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ABSTRACT

In many exploration areas, successful separation of prima-
ries and multiples greatly determines the quality of seismic
imaging. Despite major advances made by surface-related
multiple elimination �SRME�, amplitude errors in the pre-
dicted multiples remain a problem. When these errors vary
for each type of multiple in different ways �as a function of
offset, time, and dip�, they pose a serious challenge for con-
ventional least-squares matching and for the recently intro-
duced separation by curvelet-domain thresholding. We pro-
pose a data-adaptive method that corrects amplitude errors,
which vary smoothly as a function of location, scale �fre-
quency band�, and angle. With this method, the amplitudes
can be corrected by an elementwise curvelet-domain scaling
of the predicted multiples. We show that this scaling leads to
successful estimation of primaries, despite amplitude, sign,
timing, and phase errors in the predicted multiples. Our re-
sults on synthetic and real data show distinct improvements
over conventional least-squares matching in terms of better
suppression of multiple energy and high-frequency clutter
and better recovery of estimated primaries.

INTRODUCTION

Surface-related multiple elimination �SRME� �Verschuur et al.,
992; Fokkema and van den Berg, 1993; Berkhout and Verschuur,
997; Weglein et al., 1997� involves two stages, multiple prediction
nd primary-multiple separation. During the second stage, measures
re taken to compensate for imperfections in the multiple predic-
ions. For SRME, predicted multiples often include source signa-
ures and directivity patterns that differ from those present in the data
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see, e.g., Verschuur et al., 1992; Ikelle et al., 1997�. Moreover, 2D
RME produces errors in the predicted multiples because of 3D
omplexity of the earth �Dragoset and Jeričević, 1998; Ross et al.,
999; Verschuur, 2006�, whereas recently developed full 3D-SRME
lgorithms can suffer from imperfections related to incomplete ac-
uisitions �see, e.g., Lin et al., 2004; Moore and Dragoset, 2004; van
orselen et al., 2004; van Dedem and Verschuur, 2005�, including
rroneous reconstructions of missing near offsets �Dragoset and
eričević, 1998�. For field data, these factors preclude iterative
RME, resulting in amplitude errors that vary for different multiple
rders �see, e.g., Verschuur and Berkhout, 1997; Paffenholz et al.,
002�.

In practice, the second separation stage appears to be particularly
hallenging because adaptive �2-matched-filtering techniques are
nown to lead to residual multiple energy, high-frequency clutter,
nd deterioration of the primaries �Chen et al., 2004; Abma et al.,
005; Herrmann et al., 2007a�. By employing the ability of the cur-
elet transform �Candes et al., 2006; Hennenfent and Herrmann,
006� to detect wavefronts with conflicting dips �e.g., caustics�, Her-
mann et al. �2007a� and Herrmann et al. �2008b� derived a nonadap-
ive separation scheme �independent of the total data� that uses the
riginal data and SRME-predicted multiples as input and produces
n estimate for the primaries. This threshold-based method proved
o be robust with respect to moderate errors �sign, phase, and timing�

n the predicted multiples and derived its success from the sparsify-
ng property of curvelets for data with wavefronts. Despite recent
dvances in thresholding by a Bayesian formulation �Saab et al.,
007; Wang et al., 2007� and mitigation of the effects of missing data
Hennenfent and Herrmann, 2008; Herrmann et al., 2007b�, curve-
et-domain separation deteriorates when predicted multiples have
ignificant amplitude errors. Thresholding in these cases can give
ise to inadvertent removal of primary energy or to remnant multiple
nergy.
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ur contribution

We present a new technique that mitigates the effects of unbal-
nced amplitudes that vary relatively smoothly along the locations
nd dips of predicted multiples. Our approach is complementary to
indowed matched-filtering techniques �Verschuur and Berkhout,
997�, which offer limited control over window-to-window varia-
ions among the estimated matched filters. Our method also avoids
he relatively expensive multiple predictions required by iterative
RME. To offer better control over these variations, errors in the sin-
le-window SRME-predicted multiples are modeled by a zero-order
seudodifferential operator, a kind of spatially varying dip filter,
hich can be approximated well by diagonal curvelet-domain scal-

ng �Herrmann et al., 2008a�. This scaling is estimated from the input
ata and predicted multiples by a nonlinear optimization procedure,
uring which smoothness among neighboring curvelet coefficients
s imposed. This smoothness among the curvelet coefficients en-
ures a scaling that is well behaved spatially and as a function of dip.
his approach employs the adaptability of curvelets and the smooth-
ess constraint prevents overfitting of the data, which can lead to a
oss of primary energy. Although distinct, our approach is similar to
ecent work in migration-amplitude recovery, in which scaling
ethods with smoothness constraints have been proposed �Guitton,

004; Symes, 2008�. This paper builds explicitly on a curvelet-based
pproach to this problem introduced by Herrmann et al. �2008a�.

THEORY

The proposed separation method consists of two stages. During
he first adaptive stage, the predicted multiples š2 are fitted through a
orrection operator to the multiples present in the total data, p � s1

s2, which consists of the sum of primaries s1 and multiples s2. Dur-
ng the second stage, the primaries and multiples are separated by a
hresholding procedure, defined in terms of the scaled magnitudes of
he curvelet coefficients of the predicted multiples. Because SRME-
redicted multiples are used as input, the wavelet and source direc-
ivity will not be compensated properly �Verschuur et al., 1992�.

he forward model

Without the wavelet and source directivity, the predicted multi-
les can be regarded as a scaled version�along the time and receiver
r offset axes� of the true multiples. Mathematically, this nonstation-
ry “scaling” can be represented by a pseudodifferential operator.
or our application, this operator acts on shot records or on common-
ffset panels and applies a location, frequency, and dip-dependent
ero-phase scaling. By applying a matrix-vector multiplication to
redicted multiples, this operator models the true multiples in the
ata, i.e.,

s2 � Bš2, �1�

here B is a full positive-definite matrix, implementing the action of
he pseudodifferential operator, and š2 represents the predicted mul-
iples, calculated with single-windowed convolutional matched fil-
ering. Relating the predicted multiples to true multiples offers flexi-
ility to model amplitude mismatches. Note, however, that this mod-
l cannot incorporate kinematic shifts because pseudodifferential
perators are unable to move wavefronts.

By compensating for the source wavelet and directivity via a con-
entional local matched-filtering procedure, the pseudodifferential
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
perator becomes zero order and permits a diagonal curvelet-do-
ain decomposition �Herrmann et al., 2008a�,

s2 � CT diag�w�Cš2, �w���M � 0, �2�

ith C the 2D discrete curvelet transform �see, e.g., Candes et al.,
006; Hennenfent and Herrmann, 2006�, w the curvelet-domain
caling vector, and M the index set of curvelet coefficients. Because
e are using the curvelet transform based on wrapping, which is a

ight frame, CTC � I, and the transpose, denoted by the symbol T,
quals the pseudoinverse.

In this approximate forward model, for which precise theoretical
rror estimates exist �Herrmann et al., 2008a�, the predicted multi-
les are linked to the actual multiples by a simple curvelet-domain
caling. This curvelet-domain scaling applies a location, scale, and
ip-dependent amplitude correction. Because the matrix B is posi-
ive-definite, the entries in the scaling vector w are positive. This ap-
roximate formulation of the forward model forms the basis for our
urvelet-domain matched filter.

urvelet-domain matched filtering

Equation 2 lends itself to an inversion for the unknown scaling
ector. Because the true multiples are unknown, our formulation
inimizes the least-squares mismatch between the total data and the

redicted multiples. The following issues complicate the estimation
f the scaling vector: �1� the undeterminedness of the forward mod-
l, resulting from redundancy of the curvelet transform �i.e., CCT�, is
ank deficient; �2� there is a risk of overfitting the data, which leads to
nwanted removal of primary energy; and �3� there is a positivity re-
uirement for the scaling vector. To address issues 1 and 2, the fol-
owing augmented system of equations is formed which relates the
nknown scaling vector w to the augmented data vector d, i.e.,

�p

0
� � �CT diag�Cš2�

� L
�w �3�

r d � F�w. The scaling vector is found by minimizing the func-
ional

J� �z� �
1

2
�d � F�ez�2

2, �4�

here the substitution of w � ez �with the exponentiation taken el-
mentwise� guarantees positivity �issue 3� of the solution �Vogel,
002�. This formulation seeks a solution fitting the total data with a
moothness constraint imposed by the sharpening operator L, which
or each scale penalizes fluctuations among neighboring curvelet co-
fficients in the space and angle directions �see Herrmann et al.,
008a, for a detailed description�. The amount of smoothing is con-
rolled by the parameter � . For increasing � , there is more emphasis
n smoothness at the expense of overfitting the data �i.e., erroneous-
y fitting the primaries�. For a specific � , the penalty functional in
quation 4 is minimized with respect to the vector z with the limited-
emory BFGS �Nocedal and Wright, 1999� with the gradient

grad J�z� � diag�ez�	F�
T �F�ez � d�
 . �5�

Ideally, the solution of the above optimization problem, z̃
arg minzJ�z�, would yield, after application of the data-depen-

ent scaling, the appropriate prediction for the multiples. Unfortu-
ately, other phase and kinematic errors might interfere, rendering a
eparation based on the residual alone �as in SRME� ineffective �i.e.,
EG license or copyright; see Terms of Use at http://segdl.org/
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� CT diag�w̃�Cš2 with w̃ � ez̃ is an inaccurate estimate for the
rimaries�. Robustness of threshold-based primary-multiple separa-
ion addresses this important issue and forms the second nonadap-
ive stage of our separation scheme.

rimary-multiple separation by curvelet-domain
hresholding

Because of the curvelet’s sparsity and parameterization �by posi-
ion, scale, and dip� primaries and multiples naturally separate in this
omain. This property explains the success of threshold-based pri-
ary-multiple separation. According to the latest development in

hreshold-based primary-multiple separation �Saab et al., 2007;
ang et al., 2007�, the estimated primaries are given by

š1 � Bayes�p,t� , �6�

ith the operator Bayes�· , · � denoting primary estimation by our it-
rative Bayesian separation scheme �detailed in Saab et al., 2007�,
hich uses the total data and a curvelet-domain threshold vector t as

nput and which produces the estimated primaries s̃1. This curvelet-
omain threshold is given by the absolute values of the �scaled� pre-
icted multiples. Equation 6 is an instance of a nonadaptive curvelet-
omain primary-multiple procedure which, as reported in the litera-
ure �Herrmann et al., 2007a; Herrmann et al., 2008b; Saab et al.,
007; Wang et al., 2007�, has been applied successfully been to syn-
hetic- and real-data examples.

APPLICATION

We test the above-described adaptive separation algorithm by ex-
mining synthetic and real data. The main purpose of these tests is to
tudy the improvement by curvelet-domain matching compared
ith optimized results for single-iteration SRME. This case is rele-
ant for situations in which data quality does not permit iterative
RME or the cost of multiple iterations of SRME is a concern. In ei-

her situation, the predicted multiples will contain amplitude errors
hat might give rise to residual multiple energy and dimmed prima-
ies. We show that the proposed scaling by curvelet-domain matched
ltering improves the estimation for primaries as long as the curve-

et-to-curvelet variations for this scaling are controlled sufficiently
y the smoothness constraint. Relaxation of this constraint can lead
o overfitting and hence to inadvertent removal of primary energy.

ynthetic-data example

We consider a shot record from a synthetic line, generated by an
coustic finite-difference code for a velocity model that consists of a
igh-velocity layer, which represents salt, surrounded by sedimenta-
y layers, and a water bottom that is not completely flat �see Figure
1 in Herrmann et al., 2007a�. In Figure 1, the results for optimized
ingle-term SRME are compared with curvelet-domain Bayesian
eparation with and without our amplitude scaling. Figure 1a-c in-
ludes the total input data with multiples, the SRME-predicted mul-
iples, and the multiple-free data, respectively. The predicted multi-
les are the result of conventional matching in a single window. The
ultiple-free data were modeled with an absorbing boundary condi-

ion, removing the surface-related multiples. Results for the estimat-
d primaries according to optimized single-term SRME with win-
owed matching, Bayesian separation, and scaled-Bayesian separa-
ion are included in Figure 1d-f. Comparison of these results shows a
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
ignificant improvement for the primaries computed with the curve-
et-domain amplitude scaling, calculated by solving equation 4 for

� 0.5. For this choice of � , the multiples are not overfitted, and
he amplitude correction leads to a removal of remnant multiple en-
rgy, particularly for the events annotated by arrows. The value for �
as found experimentally. Finally, note that the improvement in the

) b)

) d)

) f)

igure 1. Primary-multiple separation on a synthetic shot record. �a�
otal data p, including primaries and multiples. �b� Single-term
RME-predicted multiples wavelet-matched within a global win-
ow �š2�. �c� Reference surface-related multiple-free data modeled
ith an absorbing boundary condition. �d� Estimate for primaries,
ielded by optimized one-term SRME computed with a windowed-
atched filter. �e� Estimate for primaries, computed by Bayesian it-

rative thresholding with a threshold defined by t � �Cš2�. �f� The
ame as �e� but for the scaled threshold, i.e., t � �diag�w̃�Cš2� �with
� 0.5�. Notice the improvement for the scaled estimate for prima-

ies, compared with primaries yielded by SRME in �d� and by the
ayesian separation without scaling in �e�.
EG license or copyright; see Terms of Use at http://segdl.org/
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A20 Herrmann et al.
stimate for primaries results from the combination of curvelet-do-
ain separation and scaling, yielding results comparable to those

xpected from multiterm SRME. Even though multiterm SRME, in
ombination with standard �2-subtraction, is known to remove sur-
ace-related multiples for synthetic data nearly perfectly, SRME in
ractice is often viable for only one iteration because field data sets
ften do not obey assumptions of the model. Therefore, the single-
erm SRME result in Figure 1d can be considered as state of the art.

eal-data example

Figure 2a contains the common-offset section �at an offset of
00 m� that we selected from a North Sea field data set. Estimated
rimaries according to conventional SRME are plotted in Figure 2b.
esults in which �2-matched filtering in the shot domain �Verschuur
nd Berkhout, 1997� is replaced by Bayesian thresholding �Saab et
l., 2007� in the offset domain are presented for a single offset in Fig-
re 2c without scaling and in Figure 2d with scaling. The scaled re-
ult is calculated for � � 0.3. Juxtaposing the standard SRME and
he curvelet-based results shows a removal of high-frequency clut-
er, in agreement with earlier findings reported in the literature.

oreover, primaries in the deeper part of the section �e.g., near the

) b)

) d)

igure 2. Adaptive curvelet-domain primary-multiple separation on
eal data. �a� Near-offset �200-m� section for total data plotted with
utomatic gain control. �b� Estimate for the primaries, yielded by op-
imized one-term SRME computed with a windowed-matched filter.
c� Estimate for primaries, computed by Bayesian iterative thresh-
lding with a threshold defined by t � �Cš2�. �d� The same as �c� but
or the scaled �for � � 0.3� threshold, i.e., t � �diag�w̃�Cš2�. Notice
he improvement for the scaled estimate for primaries, compared
ith the primaries yielded by SRME in �b� and by the Bayesian sepa-

ation without scaling in �c�.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
wo lower arrows in each plot� are preserved much better compared
ith the standard SRME result. Removal of strong residual multi-
les in the shallow part �e.g., first- and second-order water bottom
ultiples indicated by the arrows around 0.75 and 1.20 s� is particu-

arly exciting. Because of the unbalanced amplitudes of the predict-
d multiples, neither standard SRME nor nonadaptive Bayesian
hresholding can eliminate these events. Our adaptive method, how-
ver, successfully removes these events through use of curvelet-do-
ain scaling. Compared with nonadaptive thresholding, residual
ultiples are better suppressed, whereas our adaptive scheme also

eads to at least similar but often even better overall continuity and
mplitude preservation of the estimated primaries. For example, im-
rovements are visible in the lower left corner of the sections �be-
ween offsets 0 and 2000 m and times 3.0 and 3.6 s�, where low-
requency multiple residuals are better suppressed after curvelet-do-
ain matched filtering �cf. Figure 2c and d� without deterioration of

he primary energy. Finally, observe the improved recovery of pri-
ary energy at the lower arrow in Figure 2d, compared with the pri-
ary in Figure 2c.

CONCLUSIONS

We present a method that improves estimates for primaries for sit-
ations in which multiterm SRME is nonviable. Our alternative aug-
ents Bayesian primary-multiple separation with a data-adaptive

tep during which amplitudes of the predicted multiples are matched
o multiples in the data. This match is achieved in the curvelet do-

ain, which allows for position, scale, and dip-dependent amplitude
orrection through diagonal scaling of the transform coefficients.
verfitting �i.e., distortion of the primaries� during the matching is

voided by promoting smoothness among neighboring coefficients
n the scaling vector.Application of our method to synthetic and real
ata sets shows a clear improvement in multiple suppression and pri-
ary preservation, which can be attributed to the curvelet-domain

mplitude correction by scaling. Because our correction is based on
relatively mild smoothness assumption, stating that the amplitude
rrors cannot vary too rapidly as a function of position, scale, and an-
le, we envisage applications in other areas, such as suppression of
nternal multiples, in which angle-dependent reflection and trans-

ission errors play a role.
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