
CP for Scheduling under Uncertainty
A Comparative Study of STNUs against Proactive and Reactive

Approaches

Mayte Steeghs1
Supervisor(s): Mathijs de Weerdt 1, Kim van den Houten1, Léon Planken1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 26, 2025

Name of the student: Mayte Steeghs
Final project course: CSE3000 Research Project
Thesis committee: Mathijs de Weerdt, Kim van den Houten, Léon Planken, Jasmijn Baaijens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

This report investigates the effectiveness of Simple Temporal Networks with Uncer-
tainty (STNUs) for solving the Stochastic Flexible Job-Shop Scheduling Problem with
Sequence-Dependent Setup Times (SFJSP-SDST), comparing it against proactive and
reactive Constraint Programming (CP) approaches. Using a benchmark dataset with
varying noise levels, the study evaluates solution quality, feasibility, and computational
cost. Results show that the reactive method achieves the lowest makespan due to its dy-
namic rescheduling capability but incurs high online computation time. The proactive
method offers fast execution, while the STNU-based approach provides a dynamically
controllable schedule, albeit with conservative makespans.

1 Introduction
Industry 4.0 “digital factories” demand agile shop-floor scheduling algorithms that can react
in real time to stochastic processing times, a natural fact of real-life manufacturing processes.
The Flexible Job-Shop Problem Scheduling with Sequence-Dependent Set-Up Times (FJSP-
SDST) extends the classical job-shop by allowing multiple alternative machines per operation
and by imposing set-up times that depend on the order of consecutive tasks on the same
machine. This temporal constraint reflects the dependencies present in many high-tech
manufacturing processes.

Job-shop scheduling problems (JSP) with sequence-dependent setup times are known to
be strongly NP-hard combinatorial problems [9]. Previously, Mixed Integer Programming
(MIP) methods such as BACCHUS [8] and SORU-H [7] were considered state-of-the-art
[20] for deterministic scheduling. However, recent work by Naderi et al. [16] demonstrates
that Constraint Programming (CP) outperforms MIP across a wide range of benchmark-
ing scheduling problem instances. This opens a research gap for finding robust proactive
schedules or reactive approaches with rescheduling during execution, which was previously
considered too computationally heavy [20].

Deterministic FJSP-SDST instances remain NP-hard and have been tackled with MIP, CP,
and meta-heuristics (e.g., Evolutionary Algorithms, Variable Neighborhood Search, and Sim-
ulated Annealing) [1]. However, these deterministic schedules lose feasibility or optimality
when activity durations deviate from their nominal values.

More recently, AI-enhanced and learning-based methods have been explored to solve FJSP
variants by learning heuristics or generating schedules from data [5]. While promising in
scalability and adaptability, these methods often require extensive training data and lack
rigorous feasibility guarantees under uncertainty. In contrast, graph-theoretic approaches
such as Simple Temporal Networks with Uncertainty (STNUs) offer provable guarantees of
feasibility under bounded duration uncertainty [17].

Recent work by van den Houten et al. [20] showed that representing a resource-feasible
partial-order schedule (POS) as a STNU, and dispatching it with the real-time algorithm
RTE* [10], can outperform proactive and reactive CP approaches on the stochastic RCPSP/max
benchmark. Yet, the potential of STNUs for multi-machine, sequence-dependent problems
such as FJSP-SDST has not been studied.

In this paper, we investigate whether an STNU-based method yields superior solution qual-

1

ity and runtime for the stochastic Flexible Job-Shop Scheduling Problem with sequence-
dependent set-up times compared to proactive and reactive CP methods. Specifically, we
address the following research questions

1. How does uncertainty affect performance and feasibility of solutions?

2. To what extent do sequence-dependent set-up times affect makespan, the feasi-
bility ratio, and computational time (both offline and online)?

3. How robust are the different methodologies when scaling input problem size?

We hypothesize that the STNU-based method will achieve a lower expected makespan and
higher feasibility ratio than both proactive and reactive CP approaches, owing to its use of
dynamic controllability to absorb stochastic duration deviations. Moreover, we anticipate
that the STNU framework will incur lower online computation time, especially as instance
size grows, by avoiding repeated CP solves required by the reactive method.

2 The Scheduling Problem

(a) FJSP (b) FJSP with SDST (c) Stochastic FJSP with SDST

Figure 1: Scheduling Example Stochastic FJSP with SDST

The scheduling problem studied in this work is the Flexible Job Shop Problem (FJSP) with
sequence-dependent setup times (SDST) and stochastic task durations. This section defines
the key components of the problem formulation.

Flexible Job Shop Problem (FJSP)
Let J denote the set of jobs, T the set of tasks, and M the set of machines. A job j ∈ J
consists of a sequence of tasks denoted as Tj ⊆ T . Each task t ∈ T must be assigned to
exactly one machine m ∈ M . Each machine can process at most one task at a time. The
tasks t1, t2, . . . , tn ∈ Tj associated with job j must be scheduled in order, such that each
task ti+1 cannot start until ti has completed.

A schedule specifies, for each task t ∈ T : (i) its start and end times, and (ii) the machine to
which it is assigned, while respecting all precedence and resource constraints. The objective
is to minimize the maximum end time, also known as the makespan.

2

Sequence-Dependent Setup Times
For each machine m ∈ M , a sequence-dependent setup time st,t′,m ≥ 0 is defined for every
ordered pair of tasks (t, t′) scheduled consecutively on m. This represents the time required
to reconfigure the machine from task t to task t′. Sequence-dependent setup times are
generally considered one of the more challenging aspects of scheduling problems [12]. SDST
can be visualized as gaps between tasks on the same machine as illustrated by the differences
in Figure 1 a and Figure 1 b

Stochastic Task Durations
In real-world applications such as semiconductor fabrication or bio-based manufacturing,
task durations are typically uncertain. We assume that task durations follow a stochastic
distribution. This extension of the FJSP is referred to as the Stochastic FJSP (SFJSP), and
it is considered even more difficult to solve due to the uncertainty involved in task durations
[6].

Task durations are modeled as independent random variables denoted by dj , representing
the duration of task j. Each duration becomes known upon task completion. We assume
that each dj follows a discrete uniform distribution, i.e., dj ∼ DiscreteUniform(lbj , ubj),
where lbj and ubj are the minimum and maximum possible durations for task j [20]. Figure
1 c visualizes this stochasticity by illustrating how 4 samples of dj might yield 4 distinct
schedules.

2.1 CP Model Formulation
CP is a paradigm used to solve constraint satisfaction problems. These problems consist of
a finite set of variables, each having a discrete domain, and a set of constraints that must
be satisfied. Applying this to FJSP, we introduce the following interval variables:

∀t ∈ T, ∀m ∈M : τt,m : [start, end],

∀t ∈ T : τt : [start, end],

The CP model given those interval variables and the constraints presented above:

min max
t∈T

EndOf(τt) s.t.

∀t ∈ T : Alternative
(
τt, {τt,m}m∈M

)
(1)

∀j ∈ J, ∀(tj , tj+1) : EndBeforeStart(τtj , τtj+1
) (2)

∀m ∈M : NoOverlap
(
{τt,m}t∈T ; transition = st,t′,m

)
(3)

The objective function minimizes the makespan, defined as the maximum completion time
of all tasks. Constraint (1) ensures that each task is assigned to exactly one machine from its
set of available alternatives. Constraint (2) enforces the precedence relations within each job.
Constraint (3) maintains that machines process at most one task at a time, incorporating
sequence-dependent setup times.

3

This formulation is adapted from Echeverria et al. (2024) [5] with noOverlap (3) now being
subject to sequence dependent set-up times. The syntax used is consistent with the IBM
CP Solver syntax introduced by Laborie et al. (2018) [11].

3 Scheduling Methods
In the stochastic scheduling literature, two primary paradigms are distinguished: proactive
and reactive approaches. Proactive scheduling seeks to construct a robust schedule a priori,
anticipating uncertainties before execution, whereas reactive scheduling continually adjusts
the scheduling in real time at each decision moment. These paradigms represent opposing
ends of a methodological continuum; in both practice and literature, hybrid approaches are
common [20]. In Flexible Job Shop Scheduling literature in particular, approaches commonly
rely on sampling and optimization, leaning firmly on the more proactive side [3].

In this section, we briefly summarize the scheduling methods put forward by van den Houten
et al.’s, adapted for FJSP with SDST and implemented in PyJobShop, an open-source
Python library for solving scheduling problems with constraint programming [13]. Imple-
mentation details will only be mentioned where relevant. Pseudocode to aid the readers
understanding can be found in Appendix A

3.1 Proactive Method
The proactive paradigm produces a robust schedule entirely offline; the feasibility of this
schedule is then verified.

• Offline: Replace each uncertain processing window [ℓj , uj] by a fixed quantile duration
d̂j (i.e. the γ–quantile). Solve the resulting deterministic problem to obtain start times
Sj and machine assignments that remain feasible given that the realized durations do
not exceed d̂j (Proposition 1 in Van den Houten et al. [20]).

• Online: As soon as a task finishes, reveal its true duration and verify that all yet-
to-start operations can still begin at their pre-computed Sj without violating any
constraints.

The hyper-parameter γ governs the trade-off between robustness and makespan: γ = 1
yields the most conservative (upper-bound) schedule, whereas smaller γ values shorten the
planned makespan at the risk of constraint violations if durations overrun d̂j .

3.2 Reactive Method
Reactive scheduling repeatedly reoptimizes once an operation’s duration deviates from its
offline estimate.

• Offline: Same as offline step of proactive method.

• Online: At every decision moment (when a task finishes), we resolve the deterministic
problem but fix all the tasks we have already completed which we know now the actual
durations of. We use the estimated durations for the tasks not yet completed.

4

Each realization of a duration immediately triggers a deterministic CP solve, dramatically
increasing the online computation time, especially for larger instances. Therefore, the time
limit Ton for resolving must be chosen carefully: too small, and rescheduling may fail to
find any feasible partial schedule; too large, and online computation time may become
prohibitive.

3.3 STNU-based Method
The Simple Temporal Network with Uncertainty (STNU) approach integrates proactive
robustness with reactive adaptability through partial order schedules (POS). We use the
concept of dynamic controllability (DC), as defined by Morris (2014) [15], guarantees that
scheduling decisions remain feasible across all possible outcomes of these uncertain durations.

The STNU method comprises three principal phases:

• Offline: Same as offline step of proactive and reactive methods, but uses γ = 1.

• Construct STNU: The Partial Order Schedule (POS) derived from the CP solution
is used to construct the STNU.

• DC Check: We verify the STNU’s DC property. If DC, the STNU provides input to
the Real-Time Execution (RTE*) algorithm [10], which adaptively schedules tasks in
real-time, adjusting to actual operation durations as they occur.

In our STNU framework, each sequence-dependent setup time is encoded as a single ordi-
nary edge from the finish node of task i to the start node of task j on machine m with
weight st,t′,m, thereby enforcing the deterministic delay directly in the temporal graph. An
alternative would have been to model each setup as a “dummy” task (introducing a start and
finish node plus a zero-variance contingent link), but that approach would inflate the graph
by two nodes per setup, slow down dynamic-controllability checks, and require special-case
handling in the reactive dispatcher. By using ordinary edges, we keep the STNU compact,
semantically clear, and efficient in both DC checking and online execution.

4 Experimentation
We evaluate the three scheduling paradigms on the FJSP–SDST benchmark of Fattahi
et al. (2007) [19], taken from the Job-Shop Benchmark Suite of Reijnen et al. (2023) [18].
Stochastic variants are generated by sampling durations from discrete uniform distributions
for noise levels ϵ = {1, 2}.

The two independent variables studied are the noise level ϵ and the scheduling methods, We
record the (i) solution quality, split into makespan and feasibility, and the (ii) CPU time,
split into offline initialization and online execution. For each of the 20 benchmark instances
we generate 10 independent samples, resulting in 2× 10 runs per method.

All CP models are solved in PyJobShop with the IBM CP solver, which has native support
for sequence-dependent setup times [4].

We selected the robust γ = 1 schedule to guarantee feasibility under all realized processing-

5

Table 1: Performance and Feasibility Summary for Proactive across γ values, subset of
instances (1-18)

Mode Feasibility Ratio Avg Makespan Avg Offline Time

quantile_0.25 0.09 160.76471 0.05916
quantile_0.5 0.13 192.47826 0.08113
quantile_0.75 0.30 296.53704 0.18309
quantile_0.9 0.55 373.80808 0.50558
robust 1.00 460.66667 0.83114

time variations, thereby eliminating any risk of constraint violations during online verifica-
tion. Although this choice produces the longest planned makespan, lowering γ to 0.9 cuts
feasibility to just over 55% for only a modest reduction in average makespan as seen in
Table 1.

We select γ = 0.9 for reactive the reactive method because it delivers the best balance be-
tween makespan and online computation effort, as seen in Table 2. Compared to the fully
robust (upper-bound) and more optimistic (mean or lower quantiles) settings, the 0.9 quan-
tile minimizes total online time without incurring excessive solution quality deterioration.
We chose to evaluate the hyperparameter for the larger instances (10 - 20) because this is
where the computational online time becomes prohibitive.

Note that the reactive method is always feasible because despite ’freezing’ completed tasks,
it resolves the remaining problem, accounting for any sequencing constraints applied to the
CP solver. Since we do not have hard deadlines or resource constraints, the CP can just
spread out tasks to compensate for discrepancies.

Table 2: Performance Summary for Reactive across γ values, subset of instances (10-20)

Mode Avg. Makespan Avg. Online Time Avg. Offline Time

mean 731.91 67.80 221.47
robust 738.70 64.90 331.67
quantile0.9 735.51 65.39 264.46
quantile0.75 731.35 66.22 222.84
quantile0.5 728.86 67.20 212.35
quantile0.25 723.71 67.62 104.51

Benchmark Instances
In this section we will analyse the composition, distribution and patterns within the 20
benchmark instances which is necessary to sufficiently understand our results. All figures
and values referred to in this section can be found in Appendix B. The following properties
hold across all instances:

• Every job has the same amount of tasks.

• Every task can be scheduled on every available machine.

6

• A non-zero setup time exists between every task pair on every machine.

In our dataset, infeasible transitions between tasks on machine m are encoded by a setup
time of S∞ = 1,000,000. This value vastly the analytical worst-case horizon Hmax (≲ 33 000),
enforcing that any transition with st,t′,m ≥ S∞ is infeasible. These infeasible assignments
reduces the domain of the CP model. In large instances, up to 90% of setup times are S∞,
effectively pruning those infeasible assignments and drastically shrinking the search space
so the problem becomes tractable.

Figure 2: Z-normalized median processing times, setup times, and proportion of feasible
setup times

To compare instance characteristics on a common scale, we report z-normalized medians of
processing times, setup times, and the proportion of feasible setups in Figure ??. Notably,
instances 10 through 20 form a plateau across all three metrics, indicating consistent task
durations, setup-time distributions, and infeasibility ratios. This homogeneity implies that,
for these latter instances, observed changes in solution quality and computational effort
can be attributed primarily to increases in problem size rather than to shifts in underlying
instance structure. This assumption is necessary for answering research sub-question 3
concerning scalability. We nevertheless acknowledge that, without a detailed analysis of the
underlying structural graphs, this conclusion must remain tentative.

5 Results
We begin by examining the general trends between methods. Then we break down findings
to answer our sub-research questions, pertaining to uncertainty, sequence-depednent setup
times, and scalability respectively. Further results can be found in Appendix C

Solution Quality

Across all instances of FJSP with SDST, the reactive policy consistently attains the lowest
makespan compared to both proactive and STNU methods.

From Table 3 we can observe the following relationship of the partial ordering between
methods.

7

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [400] 13.650 (*) [400] -9.850 (*) [400] -18.450 (*)

Prop. Quality [n] prop (p) [400] 0.843 (*) [400] 0.252 (*) [400] 0.037 (*)

Magn. Quality [n] t (p) [400] -21.496 (*) [400] 11.796 (*) [400] 28.616 (*)
norm. avg. react: 0.896 stnu: 1.058 pro0.9: 1.047
norm. avg. stnu: 1.104 pro0.9: 0.942 react: 0.953

Wilc. Offline [n] z (p) [400] 6.450 (*) [400] -4.850 (*) [400] -13.950 (*)

Prop. Offline [n] prop (p) [400] 0.338 (*) [400] 0.377 (*) [400] 0.850 (*)

Magn. Offline [n] t (p) [400] 6.517 (*) [400] 6.695 (*) [400] -16.675 (*)
norm. avg. react: 1.071 stnu: 1.059 pro0.9: 0.869
norm. avg. stnu: 0.929 pro0.9: 0.941 react: 1.131

Wilc. Online [n] z (p) [400] 19.950 (*) [400] -19.850 (*) [400] -19.950 (*)

Prop. Online [n] prop (p) [400] 0.000 (*) [400] 0.002 (*) [400] 1.000 (*)

Magn. Online [n] t (p) [400] 463.854 (*) [400] 277.109 (*) [400] -23411.810 (*)
norm. avg. react: 1.955 stnu: 1.942 pro0.9: 0.001
norm. avg. stnu: 0.045 pro0.9: 0.058 react: 1.999

Table 3: Pairwise test results for ϵ = all, grouping=1-20.

reactive proactive stnu
large

Figure 3: Summarizing illustration of the partial ordering of the different methods for solu-
tion quality

The reactive method has an edge due to its ability to dynamically adjust the schedule
in real-time, effectively managing unforeseen variations in task durations. Its continuous
adaptation allows for consistently tighter scheduling and optimal machine routing. However,
it is important to acknowledge that this advantage might stem partially from the significantly
higher online computation time required by the reactive method compared to the other two
methods. Future research involving detailed hyperparameter tuning of the time-out settings
for the reactive method could ensure a more equitable comparison and potentially provide
additional insights.

In contrast to our initial hypothesis, the proactive method outperforms the STNU-based
approach in terms of makespan, particularly for larger and more complex instances. The
need to satisfy the DC property, inherently embedding significant conservatism to guarantee
feasibility under worst-case scenarios might explain this difference. In our implementation,
we explicitly model each SDST as contingent links might further compounds this conser-
vatism, resulting in substantial cumulative slack throughout the schedule. As instances grow
larger and more complex, the increased number of contingent SDST links significantly raises
the density and complexity of the STNU graph. Consequently, the stringent DC constraints
might restrict schedule flexibility, forcing tasks to start later than necessary and inflating
the makespan. Alternative implementations of the SDSTs in the STNU might avoid this
over-conservatism.

8

Offline Time

reactive proactive stnu

Figure 4: Partial ordering of the different methods for offline computation time

The following partial orderings in terms of offline computation time make sense given the
underlying implementation. The STNU and proactive methods start with the exact same
deterministic single point solution calculation, and then the STNU method goes on to con-
tsruct an STNU, increasing its offline time. The reactive method uses γ = 0.9 and therefore
has to recompute the bounds before performing this same deterministic calculation as above,
where additional offline computation time might be incurred.

Online Time

reactive proactive stnu

Figure 5: Partial ordering of the different methods for online computation time

At first glance, from Table 3 it is obvious that the reactive method has dramatically higher
online computation time, explained by the repeated CP resolves. Furthermore, the fact that
proactive has the smallest online time can be explained by the minimal constant time check
performed to verify if the scheduled constructed under estimated durations is still feasible
under the realization durations.

5.1 Uncertainty
Comparing the three methods across noise levels γ = 1, 2 as done in Table 14, we notice the
following:

• The proactive method has considerably lower makespan for ϵ = 1

• The online and offline computation times of the proactive and reactive methods are
much smaller for γ = 1 compared to γ = 2. There is no statistically significant
difference in computation times for the STNU method.

9

Test Metric reactive (ϵ = 1 vs ϵ = 2) proactive (ϵ = 1 vs ϵ = 2) stnu (ϵ = 1 vs n2)

Wilc. Quality [n] z (p) [200] 0.636 (0.525) [200] 12.374 (*) [200] 1.909 (0.056)

Prop. Quality [n] prop (p) [200] 0.475 (0.525) [200] 0.940 (*) [200] 0.570 (0.056)

Magn. Quality [n] t (p) [200] -0.327 (0.744) [200] -22.108 (*) [200] -2.017 (*)
norm. avg. ϵ = 1: 0.999 ϵ = 1: 0.969 ϵ = 1: 0.995
norm. avg. ϵ = 2: 1.001 ϵ = 2: 1.031 ϵ = 2: 1.005

Wilc. Offline [n] z (p) [200] 11.243 (*) [200] -0.071 (0.944) [200] 0.212 (0.832)

Prop. Offline [n] prop (p) [200] 0.900 (*) [200] 0.500 (0.944) [200] 0.490 (0.832)

Magn. Offline [n] t (p) [200] -17.123 (*) [200] -2.938 (*) [200] 0.468 (0.640)
norm. avg. ϵ = 1: 0.805 ϵ = 1: 0.968 ϵ = 1: 1.002
norm. avg. ϵ = 2: 1.195 ϵ = 2: 1.032 ϵ = 2: 0.998

Wilc. Online [n] z (p) [200] 10.536 (*) [200] 4.738 (*) [200] 0.495 (0.621)

Prop. Online [n] prop (p) [200] 0.875 (*) [200] 0.330 (*) [200] 0.480 (0.621)

Magn. Online [n] t (p) [200] -18.441 (*) [200] 4.998 (*) [200] 0.161 (0.872)
norm. avg. ϵ = 1: 0.888 ϵ = 1: 1.045 ϵ = 1: 1.001
norm. avg. ϵ = 2: 1.112 ϵ = 2: 0.955 ϵ = 2: 0.999

Table 4: Noise 1 vs Noise 2: pairwise tests per method (legend shows metric).

5.2 Sequence Dependent Setup Times
We performed an experiment in which we draw 10 samples for each method with different
magnitudes of sequence-dependent setup times. This is achieved by scaling the datasets
original SDST by a scale factor, denoted α = (0, 0.25, 0.5, 0.75, 1.

(a) Average makespan vs. α (b) Average offline time vs. α

Figure 6: Impact of setup-time scaling (α) on makespan and offline computation time.

In Figure 6 we observe a fairly linear increase in makespan as the sequence-dependent setup
times increase. Furthermore, we notice a more dramatic increase in computation time offline
as we scale the SDST, seeing almost a 4 fold increase.

For the online computation time we observed no statistically significant difference across
any methods.

10

5.3 Scalability
As explored in the Benchmark Section above, we can assume some features of the instances
are homogeneous, such as distribution of setup times, task durations and feasibility ratios of
setup times for instances 10 - 20. Based on this assumption, we will investigate how scaling
the input size (total # of tasks) impacts the makespan, offline and online computation times.

(a) Average makespan vs. in-
stance size

(b) Average offline time vs. in-
stance size

(c) Average online time vs. in-
stance size

Figure 7: Performance metrics (makespan, offline time, online time) as functions of instance
input size for instances 10–20.

We notice fairly linear increases in makespan as input size increases, consistent across
scheduling methods. We can assume that the inconsistencies are due to some underlying
structural factors in the instances we did not control for.

Interestingly, the average computation time offline exponentially increases dramatically as
the input size increases, observing a strong spike between 30 and 45 tasks. This pattern is
consistent across the three methods.

Finally, we observe that the online time increases quite steeply for the reactive method, unlike
the two other methods. This is inline with the fact that the reactive method recomputes at
every decision point, therefore, it is expected that as the input size increases this resolving
time will also increase.

6 Responsible Research

6.1 Reproducibility
All code, data, and environment specifications required to reproduce our experiments are
publicly available at https://github.com/kimvandenhouten/PyJobShopSTNUs/tree/fjsp-sdst/
PyJobShopIntegration. The implementation corresponding to my contribution is located
in the fjsp-sdst branch. We conducted all experiments on the 20 FJSP–SDST benchmark
instances from Fattahi et al. [19] (“Job-Shop Benchmark Suite”) to ensure comparability
with prior work in the literature [18].

Our repository is structured as follows:

• Core modeling:

– FJSP.py (basic CP model)

11

https://github.com/kimvandenhouten/PyJobShopSTNUs/tree/fjsp-sdst/PyJobShopIntegration
https://github.com/kimvandenhouten/PyJobShopSTNUs/tree/fjsp-sdst/PyJobShopIntegration

– PyJobShopSTNU.py (STNU extension)

• Experimental pipelines:

– FJSP_pipeline.py (includes STNU method)

– FJSP_pipeline_scaled.py

• Reactive vs. Proactive strategies:

– reactive.py

– proactive.py

• Evaluation:

– evaluate_gantt_plots.py (Gantt-chart analyses)

– evaluator.py (metrics computation)

– instance_exploration.py (instance-feature analysis, Appendix B)

The README file provides instructions to reproduce this experiment. Hyperparameter settings
used to perform our experiments can be found in Appendix C.

Experiments were run on a TU Delft server equipped with an AMD EPYC 7662 “Rome”
CPU (12 virtual cores, single-threaded), using IBM CP Optimizer v22.1.1. All runtimes
report the wall-clock execution time (in seconds), as measured by Python’s time.time()
function.

The number of worker threads was not explicitly fixed; PyJobShop defaults to using all
available CPU cores. This decision acknowledges that hardware configurations—such as
core counts, clock speeds, and cache sizes—vary widely across different systems, and by
relying on the default “use all cores” behavior we ensure that our results naturally adapt to
each execution environment.

6.2 Ethics
In conducting research on stochastic flexible job–shop scheduling, it is crucial to recog-
nize that responsible research extends beyond algorithmic performance and reproducibility.
Even though no human subjects are directly involved in our computational experiments,
the schedules we generate may be deployed in manufacturing settings where aggressive
makespan minimization can translate into intensified workloads, unrealistic deadlines, or de
facto surveillance of shop-floor workers. On the other hand you could argue, that a better
understanding of the uncertainty in processing times might reveal opportunities for slack
and flexibility that deterministic schedules conceal, reducing strain on workers.

Furthermore, this project was conducted collaboratively by a team of five students, each
addressing a distinct subproblem related to STNU-based scheduling under uncertainty in
parallel, upholding a transparent, respectful, and constructive workflow by each owning a
distinct subproblem and temporal constraints while jointly sharing code, providing feed-

12

back, and exchanging ideas. This collaborative approach aligns with TU Delft’s Integrity
Statement, specifically promoting: (h) transparency in day-to-day operations; (i) openness
to constructive feedback; (k) a healthy work environment; and (l) a ‘DIRECT’ culture char-
acterized by Diversity, Integrity, Respect, Engagement, Courage, and Trust [2].

7 Discussion
This section aims to reflect on the methodology choices and reliability of the experiment.

First, we adopted a sampling regime of 10 independent realizations per instance to estimate
makespan and feasibility ratios, mirroring prior work and facilitating direct comparison
with van den Houten et al. [20]. However, 10 samples may limit statistical confidence
in our results. Though we found sufficiently low p-values for our results, increasing the
number of samples would reduce variance in the estimated metrics and could reveal subtler
differences between methods at instance granularity. On the other hand, larger sample sets
impose greater computational cost, especially for the reactive method, where each deviation
triggers a full CP solve.

Second, we modeled task durations as discrete uniform random variables, however, this
might not capture real-world duration variability, which often exhibits skewness or heavy
tails [14]. Future studies should investigate alternative distributions to assess the robustness
of each scheduling paradigm under more realistic and diverse uncertainty profiles.

Third, our assumption that instances 10–20 “scale” homogeneously relies on the plateau
observed in z-normalized medians of processing times, setup times, and infeasibility ratios
(as seen in Benchmark Instances). This homogeneity suggests that increases in problem size
predominantly drive solution quality changes. However, without a deeper graph-structural
analysis this conclusion remains tentative. A more granular characterization of instance
topology could disentangle the effects of scale from structural complexity.

Fourth, all runtime measurements were recorded as wall-clock times on a shared TU Delft
server, which may have experienced fluctuating loads from concurrent users. Capturing
CPU time and performing more extensive hyperparameter tuning on the time outs of the
CP solvers in concurrence with the hardware might produce more consistent results.

Fifth, in our scaled SDST experiment we increased the magnitude of sequence-dependent
setup times while preserving the proportion of infeasible arcs. This design choice main-
tained the original graph’s connectivity pattern, simplifying isolation of magnitude effects.
Nonetheless, it may obscure interactions between infeasibility density and scheduling behav-
ior.

Finally, our study does not include comparisons against MIP-based benchmarks such as
BACCUS [8] or SORU-H [7]. Incorporating a mixed-integer programming baseline would
provide a more comprehensive perspective on the state-of-the-art, closing the literature gap
presented in the introduction.

13

8 Conclusions and Future Work
This research investigated the performance of Simple Temporal Networks with Uncertainty
(STNU) applied to the Stochastic Flexible Job-Shop Scheduling Problem with Sequence-
Dependent Setup Times (SFJSP-SDST), comparing it to proactive and reactive Constraint
Programming (CP) methods. Our results demonstrated that each scheduling paradigm
possesses distinct strengths and limitations, but general concludes that the reactive method
has a distinct advantage due to its flexibility.

The reactive CP method consistently achieved the lowest makespan, benefitting from its
ability to dynamically reoptimize schedules based on real-time task durations. However,
this advantage was counterbalanced by significantly higher online computational demands,
particularly noticeable as problem sizes increased. The proactive CP method offered com-
putational efficiency with minimal online demands, yet its schedules proved fragile under
conditions where actual task durations exceeded pre-planned buffers. The STNU-based ap-
proach struck a balance between robustness and responsiveness, ensuring feasibility through
dynamic controllability while maintaining minimal online time. However, the addition of
sequence dependent times to the STNU implementation, especially for complex instances,
made the network very dense, which might explain the increased conservatism leading to
higher makespans.

To answer our sub-questions proposed in the introduction we conclude the following:

1. Uncertainty: Raising the noise level from ϵ = 1 to ϵ = 2 inflated the proactive
makespan and increased both its offline and online times, while the reactive and STNU
makespans stayed unchanged; however, higher noise dramatically increased the reac-
tive method’s online computation.

2. SDST: increasing SDST linearly affected makespan and exponentially impacted offline
computational times

3. Scalability: Moreover, scalability tests revealed that computational requirements
grew significantly with problem size, particularly affecting the reactive method’s online
computational time.

The foremost caveat of this conclusion is that the fairly unbound online timeout of the
reactive method might inequitably bias the results. Performing hyperparamater tuning on
our dataset and setting the timeouts in an equitable way across methods, might yield new
insights. This would also better reflect real-life requirements for scheduling approaches.

Future work should explore alternative distributions for task duration uncertainty to better
reflect real-world manufacturing variability. Additionally, refining STNU implementations to
reduce inherent conservatism could further improve performance. Finally, including mixed-
integer programming methods as comparative benchmarks would enhance understanding of
the full spectrum of available scheduling solutions, bridging existing literature gaps.

14

A Scheduling Approaches Pseudocode

A.1 Proactive Method

Algorithm 1 Proactive Scheduling Method (with N samples)

Require: A Flexible Job Shop instance I with SDST, quantile γ, offline time limit Toff
Ensure: Robust start-time assignment {sj} or “infeasible”

For each operation j, let ℓj , uj be bounds of its duration; compute

d̂j =

{
ℓj , ℓj = uj ,

⌊ℓj + γ (uj − ℓj + 1)− 1⌋, otherwise.

Build CP model M for FJSP-SDST using durations {d̂j}
Solve M with CP Optimizer within Toff, yielding schedule S∗
if S∗ infeasible then return infeasible
end if
Extract offline start times start_times[1..n] from S∗
Initialize array makespan[1..N]
for t = 1 to N do

Draw duration_sample[j] ∼ Uniform(ℓj , uj) for each j
if CheckFeasible(start_times, duration_sample) = false then

return infeasible
else

makespan[t]← maxj
(
start_times[j] + duration_sample[j]

)
+ set-up delay[j]

end if
end for
return {sj}, makespan[1..N]

15

A.2 Reactive Method
Algorithm 2 Reactive Method

Require: A Flexible Job Shop instance I, duration estimates {d̃j}, offline time limit Toff,
online time limit Ton

Ensure: Robust start-time assignment {sj} and makespan

Offline Initialization:
Build CP model M for FJSP-SDST using {d̃j}
Solve M with CP Optimizer within Toff, yielding schedule S∗
if S∗ infeasible then return infeasible
end if
Extract est_starts[j] from S∗; set current_sol← S∗
Initialize completed← ∅ and {real_fin[j]} undefined
durations← {d̃j}

Online Execution:
while

∣∣completed∣∣ < n do
Observe real finish times for all j /∈ completed:

real_fin[j] ← est_starts[j] + realized_duration[j]

Let j′ = argmin j /∈completed real_fin[j]; set tnow ← real_fin[j′]
Add j′ to completed
if est_starts[j′] + d̃j′ ̸= real_fin[j′] then ▷ Deviation detected

For each j /∈ completed, set d̃j ← realized_duration[j]
Build CP model M′ with updated {d̃j}
Warm-startM′ with current_sol
Solve M′ within Ton, yielding S ′
if S ′ infeasible then return infeasible
end if
Extract new est_starts[j] from S ′
current_sol← S ′

end if
end while
makespan← max j

(
real_fin[j]

)
return makespan

16

A.3 STNU Method
Algorithm 3 STNU-Based Method
Require: FJSP instance I, offline CP solver time limit Toffline

Construct deterministic CP model M .
Solve M offline within Toffline, obtaining partial order schedule S∗.
if S∗ is infeasible then return infeasible
end if
Initialize STNU network N = (V,E).
for all operations j do

Add nodes sj , ej to V .
Add contingent link (sj , ej with interval [ℓj , uj] to E.

end for
for all constraints j ≺ k do

Add edge sj + dj + setupj,k ≤ sk based on S∗.
end for
Check DC of N .
if N is not dynamically controllable then return infeasible
end if
Online Execution (RTE*):
Sample actual durations d̂j ∈ [ℓj , uj] for each j.
Execute RTE* using sampled durations to determine actual execution times.
Compute realized makespan: makespan = maxj(ej)
return makespan

17

B Instance Exploration

Instance Jobs T/Job |J | × |T | Machines µp σ2
p µs µs/p Hmax % Infeasible

1 2 2 4 2 39.25 273.19 4.19 0.16 270 0.00
2 2 2 4 2 46.17 285.47 5.67 0.16 273 43.8
3 3 2 6 2 77.80 944.16 8.90 0.15 777 30.6
4 3 2 6 2 109.80 1009.76 12.06 0.12 1144 27.8
5 3 2 6 2 41.17 210.97 3.97 0.13 437 0.00
6 3 3 9 3 90.47 2768.38 10.30 0.23 1419 68.3
7 3 3 9 5 113.28 2096.65 13.68 0.16 1826 83.7
8 3 3 9 4 68.00 1430.67 7.49 0.17 1136 74.1
9 3 3 9 3 55.11 463.54 6.20 0.16 1053 53.1

10 4 3 12 5 132.35 1947.03 15.65 0.14 2810 88.9
11 5 3 15 6 122.94 1691.27 13.57 0.15 3879 86.3
12 5 3 15 7 128.82 2008.66 14.69 0.16 4428 85.3
13 6 3 18 7 138.50 2725.38 16.29 0.17 6727 84.5
14 7 3 21 7 145.52 2781.07 16.90 0.16 8759 84.9
15 7 3 21 7 143.38 2786.16 16.25 0.16 8635 85.3
16 8 3 24 7 151.10 3169.06 17.03 0.16 11018 85.6
17 8 4 32 7 152.99 2947.88 16.61 0.15 16838 86.9
18 9 4 36 8 150.50 2957.09 16.74 0.16 18974 90.3
19 11 4 44 8 153.74 3127.18 16.46 0.15 25823 90.6
20 12 4 48 8 162.38 4060.45 17.44 0.15 32318 90.5

Table 5: Instance-level statistics. Columns report: number of jobs, tasks per job (T/Job),
input size (|J | × |T |), number of machines; processing-time mean and variance (µp, σ2

p);
setup-time mean (µs); mean of the task-level setup/processing ratio (µs/p); Hmax gives the
analytical worst-case horizon

∑
j∈T maxm dj,m+

∑
(j,j′)∈E maxm sj,j′,m; and the percentage

of infeasible setup arcs (% Infeasible).

18

Figure 8: Distribution of Processing Times per Instance

Figure 9: Distribution of Feasible Setup Times per Instance

Figure 10: Z-normalized medians: Processing vs. Setup Times

19

Figure 11: Proportion of Infeasible Setup Times per Instance

C Results

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [180] 3.950 (*) [180] -0.671 (0.502) [180] -11.106 (*)

Prop. Quality [n] prop (p) [180] 0.650 (*) [180] 0.528 (0.502) [180] 0.083 (*)

Magn. Quality [n] t (p) [180] -6.580 (*) [180] 0.296 (0.767) [180] 15.320 (*)
norm. avg. react: 0.951 stnu: 1.002 pro0.9: 1.047
norm. avg. stnu: 1.049 pro0.9: 0.998 react: 0.953

Wilc. Offline [n] z (p) [180] 1.267 (0.205) [180] -7.677 (*) [180] -7.975 (*)

Prop. Offline [n] prop (p) [180] 0.550 (0.205) [180] 0.211 (*) [180] 0.800 (*)

Magn. Offline [n] t (p) [180] -2.061 (*) [180] 9.482 (*) [180] -11.127 (*)
norm. avg. react: 0.969 stnu: 1.129 pro0.9: 0.900
norm. avg. stnu: 1.031 pro0.9: 0.871 react: 1.100

Wilc. Online [n] z (p) [180] 13.342 (*) [180] -13.342 (*) [180] -13.342 (*)

Prop. Online [n] prop (p) [180] 0.000 (*) [180] 0.000 (*) [180] 1.000 (*)

Magn. Online [n] t (p) [180] 391.481 (*) [180] 1728.361 (*) [180] -32230.109 (*)
norm. avg. react: 1.918 stnu: 1.968 pro0.9: 0.001
norm. avg. stnu: 0.082 pro0.9: 0.032 react: 1.999

Table 6: Pairwise test results for ϵ = all, grouping=1-9.

20

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [220] 14.765 (*) [220] -13.956 (*) [220] -14.765 (*)

Prop. Quality [n] prop (p) [220] 1.000 (*) [220] 0.027 (*) [220] 0.000 (*)

Magn. Quality [n] t (p) [220] -33.606 (*) [220] 24.138 (*) [220] 29.342 (*)
norm. avg. react: 0.851 stnu: 1.103 pro0.9: 1.047
norm. avg. stnu: 1.149 pro0.9: 0.897 react: 0.953

Wilc. Offline [n] z (p) [220] 9.911 (*) [220] -0.337 (0.736) [220] -11.529 (*)

Prop. Offline [n] prop (p) [220] 0.164 (*) [220] 0.514 (0.736) [220] 0.891 (*)

Magn. Offline [n] t (p) [220] 11.771 (*) [220] 0.178 (0.859) [220] -13.012 (*)
norm. avg. react: 1.155 stnu: 1.002 pro0.9: 0.845
norm. avg. stnu: 0.845 pro0.9: 0.998 react: 1.155

Wilc. Online [n] z (p) [220] 14.765 (*) [220] -14.630 (*) [220] -14.765 (*)

Prop. Online [n] prop (p) [220] 0.000 (*) [220] 0.005 (*) [220] 1.000 (*)

Magn. Online [n] t (p) [220] 924.066 (*) [220] 159.748 (*) [220] -15392.850 (*)
norm. avg. react: 1.985 stnu: 1.920 pro0.9: 0.001
norm. avg. stnu: 0.015 pro0.9: 0.080 react: 1.999

Table 7: Pairwise test results for ϵ = all, grouping=10-20.

C.0.1 γ = 1

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [200] 9.546 (*) [200] -8.273 (*) [200] -13.081 (*)

Prop. Quality [n] prop (p) [200] 0.840 (*) [200] 0.205 (*) [200] 0.035 (*)

Magn. Quality [n] t (p) [200] -15.194 (*) [200] 10.555 (*) [200] 24.653 (*)
norm. avg. react: 0.898 stnu: 1.071 pro0.9: 1.032
norm. avg. stnu: 1.102 pro0.9: 0.929 react: 0.968

Wilc. Offline [n] z (p) [200] 1.061 (0.289) [200] -2.899 (*) [200] -7.283 (*)

Prop. Offline [n] prop (p) [200] 0.460 (0.289) [200] 0.395 (*) [200] 0.760 (*)

Magn. Offline [n] t (p) [200] -2.068 (*) [200] 5.908 (*) [200] -8.358 (*)
norm. avg. react: 0.975 stnu: 1.076 pro0.9: 0.948
norm. avg. stnu: 1.025 pro0.9: 0.924 react: 1.052

Wilc. Online [n] z (p) [200] 14.071 (*) [200] -13.930 (*) [200] -14.071 (*)

Prop. Online [n] prop (p) [200] 0.000 (*) [200] 0.005 (*) [200] 1.000 (*)

Magn. Online [n] t (p) [200] 310.254 (*) [200] 142.944 (*) [200] -13096.748 (*)
norm. avg. react: 1.950 stnu: 1.936 pro0.9: 0.001
norm. avg. stnu: 0.050 pro0.9: 0.064 react: 1.999

Table 8: Pairwise test results for ϵ = 1, grouping=1-20.

21

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [90] 2.635 (*) [90] 0.738 (0.461) [90] 7.906 (*)

Prop. Quality [n] prop (p) [90] 0.644 (*) [90] 0.544 (0.461) [90] 0.922 (*)

Magn. Quality [n] t (p) [90] -4.718 (*) [90] -1.462 (0.147) [90] -13.544 (*)
norm. avg. react: 0.951 stnu: 0.985 pro0.9: 0.966
norm. avg. stnu: 1.049 pro0.9: 1.015 react: 1.034

Wilc. Offline [n] z (p) [90] 3.479 (*) [90] 4.111 (*) [90] 3.689 (*)

Prop. Offline [n] prop (p) [90] 0.689 (*) [90] 0.722 (*) [90] 0.300 (*)

Magn. Offline [n] t (p) [90] -4.953 (*) [90] -5.669 (*) [90] 5.068 (*)
norm. avg. react: 0.901 stnu: 0.881 pro0.9: 1.022
norm. avg. stnu: 1.099 pro0.9: 1.119 react: 0.978

Wilc. Online [n] z (p) [90] 9.381 (*) [90] 9.381 (*) [90] 9.381 (*)

Prop. Online [n] prop (p) [90] 0.000 (*) [90] 1.000 (*) [90] 0.000 (*)

Magn. Online [n] t (p) [90] 293.272 (*) [90] -1290.840 (*) [90] 25285.300 (*)
norm. avg. react: 1.910 stnu: 0.033 pro0.9: 1.998
norm. avg. stnu: 0.090 pro0.9: 1.967 react: 0.002

Table 9: Pairwise test results for ϵ = 1, grouping=1-9.

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [110] 10.393 (*) [110] -10.393 (*) [110] -10.393 (*)

Prop. Quality [n] prop (p) [110] 1.000 (*) [110] 0.000 (*) [110] 0.000 (*)

Magn. Quality [n] t (p) [110] -23.120 (*) [110] 19.524 (*) [110] 26.692 (*)
norm. avg. react: 0.854 stnu: 1.116 pro0.9: 1.030
norm. avg. stnu: 1.146 pro0.9: 0.884 react: 0.970

Wilc. Offline [n] z (p) [110] 4.672 (*) [110] -0.095 (0.924) [110] -6.388 (*)

Prop. Offline [n] prop (p) [110] 0.273 (*) [110] 0.491 (0.924) [110] 0.809 (*)

Magn. Offline [n] t (p) [110] 2.857 (*) [110] 2.695 (*) [110] -7.520 (*)
norm. avg. react: 1.035 stnu: 1.041 pro0.9: 0.923
norm. avg. stnu: 0.965 pro0.9: 0.959 react: 1.077

Wilc. Online [n] z (p) [110] 10.393 (*) [110] -10.202 (*) [110] -10.393 (*)

Prop. Online [n] prop (p) [110] 0.000 (*) [110] 0.009 (*) [110] 1.000 (*)

Magn. Online [n] t (p) [110] 611.668 (*) [110] 80.303 (*) [110] -7999.137 (*)
norm. avg. react: 1.983 stnu: 1.910 pro0.9: 0.001
norm. avg. stnu: 0.017 pro0.9: 0.090 react: 1.999

Table 10: Pairwise test results for ϵ = 1, grouping=10-20.

C.0.2 γ = 2

22

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [200] 9.687 (*) [200] -5.586 (*) [200] -12.940 (*)

Prop. Quality [n] prop (p) [200] 0.845 (*) [200] 0.300 (*) [200] 0.040 (*)

Magn. Quality [n] t (p) [200] -15.179 (*) [200] 6.346 (*) [200] 23.851 (*)
norm. avg. react: 0.894 stnu: 1.044 pro0.9: 1.062
norm. avg. stnu: 1.106 pro0.9: 0.956 react: 0.938

Wilc. Offline [n] z (p) [200] 7.990 (*) [200] -3.889 (*) [200] -12.374 (*)

Prop. Offline [n] prop (p) [200] 0.215 (*) [200] 0.360 (*) [200] 0.940 (*)

Magn. Offline [n] t (p) [200] 10.857 (*) [200] 3.512 (*) [200] -17.337 (*)
norm. avg. react: 1.168 stnu: 1.042 pro0.9: 0.791
norm. avg. stnu: 0.832 pro0.9: 0.958 react: 1.209

Wilc. Online [n] z (p) [200] 14.071 (*) [200] -14.071 (*) [200] -14.071 (*)

Prop. Online [n] prop (p) [200] 0.000 (*) [200] 0.000 (*) [200] 1.000 (*)

Magn. Online [n] t (p) [200] 352.870 (*) [200] 536.853 (*) [200] -28553.743 (*)
norm. avg. react: 1.959 stnu: 1.947 pro0.9: 0.001
norm. avg. stnu: 0.041 pro0.9: 0.053 react: 1.999

Table 11: Pairwise test results for ϵ = 2, grouping=1-20.

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [90] 2.846 (*) [90] -1.792 (0.073) [90] -7.695 (*)

Prop. Quality [n] prop (p) [90] 0.656 (*) [90] 0.600 (0.073) [90] 0.089 (*)

Magn. Quality [n] t (p) [90] -4.570 (*) [90] -0.928 (0.356) [90] 11.493 (*)
norm. avg. react: 0.950 stnu: 0.989 pro0.9: 1.061
norm. avg. stnu: 1.050 pro0.9: 1.011 react: 0.939

Wilc. Offline [n] z (p) [90] 1.581 (0.114) [90] -6.641 (*) [90] -7.484 (*)

Prop. Offline [n] prop (p) [90] 0.411 (0.114) [90] 0.144 (*) [90] 0.900 (*)

Magn. Offline [n] t (p) [90] 1.804 (0.075) [90] 8.003 (*) [90] -13.672 (*)
norm. avg. react: 1.037 stnu: 1.139 pro0.9: 0.822
norm. avg. stnu: 0.963 pro0.9: 0.861 react: 1.178

Wilc. Online [n] z (p) [90] 9.381 (*) [90] -9.381 (*) [90] -9.381 (*)

Prop. Online [n] prop (p) [90] 0.000 (*) [90] 0.000 (*) [90] 1.000 (*)

Magn. Online [n] t (p) [90] 278.902 (*) [90] 1172.436 (*) [90] -25636.864 (*)
norm. avg. react: 1.926 stnu: 1.969 pro0.9: 0.001
norm. avg. stnu: 0.074 pro0.9: 0.031 react: 1.999

Table 12: Pairwise test results for ϵ = 2, grouping=1-9.

23

Test Legend react–stnu stnu–proactive proactive–reactive

Wilc. Quality [n] z (p) [110] 10.393 (*) [110] -9.249 (*) [110] -10.393 (*)

Prop. Quality [n] prop (p) [110] 1.000 (*) [110] 0.055 (*) [110] 0.000 (*)

Magn. Quality [n] t (p) [110] -24.350 (*) [110] 15.319 (*) [110] 32.497 (*)
norm. avg. react: 0.849 stnu: 1.089 pro0.9: 1.063
norm. avg. stnu: 1.151 pro0.9: 0.911 react: 0.937

Wilc. Offline [n] z (p) [110] 9.249 (*) [110] -0.667 (0.505) [110] -9.821 (*)

Prop. Offline [n] prop (p) [110] 0.055 (*) [110] 0.536 (0.505) [110] 0.973 (*)

Magn. Offline [n] t (p) [110] 16.370 (*) [110] -3.101 (*) [110] -12.401 (*)
norm. avg. react: 1.276 stnu: 0.963 pro0.9: 0.766
norm. avg. stnu: 0.724 pro0.9: 1.037 react: 1.234

Wilc. Online [n] z (p) [110] 10.393 (*) [110] -10.393 (*) [110] -10.393 (*)

Prop. Online [n] prop (p) [110] 0.000 (*) [110] 0.000 (*) [110] 1.000 (*)

Magn. Online [n] t (p) [110] 712.660 (*) [110] 529.075 (*) [110] -32012.444 (*)
norm. avg. react: 1.987 stnu: 1.929 pro0.9: 0.000
norm. avg. stnu: 0.013 pro0.9: 0.071 react: 2.000

Table 13: Pairwise test results for ϵ = 2, grouping=10-20.

24

C.0.3 γ = 1 vs γ = 2

Test Metric reactive (n1 vs n2) proactive (n1 vs n2) stnu (n1 vs n2)

Wilc. Quality [n] z (p) [200] 0.636 (0.525) [200] 12.374 (*) [200] 1.909 (0.056)

Prop. Quality [n] prop (p) [200] 0.475 (0.525) [200] 0.940 (*) [200] 0.570 (0.056)

Magn. Quality [n] t (p) [200] -0.327 (0.744) [200] -22.108 (*) [200] -2.017 (*)
norm. avg. n1: 0.999 n1: 0.969 n1: 0.995
norm. avg. n2: 1.001 n2: 1.031 n2: 1.005

Wilc. Offline [n] z (p) [200] 11.243 (*) [200] -0.071 (0.944) [200] 0.212 (0.832)

Prop. Offline [n] prop (p) [200] 0.900 (*) [200] 0.500 (0.944) [200] 0.490 (0.832)

Magn. Offline [n] t (p) [200] -17.123 (*) [200] -2.938 (*) [200] 0.468 (0.640)
norm. avg. n1: 0.805 n1: 0.968 n1: 1.002
norm. avg. n2: 1.195 n2: 1.032 n2: 0.998

Wilc. Online [n] z (p) [200] 10.536 (*) [200] 4.738 (*) [200] 0.495 (0.621)

Prop. Online [n] prop (p) [200] 0.875 (*) [200] 0.330 (*) [200] 0.480 (0.621)

Magn. Online [n] t (p) [200] -18.441 (*) [200] 4.998 (*) [200] 0.161 (0.872)
norm. avg. n1: 0.888 n1: 1.045 n1: 1.001
norm. avg. n2: 1.112 n2: 0.955 n2: 0.999

Table 14: Noise γ = 1 vs γ = 2: pairwise tests per method

Table 15: Hyperparameter settings

Hyperparameter Proactive STNU Reactive

γ robust 1 0.9
Time limit CP 5000s 5000s 5000s and 5s
Solver IBM CP IBM CP IBM CP

25

References
[1] Imran Ali Chaudhry and Abdul Asad Khan. A research survey: review of flexible

job shop scheduling techniques. International Transactions in Operational Research,
23(3):551–591, 2016.

[2] Committee Reassessment Integrity Policy. TU Delft Vision on Integrity 2018–2024.
Technical report, Delft University of Technology, Delft, The Netherlands, September
2018. Includes the TU Delft Code of Conduct and Integrity Statement.

[3] Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible
job shop scheduling problem: A review. European Journal of Operational Research,
314(2):409–432, 2024.

[4] PyJobShop Developers. Pyjobshop: Job shop scheduling with python – quick examples,
2024. Accessed: 2025-06-02.

[5] Imanol Echeverria, Maialen Murua, and Roberto Santana. Leveraging constraint pro-
gramming in a deep learning approach for dynamically solving the flexible job-shop
scheduling problem, 2024.

[6] Mario Flores-Gómez, Valeria Borodin, and Stéphane Dauzère-Pérès. Maximizing the
service level on the makespan in the stochastic flexible job-shop scheduling problem.
Computers Operations Research, 157:106237, 2023.

[7] Na Fu, Hoong Lau, Pradeep Varakantham, and Fei Xiao. Robust local search for solv-
ing rcpsp/max with durational uncertainty. Journal of Artificial Intelligence Research
(JAIR), 43:43–86, 05 2012.

[8] Na Fu, Pradeep Varakantham, and Hoong Lau. Robust partial order schedules for
rcpsp/max with durational uncertainty. Proceedings of the International Conference on
Automated Planning and Scheduling, 26:124–130, 03 2016.

[9] M.R. Garey, D.S. Johnson, and Ravi Sethi. Complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research, 1(2):117–129, 1976. Cited by: 2392.

[10] Luke Hunsberger and Roberto Posenato. Foundations of dispatchability for simple
temporal networks with uncertainty. pages 253–263, 01 2024.

[11] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. Ibm ilog cp optimizer
for scheduling. Constraints, 23(2):210–250, 2018.

[12] Manuel Laguna. A heuristic for production scheduling and inventory control in the
presence of sequence-dependent setup times. IIE Transactions, 31(2):125–134, 1999.

[13] Leon Lan and Joost Berkhout. Pyjobshop: Solving scheduling problems with constraint
programming in python, 2025.

[14] Ernst Limpert, Werner A. Stahel, and Markus Abbt. Log-normal distributions across
the sciences: keys and clues. BioScience, 51(5):341–352, 2001.

26

[15] Paul Morris. Dynamic controllability and dispatchability relationships. In Integration
of AI and OR Techniques in Constraint Programming: 11th International Conference,
CPAIOR 2014, Cork, Ireland, May 19-23, 2014, Proceedings, volume 11, pages 464–479.
Springer, 2014.

[16] Bahman Naderi, Rubén Ruiz, and Vahid Roshanaei. Mixed-integer programming vs.
constraint programming for shop scheduling problems: New results and outlook. IN-
FORMS Journal on Computing, 35(4):817–843, 2023.

[17] Nicola Policella, Stephen F Smith, Amedeo Cesta, and Angelo Oddi. Generating robust
schedules through temporal flexibility. In ICAPS, volume 4, pages 209–218, 2004.

[18] Robbert Reijnen, Kjell van Straaten, Zaharah Bukhsh, and Yingqian Zhang. Job shop
scheduling benchmark: Environments and instances for learning and non-learning meth-
ods. arXiv preprint arXiv:2308.12794, 2023.

[19] Mohammad Saidi-Mehrabad and Parviz Fattahi. Flexible job shop scheduling with tabu
search algorithms. The International Journal of Advanced Manufacturing Technology,
32:563–570, 03 2007.

[20] Kim van den Houten, Léon Planken, Esteban Freydell, David M.J. Tax, and Math-
ijs de Weerdt. Proactive and reactive constraint programming for stochastic project
scheduling with maximal time-lags. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2025. Preprint.

27

	Introduction
	The Scheduling Problem
	CP Model Formulation

	Scheduling Methods
	Proactive Method
	Reactive Method
	STNU‐based Method

	Experimentation
	Results
	Uncertainty
	Sequence Dependent Setup Times
	Scalability

	Responsible Research
	Reproducibility
	Ethics

	Discussion
	Conclusions and Future Work
	Scheduling Approaches Pseudocode
	Proactive Method
	Reactive Method
	STNU Method

	Instance Exploration
	Results
	= 1
	= 2
	=1 vs =2

