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Abstract

The failure time of a machine with two modes of failure can be
modeled as the minimum of two failure times (each associated with
one failure mode). However, this model is not unique, i.e., as shown
by Tsiatis, the joint distribution of the failure time and failure mode
of the machine does not characterise the joint distribution - nor the
marginal distributions - of the failure times under the two competing
risks. Peterson introduced pointwise sharp bounds for these marginals.
Crowder recognized that these bounds are not functionally sharp and
restricted the class of functions containing all feasible marginals. In
another publication, the authors improved on these bounds via a func-
tional characterisation of the set of feasible pairs of marginals. As it
turns out, not only is each marginal distribution function bounded be-
low by its corresponding lower bound, but also its density is bounded
below by the derivative of this bound. We present a summary of these
results, describe a statistical application to the construction of confi-
dence bands, and concentrate on the analysis of its rate of consistency
under specific examples.

1 Introduction

Let T be the failure time of a machine with two modes of failure and let
/ indicate its mode of failure, i. e., / = {1},{2} or {1,2} depending on
whether failure of the machine was due to mode 1,2 or both simultaneously.
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It is customary in Competing Risks to model the observed data (T, /)

in terms of partially observed existing or conceptual variables X\ and X2

as T = min(Xi,X2) 5^ = {i\Xi = T}9 and assign to X\ and X2 the role of

failure times associated to the failure modes.

It is well known that

• For every joint distribution C of (Γ, /) there exist joint distributions of

(Xi,X2) for which (min(JΓi,X2), {i\X% = m i n p f i , ^ ) } ) is distributed

£, and in fact (see Tsiatis [11]) there are many such joint distributions.

• For every joint distribution C of (T, /) with non-atomic T and P(I =
{1,2}) = 0, there exist (see Kaplan and Meier [4], Nadas [8], Miller [7])
independent random variables X\ and X2 for which (min(Xi, X2)? {i\X% '•
min(Xi,X2)}) is distributed C. If P(T <t,I = {1}) and P(T <t,I =
{2}) are simultaneously (in t) less than 1 or equal to 1, the distribu-
tions of these independent Xi and X2 are uniquely determined by C
Conditions on C with positive P(I = {1,2}) under which such inde-
pendent X\ and X2 exist are also known (see Langberg, Proschan and
Quinzi [5]).

The assumption of independence can be reasonable under certain cir-
cumstances. Consider for example a component which in order to function
requires a continuous supply of electricity from the public network. Failure
arising from a breakdown of the network may be reasonably considered in-
dependent of "intrinsic" failure of the component. However, it would be a
poor engineer who preventively maintains independently of the component
lifetime.

Accepting non-identifiability as a fact of life(time), Peterson [10] presents
bounds for the joint distribution of X\ and X2 as well as for their marginals,
assuming that P{T = {1,2}) = 0. Peterson's bounds are sharp under con-
tinuity of the two sub-survival functions, in the sense that through every
point between the two corresponding functions there passes the marginal
distribution function of the corresponding lifetime variable, for some fea-
sible joint distribution. Crowder [3] has found that these pointwise sharp
bounds are not functionally sharp, that is, not every distribution function
between the Peterson bounds is the marginal distribution of some feasible
joint distribution: a feasible marginal leaves a nondecreasing gap with its
corresponding lower Peterson bound. In attempting to add further condi-
tions to obtain a characterisation, Crowder gives up on necessity by requiring
a technically convenient but unnecessary condition, and unfortunately rules
out sufficiency as well by failing to notice a pathological aspect of the upper
Peterson bound: marginal distributions may only touch it lightly, in a way
made precise by Bedford and Meilijson [1], who present a characterisation of
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the class of feasible marginal distributions. This results of Peterson, Crow-
der and Bedford & Meilijson are the basis of a new statistical test which can
be used to test hypotheses about or build confidence bands for the marginal
distributions.

In this paper we summarise the presentation of the functional bounds
and the application of the statistical test, and develop some examples with
the goal of understanding the degree of consistency of these tests. We will see
that convergence can be extremely slow when X2 is of a "quality control"
nature with respect to Xχi X2 = 0 if X\ < XQ and X2 = 00 otherwise,
that is Xi is observed if and only if X\ > x$. If X\ is postulated to be
marginally exponentially distributed, we obtain a confidence interval for its
failure rate. This failure rate is uniquely identifiable if and only if the mean
of X\ (inverse failure rate) that generated the data is at least XQ. Letting n
be the sample size of failed machines, if the mean of X\ strictly exceeds XQ,
the left endpoint of the confidence interval is n"2 - consistent, whereas in
the borderline identifiable case where the mean of X\ is exactly equal to #0,
the left endpoint closes in at the slow rate n~ β.

The characterisation of the boundary of identifiability in the quality con-
trol example will be generalised from exponential distributions to families of
distributions ordered by monotone likelihood ratio.

In many reliability textbook discussions of right censoring, after a brief
warning that an independence assumption has been made, the Kaplan-Meier
estimator is given as "the" way of estimating the required marginal. As a
word of warning against the excessive use of the independence assumption,
we will show that it may provide extremely optimistic assessments of lifetime
distributions.

2 The bounds

Definition 1 Let X\ and X2 be two random variables. The distribution
function of X{ is F{(t) = P(Xi < t). The sub-distribution function of X\
is the function Gχ(t) = P(Xι < t,Xλ < X2). Similarly we define G2(t) =
P{X2 <t,X2<X1) and G12(t) = P(X1 <t,X2 = X1).

Let

£i(s) = Gι{x) + G12{x) = P(X1 <x,Xi< X2)

F2(x) = G2(x) + G12(x) = P{X2 <x,X2< Xι) (1)

and define

F1(x) = Fλ{x)

F2{x) = F2(x) + G1(x). (2)
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The Peterson bounds for the marginal distributions are

£,•(&) < Fi{x) < ~Fi(x), for aU x > 0 and i = 1,2 . (3)

Since the sub-distribution functions G{ (i = 1,2) and G12 can be estimated
from the observable data, so can the functions F_i and F{.

The bounds in (2) can be slightly improved in the presence of atoms by
defining Tλ(x) (respectively, T2(x)) to be Ύχ{x) = E^x) + G2(x-).

These bounds are pointwise bounds. It is obvious that not all functions
K satisfying £i(#) < K(x) < Fχ(x) for all x are distribution functions. It
is also quite easy to see that not all distribution functions satisfying this
inequality are allowable marginals. Indeed, if we consider the gap between
each marginal distribution function and its lower bound,

F2(x)~F2(x) = P(X2<x,X1<X2) (4)

then, as observed by Crowder [3], these gaps must be nonnegative and non-
decreasing as a function of z. In other words, feasible marginal distributions
Fi are co-monotone with their lower Peterson bound F_i-

The main result of Crowder [3], in the formulation corrected by Bed-
ford and Meilijson [1], asserts that any distribution functions F\ and F2

greater or equal than, and co-monotone with, their respective Peterson lower
bounds (3), and strictly less than their respective Peterson upper bounds
(3), are marginals of the joint distribution of a pair (X\,X2) having the
sub-distribution functions Gi, G2 and G\2. The authors also characterise
the extent to which the functions F{ can satisfy the Peterson upper bounds
with equality and still qualify as feasible marginals, a question that may be
safely ignored for most practical applications. This question will be touched
upon in Section 4.

We illustrate this result with an example. Suppose we have failure data
as follows:

Observed failure times, X\

Censored times, X2

2, 4.5, 5, 7.5, 7.8

1, 1.5,3.1,4.2,6.1.

The data may be used to produce (empirical) sub-distribution functions as
shown in Figure 1. Also shown on the figure is the empirical distribution
function of min(Xi,X2) We want to know what the "true" empirical dis-
tribution function of X\ would have been if we had been able to observe it.
Clearly the only thing we can say with any certainty is that each unobserved
failure occurred after the corresponding censoring time. This implies that
the (unseen) empirical distribution function

1. lies between the sub-distribution function for Xi and the distribution
function of the minimum, and
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Figure 1: Empirical sub-distribution functions

2. has a jump wherever the sub-distribution function for X\ has a jump.

This gives a wide range of possibilities for the marginal of X\. In Figure
2 we show the sub-distribution function for X\, the distribution function
of min(Xι,X2), and two possible distribution functions for X\ (one with
high correlation between X\ and the censoring variable X2? a n d one which
assumes independence between X\ and Λ"2)

We assert that any empirical distribution function F\ satisfying the con-
ditions above could be the "true" unseen empirical distribution function of
Λ'l (and a corresponding statement holds also for X2). To show this we
have to construct a joint distribution between X\ and X2 displaying this
feasibility. This is done in Bedford and Meilijson [1].

3 A statistical test

Given that non-identifiability is a fact of life, and that the assumption of
independence between preventive maintenance time and failure time seems
(even) less realistic than an assumption that the underlying failure time
is exponentially distributed, we may ask the question "Which exponential
lifetime parameters (constant failure rates) may be excluded given the data?"

A statistical test has been developed based on the Kolmogorov Smirnov
statistic (see [1]) which enables us to exclude certain hypothesised distribu-
tions from being the marginal distribution of X\. The test is distribution-free
and can therefore be applied to any hypothesised distribution, not just to
those from the exponential family.
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Figure 2: Two possible marginal distribution functions

The Kolmogorov-Smirnov test is based upon a simple idea. As the sample
size n increases, the empirical distribution function F^ converges to the true
underlying distribution function F. But this happens in such a way that the
function t t-+ λ/n[F(n)(F~1(^)) — t] converges in distribution to a Brownian
bridge, tied down at 0 and 1. Hence,

sup [
ί€[0,l]

- t] = - F(x)] (5)

has approximately the distribution of the maximum of a Brownian bridge,
which is a known distribution and can be looked up in tables. Precisely, if
we hypothesise a distribution H, and observe that with a sample of size n,

- H(x)\ > 1.22 (6)

then H is rejected at the 10% level of significance.
We are of course unable to apply directly the Kolmogorov-Smirnov test

since we do not observe the empirical distribution function F\ of X\. How-
ever we can use the classification theorem described above to give a lower-
bound estimate of the K-S distance \F^n\x) — H(x)\. This is based on the
following theorem,

Theorem 1 Given an empirical sub-distribution function

(7)

and a distribution function H, let
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D = inf sup |(?i(x) - JΓi(x)|, (8)

where C+(H) is the class of functions Hi such that Hi and H - Hi are
nonnegative and nondecreasing (H = Hi + (H - Hi) is a nonnegatiυe co-
monotone representation of H). Then for any distribution function F such
that Gι e C+(F),

suv\F(x)-H(x)\>D . (9)
X

In other words, whatever the (unseen) empirical distribution function F
for Xι is, its K-S distance to H is bounded below by D. Hence, if D has been
calculated from the data and y/nD > 1.22, then also y/n sup ,̂ \F(x)—H(x)\ >
1.22 and H is rejected (conservatively) at the 10% significance level.

What makes this theorem very useful in practice is that, given an hy-
pothesised distribution function H and an empirical sub-distribution func-
tion Gi, the K-S distance D can be calculated by a fast and simple dynamic
programming algorithm. The details can be found in Bedford and Meilijson

4 An example of Quality Control

We now give an example to show how the test can work in practice in
selected parametric cases. Non-parametric asymptotic analysis is still to be
developed.

A machine with continuous lifetime Xι is subject to quality control that
detects failures that would have made the machine fail prior to age XQ. That
is, if Xι < xo then X2 = 0 (the machine will not be used and its actual
failure time will not be observed), while otherwise X2 is anything exceeding
Xi, such as +00 (the machine will fail at some age beyond XQ and its lifetime
will be observed).

Given a sample of n machines with m censored observations and n — m
observed failures, the empirical sub-distribution function G2 of X2 is iden-
tically equal to ^ . The empirical lower Peterson bound for i<i, the (ob-
served) empirical sub-distribution function Gι of X\, is conveniently de-
scribed in terms of its (unobserved) empirical distribution function Fι as
Gι = max(0,Fi - ^ ) , that is, it is equal to zero up to XQ and is vertically
parallel to Fι thereafter. The empirical upper Peterson bound for i7!, the
empirical distribution function F\ of min(Xi,X2), is equal to ^ up to XQ,
and coincides with Fι thereafter.

The rules of the game are as follows: We have the data G25G1 and

JFI, but we don't know that the data was generated by the quality control
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procedure described above. (If we had known that, we would have known

that the non-constant section of F\ coincides on its domain of definition

with the empirical distribution function F\.)

If we postulate that F\ belongs to some family of distributions strictly

ordered by stochastic inequality, it is clear that the upper Peterson bound is

sharp. For the sake of concreteness, let us postulate that X\ is exponentially

distributed, i. e., Fχ{x) = 1 — e~λx for some λ > 0. Let us further assume

that the data was generated with λ = 1.

The upper Peterson bound is thus sharp, so that the empirical upper

Peterson bound implies asymptotically (as n —• oo) that λ < 1. Letting

xo = 1, the empirical lower Peterson bound yields asymptotically that λ >

0.1355, since these are the values of λ for which 1 — e~λx > e " 1 — e~x for

all x > 0. However, the co-monotonicity restriction implies that the density

\e~Xx must be bigger or equal to the derivative e~x of the lower Peterson

bound, for all x > xo Elementary analysis shows that for #o = 1, the only

feasible values of λ are λ > 1. Hence λ is identifiable.

The following theorem, generalising this example, shows that XQ = 1 is

the borderline of identifiability: if XQ < 1 then λ = 1 is identifiable, while

under a more efficient quality control cut-off (XQ > 1), there is an interval

[λo, 1] of feasible values of λ, with λo = λo(#o) < l

Definition 2 Let {FQ,Θ £ Θ} be a family of distributions ordered by mono-

tone likelihood ratio, i.e., such that for every ΘQ < #i(E Θ), the function

dp
ιΓl is strictly increasing. For an arbitrary θ 6 Θ, the calibrator of the

distribution FQ, (or inverse MLE^; is the point x = x(θ) such that if x was

the single observation in a sample of size 1 then θ would have been the Max-

imum Likelihood estimate of this distribution's parameter. Equivalently, the

calibrator of FQ is the limit as θ' —• θ of the point at which dβ'^} crosses 1.

For exponential-type families with density of the form h(x)eθx~b(θ\ the

calibrator is equal to the mean. The calibrator is a "typical" point of a

distribution in the context of a family of distributions containing the given

one. We only present the following elegant property of this otherwise peculiar

notion, without promoting its use. It states that distributions are identifiable

if and only if their typical values escape censoring.

Theorem 2 Let {Fβ,θ G Θ} be a family of distributions ordered by mono-
tone likelihood ratio. Suppose that for some 0O € Θ the random variable X\
is FΘ0 - distributed and let (Γ, /) be generated by quality control censoring of
Xι with cut-off xo. Then θ0 is identifiable if and only if the cut-off x0 is less
than or equal to the calibrator of FQ0 .
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Figure 3: The best fit to the quality control subdistribution function

Proof:
As stated above, since monotone likelihood ratio order implies stochastic

order, the upper Peterson bound sharply identifies θ as being less than or

equal to the value #o Let us consider now the co-monotone application of

the lower Peterson bound. It states in this case that the density of F$ must

exceed the density of F$o at all points to the right of xo. If xo exceeds the

calibrator of FQ0 , there are values θ < θo for which this is the case. If x0

is below the calibrator, then there is an open interval around θo where this

cannot be the case except for θo itself. In the borderline identifiable case

where xo happens to coincide with the calibrator of Fβ0, co-monotonicity

allows for values of θ from θo a n d up. •

In the light of the above proof, we see that under "solid" identifiability

(i.e. when XQ is strictly less than the calibrator) the co-monotone applica-

tion of the lower Peterson bound locally identifies θ0 by itself, while under

"borderline" identifiability, it is only the joint action of both lower and up-

per bounds that identifies θo. Under these circumstances, it should come

as no surprise that tests based on the lower bound may show pathologi-

cally slow convergence under borderline identifiability. We now return to

the assumption of exponentiality to examine this question.

Consider the function Gι(y). It is equal to zero to the left of xo and is
very close to e~x° —e~y to the right of xo- Without loss of order of magnitude,
we can assume that Gι is identically equal to this idealised function. Fix
a value of λ below 1. The best vertical fit to G\ by a function growing at
most as fast as 1 - e~Xy is achieved by the function max(0, d + e"Xx° — e~~Xy),
with d > 0 chosen so that on the interval where this function is below Gi,
the maximal distance between the two is exactly equal to d, just as it is
on the interval around xo where their order is reversed. See Figure 3. A
short computation reveals that the point t > 1 where this maximal vertical
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distance is achieved is

t - a r m i n ί ί l - ~y) - (1 - ~λy)} - l θ g ^ (W\

Substituting this argument t as in

we get, equivalently, letting

/(A) = e~XQ - e~Xx° - e ^ + e ^ l o g λ , (12)

that /(A) is equal to 2d. Thus, a best fit (minimising d) can be obtained
by finding a value of A that minimises /. We now display formulas for the
first three derivatives of / at A = 1, as a function of x0, and the value of
each of these derivatives when the cut-off point x0 is itself equal to 1.

/(I) = 0
/'(I) = -(e-i-soe-**). /'(l)L=i = 0

/"(l)L=i = 0

/'"(l)L=i = - £ .

So, for x0 < 1 we have that (e" 1 - xoe-χ°)(l - A) « 2d, or

A « 1 - _1

 2 _χQ d (13)

while for x0 = 1 we have that ( - ^ ) 31 ~ 2rf, or

λ « 1 — 3-517d*. (14)

Since d is of order of magnitude n~2, this rough computation yields that

for xo close to 0 (no censoring) we should get that the left endpoint of the

confidence interval for A is approximately 1 - 5.44/γ^, for xo = \ we should

get 1 -31/y/n and the coefficient of l/y/n should diverge as xo approaches 1,

but for xo = 1 itself the order of magnitude is 1 - 3.517n~β. In all cases, the

right endpoint is the regular Kolmogorov - Smirnov right endpoint obtained

via the Peterson upper bound, and its order of magnitude is 1 — l/y/n.

These orders of magnitude ought to be validated by simulation, and we

did. In fact, we performed the above analysis because of the extremely slow

convergence we got for simulated data under xo equal or close to 1, ...after

non-negligible efforts to find a bug in the program!
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5 An example of independent censoring

Suppose that the lifetime T of a machine is exponentially distributed, there
are two failure modes with failure times X 1 ? X2, and its {{1}, {2}}-valued
cause of failure / is independent of T. Let the failure rate of T be θ and
let P(I = {1}) = pλ. The unique independent model (XUX2) for this
observed data joint distribution makes Xι and X2 exponentially distributed
with respective failure rates p\θ and (1 - pi)θ. However, within the rules of
the game under which we know the joint distribution of the observed data
(or have a random sample drawn from it) but not the dependence model
that generated it, we have to identify the possible marginal distributions of
X\ and X2. Suppose that we postulate X\ to be marginally exponentially
distributed. What is then the range of possible values of its failure rate λ?
Since the sub-distribution function of X\ is G\(x) = P(T < x)P{I = {1}) =
(1 - e~θx)p1 and A must satisfy F{(x) = (1 - e~Xx)' > G{(x) for all x > 0,
we have that p\θ < λ < θ. The upper Peterson bound tells us that λ < θ.
However, the improvement of the upper Peterson bound by Bedford and
Meilijson [1] alluded to in Section 2 rejects θ itself as a feasible value of λ,
and we are left with the feasibility interval

Piθ < X < θ . (15)

It is interesting to notice that the regular Peterson bound, without its
co-monotone strenghtening, yields the interval \p\θ, θ] as well.

In this example, the independence model assesses λ as being equal to the
lower bound p\θ of all feasible values of λ. In other words, component 1 can
be at most as reliable as this model claims. Optimism is a valuable property
as long as it is recognised as such, but optimistic reliability assessments that
are used as if they were typical values, can be dangerous. The following
theorem strengthens the scope of this warning by showing that it holds in
broader generality. Further evidence for the extent of this unsafe feature of
the independence model is provided by Zheng and Klein [12]

"Note that as the assumed strength of association increases the es-

timated survival function becomes smaller, so that an assumption of

independence gives us overly optimistic estimates of the survival func-

tion."

Theorem 3 Let {Fβ,θ £ Θ} be a family of distributions ordered by mono-
tone likelihood ratio} to which the marginal distribution of X\ is postulated
to belong. Let Xι be Fβ0 - distributed, with essential infimum xo, and let
(Γ, /) be generated as independent censoring of Xι by a random variable X2

with P(X2 > xo) — 1. Then ΘQ is the highest possible feasible value of θ.
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Proof:
For the derivative of the lower Peterson bound of F$ we have

Fl1{x) = F'θo{x)P{X2>x), (16)

and by hypothesis P(X2 > x) —> 1 as x \ XQ. Hence, feasible values of
the marginal density fβ(x) must exceed the corresponding value feo(x), for
x sufficiently close to XQ. Since monotone likelihood ratio ordered families
of distributions have their lower-end density values ordered in the opposite
direction, the result follows. •
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