
Efficient Temporal Action Localization model
development practices

A review and analysis of models and a guide of best methods

Paul Misterka
Supervisor(s): Jan van Gemert, Robert-Jan Bruintjes

Attila Lengyel, Ombretta Strafforello
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Paul Misterka
Final project course: CSE3000 Research Project
Thesis committee: Dr. Jan van Gemert, Robert-Jan Bruintjes, Attila Lengyel, Ombretta Straf-
forello, Dr.-Ing. Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Temporal Action Localization (TAL) is an important prob-
lem in computer vision with uses in video surveillance and
recommendation, healthcare, entertainment, and human-
computer interaction. Being an inherently data-heavy pro-
cess, TAL has been bound by the availability of comput-
ing power, resulting in its slow pace of innovation. This
work aims to accelerate the development of TAL models
by conducting a short review of TAL’s state-of-the-art, and
providing extensive data about the latest models’ data and
compute efficiency. By researching how TAL models perform
in limited data and compute settings, we find that using less
data than available is often beneficial to iterating a model
quickly, while in some cases, TAL is constrained by the lim-
ited amount of data. Finally, we provide general guidelines
that create a simple framework for efficient TAL model de-
velopment.

1. Introduction

Temporal Action Localization (TAL) algorithms and ML
models provide insight into actions’ type and temporal lo-
cation in arbitrary videos [5], as shown in figure 1. The
popularization of Deep Neural Networks (DNNs) [12], trans-
formers [15], and advances in semiconductor miniaturization
have recently paved the way for groundbreaking models like
TriDet [13] and ActionFormer [22].

Unfortunately, TAL research is still heavily limited by
access to computing power, with the state-of-the-art Video-
MaeV2 [18] requiring 300 hours of training on a cluster of
64 cutting-edge A100 GPUs [2]. As the vast majority of
researchers don’t have access to such resources, they are
disadvantaged in contributing to TAL. Furthermore, TAL
inference is also very costly, often requiring TMACs (1012

multiply-accumulate operations) per action detection and

limiting TAL’s usefulness despite a wide range of possible
applications [20].

To help alleviate these issues, this work explores efficient
model development practices for TAL. By comparing past
models, we establish a baseline to estimate the performance
in limited data and compute settings. Researchers can use
our findings to quickly understand if a particular approach is
likely to be performant without full training and testing.

In section 2, we perform a short overview of novel TAL
approaches to understand what tools could help estimate
compute performance. Subsequently, we take TadTR [7], a
modern and lightweight TAL pipeline, as a study case. Sec-
tion 3 describes how we conduct various experiments on data
and compute efficiency. Using that methodology, in section
4, we replicate TadTR results and extensively report on its
performance in varying conditions. Section 5 discusses the
ethical background of our research and provides an overview
of the steps we’ve taken to ensure fairness, transparency, and
reproducibility. Finally, in section 6, we provide an overview
of the results and recommendations for efficient TAL model
development.

2. Related Work

To understand important TAL nomenclature and previ-
ously used techniques to limit data and compute complexi-
ties, we take a look at works related to TAL. Subsection 2.1,
briefly reviews trends relevant to data and compute efficiency
in novel TAL models. Using that knowledge, in subsection
2.2, we summarize previously used techniques that limit the
quantity or dimensionality of input data. Lastly, in subsec-
tion 2.3, we describe some of the limitations of the most
popular TAL benchmark THUMOS14 [5] that impact the
data-limiting techniques.

(a) Given an input video, a TAL model labels and locates the action of cliff diving
and marks its beginning and end [17]. To calculate performance, TAL benchmarks

compare the prediction with the ground truth.

(b) TAL makes multiple predictions for the action in a video
frame (confidence, action type), and recognizes it as climbing a

rope with a high degree of confidence (0.960) [8].

Figure 1. The principle of Temporal Action Localization (TAL).

1

2.1. Relevant TAL trends

Temporal Action Localization models can be split into
multistage and single-stage models [22] [7]. In the former,
action classification follows temporal classification, produc-
ing action predictions based on proposals for the occurrence
of actions. In comparison, single-stage models attempt to
combine the two, using anchoring windows over the image
to identify possible actions freely. While these lack the flex-
ibility of multistage models, the added power of including
action detection makes them favored in recent works.

Furthermore, the recent introduction of Vision Transform-
ers (VITs) [13] [22] that rely on a single-shot approach
further solidifies the advantages of single-stage methods. In
contrast to methods like E2E-TAD [6] or BasicTAD [21],
transformer-based models separate the backbone from the
rest of the model. Rather than performing training end-to-
end (E2E), VITs reuse pre-trained features like I3D [1] or
SlowFast [4]. This simplifies the model architecture and
accelerates training but slightly reduces accuracy. As ap-
proaches based on pre-trained features can be iterated much
more quickly, breakthrough TAL methods tend to use them,
with E2E improvements following later.

2.2. Data limiting techniques

As TAL is a compute-heavy workload, many approaches
limit the amount of data processed by the model, both during
training and inference [21] [7]. We can divide these tech-
niques into ones that directly reduce the number of samples
and transform the input data to decrease its dimensionality.

One of the most important techniques reducing the num-
ber of samples is few-shot learning [10]. Rather than train-
ing on the whole dataset, few-shot learning provides a pre-
determined number of samples for each classification class.
As these samples are likely to provide a satisfactory repre-
sentation of a class, many models achieve comparable perfor-
mance with few-shot learning while significantly reducing
training times. Another important method is anchoring [23],
which outputs a set of bounding boxes for predicting the
occurrence of actions. Determining the density of anchors
is an important parameter that heavily influences raw re-
quired power and constraints on hardware specifications
(e.g., VRAM).

TAL methods also utilize different ways to compress the
input data, reducing its dimensionality and, as a result, the
input size. The most prevalent are the pretrained backbones
that efficiently store information about action features and
convolutional layers that downscale the input videos. How-
ever, some also compress videos directly before feeding
them into the network or sampling them at different fram-
erates. Finally, few models replace videos with their action
detection features completely.

2.3. Dataset limitations

Previously, we mentioned that few-shot learning is an
important technique for testing model behavior in limited
data settings. However, due to the limitations of the THU-
MOS14 dataset, we found it impractical to use few-shot
learning. This is because, for many classes, the class samples
are aggregated into a few videos. As a result, we could only
train the model on none or a large number of these samples,
preventing gradual increments to the number of shots.

We considered splitting videos into multiple videos rep-
resenting individual occurrences of particular classes. How-
ever, we decided against it, as it is essentially a modifica-
tion to the dataset, making comparisons with previous work
problematic. Instead, we settle on a simple percentage-wise
division. We sample a percentage of the dataset for certain
experiments and train the model on that subset without look-
ing at the underlying class distribution. While less ideal, we
predict that averaging these experiments over multiple di-
visions minimizes uncertainty and proves to have minimal
performance variance.

2.4. Study case

As we don’t aim to develop a new approach but rather
analyze existing ones and provide insights into their efficient
development, we choose one of the existing models as a
study case and perform experiments on it. Our choice is mo-
tivated by accuracy, performance, availability of the source
code, reproducibility, quality of documentation, and recency
(in the context of trends from subsection 2.1). Analyzing
top papers1, we find TadTR [7] to be the most complete,
transparent, and easy to experiment with from the recent,
highly-performant TAL models.

TadTR is a transformed-based model with end-to-end
training and uses the I3D [1] backbone. It achieves a 56.7%
mAP (mean average precision) on the THUMOS14 dataset,
lagging behind ActionFormer and autoencoder-based ap-
proaches. The model uses anchoring and splits videos from
the original dataset into smaller slices. Its behavior is eas-
ily configurable through code, and the authors provide a
relatively well-documented codebase that allows for timely
modifications. Together, these features make TadTR a great
study case for accuracy and performance analysis.

3. Method
To ensure the reliability of our results, we establish a

carefully crafted methodology for conducting experiments
in limited data and compute settings. First, we describe how
we reproduce TadTR’s authors’ results in subsection 3.1.
Subsection 3.2 highlights considerations for experiments that
research TadTR’s training performance for partial training

1Using https://paperswithcode.com/dataset/thumos14-
1, accessed 2023-06-21

2

https://paperswithcode.com/dataset/thumos14-1
https://paperswithcode.com/dataset/thumos14-1

sets. Subsequently, subsection 3.3 describes the methodology
and metrics relevant for determining the compute efficiency
of TadTR.

3.1. Reproducing TadTR

To keep our result comparable with the base TadTR pa-
per, we use the pretrained backbone, training, and evaluation
scripts provided by the authors. Unless explicitly stated in
the description of an experiment, we use the default hyper-
parameters as in table 1, training the model for 15 epochs.

Hyperparam Value
of epochs 15
Base learning rate (LR) 0.0002
Weight decay 0.0001
LR decay epoch 14
Batch size 16
Slice overlap 75%

Table 1. List of default hyperparameter values

Furthermore, all experiments are conducted on an A10
LambdaLabs cluster. This virtualized, single-tenancy (i.e. ex-
clusive access) instance provides a 26 vCPU Intel Platinum
8358 processor and a high-performance SSD drive alongside
the Nvidia A10 accelerator. The well-documented approach
and a stable compute environment guarantee that our results
are highly consistent and can be easily reproduced.

3.2. Data efficiency

Once we verify our replication procedure’s correctness,
we look at TAL models’ data efficiency. We establish
whether we can extrapolate models’ performance using only
a significantly smaller subset of the full dataset. Moreover,
if one can train the model multiple times on a fraction of a
dataset and further project performance based on that data,
they can decrease the training time substantially, saving de-
velopment time and cutting training costs. Additionally, this
approach provides a way to predict how much TAL mod-
els would benefit from additional training data beyond the
available means.

Our approach to testing TadTR’s data efficiency relies on
training the model on slices of the dataset. As mentioned
in subsection 2.3, we take a percentage p ranging from 1%
to 100% and randomly pick p% training dataset videos, i.e.,
slices. For each p, we train TadTR on t=5 random slices and
evaluate its mAP (mean average precision) for IoU (intersec-
tion over union) between 0.3 and 0.7 with 0.1 increments on
the THUMOS14 dataset, averaging the precision from each
training. Finally, we plot a p% vs mAP graph and fit explore
the fits of different curves to understand what function shape
works best.

3.3. Compute efficiency

Furthermore, we look at the compute efficiency of TadTR.
By running such experiments, we hope to identify trends and
relations between different compute metrics (time, MACs,
utilization) across different ViT TAL models, provide ex-
pected compute resource requirements, and establish devel-
opment practices for classes of models with varying compute
requirements. Similarly to subsection 3.2, we provide base-
line results for training time, inference time, and theoretical
complexity for randomized input tensors with shape [1, 2048,
length] using Python’s timeit and Meta’s fvcore
[11] library (specifically the FlopCountAnalysis func-
tion). Here, the length varies between 100 and 30000.
Finally, we plot the results and compare them against the
different TAL models.

Reusing the training and inference experiment setups,
we can easily profile the performance of TAL models. To
understand TadTR’s bottlenecks, we analyze its CPU (sin-
glethreaded, multithreaded) and GPU performance by sam-
pling the averaged use over the past 0.5s using Python’s
psutil.cpu percent and Nvidia’s nvidia-smi. Un-
fortunately, we cannot profile the memory access (memory
bandwidth, cache misses) due to limitations posed by the
compute instance’s virtualization layer. We also do not mea-
sure memory consumption, as the model pre-allocated neces-
sary memory, with over 90% available at all times. Note that
in an idle state, the compute instance is extremely efficient,
with CPU and GPU usage below 0.1%, and the impact of
our usage measurement script is negligible.

4. Experiments

Using the methodology described in section 3, we per-
form various experiments on TadTR, and compare the results
against two other TAL models. First, we provide baseline
experiment results for various TAL models in subsection 4.1
to verify the validity of our experimental setup. Then, we
perform data efficiency experiments in subsection 4.2 and
compute efficiency experiments in subsection 4.3. Together,
these provide insight into the behavior of TAL models in
limited data and compute settings.

4.1. General experiment results

We replicate TadTR’s results using the codebase provided
by its authors2 and achieve an average 55.3% mAP (max
56.7%). This, while ∼1.3% lower than the reported 56.7%,
is within the expected range, as TadTR authors report their
best result, with our best model achieving 56.9% mAP.

2 https://github.com/xlliu7/TadTR, accessed 21-06-2023

3

https://github.com/xlliu7/TadTR

Figure 2. mAP of different ViT TAL models on parts of the THU-
MOS14 dataset, where p% represents the percentage of the dataset
used; shadowed area represents the standard deviation for each dat-
apoint’s 3 experiments. As TriDet and TemporalMaxer are based
on ActionFormer, their scaling behavior is similar.

Model Training (s) mAP
TadTR [7] 426 ± 4 55.3% ± 0.6%
TriDet [13] 646 ± 26 68.1% ± 0.4%
ActionFormer [22] 866 ± 27 66.5% ± 0%
TemporalMaxer [14] 2956 ± 1660 67.0% ± 0.4%

Table 2. Training times3and mAPs for different TAL models on
THUMOS14. Each model has been trained 5 times, with the mean
values reported (and the standard deviation after ± sign).

4.2. Data efficiency experiments

Figure 2 shows TadTR’s accuracy when trained on parts
of the THUMOS14 dataset as described in subsection 3.2.
The averaged mean standard deviation of the results from the
different experiments for the same p% is ∼0.6 mAP, or about
1.1% the respective mAP. Moreover, the curve appears to
flatten out at p = 70%, with additional data having minimal
effect. Indeed, in this instance, we achieve the best result at
p = 75% of 55.97 mAP. We also successfully replicate the
results of three other models, TriDet [3], ActionFormer [19],
and TemporalMaxer [9], and compare them against each
other.

4.2.1 Extrapolating results

As the dataset scaling of the four compared models has a
similar shape, we attempt to fit a curve against the p% vs
mAP relationship. Following a recent review of ML learning

3 TriDet, ActionFormer, and TemporalMaxer were trained on a shared-
tenancy AMD EPYC 7402 and NVIDIA Tesla V100S 32GB cluster.

Figure 3. Predicting accuracy with partial data. Training the model
on up to 10% of the dataset and extrapolating results gives a good
prediction for the actual accuracy.

curves [16], we attempt to find an exponential relationship
for log-log normalized data, i.e., where both axes have a
logarithmic base.

Unfortunately, the larger the accuracy variance, the less
accurate this prediction will be. For TemporalMaxer the
mAP variance reaches 10.6% at p = 20%, but for TadTR
it is relatively low at an average of 1.1%, and therefore
we attempt the fit on TadTR. While the exponential fit on
all datapoints is accurate, extrapolating from the first 6
datapoints

mAP = 25.67−3.546/2log2(p)/1.214

yields a mean mAP difference of 6.05 ± 1.77 (figure 2). At
p = 100%, the exponential fit predicts mAP of 48.07, off
by 7.13 (13%). With such a large difference, this method
is unlikely to be helpful, especially for models that show a
higher mAP variance.

More interestingly, a closer inspection of ActionFormer’s
data efficiency shows that the relationship can’t be purely
exponential. Rather, at p% below 15%, the mAP gain accel-
erates, only slowing down at higher p%. We theorize that
this behavior is due to the information added by the appear-
ance of new action class types. At very low p% only a few
classes are visible, allowing for few correct detections, but
as the number of the seen classes increases, the information
carried by each new action class type provides more informa-
tion about the remaining unseen classes. Once the majority
of the classes are seen, this effect diminishes, as there are
increasingly fewer unseen classes. Incidentally, as TadTR
splits videos from the original dataset into subsamples, it
will see more action classes at lower p%, making its curve

4

Figure 4. TadTR’s inference performance for varying random input
tensor lengths. The red line shows theoretical giga-MAC complex-
ity, while the blue one shows inference time (in milliseconds).

closer to a pure exponential form.

4.2.2 Five parameter logistic fit

Instead of an exponential fit, we researched other types
of function shapes that could correctly represent the data
efficiency curve. While much less popular, we found that
the sigmoidal shape of the 5PL (5-parameter logistic regres-
sion) fit works well. As seen in figure 2, for TadTR we derive

mAP = 76.75− 72.38/(1 + (x/1.2845)49.405)0.005437

with a surprisingly low mean mAP difference of 0.566 ±
0.30. Having effectively used just a fifth of the dataset, we
can use this method to decrease computational costs for
developing and training complex models.

We also perform a 5PL fit against the other researched
models on all datapoints with R2 of 0.9999, 0.9991, and
0.9999 for TriDet, ActionFormer and TemporalMaxer, re-
spectively. As these models scale with additional data well,
they would benefit from training on a larger dataset. For
example, assuming that TriDet doesn’t overfit, the 5PL fit
indicates the model would achieve mAP of 74.72% (+7.8%)
with a dataset 3 times the size. Despite being anecdotal, this
indicates that 5PL could be a good fit for learning curves
in ML, and more research into its usefulness could prove
invaluable in estimating datasets’ robustness.

4.3. Compute efficiency experiments

As seen in figure 4, TadTR’s inference performance scales
linearly with the size of the input, which is only limited
by available VRAM. For a tensor of size [1, 2048, 30000],
the inference takes just 35ms, compared to 1s for Action-
Former. In fact, TadTR is so performant the runtime is largely

Figure 5. Theoretical inference compute intensity of the different
TAL models. The required computer power scales linearly for all
models, with TadTR being the most efficient.

Figure 6. Hardware usage during TadTR’s training; the highlighted
region represents one epoch. The performance is heavily bottle-
necked by the single-threaded CPU performance and memory band-
width rather than the GPU.

thwarted by the CUDA garbage collector (∼300ms), and the
model can be run on a CPU without dedicated accelerators
with similar performance.

Creating the model is also very fast at ∼2.5s. Together,
the training and inference performance make us deter-
mine TadTR a simple model, rather than a complex one
like VideoMAEv2. This implies a need for a different
set of accuracy and performance optimizations that
focus on hyper-optimization through a large number of
experiment trials due to the relative ease of such an approach.

Hardware bottlenecks

To understand how the hardware impacts TadTR’s perfor-
mance, we conduct a hardware performance study, looking
at the CPU and GPU usage during training. Given its speed
and low theoretical GPU intensity, we suspect the training
is bottlenecked by CPU performance and memory speed

5

rather than the GPU. Incidentally, we also evaluate the in-
ference performance, as the model is evaluated (tested) after
every epoch. Figure 6 shows the first 140s of the test, with
repeating usage patterns for individual epochs - the region
highlighted in yellow represents the learning stage for one
epoch, while the red region represents the evaluation stage.

Analyzing the usage performance, we find that TadTR
indeed is limited mainly by the memory bandwidth rather
than the GPU compute capacity itself, which peaks at around
40%. This indicates that a significant quantity or complexity
of operations per network stage would not lead to a reduction
in performance with GPU idling while waiting for the cache.
More interestingly, the CPU usage is also high at around
80%, hitting 100% for most of the inference. The peaks in
average use at around 30% occur when 8 of the threads hit
100% usage simultaneously.

The 26 vCPU processor doesn’t perform well, with the
single-threaded performance limiting the algorithm. Rather
than using a server-grade CPU meant for highly parallel
workloads, TadTR would benefit from a modern, more
lightweight CPU with better single-threaded performance
and memory interconnect. We estimate that an Intel i9-
13900k or a similar model would slash the training times
by 30-40%, allowing for faster development. Additionally,
while TadTR would benefit from a more modern GPU archi-
tecture (e.g. Nvidia’s Hopper), it would not utilize its full
potential.

5. Responsible Research
Machine learning models for TAL play a crucial role in

various applications, such as video analysis, surveillance,
and human activity recognition. Therefore, it is essential
to ensure that these models are developed responsibly to
mitigate potential risks and biases. In this section, we outline
how our paper prioritizes transparency and fairness, and
describe ethical considerations.

Reproducability
We emphasize the importance of reproducibility in our
approach to machine learning model development for
TAL. As some papers do not make it a priority to make
results easily reproducible, or include doubtful techniques
touted as score enhancements, we base our work on a
simple, quick, and transparent TadTR. To make our results
easily comparable with TadTR, we strive to reuse their
experimental setup as much as possible, and fill in blanks
in their documentation. Finally, we release our source
code and provide instructions on how to run our experiments.

Ethical Considerations
TAL has a number of potentially malicious applications,
particularly in mass surveillance. While we understand that
our research can accelerate harmful practices, we believe

that the potential benefits (such as public safety, healthcare,
and video analysis) outweigh the harm. Moreover, we are
dedicated to evangelizing the responsible use of TAL in
real-world applications and strongly encourage anyone us-
ing these technologies to adhere to ethical guidelines and
consider the potential negative consequences.

6. Conclusion
Lastly, we offer recommendations for efficient TAL

model development practices. While these guidelines
are meant for researchers working on improving TAL’s
state-of-the-art, most of them are transferable to other types
of ML problems, especially in the field of computer vision.
Altogether, we present five main points describing how to
make informed decisions on data, compute, and software
engineering issues.

Take the right amount of data

The data efficiency experiments showed that different
models scale with data differently. In TadTR’s case, training
on just 50% of the dataset gives a good insight into its
potential on the full dataset. While the model trains quickly,
researchers should consider training large, expensive models
on a fraction of the dataset when consistently improving
your method. This can save both money and development
time without significantly impairing the research efforts.

Predict trends

Extrapolating data efficiency is a great tool in determining if
a model needs more data and the type of data it works with
the best. Researchers can also use it to estimate compute
performance on large amounts of data and find reasonable
use cases. While we saw that understanding trends can be
difficult in cases where additional data is costly to acquire or
experimenting is expensive, predicting the model’s behavior
serves as a good indicator of the best course of action.

Understand your model’s performance class

Different ML models require vastly varying amounts of
compute power, impacting not only their usefulness but
also the speed of development. Having a clear picture of
the performance class allows researchers to prioritize their
development efforts; for example, while hyperparameter
optimization studies might be nearly impossible for a costly
model like VideoMAEv2, it can be useful in improving
the performance of models that can be trained hundreds
of times a day on a single machine. Moreover, sharing the
performance specifics of your model with the open-source
community is crucial to well-formed collaboration. Consider
documenting the training time and inference speed to entice

6

other researchers to experiment with your models.

Use the right hardware

Machine learning is well-known to be constrained by
the availability of computing power, in particular, the
GPU. However, researchers can’t forget that other parts
of the system also have a huge impact on a model’s
performance, with TadTR largely bottlenecked by the CPU.
We urge to consider what hardware fits the model best to
improve development efficiency, maximize performance in
real-world applications, and help other researchers estimate
the feasibility of running a particular model.

Make it easy to iterate

Lastly, we find it paramount to build a model’s codebase in
a way that allows for quick iteration. We propose a set of
simple rules that TAL models should follow:

• Provide well-documented, top-level functions for the
model’s training, evaluation, and testing. These func-
tions serve as reusable building blocks of your model
and an interface allowing quick experimentation

• Document the setup and environment. As the hardware
and virtual environment to run a TAL model are likely
to be complex, provide a detailed description of how to
reproduce and experiment with your results.

• Embed configuration and logging from the start. As
researchers are likely to run dozens of quickly evolv-
ing experiments, understanding what happens during
experiments and reproducing them saves time.

• Avoid over-documenting. As the TAL approaches
evolve quickly, the codebase will likely change rapidly.
While top-level documentation is crucial, restrain from
perfecting every part of the codebase.

Altogether, these guidelines help avoid and recover from
mistakes while making it easy to evolve the researched TAL
approach rapidly.

References
[1] João Carreira and Andrew Zisserman. Quo Vadis, Action

Recognition? A New Model and the Kinetics Dataset. CoRR,
abs/1705.07750, 2017. 2

[2] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick
Stam, and Ronny Krashinsky. NVIDIA A100 Tensor Core
GPU: Performance and Innovation. IEEE Micro, 41(2):29–35,
2021. 1

[3] Alex Dămăcuş. Efficient Video Action Recognition. Bache-
lor’s thesis, Delft University of Technology, 2023. 4

[4] Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and
Christoph Feichtenhofer. PySlowFast. https://github.
com/facebookresearch/slowfast, 2020. 2

[5] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Action
recognition with a large number of classes. http://crcv.
ucf.edu/THUMOS14/, 2014. 1

[6] Xiaolong Liu, Song Bai, and Xiang Bai. An Empirical Study
of End-to-end Temporal Action Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20010–20019, 2022. 2

[7] Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei
Zhang, Song Bai, and Xiang Bai. End-to-end Temporal Ac-
tion Detection with Transformer. IEEE Transactions on Image
Processing (TIP), 2022. 1, 2, 4

[8] MMAction2 Contributors. OpenMMLab’s Next Generation
Video Understanding Toolbox and Benchmark. https://
github.com/open-mmlab/mmaction2, 2020. 1

[9] Teodor Oprescu. TemporalMaxer Performance in the Face of
Constraint: A Study in Temporal Action Localization. Bache-
lor’s thesis, Delft University of Technology, 2023. 4

[10] Archit Parnami and Minwoo Lee. Learning from Few Exam-
ples: A Summary of Approaches to Few-Shot Learning, 2022.
2

[11] Facebook Research. Fvcore. https://github.com/
facebookresearch/fvcore, 2023. (Accessed on
04/06/2023). 3

[12] Jürgen Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, jan 2015. 1

[13] Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, and
Dacheng Tao. TriDet: Temporal Action Detection with Rela-
tive Boundary Modeling, 2023. 1, 2, 4

[14] Tuan N Tang, Kwonyoung Kim, and Kwanghoon Sohn. Tem-
poralMaxer: Maximize Temporal Context with only Max
Pooling for Temporal Action Localization. arXiv preprint
arXiv:2303.09055, 2023. 4

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need, 2017. 1

[16] Tom Viering and Marco Loog. The Shape of Learning Curves:
a Review, 2022. 4

[17] Le Wang, Xuhuan Duan, Qilin Zhang, Zhenxing Id, Gang
Hua, and Nanning Zheng. Segment-Tube: Spatio-Temporal
Action Localization in Untrimmed Videos with Per-Frame
Segmentation. Sensors, 18, 05 2018. 1

[18] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan
He, Yi Wang, Yali Wang, and Yu Qiao. VideoMAE V2:
Scaling Video Masked Autoencoders with Dual Masking,
2023. 1

[19] Jan Warchocki. Benchmarking Data and Computational Ef-
ficiency of ActionFormer on Temporal Action Localization
Tasks. Bachelor’s thesis, Delft Univesity of Technology, 2023.
4

[20] Huifen Xia and Yongzhao Zhan. A Survey on Temporal
Action Localization. IEEE Access, PP:1–1, 04 2020. 1

[21] Min Yang, Guo Chen, Yin-Dong Zheng, Tong Lu, and Limin
Wang. BasicTAD: an Astounding RGB-Only Baseline for
Temporal Action Detection, 2023. 2

7

https://github.com/facebookresearch/slowfast
https://github.com/facebookresearch/slowfast
http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
https://github.com/open-mmlab/mmaction2
https://github.com/open-mmlab/mmaction2
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore

[22] Chenlin Zhang, Jianxin Wu, and Yin Li. ActionFormer: Lo-
calizing Moments of Actions with Transformers, 2022. 1, 2,
4

[23] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z. Li. Bridging the Gap Between Anchor-based and
Anchor-free Detection via Adaptive Training Sample Selec-
tion, 2020. 2

8

