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Logic gene network design: a CAD tool based on
modularity and standardization
Bastiaan A. van den Berg

ABSTRACT
Motivation: Synthetic biology aims at building biological systems
for useful purposes. Relatively simple gene networks have been
engineered, but the design process is limited. Many papers advocate
the use of engineering concepts like standardization and modular
design to simplify the design process and enable the design of
more complex systems. Currently, there are no tools available that
implement both concepts in a practical way.
Results: We have developed a software tool to show how
standardization and modular design can be used for the design of
logic gene networks. We introduce gene network templates to be
able to use modular design in a practical way and use a standard
model to simplify the design process and enable reuse of parameters.
We have designed three logic gate templates and used them to build
two logic gene networks: a demultiplexer and a D-latch. Our software
tool was used to turn the templates into devices and to evaluate the
performance of the devices. The results show that the devices are
evaluated correctly. Furthermore, the results show that for the design
of a gene network our method can be used to indicate which biological
parts are preferred at what location in the network.

1 INTRODUCTION
The main goal of synthetic biology is to engineer biological systems
with defined function. Synthetic versions of natural systems are
build to get more insight into their functioning (Sprinzak and
Elowitz, 2005). Novel systems are build in order to obtain new
functionalities that can be used for industrial applications, such
as energy production, waste material degradation, and material
construction (Endy, 2005); and medical applications, such as smart
disease treatment, invasion of cancer cells (Anderson et al., 2006),
and tissue engineering (Basu et al., 2005).

At a low level, synthetic biology constructs or modifies biological
building blocks: DNA, RNA, proteins, and metabolites. For
example, protein engineering enables the construction of non-
natural proteins with different functional domains. At a higher
level, synthetic biology uses the physical building blocks to
create biological systems, such as gene networks, signalling
pathways and metabolic networks (Heinemann and Panke, 2006;
Andrianantoandro et al., 2006).

This paper focuses on the design of synthetic gene networks that
implement a logic function, i.e. logic gene networks. This enables
the introduction of intelligence to a cell using the principles of
boolean logic, which could be useful for biotechnology applications.

Gene networks have been constructed, but they are relatively
simple and the design process is limited. Elowitz and Leibler (2000)
and Gardner et al. (2000) were the first to design a genetic oscillator
and toggle switch respectively. More recently Stricker et al. (2008)
engineered a fast, robust, and tunable oscillator and Friedland

et al. (2009) constructed a gene network that can count up to three
induction events.

In most cases, the design of a gene network is made by intuition
only. A model is used to show that the design provides the desired
qualitative behaviour. After construction, the system is fine-tuned
in vivo until it performs well. Afterwards, the model is fitted to the
measured data, which is then used for further in silico analysis.

With this approach, the main effort is spend on the time
consuming and costly lab work. It is desirable to put more emphasis
on the less expensive in silico design process. A reason why the
design process is still limited is that we are not yet able to accurately
predict the in vivo behaviour of a designed system. This is partly
caused by the fact that different gene expression models, each with
their own dedicated parameters, are used, complicating their use as
building blocks for the design of other more complex systems.

We propose to make use of standard models for which the
parameters are stored separately in a database. This way, parameters
can be stored and reused for the design of other systems.
Furthermore, it enables automatic model building, which greatly
simplifies the design process. Finally, having a standard model will
promote optimization of the model by simulations as to get more
accurate predictions.

Another limitation in the current situation of gene network design
is the complexity of the designed systems. A common engineering
approach to cope with increasing complexity is the use of modular
design; building a complex system out of smaller subsystems
(modules). For example, an ALU, which is part of a computer
processor, consists of digital circuits that can perform arithmetic
operations. These digital circuits consists of logic gates, and the
logic gates in turn consists of simple transistors. This way, one can
go through various levels of complexity from simple transistors to a
complex ALU.

Modular design within synthetic biology is still in its infancy.
Massachusetts Institute of Technology has founded a registry of
Standard Biological Parts: short DNA sequences with defined
function1. Genetic parts, such as promoters, ribosome binding sites
(RBS), and protein coding parts, are the most basic building blocks.
The parts meet the BioBrickTMstandard2, so that they can be ligated
using a standardized ligation protocol (Shetty et al., 2008). The
ligated parts form a device: a DNA sequence that encodes for some
cellular system, for example an inverter (when the concentration of
molecule A is high, then the concentration of molecule B is low, and
visa versa). Finally, the devices can be used as building blocks of a
more complex system (Endy, 2005). The parts registry provides a
simple and standardized way to construct DNA sequences and build

1 http://partsregistry.org
2 http://biobricks.org
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a more complex system in vivo, however, it is a registry and there are
no tools that enables the design of complex systems. We advocate
that, to accomplish this, modularity and standardization should also
be incorporated into the design process.

We aim at the design of logic gene networks. In this case,
boolean logic provides the theory to get from a set of simple logic
operations to a complex logic function. Our goal is not to provide the
theoretical basis to get complex functionality, but to show how it can
be implemented using modular biological components. So what we
need is a set of biological logic gates that implement a simple logic
operation, in order to build a logic gene network that implements a
complex logic function.

Biological logic gates have been constructed (Anderson et al.,
2007; Sayut et al., 2009). It has been shown that the logic gates
function correctly on their own, but it is unknown if they retain the
correct function when connected to other gates, which is needed to
build logic networks. For example, it could be that the number and
type of gates to which it is connected affect its performance.

Del Vecchio et al. (2008) proposed a solution inspired by the
field of electrical engineering to ensure that a module preserves the
same function independent of the modules it is connected to. In that
case, the same logic gate can be used anywhere in any logic circuit.
Although this would provide modular logic gates, it will probably
result in a design that is not optimally energy efficient, because
it uses mechanisms that will require energy to ensure modularity.
Since energy is a very costly product for a cell, it is questionable if
this approach is feasible.

Instead of using energy consuming mechanisms to ensure that a
module retains its function in any situation, we propose to make use
of a tunable module that can be adjusted to its situation. To do so,
we make use of gene network templates; abstract representations of
a gene network that hide the specific information about the bioparts
used to build it (Fig. 1B). The templates are modular, so that logic
gate templates can be used to build a logic network template. Our
software tool can turn a gene network template into devices using
genetic parts from a database. This enables tuning of the overall
network by varying the genetic parts.

The use of gene network templates also provides a more practical
use of modularity compared to other software tools. ProMoT
(Marchisio and Stelling, 2008; Mirschel et al., 2009), Antimony
(Smith et al., 2009), and Tinkercell (Chandran et al., 2009) are
all software tools that can be used to define modular models. For
example, one could define a model for the OR gate in Fig. 1A,
which can then be used to build logic networks. But when, for a
specific network, one needs an OR gate with different transcription
factors (TF) as input signals3, another version of the same OR gate
has to be defined. Having only a limited number of TFs as signal
carriers already results in many different possible OR gate versions.
With our approach, a user only needs to define the template in Fig.
1B, which can be turned into any possible version (instance of a
template) by the software tool.

3 In electrical engineering, the use of only one signal carrier (current) is
sufficient, because each signal is directed through a wire, and thereby the
different signals are physically separated. For gene networks we use TFs as
signal carriers, which freely float through the cell and cannot be directed.
Therefore a different TF is needed for each signal (wire) in the network.

Fig. 1. Templates and instances - A) A logic OR gate gene network. A gene
network is a graph in which the vertices are protein generators and the edges
proteins. An outgoing edge is an expressed protein and an ingoing edge is a
transcription factor (inhibitor or activator) that binds to the promoter of the
protein generator. C) A device, consisting of genetic parts, that implements
the gene network from A. The device consists of two protein generators,
corresponding to the vertices in A, and each protein generator consists of
four genetic parts; a promoter, a ribosome binding site, a protein coding
part, and a terminator. B, D) Templates define the general structure of a gene
network but not the used biological parts to implement it. A and C are a
possible instance of the given template.

2 APPROACH
An overview of the design approach as we have implemented it in
a software tool is shown in Fig. 2. A user has to define a gene
network template, which can be done in a modular way. For the
design of a logic gene network one can simply connect templates
of logic gates (Fig. 2A). To be able to evaluate the performance
of a logic gene network, the user also has to define one or more
input signals and desired output signals. An input signal, provided
as a binary timing diagram, determines the concentration of an input
molecule during simulation (Fig. 2B). A desired output signal, also
defined as a binary timing diagram, is compared to the simulation
data for evaluation (Fig. 2C). For a gene network template, many
different gene network instances can be build using bioparts from
the biopart database (Fig. 2D). A gene network instance is build
out of genetic parts and is therefore called a device (Fig. 2E). Each
device can be turned into a model (Fig. 2F) which can be used for
stochastic simulation. The simulation result (Fig. 2G) is compared
to the user-defined desired output to calculate an evaluation score
for a device (Fig. 2H). The evaluation score can be used to compare
the performance of the different devices for a given template.

Protein generator To simplify the data transformations, a standard
building block has been defined, which we call a protein generator.
A protein generator is a DNA sequence able to express a protein,
possibly regulated by one or more TFs. The TFs serve as interface
between the protein generators and enable their (inter)connection.
There are three different representations of a protein generator: as
part of a gene network, as a device, and as a model.

Fig. 1A shows the use of a protein generator in a gene network.
The gene network is a graph in which each vertex is a protein
generator and the edges are proteins. An output edge is the protein
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Fig. 2. Software overview - The boxes represent stored data and the arrows
are data transformations. A) A user-defined gene network template that
defines the topology of the gene network. Templates can be build in a
modular way; the figure shows part of a template that is build through
connecting logic gate templates. Furthermore, the user has to assign an
environmental signal to each of the inputs and a reporter to each of the
outputs. B) A binary timing diagram for each input signal, which determines
the molecule count of an environmental signal during simulation. C) A
binary timing diagram that defines the desired simulation result of an output
signal. D) A database with bioparts that can be used to build a gene network.
E) A device that consists of genetic parts from the biopart database and
which implements the gene network in A. The device builder provides the
functionality to turn the gene network template into devices that implement
the template using bioparts from the bioparts database. F) A model for the
device, which is build by the model builder. G) FERN is used to run an exact
stochastic simulation algorithm on the model. The molecule count over time
for a reporter is given as result, which is an average over 20 simulation runs.
H) A device evaluation score, as a result of comparing the simulation data
with the desired output.

(TF or reporter) expressed by the protein generator. The input edges
are the TFs that bind to the promoter of the protein generator, and
thereby regulate the expression. For example, in Fig. 1A, the left
vertex takes two inhibitors, TetR and LacI, as input signal and
produces one inhibitor, Cl, as output signal.

A device representation of a protein generator is shown in Fig.
1C. A protein generator device consists of four genetic parts: a
promoter, a ribosome binding site (RBS), a protein coding part and

a terminator. The promoter determines what TFs are taken as input
signal and the protein coding part determines what TF is expressed
as output signal.

Finally, a protein generator can be represented as a model, which
captures the behaviour of the protein generator and which can be
used for stochastic simulation. We return to the model in more detail
in Section 3.2.

Signals We use three different signal carriers: TFs, environmental
signals, and reporters. TFs are used as internal signals that connect
protein generators. Environmental signals, such as small molecules,
light, or temperature, serve as interface to the environment of a cell
and are used as input signals of a gene network. An environmental
signal can inhibit or activate a TF. For example, an inhibiting small
molecule can bind to a TF, causing a conformational change that
disables the TF to bind to a promoter. Finally, reporters are used as
output signals of a gene network.

Bioparts database We used an artificial biopart database, because
there was no database with kinetic constants available that we could
use for our method. The database contained four types of genetic
parts that can be used to build protein generator devices: promoter,
RBS, protein coding part, terminator. Furthermore, the database
contained the three signal carriers: TF, reporter, environmental
signal.

Gene network template To avoid the definition of many versions
for each logic gate, we make use of gene network templates;
gene network topologies that specify how protein generators are
connected and what type of TF (inhibitor or activator) is used for
each signal. The gene network shown in Fig. 1B defines that there
are two protein generators: one with two inhibitors as input and an
inhibitor as output, and one with an inhibitor as input and a reporter
as output. Fig. 1A shows a possible instance for this template.
Notice that many possible instances can be build for one template,
depending on the available bioparts.

We define a gene network template as a graph; a set of vertices
and a set of edges. An edge has a type (inhibitor or activator) and
can have multiple source and destination vertices. Furthermore, an
environmental signal can be assigned as an inhibitor or activator of
an edge. A vertex can have multiple inputs (the binding TFs) and
has always one output (the protein it expresses).

Gene network templates are modular. For example, a NOR gate
and a NOT gate can be connected to form an OR gate. This OR
gate can in turn be used in more complex logic networks. For each
template, one or more edges must be assigned as input edge and
one or more as output edge. These edges provide the interface that
enables the connection to other templates.

User input For the design of a logic gene network, the user has
to define a gene network template (Fig. 2A) and it has to assign
an environmental signal to each input signal and a reporter to each
output signal.

Furthermore, the user has to specify a binary timing diagram for
each input signal and each desired output signal. The value of a
signal can be either 0, denoting a low signal, or 1, denoting a high
signal. The timing diagram is divided in equal length time steps for
which the length has to be defined by the user. Switching of the
signal only happens at the borders of the time steps.
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Fig. 3. From template to instance - The transformation of a protein
generator that is part of a gene network template to a protein generator device
happens through the assignment of genetic parts from a biopart database to
the protein generator device. The gene network template puts restrictions
on the parts that may be used. In this case the gene network template puts
restrictions on the choice of the promoter and the protein coding part. The
promoter must bind one inhibitor and the protein coding part must encode
for an inhibitor. Since there can be multiple promoters that bind one inhibitor
and multiple protein coding parts that encode for an inhibitor, multiple
devices can be made for one gene network template.

The input signals (Fig. 2B) determine the molecule counts of
the environmental signals during simulation. When an input signal
switches from high to low, the molecule count of the corresponding
environmental signal is set to zero. When it switches from low to
high, the molecule count is set to a high number.

A desired output signal (Fig. 2C) specifies what the simulated
data of the corresponding reporter should look like, which is used
to evaluate the performance of a device. This evaluation is done
through comparison of the simulation data (Fig. 2G) to the desired
output signal. The goal is to have simulation data that resembles the
desired output.

Device builder To get from a gene network template to a possible
gene network instance, finally represented as a device (so going
from Fig. 1B to 1C), the device builder assigns genetic parts from
the bioparts database to each of the protein generators (vertices).
The gene network template puts restrictions on the bioparts that can
be used to build the device. For example, the gene network template
in Fig. 3 determines that the promoter must bind one inhibitor and
the protein coding part must encode for an inhibitor. To prevent
crosstalk, TFs may only be used once within a network, putting
further restrictions on the parts that can be used.

Model builder The data transformation from a device to a model is
also done per protein generator. Each protein generator is translated
into a standard model (Fig. 4). For each type of part in the biopart
database, some kinetic constants are stored. For example, all RBS
parts store a translation rate (ktl), because the RBS determines this
kinetic constant. Fig. 4 shows which kinetic constants are stored for
what genetic parts. The model builder fetches the kinetic constants
from the biopart database and uses them for the model-building.

The models of the different protein generators are connected
as soon as the product of a translation reaction is (possibly after
dimerization) also a reactant of a TF-DNA binding reaction. This

Fig. 4. From device to model - The genetic parts that make up the protein
generator device store the data that is needed to turn the device into a
model. A standard model for a protein generator is shown, which consists
of molecular species (gene, mRNA, . . . ) and reactions (the arrows). The
kinetic constants (k ) determine the rate at which the reactions occur. More
details on the model are given in Section 3.2. The colours indicate which
genetic part stores what data. The promoter (green) stores the transcription
rate (ktc) and the binding and unbinding rates of the TF(s) that can bind to
it (kbtf , kutf ). Furthermore it stores a pointer to the binding TF(s) (protein
y in this case). The RBS (blue) stores the translation rate ktl. The protein
coding part (purple) stores the mRNA degradation rate and also stores a
pointer to the protein it encodes for (protein x in this case). Finally, the
terminator (red) does not determine anything in our model and therefore does
not store any parameter. Next to the genetic parts, the biopart database also
contains proteins, that also store some kinetic constants. For example, the
protein degradation rate kdp, which is therefore not coloured in this figure.
But since the protein coding part stores a pointer to protein x, the model
builder can still fetch this kinetic constant from the database.

way, the TF expressed by one protein generator inhibits or activates
the expression of another protein generator. Combining the reactions
of the protein generator models will therefore automatically form a
gene network model.

Stochastic simulation The resulting model can be used for
stochastic simulation (Gillespie et al., 1977). We use stochastic
simulation because gene expression is a stochastic process and the
stochasticity can be of influence on the behaviour of a gene network
(Kaern et al., 2005). During simulation, the molecule counts of
the environmental signals are determined by the user-defined input
signals. When the input signal is high (1), the molecule count of
the corresponding environmental signal is set to a high number,
simulating an induction event. When the signal is low (0), the
molecule count is set to zero.

Score calculator The score calculator compares the simulation
data to the desired output in order to evaluate the performance of the
device. The goal is to have an output signal that resembles the user-
defined desired output. Furthermore, since we are building logic
gene networks, we want to have a maximal difference between a
low signal and a high signal, in order to distinguish a logic 0 from a
logic 1.
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3 METHODS

3.1 Stochastic Simulation
A deterministic approach is commonly used to predict the evolution of the
state of a chemical system, in which the state is defined as the molecule
counts of the molecular species within the system. The state changes due to
chemical reactions that occur stochastically and the evolution of the system
is therefore a stochastic process. A deterministic approach can accurately
predict the behaviour of systems in which the number of molecules per
species is high, but as soon as the molecule count of at least one of the
molecular species is low, stochasticity can have a major influence and can
therefore not be neglected anymore (Gillespie, 2007; Cai and Wang, 2007).

Gene expression is an inherently stochastic process, e.g. TFs randomly
bind to the DNA, proteins randomly form dimers, and ribosomes randomly
bind to mRNAs. In this system, the molecule count of a gene is very low and
stochasticity should therefore be taken into account. Kaern et al. (2005) also
showed that stochasticity can have a pronounced effect on gene expression.

We used Gillespie’s exact stochastic simulation algorithm (SSA)
(Gillespie et al., 1977) for the simulation of the gene networks. Although
this algorithm assumes a well stirred, thermally equilibrated chemical system
with a constant volume, which is not true for a cell, it has been shown that it
can accurately predict gene expression (Hooshangi et al., 2005). A detailed
description of stochastic simulation and an overview of available SSAs can
be found in Gillespie (2007); Cai and Wang (2007).

3.2 Model
We use a stochastic model, which means that we use only two types of
elemental reactions: unimolecular, with only one reactant, and bimolecular,
with two reactants. Our model is based on the one proposed by Hooshangi
et al. (2005), which showed that the model can accurately predict regulated
gene expression for a transcriptional cascade. In contrast to Hooshangi’s
model, in which TFs only form dimers, we also use monomeric TFs and
TFs that form tetramers.

A model is defined as a set of molecular species and a set of reactions. A
reaction rate is defined for each reaction that determines the rate at which a
reaction occurs. We used only five types of molecular species: gene, mRNA,
protein, environmental signal (es), and empty set (∅). Together, some of
them can also form complexes. For example, an environmental signal can
bind to a TF (which is a protein) forming a TFes complex.

Basic gene expression is modelled with four reactions:

gene
ktc−−→ gene + mRNA, (transcription)

mRNA
ktl−−→ mRNA + protein, (translation)

mRNA
kdr−−→ ∅, (mRNA degradation)

protein
kdp−−→ ∅. (protein degradation)

The same model was also used to investigate stochasticity of gene
expression (Shahrezaei and Swain, 2008; Maheshri and O’Shea, 2007; Kaern
et al., 2005; Ozbudak et al., 2002). Regulation of the gene expression
happens through the binding and unbinding of a TF to a gene:

gene + TF
kbtf←→
kutf

geneTF

Since there is no transcription reaction for geneTF , transcription is being
repressed when a TF is bound to the gene. As soon as the TF dissociates
from the gene, the system contains a gene and a transcription reaction can
occur. The gene is not being repressed anymore. The model allows for dimer
and tetramer formation using the following reactions:

monomer + monomer
kbp←→
kup

dimer

An environmental signal can bind to a TF and thereby activate or disable
it. For example, a small molecule can bind to a TF causing a conformational
change so that the TF cannot bind to the gene anymore. This is modeled by
the following reaction:

TF + es
kbes←→
kues

TFes

When an environmental signal binding reaction occurs, a TF molecule
disappears and a TFes molecule appears. Since there is no reaction that binds
a TFes to a gene, the TF is inhibited by the environmental signal.

An inhibiting environment signal can also bind to a TF that is already
bound to a gene, forcing dissociation of the TF from the gene:

geneTF + es
kbes−−−→ gene + TFes

Finally, there are two degradation reactions to make sure that TFs that are
bound to a gene or an environmental signal also degrade:

TFes
kdp−−→ ∅+ es,

geneTF

kdp−−→ ∅+ gene.

In both reactions, the TF degrades while the molecule to which it is
bound is preserved. The gene is part of the DNA and does not degrade.
The environmental signal is the binary input to a gene network and the
molecule count is therefore either high or zero. A high signal can be seen as
an induction event and during induction we want to remain a high molecule
count. Therefore we do not let the environmental signal degrade.

Fig. 5 shows a model for regulated expression of a protein generator
that produces a protein (green) and is regulated by a TF dimer (blue). The
environmental signal (orange) can bind to the TF and thereby inhibit it.
Variations of this model are also possible in which: A TF can either be a
monomer, a dimer, or a tetramer; The gene can bind zero, one, or two TFs;
The TF can be an inhibitor or an activator; the environmental signal can be
an inhibitor or an activator.

3.3 Kinetic constants
The model uses ten different kinetic constants: transcription rate (ktc),
translation rate (ktl), mRNA degradation rate (kdr), protein degradation rate
(kdp), TF-gene binding and unbinding rate (kbtf , kutf ), protein-protein
binding and unbinding rate (kbp, kup), and TF-es binding and unbinding
rate (kbes, kues). We have defined a range for each of the parameters, which
we have used to build the biopart database. Most of the parameters are based
on Hooshangi et al. (2005). The ranges of the mRNA and protein degradation
rates are based on Bernstein et al. (2002) and Grilly et al. (2007) respectively.
The range of the protein-protein binding rate is based on Schlosshauer and
Baker (2004). A table with the parameter ranges is given in the supplement.

3.4 Biopart database
The biopart database contains four types of genetic parts: promoter, RBS,
protein coding part, and terminator, and two types of molecules: protein
and environmental signal. For each part, a number of kinetic constants and
relations to other parts are stored. A promoter stores a transcription rate, a
pointer to each TF (protein) that can bind to it, and a binding and unbinding
rate for each of the TFs that can bind to it. An RBS stores a translation rate.
A protein coding part stores a mRNA degradation rate and a pointer to the
protein for which it encodes. A terminator stores nothing. A protein stores a
degradation rate. In case of a dimer or tetramer protein, it stores a protein-
protein binding and unbinding rate and a pointer to the sub-proteins. When
the protein binds an environmental signal, it also stores a corresponding
binding and unbinding rate and a pointer to the environmental signal.
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Fig. 5. Protein generator model - A stochastic model for a protein
generator in which the gene, proteins and environmental signal are the
molecular species and the arrows are reactions. Each reaction turns one or
two reactants into one or more products. During stochastic simulation, a
molecule count for each of the molecular species is stored, which is the
state of the system. The molecule counts change when a reaction occurs. For
example, when a TF binding reaction occurs, the molecule counts of gene
and TF dimer decrease by one and the molecule count of geneTF increases
by one. This way, the reactions can change the state of the system. The rate at
which a reaction occurs depends on the reaction rate (k) and the current state
of the system. Gene expression is modelled by one transcription reaction,
from gene to mRNA, and one translation reaction, from mRNA to protein.
Both proteins and mRNAs can degrade, which is modeled by a reaction
that turns the molecules into a empty set molecule. TF monomers can form
dimers and a dimer TF can bind to the gene. Since there is no transcription
reaction from geneTF to mRNA, the bound TF inhibits gene expression. An
environmental signal can bind to a TF dimer and thereby inhibit the TF, since
there is no reaction that binds TFes to a gene.

3.5 Score calculation
The performance of a device is evaluated through comparison of the
simulated outputs to the desired outputs. The score is based on three
measures: the correlation between the simulated and desired outputs; the
high signal concentrations of the simulated outputs; and the low signal
concentrations of the simulated outputs. The objective for a well performing
device is maximization of the correlation, maximization of the high signal
concentration, and minimization of the low signal concentration.

Fig. 6 shows an example of a desired output and a simulation result. The
plots are divided into time steps, five in this case. In each of the time steps
the value of a desired output can be either 0 (low) or 1 (high). The first time
step is not taken into account for the score calculation, this time is needed to
get to an initial steady state.

Three measures are calculated for each of the n output signals: a
correlation ρi, a low value li, and a high value hi, i = 0, . . . , n. We use the
sample correlation coefficient to estimate the correlation of the simulated
and desired output. The low value of output 0 in Fig. 6 is the average of
the orange circled values. The orange circles depict the minimum values in
the time steps where the desired output is low. Similarly, the high value of
output 0 in Fig. 6 is the average of the green circled values. The green circled

Fig. 6. Score calculation - The plots are divided in five time steps. The
first time step is needed to get to an initial steady state and is not taken into
account for the score calculation. For output 0 : ρ0 is the correlation between
the desired and the simulated output; l0 is the average of the orange circled
values, which are the minimum values in the time steps where the desired
output is low; and h0 is the green circled value, which is the average of the
maximum values in the time steps where the desired output is high.

value is the maximum value of the simulation output in the time step where
the desired output is high. In this case, the signal has only one high output,
which is therefore also the average.

The correlation ρi, the low value li, and the high value hi for each of the
n output signals are combined into one score as follows:

score = (

nY
i=0

ci)× ((

nY
i=0

hi)− (

nX
i=0

li))

The correlations scores, that range from -1 to 1, are multiplied. This way
the score drops as soon as one of the output signals has a low correlation.
The high values are also multiplied, to make sure that a device scores better
when the high value of all outputs is high. For example, for a device with
two outputs, having 6 as high value for both outputs is prefered over high
values 2 and 10. Whereas with addition they would provide the same result
(6 + 6 = 2 + 10 = 12), with multiplication the first version scores better
(6 × 6 = 36, 2 × 10 = 20). In case of multiplication of the low values,
a zero would bring the total to zero, even when another low values is high.
Therefore we use addition for the low values instead of multiplication. Since
we want to maximize the high value and minimize the low value, we subtract
the low value from the high value.

4 IMPLEMENTATION
The software is written in Java using the FERN software package
for stochastic simulation (Erhard et al., 2008), the jdom4 package
for XML parsing, and the colt5 package for basic mathematics.

4.1 gene network.template package
The gene network.template package provides a data structure for a
gene network template. The GeneNetworkTemplate class stores a
network as a list of Vertice objects and a list of Edge objects that
refer to each other. It can read a user defined gene network from an
XML file (Listing 1). This file contains a list of vertex elements and
a list of edge elements. For each edge, the source and/or destination
vertices have to be defined, in order to interconnect the vertices.
Finally, the user has to define which of the edge’s are inputs and
outputs of the network.

Gene networks can be defined in a modular way, e.g. a NOR
gate template can be used as sub-network within a demultiplexer

4 http://www.jdom.org/
5 http://acs.lbl.gov/˜hoschek/colt/index.html
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<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<t e m p l a t e n e t w o r k name=” NORii ”>

<v e r t i c e i d =” v0 ” />

<edge i d =” e0 ” t y p e =”−”>
<d e s t v e r t i c e i d =” v0 ” />

</ edge>
<edge i d =” e1 ” t y p e =”−”>

<d e s t v e r t i c e i d =” v0 ” />
</ edge>
<edge i d =” e2 ”>

<s r c v e r t i c e i d =” v0 ” />
</ edge>

<i n p u t i d =” i n 0 ” e d g e i d =” e0 ” />
<i n p u t i d =” i n 1 ” e d g e i d =” e1 ” />

<o u t p u t i d =” o u t 0 ” e d g e i d =” e2 ” />

</ t e m p l a t e n e t w o r k>

Listing 1. An XML file that defines the gene network template of a
NOR gate. The NOR gate is used multiple times a sub-network of the
demultiplexer (Listing 2 and Fig. 7) and the D-latch (Fig. 10).

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<t e m p l a t e n e t w o r k name=” D e m u l t i p l e x e r ”>

<subne twork i d =”NOTe0” name=”NOTe” />
<subne twork i d =”NOTe1” name=”NOTe” />
<subne twork i d =”NOTi” name=”NOTi” />
<subne twork i d =” NORii0 ” name=” NORii ” />
<subne twork i d =” NORii1 ” name=” NORii ” />

<c o n n e c t i o n e d g e i d =” e0 ”>
<s r c ne twork =”NOTe0” o u t p u t i d =” ou t0 ” />
<d e s t ne twork =” NORii0 ” i n p u t i d =” i n 0 ” />
<d e s t ne twork =”NOTi” i n p u t i d =” i n 0 ” />

</ c o n n e c t i o n e d g e>
<c o n n e c t i o n e d g e i d =” e1 ”>

<s r c ne twork =”NOTe1” o u t p u t i d =” ou t0 ” />
<d e s t ne twork =” NORii0 ” i n p u t i d =” i n 1 ” />
<d e s t ne twork =” NORii1 ” i n p u t i d =” i n 1 ” />

</ c o n n e c t i o n e d g e>
<c o n n e c t i o n e d g e i d =” e2 ”>

<s r c ne twork =”NOTi” o u t p u t i d =” ou t0 ” />
<d e s t ne twork =” NORii1 ” i n p u t i d =” i n 0 ” />

</ c o n n e c t i o n e d g e>

<i n p u t i d =” i n 0 ” e d g e i d =” e0 ” />
<i n p u t i d =” i n 1 ” e d g e i d =” e1 ” />

<o u t p u t i d =” o u t 0 ” ne twork =” NORii1 ” o u t p u t i d =” ou t0 ” />
<o u t p u t i d =” o u t 1 ” ne twork =” NORii0 ” o u t p u t i d =” ou t0 ” />

</ t e m p l a t e n e t w o r k>

Listing 2. The XML file in which the gene network template of the
demultiplexer from Fig. 7 is defined.

template (Listing 2). In this case, the XML file contains a list of sub-
network elements and a list of connection-edge’s that define which
outputs are connected to what inputs.

4.2 biopart package
Because of the ease of implementation, the database is implemented
as a directory structure with XML files. A part is stored as an
XML file and parts of the same type are grouped in directories. The
database contains four different types of genetic parts; promoters,
RBSs, protein coding parts, and terminators. Next to the genetic
parts, it also stores proteins (TFs and reporters) and environmental
signals. The data stored for a part are kinetic constants and relation
to other parts.

The biopart package provide classes for each of the bioparts
and provides the functionality to interact with the database. The
BioPartDatabesBuilder class provides a convenient way to (re)build
an artificial biopart database.

4.3 gene network package
The gene network package provides the functionality to build
devices for a given gene network template. A GeneNetworkBuilder
class takes a GeneNetworkTemplate object as input an translates it
into possible gene network instances (in the form of Device objects).
It provides two different methods; getRandomGeneNetwork and
getAllGeneNetworks. The first returns a random gene network
instance for a given template and the latter returns all possible gene
networks for a given template. Because the number of possible
gene networks for a given template can grow very large, the
getAllGeneNetworks method needs to be used careful.

4.4 model package
The model package implements the model-building functionality.
There is an abstract Model class that takes a device as input which
it can translate into a model. The model is stored as a list of
Species objects and a list of Reaction objects. Other models can
easily be added through extension of the abstract Model class.
Our implemented subclass translates each protein generator in turn
into a standard protein generator model (Fig. 4) and finally adds
the environmental signals that are the external inputs to the gene
network.

The model can be written to file with the FernMLWriter class
which implements the ModelWriter interface. The resulting fernml
file can be used by FERN to run a stochastic simulation. Other
ModelWriter classes can be implemented enabling the output of
other data formats.

4.5 gene network.logic package
The gene network.logic package provides the functionality to read
the user input, run simulations and calculate the score of a device.

User input The user input can be defined in an XML file (Listing
3). The binary timing diagrams for all the input and output signals
are defined as binary strings of equal length. Each value represents
a high (1) or a low (0) value for a time step. The state time element
defines the length of the time step in seconds. When the visual
element is set to true, a plot of the output is shown during simulation.
This makes the simulation a lot slower, but is convenient to initially
test a newly designed logic gene network. When running large
experiments, this value should be set to false.

Simulation The GeneNetworkSimulation class uses the FERN
stochastic simulation package to run Gillespie’s exact SSA for
a logic device. The BinaryTimingDiagramObserver, an extension
of the abstract Observer class provided by FERN, changes the
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<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
< l o g i c d e v i c e s e t t i n g s name=” D e m u l t i p l e x e r 0 ”>

<n e t w o r k t e m p l a t e>D e m u l t i p l e x e r</ n e t w o r k t e m p l a t e>

<i n p u t i d =” i n 0 ”>i im0</ i n p u t>
<i n p u t i d =” i n 1 ”>i im1</ i n p u t>

<o u t p u t i d =” o u t 0 ”>r e p o r t e r 0</ o u t p u t>
<o u t p u t i d =” o u t 1 ”>r e p o r t e r 1</ o u t p u t>

<b i n a r y t i m i n g d i a g r a m>

<p l o t i d =” i n 0 ” >00110</ p l o t>
<p l o t i d =” i n 1 ” >01100</ p l o t>
<p l o t i d =” ou t0 ”>01000</ p l o t>
<p l o t i d =” ou t1 ”>00100</ p l o t>

</ b i n a r y t i m i n g d i a g r a m>

<s t a t e t i m e>7200</ s t a t e t i m e>
<v i s u a l>t r u e</ v i s u a l>

</ l o g i c d e v i c e s e t t i n g s>

Listing 3. An XML file containing the user input. A visualisation of this
user input is shown in Fig. 7

concentration of the input signals according to the user defined
binary timing diagrams. The average over 20 simulation runs is the
result of a device simulation. The output is stored as a tab separated
file.

5 RESULTS
Two experiments were done to show that our method works as
intended. The results show that the score provides a good measure
for the performance of a device. Furthermore, the results show
that certain biological parts are preferred at certain locations in
the network. Although there is no obvious explanation for this, it
provides useful information for the design of a gene network.

We used the software to generate all possible devices for two logic
gene network templates; a demultiplexer, which forwards the input
signal to one of the two outputs based on the select signal, and a D-
latch, a logic circuit that is able to store one bit. The demultiplexer is
combinatorial, the output depends on the present inputs only, and the
D-latch is sequential, the output also depends on the input history.
In other words, the D-latch has memory and the demultiplexer does
not. For both cases we devised a bioparts database in such a way that
the number of possible devices was limited, enabling the simulation
of all devices within reasonable time.

Both gene network templates consist of three different logic gate
networks; an external NOT gate, an internal NOT gate, and a NOR
gate (external meaning that it takes an environmental signal as input,
while the internal version takes a TF as input).

5.1 Demultiplexer
Fig. 7 shows the user input that was used for this experiment (Listing
3 shows how this input is defined in an XML file). The demultiplexer
is defined as the gene network template, the monomer inhibitors
iim0 and iim1 are assigned to the inputs and the reporters reporter0
and reporter1 are assigned to the outputs (Fig. 7A). The edges e0,
e1, e3, and e4 are thereby occupied by user-defined proteins. Edge

Fig. 7. User input for the design of a demultiplexer - A) The demultiplexer
gene network template with the assigned input and output proteins. The
demultiplexer network consists of three different logic gates; an external
NOT gate, an internal NOT gate, and an internal NAND gate. B) The binary
timing diagrams for each of the inputs and desired outputs.

Fig. 8. Scores of all demultiplexer devices - A) The scores of 15360
devices ordered from low to high. B) The devices from the plot in A are
subdivided into 20 bins. The histograms show the device counts of devices
with slow and fast promoters and RBSs for protein generators 1, 3, and 4. It
shows that most of the high scoring devices have a slow promoter and RBS
for protein generator 1 and a fast promoter and RBS for protein generators 3
and 4.
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Fig. 9. Five simulation results - The averaged result over 20 simulation
runs of the five circled demultiplexer devices in Fig.8A. These results show
that, for this case, the score provides a good indication of the performance
of the device.

e2 is the only edge left open. To go from a template to an instance,
the device builder will have to assign an inhibitor to this edge.

In Fig. 7A it can be seen that both input TFs, the ones assigned
to edge e0 and edge e1, should be inhibitors that bind an inhibiting
environmental signal. The TFs that we assigned to them, iim0 and
iim1, were both inhibitors present in the bioparts database. Also,
for both it was defined (in the biopart database) that they bind an
inhibiting environmental signal: es iim0 and es iim1 respectively.
If we had assigned a wrong TF to an input, for example, an activator
or an inhibitor that does not bind an environmental signal, then the
software would have given an error message.

The binary timing diagrams for input 0 and input1 determine the
concentrations of the environmental signals es iim0 and es iim1.
The first time step of the binary timing diagram is not taken into
account for the evaluation of the device. The following time steps
are all four possible logic combinations of the two inputs; 01, 11,
10, 00. A time of 2 hours was defined as the length of the time steps
(the 7200 seconds as state-time in Listing 3).

The used bioparts database contained two RBSs, two promoters
per promoter library and was devised in such a way that there was
only one promoter library available for each protein generator. With
five protein generators, this results in 2(5×2) = 1024. Fifteen TFs
(five monomers, five dimers, and five tetramers) could be assigned to
edge e2, providing a total of 15× 1024 = 15360 different possible
devices for the gene network template in Fig. 7A.

Fig. 8A shows the score of all 15360 devices ordered from low
to high. The simulation results of the circled devices are displayed
in Fig. 9. Visual inspection of the simulation results show that

Fig. 10. User input for the design of a D-latch - A) The D-latch gene
network template with the assigned input and output proteins. The D-latch
network consists of three different logic gates; an external NOT gate, an
internal NOT gate, and an internal NAND gate. B) The binary timing
diagrams for each of the inputs and desired outputs.

the performance of the devices increases from device 1 to device
15360. This shows that the score provides a good indication for the
performance of the demultiplexer device.

The ordered devices from the plot are subdivided into 20 bins of
768 devices. For each bin, the number of devices were counted that
have a slow or a fast promoter for each of the protein generators.
The same was also done for fast and slow RBSs. This resulted in
a histogram for each of the protein generators. The histograms for
protein generator 1, 3, and 4 are shown in Fig.8B. As can be seen,
most of the high scoring devices have a slow promoter and a slow
RBS for protein generator 1 (pg1 in Fig. 7). For protein generators
3 and 4 (pg3 and pg4 in Fig. 7), most of the high scoring devices
have a fast promoter and a fast RBS. The rest of the results can be
found in the supplement.

5.2 D-latch
Similar to the demultiplexer, two monomeric inhibitors, iim0 and
iim1, that can bind the inhibiting environmental signals, es iim0
and es iim1, were assigned to the input edges e0 and e1. Reporter0
was assigned to the output edge e7.

The D-latch has a data signal which is forwarded to output 0 when
the enable signal is 1. When the enable signal is 0, the output stays
in the current state, which can be either 0 or 1 (Fig. 10).

The bioparts database contained only 1 RBS and 1 promoter per
promoter library. The TF for the edges e2, . . . , e6, is the only thing
that was varied. With six monomer, six dimer, and six tetramer TFs,
this provided a total of 702 possible devices.
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Fig. 11. Scores of all D-latch devices - A) The scores of 702 devices
ordered from low to high. B) The devices from the plot in A are subdivided
into 18 bins. The histograms show the device counts of devices with
monomer, dimer, or tetramer TFs for the edge’s e3 and e6. It shows that
most of the high scoring devices use a monomer or dimer TF for e3 and a
tetramer TF for e6.

Fig. 12. Four simulation results - The averaged result over 20 simulation
runs of the four circled devices in Fig. 11A. An increasing score shows an
increasing performance, but the performance of the best scoring device is
questionable. The signal drop that should occur at 48 hours seems to start
already before that time point. Furthermore, the output signal seems to rise
in the last time step while it should stay low.

Fig. 11A shows the score of all 702 devices ordered from low
to high. The simulation results of the circled devices are displayed
in Fig. 12. The performance of the devices seem to increase from
device 1 to device 702, but the performance of the best device (702)
is questionable. Whereas the output signal should drop to 0 at 48
hours, it looks as if the signal already decreases before this time
point. It could be that although the system does not perform well,
for this binary timing diagram it happens to show the desired result.

The ordered devices in the plot were subdivided into 18 bins. For
each bin the number of devices were counted that use a monomer,
a dimer, or a tetramer for an edge. This resulted in a histogram
for each of the edges. The histograms of the edges e3 and e6 are
shown in 11. As can be seen, most of the high scoring devices use
a monomer or dimer for e3 and a tetramer for e6. The results of the
other edges can be found in the supplement.

6 DISCUSSION
The use of modularity makes it very easy to design logic gene
network templates. The definition of only three different logic gates
was enough to design the demultiplexer and D-latch shown in Fig.
7 and 10. Furthermore, we have also used them to design a decoder
(Supplement). The software can be used to run a simulation on a
random instance, which immediately provides some information
about the functioning. For the design of gene networks this sounds
appealing, but there are still a lot of hurdles to address before such
a system can be used in practise.

First, the used bioparts database was artificial. The partsregistry
contains a lot of genetic parts, but it provides no information about
the parameters, which we need for the modeling. The majority
of the parts are added by iGEM teams that design the parts they
need for their system. Only a fraction of the parts is tested in
the lab and just several parts are well characterised. Ellis et al.
(2009) provides a method to build libraries of promoters with
accompanying parameters. This method could in principle be used
to build a bioparts database like ours.

Second, our method can generate possible gene network instances
for a given template, but it is desirable to have an optimization
algorithm that searches for the best performing gene network. This
is not an easy task, since the search space, which is discrete, will in
general be very large and high dimensional. Furthermore, defining
an objective and evaluation measure was relatively easy in case of
logic gene networks, but will be more challenging for other types of
gene networks.

Third, running a stochastic simulation algorithm on a complex
gene network is slow. For example, the simulation of a
demultiplexer took about 0,7 seconds (it differs per device instance,
higher molecule counts result in more reactions causing slower
simulation). Simulation of a D-latch, a more complex network, took
about 7 seconds. Such long simulation times make it infeasible to
evaluate large amounts of device instances which is needed in case
one needs to search for the best performing device. There is however
continuous research on algorithms that provide a simulation speed-
up and which are also aimed at the simulation of gene expression
(Roussel and Zhu, 2006).

Finally, we do not take into account biological restrictions. For
example, gene expression of an introduced gene network costs the
cell energy. Energy is of great importance to a cell and it is not
known how much can be used for a synthetic system. Also the other
molecular species within the cell are discarded, while these can be
of great influence. An introduced TF could for example cause cross-
talk in an important gene network.

Although there is still a lot to achieve before a tool like ours can
be used for the design of biological systems, the results show that
the software can already be of use.
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The 2008 University of Pavia iGEM team6 and the 2009
University of Illinois iGEM team7 designed a demultiplexer and a
decoder respectively. Both spend a lot of time building a model from
scratch, which in our case is done automatically. Furthermore, our
method can be used to indicate which parts are prefered at what
location in the network.

The type of TF (monomer, dimer, tetramer) to use as signal carrier
seems to be of importance to the behaviour of the system. Using a
different type of TF somewhere in the network results in a different
model. For example, changing a monomer to a dimer results in the
addition of an extra reaction. A lot of different models are thus
needed to test all TF combinations within a gene network. This
is no problem with our method, because the different models are
generated automatically.

Furthermore, the results show interesting behaviours which could
also be an inspiration for further research. The software could for
example be used to investigate why, for some behaviour, a type
of TF (monomer, dimer, tetramer) is prefered at a certain location
within a network. The software could also be used to investigate
noise propagation within gene networks similar to Hooshangi et al.
(2005).

The method can also be further extended. Gene transcription
regulation is the only regulation mechanism used, while biology
provides much more regulation mechanisms that could be
incorporated in a similar way. For example, translation regulation
(riboswitches, cis or trans acting RNAs, RNA-thermometers) are
regulation mechanisms that are very flexible and act on a faster time
scale than transcription regulation (Davidson and Ellington, 2007;
Beisel et al., 2008; Benenson, 2008).

The promoters we have used for our gene networks are relatively
simple, they can bind maximally two TFs that do not overlap (so
no competitive TF binding). More complex hybrid promoters (Cox
et al., 2007) that implement a more complex can result in less
large gene networks, which would provide a more energy efficient
solution. Also the functioning of the promoters could be optimized
for the use in synthetic gene networks (Setty et al., 2003; Mayo
et al., 2006).
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Chapter 1

Kinetic constants

kinetic constant min max
ktc 0.00625 0.01 one transcript per gene each 160 . . . 100 sec
ktl 0.00625 0.01 one protein per mRNA each 160 . . . 100 sec
kdegr

0.00144 0.00385 half-life 8 . . . 3 min (Bernstein et al., 2002)
kdegp 0.000183 0.00167 half-life 91 . . . 10 min (Grilly et al., 2007)
kbtf 0.00278 0.00417 Hooshangi et al. (2005) +/− 1 min
kutf 0.00139 0.00208 Hooshangi et al. (2005) +/− 2 min
kbp 0.0001 0.001 Schlosshauer and Baker (2004)
kup 0.0000167 fixed, same as Hooshangi et al. (2005)
kbs 0.000833 fixed, same as Hooshangi et al. (2005)
kus 0.00167 fixed, same as Hooshangi et al. (2005)

Table 1.1: Kinetic constant ranges used to build artificial biopart database.
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Chapter 2

Decoder

Figure 2.1: Gene network template for a 2-to-4 line decoder.
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Figure 2.2: Input signals and desired output signals for the 2-to-4 line decoder.

Figure 2.3: Simulation result of a random device instance of the 2-to-4 line decoder template. The
simulation result is the average over 20 simulation runs.
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Chapter 3

Results experiment 1:
demultiplexer

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < l o g i c d e v i c e s e t t i n g s name=”Demult ip lexer0 ”>
3
4 <gene network>Demult ip lexer</ gene network>
5
6 <input id=” in0 ”>i im0</ input>
7 <input id=” in1 ”>i im1</ input>
8
9 <output id=”out0”>r epo r t e r 0</output>

10 <output id=”out1”>r epo r t e r 1</output>
11
12 <binary t iming d iagram>
13 <p lo t id=” in0 ” >00110</ p l o t>
14 <p lo t id=” in1 ” >01100</ p l o t>
15 <p lo t id=”out0”>01000</ p l o t>
16 <p lo t id=”out1”>00100</ p l o t>
17 </ b inary t iming d iagram>
18
19 <s t a t e t ime>7200</ s t a t e t ime>
20 <v i s u a l> f a l s e</ v i s u a l>
21
22 </ l o g i c d e v i c e s e t t i n g s>

Listing 3.1: Demultiplexer settings
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Figure 3.1: Correlation output 0.
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Figure 3.2: Correlation output 1.
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Figure 3.3: Low value output 0.
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Figure 3.4: Low value output 1.
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Figure 3.5: High value output 0.
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Figure 3.6: High value output 1.
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Figure 3.7: Score
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Chapter 4

Results experiment 2: DLatch

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < l o g i c d e v i c e s e t t i n g s name=”DLatch0”>
3
4 <gene network>DLatch</ gene network>
5
6 <input id=” in0 ”>i im0</ input>
7 <input id=” in1 ”>i im1</ input>
8
9 <output id=”out0”>r epo r t e r 0</output>

10
11 <binary t iming d iagram>
12 <p lo t id=” in0 ” >010011100</ p l o t>
13 <p lo t id=” in1 ” >111001001</ p l o t>
14 <p lo t id=”out0”>111101000</ p l o t>
15 </ b inary t iming d iagram>
16
17 <s t a t e t ime>43200</ s t a t e t ime>
18 <v i s u a l> f a l s e</ v i s u a l>
19
20 </ l o g i c d e v i c e s e t t i n g s>

Listing 4.1: DLatch settings
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Figure 4.1: Correlation.
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Figure 4.2: Low value.
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Figure 4.3: High value.
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Figure 4.4: Score.
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Chapter 1

Research Proposal

One of the goals of synthetic biology is to engineer biological systems that add novel functionalities
to a cell. From an engineering point of view this would enable us to build useful biological
applications, such as the production of a chemical/drug or the metabolization of waste material.

1.1 Problem description

Multiple transcription networks performing a simple function have been engineered over the last
few years. Elowitz and Leibler (2000) and Gardner et al. (2000) were the first to engineer an oscil-
lator and a toggle switch respectively using trial-and-error. Guet et al. (2002) used a combinatorial
approach to engineer three transcriptional networks that act as a logic gate.

For these simple functions it is possible to design a transcriptional network manually, using
intuition only. But for a more complex function, intuition is not enough. A more complex
function requires a larger network, meaning a huge increase of the solution space, which makes a
combinatorial approach infeasible as well.

The main direction of synthetic biology towards the simplification of engineering complex
biological systems, as proposed by Endy (2005), is standardization, decoupling, and abstraction.
This basically means that we need well characterized biological building blocks that perform a
defined function, also when connected to each other, so that these standardized building blocks
can be used to build more complex systems.

Although there are currently numerous synthetic biological systems, these are designed to
perform a specific function on itself, they are not designed to be a part of a larger system, i.e.
they are not designed to be modular. So currently there are no reusable biological parts that could
be used to design a complex system, which is therefor still an infeasible task.

It is also unknown if this modular approach is feasible within biology. Theoretically a modular
approach makes it easier build complex systems, but biology puts some restrictions on this ap-
proach. Research is needed to provide insight into the possibilities of applying a modular approach
to design biological systems.

1.2 Goal

The goal of this project is to determine if it is feasible to build a complex biological system using
modular biological building blocks and if so, to determine the limits of this modular approach,
taking into account biological constraints such as energy consumption.
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1.3 Proposal

To test if a modular approach is feasible in biology we propose to take a similar approach as is
done within electrical engineering, where logic gates are used as standard building blocks to build
complex logic circuits. Similarly, biological logic gates will be designed which will be used to build
biological logic circuits.

To make things less complicated we propose to initially use transcription regulation for the
design of the logic gates. In other words, gene transcription networks will be designed that act
as a logic gate. At a later stage, post-transcriptional regulation could be incorporated into the
design as well.

Abstraction

To simplify the design of a complex system we propose to use an abstraction hierarchy as proposed
by Endy (2005) (Figure 1.1). The parts (promoters, ribosome binding sites, protein coding regions,
and terminators) will be used to build logic gates (devices) and these logic gates will in turn be
used to build a logic circuit (system). A similar approach as used for digital electronics.

Figure 1.1: Abstraction hierarchy as proposed by Endy (2005) with the aim of managing complexity.
Parts are DNA stretches with a defined function. These parts can be used to build devices which in turn
can be used to build systems. Logic gates will be designed within this project and these will be used to
build logic circuits. Although the design of these interconnectable logic gates is a difficult task, having such
devices greatly simplifies the design of complex systems.

Modular logic gates (devices)

As a first step towards a biological circuit we propose to design a number of well characterized
(Canton et al., 2008; Lucks et al., 2008) modular logic gates based on a number of known biological
logic gates, in which modular means that the devices should be able to maintain their intrinsic
properties when connected to any other device (Sauro, 2008).

Logic circuits (systems)

Logic circuits (Figure 1.2) will be build in silico using the designed logic gates to test if they
provide the desired behavior when interconnected. In case of success, this testing will be used to
explore the limits of circuit design. Otherwise the test will be used to see which problems occur
and what could be done to solve these problems.

1.4 Approach

Simulation

The simulator that will be used is TABASCO (Kosuri et al., 2007). This simulator mimics gene
expression at two different resolutions: a single molecule resolution for a detailed simulation of
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Figure 1.2: Example of a simple logic circuit diagram that could be used to test the logic gates. In this
case a demultiplexer: a high concentration of ligand A will cause protein C to mimic the ’binary’ value of
protein B and a low concentration of ligand A will cause protein D to mimic the ’binary’ value of protein
B.

the transcription process, and to keep the method computational tractable, a species level for the
translation process (Figure 1.3). The main advantages compared to other simulators are that:

• In contrast to most continuous and discrete simulators, it is scalable, able to predict the
behavior of complex transcriptional networks.

• It is a stochastic simulator, providing a more accurate prediction than a continuous approach.

• The model used is closer to reality than a mathematical model, which decreases the risk of
using unrealistic parameters.

• It provides more insight into what happens at the molecular scale.

• Modeling multiple regulation is much easier compared to mathematical modeling.

The organism in which all the processes will be simulated is Escherichia coli. This is a model
organism which is well characterized and is mostly used for the implementation of synthetic
biological networks. Parameters like cell volume, number of polymerases, polymerase speed,
number of DNA copies, etc., need to be defined to model the host cell. The ecocyc database
(http://ecocyc.org/), as well as available literature, can be used to retrieve such numbers.

Biological parts

A set of well characterized biological parts will be retrieved from the parts registry (http://www.
partsregistry.org) and from literature. Cox et al. (2007) for example provides a library of well
characterized multiple regulated promoters.

The parameters of the parts that are needed by the simulator, such as the strength of the
ribosome binding site, need to be defined.

A set of transcription factors (protein coding parts) will be used as signal carriers which can
regulate gene expression when bind to a promoter. A set of ligands will be used as input signal
to the circuit which are being sensed by some of the transcription factors. These can be activated
or deactivated through binding of the ligand. Finally some protein coding parts will be used as
output signal, i.e. reporter.

Modular biological logic gates (devices)

Biological logic gates will be retrieved from literature (Guet et al., 2002; Mayo et al., 2006; Cox
et al., 2007; Rodrigo et al., 2007; Anderson et al., 2007). The designs of these logic gates will be
used as a starting point of the design of a set of logic gates which are modular, i.e. able to maintain
their intrinsic properties when connected to any other logic gate (Sauro, 2008). The behavior of
these gates, on their own and connected to other gates, will be predicted using the simulator.
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Figure 1.3: A simplified flow diagram that shows how TABASCO transitions between two resolutions:
the detailed single molecular resolution and the species level resolution (Kosuri et al., 2007).

The goal is to find biological mechanisms that can be used to solve the encountered prob-
lems. Similar to the approach of Del Vecchio et al. (2008), electrical engineering will serve as an
inspiration to find solutions.

These mechanisms will be used to design a set of modular biologic logic gates that can be used
to build a biologic logic circuit.

Some expected problems when interconnecting logic gates to form a logic circuit are discussed
in the following sections.

Retroactivity

One problem that also occurs in other engineering fields, as depicted by Del Vecchio et al. (2008), is
retroactivity - the effect a downstream device has on an upstream device, which has to do with the
modularity of a device. Minimizing the retroactivity results in a modular device. Del Vecchio et al.
(2008) proposes some mechanisms to minimize the retroactivity of a device. These mechanisms
will be tested in silico and used for the design of the logic gates.

Timing

Another expected problem is timing. A circuit containing a very long and a very short path can
cause undesired behavior. It will take more time for a signal to propagate through the long path
then the time it will take for a signal to propagate through the short path. This can lead to a
situation where a signal that traverses the short path overtakes a signal that traverses the long
path. Digital circuits use a clock that synchronizes the system in order to solve this problem. A
similar solution could be needed for the biological case as well.
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Signal propagation

The propagation of a signal is also an important issue when building circuits. For example when
a signal (a transcription factor) has a very high degradation rate it could happen that the con-
centration of the signal does not pass the logic ’1’ threshold, which means that the signal will be
lost. On the other hand, when the signal has a very low degradation rate, the signal could stay
above the logic ’1’ threshold to long.

Discretization

Also the discretization of the continuous signal into a binary value could lead to some difficulties.
It could be that different thresholds are needed for different signals (transcription factors) or even
different thresholds in between different logic gates.

Other problems

Two approaches will be used to discover other problems. Firstly, literature about the early stages
of digital logic will be used to identify other potential problems. Secondly, in silico simulations of
biological logic circuits, using the biological logic gates, will be used to identify problems.

Logic circuits (systems)

Logic circuits will be build in silico in order to test the functioning of the designed logic gates.
Logic circuits with different properties will be designed using available logic circuit design methods.

Next to the testing of the logic gates another goal is to explore the limitations of the biological
circuits. This will be used to define a set of rules and restrictions that specify the possibilities/lim-
itations of the biological circuits that can be designed, e.g. a logic circuit can have a maximal
cascading depth of four logic gates.

If the tests do not provide any good results, this phase will be used to identify why it doesn’t
provide the desired results and if these problems could be resolved, i.e. if this modular approach
is feasible in biology.

1.5 Validation

The only validation that will be done within this project is the testing of the logic gates as
mentioned in the previous section. A number of logic circuits performing some logic function will
be taken from electrical engineering and build using the logic gates to see if the biological circuit
provides a similar behavior. This will hopefully provide more insight into the possibilities of a
modular approach within synthetic biology.

Ideally one would like to test some designs in the lab to see if the in silico prediction also
holds in vivo. Although labwork is not possible within this project, iGEM teams provide a nice
opportunity to have the designed logic gates validated.

1.6 Work plan

This section provides an action plan that will be used for the project. A planning of these tasks
is given in Appendix A.

Simulator - testing and configuration

• Test if TABASCO provides accurate gene expression predictions. Existing models from the
biomodels database (www.ebi.ac.uk/biomodels-main) can be used to check if the results
are comparable to other simulators.
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• Configuration of TABASCO, i.e. setting the global parameters (cell volume, number of
ribosomes, etc.) of the simulator. The simulations from the previous step can be used for
the fine-tuning of the settings.

• A better performing simulator will have to be chosen if TABASCO does not provide accurate
results.

• Add additional functionality to the simulator when needed.

Logic gates - initial design

• Define a set of biological parts that will be used to build the logic gates.

• Retrieve existing biological logic gates from literature and use these to build a set of logic
gates that are composed of standard biological parts and that can be interconnected.

• Build a set of ligands, transcription factors, and reporter genes which will be used as input,
internal, and output signals. Also specify interactions between ligands, transcription factors,
and promoters.

Logic circuits - problem identification

• Search the literature about digital logic to identify potential problems.

• Define a set of logic circuits that will be used to investigate the behavior of the biologic logic
gates, when interconnected. These circuits could be seen as a training set in order to design
a number of modular logic gates.

• Use the simulator to predict the behavior of the biologic logic circuits to investigate what
problems occur.

• Analyze the results and define a list of problems that need to be solved.

Logic gates - modular design

• Build a list of useful biological mechanisms, e.g. a high gain caused by a high polymerase-
promoter affinity (Del Vecchio et al., 2008).

• Use electrical engineering as an inspiration to find solutions to the problems using the bio-
logical mechanisms listed in the previous step.

• Use the mechanisms to design a set of modular biological logic gates.

Logic circuits - validation

• Define a list of logic circuits which will be used to validate the functioning of the modular
biologic logic gates. These circuits should be distinct from the ones used to design the
modular logic gates. This set could be seen as the test set.

• Use the simulator to predict the behavior of the logic circuit and compare these results to
the expected behavior.

• In case of success, explore the limits of the biologic logic circuits and create a list of design
rules for the design of biological logic circuits.
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Chapter 2

Approach

During the project the goal was adjusted from a more theoretical goal, testing the feasibility
and exploring the possibilities of using modular design and standardization for the design of
biological systems, to a more practical goal, providing a design method in which modular design
and standardization are used to simplify the design process and enable the design of more complex
biological systems. Also, the proposed stochastic simulator, TABASCO (Kosuri et al., 2007),
appeared to be less developed as expected. Instead, we used the FERN framework (Erhard et al.,
2008) to run Gillespie’s exact stochastic simulations algorithm (Gillespie et al., 1977).

The developed method can be used for the design of gene networks that implement a logic
function, which we will call logic gene networks. The only regulation mechanism used to build
the system is transcription regulation through the binding of Transcription Factors (TF) to a
gene. Environmental signals, such as small molecules, light or temperature, can inhibit or activate
TFs. These signals will be called external signals, and the TFs will be called internal signals.
The designed logic gene networks will take some environmental signals as input, use the internal
signals for the internal logic, and produce some reporters as output.

2.1 Gene network

We represent gene networks as a graph. The vertices are gene’s that express a protein. The edge’s
are TFs that regulate the expression of the gene’s, or reporters that are used as output signal.
Fig. 2.1 shows an example of a OR gate gene network. Three inhibitors (TetR, LacI, and Cl)
regulate the expression of the two gene’s (the vertices). The reporter GFP is the output signal.

Figure 2.1: An OR gate gene network - The gene network consists of two gene’s (the vertices) that
are regulated by three inhibitors (TetR, LacI, and Cl). The network produces the reporter GFP as output
signal.

An edge that regulates a gene can be either an inhibitor (edge in Fig. 2.2A) or an activa-
tor (both edge’s in Fig.2.2B). An edge can have multiple source vertices, which means that the
multiple gene’s can produce the same protein (Fig.2.2A). Vertices can have multiple input edge’s,
which means that multiple TFs can regulate a gene (Fig.2.2B). An edge can also have multiple
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destinations, which means that a TF can bind to multiple gene’s (Fig.2.2C). Environmental sig-
nals, such as small molecules or light, can inhibit or activate a TF. This enables the introduction
of environmental signals within a gene network. Fig.2.2C shows an edge (TF) inhibited by an
environmental signal.

Figure 2.2: A The TF (the edge) is an inhibitor that is produced by two gene’s and inhibits one gene. B
Both TFs are activators produced by different gene’s. They regulate the same gene. C The produced TF
regulates two different gene’s. The TF can be inhibited by an environmental signal.

2.2 Device

The Registry of standard biological parts was the first effort towards standardization in synthetic
biology. A standard biological part is defined as a DNA sequence with some function. Since the
foundation of the registry at MIT in 2003, many standard biological parts have been added. The
parts in the registry meet the BioBrick™standard which makes it possible to ligate parts with a
standard ligation protocol.

The most basic parts within the registry are the genetic parts. For our project we used four
different kinds of genetic parts: promoters, ribosome binding sites (RBS), protein coding parts,
and terminators. The function of a promoter is to recruit transcription machinery, i.e. polymerase.
The DNA sequence will therefore contain a binding site for the transcription machinery. Binding
of TFs to the operator sites can influence this. Therefore, next to the polymerase binding site, a
promoter can also contain several TF binding sites, i.e. operators. The function of the RBS is to
recruit translation machinery, i.e. ribosomes. The protein coding part encodes for the expressed
protein. Finally. the terminator causes the polymerase to dissociate.

The genetic parts can be combined to form a cellular system. For example, an inverter, a
system that produces a high output signal (high TF concentration) when the input signal is low
and a low output signal when the input signal is high. Such a cellular system is called a device.
Finally, a device can be used to build complex biological systems.

The next section describes the protein generator, a standard building block that we use for the
design of the networks, which consist of the four genetic parts and therefore is a device. We design
gene networks using the protein generator devices and the gene networks we design are thus also
devices.

2.3 Protein generator

A protein generator device is build out of four genetic parts; a promoter part, a ribosome binding
site part, a protein coding part and a terminator part (Fig. 2.3). Each of these parts has their
own function and each of them determine some characteristics of the protein generating device.
When having a database with genetic parts, different protein generators can be build.

Protein generators are used as basic building blocks to build gene networks. Fig. 2.4 shows
the gene network from Fig. 2.1 together with a device that implements this it.
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Figure 2.3: Protein generator - This device consists of four genetic parts; a promoter (green), an
RBS (blue), a protein coding part (purple), and a terminator (red). The symbols for the genetic parts are
commonly used in the field of synthetic biology. The promoter binds TFs and thereby determines the input
signal. The protein coding part encodes for the expressed protein and thereby determines the output signal.

Figure 2.4: A The gene network from Fig. 2.1. B The device implementation of the network in A.
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2.4 Modular gene networks

This section shows how modularity can be used to build gene networks using protein generators
as basic building blocks. It shows how a AND gene network can be build using other logic gates.
The example is based on the work of the 2008 Pavia iGEM team1.

A logic NOT gate

The device shown in figure 2.5 has an operator that binds LacI tetramers and thus accepts LacI
tetramer proteins as input signal. The protein coding part encodes for the LuxI protein, which is
the output signal of this device. This simple device, which consists of only one protein generator,
has the function of a logic NOT gate; LacI tetramer binding causes repression of LuxI expres-
sion and thus a high LacI tetramer concentration (i.e. a high input signal) causes a low LuxI
concentration (i.e. a low output signal) and visa versa.

Figure 2.5: A biological NOT gate - A The input signal, LacI tetramers, inhibit the expression of the
output signal, LuxI. A high input signal (a high concentration of LacI tetramers) cause a low output signal
(concentration of LuxI proteins) B The symbol of a logic gate as used in electrical engineering. C A truth
table of the logic gate. A 1 denotes a high concentration of the signal and a 0 a low concentration.

A logic AND gate

Figure 2.6 shows an example where protein dimerization is used to get a logic AND behaviour.
Two input signals have to form heterodimers in order to bind to the operator and thereby activate
the expression of the output signal. This means that there will only be a high output signal when
both input signals are high, which is the typical behaviour of a logic AND gate.

A logic NAND device using the AND and NOT gates

These two logic devices can now be combined to get a more complex function. A module that
acts as a logic NAND gate can for example be build using two NOT gate and one AND gate as
depicted in figure 2.7. Incorporating the three logic gates as given in figure 2.7 into a cell will
automatically result in the desired connection because of the ’fitting’ signals. The first NOT gate
produces LuxI proteins as output signal which in turn serves as input signal to the AND gate.
The same applies to the second NOT gate which produces the LuxR protein which in turn serves
as the second input of the AND gate.

A logic AND gate that responds to environmental signals

Finally we can add two devices that act as logic NOT gate to build an AND gate which takes
two external signals, the ligands IPTG and aTc, as inputs and produces the reporter protein RFP
as output (Figure 2.8). The output protein will only be expressed when both input signals are
present, i.e. when both input signals are high.

1http://2008.igem.org/Team:UNIV-Pavia
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Figure 2.6: A biological AND gate - A The input signals LacI and LuxI form a hetrodimer and bind
as activator to the promoter. Both input signals must be high in order to get RFP expression, which is an
AND behaviour. B A logic AND gate symbol as used in electrical engineering. C The truth table of an
AND gate. The output is high only if both inputs are high.

Figure 2.7: A biological NAND gate - A the overall NAND symbol that takes LacI and TetR as inputs
and produces RFP as output. B The NAND consists of two NOT gates that are connected to an AND
gate. C The NAND gate consists of three protein generators. The produced proteins from the NOT gates
bind as a TF to the promoter of the AND gate, this way the different gates are connected.
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Figure 2.8: The final AND gate - A the overall AND symbol that takes the small molecule IPTG and
aTc as inputs and produces RFP as output. B The AND consists of two NOT gates that are connected to
the NAND gate from Fig. 2.7. C The produced proteins from the NOT gates are the inputs to the NAND
gate. The NOT gates take small molecules as input and the NAND produces RFP as output. This way we
have a AND gate that can respond to environmental signals and produces a measurable output.
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We have now seen that protein generators can be used as basic building blocks to build gene
networks that act as a logic gate. The TFs are the signal carriers within the network, small
molecules can be used as external signal, and reporters as output signal.

2.5 Degree of standardization

Our aim is to design logic gene networks using modular logic gates. For the logic gates one can
use different degrees of standardization.

Quantitatively characterized logic gates

A possible approach is the definition of a collection of well characterised logic gate devices. A
major downside of this approach is that such a collection will soon become impractically large,
because of the many different signals (TFs) that can be used. When having a device with only
one input and one output and having 10 different signals available, this would already provide
10× 9 = 90 different version of the same logic gate device.

When using well characterised logic gates, one needs to be sure that they also function correct
when interconnected to other logic gates. Del Vecchio et al. (2008) proposes mechanisms that
can be used to ensure this, but such mechanisms cost extra energy and will not result in an
energetically optimal solution. This is a major downside, since energy is a costly product for a
cell.

Qualitatively characterized, tunable logic gates

Another approach is the use of gene network templates, which are gene networks that provide the
desired qualitative behaviour using some mechanism, but which can still be tuned by changing the
genetic parts that are used to implement the network. A user can now simply combine logic gate
templates and use an optimization algorithm to tune the devices so that the system provides the
desired behaviour (which needs to be specified by the user). We have chosen to use this option
for the design of logic gene networks.

2.6 Gene network template

A gene network template is a more general form of a gene network that hides the genetic parts
that are used to build it. Fig. 2.9A shows an OR gate gene network template. It provides the
network topology and indicates what kind of proteins are used as signal carriers. Fig. 2.9B shows a
possible instance of this template. Notice that there are more instances possible. For example, Cl
and LacI could also be the inputs and TetR the internal signal. Having more inhibitors available
results in many more possible instances.

Fig. 2.9C and D show the device representation of the same situation. The template consists
of two protein generators, one per vertex in the gene network. There are no genetic parts assigned
yet, it is only indicated what properties the parts should have. Fig. 2.9D shows the same instance
as in Fig. 2.9 B.

Gene network templates are modular. Fig. 2.10 shows that the OR gate from Fig. 2.9 is
consists of a NOR gate followed by a NOT gate template. The templates for the NOR and the
NOT gate can also be used for the design of other logic gene networks.

2.7 Logic gene network design method

The use of gene network templates is implemented into the design of logic gene networks as
depicted in Fig. 2.11, which shows an overview of the design method as it is implemented in the
developed software tool. The boxes are stored data and the arrows denote data transformations.
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Figure 2.9: A and C OR gate template in the form of a gene network and a device. B and D A possible
instance of the OR gate template in the form of a gene network and a device again.

Figure 2.10: Connection of a NOR template and a NOT template results in a OR template. This
illustrates how logic gene network templates can be build in a modular way.
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Figure 2.11: An overview of software that implements the design method for the design of logic gene
networks. The boxes are stored data and the arrows denote data transformations. The gene network builder
uses the biopart database to translates gene network templates into gene network instances. A gene network
instance, which is a device, can be translated to a model using the model builder. The FERN software
package uses the model to run a stochastic simulation. The concentrations of the environmental signals
(the input signals) are determined by the user defined inputs. Finally, the score calculator provides an
evaluation score for the device based on a comparison of the simulation data to the user-defined desired
output.
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The user specifies a gene network template, assigns environmental signals to the inputs and
reporters to the outputs, and provides a binary timing diagram for each input signal and desired
output signal. The gene network builder uses bioparts from a database to build gene network
instances that implement the given template. The number of possible instances is in most cases
very large. The model builder can translate a gene network instance, which is a device, into a
model, which in turn can be used for stochastic simulation using the FERN framework. The
concentration of the environmental signals during simulation is determined by the user-defined
input signal. The result of the simulation is the molecule count of the output signal over time.
The score calculator compares the simulation output with the user-defined output and turns that
into a gene network evaluation score.

2.7.1 Gene network builder

To get from a gene network template to a possible gene network instance, represented as a device
(so going from Fig. 2.9 A to D), the gene network builder assigns genetic parts from the bioparts
database to each of the protein generators. The gene network template puts restrictions on the
genetic parts that can be used to build the device. For example, the gene network template in Fig.
2.12 determines that the promoter must bind one inhibitor and protein coding part must encode
for an inhibitor. Furthermore, to prevent crosstalk, transcription factors may only be used once
within a network, putting further restrictions of the parts that can be used. As already mentioned,
the number of possible device instantiations for a gene network template explodes already for a
relatively simple network and small bioparts database.

Figure 2.12: Gene network template to gene network instance The transformation of a protein
generator that is part of a gene network template to a protein generator device happens through the assign-
ment of genetic parts from a bioparts database to the protein generator device, in which the gene network
template puts restrictions on the parts that may be used. In this case the gene network template puts re-
strictions on the choice of the promoter and the protein coding part. The promoter must bind one inhibitor
and the protein coding part must encode for an inhibitor. Since there can be multiple promoters that bind
one inhibitor and multiple protein coding parts that encode for an inhibitor, multiple devices can be made
for one gene network template.
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2.7.2 Model builder

The data transformation from a device to a model is done per protein generator. Each protein
generator is translated into a standard model (Fig. 3.3). The models of the different protein
generators are automatically connected as soon as the product of a translation reaction is also
a reactant (possibly after a dimerization reactions) of a TF-DNA binding reaction (Fig. 2.13).
This way, the TF expressed by one protein generator inhibits or activates the expression of an-
other protein generator. Combining the reactions of the protein generator models will therefore
automatically form a gene network model.

Figure 2.13: Models of protein generators are automatically connected when a product of a translation
reaction is also a reactant of TF binding reaction. In this case, protein y is a product of the translation
reaction of protein generator A and also a reactant of the TF binding reaction of protein generator B. This
way, combining the models of protein generator A and B automatically connects them. In other words,
combining models of protein generators automatically results in a gene network model.

The kinetic constants are stored in the bioparts database together with the parts that determine
the constant. For example, a RBS determines the translation rate (ktl) and therefore each RBS
in the database stores an accompanying translation rate. Fig. 2.14 shows what kinetic constants
are stored for which genetic parts. Next to the genetic parts, the database also contains proteins
and environmental signals. Those parts also store some of the kinetic constants (Fig. 2.15). The
model builder fetches the kinetic constants from the bioparts database and uses them for the
model-building.

2.7.3 Stochastic simulation

The resulting model can be used for stochastic simulation. The input signal provided by the user
determines at which time points the concentrations of the environmental signals are set to zero,
in case of a binary ’0’, or a high value, in case of a binary ’1’.

2.7.4 Score calculation

The score calculator compares the desired output to the simulation data in order to evaluate the
performance of the device. The goal is to have an output signal that resembles the user-defined
desired output. Furthermore, since we are building logic gene networks, it is desirable to have a
maximal difference between a low signal and a high signal, in order to distinguish a logic 0 from
a logic 1.
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Figure 2.14: Device to model The genetic parts that make up the protein generator device store the
data that is needed to build a model for the device. The standard model for a protein generator is shown in
which the colours indicate which genetic part stores what data. For example, the promoter (green) stores
the transcription rates (ktc) for the different gene states. Furthermore it stores the binding and unbinding
rates of the TF(s) that can bind to it (kbtf , kutf ) and it stores a pointer to those TF(s). The protein
degradation rate kdp is not coloured, because it is not stored for a genetic part, but for a protein. The
kinetic constants that are stored for a protein are shown in Fig. 2.15

The performance is evaluated based on three measures; the correlation between the desired
and simulated output, the concentration of a high signal, and the concentration of a low signal.
The objective for a well performing device is maximization of the correlation, maximization of
the high signal concentration, and minimization of the low signal concentration. Maximization of
the correlation maximizes the resemblance of the two signals. Since the desired output signal is
a block signal, this also optimizes for fast switching times. Maximization of the high signal and
minimization of the low signal maximizes the separability of low and high signals.
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Figure 2.15: This figure shows what data is stored for the proteins in the biopart database. Each protein
stores a degradation rate kdp. Dimer or tetramer proteins also store pointers to the two sub-proteins and
the (un)binding rates of these proteins (kbp, kup). Proteins that bind an environmental signal also store a
(un)binding rate of the environmental signal (kbes, kues).
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Chapter 3

Methods

This chapter provides a short explanation transcription regulation, the regulation mechanism that
we have used to design biological systems. It also provides an introduction to Gillespie’s exact
stochastic simulation algorithm, which we have used to simulate gene expression. Finally, it
describes the used model, which is based on the model from Hooshangi et al. (2005).

3.1 Transcription regulation

Gene expression is the process of turning the information encoded on a gene into a synthesized
functional product, which can be a protein or a functional RNA. This process can be subdivided
into different steps, such as transcription, translation, and post-translational modification. The
expression of a gene can be regulated using different mechanisms which can act on the different
steps of the gene expression process.

The most common and most well known regulation system is transcription regulation. Proteins
can bind to a gene causing an increase or decrease of the expression of the gene, i.e. the production
of the functional product. Binding of the protein to the gene is called activation in the former
case, and inhibition in the latter case. The location on the gene where the proteins bind is called
an operator and the proteins that bind to this operators are called transcription factors (TF).
A TF is more specifically called an inhibitor when the binding of the TF to the operator causes
inhibition and it is called an activator when it causes activation of the expression. Multiple TF
producing gene’s can form a so called gene network in which the different gene’s regulate each
other. Some TFs can be inhibited or activated by environmental signals such as small molecules.
This way a cell can respond to changing environmental conditions.

The binding of a TF to the a gene and the binding of an environmental signal to a TF are the
two mechanisms that we use to build synthetic gene networks.

3.2 Stochastic simulation

Measurements have shown that gene expression is a stochastic process Elowitz et al. (2002). This
stochasticity, also called noise, has multiple sources and it is not yet clear what the exact sources
are and to which extend they influence the overall noise. The noise in the protein concentration
can be subdivided into two components: the intrinsic noise, originating from the gene expression
process itself, and the extrinsic noise, which is caused by the variation of external factors, such as
the number of ribosomes or the number of transcription factors.

It is very common to use a deterministic approach, using systems of ODEs, for the simulation of
gene expression. Although stochasticity is neglected and molecule numbers are represented using
continuous variables instead of discrete integer numbers, this approach can accurately predict
the behaviour of systems in which the number of molecules per species is high. But as soon as
the molecule count of at least one of the molecular species is low, stochasticity and discreteness
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can have a major influence and can therefore not be neglected anymore. It was also shown that
this stochasticity could show a behaviour that can not be observed with deterministic simulation
(Kaern et al., 2005). The fact of having stochastic behaviour which can be of influence to the
dynamical behaviour of the systems opts for the use of a stochastic model and stochastic simulation
to predict the dynamical behaviour of gene expression.

The rest of this section provides some basics about stochastic simulation, which is mainly based
on a paper by Gillespie (2007).

3.2.1 Chemical system

Under the assumption of having a well stirred, thermally equilibrated chemical system with a
constant volume Ω. Consider a chemical system with N molecular species {S1, . . . , SN} and Xi

an integer value denoting the number of molecules of each species Si. The dynamic state of the
system is defined by X(t) = (X1(t), . . . , XN (t)) which evolutes through time due to the chemical
interaction of the N molecular species through M reaction channels R1, . . . , RM .

In order to predict the behaviour of such a system the goal is to determine the evolution of
the state X of the system from a given initial state X(t0). Such a system is known to evolve
stochastically (Gillespie (2007)).

3.2.2 Deterministic approach

Most commonly, chemical kinetics are being analysed using continuous variables (molecule num-
bers) that evolve deterministically using the so called reaction-rate equation (RRE), which is a
set of coupled ordinary differential equations (ODEs) of the form:

dXi(t)
dt

= fi(X1, . . . , XN ) (i = 1, . . . , N)

in which fi is a combined function of all the reactions that affect Xi, which is a continuous variable.
Although stochasticity is neglected and molecule numbers are represented using continuous

variables instead of discrete integer numbers, this approach can accurately predict the behaviour
of systems in which the number of molecules per species is high. But as soon as the molecule
count of at least one of the molecular species is low, stochasticity and discreteness can have a
major influence and can therefore not be neglected anymore.

3.2.3 Stochastic approach

As Gillespie (2007) states it: “Stochastic chemical kinetics attempts to describe the time evolution
of a well-stirred chemically reacting system in a way that takes honest account of the system’s
discreteness and stochasticity.”

With this approach reactions Rj are characterized mathematically by two quantities: The
state-change vector νj ≡ (ν1j , . . . , νNj), where νij is the change in the Si molecular population
caused by one Rj reaction. The state-change vector determines the new state of the system when
reaction Rj occurs. When the system is in state x, the system will jump to state x + νj when
reaction Rj occurs.

And the propensity function aj , which is defined as:

aj(x) = cjhj(x) (3.1)

in which cj is the probability rate constant, the probability that a randomly selected combination
of Rj reactant molecules in Ω react in a unit time period and hj is defined as the number of
distinct combinations of Rj reactant molecules in Ω (Cai et al. (2006)).

There are two elemental types of reactions that can be specified in a stochastic model: uni-
molecular reactions, with only one reactant, and bimolecular reactions, with two reactants. Higher
order reactions are represented as a sequence of these elemental types of reactions. This provides
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three different possible reactions, each with their own specific hj and thus their own specific
propensity function aj :

S1 → product(s), aj(x) = cjx1,

S1 + S2 → product(s), aj(x) = cjx1x2,

S1 + S1 → product(s), aj(x) = cj
1
2x1(x1 − 1).

The propensity function is defined in such a way that

aj(x)dt
4
= the probability, given X(t) = x, that one Rj reaction will occur (3.2)

somewhere inside Ω in the next infinitesimal time interval [t, t+ dt), (3.3)

which is the fundamental premis of stochastic chemical kinetics (Gillespie (2007)). The algorithm
used for stochastic simulation, as described in Appendix 3.2.5, is based on this premise.

3.2.4 Relation between stochastic and deterministic approach

It can be shown that the probability rate constant cj of the stochastic approach has the following
relation to the reaction-rate constant kj of the deterministic approach:

cj = kj (unimolecular reaction)

cj =
kj

Ω
(bimolecular reaction with two different species)

cj =
2kj

Ω
(bimolecular reaction with the same species)

Gillespie (2007) explicitly states that: “These results should not be taken to imply that the
mathematical forms of the propensity function are just heuristic extrapolation of the reaction rates
of deterministic chemical kinetics. The propensity functions are grounded in molecular physics,
and the formulas of deterministic chemical kinetics are approximate consequences of the formulas
of stochastic chemical kinetics, not the other way around.”

3.2.5 Stochastic simulation algorithm

The probability of a chemical system being in state x at time t can be inferred using

P (x, t | x0, t0)
4
= Prob{X(t) = x, givenX(t0 = x0)} (3.4)

This equation can be turned into a time-evolution version applying the laws of probability to
equation 3.2.

δP (x, t | x0, t0)
δt

=
M∑

j=1

[aj(x− νj)P (x− νj , t | x0, t0)− aj(x)P (x, t | x0, t0)] (3.5)

Equation 3.5 is called the Chemical Master Equation (CME) and it can be shown that this is
actually a set of coupled ODE’s. In practice this equation can be solved analytically only in a few
cases.

Solving the CME results in the probability density function of X(t). The stochastic simulation
algorithm discussed in this sections takes random samples of X(t) to simulate a trajectory of X(t)
versus t. Instead of P (x, t | x0, t0) another probability, which is defined as,
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p(τ, j | x, t)dτ = the probability, given X(t) = x, that the next reaction in the system(3.6)
will occur in the infinitesimal time interval [t+ τ, t+ τ + dτ), and will(3.7)
be an Rj reaction. (3.8)

is used for the random sampling, in which τ is a random variable denoting the time to the next
reaction and j a random variable denoting the index of the next reaction. This equation can be
turned into the following equation:

p(τ, j | x, t) = aj(x)exp(−a0(x)τ), (3.9)

where

a0(x)
4
=

M∑
j′=1

aj′(x). (3.10)

again by applying the laws of probability to equation 3.2. Equation 3.9 is the basis for the
simulation algorithm.

Equation 3.9 indicates that τ is an exponential random variable and j is a statistically inde-
pendent integer random variable. Samples of these two random variables can be generated using
two random numbers, r1 and r2, from the uniform distribution in the unit interval using:

τ =
1

a0(x)
ln(

1
r1

), (3.11)

j = the smallest integer satisfying
j∑

j′=1

aj′(x) > r2a0(x) (3.12)

The stochastic simulation algorithm (SSA) from Gillespie, that simulates the evolution of a
process, i.e. generates a numerical realization of X(t) works as follows:

1. Initialization, t = t0, x = x0

2. Evaluate aj(x) for each reaction and the sum a0(x)

3. Generate τ and j (for example using equation 3.11 and 3.12)

4. Take a step: t = t+ τ and x = x + νj

5. Go to step 2, or stop the simulation.

3.2.6 Example Simulation

When taking the model from figure 3.2 with gene, mRNA, protein, and empty set as the set of
species S = {S1, S2, S3, S4, }. A set of reactions:

R1 = S1
c1−→ S1 + S2,

R2 = S2
c2−→ S2 + S3,

R3 = S2
c3−→ S4,

R4 = S3
c4−→ S4.

with corresponding flux vectors:
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ν1 = [0, 1, 0, 0]T ,
ν2 = [0, 0, 1, 0]T ,
ν3 = [0,−1, 0, 1]T ,
ν4 = [0, 0,−1, 1]T .

and (arbitrary) probability rate constants:

c1 = 0.03 1
sec ,

c2 = 0.01 1
sec ,

c3 = 0.001 1
sec ,

c4 = 0.2 1
sec .

Notice that all the reactions are unimolecular. Therefore the propensity function of each of the
reactions has the same form (section 3.2.3):

a1(x) = c1x1,

a2(x) = c2x2,

a3(x) = c3x2,

a4(x) = c4x3.

Initialization

The system is initialized at time is 0 and in the state with one gene species and zero mRNA,
protein, and empty set species.

t = 0,
x = [1, 0, 0, 0].

Iteration 1

• Evaluation of all propensity functions and the sum of them.

a1 = 0.03 ∗ 1 = 0.03,
a2 = 0.01 ∗ 0 = 0,
a3 = 0.001 ∗ 0 = 0,
a4 = 0.2 ∗ 0 = 0,
a0 = 0.03 + 0 + 0 + 0 = 0.03.

• Generation of τ and j with r1 = 0.34 and r2 = 0.88.

τ =
1

0.03
ln(

1
0.34

) = 35.96,

j = 1 (because 0.03 > 0.88 ∗ 0.03).

• Take a step

t = t+ τ = 0 + 35.96 = 35.96,
x = x + vj = [1, 0, 0, 0]T + [0, 1, 0, 0]T = [1, 1, 0, 0]T .

We are now in a new state with still one gene molecule (which will never change, since no
reaction consumes or produces it) and one mRNA molecule (which is produces by reaction 1) at
time t = 35.96 seconds.

26



Iteration 2

• Evaluation of all propensity functions and the sum of them.

a1 = 0.03 ∗ 1 = 0.03,
a2 = 0.01 ∗ 1 = 0.01,
a3 = 0.001 ∗ 1 = 0.001,
a4 = 0.2 ∗ 0 = 0,
a0 = 0.03 + 0.01 + 0.001 + 0 = 0.041.

• Generation of τ and j with r1 = 0.55 and r2 = 0.79.

τ =
1

0.041
ln(

1
0.55

) = 14.58,

j 6= 1 (because 0.03 < 0.79 ∗ 0.041),
j = 2 (because 0.04 > 0.79 ∗ 0.041).

Because of the high r2, the reaction chosen is R2, while from the reaction rates (once per
33.33 seconds for reaction 1 and once per 100 seconds for reaction 2) one would expect that
the first reaction would be chosen.

• Take a step

t = t+ τ = 35.96 + 14.58 = 50.54,
x = x + vj = [1, 1, 0, 0]T + [0, 0, 1, 0]T = [1, 1, 1, 0]T .

We are now in a state with one gene, one mRNA, and one protein molecule at time t = 50.54
seconds.

Iteration 3

• Evaluation of all propensity functions and the sum of them.

a1 = 0.03 ∗ 1 = 0.03,
a2 = 0.01 ∗ 1 = 0.01,
a3 = 0.001 ∗ 1 = 0.001,
a4 = 0.2 ∗ 1 = 0.2,
a0 = 0.03 + 0.01 + 0.001 + 0.2 = 0.241.

• Generation of τ and j with r1 = 0.21 and r2 = 0.25.

τ =
1

0.241
ln(

1
0.21

) = 6.48,

j 6= 1 (because 0.03 < 0.25 ∗ 0.241),
j 6= 2 (because 0.04 < 0.25 ∗ 0.241),
j 6= 3 (because 0.041 < 0.25 ∗ 0.241),
j = 4 (because 0.241 > 0.25 ∗ 0.241).

• Take a step

t = t+ τ = 50.54 + 6.48 = 57.02,
x = x + vj = [1, 1, 1, 0]T + [0, 0,−1, 1]T = [1, 1, 0, 1]T .

One protein is being degraded which brings us in a state with one gene, one mRNA, and no
protein molecules at time t = 57.02 seconds.
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Figure 3.1: Stochastic simulation of a simple gene expression model (figure 3.2) using arbitrary reaction
rates in 1

s
. The transcription rate is 0.03, the translation rate is 0.01, the mRNA degradation rate is 0.001,

and the protein degradation rate is 0.2. A. The average molecule count over 100 simulation runs. B. The
result of one simulation run. C. Zoomed in on the first 120 seconds of B.

full simulation

Figure 3.1 shows the results of running a simulation for the model and the parameters as given
at the beginning of this section. The end time of the simulation is set to t = 10.000 seconds. The
plot on the top left shows the average over 100 simulation runs. This result approximates the
deterministic solution. The plot on the top right shows the result of running one simulation run
and clearly shows the stochasticity in the production of the mRNA and protein. The plot on the
bottom left is zoomed in on the first 120 seconds of the plot on the right top. Here we can clearly
observe the following 8 reactions (so the first 8 iterations of the algorithm) that take place at the
beginning of the simulation.

1. j = 1, t = 6.61 (transcription)

2. j = 1, t = 35.81 (transcription)

3. j = 2, t = 36.46 (translation)

4. j = 4, t = 40.14 (degradation protein)

5. j = 3, t = 59.84 (degradation mRNA)

6. j = 1, t = 60.18 (transcription)

7. j = 1, t = 109.88 (transcription)

8. j = 1, t = 114.11 (transcription)
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3.3 Gene expression model

As stated in section 3.2, only two elementary types of reactions can be specified for a stochas-
tic model: unimolecular reactions, with only one reactant, and bimolecular reactions, with two
reactants.

3.3.1 Basic gene expression model

It was shown that a simple single gene expression model (figure 3.2) with a set of four species
S = {gene,mRNA,protein, empty set} and a set of four reactions R =

gene ktc−−→ gene + mRNA, (3.13)

mRNA ktl−−→ mRNA + protein, (3.14)

mRNA kdr−−→ empty set, (3.15)

protein
kdp−−→ empty set. (3.16)

can accurately predict experimentally observed gene expression behaviour (Hooshangi et al., 2005).
The left side of each reaction specifies the reactants which are turned into the products on the

right side when the reaction occurs. The rate constants determine the rate at which the reactions
occur. Notice that for the reactions 3.13 and 3.14 the reactant is also one of the products.

Figure 3.2: The transcription of mRNA and the translation of mRNA to protein are both modelled as
a single reaction, which means that mRNA molecules and proteins are being produced in a single time
step. Also the degradation of both mRNA molecules and proteins is modeled as a single reaction. The
parameters (k) are the rate constants which define the probability that a randomly selected combination of
Rj reactant molecules in Ω react in a unit time period

3.3.2 Regulated gene expression model

Hooshangi et al. (2005) has used an extended version of the just described basic gene expression
model that includes also transcription regulation features. It was shown that this model can be
used to accurately predict transcription regulated gene expression. Figure 3.3 shows a model that
contains extra reactions that enable transcription regulation. The additional reactions are protein
dimer formation, the binding of a TF to a gene, and the activation or deactivation of TFs by
environmental signals, e.g. the deactivation of an inhibitor (which is a TF) through the binding
of an inducer (the environmental signal). Environmental signals can be small molecules, but also
light, temperature or pressure. In case of Fig. 3.3 the environmental signal inhibits the TF, while
in Fig. 3.4 the environmental signal activates the TF.
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Figure 3.3: Regulated gene expression model based on the model used by Hooshangi et al. (2005) in which
the environmental signal acts as an inhibitor, disabling the TF to bind to the gene.
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Figure 3.4: Regulated gene expression model in which the environmental signal acts as an activator,
enabling the TF to bind to the gene.
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Transcription and translation

Compared to the basic model, an extra transcription reaction is possible (Eq. 3.18). This reaction
can occur when an activator is bound to the gene and thereby enables the transcription reaction.
In Fig. 3.3 the TF is an inhibitor and therefore Eq. 3.17 occurs. In Fig 3.4 the TF is an activator
and therefore Eq. 3.18 occurs.

gene ktc−−→ gene + mRNA, (3.17)

geneTF
ktc−−→ geneTF + mRNA, (3.18)

mRNA ktl−−→ mRNA + protein. (3.19)

Transcription factor binding

In contrast to the basic model, the gene can be in different states. In figure 3.3 the gene contains
only one operator that can bind a TF. This gene can be in one of two states; gene, the state where
no TF is bound to the gene, or gene TF , the state where a TF is bound to it. Each state has
its own transcription rate which enables the modeling of repression and activation. Note that a
gene can also have multiple operators which would result in more states. In case of n different
operators there will be 2n different states, in case there is no competitive TF binding, i.e. the
operators do not overlap so that each TF is able to bind simultaneously.

gene + TF
kbtf−−−→ geneTF , (3.20)

geneTF
kutf−−−→ gene + TF. (3.21)

Dimer formation

Another extension is the formation of protein dimers and tetramers. This is needed because many
TFs are dimers or tetramers. In both Fig. 3.3 and 3.4 the TF form dimers. But a model in which
the TF act as monomer or tetramer is also possible.

monomer + monomer
kbp−−→ dimer, (3.22)

dimer
kup−−→ monomer + monomer. (3.23)

Environmental signals

Environmental signals can disable or enable the binding of a TF to an operator, i.e. the signals
can activate or inhibit TFs. Note that in case of disabling TFs, a signal can also disable a TF
which is bound to an operator and thereby causing the TF to dissociate from the DNA.

TF + es kbes−−→ TFes, (3.24)

TFes
kues−−−→ TF + es. (3.25)

In case of an inhibiting environmental signal the following reaction can occur. The environmental
signal binds to the TF, thereby forcing its dissociation from the gene.

geneTF + es kbes−−→ gene + TFes. (3.26)

In case of an activating environmental signal the following reaction can occur. The environmental
signal dissociates from the TF, thereby causing TF dissociation from the gene

geneTF
kbes−−→ gene + TF + es. (3.27)
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Degradation

Finally there are a number of degradation reactions.

mRNA kdr−−→ empty set, (3.28)

protein
kdp−−→ empty set, (3.29)

TFes
kdp−−→ empty set + es. (3.30)

A TF that is bound to the gene can also degrade. This provides two reactions, one in case of
an inhibiting environmental signal, and one in case of an activating environmental signal.

geneTF
kdp−−→ empty set + gene, (3.31)

geneTFes

kdp−−→ empty set + gene + es. (3.32)

3.4 Model validation

To validate the model we have modeled the first three cascading circuits from Hooshangi et al.
(2005) (Fig. 3.5). The results are shown in Fig. 3.6. The switching behaviour is identical, but
there is a difference in the maximum concentration. This is caused by the fact that we used a lacI
tetramer, while Hooshangi used dimers for all TFs.

Figure 3.5: The three cascading gene networks from Hooshangi et al. (2005).

We have also build the repressilator from Elowitz and Leibler (2000). Fig. 3.7 shows the
expected oscillating behaviour. Four different simulation runs show different results because of
stochasticity.
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Figure 3.6: Simulation of gene network cascades from Hooshangi et al. (2005). The simulation results
of Hooshangi are on the right and the simulation results of our model on the right.

Figure 3.7: Simulation results of the repressilator from Elowitz and Leibler (2000). The result of four
different simulation runs are shon. Stochasiticity causes different results for the different runs.
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Chapter 4

Implementation

The software is written in Java using eclipse as software development tool. The software uses three
Java libraries; Fern for stochastic simulation (Erhard et al., 2008), colt1 for basic mathematics,
and jdom2 for XML parsing.

The software consists of four packages: the biopart package, the gene network package, the
model package, and the global package. The biopart package takes care of the interaction with the
bioparts database. The gene network package translates implements the translation of gene net-
work templates to possible instances. This package has two sub-packages: The gene network.template
package, which provides a data structure to store gene network templates, and the gene network.logic
package, that can run simulations for a given logic device and provide an evaluation score. The
model package provides a data structure to store a model and the functionality to translate a
device into a model. Finally, the global package contains all global variables, such as relative
paths to data files.

The BiologicalDesigner class provides a command line tool that can be used to run the following
programs:

1. Run a simulation of a given device (the user should provide a string representation of the
device).

2. Run a simulation for a random device instance of a given gene network template.

3. Run a simulation for all possible device instances of a given gene network template.

4. (Re)build the biopart database.

4.1 Biopart database

The partsregistry (http://partsregistry.org) contains a lot of genetic parts, but there are no
kinetic constants available for the modeling. Therefore we have used a self made artificial database
with realistic kinetic constants. Ellis et al. (2009) provides a method to build libraries of promoters
with accompanying kinetic constants that can be used for modeling. A similar approach can also
be used to build libraries of other genetic parts. This shows that it is feasible to realize a database
similar to our artificial one.

The bioparts database contains the biological parts that can be used to build the in silico
biological systems. It contains genetic parts (parts of DNA), proteins and environmental signals.
The data that is stored for the parts are kinetic constants and relations to other biological parts.
Only the data that is needed to build a model is stored. Other information, like the nucleotide
sequence of the genetic parts, is not in the database.

1http://acs.lbl.gov/~hoschek/colt/index.html
2http://www.jdom.org
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4.1.1 Naming convention

For simplicity we have used a naming convention biological parts. Reporter names start with
reporter followed by an index number (reporter0, reporter1, . . . ).

TF names start with a character that indicates if it is an activator (a) or an inhibitor (i). The
second character indicates if the TF can be activated by an environmental signal (a), inhibited by
an environmental signal (i), or does not have an associated environmental signal (0). The third
character indicates if the TF is a monomer (m), dimer (d), or tetramer (t). The fourth character
is an index number. For example, the TF iim0 is a monomer inhibitor that can be inhibited by
an environmental signal. If there is another TF with the same properties it will be called iim1.

The names of the proteins that are part of TF tetramers and dimers starts with the name
of the TF of which they are a sub-protein, followed by either subm, when the sub-protein is a
monomer, or subd, when the sub-protein is a dimer. For example, a dimer that is part of the
tetramer TF i0t3 is called i03t subd.

The names of environmental signals start with es followed by the name of the TF that it either
inhibits or activates. For example, an environmental signal that inhibits the TF iim1 is called
es iim1.

Promoter names start with pm followed by the names of all TFs that bind to it and an index
number. For example, a promoter that binds the inhibitors iim0 and i0t1 is called pm iim0 i0t1 0.
Such a promoter can have different transcription speeds resulting in a library of promoters that
bind the same TFs (pm iim0 i0t1 0, pm iim0 i0t 1, pm iim0 i0t 2, . . . ), similar to the two pro-
moter libraries, each containing 20 promoters, constructed by Ellis et al. (2009).

Ribosome binding site names start with rbs followed by an index number (rbs0, rbs1, . . . ).
Protein coding part names start with pc followed by the protein for which they encode. For ex-

ample, the protein coding part that encodes for the protein i0d3 subm has the name pc i0d3 subm.
Finally there is only one terminator with the name t. There is only one version because the

terminator does not contain any data for the model we use.

4.1.2 database implementation

The bioparts database has been implemented as a directory structure with XML files. Fig. 4.1
shows the directory structure in which each of the directories contain a number of XML files, one
XML file per biopart. The part directory contains four different types of genetic parts: promoters,
protein coding parts, ribosome binding sites, and terminators. The pool directory contains three
types of proteins: reporters, transcription factors (subdivided into inhibitors and activators), and
proteins that are part of a transcription factor dimer or tetramer, and environmental signals such
as small molecules, light, temperature, or pressure.

Each biopart is stored in a separate XML file that stores kinetic rate constants ( 1
sec ) and

relations to other bioparts. As an example, listing 4.1 shows an XML file of the promoter
pm i0m0 i0t3 0. The element k transcription determines the transcription rate for this promoter
when no inhibiting or activating TFs are bound. Furthermore, multiple operators can be defined.
Each operator can bind one TF defined by the tf element. The type attribute indicates if it
is an activator or an inhibitor and the value is the unique name of the binding TF, which acts
as a pointer to the TF in the database. The k bind tf and k unbind tf define the binding and
unbinding reaction rates of the TF to the DNA.

4.1.3 biopart package

Fig.4.2 shows the class diagram of the biopart package. It shows what data is stored for which
parts and what the relations between the different parts are. The rest of the variables and functions
are not shown, these can be found in the source code as well as the Javadoc documentation.

Each part is stored as XML file (Fig. 4.1) and has an identifying name. There is a class for
each of the parts which are all subclasses of the AbstractDatabaseItem class. The constructors of
the biological parts take the identifying name as parameter which is used to locate the XML file
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Figure 4.1: The directory structure of the bioparts database. The data is stored in XML files within the
directories.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2
3 <promoter name=”pm i0m0 i0t3 0 ”>
4
5 <ope ra to r s>
6 <operator>
7 <t f type=” i n h i b i t o r ”>i0m0</ t f>
8 <k b i nd t f>0.00383</ k b i nd t f>
9 <k unb ind t f>0.00145</ k unb ind t f>

10 </ operator>
11 <operator>
12 <t f type=” i n h i b i t o r ”> i 0 t 3</ t f>
13 <k b i nd t f>0.00382</ k b i nd t f>
14 <k unb ind t f>0.00165</ k unb ind t f>
15 </ operator>
16 </ ope ra to r s>
17
18 <k t r a n s c r i p t i o n>0.00635</ k t r a n s c r i p t i o n>
19
20 </promoter>

Listing 4.1: An example of an XML file that stores the data of a the promoter pm i0m0 i0t3 0
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Figure 4.2: Class diagram of the biopart package.
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that contains the data for this part. The data is then simply read from the file and stored within
the class.

The package also contains a BioPartDatabase class that reads all the parts from the database
into the memory which enables fast access to the database items. The class implements the
singleton pattern so that the loading of the parts only has to be done once (which can takes
a while because of the many file accesses). Since the database is not that large it is doable to
completely load the database into memory.

Finally, the package contains a BioPartDatabaseBuilder class which provides a convenient
way to build and rebuild an artificial biopart database. Parameter ranges were defined for the
different kinetic constants, which enables the software to pick a random parameter from a realistic
parameter range.

4.2 Gene network template

4.2.1 Graph representation

A gene network template is defined as a graph G = (V,E) with V a set of vertices, representing
protein generators and E a set of proteins produced by the protein generators. Each protein
generator v ∈ V must have exactly one output edge, which is the protein it produces, and can
have zero, one, or more inputs, which are the proteins (TFs) that bind to the promoter of the
protein generator. Each edge e ∈ E can have zero, one or more source vertices, which are the
protein generators that produce this protein. When an edge has no destination vertex, then it
is an output of the system and the protein must be a reporter. When an edge has one or more
destination vertices, then the edge is a TF that binds to the promoter of each destination protein
generator.

An edge can be of the type -, +, or 0, indicating that the protein used for this edge must be an
inhibitor, an activator, or a reporter respectively. A signal can (but does not have to) be assigned
to an edge. The value of the signal is either - or +, indicating that the edge can be inhibited or
activated by an environmental signal respectively.

4.2.2 Data format

A gene network template can be defined as XML file. It contains a list of vertex with a unique
identifier and a list of edges with a unique identifier. The type of the edge can be defined as an
attribute of the edge element. For each edge, a number of source vertices and destination vertices
can be assigned to specify the connections. Finally, some of the edge’s have to be defined as input
or output edge’s.

As an example, Listing 4.2 shows the definition of the NOT gate from Fig. 4.3 and Listing 4.3
shows the definition of the external NOR gate from Fig. 4.4.

Figure 4.3: Gene network template of an external NOT gate as defined in the XML of listing 4.2.

A defined network can be used as a sub-network of another gene network template. In that case
one needs to define a list of sub-networks with unique identifiers and a list of connection edge’s,
with unique identifiers as well, that interconnect the sub-networks. For example, Listing 4.4 shows
the definition of the demultiplexer network in Fig. 4.5. There are five logic gate networks that are
used to build this network. The connection edge’s define what sub-network outputs are connected
to what sub-network inputs. A number of input and output edges need to be specified as well.
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1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <network name=”NOTe”>
3
4 <v e r t i c e id=”v0”/>
5
6 <edge id=”e0” s i g n a l=”−”>
7 <s r c v e r t i c e i d=”v0” />
8 </edge>
9

10 <output id=”out0” edge id=”e0” />
11
12 </network>

Listing 4.2: An example of an XML file that stores a gene network template of an external logic NOT
gate. Fig. 4.3 shows a visualization of the network.

Figure 4.4: Gene network template of a NOR gate as defined in the XML of listing 4.3.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <network name=”NORii”>
3
4 <v e r t i c e id=”v0” />
5
6 <edge id=”e0” type=”−”>
7 <dest v e r t i c e i d=”v0” />
8 </edge>
9 <edge id=”e1” type=”−”>

10 <dest v e r t i c e i d=”v0” />
11 </edge>
12 <edge id=”e2”>
13 <s r c v e r t i c e i d=”v0” />
14 </edge>
15
16 <input id=” in0 ” edge id=”e0” />
17 <input id=” in1 ” edge id=”e1” />
18
19 <output id=”out0” edge id=”e2” />
20
21 </network>

Listing 4.3: An example of an XML file that stores a gene network template of a logic NOR gate
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Figure 4.5: Gene network template of a 1-to-2 line demultiplexer as defined in the XML file shown in
listing 4.4.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <network name=”Demult ip lexer ”>
3
4 <subnetwork id=”NOTe0” name=”NOTe” />
5 <subnetwork id=”NOTe1” name=”NOTe” />
6 <subnetwork id=”NOTi” name=”NOTi” />
7 <subnetwork id=”NORii0” name=”NORii” />
8 <subnetwork id=”NORii1” name=”NORii” />
9

10 <connect ion edge id=”e0”>
11 <s r c network=”NOTe0” output id=”out0” />
12 <dest network=”NORii0” i npu t i d=” in0 ” />
13 <dest network=”NOTi” inpu t i d=” in0 ” />
14 </ connect ion edge>
15 <connect ion edge id=”e1”>
16 <s r c network=”NOTe1” output id=”out0” />
17 <dest network=”NORii0” i npu t i d=” in1 ” />
18 <dest network=”NORii1” i npu t i d=” in1 ” />
19 </ connect ion edge>
20 <connect ion edge id=”e2”>
21 <s r c network=”NOTi” output id=”out0” />
22 <dest network=”NORii1” i npu t i d=” in0 ” />
23 </ connect ion edge>
24
25 <input id=” in0 ” edge id=”e0” />
26 <input id=” in1 ” edge id=”e1” />
27
28 <output id=”out0” network=”NORii1” output id=”out0” />
29 <output id=”out1” network=”NORii0” output id=”out0” />
30
31 </network>

Listing 4.4: An example of an XML file that stores a gene network template of a 1-to-2 line demultiplexer
to show how sub-networks of logic gates can be used to build a logic network. Fig. 4.5 displays the network.
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4.2.3 gene network template package

Fig. 4.6 shows the class diagram of the gene network template package. The package can read
a gene network template from file and provides a data structure to store the network. There
is a GeneNetworkTemplate class that contains a list of vertices and a list of edges. Each Edge
stores a number of source and destination vertices and each vertex stores a number of input edges
and output edges, which of course always correspond to each other. Furthermore, a number of
functions are available that are used to turn a gene network template into gene network instances.

Figure 4.6: Class diagram of the gene network.template package.

4.3 Gene network builder

A gene network template can be turned into many possible gene network instances using using
the gene network builder.

4.3.1 gene network package

The gene network package contains only the GeneNetworkBuilder class which provides a number
of methods to turn a gene network template into one or more gene network instances. The getRan-
domGeneNetwork returns a random gene network instance. The getAllGeneNetworks returns all
possible gene network instances for the given template. Since the number of possible instances
grows very large for complex networks and a large bioparts database, this method will soon result
in an out of memory error. Finally, the getGeneNetworkVariations takes a gene network instance
as input an returns all instances with varied promoters (from the same promoter library) and
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varied RBSs. Variation of those parts means variation of the transcription and translation speeds
at all location within the network.

4.4 Model builder

The model builder transforms a gene network device into a model.

4.4.1 model package

The Model class stores a list of Reaction objects and a list of Species objects. The Species class
represent a molecular species which has a name and an initial amount, which is the molecule
count of this species at the start of a simulation. The Reaction class represents a reaction from
one or more reactants to one or more products. Since we are using stochastic simulation only two
element types of reactions can be specified: unimolecular reactions, with only one reactant, and
bimolecular, with two reactants (Section 3.2.3). A reaction rate is also defined that determines
the at which rate this reaction occurs.

The Model class is an abstract class. This enables implementation of multiple sub-classes
that define different models. For example, an extra model can be defined in which the gene
transcription process is modeled different. Our sub-class Model0 translates each of the device’s
protein generators into a standard model (Section 3.3), which together automatically form a model
for the whole gene network (Section 2.7.2). The parameters needed for the model are fetched from
the genetic parts (which are in the bioparts database) that are part of a protein generator. Finally
some extra reactions are added for the binding of the environmental signals that are the input
signals to the gene network.

The ModelWriter interface defines a method to write the model to file. Our implemented
sub-class, the FernMLWriter class, implements this method so that the model can be written to a
fernml file, which can be used for stochastic simulation by the FERN software framework.

Figure 4.7: Class diagram of the model package.
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1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < l o g i c d e v i c e s e t t i n g s name=”Demult ip lexer0 ”>
3
4 <gene network>Demult ip lexer</ gene network>
5
6 <input id=” in0 ”>i im0</ input>
7 <input id=” in1 ”>i im1</ input>
8
9 <output id=”out0”>r epo r t e r 0</output>

10 <output id=”out1”>r epo r t e r 1</output>
11
12 <binary t iming d iagram>
13 <p lo t id=” in0 ” >00110</ p l o t>
14 <p lo t id=” in1 ” >01100</ p l o t>
15 <p lo t id=”out0”>01000</ p l o t>
16 <p lo t id=”out1”>00100</ p l o t>
17 </ b inary t iming d iagram>
18
19 <s t a t e t ime>7200</ s t a t e t ime>
20 <v i s u a l>t rue</ v i s u a l>
21
22 </ l o g i c d e v i c e s e t t i n g s>

Listing 4.5: User input.

4.5 Logic gene network simulation

The gene network model can be used to run a stochastic simulation. User input is needed for the
simulation settings. After simulation, a score is calculated for the simulated gene network device.

4.5.1 User input

The input to the software tool, as shown on the right of Fig. 2.11, can be defined in an XML file
as the one in listing 4.5. The gene network element is a pointer to the XML file that stores the
gene network template that should be used. In this case, it is a pointer to the file that is displayed
in listing 4.4.

The gene network template file defines two inputs and two outputs. A protein has to be
assigned to each of the signals. In case of an output signal this has to be a reporter (reporter0 and
reporter1 for this example) and in case of an input this has to be a TF. The TF should be one
that binds an environmental signal, so that it can accept an external signal. When a - signal is
assigned to the input edge, the TF should bind an inhibiting environmental signal, and when a +
signal is assigned to the input edge, the TF should bind an activating environmental signal. In this
case, both inputs are output edges from a NOTe network, which have an assigned - signal. The
TFs assigned as inputs, iim0 and iim1, therefore both bind an inhibiting environmental signal.
Fig. 4.8 shows the gene network template with assigned inputs and outputs.

Fig. 4.9 shows the other input that has to be defined; a binary timing diagram for each
input and output signal. The input signals will determine the concentrations of the environmental
signals during simulation and the output specifies what the desired concentrations of the reporters
should be. The desired output will be used after a simulation in order to evaluate the performance
of the gene network. The binary timing diagrams can be specified in the XML file as a binary
string. The binary strings in listing 4.5 correspond to the plots in Fig. 4.9. The state time element
determines the time of each of the states in seconds, which can be seen on the x-axis of the binary
timing diagrams. The number of states should of course be the same for all in- and outputs. The
first state is used for initialization and is not taken into account for the evaluation of the system.
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Figure 4.8: The demultiplexer gene network template with assigned inputs and outputs.

Figure 4.9: The user defined digital timing diagram of the inputs and the desired outputs for the demul-
tiplexer gene network.
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4.5.2 Score calculation

The first time step is used for the initialization of the system and is not taken into account with
the score calculation. For each of the n outputs the correlation ci, i = 0, . . . , n, between the desired
output and the simulated output is calculated.

A low value l0 for output 0 in Fig. 4.10 is the average of the orange circled values. The orange
circles are the minimum values in the time steps that have a low value in the desired output. This
low value li is calculated for all n outputs.

A high value h0 for output 0 in Fig. 4.10 is the average of the green circled values. The
green circled value is the maximum in the time step where the desired output high. In this case,
the signal has only one high output, which is therefore also the average. This high value hi is
calculated for all n outputs.

The correlations ci, the low values li, and the high values hi for all n output signals are
combined into one score as follows:

score = (
n∏

i=0

ci)× ((
n∏

i=0

hi)− (
n∑

i=0

li)) (4.1)

Figure 4.10:

4.5.3 gene network.logic package

The gene network.logic package provides a LogicGeneNetworkSettings class that reads the user
input from file (listing 4.5). The BinaryTimingDiagramObserver is an extension of the Observer
interface provided by the FERN software framework. This class changes the concentrations of
the environmental signals during a simulation according to the timing diagrams provided by the
user. In case of a binary ’1’, the molecule count of the environmental signal is set to a high value,
and in case of a binary ’0’, the molecule count of the environmental signal is set to zero. Finally
the LogicGeneNetworkSimulation class can be used to run a simulation for a logic gene network.
When gnuplot is available, the plot of the inputs and outputs can be visualized during simulation.
As a result, the score of a device will be returned after running a simulation.
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Chapter 5

Experiments

We performed two experiments in order to test the software. Before describing the experiments,
the parameters that were used are discussed first. Finally, the obtained results are discussed.

5.1 Kinetic constants

Our model uses ten different parameters: ktc (transcription rate), ktl (translation rate), kdegr

(degradation rate mRNA), kdegp
(degradation rate protein), kbtf (TF-DNA binding rate), kutf

(TF-DNA unbinding rate), (protein-protein association rate), kup (protein-protein dissociation
rate), kbs (protein-signal association rate), kus (protein-signal dissociation rate). The model is
based on the one used by Hooshangi et al. (2005). Table 5.1 provides the parameters that they
used with the simulations.

kinetic constant Hooshangi et al. (2005)
ktc 0.0333 sec−1

ktc (repressed) 0.000333 sec−1

ktl 0.0333 sec−1

kdegr 0.0114 sec−1

kdegp 0.0012 sec−1

kbtf 0.00333 nM−1.sec−1

kutf 0.00167 sec−1

kbp 0.0005 nM−1.sec−1

kup 0.0000167 sec−1

kbs 0.000833 nM−1.sec−1

kus 0.00167 sec−1

Table 5.1: Kinetic constants used in Hooshangi et al. (2005), with the assumption that 1nM corresponds
to 1 molecule per cell.

With our method we build genetic networks using the same model, but with varying param-
eters. Instead of the fixed parameters we need parameter ranges. For both the translation as
well as the transcription, which are both modeled as a single step reaction, we use rather slow
reaction rate ranges (1 reaction per 160 - 100 seconds, compared to the 1 reaction per 30 seconds
from Hooshangi et al. (2005)). This is done in order to get low molecule counts and therefore less
occuring reactions, which means faster simulation. This indicates that the stochastic simulation
in combination with our pretty extensive models do not provide a practical application. To be
practical, either the model should be simplified or another simulation method should be used. A
simulation environment as proposed by Kosuri et al. (2007) could resolve this problem.
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For the binding and unbinding of environmental signals to TFs we use fixed parameters. The
parameters of the mRNA and protein degradation rates are based on Bernstein et al. (2002) and
Grilly et al. (2007) respectively. Although the protein degradation rate from Hooshangi et al.
(2005) lies within the given range, the mRNA rate does not. The protein binding rate range is
based on Schlosshauer and Baker (2004). No publications on the binding and unbinding rates of
TFs to DNA were found and therefore a range around the parameters of Hooshangi et al. (2005)
was used.

kinetic constant min max
ktc 0.00625 0.01 one transcript per gene each 160 . . . 100 sec
ktl 0.00625 0.01 one protein per mRNA each 160 . . . 100 sec
kdegr

0.00144 0.00385 half-life 8 . . . 3 min Bernstein et al. (2002)
kdegp

0.000183 0.00167 half-life 91 . . . 10 min Grilly et al. (2007)
kbtf 0.00278 0.00417 Hooshangi et al. (2005) +/− 1 min
kutf 0.00139 0.00208 Hooshangi et al. (2005) +/− 2 min
kbp 0.0001 0.001 Schlosshauer and Baker (2004)
kup 0.0000167 fixed, same as Hooshangi et al. (2005)
kbs 0.000833 fixed, same as Hooshangi et al. (2005)
kus 0.00167 fixed, same as Hooshangi et al. (2005)

Table 5.2: Kinetic constants used in Hooshangi et al. (2005), with the assumption that 1nM corresponds
to 1 molecule per cell.

5.2 Experiment 1: 1-to-2 line Demultiplexer

Fig. 5.1 shows the digital circuit of a 1-to-2 line demultiplexer1 as it is used in the field of electrical
engineering. The multiplexer forwards the input signal to one of the outputs, depending on the
select signal. As can be seen in the truth table in Fig. 5.1, the input is forwarded to output 0
when the select signal is 0, and to output 1 when the select signal is 1.

The logic circuit has been transformed into an equivalent version that has NOT gates for both
inputs (Fig. 5.2). This way, we can use NOT gates that accept an environmental signal as input.
The used settings are given in Lis. 5.1 and a visual representation of the settings is shown in
Fig. 5.3. The used artificial biopart database contained 2 promoters per library, a slow and a
fast one, and 2 ribosome binding sites, also a slow and a fast one. The database contained 5
monomer, 5 dimer, and 5 tetramer TFs that can be used for edge e2. With this biopart database,
15360 (15× 210) possible gene network instance can be build for the demultiplexer gene network
template.

Each of the possible gene networks was simulated using the simAllPossibleGeneNetworks pro-
gram. The result was a tab separated file with the correlation, the low value (Sec. 4.5.2), the high
value, and the score, for each of the 15360 gene networks.

5.3 Experiment 2: DLatch

Fig. 5.4 shows the digital circuit of a DLatch2 as it is used in the field of electrical engineering.
The DLatch forwards the data signal (D) to the output (Q) when the enable signal (E) is high.
When the Enable signal is low, the data signal remains in its current state. As can be seen in the
truth table in Fig. 5.4, the data signal is forwarded to Q when the enable signal is 1. When the
enable signal is 0, it does not matter what the value of the data signal is, the output will stay in
the current state (either 0 or 1).

1http://www.play-hookey.com/digital/decoder_demux_two.html
2http://en.wikipedia.org/wiki/Latch_(electronics)#Gated_D-latch
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Figure 5.1: 1-to-2 line demultiplexer - The digital circuit is shown en the left and the truth table is
shown on the right.

Figure 5.2: 1-to-2-line demultiplexer gene network template - The logic circuit is equivalent to the
one in Fig. 5.1.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < l o g i c d e v i c e s e t t i n g s name=”Demult ip lexer0 ”>
3
4 <gene network>Demult ip lexer</ gene network>
5
6 <input id=” in0 ”>i im0</ input>
7 <input id=” in1 ”>i im1</ input>
8
9 <output id=”out0”>r epo r t e r 0</output>

10 <output id=”out1”>r epo r t e r 1</output>
11
12 <binary t iming d iagram>
13 <p lo t id=” in0 ” >00110</ p l o t>
14 <p lo t id=” in1 ” >01100</ p l o t>
15 <p lo t id=”out0”>01000</ p l o t>
16 <p lo t id=”out1”>00100</ p l o t>
17 </ b inary t iming d iagram>
18
19 <s t a t e t ime>7200</ s t a t e t ime>
20 <v i s u a l> f a l s e</ v i s u a l>
21
22 </ l o g i c d e v i c e s e t t i n g s>

Listing 5.1: Settings experiment 1.
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Figure 5.3: The settings of experiment 1 as specified in Lis. 5.1.
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The logic circuit has been transformed into an equivalent version that has NOT gates for both
inputs (Fig. 5.5). This way, we can use NOT gates that accept an environmental signal as input.
The used settings are given in Lis. 5.2 and a visual representation of the settings is shown in Fig.
5.6. The used artificial biopart database contained 1 promoter per library and 1 ribosome binding
site. The database contained 6 monomer, 6 dimer, and 5 tetramer TFs that can be used for the
edges e2, e3, e4, e5, and e6. With this biopart database, 702 possible gene network instance can
be build for the DLatch gene network template.

Each of the possible gene networks was simulated using the simAllPossibleGeneNetworks pro-
gram. The result was a tab separated file with the correlation, the low value (Sec. 4.5.2), the high
value, and the score, for each of the 702 gene networks.

Figure 5.4: DLatch - The digital circuit is shown en the left and the truth table is shown on the right.

Figure 5.5: DLatch gene network template - The logic circuit is equivalent to the one in Fig. 5.4.

5.3.1 Results

The experiments provided for each simulated device the following measures: a correlation for each
output, a low value for each output, a high value for each output, and a score (the low and high
values are explained in Section 4.5.2). So for each of this measures we had a list (column in data
file) of values, one per device. Other columns contained information about the device, so the
device was still coupled to the result.

We then ordered the list of values from low to high. So in case of the score, the devices with a
low score are at the top and the devices with a high score at the bottom of the list. We have split
the list into 20, in case of experiment 1, and 18, in case of experiment 2, equal sized bins. In case
of the scores, the first bin contained the devices with the lowest scores, and the last bin contained
the devices with the highest scores.

In case of experiment 1, we counted the number of devices with a slow promoter and with a
fast promoter for a given protein generator within a bin. We did this for each protein generator
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1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 < l o g i c d e v i c e s e t t i n g s name=”DLatch0”>
3
4 <gene network>DLatch</ gene network>
5
6 <input id=” in0 ”>i im0</ input>
7 <input id=” in1 ”>i im1</ input>
8
9 <output id=”out0”>r epo r t e r 0</output>

10
11 <binary t iming d iagram>
12 <p lo t id=” in0 ” >010011100</ p l o t>
13 <p lo t id=” in1 ” >111001001</ p l o t>
14 <p lo t id=”out0”>111101000</ p l o t>
15 </ b inary t iming d iagram>
16
17 <s t a t e t ime>43200</ s t a t e t ime>
18 <v i s u a l> f a l s e</ v i s u a l>
19
20 </ l o g i c d e v i c e s e t t i n g s>

Listing 5.2: Settings experiment 2.

Figure 5.6: The settings of experiment 2 as specified in Lis. 5.2.
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for all bins. The same count was also done for slow and fast RBSs. For edge e2 we counted the
number devices that used a monomer, dimer, or tetramer TF in each bin.

Fig. 5.7 shows the resulting histograms for the score measure. The plot at the top are the
scores of all devices order from low to high. The y-grid lines are the boundaries of the bins. The
histograms are aligned with plot and show the device counts within each bin. It can be seen that
the devices with a high score mostly have a slow promoter and RBS for protein generator 1 and a
fast promoter and RBS for protein generator 4. The last histogram shows that most of the devices
with a low score use a monomer TF for edge e2. The histograms of the other measures can be
found in the supplementary material of the paper.

In case of experiment 2, there was no variation of the promoter and RBS speeds. The only
thing that was the use of either a monomer, a dimer, or a tetramer, for the edges textsle2, e3, e4,
e5, and e6. For a given edge, we counted the number of devices that used a monomer, dimer, and
tetramer within a bin. We did this for each edge for all bins.

Fig. 5.8 shows the resulting histograms for the score measure. The plot at the top are the
scores of all devices order from low to high. The y-grid lines are the boundaries of the bins. The
histograms are aligned with plot and show the device counts within each bin. It can be seen that
the devices with a high score mostly use a tetramer TF for edge e6 and a monomer or dimer TF
for edge e3. The histograms of the other measures can be found in the supplementary material of
the paper.
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Figure 5.7: The plot at the top are the score value of all 15360 devices order from low to high. The
devices are subdivided into 20 equal sized bins. The y-axis lines are the boundaries of the bins. The
histograms below show the device counts for the different bins, in which the devices are counted that use a
slow promoter, fast promoter, slow RBS, and fast RBS. The last histogram shows the device count of the
devices that use a monomer, dimer, and tetramer for edge e2.
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Figure 5.8: The plot at the top are the score value of all 702 devices order from low to high. The devices
are subdivided into 18 equal sized bins. The y-axis lines are the boundaries of the bins. The histograms
below show the device counts for the different bins of devices that use a monomer, dimer, or tetramer for
the given edge.
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Appendix A

Planning

56



Bibliography

Anderson, J. C., Voigt, C. A., Arkin, A. P., 2007. Environmental signal integration by a modular and
gate. Mol. Syst. Biol. 3, 133.

Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S., Cohen, S. N., 2002. Global analysis of
mrna decay and abundance in escherichia coli at single-gene resolution using two-color fluorescent dna
microarrays. Proceedings of the National Academy of Sciences 99 (15), 9697.

Cai, L., Friedman, N., Xie, X. S., 2006. Stochastic protein expression in individual cells at the single
molecule level. Nature 440 (7082), 358–62.

Canton, B., Labno, A., Endy, D., 2008. Refinement and standardization of synthetic biological parts and
devices. Nat. Biotechnol. 26 (7), 787–93.

Cox, R. S., Surette, M. G., Elowitz, M. B., 2007. Programming gene expression with combinatorial
promoters. Mol. Syst. Biol. 3, 145.

Del Vecchio, D., Ninfa, A. J., Sontag, E. D., 2008. Modular cell biology: retroactivity and insulation. Mol.
Syst. Biol. 4, 161.

Ellis, T., Wang, X., Collins, J. J., 2009. Diversity-based, model-guided construction of synthetic gene
networks with predicted functions. Nature Biotechnology.

Elowitz, M., Leibler, S., 2000. A synthetic oscillatory network of transcriptional regulators. Nature
403 (6767), 335–338.

Elowitz, M., Levine, A., Siggia, E., Swain, P., 2002. Stochastic gene expression in a single cell. Science
297 (5584), 1183–1186.

Endy, D., 2005. Foundations for engineering biology. Nature 438 (7067), 449–53.

Erhard, F., Friedel, C. C., Zimmer, R., 2008. Fern - a java framework for stochastic simulation and
evaluation of reaction networks. BMC Bioinformatics 9, 356.

Gardner, T., Cantor, C., Collins, J., 2000. Construction of a genetic toggle switch in escherichia coli.
Nature 403 (6767), 339–342.

Gillespie, D., 2007. Stochastic simulation of chemical kinetics. Annual Review Of Physical Chemistry 58,
35.

Gillespie, D., et al., 1977. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry 81 (25), 2340–2361.

Grilly, C., Stricker, J., Pang, W. L., Bennett, M. R., Hasty, J., 2007. A synthetic gene network for tuning
protein degradation in saccharomyces cerevisiae. Mol. Syst. Biol. 3, 127.

Guet, C., Elowitz, M., Hsing, W., Leibler, S., 2002. Combinatorial synthesis of genetic networks. Science
296 (5572), 1466–1470.

Hooshangi, S., Thiberge, S., Weiss, R., 2005. Ultrasensitivity and noise propagation in a synthetic tran-
scriptional cascade. Proceedings of the National Academy of Sciences 102 (10), 3581–3586.

57



Kaern, M., Elston, T. C., Blake, W. J., Collins, J. J., 2005. Stochasticity in gene expression: from theories
to phenotypes. Nat. Rev. Genet. 6 (6), 451–64.

Kosuri, S., Kelly, J. R., Endy, D., 2007. Tabasco: A single molecule, base-pair resolved gene expression
simulator. BMC Bioinformatics 8, 480.

Lucks, J. B., Qi, L., Whitaker, W. R., Arkin, A. P., 2008. Toward scalable parts families for predictable
design of biological circuits. Curr. Opin. Microbiol. 11 (6), 567–73.

Mayo, A. E., Setty, Y., Shavit, S., Zaslaver, A., Alon, U., 2006. Plasticity of the cis-regulatory input
function of a gene. PLoS Biol. 4 (4), e45.

Rodrigo, G., Carrera, J., Jaramillo, A., 2007. Genetdes: automatic design of transcriptional networks.
Bioinformatics 23 (14), 1857–8.

Sauro, H. M., 2008. Modularity defined. Mol. Syst. Biol. 4, 166.

Schlosshauer, M., Baker, D., 2004. Realistic protein–protein association rates from a simple diffusional
model neglecting long-range interactions, free energy barriers, and landscape ruggedness. Protein Sci-
ence: A Publication of the Protein Society 13 (6), 1660.

58


