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ABSTRACT 
Building performance simulations are usually time-
consuming. They may account for the major portion of time 
spent in Computational Design Optimization (CDO), for 
instance, annual hourly daylight and energy simulations. In 
this case, the optimization may become less efficient or 
even infeasible within a limited time frame of real-world 
projects, due to the computationally expensive simulations. 
To handle the problem, this research aims to investigate the 
potentials of surrogate models (i.e. Response Surface 
Methodology - RSM) to be used in the building envelope 
design exploration and optimization that consider visual 
and energy performance. Specifically, the work investigates 
how, and to what extent, 1) problem scales may affect the 
application of RSM, and 2) different ways of using RSM 
may affect the quality of Pareto Front approximations. Thus, 
a series of multi-objective optimization tests are carried out; 
preliminary discussion is made based on the current results. 

Author Keywords 
Multi-objective optimization; building envelope; surrogate 
models; design of experiments (DoE); response surface 
methodology (RSM). 
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1 INTRODUCTION 
Computational Design Optimization (CDO) is a rising field 
of research in sustainable building design. It has been 
applied to many aspects including building envelope design, 
building service system, and renewable energy generation, 
etc. [4]. Thus, simulation-based optimization is frequently 
employed by architects and engineers to assist the early 
design decisions. However, simulations are usually time-
consuming, for instance, annual hourly daylight and energy 
simulation or computational fluid dynamics (CFD) 
simulation; this poses substantial obstacles to the 
application of CDO within a feasible time frame of projects. 

Surrogate models (or meta-models) are promising solutions 
to this problem. They are actually approximation methods 
that mimic the behavior of original simulation model at a 
reduced computational cost [9]. Among various surrogate 
models, Response Surface Methodology (RSM) [7] is 
commonly used, along with Design of Experiments (DoE) 

[3]. RSM contains a group of mathematical and statistical 
techniques used to explore the functional relationship 
between input variables and output variables; while DoE is 
used to create a well-distributed sampling of design points, 
allowing to extract as much information as possible from a 
limited number of simulation runs. 

In the sustainable building design, surrogate models, 
developed based on RSM, are used for the prediction of 
energy performance [10] and indoor environmental quality, 
including thermal, daylighting [6] and ventilation 
performance [11]. Within these applications, validated 
surrogate models are used to replace computationally 
expensive simulations (like dynamic energy and daylight 
simulation or CFD simulation). Although the potentials of 
RSM are observed in above-mentioned literature, there are 
still concerns regarding the advantage of RSM, as reported 
in [2], because, in some cases, the number of simulations 
necessary to get a reasonably accurate RSM may be 
approaching the number of simulations needed for the 
simulation-based optimization. 

This work aims at evaluating the applicability of RSM to 
the building envelope design exploration and optimization 
(mainly considering visual and energy performance). 
Specifically, the work investigates how, and to what extent, 
1) problem scales may affect the use of RSM, and 2)
different ways of using RSM may affect the quality of
Pareto Front approximations. As a research-in-progress, the
second part of the investigation is not included in this paper,
but only providing a framework for future research.

2 METHODOLOGY 
To achieve the research goal, a series of multi-objective 
optimization tests are arranged based on two different 
problem scales (i.e. two cases with a different number of 
design variables) and three different workflows (not 
included in this paper, but in future research).  

(1) By comparing the accuracy of surrogate models in the
two proposed cases, possible effects of problem scales on
RSM are investigated.

(2) By comparing the quality of (Predicted) Pareto Front
approximations of the three proposed workflows within the
same time frame, potentials of using RSM (or different
ways of using it) will be discussed in future research.
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2.1 Problem Scales 
To investigate possible effects of problem scales on RSM, 
two test cases are shaped based on a similar building 
envelope design optimization problem (Section 3). The first 
test case is based on a parametric model including two 
design variables, while the second one includes forty-one.  

2.2 Workflows 
To investigate potentials of using RSM (or different ways 
of using it), three workflows will be used based on related 
literature (Figure 1). Two of the workflows use RSM in 
different ways, but the remaining one does not. 

According to Cavazzuti [1], RSM can be utilized in two 
ways during the design exploration and optimization: (1) 
replacing the simulations by surrogate models that will be 
used with an optimization algorithm, i.e. RSM-based or 
“virtual” optimization, in contrary to simulation-based or 
“real” optimization; and (2) locating the area in which the 
optimum is expected to be based on the response surface, it 
facilitates narrowing down the design space in the 
neighborhood of the optimum for the further optimization. 
Therefore, the complete workflows of the two options to 
utilize RSM are illustrated in Figure 1, and denoted by 
Workflow2 and Workflow3, respectively. In addition, the 
typical way for simulation-based optimization that does not 
use RSM is also illustrated, and denoted by Workflow1. 

It is worth noting that running a certain number of 
simulations is required no matter whether RSM is used or 
not. It is needed either for training the response surfaces, or 
for running the simulation-based optimization. The 
difference between these two scenarios lies in whether 
“shifting” (instead of eliminating) the computational effort 
for simulation from within an optimization loop to a prior 
time, or not. Specifically, in Workflow1, simulations are 
required within an optimization loop, while in Workflow2 
and Workflow3 they are shifted to a prior time (i.e. before 
the optimization loop, for training response surfaces). 
Furthermore, the simulations required by Workflow3 are 
not all in once (as Workflow2), because simulations are 
needed as well after narrowing down the constraints of 
design variables, for updating the response surfaces  

2.3 Comparative Study 
Comparative studies are/will be carried out according to the 
schema shown in Figure 2. In order to investigate possible 
effects of problem scales, the left schema is used; while in 
order to investigate the potentials of using RSM, the right 
schema will be followed in future. Moreover, the same 
timeframe of implementing these tests should be ensured 
for the sake of comparison. Considering that simulations 
account for a major portion of time spent in all tests, the 
number of simulations to be run in a specific test is an 
important monitoring factor. For the same purpose, the 
selection of algorithms for DoE, RSM and optimization will 
be kept the same, as well as the corresponding settings. 

3 CASE STUDY DESCRIPTION 
For the application of RSM, a simple building envelope 
design optimization was formulated in Grasshopper [5] – a 
parametric modelling tool frequently used by architects for 
exploring varied building configurations. Generally, the aim 
of the problem is to figure out the optimal roof 
configuration for visual and energy performance, based on 
which two similar test cases are created (Figure 3). 

3.1 Geometry Generation 
The two buildings are assumed to be one-story sports halls 
with a fixed rectangular plan (40m*70m) and a changeable 
spherical roof, located in Guangzhou, South China. The 
skylights are allocated to each cell (40 cells in total) of the 
roof, respectively. Basically, these two test cases are the 
same, except for the principle of allocating skylights (i.e. 
the number of design variables regarding skylights). 
Specifically, in Case 1, there are only two design variables, 
i.e. the height of roof and the window-to-roof ratio (each 
cell shares the same ratio). While in Case 2, there are 41 
design variables in total, because each of the cells has an 
independent window-to-roof ratio. The design variables are 
shown in Table 1, as well as their ranges.  

In addition, considering that the focus of this paper is the 
applicability of RSM, other design variables regarding 
shading devices and/or constructions are not discussed here 
for the sake of simplicity.  

 

Figure 1. Workflow1: Simulation-based optimization (top-right); Workflow2: RSM-based optimization in once (top-left) - Cavazzuti [1]; 
Workflow3: RSM-based optimization iteratively (bottom) - Cavazzuti [1]. 
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Figure 2. Schema to investigate possible effects of problem 

scales (left); Schema to investigate the potentials of using RSM 
(right) 

        
Figure 3. Case 1: Two design variables (left); Case 2: Forty-one 

design variables (right) 

Design variables 
Roof_height 16m - 30m 

Glazing_ratio(s)* 0.01 – 0.15 

Performance 
criteria 

EUI -- 

IU -- 

Performance 
Constraints 

sDA -- 

AI -- 

Table 1. Design variables, Performance criteria and constraints 

3.2 Simulation Setup 
Energy Use Intensity (EUI) and Illuminance Uniformity 
(IU) are selected as performance criteria, while Spatial 
Daylight Autonomy (sDA) and Average Illuminance (AI) 
are chosen as performance constrains (Table 1). They will 
be used as optimization objectives and constraints in 
future research.  

Therefore, annual hourly daylight and energy simulations 
are performed by Daysim and Energyplus sequentially, 
based on the platform described in [12]. The platform 
couples Grasshopper with modeFRONTIER [8]. 

4 DESIGN OF EXPERIMENTS (DOE) & RESPONSE 
SURFACE METHODOLOGY (RSM) 

In order to develop the surrogate model, the following 
steps are followed: 1) Sampling of Design Points by DoE; 
2) Data Collection by Running Simulations; 3) Surrogate 
Model Generation by RSM. 

In the first stage, the number of design points (i.e. design 
variable vectors) and their locations within the design 
space are defined. A well-distributed sampling is helpful 
for obtaining a reliable surrogate model. Among all the 
available DoE algorithms, Uniform Latin Hypercube 
Sampling is chosen in order to ensure a random and 
uniform distribution in each dimension. 

Numerical simulations are performed based on the 
selected design points in the previous stage. The 
simulation time needed for each design point is around 5 
minutes, and the affordable number of simulations for 
each test is assumed to be 300 times (i.e. around 25 hours 
in total). Among all the simulation data, 270 are collected 
for training the response surfaces and 30 are used for the 
RSM validation. 

In the last stage, a set of RSM algorithms is used to train 
multiple response surfaces for each performance indicator 
(i.e. EUI, IU, sDA and AI respectively). By comparing 
the fit or quality of obtained response surfaces (i.e. RSM 
Validation), a final surrogate model is selected for each 
performance indicator. In this research, this set of RSM 
algorithms includes “Classical meta-models” (i.e. 
Polynomial Singular Value Decomposition, Stepwise 
Regression) and “Statistical meta-models” (i.e. Shepard 
K-Nearest, Kriging). 

5 OBSERVATION OF THE CURRENT RESULTS 
In order to investigate possible effects of problem scales, 
the accuracy of surrogate models in the two proposed 
cases are compared. 

As shown in Table 2, in general, the accuracy of surrogate 
models in Case 1 appears to be better than that in Case 2. 
The RSM Distance Charts show the distance between real 
designs (30 simulation data sets for the RSM validation 
lying on the blue 45° slope) and virtual designs 
(computed with the RSM algorithm). By observing these 
charts, current results suggest that the IU and sDA 
estimation in Case 1 is much better than that in Case 2. 
This is also indicated by the R-squared values (i.e. 
coefficient of determination), which provide information 
on the goodness of fit of a model. An R2 value of 1 
indicates a perfect fit. The Max and Mean Absolute Errors 
give us information that the errors in the IU and sDA 
prediction are relatively high compared to the real 
simulation values in both cases. Moreover, an error 
message was observed when using Stepwise Regression 
algorithm to train response surfaces in Case 2, because of 
the relatively small training set size. It indicates that a 
larger sample size is needed. Therefore, as the increase of 
the problem scale, the accuracy of RSM can be lower due 
to the limited or insufficient sample size. 

6 FUTURE RESEARCH 
In order to investigate potential pros and cons of utilizing 
RSM, the quality of (Predicted) Pareto Front 
approximations of the three proposed workflows will be 
compared in future research. Besides, further study on the 
RSM selection and parameter tuning will be carried out in 
order to ensure the predictive capabilities of the RSM. 
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 EUI IU sDA AI 

Case1 

RSM Distance 
Charts 

    
Max Abs. Error 3.31 kWh/m2 0.07 16.97% 13.93 lux 

Mean Abs. Error 0.91 kWh/m2 0.02 2.42% 4.85 lux 

R2 0.967 0.932 0.988 0.999 

Case2 

RSM Distance 
Charts 

    
Max Abs. Error 1.71 kWh/m2 0.09 10.38% 21.61 lux 

Mean Abs. Error 0.53 kWh/m2 0.03 2.29% 7.10 lux 

R2 0.934 0.233 0.671 0.980 

Table 2. RSM validation (270 simulation data sets for training the response surfaces; 30 simulation data sets for the RSM validation) 

51138004); the 2015 Open Project of State Key Lab of 
Subtropical Building Science, South China University of 
Technology (Grant No. 2015ZA01); the Sports 
Engineering Development Fund, TU Delft Sports 
Engineering Institute; and the Urban System and 
Environment Joint Research Centre between SCUT and 
TU Delft. The first author is sponsored by China 
Scholarships Council (CSC) for his joint Ph.D. research at 
Delft University of Technology, Delft, the Netherlands. 

We also thank Danilo di Stefano from ESTECO for the 
technical support on modeFRONTIER. 

REFERENCES 
1. Cavazzuti, Marco. Optimization Methods: From Theory 

to Scientific Design and Technological Aspects in 
Mechanics: Springer Science & Business Media, 2012. 

2. Dietsche, Laura, Patrick Lee and Joe Dooley. "Cfd-
Based Optimization Methods Applied to Polymer Die 
Design." In The 15th World Multi-Conference on 
Systemics, Cybernetics and Informatics, 130-135. 
Orlando, Florida, USA, 2011. 

3. Eriksson, Lennart. Design of Experiments: Principles 
and Applications: MKS Umetrics AB, 2008. 

4. Evins, Ralph. "A Review of Computational 
Optimisation Methods Applied to Sustainable Building 
Design." Renewable and Sustainable Energy Reviews 22,  
(2013): 230-245. 

5. Grasshopper, http://www.grasshopper3d.com 

6. Hiyama, Kyosuke and Liwei Wen. "Rapid Response 
Surface Creation Method to Optimize Window 
Geometry Using Dynamic Daylighting Simulation and 
Energy Simulation." Energy and Buildings 107,  (2015): 
417-423. 

7. Khuri, André I and Siuli Mukhopadhyay. "Response 
Surface Methodology." Wiley Interdisciplinary Reviews: 
Computational Statistics 2, no. 2 (2010): 128-149. 

8. modeFRONTIER, http://www.esteco.com/modefrontier 
9. Nguyen, Anh-Tuan, Sigrid Reiter and Philippe Rigo. "A 

Review on Simulation-Based Optimization Methods 
Applied to Building Performance Analysis." Applied 
Energy 113,  (2014): 1043-1058. 

10. Pernodet F, Lahmidi H, Michel P. Use of genetic 
algorithms for multicriteria optimization of building 
refurbishment. In: Proceedings of the building 
simulation, 2009. 

11. Sofotasiou, Polytimi, K Calautit John, Ben R Huhes and 
Dominic O’connor. "Towards an Integrated 
Computational Method to Optimise Design Strategies 
for the Built Environment."  (2015). 

12. Yang, Ding, Y Sun, Michela Turrin, Peter von 
BUELOW and JC Paul. "Multi-Objective and 
Multidisciplinary Design Optimization of Large Sports 
Building Envelopes: A Case Study." In Proceedings of 
the International Association for Shell and Spatial 
Structures (IASS) Symposium" Future Visions", 
Amsterdam, The Netherlands, 17-20 August 2015, 2015. 


