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Rare Collision Risk Estimation of Autonomous Vehicles with Multi-Agent
Situation Awareness

Mahdieh Zaker, Student Member IEEE, Henk A.P. Blom, Fellow IEEE,
Sadegh Soudjani, Member IEEE, and Abolfazl Lavaei, Senior Member IEEE

Abstract— This paper offers a formal framework for the
rare collision risk estimation of autonomous vehicles (AVs) with
multi-agent situation awareness, affected by different sources
of noise in a complex dynamic environment. The estimation
framework consists of two complementary parts: modeling
formalism and a rare event estimation method using sequential
Monte Carlo (MC) simulation instead of importance sampling.
By defining incremental levels of severity that must be passed
before a collision, a sequence of MC simulations can be applied
from one level to the next. This particular sequential MC
method consists of the simulation of an Interacting Particle
System (IPS) in combination with Fixed Assignment Splitting
(FAS) of particles that reach the next level. We model AVs
equipped with the situation awareness as general stochastic
hybrid systems (GSHS), including the IPS-FAS relevant severity
levels, and assess the probability of collision in a lane-change
scenario where two self-driving vehicles simultaneously intend
to switch lanes into a shared one while utilizing the time-to-
collision measure for decision-making as required. The IPS-FAS
method is subsequently used to estimate collision risk for this
GSHS model of the lane-changing scenario. The results show
that in contrast to straightforward MC simulation, IPS-FAS is
able to quantify the very low collision risk for the scenario of
interest.

I. INTRODUCTION

Autonomous vehicles (AVs) have numerous advantages,
including the reduction of air pollution, alleviation of traffic
congestion, and mitigation of human-error-related fatalities.
However, these complex systems operate within dynamic
environments where they interact with a diverse range of fac-
tors, presenting various uncertainties, such as unpredictable
weather conditions, unexpected pedestrian movements, and
the wide-ranging driving behaviors of human operators.
AVs are considered safety-critical systems [1] that may
pose significant safety risks to human, and ensuring their
safe operation in complex and uncertain environments is a
paramount challenge.

This challenge involves leveraging information from all
agents to enhance AVs’ situation awareness (SA) [2]. By
doing so, AVs can, in specific scenarios, make informed
decisions based on the knowledge of ongoing events [3].
The SA conceptual thinking has originally been developed
in the aviation domain [4], which includes modeling a human
SA that differs from the truth. More recently, this has been
further extended to Multi-Agent SA (MA-SA) relations in a
system of multiple agents [5], the origin of which stemmed
from the aviation domain [6]. The MA-SA extension makes
distinguishing various types of SA differences possible and
combines well with [2], [3]. An effective improvement of
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SA and decision-making by AVs is expected to significantly
decrease collision risks. As well explained by [7], it is
imperative to quantify the collision risk effect of a particular
concept of operation during the design phase.

For an effective design, the collision risk will be so
low that quantification through straightforward Monte Carlo
simulation becomes too slow [8]. In literature, rare event
simulation methods have been developed to handle such
cases. The best-known approach is importance sampling
[9], which involves selecting a sampling distribution and
weighting samples by the likelihood ratio between sam-
pling and target distributions. However, finding an appro-
priate sampling distribution can be challenging, and as the
problem dimensions increase, the likelihood ratio becomes
less reliable, leading to its avoidance in high-dimensional
problems [10]. To avoid these challenges, there is another
method known as importance splitting [11], also referred
to as multi-level splitting [12], or subset simulation [13].
Importance splitting treats rare events as nested occurrences
with relatively higher probabilities, focusing on propagating
realizations that are likely to lead to the rare event (mutation
phase) while discarding others (selection phase) (see e.g.,
[12], [14]).

An effective way to manage multi-level splitting is to
organize it as an interacting particle system (IPS) [15], [16].
Unlike the importance sampling method, where both selec-
tion and mutation stages are applied to the entire Markov
trajectory, IPS applies these stages at various times during
the evolution of the Markov process. This IPS approach
has successfully been applied to rare event simulation of
strong Markov process models of future air traffic designs
[17], [18]. Another advantage of the IPS approach is that
a significant theory has been developed for particle filtering
of strong Markov processes [19]–[21]. By building on this
particle filtering background, [22] has proven that the Fixed
Assignment Splitting (FAS) approach of [23] is most effective
in IPS-based rare event estimation for multi-dimensional
diffusion processes. Subsequently, [24] has extended this
FAS proof to IPS for the much larger class of strong
Markov processes used by [17], [18]. In complex multi-agent
scenarios, a compositional data-driven approach for formally
estimating collision risks of AVs with black-box dynamics
is introduced in [25].

Original contributions. This paper introduces a formal
approach for the rare collision risk estimation of AVs oper-
ating on a three-lane road alongside human-driven vehicles
by utilizing the interacting particle system-based estimation
with fixed assignment splitting (IPS-FAS) algorithm [24].
We model each AV as a general stochastic hybrid system
(GSHS) to capture various sources of noise and uncertainty.
The specific scenario under examination is shown in Fig. 1:
it is a lane-change scenario in which two AVs, green and
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Fig. 1: Lane-change scenario: Two AVs are recognized as
e ∈ E = {EL,ER}, with the first letter indicating their
status as ego vehicles and the second letter specifying their
lane (right or left).

red, are positioned in the first and third lanes amidst human-
driven vehicles with an unoccupied space in the second
lane. At a specific time instant, both AVs make a decision
to change lanes. The concept of operation considered is
that when an AV with situation awareness detects the other
AV’s lane-change intention, it computes the time-to-collision
[26] and utilizes this measurement to determine whether
to proceed with its lane change or revert to its original
lane. Our primary objectives are to compute the potentially
rare collision probability for these two AVs under different
conditions, incorporating situation awareness and computing
the time-to-collision measure, and to show that the IPS-FAS
approach of [24] is able to quantify the collision risk for this
scenario. This can provide effective feedback to the design
of the SA and decision-making functions of an AV.

II. GENERAL STOCHASTIC HYBRID SYSTEM
FRAMEWORK

A. Preliminaries and Notation
We denote the set of real and positive real numbers by R

and R+, respectively, while N := {1, 2, . . . } represents the
set of positive integers. The logical AND and OR operations
are denoted by ∧ and ∨, respectively. Symbols 111n×m and
000n×m are matrices of n × m dimension, consisting of unit
and zero elements, respectively. We denote the empty set by
∅. We use col(·) to create a vector from its input arguments.
Moreover, we denote the exponential distribution with rate
parameter λ by exp(λ). The system’s state in this work is
hybrid, represented by both a continuous variable, denoted
as x, and a discrete variable, denoted as θ. The continuous
variable evolves in some open sets in Euclidean space Xθ,
while the discrete variable is an element of a countable set
Θ. The hybrid state space is denoted by Ξ ≜

⋃
θ∈Θ{θ}×Xθ,

and Ξ = Ξ ∪ ∂Ξ represents the closure of Ξ, where ∂Ξ ≜⋃
θ∈Θ{θ} × ∂Xθ is the boundary of Ξ.
We consider a probability space (Ω,FΩ,PΩ), where Ω is

the sample space, FΩ is a σ-algebra on Ω comprising subsets
of Ω as events, and PΩ is a probability measure that assigns
probabilities to events. Let (Ws)s≥0 be an m-dimensional
F-Brownian motion, and (Ps)s≥0 be an m′-dimensional F-
Poisson process (mutually independent). If X is a Hausdorff
topological space, B(X) denotes its Borel σ-algebra, and
(X,B(X)) is a Borel space.

B. GSHS Definition
As autonomous vehicles (AVs) operate in a complex

environment interacting with various entities, they might face
numerous unpredicted events. Henceforth, different sources
of uncertainty should be taken into account when modeling
AVs. To do so, we employ the notion of general stochastic

hybrid systems, which encompasses a wide range of stochas-
tic phenomena, as follows [27].

Definition 2.1 (GSHS): Each agent of AVs is modeled as
a general stochastic hybrid system (GSHS), denoted by A =(
(Θ, d,X ), f, g, Init, λ,R

)
, where

• Θ is a countable set of discrete variables;
• d : Θ → N is a mapping that provides the dimensions

of the continuous state spaces for each element in Θ;
• X : Θ → Rd(·) associates each θ ∈ Θ with an open

subset Xθ within Rd(θ);
• f : Ξ → Rd(·) is a vector field;
• g : Ξ → Rd(·)×m is an X(·)-valued matrix, m ∈ N;
• Init : B(Ξ) → [0, 1] is an initial probability measure

on (Ξ,B(Ξ));
• λ : Ξ → R+ is a transition rate function;
• R : Ξ× B(Ξ) → [0, 1] is a transition measure.

Then, a stochastic process {θt,xt} is called a GSHS execu-
tion if there exists a sequence of stopping times s0 = 0 <
s1 < s2 < · · · such that for each j ∈ N,

• (θ0,x0) is a Ξ-valued random variable extracted accord-
ing to the probability measure Init;

• For t ∈ [sj−1, sj), θt, xt is a solution of the stochastic
differential equation (SDE):{

dθt = 0

dxt = f(θt,xt)dt+ g(θt,xt)dWt

in which Wt is an m-dimensional standard Brownian
motion.

• sj is the minimum of the following two stopping times:
(i) first hitting time t > sj−1 of the boundary of Xθsj−1

by the phase process {xt};
(ii) first moment t > sj−1 of a transition event to happen

at rate λ(θt,xt).
• At the stopping time sj the hybrid state (θsj ,xsj )

meets the conditional probability measure
pθsj ,xsj

|θsj−,xsj−
(A|θ,x) = R((θ,x), A) for all

A ∈ B(Ξ), where sj− indicates the time instant
immediately before the stopping time sj is reached.

C. Transformation to SHS
According to [28], a GSHS can be transformed to an SHS,

as a more tractable model, involving four key modifications:
(i) An auxiliary state component qt, representing “remain-

ing local time”, is initialized at a specific stopping time
τ with an initial condition of qτ ∼ exp(1);

(ii) The exit boundary of Xθ is expanded by introducing
an additional boundary condition, where qt− = 0, i.e.,
the value of qt just before t;

(iii) Spontaneous probabilistic jumps in {θt,xt} are replaced
by forced probabilistic jumps occurring at the moment
when qt− = 0;

(iv) When the extended exit boundary is reached at the stop-
ping time τ ′, the “remaining local time” is resampled
as qτ ′ ∼ exp(1).

Subsequently, the GSHS A =
(
(Θ, d,X ), f, g, Init, λ,R

)
is transformed to the SHS A∗ =(
(Θ∗, d∗,X ∗), f∗, g∗, Init∗, R∗) as follows:
• Θ∗ = Θ, d∗ = d+ 1, X ∗ = X × (0,∞);
• f∗(θt,xt, ·) =

[
f(θt,xt) − λ(θt,xt)

]⊤
;

• g∗(θt,xt, ·) =
[
g(θt,xt) 0

]⊤
;



• Init∗ =
[
Init q0

]⊤
with q0 ∼ exp(1);

• R∗((θt,xt, ·);A× dq
)
= R

(
(θt,xt);A

)
× e−qdq.

This transformation is mainly helpful for system execution
(cf. Algorithm 2), upon which one can estimate the rare
event probability (cf. Algorithm 1). Having delved into
the general stochastic hybrid system for modeling AVs, in
pursuit of our goal to enhance the safety of AVs in the
lane-change scenario, we leverage a multi-agent situation
awareness framework in the following section.

III. MULTI-AGENT SITUATION AWARENESS

Here, we leverage the concept of multi-agent situation
awareness (MA-SA), building upon the fundamental work in
[5]. In a multi-agent system of N agents Ai, i ∈ {1, . . . , N},
each agent has state zt,i at time instant t, comprising of
SA and non-SA states. The multi-agent situation awareness
relation of agent Ai regarding agent Aj is represented by Zj

i ,
which is a set of N j

i different pairs (s, r)n, n ∈ {1, . . . , N j
i }

such that s references state element zt,i(s) and r references
state element zt,j(r). Subsequently, the SA of agent Ai about
the state of agent Aj at time instant t is represented by σj

t,i
as follows:

σj
t,i ≜

{
zt,i(s), ∃r s.t. (s, r) ∈ Zj

i

}
. (1)

It can be concluded that non-empty Zj
i leads to non-empty

σj
t,i, which means agent Ai possesses SA about agent Aj . In

addition to the MA-SA components σj
t,i, j ̸= i, ζt,i denotes

base state of Ai, determining state elements of zt,i that are
not in relation with any other state element through {Zj

i , j =
1, . . . , N}, i.e.,

ζt,i ≜
{
zt,i(s), s.t. (s, r) /∈ Zj

i for ∀(j, r)
}
. (2)

Following (1)-(2), the state zt,i of agent Ai contains base
state ζt,i and SA of other agents σj

t,i, j ̸= i, as

zt,i = ζt,i
⋃
j ̸=i

σj
t,i. (3)

IV. IPS-BASED RARE-EVENT SIMULATION

Here, we estimate the probability γ of the hybrid system
states (θt,xt), reaching a closed subset D ⊂ Ξ within a finite
time interval [0, T ], defined as

γ = P(τ < T ), (4)

where τ is the first time that {θt,xt} enters the set D, i.e.,
τ = inf{t > 0, (θt,xt) ∈ D}. (5)

A. IPS-FAS Algorithm
The approach to factorizing the reach probability, denoted

as γ, involves the introduction of a sequence denoted as
Dk, k ∈ {0, . . . ,m}, comprising nested closed subsets
within the domain Ξ. More precisely, we define D = Dm ⊂
Dm−1 ⊂ · · · ⊂ D1 ⊂ D0 = Ξ, with the specific condition
that D1 is chosen to ensure P{(θ0,x0) ∈ D1} = 0.
Furthermore, to represent the first time instant at which the
pair (θt,xt) enters the region Dk, τk is defined as

τk = inf{t > 0; (θt,xt) ∈ Dk ∨ t ≥ T}. (6)

To attain the desired factorization, we employ {0, 1}-valued
random variables χk, k ∈ {0, . . . ,m}, defined as

χk =

{
1, if τk < T,

0, otherwise.
(7)

Algorithm 1: IPS-FAS algorithm for a GSHS
Input: Initial measure π0, end time T , decreasing se-

quence of closed subsets Dk = {(θt,xt) ∈ Ξ},
Dk−1 ⊃ Dk, k ∈ {1, . . . ,m}. Also D0 =
Ξ, Qk = (0, T ) ×Dk and number of particles
NP

Output: Estimated reach probability γ̄

0.0.0. Initiation: Generate NP particles
ξi0 ∼ π0, i ∈ {1, . . . , NP },
i.e. π̄0(·) =

∑NP
i=1

1
NP

δ{ξi0}
(·), with Dirac δ. Set k = 1

I. Mutation (Algorithm 2):
for i = 1, . . . , NP do

ξ̄ik = Execute(ξik−1)
end
Then, p̄k(·) =

∑NP
i=1

1
NP

δ{ξ̄i
k
}(·)

II. Conditioning:
γ̄k =

NSk
NP

with NSk =
∑NP

i=1 1(ξ̄
i
k ∈ Qk)

if NSk = 0 then
γ̄k′ = 0, k′ ∈ {k, . . . ,m} and go to Step V

end
III. Selection: π̃k(·) = 1

NSk

∑NSk
i=1 δ{ξ̃i

k
}(·), with {ξ̃jk}

NSk
j=1

the collection of ξ̄ik ∈ Qk, i ∈ {1, . . . , NP }
IV. Splitting: { ˜̃ξjk}

NSk
j=1 is a random permutation of {ξ̃jk}

NSk
j=1

for i = 1, . . . , NSk copy

Step I :


ξik =

˜̃
ξik

ξ
NSk

+i

k =
˜̃
ξik

...
...

ξ
(⌊NP /NSk

⌋−1)NSk
+i

k =
˜̃
ξik

end
for i = 1, . . . , NP − ⌊NP /NSk⌋NSk copy

Step II : ξ
⌊NP /NSk

⌋NSk
+i

k =
˜̃
ξik

end
Each particle receives weight 1/NP

V. if γ̄k ̸= 0 then
if k < m, then

k := k + 1 and go to Step I (Mutation)
else

γ̄ =
∏m

k=1 γ̄k
end

else
γ̄ = 0

end

The factorization presented in the following proposition
holds significant practical value by which the reach prob-
ability γ is expressed as a product of individual probabilities
γk. This factorization allows us to systematically explore and
estimate the contribution of each level Dk to the overall rare-
event probability.

Proposition 4.1: The factorization is satisfied by the reach
probability

γ =

m∏
k=1

γk, (8)

where γk ≜ E
{
χk=1

∣∣χk−1=1
}
= P

(
τk<T

∣∣ τk−1<T
)
.

By using the strong Markov property of {θt,xt}, one can
develop a recursive estimation of γ using the factorization in
(8) with Ξ′ ≜ R×Ξ, ξk ≜ (τk, θτk ,xτk), Qk ≜ (0, T )×Dk,
for k ∈ {1, . . . ,m}, and the conditional probability measure
πk(B) ≜ P(ξk ∈ B|ξk ∈ Qk), for an arbitrary Borel set B



of Ξ′. A solution to the recursion of transformations is given
by πk as follows [16]:

πk−1(·)
I. mutation−−−−−→ pk(·)

III. selection−−−−−−→ πk(·)y II. conditioning

γk

where pk(B) ≜ P(ξk ∈ B|ξk−1 ∈ Qk−1). By employing
the same approach, the following algorithmic steps outline
the numerical estimation of γ using the IPS method:

πk−1(·)
I. mutation−−−−−→ pk(·)

III. selection−−−−−−→ π̃k(·)
IV. splitting−−−−−→ πk(·)y II. conditioning

γk

Here, γk, pk, and πk indicate empirical density approxima-
tions of γk, pk, and πk, each of which is formed employing a
set of NP particles. Those particles that succeed in reaching
Qk from Qk−1 form π̃k. Here, four steps must be taken to
estimate the reach probability γ, including mutation, condi-
tioning, selection, and splitting. The mutation step consists of
executing the SHS A∗, where system equations are evaluated
at time t until the next time instant t+ = min{t+∆, s̄t, τ̄k},
in which ∆ is a small time step, s̄t is the first time > t
that the solution hits the boundary of X∗, and τ̄k is the first
time that the solution hits Q∗

k = Qk × R. This evaluation
is repeated until it hits the next level set Qk and the
successful particles are collected. This execution is outlined
in Algorithm 2. The conditioning step is calculating the ratio
of NSk

successful particles reaching Qk to NP particles,
resulting the reach probability γ̄k which is zero if NSk

= 0.
In the selection step, the successful particles are selected
to be used in the splitting step, which is copying each
of the NSk

successful particles as extensively as feasible.
The approach used in splitting step is the fixed assignment
splitting, which consists of two steps. In Step I, each particle
is copied ⌊NP /NSk

⌋ times, while in Step II, the remaining
NP−⌊NP /NSk

⌋NSk
particles are chosen randomly (without

replacement) from NSk
particles and added to the ones

from Step I. Then, these steps are repeated until γ̄k, ∀k ∈
{1, . . . ,m} are obtained, and ultimately, the estimated reach
probability γ̄ is calculated (cf. Algorithm 1).

B. Enrich GSHS with IPS Levels
As explained in Subsection II-C, a GSHS can be trans-

formed into an SHS, the simulation of which is simpler.
However, as has been explained in [24], the “remaining local
time” process {qt} of the SHS transformed version of a
GSHS should be treated as being unobservable for the IPS
process. To formalize this, [24] proposed to first enrich the
GSHS model with the IPS hitting levels Qk, k ∈ {1, . . . ,m},
and with the reset (θτk ,xτk) = (θτk−,xτk−) at a hitting time
τk. Thanks to the continuity of the latter reset, the execution
of the enriched GSHS yields the same pathwise solutions
as the execution of the original GSHS does. Subsequent
application of the transformation of Subsection II-C to this
enriched GSHS yields an enriched SHS, which also resets
the remaining local time upon reaching an IPS hitting level
Qk, k ∈ {1, . . . ,m}. In Algorithm 2, this enrichment is
reflected in the reset of the local remaining time at the be-
ginning of each IPS cycle (Step 1) through a fresh sampling
from exp(1).

The combination of Algorithms 1 and 2 starts at each IPS
cycle with NP particles, each of which has a different sample

Algorithm 2: The execution function of SHS
Input: Particle vector ξk−1 =

(τk−1, θ
∗
τk−1

,x∗
τk−1

, q∗τk−1
), SHS elements

(Θ∗, d∗, X∗, f∗, g∗, Init∗, R∗), and
Q∗

k = Qk × R
Output: Estimated particle ξ̄k = (τ̄k, θ̄

∗
τ̄k , x̄

∗
τ̄k , q̄

∗
τ̄k )

Function ξ̄k = Execute(ξk−1):
1 Set t := τk−1 and ς̄ := (θ∗τk−1

,x∗
τk−1

, q̄), with
q̄ ∼ exp(1)

2 Evaluate equation (9) for the AVs and
dqt/dt = −λ(θt,xt) from ς̄ at t until
t+ = min{t+∆, s̄t, τ̄k}; this yields ς̄+

3 if t+ ≥ τ̄k then
ξ̄k = (τ̄k, θ̄

∗
τ̄k , x̄

∗
τ̄k , q̄

∗
τ̄k ), where

if s̄t = τ̄k then
(θ̄∗τ̄k , x̄

∗
τ̄k , q̄

∗
τ̄k ) ∼ R∗(ς̄+, ·)

else
(θ̄∗τ̄k , x̄

∗
τ̄k , q̄

∗
τ̄k ) := ς̄+

end
end

4 if t+ ≥ s̄t then
ς̄ ∼ R∗(ς̄+, ·), set t := t+ and repeat from Step

2
end

end

of remaining local time q∗τk−1
. Without the enrichment of

SHS with the IPS levels, the NP particles would only have
different remaining local time q∗0 at the start of the first IPS
cycle. As demonstrated in [24], particle diversity increases
with the rising IPS level k, thanks to this enrichment.

The next step is to specify a GSHS for the scenario to be
considered, as explained below.

Scenario: Consider two AVs i, j ∈ E , driving in the
first and third lanes of a three-lane highway, each is
followed by another vehicle while also following a
leading one. There is a free spot in the second lane,
as illustrated in Fig. 1, and there exists a specific
moment in time when both vehicles decide to change
lanes. Quantify the potentially rare collision proba-
bility γ of these two subject vehicles by assuming
that ER possesses SA and is modeled as a GSHS.

V. OUR FRAMEWORK THROUGH A CASE STUDY

For the sake of better illustration of the underlying concept
and technicality, we present a running case study which
utilizes the model of a vehicle for AVs E .

A. Ego Vehicles Modeling
We consider the following 5D model, adapted from [29],

for each ego vehicle i ∈ E :

dxt,i = (vxi cos(ϑt,i)− vyt,i sin(ϑt,i))dt+ ε1dPt + ε2dWt,

dyt,i = (vxi sin(ϑt,i) + vyt,i cos(ϑt,i))dt+ ε1dPt + ε2dWt,

dϑt,i = ωt,idt,

dvyt,i= (
Fyf

m
cos(ut,i) +

Fyr

m
− vxiωt,i)dt,

dωt,i = (
Lf

Iz
Fyf cos(ut,i)−

Lr

Iz
Fyr)dt, (9)



where xt,i and yt,i are the positions of the vehicle’s center
of gravity in x and y directions, respectively, ϑt,i is the
vehicle’s orientation, vyt,i

is the velocity in the y direction
whereas vxi

is the constant velocity in the x direction, ωt,i

is the yaw rate, Pt is a Poisson process with rate λ1 and
reset term ε1, and Wt is a Brownian motion with diffusion
term ε2. The only control input is the front wheel steering
angle ut,i. Note that since this work is concerned with the
verification problem, not controller synthesis, this control
input is assumed to be already designed and deployed to the
vehicle. The primary objective here is to conduct analysis and
compute the rare collision risk probability. Incorporating the
stiffness coefficients for front and rear tires Cαf and Cαr,
respectively, the forces acting on the front and rear tires Fyf

and Fyr, assuming a linear tire model, can be expressed as

Fyf = −Cαfαf , Fyr = −Cαrαr,

where the two slip angles αf and αr are as

αf =
vyt,i

+ Lfωt,i

vxi

− ut,i, αr =
vyt,i

− Lrωt,i

vxi

,

with Lf and Lr being the distance from the vehicle’s center
of gravity to the front and rear wheels.

The components of the GSHS model can be determined
according to Definition 2.1 as follows:

f(θt,i,xt,i) = col
(
vxi

cos(ϑt,i)− vyt,i
sin(ϑt,i),

vxi
sin(ϑt,i) + vyt,i

cos(ϑt,i), ωt,i,

Fyf

m
cos(ut,i) +

Fyr

m
− vxi

ωt,i,

Lf

Iz
Fyf cos(ut,i)−

Lr

Iz
Fyr

)
, (10a)

g(θt,i,xt,i) = ε2 col
(
1112×1,0003×1

)
, (10b)

where xt,i = col(xt,i, yt,i, ϑt,i, vyt,i , ωt,i).
In order to model ER with continuous states xt,ER

described by (9) as a GSHS model, we should first determine
the discrete states θt,ER. To this aim, we define θt,ER ∈
ΘER as the modes of driving where

ΘER = {0, 1, 2,−1, Hit},

in which each component indicates when the AV ER

• 0: is moving straight, 1: is changing lanes;
• 2: is aware of the other vehicle changing lanes;
• −1: is changing its decision (changing lanes in the

opposite direction, i.e., returning to its previous lane);
• Hit: collides with the other vehicle.

Then, we define υt ∈ Υ which indicates the intent of the
vehicle, with set Υ being defined as

Υ = {Off, 1+, 1−},

in which each component indicates:
• Off : when the indicators of the AV is off and it is

likely not to change lanes;
• 1+: when the right indicator of the AV is flashing and

it is changing its lane to the corresponding lane;
• 1−: when the left indicator of the AV is flashing and it

is changing its lane to the corresponding lane.
Discrete state of the AV ER is θt,ER = (θt,ER, υt) ∈ ΘER,
with ΘER as follows:
ΘER =

{
(0, Off), (1, 1−), (2, 1−), (−1, 1+), (Hit, ⋆)

}
,

where, the element denoted by ⋆ is non-contributory, meaning
that its value has no impact on the outcome. Analogously, we
define discrete states θt,EL of the other AV. However, since
EL is assumed not to have SA, the modes 2 and −1 are
not applicable for it. Therefore, θt,EL ∈ ΘEL with ΘEL =
{0, 1, Hit}. Hence, θt,EL = (θt,EL, υt) ∈ ΘEL, with ΘEL

defining as
ΘEL =

{
(0, Off), (1, 1+), (Hit, ⋆)

}
.

B. MA-SA Modeling
Now that the AVs are modelled, we can define MA-SA

relations for AV ER. To this aim, we define the continuous-
valued SA state vector as

x̂EL
t,ER = col(x̂t,EL, ŷt,EL, ϑ̂t,EL, v̂yt,EL

), (11)

and augment it with xt,ER, resulting in continuous-valued
state vector with SA zt,ER = col

(
xt,ER, x̂

EL
t,ER, ηt,ER

)
∈

R10, in which ηt,ER indicates the amount of time passed
since the AV ER becomes aware of the other’s intention to
change its lane. Thus, ZEL

ER is defined as
ZEL
ER =

{
(6, 1), (7, 2), (8, 3), (9, 4)

}
=

{
x̂t,EL, ŷt,EL, ϑ̂t,EL, v̂t,EL

}
.

Similarly, the augmented discrete-valued state vector with
SA is

θ̌t,ER = col
(
θt,ER, θ̂

EL
t,ER

)
, (12)

where θt,ER ∈ ΘER and θ̂EL
t,ER ∈ ΘEL. Hence, the GSHS

model of the AV ER has hybrid states (θ̌t,ER, zt,ER).
The augmented continuous states zt,ER evolve within the
switching moments of {θ̌t,ER} as
f̌(θ̌t,ER, zt,ER) = col

(
f(θt,ER,xt,ER), f̂(θ̂

EL
t,ER, x̂

EL
t,ER), 1

)
,

where f(θt,ER,xt,ER) is as in (10a), and f̂(θ̂EL
t,ER, x̂

EL
t,ER)

is as follows:
f̂(θ̂EL

t,ER, x̂
EL
t,ER) =

col
(
vxEL

cos(ϑ̂t,EL)− v̂yt,EL
sin(ϑ̂t,EL),

vxEL
sin(ϑ̂t,EL) + v̂yt,EL

cos(ϑ̂t,EL), ωt,EL,

Fyf

m
cos(ut,EL) +

Fyr

m
− vxEL

ωt,EL

)
. (13)

In addition, for hybrid states (θ̌t,ER, zt,ER), we define
ǧ(θ̌t,ER, zt,ER) = col

(
g(θt,ER,xt,ER), ĝ(θ̂

EL
t,ER, x̂

EL
t,ER), 0

)
,

in which g(θt,ER,xt,ER) is as in (10b), and
ĝ(θ̂EL

t,ER, x̂
EL
t,ER) = 0004×1.

Remark 5.1: Another discrete-state SA that can be gener-
ally considered is the identity of vehicles. This information
can be obtained as initial data from the object and treated as a
time-invariant state, incorporated into the vehicle’s decision-
making process.
C. Splitting Levels in IPS

Since both vehicles are moving, reaching static level sets
Dk, k ∈ {0, . . . ,m}, detailed in Section IV, is not applicable
anymore. To deal with this problem, we consider a set of
ellipses around each AV of the following form

Ok,i :=
{ (x−xt,i)

2

r2xk

+
(y−yt,i)

2

r2yk

=1
∣∣k∈{1,. . . ,m}

}
, (14)

where rxk
and ryk

are the primary axes, and (xt,i, yt,i), with
i ∈ E , is the center of each ellipse. Then, we determine
whether Ok,i ∩ Ok,j ̸= ∅, for i, j ∈ E , i ̸= j. This



Om,i · · · O3,i O2,i O1,ii ∈ E

Fig. 2: Ellipsoidal level sets Ok,i as in (14) around each AV.

demonstrates that the AVs are getting closer to each other and
that they might collide. To be more precise, the intersection
of the last ellipses, i.e., Om,i∩Om,j ̸= ∅, for i, j ∈ E , i ̸= j,
means that the accident has happened. We choose Om,i

to be a circumscribed ellipse, i.e., the tightest one around
the AVs, with primary axes rxm = Rx =

√
2
2 lv and

rym
= Ry =

√
2
2 wv , with lv and wv being the length and

width of the vehicle, respectively. It is noteworthy that the
ellipses are nested subsets within the domain Ξ as well, i.e.,
Oi=Om,i ⊂ Om−1,i⊂· · ·⊂O1,i⊂O0,i⊆Ξ. This setting of
level sets is depicted in Fig. 2.

As long as the AV EL is not close enough to the AV ER
so that it can receive the necessary information for situation
awareness, we assume the AV ER is not aware of the AV
EL. To demonstrate this behavior, we consider the ellipse
OSA,i as defined in (14) as the area of awareness around each
AV with primary axes µrx and µry . Whenever the awareness
ellipses of the two AVs intersect, i.e., OSA,i ∩ OSA,j ̸= ∅,
the AV ER becomes aware of the other AV and can receive
information for (11) and (12). Upon recognizing the presence
of EL, if θ̂EL

t,ER = (1, 1+), i.e., EL is changing lane, it
will take ER some time to transit to θt,ER = (2, 1−)
and decide for its next move. This delay can be modeled
as an instantaneous transition rate λ2(θ̌t,ER, zt,ER) which
satisfies
λ2(θ̌, z) = χ

(
θt,ER = (1, 1−)

)
pdelay(η)/

∫ ∞

η

pdelay(s)ds,

(15)
where pdelay(s) = s

µ2
d
e−s2/(2µ2

d), with the mean reaction
delay µd being a Rayleigh density.

D. Ego Decision-making

Upon obtaining data from the SA vector (11) of a neigh-
boring vehicle, the ego vehicle must determine its course
of action in the event of a potential collision. Time-related
measures can be used as a cue for decision making, one of
which is time-to-collision (TTC) measure. A shorter TTC
indicates a higher risk of collision. The TTC for a vehicle α
at a given moment t, concerning a preceding vehicle α− 1,
following the same path, can be computed using

TTCα =
xt,α−1 − xt,α − lα−1

vt,α − vt,α−1
, ∀vt,α > vt,α−1, (16)

where l is the length of the vehicle [30]. Different mod-
ifications have been made to (16) in various studies. An
innovative method is recently proposed in [31] for computing
TTC in both car-following and lane-change scenarios by
incorporating the equation of motion and vehicle direction.
To do so, the category of the collision is firstly identified

Algorithm 3: Determining the predicted collision
point between two vehicles

Input: Current coordinates (x0,sub, y0,sub) and
(x0,col, y0,col) of the subject and colliding
vehicles

Output: The common collision point (cx, cy), if it exists

1 Construct the equation of two lines as the motion path
of each vehicle using their current position coordinates
(x0,sub, y0,sub) and (x0,col, y0,col):

yt,sub = xt,sub tanφsub + (y0,sub − x0,sub tanφsub)

yt,col = xt,col tanφcol + (y0,col − x0,col tanφcol)

2 Find the intersection of the lines:

yt,sub = yt,col −→
{
xsub = xcol = cx,
ysub = ycol = cy

3 Solve the following equations for t:
cx = x0,sub +

k∑
n=1

( 1

n!
×

∂nxt,sub

∂tn
× tn

)
, k ∈ N

cx = x0,col +
k∑

n=1

( 1

n!
×

∂nxt,col

∂tn
× tn

)
, k ∈ N

cy = y0,sub +
k∑

n=1

( 1

n!
×

∂nyt,sub

∂tn
× tn

)
, k ∈ N

cy = y0,sub +
k∑

n=1

( 1

n!
×

∂nyt,col

∂tn
× tn

)
, k ∈ N

4 if t ∈ R+ for each of the four equation exists then
(cx, cy) is the predicted collision point and TTCsub

can be calculated for this point
else

There is no predicted collision point and
TTCsub = ∞

end

as either angular or rear-end, with the latter occurring fre-
quently in car-following scenarios. The type of collision is
determined by the angle between the movement trajectories
of two vehicles, which is represented as a vector whose start
and end points are the vehicle’s coordinates at the previous
and current time instants, respectively. The movement angle
of each vehicle can be calculated as provided in Table I.

TABLE I: Calculating the angle of motion for each vehicle.

Condition Angle φ
x2 > x1 arctan

∣∣ y2−y1
x2−x1

∣∣
y2 > y1
x2 < x1 π − arctan

∣∣ y2−y1
x2−x1

∣∣
y2 > y1
x2 < x1 π + arctan

∣∣ y2−y1
x2−x1

∣∣
y2 < y1
x2 > x1 2π − arctan

∣∣ y2−y1
x2−x1

∣∣
y2 < y1

If the angle of a prospective collision, which is the absolute
difference between the angles of motion of two vehicles,
falls between −10 and +10 degrees and both vehicles are
traveling in the same lane, the conflict is considered a rear-
end collision. The necessary and sufficient condition for rear-
end collision is as follows:
xt,α − xt,α−1 + lα−1 = 0 ⇐⇒ Rear-end collision. (17)

Assuming the (k − 1)th derivative of velocity is constant,
we can derive an approximate equation of motion for each
vehicle as follows:



Algorithm 4: TTC calculation for angular con-
flicts

Input: Predicted collision point for the subject vehicle,
i.e., (xt,sub, yt,sub) = (cx, cy) and its current
location (x0,sub, y0,sub)

Output: TTCsub for the subject vehicle

1 Calculate the distance between the current location of the
subject vehicle and the predicted collision point:

dsub =
√

(cx − x0,sub)2 + (cy − y0,sub)2

2 Calculate time to the predicted collision point based on
the type of motion:

dsub =

k∑
n=1

( 1

n!
× ∂nxt,sub

∂tn
× tn

)
cosφsub or sinφsub

3 if ∃i ∈ {1, . . . , k}, ti /∈ R+ then
TTCsub = ∞

else
TTCsub = min{ti ∈ T |ti ∈ R+}

end


xt,α = x0,α +

k∑
n=1

( 1

n!
× ∂nxt,α

∂tn
× tn

)
,

xt,α−1 = x0,α−1 +
k∑

n=1

( 1

n!
× ∂nxt,α−1

∂tn
× tn

)
.

(18)

Combining (17) and (18) results in the kth degree polynomial
x0,α−x0,α−1 + lα−1+

k∑
n=1

( 1

n!
×
[∂nxt,α

∂tn
− ∂nxt,α−1

∂tn

]
× tn

)
= 0,

(19)

whose solution is T = {t1, t2, . . . , tk}. Then,

TTCk = min{ti ∈ T |ti ∈ R+}, (20)

implying that TTCk is the minimum, non-zero and real
solution of (19).

When dealing with angular collisions, the initial step
involves ascertaining whether a subject vehicle “sub” and
a colliding vehicle “col” share a common collision point,
at which TTC can be calculated. In order to compute the
common collision point, the motion path of each vehicle is
determined by constructing line equations for each based on
their calculated angles, as in Step 1 of Algorithm 3. The
intersection of these lines results in the point (cx, cy), which
might be the common collision point according to (21). Then,
the motion type of each vehicle is determined by examining
their previous positions in x and y directions at each time
instant:

xt,sub=x0,sub+
k∑

n=1

( 1

n!
× ∂nxt,sub

∂tn
×tn

)
, k∈N,

yt,sub=y0,sub+
k∑

n=1

( 1

n!
× ∂nyt,sub

∂tn
×tn

)
, k∈N,

(21a)


xt,col=x0,col+

k∑
n=1

( 1

n!
× ∂nxt,col

∂tn
×tn

)
, k∈N,

yt,col=y0,col+
k∑

n=1

( 1

n!
× ∂nyt,col

∂tn
×tn

)
, k∈N.

(21b)

We solve (21a) and (21b) at the point (cx, cy) for t and
then examine the solutions. If t ∈ R+, then the point (cx, cy)
is considered as the common collision point. The necessary
steps to specify the collision point are given in Algorithm 3.
Then, if a common collision point exists, TTC for the subject
vehicle can be determined. To this aim, the distance dsub

between the subject vehicle and the collision point (cx, cy)
resulting from Algorithm 3 is calculated. Then, we calculate
the time it takes the subject vehicle to drive this distance,
either in the x or y direction. This results in a set of solutions,
T = {t1, t2, . . . , tk}, with k being the order of the motion
equation, for which we check whether all t in T are real and
positive. If this condition is satisfied, the minimum t in T is
TTC; otherwise, no collision will occur. This procedure is
outlined in Algorithm 4. In the process of TTC computation,
the subject vehicle utilizes the information provided by the
SA vector (11).

When the AV ER is in making decision mode (2, 1−),
indicating awareness of another AV changing lanes, it cal-
culates the TTC measure to determine whether to complete
its maneuver or change its decision and return to its own
lane (transition to mode (−1, 1+)). We consider a threshold
TTCth so that if TTCER ≤ TTCth, completing the
maneuver is hazardous and the AV ER will go back to
its own lane. The transition graphs of the completed GSHS
models for AVs i = ER and j = EL are provided in Figs.
3a and 3b, respectively.

VI. SIMULATION RESULTS AND DISCUSSIONS

In order to utilize Algorithm 1, we first need to define the
level sets as described in (14). We assume each AV has six
ellipses around it with the primary axes rxk

= rkRx and
ryk

= rkRy for all k ∈ {1, . . . , 6}, where r1 = 2 and the
declining rate is 0.2, leading to r6 = 1. The parameters of the
AVs described by (9) are set as vxi

= 20m/s, ε1 = 10−6,
ε2 = 10−2, λ1 = 0.5, m = 2000 kg, Iz = 2000 kgm2,
Cαf = Cαr = 6 × 104, Lf = Lr = 2m, lv = 4.508m,
and wv = 1.61m. To perform a lane-change maneuver, we
utilize a simple PD controller of the form ut,i = Kp

(
yd,i −

yt,i
)
−Kd

dyt,i

dt with Kp = 1.5×10−3, Kd = 10−2, and yd,i is
the desired position in the y direction. In the scenario under
study, we set wL = 3.5m, µd = 0.6 s, and TTCth = 10 s.

Our aim is to analyze the effect of the area of awareness
OSA,ER, based on the different values of µr in µrx =
µrRx and µry = µrRy . To increase the reliability of
the outcomes, we run the scenario N times and get the
results γ̄n, n ∈ {1, . . . ,N}. Then, we report the mean
probability γ̂ =

∑N
n=1 γ̄n

N as the estimated probability of
reaching O6,ER∩O6,EL ̸= ∅. We report our obtained results
in Table II with N = 100 trials and NP = 100 particles
for Algorithm 1 and the corresponding Monte-Carlo (MC)
simulation for the sake of comparison.

The highlights of simulation results can be considered
threefold, which are given below:

• The scenario’s parameters are considered in a way that
an accident occurs in the absence of SA;

• Given that an accident occurs in this scenario due to the
lack of SA, it becomes evident how SA plays a crucial
role in reducing accident risk. Furthermore, Table II
illustrates that even minor adjustments in SA parameters
can significantly affect collision probabilities;

• Finally, Table II underscores the superiority of the IPS-
FAS algorithm over MC simulation. While MC yields
a zero probability outcome, IPS-FAS provides a prob-
ability on the order of 10−7, highlighting its precision.
Given that AVs belong to safety-critical systems, the
precision of calculations within their decision-making
is of vital importance.
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Fig. 3: GSHS model transition graphs for AVs i = ER (a), and j = EL (b), where, wL represents lane width, and Tlci ,
Tlcj signify moments when vehicles i and j decide to change lanes, respectively. The intent υ̂j

t,i is obtained from θ̂jt,i.

TABLE II: The value of mean probability γ̂ for various µr using Algorithm 1 and MC (m = 1).

Algorithm µr

1.5825 1.6275 1.6725 1.7 1.7375

IPS-FAS 1.9131× 10−4 8.6350× 10−5 7.6300× 10−6 2.8725× 10−6 5.4320× 10−7

MC 1.8000× 10−4 7.9000× 10−5 0 0 0
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