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Algebraic Dynamic Multilevel (ADM) Method for
Immiscible Multiphase Flow in Heterogeneous
Porous Media with Capillarity
M.C. Cusini* (TU Delft), C. van Kruijsdijk (Shell) & H. Hajibeygi (TU Delft)

SUMMARY
An algebraic dynamic multilevel method (ADM) is developed for fully-implicit (FIM) simulations of
multiphase flow in heterogeneous porous media with strong non-linear physics. The fine-scale resolution
is defined based on the heterogeneous geological one. Then, ADM constructs a space-time adaptive FIM
system on a dynamically defined multilevel nested grid. The multilevel resolution is defined using an error
estimate criterion, aiming to minimize the accuracy-cost trade-off. ADM is algebraically described by
employing sequences of adaptive multilevel restriction and prolongation operators. Finite-volume
conservative restriction operators are considered whereas different choices for prolongation operators are
employed for different unknowns. The ADM method is applied to challenging heterogeneous test cases
with strong nonlinear heterogeneous capillary effects. It is illustrated that ADM provides accurate solution
by employing only a fraction of the total number of fine-scale grid cells. ADM is an important
advancement for multiscale methods because it solves for all coupled unknowns (here, both pressure and
saturation) simultaneously on arbitrary adaptive multilevel grids. At the same time, it is a significant step
forward in the application of dynamic local grid refinement techniques to heterogeneous formations
without relying on upscaled coarse-scale quantities.
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 Introduction

Accurate numerical simulations of complex multiphase flow processes in porous media often require
much finer grid resolutions than those commonly used by the state-of-the-art reservoir simulators. The
reason is that many complex multiphase phenomena (e.g. viscous fingering (Homsy, 1987), phase split-
ting and mass transfer between phases) take place at length scales that are significantly smaller than the
sizes of natural formations. In addition to this, geological properties (e.g. permeability and porosity)
are heterogeneous with high resolutions (fine scale) over the entire large length scales of the subsurface
reservoir. Unfortunately, the number of grid cells required to capture all these complexities would re-
quire the solution of linear systems that cannot be handled efficiently with today’s computational power.
For this reason, advanced simulation methods have to be developed to reduce the computational cost
without affecting significantly the accuracy of the solution.

One of the methods used to overcome this issue is the dynamic local grid refinement (DLGR) technique.
This technique relies on the local nature of many physical interactions and dynamically adjusts the grid
resolution throughout the domain. This way, high-resolution grids are employed only in a small fraction
of the domain with a considerable reduction of the number of degrees of freedom. DLGR techniques
were introduced and evolved in reservoir simulation since the 1980s (Bell and Shubin, 1983; Berger and
Oliger, 1984; Heinemann et al., 1983; Han et al., 1987; Schmidt and Jacobs, 1988; Nilsson et al., 2005;
Edwards and Christie, 1993). Different DLGR methods have been developed for both finite-element
(FE) and finite-volume (FV) methods and for both sequential (Pau et al., 2012) and fully implicit (FIM)
(Boerrigter et al., 2011) simulation strategies. Recent advancements have also shown their applicability
to more complex physics (Faigle et al., 2014; Jackson et al., 2015), including multiphase flows with
compositional effects (Boerrigter et al., 2011).

Most DLGR techniques developed so far were designed mainly for homogeneous reservoirs. However,
natural formations present heterogeneous geological properties that have a great impact on the resulting
flow path. Crossing the scales for highly heterogeneous media is very challenging as geological prop-
erties have to be defined at different resolutions. The few proposed methods in the literature (see e.g.
(Hoteit and Chawathé, 2014)) aim to describe a flow-based upscaling technique to generate single-phase
effective properties at different resolutions, which is used later during simulation whenever needed. It
is important to note that only multiscale methods (Jenny et al., 2003) allow for systematic mapping be-
tween both fine and coarse levels, using locally solved and adaptively updated basis functions (Hajibeygi
and Jenny, 2011; Kunze et al., 2013; Zhou et al., 2011).

Recently, an Algebraic Dynamic Multilevel (ADM) method (Cusini et al., 2016) was proposed for multi-
phase flow in heterogeneous porous media. The ADM extended the applicability of multiscale methods
in the sense that it was employed to FIM systems, where all unknowns crossed multiple scales. At
the same time, it was a significant step forward for DLGR methods, as it was describing an algebraic
framework applicable to heterogeneous transmissibility fileds with no dependency on upscaled coarse
quantities. ADM could be applied to FIM and sequential-implicit coupling approaches, allowing for full
flexibility in terms of non-linear coupling enhancements.

Although ADM was found efficient for many practical water-flood test cases with highly heterogeneous
permeability fields, the real-field applications include much stronger non-linear physics. Of great im-
portance is to extend the ADM formulation and methodology to include strongly non-linear capillary
effects (Chaouche et al., 1994; Helmig et al., 2007; Li, 2014) which impose significant challenges to
simulators.

In this paper, the ADM method is successfully extended to include heterogeneous reservoirs with in-
creasing level of non-linear heterogeneous capillary effects. For all cases considered here, the ADM
solutions are compared against fine-scale reference results. It is shown that ADM provides an accurate
solution by employing only a small fraction of the fine-scale grid blocks. The evolution of the number of
grid-blocks is also presented along with the sensitivity of the ADM solution to the coarsening criterion
used.
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 The paper is organized as follows: next, the governing equations and the fine-scale discretization scheme
are briefly described. Then, ADM method for scenarios with non-linear physics is presented. This
section is followed by a section on numerical results, where the efficiency and applicability of the method
is studied. The paper is concluded at the end.

Governing equations and fine-scale discrete system

Mass conservation equation for phase α of total Nα immiscible phases flowing through a porous medium
reads

∂ (φSα)

∂ t
−∇ · (λα ·∇pα)−qα = 0 ∀α ∈ {1, ...,Nα}, (1)

where φ is the porosity, Sα , pα and qα are the saturation, pressure and source terms of phase α . More-

over, λα is the phase mobility defined as λα = K krα
μα

where K is the rock permeability tensor, krα and μα
are, respectively, the relative permeability and the viscosity of phase α . Note that Darcy’s law is used to
relate phase velocity with phase pressure gradient, i.e., uα =−λα ·∇pα .

For a two phase system, phase pressures can be related through capillary pressure (Pc) function, i.e.

Pw = Pnw −Pc, (2)

where the subscripts w and nw indicate the wetting and the non-wetting phases, respectively. In its most
generic form, capillary pressure is a function of both rock properties and of the wetting phase saturation
(Brown, 1951; Leverett, 1941) (Sw), i.e.

Pc = σcos(θ)
√

φ
K

J(Sw), (3)

where

J(Sw) =C1

(
1−Swirr

Sw −Swirr

)C2

. (4)

Here, σ is the surface tension, θ is the contact angle, C1 and C2 are two constants characterizing the
fluid and the geological properties of the formation, and Swirr is the irreducible wetting phase saturation.
The Nα mass conservation equations (Eq. (1)) along with the proper boundary conditions, the constraint
Nα
∑

α=1
Sα = 1 and the capillary relationships between all phase pressures, form a well-posed problem of

Nα +1 unknowns. The saturation constraint can be used to eliminate one equation, resulting in a system
of Nα unknowns, i.e., one phase pressure and Nα − 1 phase saturations. This system of equations is
solved numerically by applying an implicit and a finite volume (FV) scheme in time and space, respec-
tively. Thus, all pressure- and saturation-dependent terms are evaluated at the new time-step n+ 1 and
the residual function is set to be equal to zero, i.e.

rn+1
α =

φ
Δt

(Sn+1
α −Sn

α)−∇ · (λ n+1
α ·∇(pn+1

1 +(1−δ1α)Pn+1
cα ))−qn+1

α = 0 ∀α ∈ {1, ...,Nα}, (5)

where δ1α is the Dirac delta (δ1α = 1 only if α = 1, i.e. the first phase is the most wetting phase).
Since the residual is a non-linear function of the primary variables a Newton-Raphson method has to be
employed to solve iteratively the system of equations. The residual at iteration level ν + 1 is approxi-
mated as

rν+1
α ≈ rν

α +
∂ rα

∂ p1

∣∣∣∣ν δ pν+1
1 +

∂ rα

∂Sβ

∣∣∣∣ν δSν+1
β ∀α ∈ {1, ...,Nα} and ∀β ∈ {2, ...,N}. (6)

Thus, a linear system Jν
f δxν+1

f = −rν+1
f is solved at each Newton-Raphson iteration. Here, δx f is the

vector of unknowns, Jν
f is the derivatives (Jacobian) matrix and rν

f is the residual vector. Finally, the
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 linear system for Nα phases, where the pressure of phase 1 and the remaining Nα − 1 saturation are
chosen as primary unknowns, reads⎛

⎜⎝
Jν

1p . . . Jν
1SNα−1

...
. . .

...
Jν

Nα p . . . Jν
Nα SNα−1

⎞
⎟⎠

︸ ︷︷ ︸
Jν

f

⎛
⎜⎝ δ pν+1

...

δSν+1
Nα−1

⎞
⎟⎠

︸ ︷︷ ︸
δxν+1

f

=−

⎛
⎜⎝ rν

1
...

rν
Nα

⎞
⎟⎠

︸ ︷︷ ︸
rν

f

. (7)

Each row of the matrix Jν
f corresponds to the mass conservation equation of phase α , with Nα columns

corresponding to the primary unknown variables.

Algebraic Dynamic Multilevel (ADM) method

The ADM method provides a high-quality approximate solution for Eq. (7), which captures important
physical interactions involved in the process, on an adaptive dynamic grid resolution. A hierarchy of
nested nl-level coarse grids is built on top of the Nf fine-scale cells. At each time-step, ADM defines
a solution grid by combining previously-defined cells belonging to the (nl +1) levels (nl coarse- and 1
fine-scale) with a total of NADM

l << Nf grid cells (see fig. 1). The grid resolution is chosen based on an
error criterion (here, the difference in saturation between two neighboring cells) that ensures fine-scale
resolution is only used in subregions with steep solution gradients. Note that static fine-scale resolution
is employed around the wells. In addition, the resolution change between two neighboring grid-blocks
is limited to one level.

Inj

Prod

(a) coarse level 1

Inj

Prod

(b) coarse level 2

Inj

Prod

(c) ADM solution grid

Figure 1 2-level ADM method: coarse grids on level 1 (a) and level 2 (b), for a coarsening ratio equal
to 3, and (c) the ADM solution grid for nl = 2.

ADM is based on the assumption that the solution on the fine-scale grid can be approximated by

δx f ≈
nl

∏
l=1

P̂l
l−1 δxnl , (8)

where P̂l
l−1 is the prolongation operator between the ADM grid on level l and l −1. On the other hand,

the discretized equations on level l can be mapped to a coarser ADM resolution l + 1 by applying the
restriction operator R̂l

l+1. Thus, the ADM coarse system JADM
nl

δxnl =−rADM
nl

is constructed by applying
a sequence of restriction and prolongation operators, i.e.

R̂nl
nl−1 · · · R̂1

f J f P̂ f
1 · · · P̂nl−1

nl︸ ︷︷ ︸
JADM

nl

δxnl =− R̂nl
nl−1 · · · R̂1

f r f︸ ︷︷ ︸
rADM

nl

(9)
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 Note that all R̂l−1
l and P̂l

l−1 operators are block matrices of the form

R̂l−1
l =

⎛
⎜⎝R̂l−1

l 0 0

0
. . . 0

0 0 R̂l−1
l

⎞
⎟⎠ and P̂l

l−1 =

⎛
⎜⎜⎝

P̂l
l−1p

0 0

0
. . . 0

0 0 P̂l
l−1SNα−1

⎞
⎟⎟⎠ , (10)

where the number of rows of R̂l−1
l and P̂l−1

l is equal to the number of primary variables. The blocks

R̂l−1
l are finite volume restriction operators, NADM

l ×NADM
l−1 , that ensure mass conservation at all levels,

i.e.

R̂l−1
l (i, j) =

{
1 if finer cell j is inside coarser cell i

0 otherwise
(11)

The blocks P̂l
l−1 are, instead, matrices of size NADM

l−1 ×NADM
l and their columns contain the interpolators

of the corresponding variable. Consequently, different interpolators can be used for each variable. In
this paper multiscale basis functions (Hou and Wu, 1997; Jenny et al., 2003) are considered as pressure
interpolators whereas constant interpolation is employed for saturation unknowns (fig. 2). A more
detailed description of the sequence of prolongation and restriction operators can be found in Cusini
et al. (2016).

(a) Pressure (b) Saturation

Figure 2 2-level ADM method: interpolators for pressure (a) and saturation (b). A multiscale basis
function (here for a homogeneous reservoir) is used for pressure whereas constant interpolation is em-
ployed for saturation variables. A basis function for both the first and the second coarse levels are
shown.

An overview of the ADM procedure for one time-step is presented in Algorithm 1. Note that non-linear
convergence is always reached on the ADM resolution (in terms of the norm of rADM

l and of δxl) and
that the grid resolution is chosen explicitly (e.g., for time-step n+1 the grid resolution is chosen based
on the solution at time-step n). For this reason, some extra refinement is introduced ahead of the moving
saturation front as a “safety margin".
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 Algorithm 1: ADM method solution algorithm for one time-step.

Data: Solution at previous time-step.
Result: Solution at current time-step.
Initialize time-step;
Compute fine-scale residual r f ;
Select grid resolution;

Construct sequences of R̂ and P̂;
Restrict fine-scale residual:
rADM

l = R̂l
l−1 · · · R̂1

f r f ;

while ‖rADM
l ‖∞ > Tol1 and ‖δxl‖∞ > Tol2 do

Construct/Update fine-scale Jacobean (J f );
Restrict fine-scale system:

JADM
l = R̂l

l−1 · · · R̂1
f J f P̂ f

1 · · · P̂l−1
l

Solve ADM system: JADM
l δxl =−rADM

l ;
Prolong ADM solution:

δx f = P̂ f
1 · · · P̂l−1

l δxl;
Update fine-scale residual r f ;
Restrict fine-scale residual:
rADM

l = R̂l
l−1 · · · R̂1

f r f ;

end

Numerical experiments

The ADM method described in the previous section has been implemented in a Matlab research reservoir
simulator that solves the system of equations in Eq. (1) for a two-phase (Nα = 2) water-oil (α = w,o)
system with heterogeneous capillary functions. To test the accuracy of the ADM method, a 999 m ×
999 m 2D reservoir is considered on which 99 × 99 fine-resolution grid cells are imposed. The base 10
logarithm of the permeability is shown in fig. 3, whereas the porosity is uniform and equal to 0.2. A five-
spot injection pattern is considered, where one rate constrained water injector (injection rate of 0.001 pv

day )

and four pressure constrained producers (BHP = 10bar) are present. All wells are treated according to
the Peaceman well model (Peaceman, 1978) with a fixed well index equal to 2000. The simulations are
run until 1 PVI of water has been injected in the reservoir (corresponding to 1000 days). Two scenarios
of increasing complexity are considered. First, a simple water flooding test case that does not involve any
capillary pressure is simulated. This is done both for favorable and unfavorable displacement conditions.
Then, a Leverett’s J-function (Leverett, 1941) is employed to generate multiple (heterogeneous) capillary
curves. For both scenarios, quadratic relative permeability curves with endpoints equal to 1, and 0
irreducible wetting and non-wetting phase saturations are considered.

Figure 3 Logarithm in base 10 of the permeability in m2. The locations of the injector well (in red) and
of the four producers (in blue) are also shown.
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 Accuracy of the solution

To evaluate the accuracy of the ADM method its solution is compared against the one obtained with a
fine-scale simulation. As a measure of the error in both primary variables,

εp =
Nreport
mean

t=1

(
‖p(t)− pre f (t)‖2

‖pre f (t)‖2

)
(12)

is used for pressure, and

εS =
Nreport
mean

t=1

(
‖S(t)−Sre f (t)‖2

Nf

)
(13)

for saturation. Here, p(t), S(t), pre f (t) and Sre f (t) are the pressure and saturation ADM and fine-scale
solutions, respectively, at simulation time t. Nreport , equal to 50 for the following test cases, is the number
of simulation times for which the error is computed.

Case 1 - water flooding (no Pc)

Here, a water flooding problem without any capillary effect is solved both for unfavorable (m= μw
μo

= 0.1)

and favorable (m = μw
μo

= 10) injection conditions. Figure 4 shows the fine-scale and the ADM saturation

maps after injection of 0.5 PVI for both scenarios along with the absolute error of ADM with respect to
the fine-scale (|S− Sre f |). Note that ADM provides an accurate solution for both scenarios. However,
when a less viscous fluid is injected, the front is less sharp and viscous fingering is observed. As a
consequence, compared with favorable scenario, capturing all interfaces requires ADM to employ more
fine-scale grid blocks and a smaller coarsening criterion threshold has to be used in order to control the
error. Fig 4 (c) shows that the error in the saturation solution is very low almost in the entire domain and
only a few cells present an absolute error greater than 0.1. As shown in fig. 4 (f), when a more viscous
fluid is injected, the error is very localized at the interface with values lower than 0.1 for all cells.

(a) Fine-scale (b) ADM (c) error

(d) Fine-scale (e) ADM (f) error

Figure 4 Case 1 - fine-scale and ADM saturation maps after injection of 0.5 pv and absolute ADM error
with respect to the fine-scale solution for both unfavorable (a - c) and favorable displacement (d - f).

Fig. 5 shows the pressure and saturation errors for both injection scenarios as functions of the coarsening
criterion threshold. For both cases reducing the coarsening threshold reduces the ADM error. However,
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 for the case of favorable displacement, the error reduction is less significant. This is due to the fact that
the very sharp front is easily captured even with higher thresholds. It is also noticed that the unfavorable
displacement, due to presence of fingers, is relatively more sensitive to the coarsening threshold used.

0 0.1 0.2

0.5

1

1.5

2
·10−2

ΔS threshold

ε P

0 0.1 0.2

2

4

·10−4

ΔS threshold

ε S

m = 0.1
m = 10

Figure 5 Case 1 - ADM pressure and saturation errors as functions of the coarsening criterion threshold.

Case 2 - Capillarity heterogeneities

As a second test case a water-flooding problem with a viscosity ratio m = μw/μo = 0.667 is considered.
The capillary pressure curves read (Li, 2014)

Pc = Po −Pw = 4.361 ·10−2

√
φ
K

J(Sw), (14)

where

J(Sw) = 0.1

(
1−Swirr

Sw −Swirr

)−0.5

. (15)

Figure 6 (a) shows the capillary curves for the maximum and the minimum permeability values of the
the reservoir of fig. 3. Figure 6 (b) shows the capillary pressure at the beginning of the simulation. Note
that, since the initial water saturation is uniformly equal to 0.1, at the beginning of the simulation the
capillary forces are not in equilibrium.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
·104

Sw

P c
[P

a]

Pc(Kmax)

Pc(Kmin)

(a) (b)

Figure 6 Capillary pressure: (a) shows the curves for the maximum and the minimum permeability
values. (b) shows the capillary pressure distribution at the initial water saturation value of 0.1.

Figure 7 shows fine-scale and ADM saturation maps after injection of 0.5 PVI along with the absolute
error of ADM with respect to the fine-scale solution (|S − Sre f |). Note that water saturation front is
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 captured accurately by ADM even for this challenging scenario. Only a few cells present an absolute
error greater than 0.1. For the remaining cells the error in the saturation solution is due to the averaged
saturation value assigned to coarse blocks.

(a) Fine-scale (b) ADM (c) error

Figure 7 Case 2 - saturation map after injection of 0.5 pv for fine-scale (a) and ADM simulation (b).
The error in the ADM solution with respect to the reference is also shown (c).

The averaged pressure and saturation errors, as functions of the coarsening threshold criterion, are shown
in fig. 8. As for the previous test case a smaller threshold allows for a reduction of both the pressure and
the saturation errors.

0 0.1 0.2
2.15

2.2

2.25

2.3
·10−3

ΔS threshold

ε P

0 0.1 0.2

2

2.5

3
·10−4

ΔS threshold

ε S

Figure 8 Case 2 - ADM pressure and saturation errors as functions of the coarsening criterion threshold.

Number of ADM grid blocks

The main objective of ADM is to obtain an accurate solution, without loosing fine-scale information
(e.g. heterogeneity, interactions at smaller length scales), with less degrees of freedom than the fine-
scale solver. Thus, it is important to analyze the performance of ADM in terms of number of nodes
employed throughout the simulation. Figure 9 shows the history of the number of ADM grid-blocks red
during the simulation, for the two test cases studied here. The coarsening criterion threshold for each
scenario was chosen so that almost similar pressure and saturation errors were obtained for all cases. The
values used were 0.1 for the unfavorable displacement water-flooding problem and 0.15 for the other two
scenarios. Notice that all presented cases provide very accurate solutions compared with those obtained
with a fine-scale simulator. For practical applications, however, one may employ looser tolerances for
ADM as highly accurate representation of the fine-scale saturation map may not be required due to the
uncertainties within the real-field data.

Conclusion

An Algebraic Dynamic Multilevel method for fully-implicit (and sequential-implicit) simulation of mul-
tiphase flow in heterogeneous porous media with non-linear heterogeneous capillary effects was pre-
sented. The FIM system is described on a dynamic multilevel grid resolution by the means of sequences
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Case1 : m = 0.1
Case1 : m = 10

Case2 : m = 0.667+Pc

Figure 9 Number of grid-blocks (as percentage of fine-scale cells) employed by ADM throughout the
time-dependent simulations. The average values are represented by the dashed lines.

of restriction and prolongation operators. Thus, fine-scale resolution is only employed where and when
needed.

Numerical experiments show that ADM can accurately solve challenging (both in terms of rock and
fluid properties) test cases employing only a fraction of the fine-scale grid blocks. The number of ADM
grid blocks depends on the physics considered.

ADM combines advantages of DLGR techniques with those of multiscale methods. As such, it rep-
resents a potential important advancement for both. Ongoing research activities include the extension
of ADM to more realistic scenarios where more complex fluid and rock physics are considered (e.g.
compositional displacements and fractured media).
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