these regions.

The theoretical curves of the probability density given by (2.96)
were calculated by using the measured values of S and F (Fig. 5.2),
and are shown in Fig. 5.1. Despite some scatter in the observed
data, the actual phenomena can be fairly well explained by the Gram-
Charlier distribution. Though the fourth-order distribution is in
better agreement with the experimental results than the third-order
one, the difference between the two does nothing to change the essen-
tial characteristics of the distribution. In the wall and equilib-
rium regions over the viscous sublayer, i.e. y+ > 10, the third—ordér
distribution seems to be sufficiently accurate. But it is better to
consider the fourth-order distribution for the free-surface region,
because the deviation from the observed values becomes comparatively
large. Like Sy and Sy, shown in Fig. 5.2, the distributions of p({i)
and p(¥) indicate nearly symmetrical deviation to the positive and

negative sides of the zero axis respectively; p({i) having its maximum
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value on the positive side and its longer tail on the negative side,
and vice versa for p(%#).

The above description of the flow over the smooth bed applies
in the case of the rough beds too. The values of the fourth- and
fifth-order moments are shown in Fig. 5.3, as well as the data ob-
tained by Lawn(1971). In the wall and equilibrium regions, the
fourth-order moments hardly deviate from the Gaussian distribution
. and thus the third-order distribution may be valid in these regions.
In the free-surface region, however, the third-order approximation
may yield significant errors because of a considerable deviation
from the Gaussian distribution.

Judging from Fig. 5.3, the fifth-order moment widely deviates
from Gaussian value, Ms5,~=0. The following can be deduced in the
same vay as (2.94): Qs = Mso — 10 My coeeeeseosesessemmanens (5-2)

The values of Ms, calculated from (5.2) by setting Qso equal to zero
are shown in Fig. 5.3, and they agree fairly well with the observed
values. This is the reason why the higher-order cumulants can be
neglected as described in 2.6. Since all the odd-order moments of
a Gaussian distribution are equal to zero, it is suggested that the
third-order Gram-Charlier distribution should replace the Gaussian
one. Also, it seems that in the wall region the fifth-order moment
(in general, odd-order moments) is influenced by the roughness,

which will be discussed later in detail.

5.2.2 Probability density function of instantaneous Reynolds stress
The observed values of the probability density function pw(w) of
the Reynolds stress in each flow region are indicated in Fig. S.h,
as an example of the flow over a smooth bed. The fluctuating Rey-
nolds stress w (= uv/u4v ) was sampled by divided -6 < w < 8 into k4O
cells. The sums of the values of p,(w) in the ranges w < -6 and
w > 8 respectively are plotted on the broken lines in Fig. 5.4.
Since pw(w)=2pG(w) as indicated by (2.103) and (2.104), p,(w) was
calculated by using the values of R given in Fig. L4.12, and the resu-

lting curves are shown as solid lines in Fig. 5.L. Good agreement
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between the theoretical and experimental values was obtained,
especially in the equilibrium region, and any small discrepancy bet-
ween the two was due to a large deviation of the fourth-order moments
from Gaussian as shown in Fig. 5.3. Consequently, the unconditional
probability distribution p,(w) of Reynolds stress can be represented
by one directly derived from a Gaussian distribution with high accu-
racy, as verified by Lu & Willmarth(1973) and Antonia & Atkinson(1973).
It may be noted from Fig. 5.4 that the probability distribution of
values of uv has a very sharp peak at w=0 and a very long tail exten-
ding to large values of |w|. In a theoretical equation py(w) becomes
infinite at w=0 because K,(0)= «» and becomes larger on the positive

side of the curve than on the negative side because w=f° wp,(w)dw = 1.

Consequently, it can be suggested that almost all of the events
occur with small values of [w| but sometimes an event occurs with a
very large value of |w|. Hence, we can conclude that the instan-
taneous Reynolds stress might have marked intermittency.

In order to investigate this characteristic in detail, the obser-
ved values of the skewness factor Syy and the flatness factor Fyy of
w are shown in Fig. 5.5, together with data obtained by Antonia &
Atkinson(1973). Provided that @ =0 for j+k > 5,8,,and F,, can be

evaluated in terms of the lower moments in the same way asin (2.94):

1
By = (L, —F5i {Myo Moy + 9M,, My, + 3(Myy + My3) + 2R(5R? — 3M,, +9)}, (

1
o = 2, —

+ 18(M3, +2M3, + 2M2,)— 30R2M,,

The theoretical values of S,, and F,, were calculated from (5.3) and (5.4) by

5+3)
{Myo Moy + 16 My, My + 24(Myy My + My, M)

using the experimental values of the moments as indicated in Fig. 5.5.
The calculated values are in comparatively good agreement with the
observed ones. Some of the discrepancy in the F (8-th order mom-
ent of u or v) diagram may be due to the error introduced by neglec-
ting the higher-order cumulants.

As previously mentioned, the difference between the third-order

distribution and the fourth-order one is not large. Both S,y and
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Fuv show a gradual variation with y/h up to the equilibrium region
(that is, Syy™ -2, Fyy = 10~20 in this region), similar to the dis-
tribution of the higher-order moments shown in Fig. 5.3, but in the
free-surface region they increase abruptly and then decrease towards
the surface. Although good agreement between the behaviour of Suv
and Fuv in open-channel flow and in boundary-layer flow can be seen
up to the equilibrium region, some discrepancies similar to those in
Fig. 5.2 are evident in the free-surface region corresponding to the
outer layer. Since the absolute values of Suv and Fuv are compara-
titely large in the free-surface region, the strong asymmetry and
intermittency in the Reynolds-stress fluctuations may appear, as
inferred from Fig. 5.4.

The effect of roughness on Suv and Fyy seems to appear only in the
wall region, so that their values for the rough beds become smaller
than those for the smooth bed. This means that the profile of the
pw(w) distribution is not so slender and the intermittency of the
Reynolds-stress fluctuations is smaller in case of a rough bed.

5.2.3 Conditional probability distribution of instantaneous
Reynolds stress

As mentioned in 2.6, py(w) cannot describe the characteristics of
each event separately, because some of the terms corresponding to
different events may balance each other as indicated by (2.10L).
Thus, the conditional probability density functions pj(w) (i=1-k)
expressed by (2.109)-(2.112) should be considered in order to discuss
the contribution of each event to the Reynolds stress. This can be
done by determining both the skewness factor S and the diffusion fac-
tor D connected with u and v, and their observed values for smooth
and rough beds are shown in Fig. 5.6, together with data for a pipe
flow obtained by Lawn(1971). Although the diffusion factor is sma-
ller than the corresponding skewness factor, both curves are qualita-
tively similar and have the following characteristics. First, the
relation between D, and Dy resembles that between S, and Sy, for exa-

mple the Dy curve is almost the reflexion of the Dy curve in the zero
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axis. Also, Sy < 0, Sy > 0 and Dy < 0, Dy > O except in the imme-
diate vicinity of the wall.  Another characteristic seen in Fig. 5.6
is the remarkable effect of roughness in the vicinity of the wall.

In case of the smooth bed, S and D both vary so gradually that they
remain nearly constant when y/h is below the equilibrium region.

For a rough bed, the absolute values of S and D decrease towards the
wall so rapidly that they become zero at y/h~0.1 and then, changing
sign, increase upon approaching the wall. These trends are shown

by the dashed lines in Fig. 5.6. Since in the middle of the equili-
brium region the values of S and D for a rough bed always coincide
with those for a smooth bed, it can be concluded that roughness has
an effect on the values of S and D in this region at least.

Although there is a close resemblance between our curves and Lawn's ;
for a smooth bed, the difference in magnitude over the whole depth |
between the two may be caused by the difference in data processing.
As mentioned by Frenkiel & Klebanoff(1967), the analog method used by
Lawn cannot be expected to obtain such accurate values of the higher- =i
order moments as the digital procedure adopted here.

s*, D¥, 8™ and D~ can be evaluated from (2.115) for the values of
S and D obtained above and are shown in Fig. 5.7. Judging from
(2.115) and the symmetry between S, and Sy, and Dy and Dy in Fig. 5.6,

s* anda D will reduce to nearly zero, and S~ and D~ will reduce to
Sy and Dy, respectively. The roughness effect is marked for S~ and
D~ up to the equilibrium region, while neither St nor DV displays
this effect because of cancellation of the roughness terms.

In the same manner, Fig. 5.8 shows the results obtained for the
higher-velocity group in Table 4.1 (b). From Figs. 5.7 and 5.8,
the following characteristics can be obtained:

(1) §*, 5, D" and D~ show a close untversality irrespective of Fr
and Re.

(2) ST and D™ near the wall are influenced remarkably by the wall
roughness.

(3) Both S~ and D* show a similar variation. Consequently, D /S~
becomes roughly equal to 0.7.
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(4) Both S* and D' become nearly equal to zero, though the approri-
mation of ST =0 is worse than that of D*.

Next, by substituting the values of S+, D+, S™ and D into (2.109)
-(2.112) with the Bessel function Ky, (t) equal to (n/2l)iet , the con-
ditional probability distributions of the Reynolds stress can be ob-
tained. An example of the calculated distribution for each event is
presented in Fig. 5.9. The probability distribution at the point
y/h=0.193 in the equilibrium region over a smooth bed is represented
in terms of |w|p(w). Similar figures have been obtained in the
other regions and for rough beds. These theoretical results agree
very well with the observations by Brodkey et al.(19T4, Fig. 9).

In Fig. 5.9 both the ejection and the sweep events exhibit much
larger values and much longer tails than the interaction events, whi-
ch implies that the ejection and sweep events have much greater inte-
rmittency. Despite having a smaller maximum, the curve of the ejec-
tion events has larger values than that of the sweep events beyond
w=5, so that it may be expected that ejections make the greatest con-
tribution to the Reynolds stress. Since |w|p; (w) is similar to
|w|py (w) while |w|p,(w) is similar to |w|ps(w), the characteristics
of these events mainly depend upon the sign of u. This gives theo-
retical support to the observation by Brodkey et al.(197L4) that the
bursting process may be governed by the fluctuating velocity u rather
than by v. The fact that wpy (w) in Fig. 5.9 takes small negative
values for large values of w is unreasonable, and therefore the sweep

events cannot be represented accurately by (2.112) in this range of
w. This negative p,(w) would probably be corrected by considering
terms of higher than third order which have been described earlier.
Thus the discrepancy between the experimental results and the theo-
retical values predicted by the third-order approximation will become

larger near the free surface, where Syy and Fyy are large.
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5.3 Internal structure of Reynolds stress and
mechanism of turbulence-production *)

5.3.1 Internal structure of Reynolds stress

As defined in 2.6, the fraction of time Ti(H) and the contribution
to the Reynolds stress RSi(H) corresponding to each event in the flow
over a smooth bed are shown in Figs. 5.10 (a), (b) and (c) for a ty-
pical point in the wall, equilibrium and free-surface regions res-
pectively. Theoretical curves were obtained from (2.116)-(2.119),
while our experimental data were analysed by almost the same method
of conditional sampling as that used by Lu & Willmarth(1973):

T N
T,(m =T’—ionc}n+‘"fu 1,00 H)dt =—i7"§' { ;'(;‘y)}j ............... (545)

N
R5$m==§; %GEJwUJL(nHH) ------ (5+6)

lim
T—o0

0 .
7ﬁ[ o(6) W) 1,08, 1) dt =
(]

where 1! |w())|># and the point (u,v) in the i-th quadrant,
1,(m=
0 : otherwise

. 4 ¢
As for the hole event (1=5)9 Ts(lM)=1-Y% T‘(”}. Rs,(ﬂ):]-.é RS'(H)"""“‘""'"(5-7)
=1

-
=1

In the wall region (Fig. 5.10 a) and the equilibrium region (

Fig. 5.10 b), the agreement between the experimental data and the
predicted values is fairly good over a wide range of hole size H,

so that it may be expected that the third-order probability distri-
bution represents the correct picture for a sequence of bursting
processes. In the free-surface region(Fig. 5.10 c¢), however, a dis-
crepancy between the two appears for large values of H, owing to the
neglect of higher-order terms.

Although the time occupiéd for H < 1 amounts to about a half of
the total time, the corresponding contribution to the Reynolds stress
is only a few percent, which suggests that w(t) has a large inter-
mittency. Though the inward interaction shows slightly larger values
than the outward interaction, they both become negligibly small at
H =5, and consequently the negative contribution to the Reynolds stre-

ss disappears. The sweep event decreases rapidly with H and beyond

*) Refer to our paper published in Jour. of Fluid Mech. ,
vol. 80, pp.99-128, 1977.
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H ~10 only the ejection event contributes to the Reynolds stress,

while the time occupied by this event is very short. From this, it
may be inferred that the ejection event may arise in the form of a

very sharp pulse, which agrees well with the results obtained by Corino
& Brodkey(1969), Kim et al.(1971) or Grass(1971) by means of flow
visualization. The correlations in magnitude among the four events
are invariant over the whole depth. In particular, the fact that

T2 < Ty and RS, > RSy for small values of H implies that the ejection
event is more intensive than the sweep event in this range.

A typical example of the conditional probability distribution of
the Reynolds stress in the flow over a rough bed is presented in Fig.
5.11, together with the experimental results. Since the roughness
effect appears predominantly in the wall region as indicated in Chap-
ter L4, only the structure of the Reynolds stress in this region is
discussed here; it was verified that the structure in the other re-
gions was almost the same as that for a smooth bed, shown in Fig. 5.10.
The agreement between the theoretical curves and the experimental
values is fairly good. It is noteworthy that the relations between
the magnitudes of the ejection and the sweep and between the magnitudes
of the inward and the outward interactions become the reverse of those
for a smooth bed, because of the negative values of S~ and D . This

result will be discussed in detail later.

5.3.2 Relative intensity of the different events

In order to describe clearly the relation between the sequence of
the bursting process and the Reynolds stress, it is necessary to
investigate the relative intensity of each event at H=0. Fig. 5.12
(a) and (b) show the distributions of the Reynolds stress contributed
by each event vs. y/h for the smooth and rough beds respectively.
Experimental results for a smooth boundary layer by Lu & Willmarth (
1973) and for a smooth oil channel by Brodkey et al.(1974) are also
shown. It is very interesting that the observed values completely
agree with the curves calculated from (2.118) over the whole depth,

irrespective of the roughness size. This implies that the theore-
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tical considerations in 2.6 may be able to explain the bursting phe-
nomenon in some detail for both rough and smooth beds.

In case of the smooth bed, there exists the relation ejection >
sweep > inward interaction > outward interaction within the observed
range of y/h. The difference between the two interactions, however,
is almost negligibly small, because gt~p*~0 on the basis of the sym-
metry between Sy and Sy and between Dy and Dy. In the wall region
the intensities of all events decrease with increasing y/h, and good
agreement was obtained between our results and those by Brodkey et al.
(1974).  Although the values of the ejection given by Lu & Willmarth
(1973) agree well with our data, the values of the sweep show some
differences. This discrepancy will be discussed later, with the
characteristic Qquantities in the wall region represented by a ¥
parameter.

Next, in the equilibrium region, the intensity of each event is =
nearly constant irrespective of y/h. Since in this region a dynamic
equilibrium exists between the turbulence production and dissipation, =
and a similarity in turbulent structure exists independently of exter-
nal boundary conditions (cf. Chapter L), it is expected that the bur-
sting process and the accompanying turbulence production may attain a
stable equilibrium state in this region, resulting in almost constant
intensity for each event. The rates of intensity contributed by eje-
ctions and sweeps are about 75% and 60% respectively, and the excess
Reynolds stress balances the sum of the negative rates contributed by =
the inward and outward interactions. Similar characteristics were
verified by point measurements by Lu & Willmarth or Brodkey et al. and
by flow visualization by Corino & Brodkey(1969) or Kim et al.(1971).

In the free-surface region the relative intensity of each event
rapidly increases with y/h. Near the free surface both ejections
and sweeps show a positive stress rate of over 100%, while the negati-
ve stress brought about by the interactions increases to such an exte-
nt that the differences between the positive stress and the negative

stress are equal to the net Reynolds stress, whose absolute value,
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howevef, becomes very small, i.e. -uv=0.

The relations between the intensities of each event in case of the
rough beds and the smooth bed are almost the same, as shown in Fig.
5.12 (b), so that we can confirm the observation by Grass(1971) that
both ejections and seeps exist irrespective of the roughness conditi-
ons. But, in the range from the wall to the middle of the equilib-
rium region, where the roughness effect on the turbulent structure
appears (cf. Chapter L4), some differences in the intensity profiles
for the rough and smooth beds can be observed. It is noteworthy
that, contrary to the case of a smooth bed, the intensity of ejections
decreases towards the wall to become nearly equal to that of the sweeps
at y/h=0.1, and sweeps may become more intense than ejections in the
vicinity of the wall as was observed by Grass(1971) using the hydrogen
bubble technique. This fact that both ejections and swéeps, which
are the predominant events in the bursting phenomenon, may be greatly
affected by the roughness condition is very important and will be
discussed in detail later.

In the same manner, Fig. 5.13 shows the contributions to Reynolds
stress from the different events for the higher-velocity group ex-
periments. In spite of the wide variation of Fr, the values of each
RS; coincide fairly well with each other, and also they agree well
with the theoretical curves and the observed values of Fig. 5.12 (a).

Next, the fractions of time occupied by each event on the smooth
and rough beds are shown in Figs. 5.14 (a) and (b), respectively,
together with the theoretical curves calculated from (2.116).

Unlike RSj, the magnitude of the fraction of time T; satisfies the

relation sweep > ejection > outward-interaction > inward-interaction.
Also, these results agree very well with those obtained by Brodkey et
al.(1974). Each fraction of time is nearly constant irrespective of

v/h except in the free-surface region, that is, T or Ty, and T; or Tj;

become roughly equal to 30% and 20%, respectively. On the other hand,
the fractions of time for all events tend to approach a definite value

on the free surface. It may be seen from this characteristic as well
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as that éf RS; that the bursting process near the free surface may
consist of smoother and more isotropic events.

Lastly, the turbulent energy production P=-uv 9U/dy is plotted vs.
the flow depth in Fig. 5.15. The positive and negative time-average

production PP and P,, respectively, are given by

PP=(R32+RS4)P. Pn=_( RS ERSIP 0 e (5-8)

Of course, P=Pp'Pn is the net production. The contribution of nega-
tive production to the net production is comparatively small up to
the‘equilibrium region, but in the free-surface region it becomes of
the same order as that of the net production though its absolute va-
lue is very small. It can be concluded, therefore, that the energy
interchange from turbulence to the mean flow should not be neglected
in the free-surface region. This property has been suggested by
Hino et al.(1975) in an oscillating pipe flow, too.
5.3.3 Mechanism of turbulence-production in the wall region

and its prediction

Since the turbulence occurs almost in the ejection and sweep events
and moreover most remarkably‘near the wall, we investigate the contri-
butions of the ejection and sweep in this region.

Fig. 5.16 shows the distributions of RS; and T; for the ejection
and sweep in the wall region, whose data were obtained in the experi-
ment Case A-1 (Rx¥=600). Also, the results obtained by Brodkey et al.
(R%=195) and Lu & Willmarth(R4=1800) are shown in Fig. 5.16. Except
for the outer layer (y*~ Rx), a good agreement among these data is
recognized, and thus the following universal characteristics.are
obtained. Firstly, for the wall and equilibrium regions, i.e.

30 ﬁ_y+ < 0.6Ry, RS; and T; become nearly constant. That is, acco-
rding to our experimental data,

T;=029+0.012, T7,50.34 £0.008
RS;= 0.77 £ 0.029, RS, =0.57 £ 0.029

Figs. 4.39 & L4.41 and (5.9) suggest strongly that when the turbulent
structure is in equilibrium state and thus its similarity is expected,

the ejection and sweep motions also show a stable behaviour and

—68-



consequently their contributions may become constant irrespective of
¥ This essential characteristics should be taken into account in
modelling the turbulence, which will be considered in Chapter 6.

Next, it should be noticed that the relation in magnitude between
the ejection and sweep may reverse at y+ =10, which corresponds to
the edge of the viscous sublayer. That is, in the sublayer the
sweeps may become more dominant than the ejections. Actually,
because the sublayer is the range of the deficiency of turbulent ener-
gy, as mentioned in 4.7, the sweep motion (u >0, v <0) may play an
important role in this energy transfer.

Well, such an important fact that the mechanism of turbulence-
production becomes different at the edge of sublayer, i.e. yt =10,
can be well explained by the theory of 2.6, as follows: Firstly, we
assume that even in the region of y* <20,

(1) R becomes nearly constant. Actually, R ~0.36 according to
Eckelmann(197k).

(2) s* =0 and S~ =Sy =-S, , judging from Fig. 5.2.

(3) D*¥ ~0 and D”/S™ 0.7, as inferred from 5.2.3.

On the basis of the above assumption, RS,/RS, and T,/T, can be
predicted from (2.116) and (2.118) as a function of S~, and then
their calculated results are shown in Figs. 5.17 and 5.18, respective-
ly. Here, Fig. 5.2 gives that S~ becomes positive for y* >10, while
S” becomes negative for y+ <10. Consequently, Fig. 5.17 indicates
that RS,/RS; <1 when y* >10, while RS,/RS;>1 when y'© <10. Near the
edge of sublayer, the magnitude of the ejection and sweep becomes
nearly equal to one another. In the same way, T,/T, >1 for y+3;0,
while T,/T, <1 for y+ <10. Certainly, these predicted results
explain well the characteristics of the observed values shown in
Fig. 5.16.

5.3.4 Effect of wall roughness upon bursting events

The ratio RS4/RS, of the Reynolds stress of a sweep to that of an
ejection is plotted in Fig. 5.19, for each degree of roughness, with
the results obtained by Wallace et al.(1972), Lu & Willmarth(1973)
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and Brodkey et al.(197k). In our experiments, for y* >100 and case
of a smooth bed RS,/RS, remains nearly constant, the Reynolds stress
of sweeps being about T0% of that of the ejections, showing a good
agreement with data by other investigators. For y+ <100, our values
increase towards the wall like those of Wallace et al.(1972) or Brodkey
et al.(1974), while the values by Lu & Willmarth(1973) show the reverse
tendency, decreasing towards the wall. Lu & Willmarth suggested
that this discrepancy might be due to the difference in the Reynolds
number.  However, from Fig. 5.17 it can be seen that RS,/RS, may
rather increases towards the wall because S~ is considered to decrease
as it approaches the wall because of the variation of the skewness
factor S shown in TFig. 5.2. Compared with Fig. 5.19, the calculated
curves represent well the experimental results in the wall region.
The fact that the contribution of sweeps becomes larger than that of
the ejections as the wall is approached is also suggested by the re-
sults obtained by Zarid(1972). Judging from the ébove, a tendency
for the values of RS,/RS; in the vicinity of the wall to decrease
towards the wall, as indicated by Lu & Willmarth, seems to be
incorrect.

Our data show that in the wall region the values of RS4/RS, inc-
rease in proportion to the roughness scale, while in the outer part
of the wall region the roughness effect diminishes with increasing

vt and the same turbulent structure as in the flow over a smooth bed

is seen in Fig. 5.19. This roughness effect on the Reynolds stress
is due to the variation of the skewness factor S and the diffusion
factor D with roughness. As shown in Fig. 5.20, S” and D both dec-
rease with increasing roughness in the range from the wall to the
middle of the equilibrium region, which results in the increase of
RS, /RS, shown in Fig. 5.17. Thus the experimental results shown in
Fig. 5.19 can bE_Egasonably explained.

Defining Tr=q2v/2U; as the turbulent energy transport (see Eq.(

4.59)), the following equation can be derived:

= )



T,=%(:':)(£%)“[Ozl+2('fr)20m] ........................ (5+10)

Since Q21 =D, Qo3 =57 and v'/u'=0.55 (Eq.(4.12)), (5.10) is reduced
to the following, independent of the roughness condition:

7;-____ 0‘28{“'/(;.)’{ D +0.6 S-) ~ 0-36( u’/U.}-‘S' et (0] 1)

Fig. 5.20 shows the values of Tr calculated from (5.10) using the
measured velocity fluctuations. As mentioned in 4.7.2, the roughness
effect is marked on this kind of figure. We can see from {5.11)
that Tr depends upon the values of D™ and S~ and so it decreases with
increasing roughness. Since 9Tr/dy is directly involved in the
turbulent energy budget as the term representing turbulent energy
diffusion (see 2.2.2), it is expected that the bursting corresponding
to the ejection or sweep motion is closely connected with the turbu-

lent energy budget in the form of the turbulent diffusion.

5.3.5 Behaviour of velocity fluctuations when turbulence occurs

It is an essential work how to connect the knowledge of bursting
events obtained by point-measurements with that obtained by visual
methods. Since the level H is expected to fulfill the function of
a filter by which the ejection motion can be detected from the ejec—-
tion event signals, &s pointed out in 2.6, we here examine this sugg-
estion in the following.

An example of the conditional probability distributions of u, i.e.
Pe( |[Ww>H) and pg(fi |w>H) calculated from (2.125) and (2.126) as well
as those of v is shown in Fig. 5.21. When H=5 is chosen, almost all
the events are contained in the range of w> -H (see Fig. 5.10), and
consequently pg(fl) or pg({i) coincides with the unconditional probabi-
lity distribution p({) shown in Fig. 5.1. In comparison with the
sweep event, the ejection event has a contribution from the larger
values of |u| and |v| when H is large. That is, the correlation bet-
ween u<O and v>0 becomes larger in the stronger ejection.

Fig. 5.22 shows the distributions of the average values i, (H) and

U5 (H) of u/u' when the magnitude w of the ejection and sweep, respec-
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tively, just attains the level H, together with the theoretical cur-
ves calculated from (2.121) and (2.122). Although there is a little
difference between the observed and theoretical values owing to using
the digital signals of w(t), agreement between the two is comparative-
ly good. Of course, 4,<0 and {ig>0, and the larger H is, the more
intensive the velocity fluctuations accompanied with turbulence-produ-
ction become. At H=5 where the interaction events almost disappear,
Fig. 5.22 indicates that $,=-1.0~ -1.5 and 4g= 1.0~ 1.5.

Well, since a coherent motion of bursting phenomenon is visualized
in a form of the streamwise velocity fluctuation u(t) instead of the
Reynolds stress fluctuation w(t), a trigger level ur, is set for u(t).
Then, denoting t=0 when |u(t)/u'| crosses a special trigger level uy,
in an increasing direction, w(t) in the ejection or sweep event has
been ensemble-averaged. Fig. 5.23 shows the behaviours of the ensem- =
ble avefaged ejections and sweeps with three cases of trigger levels; ‘
ur=0.5, 1.0 and 1.5, in the wall region. The existence of the cohe- ?:
rent motion is not recognized at u;=0.5, but if uj is set at 1.0, w(t)
has a large peak immediately after {i(t) reaches a level of -1.0 or 1.0,
and a larger peak appears at ur=l.5. In the same manner, Fig. 5.2L
shows the behaviours of the ejection motion in the equilibrium region.
Setting ur=1.0~ 1.5, for d|u|/dt >0 the turbulence occurs immediately
after |u| attains the u, while for d|u|/at <0 immediately before |ul
attains the uy, . Fig. 5.25 shows the results obtained in the free-
surface region. w(t) in this region shows apparently more enlarged
and chaotic behaviour because -UV becomes nearly equal to zero.

The fact that the ejection or the sweep motions can be detected in
w(t) when up > 1.0, agrees well with the point-measurement data given
by Lu & Willmarth(1973). Since ur=1.0~ 1.5 corresponds roughly to
H=5 judging from Fig. 5.22, the energetic ejection or sweep motions
which can be observed visually (see Fig. 2.20 or Fig._5.39), would be
able to be detected from the conditionally sorted signals w(t) when

H is set at about 5.
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5.4 Periodic characteristics of the bursting phenomenon*)
5.4.1 Brief recapitulation of the bursting period obtained previously

Kline et al.(1967), Corino & Brodkey(1969), Kim et al.(1971), Nychas
et al.(1973), Offen & Kline(19TLk, -75) and others found by flow visual-
ization that a sequence of the bursting events had a quasi-cyclic pro-
cess. That is to say, it shows a periodic motion on the average in
space and time, but not perfectly periodic at one place in time nor at
one time in space. For example, Corino & Brodkey pointed out in Fig.
2.20 that there were variations of the sequence, and that all of the
steps did not appear all the time or in the exact fashions described,
but on the average it proceeded.

Thus, in order to reveal the governing parameters of the bursting
phenomenon, it is necessary to investigate its periodic characteristi-
cs. The visual method whereby the bursting period is determined by
counting the frequency of occurrences of the coherent motions near the
wall visualized on high-speed movie films, ié simple and plain.
However, it needs laborious work and more or less involves subjective
judgement . On the other hand, some researchers as well as the suthor
have shown that the existence of a sequence of bursting events such as
ejections, sweeps and interactions can be also detectable even in the
fluctuating velocity signals obtained by hot-wire or hot-hilm anemo-
meters when a conditional sampling technique is reasonably used.

If it is, therefore, possible to establish a reasonable criterion for
discriminating the ejections or the sweeps from these velocity signals,
the bursting period can be also evaluated easily from the data analysis
of point-measurement signals by using a high-speed digital computer.

Of course, these results should be compared with the visual data, since
it may be fairly difficult to detect accurately the coherent motions
extending in space only by one or a few hot-films.

Firstly, Rao et al.(1971) estimated the mean bursting period Ty

from the single-hot-wire signals of u(t) in a boundary layer by using

*) Refer to our paper published in Memoirs of Faculty of Engineering,
Kyoto University, vol. 40, part 4, 1978.
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a special criterion for discrimination. They proposed the following

experimental results.
TbU:/V=0.55!fg"'“ .................. (5-12) and Tﬂumja"_—_gz ........................... (5-13)

where, Rg is defined as Rg=Upayx6/V, 6, is the displacement thickness
and 6 is the momentum thickness. They found that the mean bursting
period could scale with outer rather than inner parameters, as shown
in (5.12) and (5.13), and that the probability distribution of the
bursting period might be log-normal.

Next, Kim et al.(1971) found that when the auto-correlation of
u(t) reached the re-rise maximum, the lag time T, agreed fairly well
with the bursting period evaluated from the visual data. Consequent-
ly, they suggested that T4 could be regarded as a bursting period T B
By these means, Laufer & Narayanan(1971) evaluated the mean period of
the bursting phenomenon near the viscous sublayer in a boundary layer,
and verified that (5.12) was valid and could be reduced to the follow-

ing equation by assuming the 1/T-power velocity law:

where § is the boundary layer thickness.

Consequently, (5.12), (5.13) and (5.1L4) are almost the same. (
TpUpax/8 becomes nearly equal to L from (5.13) since 8/8, for the
1/7-power velocity law.) Also, the dependency of the bursting period
upon the outer parameter (Upgy and ) is confirmed.

However, Lu & Willmarth(1973) pointed out that these criteria had
something unreasonable, and proposed another method desecribed as
follows. The fluctuating signals w'(t)=-uv/u'v' of the Reynolds st-
ress were used as a detection of the coherent motions. The mean
period Eé of the ejection motion was evaluated from w'(t) in the eje-
ction event, when the discrimination level was set at the value of
(4.0~4.5) where the sweeps almost disappeared. The mean period T
of the sweep motion was also evaluated in the same manner. Their
results agreed fairly well with the visual data, or (5.1L4), and this

evaluation method might become more reasonable than previous methods.
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Indeed, Sabot & Comte-Bellot(1976) evaluated the bursting period in
a pipe flow by this method.

In the light of the above, the present study is to propose another
reasonable evaluation method of the bursting period, and investigate
the periodic characteristic of the bursting phenomenon in open

channel flows.

5.4.2 Discrimination criterion and definition of bursting period

The instantaneous Reynolds-stress signals w(t)=uv/Gv are reasonably
used as discriminating information, since they are directly related
to the mechanism of turbulence-production, namely the bursting pheno-
menon.  Now, w(t) is conditionally divided into four events: w; (t)
when u>0 and v>0, wz(t) when u<0 and v>0, wi3(t) when u<0 and v<0 and
wy (t) when u>0 and v<0.  Obviously, w(t)= wy (t)+w, (t)+ws(t)+w, (t).

Two typical examples of the conditionally sampled signals w,(t) in
the ejection event are shown in Fig. 5.26. It is confirmed that the
Reynolds stress fluctuations w(t) are very intermittent, and especial-
1y that the ejections and sweeps generate turbulence violently in the
form of a very sharp pulse, as mentioned in previous section.

The hole size H for the division of the bursting events is intro-
duced as a discrimination level of the ejection or sweep motions.
Assuming that each motion with a certain level H occurs when |wi(t)|
reaches or exceeds level H, its mean period Ty (i=1-L4) is obtained
by counting the number N; of the occurrences in the total observing
time T, as follows: Ty (H)= T/N4 (i=1,2,3,4)

For example, Fig. 5.27 shows the variation of the mean period T2 (H)
(or %e) of an ejection event normalized by outer parameters( Uy, and
h) for a smooth bed. Since T, is a monotonously increasing function
of H, the mean period Té of the ejection motion which can be observed
visually, that is, an event (5) in Fig. 2.20, cannot be determined
from Fig. 5.27 without providing a discrimination eriterion.
According to the Lu & Willmarth method, as mentioned previously,
ToUnax/h becomes (4~10) since the level H is about 10, at which the
contributions of the sweeps almost disappears. This range of Te is

too large to know the effects of hydraulic parameters such as Re, Fr
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and the wall roughness upon the bursting period systematically.

Now, it may be noticed in Figs. 5.27 and 5.28 that T, shows a
nearly linear increase with H when H<5, and a more remarkable increase
when H>5 although the slope of T,(H) increases more or less continu-
ously. This tendency of T, (H) may be related to the fact that the
interaction events scarcely contribute to the production of Reynolds
stress when level H reaches about 5. This suggests that the ejection
signals wp(t) or the sweep signals wy(t) with H<5 contain a part.of
the interaction motions corresponding to the events (I1)-(4) in Fig.
2.20.' This suggestion might be also inferred from the results of a
conditional sampling technique, as already shown in 5.3.5.

From the above phenomenological considerations, the contributions
of the interaction motions should be removed from the sequence of the
bursting process in order to evaluate the period of only the ejecti-
ons or sweeps. However, there is at present quite a lack of know-
ledge about the contributions of the interaction-like motions which
may be contained in the signals of wa(t) or wy(t). Hence, we now
propose a tentative assumption that the interaction-like contributions
may be of the same order as those of the interaction event signals
wy (t) or wi(t), since the contributions of |wi(t)|§5 might be roughly
equal to each other, owing to a detection of old-born or new-born
small bursting motions. By assuming that the number N; of occurren-
ces of these interaction-like motions with a level of H is roughly
given by an average of those of two interaction events: that is,
Ni,=(N;+N3)/2, the revised bursting period is defined as follows:

%25 T/(N;-Nj,) for ejections, %uE T/(Ny-Nipn) for sweeps.
ﬁzUmaX/h is shown against H in Fig. 5.29 ({%e‘%in) denotes %2) for
the case corresponding to Fig. 5.27. When H is small, &zUmax/h is
large owing to the strong cancellation effect of the interaction-like
motions, as mentioned above. Because the interaction-like motions
disappear gradually as H increases, this cancellation effect becomes
weaker, and consequently %2 approaches T,. Thus, we try to tentati-

vely define the mean period of the ejections Eé and the sweeps Tg
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as the minimum value of az(H) and %u(H), respectively, because it

may be considered that the interaction-like contributions almost dis-

appear at this minimum point. Since the minimum value T, (H) or T, (H)
remains stationary even when H va}ies to some extent, TE or Tg can be

determined uniquely, and therefore this evaluation method may be well-

defined as compared with previous methods.

5.4.3 Bursting period and its probability characteristics

The evaluated values of Té and Tg for the smooth and rough beds
are shown in Fig. 5.30, normalized by the outer parameters. Since
the auto-correlation Ry(T) has a second-mild maximum, as shown in
Fig. 5.31, the bursting period Ty was also evaluated by Kim et al's
method, although it was difficult to evaluate Tﬁ accurately, except
when near the wall. The values of Té had a good agreement with those
of Tﬁ, as seen in Fig. 5.30. Therefore, our tentative evaluation
method of the bursting period seems to be fairly reasonable. ¥)
In the same manner, Fig. 5.32 shows the data obtained in the higher-
velocity group. Although there are some scatterings in these data,
E;Umax/h and TgUpax/h are approximately constant for any y/h, irres-

pective of the hydraulic conditions. That is,

"f:-Um“:Ts'Umax.__ (1.5_3.0) ......... (5-15)

(5.15) shows the same order as (5.1L4) or Lu & Willmarth's results in
a boundary layer, though a quantitative comparison among these data
cannot be done reasonably because of the differences of the flow con-
ditions and the evaluation methods. It should be noticed that the
ejection period Eé becomes nearly equal to the sweep period E;, as
pointed out by Lu & Willmarth. This means that there exists, on

an average, at least one each of ejection and sweep motions in a bur-

sting process. Consequently, the bursting period Tﬁ can be identi-

#) Furthermore, we (Sympo. Dynamic Flow Measurements 1978) just now
propose another different evaluation method whereby the ejection
period T, is determined at the level H=Hos where RS;(Hgs)=0.5 x
RS2 (H=0). Since the interaction events almost disappear at the
Hos, this new method also gives the nearly same results as the
above, i.e. (5.15). :
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fied with the ejection or sweep one, Tg= T = Eﬁ i

Frcm the previous and pressnt investigationz, it may be concluded
that the bursting period in the wall and equilibrium regions of open
channel flows can scale with the outer parameters (Upsyx and h) rather
than the inner parameters (Ux and v/Ug), irrespective of Re, Fr and
the wall roughness. This is also supported by the noticeable fact
that the wall roughness scarcely influences the bursting period,
while this effect can be noticed clearly in the bursting process
near the wall as pointed out in 5.3.4.

Furthermore, Fig. 5.33 shows the trigger levels He and Hg of ejec-
tion and sweep, respectively, at which the bursting period was evalu-
ated (cf. Fig. 5.27). Fig. 5.33 gives that Ho~ (3-6) and Hg~ 3,
whose values, in fact, correspond roughly to the level at which the
interaction motions nearly disappear. Also, Fig. 5.34 shows the
levels {ig and {iy corresponding to He and Hg, respectively. These
data give that U= -1.4 and g~ 1.3, at which the ejection and sweep
motions can be surely detected, as Jjudging from Figs. 5.23-5.25.

Next, the probability distribution pT(T) of the bursting period T
will be discussed ¥). The experimental values of pp(T) can be
easily obtained from Fig. 5.26, since He and Hg have already deter-
rined in Fig. 5.3L. According to the suggestion of Rao et al.
{1971), the data of the probability distribution of log(T/T) have
teen plotted in a normal-probability paper of Fig. 5.35. Also,

Fig. 5.36 shows the normalized probability distributions o’ log(T/To)
for smooth and rough beds, where logTy= log T, 0,= ﬁﬁ:;?7ﬁ§]%
The straight line described in this figure is a log-normal distri-

bution which is written by

(log e)

V27m oy T
Though there is a little scattering in our hot-film data, these data
have a go»d agreement with (5.16), as well as the visual data obtain-

pp(T) = aXp l_%.( ;t_ log T/Tg)?) *  wevreessisciinnncnes (5416)

ed by Kim et al.(1971). Consequently, it is confirmed that the

*) When it isn't necessary to distinguish between the ejection peri-

od Te and the sweep period Ty, these suffixes will be omitted in
the following explanations. That is, T= T= TS= T .
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probability of the bursting period can be described approximately
by a log-normal distribution,'i.e. (5.16), irrespective of Re, Fr

and the wall roughness.
Then, the following equation can be obtained easily from (5.16):

- . .
J' TIPT(T)dT= T;'exp (-2—‘2;2—)' K= ( log ¢)/ao ....................‘.....‘(5.1?)
o
Denoting Tp=T, op=((T-T)?)"? and y=op/Ty,

oo =(log e¢)/ K=(loge)y In(149¢?) }
To=rTp yz(1+p2) Y2

srreneniens (5o 18)

Thus, if the mean value Tp and its coefficient Y of variation are
known, (5.16) can be determined as a probability distribution of the
bursting period. The experimental values of y for the ejection peri-
od are shown in Fig. 5.37, and similar results have been also obtained
for the sweep period. As concerns our hot-film data, the values of
¥ near the wall are nearly constant, i.e. Y=1.0~1.5, while the visual
data of kim et al. show Y=0.5. At present, though it is difficult
to explain the cause of this difference between the hot-film and
visual data, the former may be apt to be accompanied by a kind of
unevenness involved in the point-measurements of the coherent motions
which extent in space. Consequently, the hot-film data are probably

evaluated larger than the visual data.

5.5 Internal structure of bursting phenomenon

5.5.1 Dependence of the bursting phenomenon upon the inner and outer
parameters

For the present, from the previous and present experimental data,
we can approve the opinion that the bursting period may be controlled
by the outer rather than the inner parameters. Consequently, the
turbulent structure in the wall region of an open-channel flow may be
characterized not only by the inner parameter (see Chapters 2 and 4),
but also by the outer parameter that characterizes the free-surface

regions, which have been already recognized in a boundary layer flow.
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Now, the streamwise, the vertical and the transverse spatial
scales of this coherent motion are denoted by A;, A, and A3, respec-
tively. Since the mean streamwise spatial scale X; is nearly equal
to EﬁUc, where U, is the convection velocity and Ue> Up~ 0.9Upgx,
it becomes from (5.15) as T~ 1.5~ 3.0 (in open channel) «=wee (5+23)
, as well as X}/ﬁﬁh in a boundary layer, as shown by Hinze(1975).

The mean vertical spatial scale i} is considered to be below the wall
region thickness, i.e._i? < 100. In particulari_ﬁt is suggested
from the visual observation (cf. Fig. 2.20) that A3 < 50, where the
coherent motions appear most violently. The mean transverse spa-
tial scale K} may be able to be identified with the spacing between
the high and low speed streaks which were found by Kline et al.(1967).

Tt was confirmed by our visual observations (see the next section)

that E=T,U./"=100 ........................ (5+24)

in open channels, which coincided with the data in boundary layers.
From the results obtained above, it is deduced that a typical

eddy with coherent motions near the wall may depend upon both the

inner and outer parameters. Consequently, the eddy model qualitati-

vely described by Hinze(1975) in Fig. 6.6 may fairly reasonably expla-

in the mechanism of the bursting phenomenon, as will be shown later.

Furthermore, by hydrogen-bubble method(Fig.3.16) we have also found

a log-normal distribution of the probability of R:, as shown in Fig.

5.38. That is, the probability distribution pi4) satisfied very

well the following equation, independently of y™.

(loge) g+
p;(1§)=~/2—:ro:,, il FRGLIm GR)] e (8-250

From (5.16) and (5.25), it seems that the bursting phenomenon has
self-consistently the characteristic of a log-normal distribution
while it is controlled by both the inner and outer parameters. Hence,
a closer interrelation between the wall and the free-surface regions
in an open-channel corresponding to the inner and the outer layers in
a boundary layer is suggested more than had been previously expected.
Incidentally, Laufer & Narayanan(1971) deduced that the bursting

phenomenon near the wall might be caused by the bulge motions near
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the boundary layer edge, but we cannot find any bulge motions in an
open-channel flow. We infer here that there may exist a close rela-
tion between the bursting mechanism and the breakdown mechanism of
the largest-scale eddy with scale Lo. If the Strouhal similarity

might be valid for both mechanisms, the following relation could be

obtained. T Unmax/h= (Stgc)™ (Lo/h) weeeonsees (5-20)

where, Sty is the Strouhal number and it may be now tentatively rough-
1ly equal to 0.2, with an assumption that the breakdown of this eddy
would be roughly similar to that of the Karman-vortex. Then, (5.20)
may coincide roughly with (5.14) or (5.15) since Lox 0.8(see Fig.L4.30).

5.5.2 Further suggestions on bursting phenomenon

It may be fairly well asserted from the visual and hot-film measure-
ments that the breakdown of the largest-scale eddy is intermittent,
and then generates most of the turbulent energy or the Reynolds stress
(cf. Figs. 2.5 & 2.9). On the other hand, as indicated by Sandborn
(1959), the breakdown of the smallest-scale eddy is also intermittent,
and then dissipates most of the turbulent energy.

Among the evaluation methods of the bursting period mentioned
previously, the methods of Rao et al.(1971) and Ueda & Hinze(1975)
are based on a microscale intermittency, while the methods of Kim et
al.(1971), Lu & Willmarth(1973), the present author as well as the
visual method are based on a macroscale intermittency. Since almost
the same characteristics of the bursting period have been evaluated
from these two different methods, it is inferred that the breakdown
of a macroscale eddy may have a close relation and interaction with
that of a microscale eddy, and that the turbulent structure may be
essentially characterized by both the macro- and micro-scales.
Consequently, an energy cascade process in which the turbulent energy

of macroscale eddies is gradually transfered to that of microscale
eddies, would be more complicated than we have previously understood.

Now, assuming that there exists a self-similarity in the breakdown
of eddies of this cascade process, log-normal characteristics of the

bursting process or the coherent motion reported here could be
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explained by the eddy model of Gurvich & Yaglom(1967). Thus, it is
suggested that the bursting phenomenon may be closely related to
the breakdown mechanism of both the macro- and micro-scale eddies.

By the way, some researchers have already found that there existed
also the high and low speed stresks, whose spacing is nearly equal to
2h, on the free surface of an actual river, that is to say, the boil
phenomenon. Therefore, although the scale between the bursting and
the boil phenomena is quite different when the Reynolds number is very
large, the both phenomena are very similar to one another. Hence, we
may be able to expect the posibility of an interrelation between the
both phenomena, and furthermore we are now investigating the spatial
structure of bursting phenomenon by obtaining the conditional spatial

correlations in order to make clear the above suggestions.

5.6 Visual observations of bursting phenomenon *)
5.6.1 Instantaneous velocity profiles in vertical plane

The velocity profiles of the lower-velocity group in Table L.1l(c)
were visualized by the hydrogen-bubble method in order to obtain the
distinct pictures. The time-lines of hydrogen bubbles were photo-
graphed by the 16mm high-speed cine-camera. Fig. 5.39 shows some
typical photographic illustrations of the ejection and sweep motions
for the rough bed (Case D-1). The pictures of No.l - 4 indicate the
ejection motions, while the pictures of No.5 - 9 indicate the sweep
motions. For example, the picture of No.l probably shows the first
stage of the bursting, where a low-speed streak is lifted from the
wall. The picture of No.2 probably shows the oscillatory motion in
the streamwise direction, and then the violent burst or breakup occurs
in No.3 picture. These pictures of three stages of the bursting
motion agree very well with Kim et al's observations. Also, the
ejection motion may occur more violently than sweep motion does.

By means of the method described in 3.4.], the instantaneous velo-

%) Refer to our paper (Visualization of wall turbulence in open-
channel flow by hydrogen-bubble method) published in 5-th Sympo.
on Flow Visualization, ISAS Univ. of Tokyo, pp.47-50, 197T.
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city profiles (u, V) were analyzed, and some examples of these data
for the smooth bed are shown in Fig. 5.40, together with the mean
velocity distribution U(y) described by a thick solid line. Since
according to (5.15) the bursting period in this case is nearly equal
to Tg~(1.5~3.0)h/Upg,~ (1~1.5) sec., the eight successive pictures in
Fig. 5.40 (a) & (b) are expected to show one sequence of the bursting
process. The low-speed part (u=u-U <0) tends to be surely lifted up
and ejected from the wall.

In order to examine the behaviours of the low-speed and the high-
speed parts, we have performed the conditionally ensemble average of
the instantaneous velocity (U, V), in the same manner as Grass(1971)
did. The total successive pictures of 160 frames were divided into
8 groups; that is, one group consisted of 20 successive frames, whose
elapsed time T; was 3.7 seconds (cf. Fig. 5.40). Thus, it is expec-
ted that each group contains at least one bursting process or the
coherent motion, since the value of Tg is larger than the mean burs-
ting period Tg- The frames of picture where the velocity u indicated
the maximum or the minimum at any measured point Py (i=1 - 12) were
chosen from each group, and then these instantaneous velocity profiles
were ensemble averaged. Figs. 5.41 and 5.42 show the conditionally
averaged instantaneous velocity profiles at instants when u became
minimum and maximum at any point P;, respectively. As.seen in Fig.
5.41, the low-speed part drew black has a strong correlation with
Vv >0, and surely it shows the ejection motion. In the same manner,
Fig. 5.42 shows the sweep motion. The both figures indicate that the
liftup- ejection motions may exist up to the further region from the
wall, compared with the sweep motions. This suggests a posibility of
the interrelation between the ejection (bursting) and the boil pheno-

mena, as mentioned previously.

5.6.2 Instantaneous velocity profiles in horizontal plane

A fine platinum wire was stretched in the direction of z-axis in
the water flume (8.5m long, 30cm wide, 30cm deep), and the instanta-

neous velocity profiles in the horizontal plane were visualized
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(see Fig. 3.16). Figs. 5.43 & 5.LL4 show some typical photos of these
profiles obtained for three different kinds of the Reynolds number,
i.e. Re= 340, 1600 and 5100.

Firstly, at Re=3L0(Fig. 5.43 A), the time-lines are scarcely agita-
ted, and consequently the flow becomes laminar. As for the flow of
Re=1600, the flow near the free surface £=0.7 (see Fig. 5.43 B) are
still nearly laminar, while the high and low speed streaks appear rema-
rkably near the wall yt=22 (Fig. 5.43 C). Five successive pictures
of Fig. 5.43 C show that the high and low speed streaks have fairly
variations in both the streamwise space and the time. Although the
behaviours of the coalescence and division of these streaks are very
complicated, the mean spacing begzg?n the high and low speed streaks
surely satisfies (5.24); that is A} =B,/5=R, =110, and also its proﬁ&-
bility distribution satisfies (5.25), as shown in Fig. 5.38.

Lastly, Fig. 5.4L4 shows some photos obtained by varying the height
y+ for Re=5100. The picture of No.l indicates the velocity profile
in the viscous sublayer, i.e. at y*=5, and the velocity certainly flu-
ctuates even in the sublayer, as have been already pointed out by
Einstein et al.(1956). At y*=10 and 15, the high and low speed stre-
aks are observed most clearly, whose spacing becomes equal to‘xi-ﬁB*/l5
=R*/3=100, to0o. However, as y+ increases, the streaks intend to be-
come weaker and also its spacing may become larger (see our paper des-
cribed in the margin of p. 82). At present, it is gquite unknown
whether this is due to the fact that the bursting phenomenon may become
weaker near the free surface or this may indicate an interrelation
with the boil phenomenon. Thus, we are now performing the further

detailed researches about these things.
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Chapter 6 Physical model of wall turbulence

6.1 Introduction

3 ot dens = - - L
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clearly by Kline et 2l.(19€7), there had been alreoady scveral Lavmysarto
to describe the mechanism of the turbulence »roduction near the wall
by suitable turbulence eddy models, among which a hcrseshoe vortex
model proposed by Theodorsen(1955) and a renewal model of the viscous
sublayer proposed by Einstein & Li(1956) should be still notewﬁrthy,
as mentioned in the following.

Willmarth & Tu(1967) proposed an 'average model of vortex line'
(see Fig. 6.1) in order to qualitatively explain the pressure-velocity
correlations near the wall, from which the existence of the bursting
phenomenon might be inferred. Next, Kline et al.(1967) offered an
eddy model (see Fig. 6.2) by which the mechanism of wall-turbulence
production could be reasonably explained. Both of these eddy models

I

are very similar to Theodorsen's horseshoe vortex model. We can
recognize for the present that such an eddy model might be most suit-
able for a qualitative explanation of the bursting process. As a
fact, Black(1968) formulated this horseshoe vortex model phenomeno-
logically (see Fig. 6.3), after which he could successfully explain
several turbulence characteristics quantitatively. For example,

it is noticed that this model can reasonably explain the cyclic deve-
lopment and breakdown of the primary motion, as shown in Fig. 6.L. ;
Also, Yokoshi(1970) tried to explain the turbulent structure of an

actual river by using the horseshoe vortex model (see Fig. 6.5) and

he suggested that a boil phenomenon in the river would be caused by

this eddy.

In order to quantitatively describe the turbulent structure in the
equilibrium region, we(197L) also proposed a Ill-eddy model whereby a
horseshoe vortex model was simplified by aséuming that some of the
horseshoe vortices in the wall region, as shown in Fig. 6.6, survived
without the vortex-breakdown during their development, even in the

region of yt* >100, and also attained the equilibrium state of turbu-
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lent energy, which will be described in detail in the next section.
It is considered that Hinze's(1975) eddy model shown in Fig. 6.6
summarizes reasonably the previous eddy models mentioned above, on a
basis of the new knowledges of the bursting phenomenon.

In the light of the above, the present study is to propose three
different kinds of turbulent eddy model in order to explain the tur-
bulence characteristics or the bursting phenomenon quantitatively.
As shown in Fig. 6.7, the Il-eddy model is firstly proposed in the
equilibrium region. Next, a renewal model is propoéed in the wall
region of y+'<50, where the bursting phenomenon occurs remarkably
and its horseshoe vortex is under development, that is, a non-equili-
brium state. Lastly, a combined model is tentatively proposed in
order to connect the Il-eddy model with the renewal model near the

edge of the wall region.

6.2 Tl-eddy model *)
6.2.1 Constitution of a Il-eddy model and its formulation

Due to the fact that a horseshoe vortex model proposed already by
Theodorsen and other researchers is fairly reasonable in qualitative
aspects, as mentioned above, this horseshoe vortex model is accepted
as an original eddy model in the following discussions. But, since
it is fairly difficult to obtain exact expression of the horseshoe
vortex model in order to discuss quantitatively its behaviours, a
simplified eddy model which has the angular vortex lines as describ-
ed in Fig. 6.8 may be considered here. As the vortex line of this
simplified eddy model has a Il-shape, this model may be called ' a
lI-eddy model’. -

Now, a particular eddy is considered in the moving coordinates
with the convective velocity U, of its eddy, as shown in Fig. 6.8.
A rectangular vortex line ABCD which has an angle of inclination 8

toward the x-axis is assumed for two-dimensional turbulent shear

¥) Refer to our paper (M a new eddy model in turbulent shear flow)
published in Proc. of JSCE, No.231, pp.61-70, 1974.
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flow. Tts legs AB and (D are in a plane parallel to the x-y plane,
and its top BC is parallel to the z-axis. The condition 6=0 may
represent an incipient stage of the ll-eddy which ccincides with a
Lalepis &80y 67 &
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rlicsted because of the non-equilibrium state (ef. Fig. 6.7
egquiliprium condition under which the ll-eddy is 1ifted up from the
tottom and fully developed is considered here. That is to say, some
of the horseshece vortices in the wall region survise without the vor-
tex breakdown during their development, even in the region of y*>100,
and then they attain the equilibrium state in the turbulent structure
, as mentioned in Chapters 4 and 5. Since 4B >>BC because of BCT =
;f = 100 (cf. Fig. 6.6), the contribution of the vortex BC to the
turbulent structure can be -ignored except that the vortex BC will
suffer the 1lift force. The vortex tubes AB and CD may be reasonably
assumed to have an elliptical cross section with a long radius a in
the x-direction and a short radius b in the z-direction, since they
are distorted by the vortex-stretching effect. Consequently, it can
be assumed that the primary motion of the Il-eddy describes an elli-
ptic steady circulation with angular velocity w in the vortex axis.
From the above assumptions, the motion of any Il-eddy is formulated

as follows: Z(t)=F,(t)— a cos wt«sind
F()=Fo(t)+ a cos wtecosl ]

Te)= ZTo(e) + b sin wt

where, the wave-sign and dot-sign denote the moving coordinates and

the time differential (=d/dt), respectively. Of course, X =u,

§ =v and é =w since U=U,. (X05Y0s 2z0) is an arbitrary coordinates
on the rotating axis in the vortex tube, and its velocity UUE(ig,éo,
%0) is probably much smaller than that of the elliptic motion,

since the Jl-eddy attains the equilibrium state. That is to say,
the ll-eddy consists of a primary motion with an elliptic steady
circulation in the vortex axis, and a secondary motion, i.e. the
overall deformation motion of the eddy, with a perturbation of its

vortex tube due to the vortex-stretching effect.
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By the way, since this secondary motion distorts the length I (=
AB=CD) of the legs and the inclination angle 6, it is very difficult
to determine the velocity U, of the secondary motion accurately.

So, the following simplified formulation is considered here. The
[I-eddy is surely influenced by the vortex-stretching since there is
the velocity shear Bﬁ/8y=BU/3y even though the relative velocity

U =U-U, is very small. Then, the equilibrium Il-eddy ABCD is infini-
tesimally perturbed to AB'C'D by this vortex-stretching effect, as
shown in Fig. 6.9 (consequently, %oEO). The head BC suffers the
1lift force L and the drag force D. So long as the Ill-eddy under the
equilibrium condition does not instantaneously disappear by the
stretching, some apparent resistances F must be thought to work upon
AB and CD of the eddy against the forces of L and D, which probably
result from complex interactions between the mean flow and turbulence.

Noﬁ, describing the vortex tube BC as a circular cylinder with a
radius R and a length 7, , the following equation can be obtained
from Fig. 6.9.  —,xR2, 43 —( 4Fcos 0+ Fsinb+40) +4D=0 }

R (1)

—pxﬂzgl 4y—(4Fsin0— Fcos0 «40) +4L=0

vhere, the drag force p=,c,Re,0? and the lift force L=oCR%,al |

Since the apparent resisting force F may have a strong correlation

with the length 7 of the vortex tube 4B, F is simply assumed to be
linear with I, i.e. 4F=44¢ (Where k is a proportional constant).

The equations of vorticity and mass conservation are given, respecti-

vely, by Sw=T(constant) and »S¢ = constant = = e (6+3)
where S denotes a cross sectional area of the vortex ( S=mab).
Also, from Fig. 6.9, the followings are obtained :
dx=48cosb—Lsin0. 40 an@ 4y=4sin0+Ccos b+ 46 e (Bve)
From the above equations, the following differential equations

are obtained by adopting only the first order of the perturbations.

()= 2 e

The coefficients A, B, C and D are fairly complicated. However,

when the relative velocity U is approximated to be equal to zero
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according to Favre et al's(1967) or Sternberg's(196T) experimental

data, these coefficients become as follows:

P C av ]
A= - —{ 20_ = Cz i
onR?e, « na. dy == " cosad-"’
........... (6+6)
G _ du
- € 5ind cosf —— L o
B= _}f, wé sint cos i3 D=_Tl wl cos?l E

Consequently, the secondary motion ugE(ﬂi,ﬁ§,O) can be predicted
from (6.5). Considering that the apparent resisting force is inclu-
ded only in the term A, it is suggested that a perturbation along a
vortex line may be represented by ﬂi. So, 6 is assumed to be in-
dependent of time t for simplifying the following analysis.

Then’ from (6'1)_(6'6)’ ult)= ewsinwe sinf + A wg cos(@ut+6}ﬁﬂsﬂ

v(t)=—awsin @t cost + A4y wqcos (W, t+3)sinl sessnsssanssenes (60 7)
w(t)=bw cos wt
where, P a
- dU ) —
Wo= \/ﬂIRze,_x_'w’mzﬁI; e (6e8) =

and, Ag and & are constants.

(6.7) are the basic equations of the ll-eddy model, whose first
and second terms describe the primary and secondary motions, respe-
ctively. It is noticed that for larger velocity gradient dU/dy or
larger angular velocity w the vortex line may be more easily raised
with a longer period of the perturbation and in an extreme case the
[I-eddy may be broken down by gquick stretching without any vibration.
However, it is difficult to evaluate the actual value of wo at pre-

sent.

6.2.2 Turbulence intensities and Reynolds stresses evaluated by
a Il-eddy

Assuming that the direct correlation between the primary and
secondary motions is negligible, i.e. w>>w,, the turbulence intensi-
ties and Reynolds stresses contributed by any Il-eddy can be evalua-

ted from (6.7), as follows:
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sinf coszﬂ

+(Aqw,)
. - 2 o= —% {(n@')z‘—( Anwo]z}sinﬂ cosf
- coil :
2= (a0)? 204 (4g0,)? L - 1
2 =0 J» (6+10)
—,_( 0 )2 —0

(6.10) obviously indicates that there is no correlation between u
and w and between v and w, which coincides with the characteristics
of two-dimensional shear flow. Since 0 < 6 < m/2 and -uv > 0,

(6.10) gives ( aw )?2 {Aowo)z T 1 (6'11)

Of course, (6.11) indicates that the contribution of the secondary
motion is smaller than that of the primary motion. Also, the

correlation coefficient R is given by
(a?w?—Afwd ) sinf cosd

k/{(w}’m?ﬁ%w.,)?cmza] {(awPcos? 0+ (A w)?sin?6)

Obviously, (6.12) evaluates O < R < 1, which also agrees with the

turbulence characteristics. Next, from (6.9), the following can

be obtained: :_’v—?=2i {(aw) (4o wo)?} sin?0 —cos? 8} e (6013)

Since u'? > v'2 in the actual turbulent shear flow (see Chapter L),
almost all of Il-eddies must satisfy the relation that u? > vZ2.
Consequently, almost all of [[-eddies have to be applicable in the

following range of the inclination angle:

& e (6+14
—4- < E )

6.2.3 Spectral density functions of energy

The above investigation has been limited only to a specified eddy
element, but the characteristics of turbulence as a whole contributed
by all of the eddies should be made clear. In order to attain this
purpose, the conception of energy spectrum about eddy scale £ must
be introduced in the same manner as Chapter 2, together with adopt-
ion of space wave number in Eulerian expression instead of the above

Lagrangian form.
Although a part of the primary motions may produce turbulence
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due to the interaction with the mean flow, it is considered that
almost of the primary motions in the equilibrium region have a
turbulence cascade process where a larger scale eddy successively
transports its turbulent energy into a smaller scale eddy, because

in this region there exists an equilibrium state of the turbulent
energy and any eddy element satisfies the similarity law, as shown in
Figs. 2.9 & 2.13.

Here, we adopt Heisenberg's concept of the effective viscosity in
the cascade process, as follows. Since the effective viscosity Vg
of any ll-eddy is given by X2?w, it can be adopted that vr=(a®+5?)ew/2
in terms of its average. When the effective viscous force against
the primary motion can be approximated to be equal to hﬂvTIY by
application of Oseen's law for a circular cylinder (where, 1> is the
representative velocity of a ll-eddy), a rate W of work done by the
mean effective viscosity of eddy against the eddy motion can be given
by hﬂlefz. Adopting »?=(a?+.,2+w?)/3 » the following is obtained.

a4 0 o (LT +i?)

W e=4n
2 3

According to Heisenberg's concept, the transport T of energy in the
cascade process is equal to the rate of work per unit volume, i.e.
T=W/(mab-1). Also, the transport T is equal to its final dissipati-
on rate €, as shown in Fig. 2.9. Assuming that the contribution of
the secondary motion may be negligible in this cascade process
because of aw >> Agwg, the following equation can be obtained from

(6.9) and (6.15).

Ko (1442)2
3¢ )

=

w’ ..A.‘.............(G‘ 16)

where, eZ b/a <1 and K is a constant introduced for uncertainty in

the above assumptions (K=o0(1)).

Next, since the one-dimensional wave number k in the x-direction

is given by k==sin6/a (see our paper 1974), (6.16) becomes

33
W1 3¢/K) 5 % 4
(l+ﬂ)% ek e (6017)

(m sinai-
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By the way, in the range ( ko <k ﬁ_km) where the cascade process
exists, the Reynolds similarity is valid, and furthermore the tur-
bulent structure itself has a similarity in the eguilibrium region,
which is the same conception as 'self-similarity' mentioned in 5.5.
Consequently, the ratio e may be regarded as constant because the
shape of any [l-eddy is similar to each other.

Therefore, a spectrum density function G(k) of w? will be obtained

for ko <k < k_: % .
0 - G(I:)E:—:'!=% M(“me)—% Ha s (6+18)
(l+¢’}}s

Now, on the assumption that w, is so inappreciable compared with

w in the cascade process, the spectra of turbulence intensities can

be written, as follows:
E] :’(t}‘—: sintf (% ”na): clh)= E.(l)

2

:Z{l): m;la (.:_ ‘“13)' G(k)EE'(*} arassasssannmeaanes (6019)

PHOE 2;' (E‘linﬂ)! G()=E ()

That is, 2 (sxs/ RIS
_2(3re/KVS 8¢ 30 %
E (k)=— (sind) k 3
) 3(1+41)8
o/ KV
E'(k)=3(3t /K) a(.h,)% (mﬂ)’l%l_% ..................... (6+20)

3(1+47)7
2086 /0% g g0 s
l".'-(k)—a(l.'_‘z)’s (sinf )73 73 }— 9
(6.20) shows that each spectral density function is in proportion to

the -5/3 power of k in the cascade process ( ko £ k S.km), which
surely coincides with the local isotropic theory proposed by
Kolmogoroff (cf. Section 2.3).

Lastly, denoting k=4"'>s"' , the contribution of the secondary

motion should not be neglected in the range of k=a '<ko, Then,

since the Il-eddy may be just before the breakdown by the vortex-
stretching, the cross section of its vortex tube will be extremely
distorted. Consequently, assuming e’<<1, (6.3) and (6.16) give

__-l-;—z
el i e e Therefore, from (6.9),
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E (W)~(er™ kg 7, E ()~ (er e | () L O gl S 1 T em— (6+21)

(6.21) indicates that E,(k) satisfies the -1 power law in thé produ-
ctive subrange (k < ko), whose result also coincides with Tchen's
results and the experimental data obtained in Chapter k.

‘However, E (k) and Ey(k) obtained from (6.21) are incorrect. This
is probably due to the fact that the modelling of the secondary
motion has been too simplified. In particular, the incorrectness
in Ew(k) may have been caused by an assumption that the vortéx

stretching affects never the spanwise components.

6.2.4 Comparison of turbulence intensities with the experimental
data

In order to evaluate the turbulence intensities u', v' and w'
from (6.20), the ratio e and the inclination angle O must be known.
Firstly, since e is constant in any Ill-eddy, it will be related to
the mean eddy scales Ly in the x-direction and L, in the z-direction.
Because LZ/Lx is equal to 0.5 in an isotropic turbulence of e = 1,
it may be estimated that e = 2(L,/Lx) in a shear turbulence.
According to Laufer's(1951) experiment for a two-dimensional channel
flow, it was shown that the value of LZXLX became about 0.3 indepen-
dently of y/h. Consequently, we can here adopt e=0.6.

Next, it is more difficult to evaluate the inclination angle 6
accurately, because 6 may be different more or less for each eddy
size. Since the time-space correlations may show the maximum in an
identical eddy, 6 will be roughly estimated from these maximum corr-
elation distributions. Fig. 6.10 shows the data of 6 for mean eddy
size summarized by Sternberg(1967). According to this figure, ©
increases remarkably from about 20 degrees at the edge of the viscous
sublayer, and it attains about 40 degrees at the edge of the wall
region (y=15 mm), and more it becomes over L45 degrees in the equi-
librium region. This fact agrees very well with (6.14k) evaluated

by the Il-eddy model. However, the maximum inclination angle Opgx
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which a [[-eddy can hold is quite unknown at present.

Well, the actual turbulence in the equilibrium region is probably
contributed uniformly from all eddies of m/h < 6 < 6,,.. That is
to say, it is assumed here that the results of (6.20) averaged uni-
formly in the range of m/4 < 6 < B, are observed actually.

For example, when Op., is chosen as the upper limit value in

theory, i.e. 6max=m/2, the followings can be obtained:

E,(0= 2295k " 8 s~ %4

E,()= 0476K " ¢ 5 5= % oo (6+22)
£ )= 2774 2Kk 5 %
- L4 %
where, K =[m] .

As mentioned in Chapter 2, C =2.295K' is a universal constant which
is nearly equal to 0.5 (see Fig. 2.10). Then, by using e=0.6,

K becomes equal to 3.19. The turbulence intensities u', v' and w'
are approximately evaluated from (6.22), as follows:

ke ;
e w’zj EJHu:%Ce%UI*L%“T%)
ko

By using e=0.6, the following relations are obtained.

¢ ’
'i.'r = 0.46 , i = 0.66 [T (6.24)
u u

’

In the same manner as the above, the results calculated by varying
Omax @5 @ parameter are shown in Fig. 6.11. Well, Fig. 6.12 replots
the experimental data of v'/u' and w'/u' obtained in Chapter L.

When Opax is chosen as T8 degrees, (6.20) or Fig. 6.11 gives

T:=o.55 ; -'i= 0.69 e (6025)
In the equilibrium region ( 0.064 < y/h < 0.6 for the higher-velocity
group, and 0.16 < y/h < 0.6 for the lower-velocity group), (6.25)
coincides very well with the experimental values, that is, (L4.12).
Also, K becomes equal to 2.73, whose value is consistent with K=o(1)
in (6.16). However, in the wall region y/h < 0.1 for the lower-
velocity group, (6.25) cannot explain the experimental data.
Consequently, the m-eddy model is not applicable to the region of
y* < 50.
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To sum up, the [-eddy model can explain fairly well the macro
structure of turbulence in the equilibrium region. Since this
region is scarcely influenced by the outer boundary conditions and
consequently it has a dynamic equilibrium state or self-similarity
that is, a self-consistency of turbulence, the turbulence inten-

3

sities are given by the followings, as mentioned in 4.3.
U =D 8, WU =Dy e, WUEDeet i, (6-26)

Thus, (6.26) may be considered to be a conclusion obtained from a
ll-eddy model. The vortex tube of the Il-eddy has a cross section
distorted by about 60% in the mean flow direction, and keeps uni-

formly an inclination angle developing up to about 80 degrees.

6.3 Renewal model *)
6.3.1 Formulation of a renewal model

In modelling the wall region, we consider an idealized model of
the bursting process, which is called a renewal model, because it
is most essential to take account of its periodic characteristics.

We can divide a period T of the bursting phenomenon into two
duration intervals: one is the built-up or developing duration T,
and the other is the breakdown duration T, of the coherent vortex
motion, that is, T= T,+T2. The ejection motion occurs in the break-
down duration T,, and both the sweep and the interaction motions
occur in the built-up duration T;, since the former is swept litera- ;
11y by the latter and a new horseshoe vortex is born again. For
convenience, the beginning of a sweep motion is here denoted as t=0,
and then a sequence of the bursting process is considered to be a
cyclic motion of sweep-interaction-ejection-sweep.

Let Uy =(9, ,¥v;) and l,=(U,,v2) be the instantaneous velocities
during Ty and T, respectively. The eddy-viscosity might be infi-

nitely smaller in the built-up duration and infinitely larger in the

*) Refer to our paper (Bursting phenomenon near the wall in open ;
chanmel flow and i1ts simple mathematical model) just published
in Memoirs of Faculty of Engineering, Kyoto University,
vol.40, part 4, 1978.
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breakdown duration than the molecular-viscosity since much of the
Reynolds stress is generated by the breakdown of the horseshoe
vortex, i.e. ejection motion. Consequently, assuming that the non-
linear coupling effect and the pressure fluctuation effect are neg-
ligible during the built-up time, the Navier-Stokes equation which
controls the coherent motion in this duration can be approximated

) + + +
by using the boundary layer theory since A3 < A3 < A; (see 5.5.1),

as follows: o3, 7,

at gy?

The boundary conditions are

y=0 1 5,;=0 , y—00: 5=l  ceeeeereneeeninn (6-28)

where Up is the main stream velocity outside the wall region.

Since the distorted velocity distribution of an ejection motion
may be swept due to the stress-relieved mechanism and restored to
a uniformly accelerated velocity, as observed in Figs. 2.20 & 5.L40,
the initial condition can be idealized by '

=0 ¢ T=Up (y>0) eveeeeens (6-29)

Then, the solution of (6.27) with the conditions of (6.28) and
(6.29) reads

~_2U, (O _2
oy ¢ dr=Ugerf @ *=- (6-30)
u

vhere, 6=,/(2/%i) a4 erf O is the error-function of O.
(6.30) was firstly obtained by Einstein & Li(1956), and it forms the
origin of the present model. On the other hand, Black(1968) adopted
Coles' logarithmic law, i.e. u=Us(«"Iny*+51) as the initial condi-
tion of (6.27), and then he obtained a more complicated solution
than (6.30). Though this initial condition seems to be more sui-
table for the actual phenomenon thén (6.29), as seen from Figs. 2.20
& 5.40, we do not adopt the Black solution here because it is too
intricate to go on calculating further. '
Now, making the axis transformation to 3/3t=-U,9/9x (Taylor's
frozen turbulence hypothesis, see (L.37)) where U, is the convection
velocity of a horseshoe vortex, and using the equation of continuity

s We can obtain
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-~ =_f3' 8&'} i i «Lt {1_,!!9(_92)] - ssvessamasanssnness (§4317)

where, o ZU,/Up, is equal to (0.7 - 0.8) according to the previous
experiments (see Hinze's book 1975).
Next, because the mechanism of the vortex-breakdown is not suffi-

ciently evident, U,=(u,,V,) is evaluated here by introducing a sim-

plified idea. It is considered that B =T,/T; is infinitesimal, i.e.

B<<1l, since the vortex-breakdown or the ejection motion occurs in
very short time, as shown in Fig. 5.26. Then, 1 (t=T;) is renewed
into W (t=T) = W (t=0) in a very short time. Consequently, the
average of both U; (t=T; ) and u; (t=T) can be represented as

U2 (T3<t<T). We can also obtain &n=-5/ Since the average verti-
cal velocity V = =(T, 547, VT myust always be zero in an open cha-

nnel flow. Furthermore, V, may be closely identified with ¥, for

B<<1. Then, v -=__;_'I JB e, (6:32)

From the above simplification, the following relations can be

obtained by using B<<1.

= T
u= (f u.di+f u,dt):%f u,dt
0

I}I

....................... (6-33)
VE?:
1 T
'2—(H—U)’_ F,[ uy de—U?
l ...................... {6.34)
et Py f et (7))
wo={(T,=U)+ T, +8(5y—U) + 53 ) /(1 + 8) T ..(6.35)

The second term of (6.35) is the Reynolds stress which is generated

by an ejection motion, and is given by (5,=0) -3, =(%,(t=T)=3%,(t=T))+ 7,
because this Reynolds stress is equal to the momentum change of u
which is transferred by v,>0 during the period of breakdown.

Then, g o
v= (G0 =% 0+ 0, (T t=D) =T, (e=T)))] oo (6:35)

-98-



Since p,’= v(9u/dy),=o , we can also obtain from (6.30)

du
Ut:v-—f ( I _odf=:’: Uojr;- ....................... (6'36)

6.3.2 Further consideration of renewal model by taking account of
the probability distribution of bursting period

The above results represent the turbulent characteristics during
one bursting period T. However, in order to obtain the actual
turbulent characteristics, as compared with the experiments, the
probability distribution of T should be taken into account.

Then, the friction velocity (6.36) by using (5.16)-(5.18)
P e S U:=r(3_ u.,‘/T);u,,(mnr=-—zvCl — o7 A e (6437)

LAES T vVr 4 Tp
Also, by doing the variable transformation of S=1og(T/To)iy »

6.33) becomes - !
( 3 ) 2 e U+EU¢*0(3!+)=Un*j_-c(’)d-’foe”{9) dé smtssesei e (6038)

where, gG(s)=

‘,-—Exp(—-r ¥2) , and O reads g=

In the same manner, we can obtain from (6.34) and (6.35)'

a2 ” LR +
(E) wo”f.,ﬁ(;lﬁfo{erﬂsl}’dr~u o (6-39)
. -  Gs)
s {l—exp(—e ))? 1 +
Y= . dr+—F(y ) (6-40)
( ') (1+ﬂ)(2qu )2 j.- 1000’ J ; y :I
P
v ¥ G{.r} 1 (1 —exp(—=87))ser () 4 %
= (——l+ﬂ).2a[f w"o' — dr=0(y')-¥(y"))
+¥(y ") {1=ert (:’._f,.!'. 2] eee (6041)
Uo'

vhere, ww)EJ' JG(:H: n(b::mﬁe’»
10 % :

Lastly, the bursting period Ty is obtained from (6.37),

as follows: Ta"':_ i

v T

Ut (6:42)
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PART 2 Turbulent structure over permeable bed

Chapter 7 Introduction

In Part 1 we have investigated theoretically and experimen-
tally the problems (1)-(5) mentioned previously (see page 1), which
are very basic and important in turbulence research of two-dimen-
sional solid open-channel flows. However, various turbulent
phenomena which often appear in hydraulic engineering and environ-
mental sciences are very complicated, and then even in two-dimensi-
onal open-channel flows the following boundary conditions are

furthermore added to the flow dealt with in Part 1.

(1) A seepage flow exists under the porous bed. Consequently, an
interaction with main and seepage flows cannot be neglected
in open-channel flow.

(2) Suction or injection exists steadily through the porous bed.
Consequently,the turbulent structure may‘be varied essentially.

(3) The bed surface is discontinous, uneven or wavy.

(4) The bed is moving sand surface. Consequently, an interaction
between flow and moving bed should be considered ( Sediment
transport by turbulent flow).

(5) Suspended materials exist in open-channel flow. Consequently,

the turbulent structure may be varied essentially.

In this part, we investigate the turbulent structureswith
boundary conditions of (1) and (2) in Chapter 8 and Chapter 9,
respectively, and we consider the fundamental characteristics
of turbulence over a permeable bed, by comparing with the results

obtained over a solid bed (Part 1).
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Chapter 8 Interaction between main and seepage flows *)

8.1 Introduction

When the bed permeability is small enough to neglect the
effect of seepage flow under the bed, the main flow shows the chara-
cteristics over a solid rough bed, which have been already discussed
in Part 1. When the effect of seepage flow on the main flow
cannot be neglected, there exists a hydrodynamic interaction bet-
ween them through the porous bed. Compared with solid rough bed,
the momentum exchange becomes more active, and consequently an
additional shear stress will be produced by this interaction.

For example, Lovera et al.(1969) reported that the friction-factor
of flat permeable bed in a natural river was much larger than that
of rough bed given by Nikuradse. Also, Monin et al.(1971)
pointed out that similar phenomenon was observed in the wind flow
over a vegetated ground. These additional stress may be caused
by an interaction between main and seepage flows.

The seepage flow near the pore surface is excited to be
turbulent by the pressure fluctuations of main flow. Otherwise,
the seepage flow becomes laminar and Darcy law is applicable.

Then, there is an analogy between smooth and permeable flow fields,
as shown in Fig.8.1. That is, the viscous sublayer is also
disturbed by the pressure fluctuations of main flow, as have been
mentioned in 4.7.3. Consequently, an additional shear stress is
probably induced in the main flow by the disturbed seepage flow.

To sum up, there exists a hydrodynamic interaction mechanism
between main and seepage flows, as shown in Fig. 8.2. This

chapter deals with these feed-back systems, in order.

%) Refer to our paper published in Proe. of JSCE, No.244, pp.81-90,
1975 (in Japanese), or Trans. of JSCE, vol.7, pp.201-204, 1976
(in English).
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8.2 Theoretical consideration

8.2.1 Basic equations of seepage flow
The local velocity vp in the porous media must obey the follo-

wing Navier-Stokes equation.

p_p-p(L s st —
o =F F(p)+97 v, (up P’)v’, eesresnneens (Bo])

where, F is the volume force, 7=p+, is the instantaneous pressure.

But, as shown in Fig. 8.3, it is impossible to evaluate the local
velocity Vps and moreover in practice it is better to substitute

a nominal velocity, i.e. seepage velocity q for this local velocity.

That is, ,=.1_L,.,.u5n<n,> smatrassssiess (842

where, n is the porosity of the medium. < > denotes the sectional

average on S.
Well, the following empirical descriptions are assumed to be

valid. The viscous friction is a linear term, as follows:

v(P* v E-;—l cossesenaes (893)

The inertial friction is a nonlinear term, as follows:
(0, P u,>= — 1 q1
gl AT Sl o (8+4)

where, K is the intrinsic permeability of the medium, and C is a
experimental constant.
Defining the Reynolds number ry=,Klgl/v of seepage flow as the

ratio of (8.4) to (8.3), Eq.(8.1) is approximated as follows:

1 @ 7 v
Tﬁw__p.. y(.E._).. i[] *CRKJQ .......................... (8+5)

(8.5) is applied to a permeable open-channel flow field, as shown
in Fig. 8.4. Then, denoting one-dimensional seepage flow

9= (am*dx> 9y> qz), where q_ is the mean velocity and Q. 4 and q,

4
are the fluctuating velocities, the basic equations of mean velocity

are given by

=11 )=



y-component : P=2ngcosh=(h—y) soommmmeemermns (8:6)

x-component : (V+CR) qu=(Kg/v) 1, wweoveeeeweee (8+7)

Ie is the hydraulic grédient of porous media and it coincides with
the energy gradient of main flow (see page 6). RK is nearly
equal to Rg=vEKg./v.

When Rx<1/C | 9n=(Kg/v)1, - (8:8)

When Rxk>1/cC In=WEKC* gl )V ierinene (849)

,
(8.8) is Darcy law, which is applicable in the laminar region.

On the other hand, (8.9) is applicable in the turbulent region.
Thus, C is a measure of nonlinear term. According to the expe-
rimental results by Arbhabhirama et al.(1973), C is approximately

given by C=100(d /n/K) "%, (20< d v/ BTR<BO)  cvereusnisesssensnns (8°10)

where, d_ is the particle mean diameter of porous media.

Next, in the same manner as 2.2, the basic equations of

fluctuating components are given from (8.5)-(8.7), as follows:

aq.r g .?... E)-

9t “ox ( o ) e cenesees (Be11)
3 a

;"—-n 6--—-, (:)—a:?y

where, a;=(nv/K)(142CRg)y  ay =(nv/K)(1+CRg)
From the equation of continuity,

1 Cq.ti_qj cearsrnanraresnes (§012)
4 (P/p)=_\/? o= (
On the other hand, the primary terms of pressure equation of the

main flow is also given by

' DEpS L. | AER——
PiploYso o o (8-13)

(8.12) is very similar to (8.13). In other words, the external
force term of pressure fluctuations in the main flow is (au/ay)(av/ox)
, while its term in the seepage flow is (q./vK) (@49:/3=) These

external terms are both very similar.
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8.2.2 Analysis of turbulent fluctuations of seepage flow

We consider the turbulent fluctuations of seepage flow excited

by the pressure fluctuation p, on the boundary (y=0) of main flow

(see Fig. 8.1 (b)). That is, the boundary conditions of seepage
flow are assumed as follows:
P=R'{ﬁ;¢|"le’ml("x+m‘)}5;~;u , at 3’20 Siaaiidasanas (8.14J
=0
?’. 3 at y“—‘-ﬁp L - {8'15)
where, Re{ } denotes the real part of { }. po’(=v3¢) is the r.m.s.
value of pressure fluctuations in the main flow. hp is the

thickness of porous media, at which the turbulent flow is attenuated
and becomes laminar, as mentioned previously. Then, on these

boundary conditions, (8.11)-(8.12) are easily solved, as follows:

(-hp< ¥y < 0)

o (V2P0 coshp( 4 +y)
P—R‘ l mh(ﬂ,ﬁp)lp ?xps(k:+w! )l SedsvaRT AR s e (8.16)
=R {—i ak .ﬁ(;u’/ﬂ)ﬂ.ﬁhﬂtﬁp"’y) g tlkaxtwp )} coeres .
=R | "(atiw) cash ( #4,) % e Qb)) (3413
n 2 2 -4 in
q’,=R,{ k .\/_(Pn/ﬂ)u hﬂ(dp+y) % e:rp:'(t.z+wf)l ...... (8+18)

“(a+iw)p cosh ( 74,)

where Fi=k(a, +iw)/(a, +iw) ‘

2 -

By using the relation of 9x=]E[E=?:'+R'{;:”=% 9 9
(ﬁx and ﬁ; are complex conjugates), the following approximations
are obtained in the region very close to the porous boundary, i.e.

0 = |)’| << h_. —_ n?k? P
p q: =(m(},o/‘,)t ................ (3.19)
—_ n? k2

9; =J(‘112 +gu= Y(ad +a?) (;J/p)f... (8+20)

(8.19) and (8.20) are also derived by Chu et al.(1972), on the
different boundary condition from (8.15).

Next, since (8.19) and (8.20) are a contribution of a disturbed
eddy with scale (k, w), the contributions of all eddies are here
considered by introducing two-side normalized spectral distribution

¢p(k, w) of the pressure fluctuations, in the same manner as 6.2.3.
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That is, &k 0)=pft0,(k, @) and JTJ;@P(;,wmmF; ersveenees (8021)

Then, the turbulence intensities q  and q; near the porous boundary
are given by
!z l”
Q.r =JJ q, dl’dw——JI x op(ll U)dl’dm ------------------ (8'22)
-al

po 2 k?

[ J— 2 -
'i;’:”-- 9y dbdw= FJ I o BT 5 e (8-23)

Also, the normalized spectral functions ¢ and ¢y of 9y and qy,
respectively, are given by

2 n®k?

!
0. (k, w)= ( fi'

g u—'_-'l: +w= wp(t. N) SEEAE bunmRN A R TS (8‘24)
n? k?
W > venssensennssnnes (Be25
o, (k, )(ﬂ,)J& +J)w;+d)x04ku) (8+25) .

Consequently, if Qp(k, w) is known, the spectra of seepage
fluctuations are easily obtained. However, it is at present
difficult to directly evaluate QP over a permeable rough bed.

Thus, we here estimate the function of Qp from the results of solid-
wall turbulence obtained by Willmarth et al.(1962) and Corcos(1964).

According to Corcos, the following relations are satisfied.

7]
@P(k. w)=ij ¢()Ey (u+1) (8+26)
S IJ’- ) +1 )l‘.fl.’
Eu{ﬂ+l)='; o ACE) cos ¢t (u e (8097 )
where, t=wé/U,, u=kU.Jo , & is the lag distance. A(t) is the

ratio of amplitude defined as A(t)= |TCE; w)|/¢(w), T(E, w) is the
cross-spectrum, and ¢(w) is the auto-correlation spectrum.
Of course, if the frozen turbulence hypothesis of Taylor is exactly

valid, A(t) becomes equal to unity. Then, (8.26) and (8.27)

become 0,k @)=¢(w)d(1+a/kU) 3(w) ig the delta function.

or OP(_‘”/U“’ @)= @ (@) ereerrereeinnan (8-28)

That is to say, the disturbances of (8.14) are perfectly coherently

convected with the velocity UC=—m/k.
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Now, assuming that the auto-correlation has an exponential

T

type, we obtain
x( 14T ?)

1 -
¢(0)= z_xj-:m(_ IY'/I)I‘-"' dr = PR e (8-29] .

where, Z is the integral time scale.
Next, Fig. 8.5 shows the experimental values of A(t) obtained

by Willmarth et al. and Corcos. In the same manner as (8.29),

the fitting function of A(t) is firstly assumed to be an exponential
type. That is, ()= (b1 is an experimental constant)-- (8+30)
Then, Ey (ﬂ+l)='l' i ves eee (B031)

54 (at1)?
However, the calculated values of q; and q; using (8.22), (8.23) and
‘ (8.31) are divergent, because the higher wave number components of

(8.31) are too large. (Same example appears in (2.43) by using
0 | (4.47).) Hence, it may be better to use the following fitting
;A , function which satisfies the condition of A'(0)=0, since (8.28) of

the frozen turbulence is probably valid when t is very small.

A(L)= (b, is an experimental constant) --(8:32)

1
14 (bt P

Then, 1 1
En(#+l)=2_6’ exp( —z: |a+l|) -+ (8+33)

From (8.29) and (8.33), (8.26) becomes
T
Ue x exp ]

__{UL*+] ) < (8434)
2nby lul 1+ 0 ) by @

QP( ky w)=

Consequently, from (8.22) and (8.23), we can obtain

/
9zt =n2( L) hin 3
o

vE a4 cvieeee (8235)
/ 2 /
f?__ Po ] 25: +1 2¢l|
Uy sl (h) vk 2(a,’?-1) xCm =10k ] e
where, o'=a,z,a’/=az . -~ Kand Ky are the elliptic functions of

Legendre-Jacobi type, which are defined as follows:
x dx

K_i d %
‘—JﬂJfT;x')(l~l’:') and "J:(;*—.=) (1-22)(1-k* =*)

where, ¢ =a/Y(a/?=1)>0, ¥ =1-aja >0
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If (8.30) is used instead of (8.32), 2b, in the denominator of (8.45)
is replaced only by Tb;.

dt

Where _ (= :
’ ’=J;vka(’+tJh{’+cM1+t) » Which is easily integrated

as follows:

(i) a’2a7>1 ( When 1>a/>a/ , the lower sign is used)

2 a/ Jﬂ:“‘“:"*'—*—ﬂl)

=4 ———

R vig +VEp,

(i) a/>1>af

r(8-45)
(1) a’2a/=1 ( When 1=4/2a; , of is replaced by 04.)
1=2/Ca/ +1)
where’ A=al?-1, pp=af’-1 . J

Fig. 8.9 shows the coefficient I as a function of of with parameter
of vy Zop/04 . Of course, the larger the permeability K becomes
(or the smaller o) becomes), the larger the coefficient I becomes,
and consequently the larger induced stress is generated.

Well, the mean velocity distribution of the main flow is given
by the velocity defect law, as follows:

sl " TR N D o ee———
U, _sln(u-a) (847

where, & is the experimental constant which corresponds to the
'displacement height' of roughness elements (It has been discussed
in 2.5.) Assuming that(8.47) is valid up to the position of y=0,

we can obtain (dU/dy) o =Us /88 wwrvevwesssssssscses (8448)

Next, according to many previous experimental results, the
wall-pressure intensity p} is proportional to the wall shear

stress Tg. That is, oo QARED)

L
Po =aTo

where, the coefficient a is a function of the wall roughness-k;
and the Reynolds number Re, i. e.: a= G(Re, ki ) from (4.34).
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The integral time scale Z can be approximately given by
g~0.44/U, , Since U.T 1is nearly equal to the macroscale Lx in the
main flow *).

From the above considerations, we can obtain the following

formula which estimates the induced stress Tj.

2 2
Lo s an( 15 EETCTPRIP (8.50)
where, ¢o=29/h
~ Fig. 8.5 gives that b;=0.12 or b,=0.16, and thus mb;=0.38 or
2b,=0.32, which are not quite different from each other.
Fig. 8.10 shows the observed values of the coefficient a by Corcos,
as a function of Re for the case of smooth bed. According to
the experimental results by Willmarth et al., the value of a for
the rough bed is by (1.2 - 1.4) times as large as that for the smooth
bed. Since our porous roughness is still larger than the rough-
ness of Willmarth et al., we tentatively adopt the values of a for
the smooth bed (Corcos) multiplied by 1.4 times, which are shown
by a curve in Fig. 8.10.
When the values of a, b; or b, are reasonably determined,
the validity of the estimated formula of (8.50) can be investigated
experimentally by measuring the velocity characteristics of main

and seepage flows.

*) Ly in the porous-wall turbulence may be the nearly same as that

in the rough-wall turbulence. Then, since r/s=06vZ from Fig.4.3l,
the macroscale in the main flow is given as follows:
L/A=f 'L /hdE=0.4 S UET~L.~044 -
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8.3 Experimental consideration
8.3.1 Experimental set-up and procedure

As shown in Fig. 8.11, the glass beads of diameter dj=1.25 cm
were set homogeneously on the smooth bed of our open-channel
(see Fig. 4.1) for about 10 m distances between the test section.
The interval of 1 m long downstream from the test section was
covered with a very thin rough-plate ( C in Fig. 8.11), by which
the main and seepage flows were perfectly separated. Hence,
the QUantities of main and seepage flows were separately measured
by a triangular weir and a flow bucket, respectively. " The
channel slope and the valve (A) were adjusted so that the main
flow might become fully developed and normal. Next, the valve (B)
was adjusted so that there might not exist any suction or injection
through the porous boundary, that is, (8.7) might be satisfied.

The experiments of three groups have been performed. Eirst
group was a solid rough bed, which was made by densely setting the
roughness elements by one stratum (Case D, cf. Table 4.1 (c)).
Second group was a dense porous bed, which was made by fairly dense-
ly setting the roughness elements by three strata (Case E). Then,
the thickness hP of this porous media was nearly equal to 3.4 cm.
Lastly, third group was a loose porous bed, which was made by loose-
ly setting the porous elements by five strata (Case F). Then,

hp was also nearly equal to 3.4 cm.

8.3.2 Mean flow characteristics of seepage flow

The porosity n of the media was easily determined by the
number density of porous elements, in result n=0.39 (Case E) and
n=0.54 (Case F).

Next, Fig. 8.12 shows the relationship between the seepage
velocity qu and the hydraulic gradient Ie which was determined by
17 manometers. Then, the permeability K and the coefficient C
were determined so that (8.7) might coincide with the experimental
values. These data are shown in Table 8.1. Surely,'a good
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agreement between the experimental values and (8.7) is confirmed
in Fig. 8.12.
Now, defining the friction factor fK of seepage flow as

follows: !.=/k*(2WK)+(gi/29) ( Darcy-Weisbach type, cf. 2.7)),

(8. 7) becomes SR=RENHC e i (8051)

Fig. 8.13 shows the relationship between Ry and fy. Of course,
(8.8) becomes fy= Rg' (laminar region, Darcy law), while (8.9)
becomes fy= C (turbulent region). As seen in Fig. 8.13,

our experiments correspond to the transition region where (8.51)

is applicable.

8.3.3 Mean flow characteristics of main flow

In order to evaluate only the effect of the induced stress
which is generated on the porous boundary, the hydraulic condi-
tions should be given that the Reynolds number Re and the Froude
number Fr are kept to be constant (cf. 4.2). In this study,
we have carried out the experiments of three different kinds of
Re and Fr for each Case, i.e. Run 1, Run 2 and Run 3. These
hydraulic data for experiments are shown in Table 8.2.

Well, the wall shear stress T, or the friction velocity U,
should be evaluated as accurately as possible, since the induced
stress is probably not so large. Although the evaluation
method of U, has been already discussed in 4.3.1, (2) log-law
method should not be adopted here. It's because the Karman
constant K is not necessarily equal to k=0.4. Actually, Chu
et al.(1973) have obtained k=0.27 in a permeable air pipe flow.

Therefore, we have evaluated the values of U, from (3)
Reynolds-stress method. Fig. 8.14 shows an example of the
distribution of Reynolds stress which was measured over the
permeable porous bed by the dual-sensor hot-film anemometer.

Although there is some scattering of the measured data near the
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bed because of the local effect of the roughness elements, these
values of -uv/U2 agree fairly well with (4.20). Consequently,
we can conclude that the Reynolds-stress method adopted here is

reasonably valid.

Next, Fig. 8.15 shows the velocity defect law of the main
flow. A good agreement between the observed values and (8.47)
is surely recognized. Consequently, the values of Uy and (8.48)
are reasonably evaluated from (8.47).

In Table 8.2 which summarizes the above results, it should be
noticed that the Karman constant K tends to decrease as the porous
bed becomes looser. Well, it is well-known that the Karman
constant can be varied by the outer conditioms. For example,
these phenomena have been observed in flows with suspended materi-
als, with suction or injection (see next chapter) or with loose
boundaries. Ippen(1971) pointed out that the Karman constant
is varied by the boundary conditions near the bed. That is to
say, the Karman constant may decrease as the momentum exchange of

turbulence becomes more active near the bed, and vice versa.

8.3.4 Examination of induced stress

The induced stress can be evaluated experimentally by the
following method. In the Case D where the seepage flow is
negligible, the induced stress is equal to zero, and hence only
the wall shear stress T, occurs over the solid rough bed.
Next, in the Case E and F where the effect of seepage flow is
expected to appear sufficiently, the contribution of the induced
stress T; is contained in the total wall shear stress T, which is
actually observed. Consequently, it is considered that the total
wall shear stress T, can be composed of the addition of the wall
shear stress TB generated by the wall roughness and the induced
stress T; generated by the seepage disturbances.

Then, t; t-Te’ US-ULR
T

seesneeninnns (8052)

[ To g
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)

2)

3)

4)

5)

The experimental values of the induced stress T;j evaluated from
(8.52) are shown in Table 8.3. The contribution of the induced
stress is equal to (5 - 7)% (dense boundary: Case E) and (12 - 14)%
(loose boundary: Case F) of the total wall shear stress.

We can here evaluate the coefficient Ap of (8.50) from the
above experimental values and (8.50). These calculated values
of A, are also shown in Table 8.3.  Although there is some scatte-
ring in these data, Ay is nearly equal to constant, that is: its
average value is Ap=0.15 (from p1=0.12) or Ap=0.13 (from b2=0.16).

By the way, Phillips (1967) has evaluated Ap=0.12 with devi-
ation of 5% from the jet experiments performed by Townsend, and
then he has predicted that the same order value as Ap=0.12 could
be obtained even if Phillips theory of (8.41) were applied to the
other kinds of shear flows.

Consequently, so far as our experimental results are concerned,
the prediction of Phillips is valid even in the flow over permeable
porous bed. In other words, we can explain fairly successfully
the hydrodynamic interaction between main and seepage flows by
application of Phillips theory. However, since the estimation
formula of (8.50) has some assumptions and experimental constants,
the universal conclusion on the induced stress cannot be obtained
at present. Further investigations should be carried out in a
vegetated open-channel flow, a mountainous river with large rela-
tive roughness ksﬁh and others, where the interaction between main

and seepage flows may occur strongly.
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Chapter 9 Turbulent structure with transpiration*)

- 9.1 Introduction

In the last thirty years intensive theoretical and experimental
research on the turbulent structure with suction or injection
('Transpiration' is a general term for them) has been performéd
mainly in the fields of aeronautical, mechanical or chemical engi-
neering, in order to establish a practical interest of the control
of turbulent flows by suction or injection. For example, the
control of flow separation by suction has interested in boundary
layer flows, i.e. influence of transpiration on friction factor.
Also, the thermal protection by injection has interested in pipe
flow, i.e. influence of transpiration on heat-mass transfer.

In the 1950's, Rubesin(1954), Dorrance et al.(1954), Clarke
et al.(1955), Black et al.(1958), Dutton(1958) and others proposed
the law of the wall, i.e. 'bilog-law' of mean velocity distribution
in a transpired boundary layer, although their theoretical and
experimental research was still insufficient. In the early 1960's
Stevenson(1964), Tennekes(1965), Torii et al.(1965), Mickley et al.
(1965) and others tried to establish the velocity defect law and the
similarity law with transpiration. In the later 1960's, Kays'
group of Simpson et al.(1969) and Julien et al.(1971) and other
groups investigated the accelerated turbulent boundary layer with

uniform or distributed transpiration.
All the above research is concerned mainly with the mean velo-

city characteristics in turbulent boundary layer or pipe flow with

*) We have just recently published two papers which deal with
these topics in more detail. Paper(I): 'Turbulent structure in
permeable open-channel flows with transpiration', Proec. of JSCE,
No.285, pp.45-56, 1979 (in Japanese) or to be published in
Trans. of JSCE, 1979 (in English). Paper(II): 'Structure of
instantaneous Reynolds stress over a permeable open-channel
with suction or injection', Memoirs of Faculty of Engineering,
Kyoto University, vol.41, part 3, 1979. We supplement this
chapter by these papers, if necessary. S-symbol is denoted
here for supplement.
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transpiration. However, the recent research or new intention

is probably concerned with the turbulence characteristics with
transpiration and the influence of transpiration on the wall-turbu-
lence mechanism or bursting phenomenon. For example, refer to
the papers by Andersen et al.(1975) (boundary layer), Schildknecht
et al.(1975) (pipe flow) and present authors (1975) (open-channel).

In order to examine the effect of suction or injection on the
turbulent structure in open-channel flow, the present chapter
firstly establishes the evaluation method of the friction velocity
and makes clear systematically the mean velocity distribution,
including even the case of strong suction or injection at which
relaminarization or separation phenomenon may occur, respectively.
Next, the turbulence characteristics such as turbulence intensities
spectral distribution, turbulent energy budget and so on are

3

investigated.

9.2 Theoretical consideration
9.2.1 Basic equations over permeable smooth bed

As shown in Fig. S1, we consider for
simplification, (1) fully developed, two-

dimensional flow (W=0), (2) the transpiration

velocity vo is given uniformly through the

porous smooth bed and it is very small Fig.S1 Open-<hannel flow over
permeable smooth bed

than the main velocity( U>>V.v,), and (3)

when vo=0, the flow is normal, while even when vo#0, the flow is

quasi-normal. Then, on the boundary condition that V=v, at y=0,

the equation of continuity becomes as follows:
Ly 104
veu-[[(F5)dy  eeeeennn ek R B (9.1)

Since (2.4) is still valid because of (2), the following equation
for the shear stress T(y) is obtained from (2.1) by using (2.4)
and (9.1).
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%:-%——g!,y+y'u+w(y) ------------ LRI R (9.2)

d (7 d [*
where, YO =—o[Uday-U[Udy ... (9.3)

On the boundary condition that T1=0 at y=h, (9.2) becomes

tIp=Us1=6) +v(U~EUmaz) +{Z () =EFU)} o vuennnn (9.4)

Us'= rilp=glh— -2 I: Bidy sesvinsei i 655 i (9.5)
and ¢=y/h.
The second and third terms of (9.4) are the additional ones caused
by transpiration vo. Of course, when vo,=0 (solid bed), these
terms become equal to zero, and then (9.4) coincides with (2.5).
In order to evaluate the advection term ¥Y(y), we assume that
there may exist a similarity law of the mean velocity, that is:
UlUnax=2(yik)  *+ssvesseacsncsassssacss (9.6)
Now, denoting that
Q=g it Waush) |

_ 1 d
Q:= Um-x' d_I(Un.!’h)

(4
6,(6) = Lndf

i

€
6.@ =/ rrde
(9.3) becomes ¥ ()= {Q:6: () —Qu1(E)6,(E)} Umaa? """ * "t """

From (9.1) and (9.7), QF?.,_.,:‘;_,({)" Qs=201-‘% ...... (9.9).

By using (9.9), (9.5) can be written as follows:

dh _ sin 0—(U,*/gh) —2 a(v,Unmlgh)
2 o (9.10)

where, e¢=6,(1)/(6,0))* 15 the momentum correction coefficient, which
becomes equal to 0=1.016 when tﬁe 1/7-power velocity law is
applicable, i.e. 2=¢&"" | Fy=Un/vJgh is the Froude number.
(9.10) is the equation for back-water curves (flow depth profile)
in a transpired open-channel flow. When vo,=0 (solid bed), (9.10)
becomes Us'=ghsind | since the normal flow depth h, is formed

(where, U,o is the friction velocity when v,=0.).
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Substituting (9.9) and (9.10) for (9.8), we can obtain

Tt= L2

=—7a =(1—8) +1 " (Ut =EUmax™) +0(8) S e e e (9. 11).

The correction term o) =¥+ (©)—¢¥*() is calculated as follows: *)

1 [(Fe V(=) p2veUmes”
lrWe’"(emﬂ—cn:f".r’J{(9.(1))(1 Q)+ 6,(1) }9’(“

+
-Jié%ﬁziqreda ...... bR R AR . (9.12)

where, 9= (UsJUs)*=7/r(ve=0)=s and the (+)-suffix denote the
dimensionless quantity by U, and v, as mentioned previously.
Consequently, when the mean velocity distribution n(&) is known,
the correction term ®(£) can be easily evaluated. For example,
when the 1/7-power velocity law is applicable, (9.12) becomes

for Fr<< 1, as follows: 10®)|= 7/9|vetUnax*t ¢**=1|<0.072v4' Umax*

which is fairly small *),

Then, /o= UL (1 =€)+ vo (U— € Umax ) wam pwh G & SR (9.15)

Hence, it is suggested from (9.15) that when injection is given
through the permeable bed (ve>0), the friction velocity U, decreases
and in an extreme case it will show separation of the flow (U,=0).
However, when suction is given, the friction velocity U, increases
and also the velocity gradient, i.e. the shear stress near the wall

increases.

*) If we notice the experimental fact that the gradient of the
shear stress at the free surface (y=h) 1is seldom affected by the

moderate rate of transpiration, i.e.

dr _ dr (v,=0)
s le=1 ds =1

=—pUs' PP I I LSS (9- 13) "

then we can obtain
S S T 9t Unu* \g 6y — 20 Unu 9.14).
7O =11"8,m) {(1 7] )+ e, }9' 2 oy 1@ ( )

The difference between (9.12) and (9.14) is negligible in the
subcritical flow (Fr<<1).
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2 becomes nearly equal to zero at B~ 0.3, where a separation of the
flow may appear. On the other hand, © increases for suction, and
thus the velocity gradient 4U/dyly==Us'/v also increases. The
curves of ve=B/V/Q vs8.RB show the characteristics that v: increases
rapidly for injection, while it approaches about -0.1 for suction,
where a relaminarization may occur.

Fig. 9.5 shows the relationship between f=f,2 and Re, as a
parameter of the transpiration rate B=vo/U_,. Of course, when
B=0 (solid bed), the curve of f vs. Re coincides with Fig. 2.4.

f increases for suction, while f decreases rapidly for injection,
and such a characteristic is very similar to the friction factor
C¢ in boundary layer.

Well, we have already established the evaluation method of the
friction velocity U,, for a solid bed, as described in 4.3.1.
Therefore, when U,, is known, the friction velocity U,=/Q U,, can
be easily determined by (9.37) for any transpiration rate BZvo/U,e.

We call it the R-Q2 method.

9.2.6 Some turbulence characteristics

(1) Reynolds stress distribution
When the correction term ®(£) in (9.11) is negligible, the

Reynolds stress is given by

— v du*
— = (1=O+ o (Ut —EUax )= — . .......... (9.39).
Uy dy

Fig. 9.6 shows the curves of the Reynolds stress -uv/UZ which were
calculated from (9.18) and (9.39) with the transpiration rate of
v§=-0.1 ~ 0.1, for the case of R ,=500 and 2000. The curves of
-uv/U2 for injection increase similarly as compared with solid bed
(vo=0), while they decrease similarly for suction.

However, in order to examine the absolute effect of transpira-
tion on the Reynolds stress, U, should be replaced by U,., as a

characteristic velocity scale, since U, itself is varied by ve.
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Hence, as a parameter of B=vo./U,. for any Re, Q is calculated from
(9.37), and then -uv/U2, is calculated from (9.39) with R,=/f/2 Re
and v:=8fvfi An example of these results is plotted for Re=5x10"
in Fig. 9.7. The absolute values of the Reynolds stress increase
with an enlargement of injection, while they decrease with an en-
largement of suction. It should be noticed that these variation

characteristics are contrary to those of (i=(—uv+ val/ay) -, *
In other words, U, increases for suction because the increase of

the viscous stress is larger than the decrease of the Reynolds
stress, and vice versa for injection.
Surely, as seen in Fig. 9.6 or 9.7, the Reynolds stress in the

main region shows nearly a linear distribution, which confirms the

validity of (9.31). Now, defining Y= -Uv/(-UV)., we can obtain
from 9.2.5, as follows: r=0+6=047(25+ VZ/,) +oeee (9.40) .

In contrast with the ratio Q of the wall shear stress, Y increases
for injection, while y decreases for suction. At R =-0.1 (v::
-0.08), Y becomes equal to zero, which means that the production of
Reynolds stress in the main region is almost suppressed to change
into insufficient turbulent state, i.e. relaminarization, as pointed
out previously.

By the way, the more accurate examination so that the correction
term ®(£) was taken into account, is given in Paper (I) and (II).

However, its basic results are the same as the above.

(2) Turbulent energy budget

The turbulent energy production P is given by

Ph —uv au*

TE““*(_u;)(ay) ............... (9.41).
Fig. 9.9 shows the absolute variations of P which were calculated
from (9.41) by using (9.18) and (9.39). Except for near the wall,

the turbulent production P also increases with an enlargement of

injection, while it decreases with an enlargement of suction.
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On the other hand, the opposite variation characteristics appear
near the wall. It's because the Reynolds stress increases for
injection, while the viscous stress increases for suction, as
compared with no-transpiration (vo=0).

Well, in the same manner as (2.27), the equation of turbulent

energy with transpiration is given by

P—€+0y[(?+-p-)v—va—y(?)] +Uax(?)+ V;;(-z-) oo (9.42).

Since the advection term (the 4-th and 5-th terms) is the same
order as wd/oy(¢*/2), (9.42) can be approximated when R, is large,

as follows: o =
p=e+3[%(»+»un+%} DRt ¥ + whn b 1 (DAY

By newly defining the turbulent diffusion Ty as Ty=(uvtw)e?2 ,
(9.43) coincides with (2.30). Although (9.42) or (9.43) is not
directly examined in this chapter, it is suggested that Tr/Uf,o
may be the same order as (1+4B), since g%/2u2 $4 and ¢*v/203 < |
(see Chapter 4). Consequently, the dissipation € may be mainly
balanced by the production P, although the diffusion 9Tr/3y may
increases with an enlargement of injection because of (0q%/8y) vo <0 .
and vice versa for suction (cf. Fig. 4.38). This suggests
strongly that except for very near the wall, there may not be a
drastic change in the transpired turbulent structure, as compared
with the solid-turbulence.

In the same manner as 2.2.1, the absolute variations of the

production P and the direct-dissipation E are given by

Pt = p.,/u:n =p+t.N2

e Bl =B B% o g sai saues vas we (9.44).

yl:‘ = J'”‘o/vr' y+/\/f_]_

Fig. 9.10 shows the results of (9.44) near the wall. The total
energy loss & of mean flow is given from (9.22) and (9.39),

as follows: 4 .
(5-’=[ (E+P)dy=U3 U+ == (U2~ (Lo} eeeennn (9.45).
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(9.45) corresponds to (2.8) or (2.9). Defining ¢ = &/&, (where
Ew is the value at vo=0), (9.45) becomes

=0430 [RU(Z)-F) ceeiiiiannnn (9.46)

where, '=25(1+4924/ /0)
The values of r are shown in Fig. 9.8. For the moderate
transpiration of |B|] < 0.1, ¢ is nearly equal to constant, irres-
pective of v, and Re.

From Fig. 9.10 and the characteristic of £ = 1, it is considered
that in the case of injection the increase of the turbulent produ-
ction is nearly balanced by the decrease of the direct-dissipation,
and vice versa in the case of suction. Also, it should be noticed
that such a relationship between P and E changes inversely at the

edge of viscous sublayer, i.e. ys = 10.

9.3 Experimental consideration on mean velocity distribution
9.3.1 Experimental set-up and procedure

Fig. 9.11 (a) shows the experimental set-up in which the
recirculating tilting flume is 15 m long, 50 cm wide and 30 cm deep.
About 9 m downstream from the channel entrance, an apparatus of
transpiration flow was set up (see Fig. 9.11 (b)), whose porous
plate made of sintered plastics of 0.65 mm diameter was 104 cm long,
49 cm wide and 1.5 cm thick. In order to uniformly give any
transpiration velocity Ve, @ buffer zone made of glass beads and
eight orifices of 25 mm diémeter were set in the transpiration tank,
as shown in Fig. 9.11 (b). Through the preliminary experiments,
it was recognized that a fully developed turbulent flow was obtained

at the test section 84 cm downstream from the upstream edge of the

porous plate.
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The mean velocity distributions were measured in detail by a

single-sensor hot-film anemometer (DISA 55A83, see Fig. 3.3).

Four kinds of experiments were performed (Case H-1, H-2, H-3

and H-4), as described

in Table 4.1, respectively.
two injections and two suctions were given.

three injections and three suctions were given.

in Table 9.1.

Case H-1 and H-4 were the
most important experiments, which correspond to Case A-1 and G-1

In the case of H-1, H-2 and H-3,
In the case of H-4,

The maximum

quantity Q¢ of these transpirations was less than the 10% of the

main flow quantity Q.

Table§! Hydraulic data for experiments with suction or injection

By the way, ve=0 ( Without transpiration flow sees Run 1 )
Case | h Un Uge Ryo Re Fr S qQ
WE(Paper(I)) haVe (em) (cm/sec) (cm/sec) =U.oh/v  slUgh/v sln/vGh slope (1/sec)
- 8.02 151  0.804 609  1,15¢10° 0.17  0.08x10° 6.05
recently carried H-2 4.25 28.3 1.369 564 1.16 0.44. 57 6.00
. W3 | 340 3.4 1907 64 104 0.61 12.84 6.02
out the re-experi-
. " ve?0 ( With transpiration flow )
ments in which the Case He)
. - Run | 15 14 13 9 8 1 4 5 10 12
more transpiration U, | 1.760 1.585 1.316 1.146 0.980 0.804 0.641 0.523 0.373 0.271 0.193
rates were given, A -0.243 -0.202 -0,137 -0.094 -0.050 0.0  0.049 0.089 0.148 0,198 0.249
vt |-0.111 -0.102 -0.084 -0.066 -0.041 0.0  0.062 0.136 0.319 0.589 1.036
as described in Qy/Q|-12.6% -10.5 -7.1 -4.9 -2.6 0.0 2.5 4.6 7.7 10.2 129
Case H-2 Case H-3
Table S1. This Run | 9 8 1 4 5 8 7 1 4 5
. U, | 2.066 1.684 1.369 1.062 0.799 2.307 2.166 1.907 1.509 1.147
chapter is supple- ;5 |.0.11 -0.052 0.0 0.05 0.1 -0.047 -0.031 0.0  0.05) 0.104
+
t |-0.074 -0.042 0.0 0.072 0.189 -0.039 -0.027 0.0  0.065 0.172
mented by these Q,/0]-9.9% -4.6 0.0 5.0 9.9 -5.8%# -3.8 0.0 6.3 12.8
results of Table S1,
if necessary, in the following sections.
9.3.2 Wall shear stress or friction velocity
.o~ o
Fig. 9.12 and Fig. S3 show an i | ?:g'ﬁ” 3
- 4 plen oo A
example of the measured values of mean I %Eiﬁjﬁ g
velocit u/u vs. hi For inje- - R
y, U/U . y/ J L o
ction, the lower velocity region is .
i . o
lifted up from the wall, while for L ol
L - . LR L
suction the higher velocity region is )
o S A
attracted toward the wall. Surely, [ T VIR ST o T L B S
0.0 0.5 W/t 1.0
the effect of transpiration on the
P Mean velocity distribution with
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turbulent structure is recognized remarkably near the wall, even
when B= Vo/U,o is below #0.1.

Well, in our previous research( this doctoral dissertation,
1977), the friction velocity U, could be evaluated by the extended
methods of (2) and (3) in 4.3.1. In the (2) log-law method,
the friction velocity U, was determined by (9.22), where the Karman
constant K was given by (9.24). On the other hand, in the (3)
Reynolds-stress method, the friction velocity ﬁ* was determined by
comparing (9.39) with the measured Reynolds stress distributions.

Fig. 9.13 shows the results evaluated by both these methods.

In this experiments, they agree with each other within the error of

U= 0,1/0,15% - Fig. 9.14 shows the variation of U, vws. B,
together with the theoretical curves of (9.37). Also, a good
agreement between the experimental and theoretical values is
recognized in Fig. 9.14.

In the consideration of the above, we could conclude in Paper
(I) that the B-Q method described in 9.2.5 is the most reasonable
and the easiest for evaluation of U,, because (9.37) is really valid.
The values of U, described in Table S1 were determined by this

-2 method.

9.3:3 Mean velocity distribution

Fig. 9.15 shows the dimensionless mean velocity distribution
U'=U/U, in the case of H-1 and H-4 (old data). These experimen-
tal values agree fairly well with the theoretical curves of (9.18)
or the bilog-law of (9.21).

Now, Fig. S5 shows the dimensionless mean velocity distribu-
tion with injection in the case of H-1 (new data). Run 1 is a
case without transpiration, i.e. v,=0, whose data coincide very
well with the well-known law of the wall proposed by van Driest or
the Prandtl-Karman log-law. The experimental values with injection

also show a good agreement with the theoretical curves of (9.18)
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throughout the whole region from the bed up to the free surface.
That is to say, it is confirmed that the mixing-length model of
(9.17) is valid even in the case of an open-channel flow with
injection. Above all, even in the case of the large injection
rate vh =1 where separation characteristics may appear, a good
agreement is recognized. Also, an examination of validity of
(9.32) is shown in Fig. 9.16. Surely, (9.32) agrees fairly well
with the observed values. Then, it is obtained that k=0.33,
whose value is less than kKp=0.4. The value of D* shows a decrease
with an enlargement of injection, as predicted from (9.33).

On the other hand, Fig. S6 shows the mean velocity distribu-
tion U with suction obtained at the same hydraulic condition as
Fig. S5. It should be noticed that, although the agreement bet-
ween the observed and the calculated values is still good at the
moderate suction rate, the disagreement between them appears in
larger suction rates such as Run 14 and Run 15.

In the same manner, Fig. S7 shows the mean velocity distribu-
tion for Case H-2 (new data). The experimental values also show
a very good agreement with the theoretical curves of (9.18) through-
out the whole region. For Case H-3, a good agreement between them
was recognized, too.
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Fig. 9.17 shows the bilog-law for Case H-1 (old data).

Fig. S8 also shows it for Case H-1 (new data). In Run 14 (v$=-0.102)
and Run 15(vi=-0.111), the experimental values of ¢ can't be cal-
culated because (u*Ut+1)<0 .  The data in Run 13(ve=-0.084) don't
also agree with the theoretical curves derived from the mixing-

length model, i.e. the bilog-law. On the other hand, the experi-
mental values in all runs of injection and some runs of the moderate
suction of |vi| < -0.08 agree very well with the bilog-law.

Above all, it should be noticed that ¢ vs. y* is a universal curve

in the region of y+ > 30 irrespective of transpiration, as

described by (9.21).

Lastly, we examine the expression of |veu*| vs. |vey'| which
was proposed by Tennekes(1965), on the basis of a similarity law.
Fig. 9.18 shows the values of |vsU*| for suction, by a semi-log
plot. The solid curve in Fig. 9.18 is the curve of (9.20).

As |vey'| becomes smaller, the values of |viU*| approach the curve
of (9.20), which confirms the existence of the viscous sublayer
with suction. Tennekes proposed the following formula for the

'moderate’ suction rate of -0.1 < v§ < -0.04.

Lot Ut1=0C, Inlug" y* 1+ Calug' |4 (—01<u’'<—004) ...... (9.47)
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He obtained C;=0.06 and Cz=11 in a transpired boundary layer.
As seen in Fig. 9.18, (9.47) also shows a good agreement with our
experimental values, from which C;=0.05 and C,=12 are obtained.
It is also confirmed that (9.47) agrees fairly well with (9.22)
at the 'moderate' suction rate, and then Kk becomes equal to k=-ve/Ci .
On the other hand, although the Tennekes expression is still
unknown for injection, Fig. 9.19 shows the values of ViUt for injec-
tion, tentatively by a log-log plot. Then, the following
relation may be satisfied.

yn'.‘U’ =C‘aa(vo+y‘|‘ )I ("°+>0 ) ----------- .. (9-48)
From Fig 9.19, n=1/7 and C3=15.7 are obtained. Hence, it is

understood that the 1/7-power velocity law is valid for injection.

9.3.4 Examination of the variation of flow depth in the streamwise
direction ( backwater curve)

osk ‘2':'#:."!;1"'!‘1'" FrA0.17 | hot8.0 cx
In order to conclude more ﬁmﬂ“*‘wrwz,ﬁ_-unu:::fifl_,a_

Py = (em) '«M%

clearly the validity of bi-log o _ o @

law when v: >-0.084 which was = S "Av;.:: g

) ) . : VL_mv_ A._.VA_-_T
shown in the previous section,  —4o T ——E;éi:

the friction velocity U, should N — g
. t1 of ooz

be evaluated independently Beas o D g
the B-) method, since the B-S -0 P 4 L L 9 g g 3

0 50 % (cm) 100

mgthod itself was derived from el it s, A s
the bilog-law. This examina- 59  or injection
tion can be done by (1) the variation of dh/dx and (2) the Reynolds
stress distribution. Of course, these (1) and (2) correspond to
the methods of (1) and (3) in 4.3.1, respectively. The Reynolds
stress distribution will be described later.

Now, Fig. S9 shows the experimental values of Ah=(h-h,) for
each run of Case H-1. As mentioned frequently, it may be impo-
ssible to determine U, accurately from these data of Ah by using

(9.10). On the contrary, we here calculate the values of 9Ah/ 9x
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from (9.10) by using U, evaluated by the B-{i method. These cal-
culated values are shown by solid line in Fig. S9.

Although there is some scattering in the observed data, they
agree fairly well with the calculated curves of (9.10). Consequ-

ently, we can surely conclude the validity of the B-Q method and

the bilog-law.

9.3.5 Relaminarization by the strong suction

From the above consideration, it has been clarified that the
mean velocity distribution in an open channel with transpiration
except for the strong suction satisfies the bilog-law or the mixing
length model fairly well throughout the flow depth. On the contra-
ry, as the suction rate becomes stronger, the main flow cannot keep
the fully developed turbulent state any longer and consequently
a relaminarization may occur, as mentioned ﬁreviously. It is well
known that such a relaminarization also occurs in a boundary layer
with a strongly favourable pressure gradient (dp/dx <0, Fig. 9.3).
Hence, it is desirable to explain these relaminarization phenomena
systematically.

By the way, Huffman et al.(1972) pointed out that the outer
boundary conditions such as transpiration and pressure gradient,
affected the inner layer primarily via the shear stress gradient

91/9y in the inner layer. In the same mamner as they did, the
average value of 37/dy over the wall region of 0 < y* < §t=100

is now defined by <091/9y>. Then, the following relation is

obtained from (9.11).

Res1.16x10% (Case H-1)
Relaminarization

001

/ art \__ vl‘tU"‘(a*) 1+Un*Um1x* o ‘)
“\oyt/” I Rq ¥
BIED . oconsonmnntiiihuiansss : o
= &t (9 = 49) 0005/ E ;'.g‘“
< : Fre.80
Fig. S10 shows the curves of (9.49) Frel 50
Qy/Q=0.1
for various Froude numbers. an) I T
00 005 e+ 0l
Although the detailed discussion is Fig.S10 Aversge gradient of the shear stress

omitted here (see Paper(I)), the 510,
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critical value vy =-0.085 for relaminarization corresponds to
<31t*/3y*> ~-0.009 in the case of small Froude number.

On the other hand, Patel et al.(1968) also discovered that the
relaminarization of accelerated turbulent flow occurred at a critical

value of shear stress gradient, independently of overall Reynolds

number. That is, when the shear stress could be described by
- (9.50)
T=nyhay d fw-d‘i!:ﬂssuml Flows —80 a
" . . - L]
then its critical value was given © Dradshaw &-Gee (1962) &

1 1 I~
. 4= U,? a Ea:::dlc::::!t!ss!] o
by a parameter of 4.=va/eUs’ =_0_ 009. A Laufer (1950)
Boundary Layer
O dulten et al.(1970)

This value is equal to <3T+/ay+>c & B Narayamn et'al.(1969) |

Open Channel
-0.009, which is very remarkable. —5.5‘3:%:‘}3
3 : :: ase Y-
Next, Fig. S11 shows the rela- ¢ rensogap
. . $ = — -.—.—‘—‘ A*e27
tion of the damping factor A" again- —Zifrd?
st —<3T+/3y+> in an open channel, L vven® vl v 0l
10° 10” 107 _ 2t 10"
which was calculated by (9.18), (9.19) %
. FigS11 Relation of A* va. —<dr*/ay*>
and (9.49) for four kinds of Reynolds sl
numbers. Fig. S11 also shows the
i . Fox 1 Open Channel Rewl.lxl0f
observed values in wall jet, closed S EaRN PRy e
~60 @ Case H-3 Fri0.61 hed.5 on
channel and boundary layer, which | ;?E?Eﬁ;‘.’ﬁhm

4 Andersen et al. (1975)

were cited by Huffman et al.(1972).

It should be noticed that A* increa-

|

ses rapidly at the critical value of
<317 /3y"> =-0.009. Thus, the vis-

cous effect becomes very remarkably, ~——u ° w3
that is, the relaminarization may Fig.S12 Variation of A* against v,*
. 212
occur. When v,=0 (solid bed),
(9.49) becomes — <dr*/ay*>=1/Rs Hence, if <art/ay*>.~-0.009 »

R*C becomes equal to 111 or Re,-=111(Uy/U,) =2000, whose value
corresponds to the critical Reynolds number for the solid bed.

Lastly, Fig. S12 shows the relation of A* vs. vi, together with
the experimental curves obtained in a transpired boundary layer.

The damping factor A* decreases with an enlargement of injection,
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while it increases rapidly with an enlargement of suction.
The experimental curve of () for an open channel is nearly given by

,,{=2w<1+4-1vo*) Gl . e vi (9B
=27/(1+2.7v,*) (v,t>0)

9.4 Experimental consideration on turbulence characteristics

Case H-1 Qpan Chasnal

9.4.1 Reynolds stress distribution G
Fig. 9.20 shows the distribu- 84 o
9 9 =-0.089

Andersen ot al.(1975)
Boundary Layer with Adverse
Pressure Gradient

tions of the Reynolds stress for

Case H-1 and H-4 (old data), which ;
were measured by dual-sensor hot- fst\W5° . ol
film anemometers in the same manner

vy= 0.
1 I{l-ﬂ.ﬂ]

as Part 1. Although there is com- e 5
paratively large scattering in the FigS13 Rusnolds strom diatribution
; S.3
measured data, they show a fairly
good agreement with the theoretical curves of (9.15). Fig. S13

also shows the distribution of the Reynolds stress for Case H-1
(new data), together with the theoretical curves of (9.11), which
is more exact than (9.15). Surely, the experimental values agree
fairly well with the theoretical curves, though there is some devi-
ation near the wall for suction. This deviation may have been
caused by the partially suppressed turbulence and the experimental
error. Actually, the more detailed examination of the Reynolds

stress characteristics is given in Paper (II).

9.4.2 Turbulence intensities
Fig. 9.21 shows the turbulence intensity u'/G* for Case H-1
and H-4 (o}d data). Fig. 9.22 and 9.23 show the turbulence inten-
sities v'/U, and w‘/a*, respectively, for Case H-1 (old data).
Also, Fig. S14 (a), (b) and (c) show the values of u'/U,, v'/U,
and w'/U,, respectively, for Case H-1 (new data and replotting of

old data). Since these turbulence intensities are varied nearly
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Chapter 3 Method of turbulence measurement and its analysis
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Fig. 3.1 (a)constant-current and (b)constant-temperature anemometers.
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Fig. 3.4 Dual-sensor hot-film probe (DISA-made).
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Chapter 4 Experimental consideration on
turbulent structure and energy budget
Head tank
T
\[r
i l < 15m »
| e ——— 9 5 p———————
Valv i v Test [section
§Screen P
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Jack Hinge Jack
_z ﬁ
Ground pool Rectangular
Pump weir
Fig. 4.1 15m recirculating tilting experimental flume.

(a) Hydraulic conditions that the Froude number is nearly constant{Smooth bed).

Case h

. {cm)
A-l‘ 3.14
A-5 5.99
A-6 8.00

U

46.1
60.0

max

U Us v, Uy R,

(em/s) (em/s) (cm/s) (em/s) (em/s) x10°
40.7 2.206 2.152 2.132 0.643

53.8 2.485 2.485 2.507 1.33

60.1 2.638 2.638 2.732 2.03

67.0

(b) Hydraulic conditions that the Reynolds number is nearly constant (Smooth bed).

G-1 8.01
G-2 5.49
G-3 4,14
G-4 3.15
G-5 2.20

Us= by Reynolds stress, Ux =

48.3
73.2
101.8
118.6
169.4

40.1
58.5
77.2
101.2
144.8

2,152
3.138
3.748
4.711

6.162

2.468
3.808
4,954
5.462
9.066

1.896
3.177
3.856
5.180
7.950

1.63
1.76
1.59
1.49
1.39

by Log-law, U, =/ghS

(c) Hydraulic conditions that the Reynolds and the

Case h Unax Un Ux
{em) (cm/s) (cm/s) (em/s)

A-1 7.77 16.8 14.8 0.810

B-1 7.94 17.7 15.5 0.895

€=1 7.83 15.7 13.2 0.989

D-1 7.63 17.2 13.9 1.267
Table 4.1 Summary

Us U
(cm/s) (em/s)
0.810 0.790
0.895 0.938
0.989 0.999
1.336 1.416

of hydraulic data for

R,
xlD2

5.98
5.66
7.37
8.32

13

Re Fr Slgpe Q Tw
x10 x10°%  (1/s)  (°c)
1.18 0.733 14.8 6.4 17.18
2.89 0.703 10.7 16.1 15.75
4.62 0.689 9.5 24.1 18.60
3.03 0.455 4.58 16.1 17.78
3.23 0.798 18.8 16.1 20.51
327 1.2 36.6 16.0 21.27
3.19 1.8 86.9 15.9 20.35
3.27 3.12 293.0 15.9° 21.43
Froude numbers are nearly constant.
Re Fr S Q Tw
x10* 107 (1/5) (°c)
1.09 0.170 0.80 5.8 18.35
0.98 0.175 1513 6.1 11.35
0.98 0.150 1.23 5.2 17.95
0.86 0.160 2.77 5.3 12.30
experiments.

~0

48
136



3.0 —
— Case Re udU, ¥ Laufer{1954] Pipe flow
A3 lLasigt O @ Re=2.2x10¢
== A-3 2.9x10, (1] e ] Re=2.2x10
= 1 AR 8§ g ey
U'/U* —===@ = Ljatkner's tneory{1957)
]
2.0
v' /U,
1.0
l | | I | | | |
0.0
0.0 0.5 1.0

g =y/h

Fig. 4.2 Effect of the Reynolds number on turbulence intensities.
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Fig. 4.3 Effect of the Froude number on turbulence intensities.
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3.0
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1.0

Case Re Fr R, Laufer (1954) Pipe flow
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3 G-1 3.0s + 0.45 1600 —— R.=8700
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+=1600
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Fig. 4.4 Effect of the Froude number on turbulence intensities

near the wall.
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Fig. 4.5 Effect of the roughness on turbulence intensities.
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Fig. 4.8 Relative turbulence intensity'u’/u (effect of Re).
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Fig. 4.11 Distribution of
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(a) frso.n
Case Re
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@ A6 4.62x -
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° \
= | o
8 | I A
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: y/h
(b) i
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O 61 0.4 5
X G2 0.8 & =1600
@ G-3 1.2
3 G-4 1.82
6-5  3.12
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R
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x
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0.0
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Fig. 4.12 Coefficient of correlation
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Fig. 4.13 Ratio -ww/g? of Reynolds stress to turbulent energy.

Group P : Wall Pressure Fluctuations

Case h

(cm)
P-1 8.11
p-2  7.02
p-3  6.16
P-4 5.85
P-5 5.73
P-5  5.21
P-7  4.58
P-3  4.02
P-9  3.82
P-10 3.39
P-11 3.06
212 2.51

3 —

Group W : Surface Wave Fluctuations

T Un u, Re Fr Case h Upax  Up u, Re
(em/sec) (cm/sec) (em/sec) xluq' (em)  (cm/sec) (em/s) (em/s) x10%
43.20  39.64 1.908  3.20 0.445 W-1 7.92 51.82 40.95 1.885  3.13
57.04 4576 2.303  3.18  0.552 W-2 7.22 55.47 45.12 2.336  3.13
63.16  52.09 2.558  3.17 0.670 W-3 6.37 68.80 50.20 2.601  3.11
66.78  S4.72  2.913 314 0.723 W-4  5.57 72.68 57.57 2.842  3.08
76.81  55.96  3.246  3.09 0.747 W-5 5.29 69.15 59.71 3.119  3.04
81.69  61.33 3.444  3.12 0.858 W-6 5.28 B80.48 60.89 3.786  3.19
85.79 §9.89  3.525  3.16 1.043 W-7 4.24 97.80 75.16 3.902  3.16
96.3¢  79.91  3.560  3.11 1.273 W-8 3.43 107.49 91.57 4.590  3.24
100.91  83.94 3704 3,07 1.372 W-9 2.98 117.05 107.32 5.038  3.28
111.47  94.09  4.530  3.13  1.632
122.20 103.98  5.107  3.06 1.898
154.03 12761  6.837  3.13  2.573
Table 4.2 Summary of hydraulic data for Group-P and -W.
[ARCEH —P.3
Sl e
' ® N33 ([rie)? _
I
2 ]
Subcritical Flow ? Supercritical Flow 2
j =
< |
—p.1
L —
\ =}
» \\ Fig. 4: 14
2/ i K“Hxhthg 7] Intensity of
2ig ” b5 —~ - 7 surface wave
1 1 [l ' 1 — ' 0

0.0
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fluctuations.

—— = — O 0O 0O 0O o o

Fr

. 465
.536

635
779
829

.848
.166
.568
.986
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part 2 Turbulent structure over permeable bed

chapter 8 Interaction

(a) Hydraulically Smooth Bed

U

Main Flow

Log Profil

Diffusion off
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Y S S 2 SV SV iV & 4

// Linear Profile

777777777/

between main and seepage flows

(b) Permeable Bed

u

Main Flow
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Permeable Layer Seepage Flow profile

Fig. 8.1 Analogy between smooth and permeable flow fields.
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Fig. 8.2

Hydrodynamic interaction mechanism

between main and seepage flows.

Fig. 8.3 Mcdel of seepage flow.

Fig. 8.4 Turbulent permeable
open-channel flow field.
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Fig. 8.5 Amplitude of the cross-spectral function.
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E 1.08x107 | 0472 | 03 | 1z | 3 F- Wl 55 0-0%% 9.0
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able 8.
H 5 Average 0.150 0.127
Properties of porous media.
Table 8.3
Evaluated values of the induced stress.
CASE A Uk U u !
holh | Rym === |Fp=—"221 &mdfh c uJu, R a,’ ay | !
RUN | (em) ’ T Y 7 (crajsec) = ; "
D-1 7.38 0.9x10% 0.16 3.39x10t 1.243 0.352 v
E-1 7.75 0.44 l.ix10* 0.17 4.03x]10* 1.287 0.317 5.427 0.057 1.960 1.542 0.476
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Table 8.2 Hydraulic data for experiments.
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chapter 9 Turbulent structure with transpiration

van Oriest's damping factor
5 1*20.4y* (1-exp(-y*/27))

Flc
|

40

v/,

30

20

W ssEa, :
e Lyye —— LA |
Suoiapmi || ]

| 3 el ot el L L1l 4

0 Lo pragn
10 100 +_yy./v 1000
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