

B.T. Buijtendorp^a, J. Bueno^{a,b}, D.J. Thoen^a, V. Murugesan^b, P.M. Sberna^a, J.J.A. Baselmans^{a,b}, S. Vollebregt^a, A.Endo^a

^aDelft University of Technology, ^bSRON – Netherlands Institute for Space Research

Problem and research questions

SPIE.

Two-level systems (TLSs) in deposited dielectrics cause dielectric loss¹ and frequency noise² in superconducting resonators used in spectrometers^{3,4,5}.

Microwave dielecric loss

Fig. I Schematic of a-Si:H. Grey: Si atoms. Blue: H atoms. The SiH₂ bonds exist on the surface of voids.

What is the microscopic origin of the TLSs in hydrogenated amorphous silicon (a-Si:H)?

What is the effect of depositing by PECVD at elevated substrate temperatures⁶ (T_{sub})?

Hydrogen content, microstructure parameter, infrared refractive index

	TOO TOO 200	100 200 300
T _{sub} (°C)	T _{sub} (°C)	T _{sub} (°C)

Fig. III Hydrogen content ($C_{\rm H}$) microstructure parameter (R^{*}) , and infrared refractive index (n_{ir}) determined by FTIR spectroscopy. A larger R^* indicates more voids.

The hydrogen content ($C_{\rm H}$), microstructure parameter (R^*), and infrared refractive index (n_{ir}) show a monotonic dependence on T_{sub} .

Bond-angle disorder

The bond-angle disorder ($\Delta \theta$) decreases mono-

tonically with increasing T_{sub} .

Fig. VI Micrograph of one of the aluminum quarterwavelength coplanar waveguide (CPW) resonators that we used to measure the loss tangent (tan δ) at 120 mK and at 5-7 GHz. The chip contains multiple CPW geometries.

We do not observe a correlation of the microwave dielectric loss with T_{sub} .

The microstructure of a-Si:H is goverend by the occcurence of hydrogen bonds⁷.

Fig. IV The bond-angle disorder determined by Raman spectroscopy.

Void volume fraction

The void volume fraction (f_v) decreases mono-

tonically with increasing (T_{sub}) .

Fig. VII The loss tangents (tan δ) that we estimated by referencing to a chip directly on top of the c-Si substrate. The x-axis shows the number of photons in the resonator. The symbols denote the CPW slot and line widths.

Conclusions

The PECVD substrate temperature controls the microstructure and composition of a-Si:H.

We do not observe a correlation of the room 2. temperature properties with the 120-mK

Fig. II Fourier-transform infrared (FTIR) absorption coefficient (α) measurements, showing the stretching and wagging modes from which we determined the hydrogen content (C_H) and the microstructure parameter (R^*)⁷.

Fig. V The void volume fraction determined by ellipsometry using the Bruggeman effective medium approximation.

microwave dielectric loss at a resonator energy of ~ $10^4 - 10^6$ photons.

5. Day et al. (2003), https://doi.org/10.1038/nature01981 6. Queen et al. (2015), https://doi.org/10.1016/j.jnoncrysol.201 <u>5.06.020</u> https://doi.org/10.1038/s41550-019-0850-8 7. Ouwens et al. (1996),

https://doi.org/10.1103/PhysRevB.54.1 4. Cataldo et al. (2018), https://doi.org/10.1007/s10909-018-1902-73 7759

1. O'Connell et al. (2008),

2. Gao et al. (2008),

3. Endo et al. (2019),

https://doi.org/10.1063/1.2898887

https://doi.org/10.1063/1.2937855