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Abstract
Self-supervised learning (SSL) is a promising ap-
proach for medical imaging tasks by reducing the
need for labeled data, but most existing SSL meth-
ods treat each scan as an isolated sample and over-
look the fact that patients often have multiple ra-
diographs taken over time. These longitudinal se-
quences—multiple scans of the same hip acquired
at different visits—encode the natural progression
of osteoarthritis (OA) and thus could enrich rep-
resentation learning. In this study, we evaluate
whether incorporating temporal information from
these longitudinal radiographic sequences into SSL
pretraining yields more transferable representations
and leads to improved downstream classification
of hip OA severity. We focus on a temporal con-
trastive task (Contrastive Predictive Coding, CPC),
which learns to predict future scan representations
from earlier ones, and compare it to a SimCLR-
based pretraining that treats each radiograph inde-
pendently. We also investigate a multitask frame-
work that combines both objectives — either by
sequentially pretraining with CPC then SimCLR,
or by interleaving the two tasks. Experiments on
the Osteoarthritis Initiative (OAI) dataset for binary
classification of KL-grade severity show that CPC
alone does not surpass SimCLR-based pretrain-
ing. However, both the sequential and interleaved
multitask approaches significantly improve classi-
fication accuracy over either single-task method.
These findings demonstrate that even though tem-
poral prediction by itself isn’t sufficient — combin-
ing temporal and within-scan contrastive learning
can yield stronger models for hip OA severity as-
sessment.

1 Introduction
Osteoarthritis (OA) is a progressive joint disorder that im-
pacts millions globally, often leading to pain, limited mobil-
ity, and decreased quality of life. In clinical practice, its sever-
ity is commonly evaluated through radiographic images, such
as hip or knee X-rays—using ordinal grading systems such as
the Kellgren–Lawrence (KL) scale [9]. However, manual KL
grading is known to be subjective, time-consuming, and par-
ticularly challenging for early-stage OA, when radiographic
indicators such as joint-space narrowing and osteophyte de-
velopment are only subtly different from healthy anatomy
[17].

In an effort to overcome the subjectivity and labor-intensity
of manual KL grading, deep-learning techniques have been
developed to automate KL-grade classification. Although
these methods have demonstrated high predictive accuracy
for KL-grade classification on hip X-rays, they depend on the
availability of large, accurately annotated datasets, which are
costly and difficult to obtain in the medical imaging domain
[17].

Self-supervised learning (SSL) offers a promising alterna-
tive by learning image representations from unlabeled data.

It does so via auxiliary “pretext” tasks—such as contrast-
ing different augmented views of the same X-ray, predicting
masked regions, or reconstructing corrupted inputs—which
require no manual labels but force the model to discover vi-
sual patterns (e.g., anatomical structures, texture variations,
and subtle disease markers) that transfer well to downstream
objectives and enable fine-tuning with far fewer annotations.
[1]. Recent surveys [19, 8] demonstrate that SSL improves
both label efficiency and downstream generalization across
a range of medical-imaging tasks. However, most existing
SSL (and supervised) studies still treat each radiograph in
isolation—discarding the temporal relationships in longitu-
dinal series that can reveal gradual cartilage loss, persistent
anatomical landmarks, and scanner-specific biases. In the
next section, we explain why leveraging these temporal dy-
namics could improve representation learning for OA severity
prediction and state our hypothesis.

Most single-scan SSL methods learn only “snapshot” fea-
tures—such as local bone texture or joint geometry—without
any context for distinguishing pathological progression from
benign anatomical or imaging differences. This limitation can
cause the model to overlook subtle disease markers like early
cartilage thinning or misinterpret scanner-specific artifacts as
clinical indicators. We propose that longitudinal sequences
could address this gap by providing two complementary sig-
nals:

1. Progression cues: gradual cartilage loss and joint-space
narrowing trends that highlight the structural changes as-
sociated with worsening osteoarthritis, and

2. Invariant signals: patient-specific bone morphology
and consistent imaging characteristics across visits that
help the model discount non-disease-related variations.

By pretraining on temporal sequences to predict how a hip
changes over successive visits, the encoder discovers a la-
tent progression manifold in feature space—one where move-
ment along specific dimensions corresponds to increasing OA
severity. As a result, even when fine-tuned on a single scan
from a new patient, the model’s representations are already
organized by disease severity, making KL-grade classifica-
tion more accurate. We therefore hypothesize that using the
longitudinal relationship between scans during pretrain-
ing helps the model learn more meaningful features. A
classifier built on top of these features should achieve bet-
ter KL-grade accuracy compared to one that uses features
learned without any information about the longitudinal
relationship between scans of the same patient across dif-
ferent years.

To test our hypothesis, we adopt Contrastive Predictive
Coding (CPC) [18] as our temporal SSL method, which trains
an encoder to predict latent representations of future radio-
graphs from earlier ones and thus captures progression cues
in a feature space. CPC was chosen because its sequence-
prediction objective directly leverages longitudinal data to
model disease dynamics. We benchmark CPC against a static
contrastive learning baseline inspired by SimCLR [4], which
enforces consistency between multiple augmentations of in-
dividual scans but ignores temporal context. Beyond these
single-task approaches, we introduce two hybrid pretrain-



ing schemes—sequentially applying CPC then static con-
trastive learning, and interleaving both objectives within each
minibatch—to explore whether combining temporal progres-
sion modeling with robust snapshot features leads to richer
representations. However, this setup leaves open whether
any gains come specifically from temporal data or simply
from multi-task training, so we add a third hybrid approach
that pairs static contrastive learning with a spatial patch-
prediction task using the same encoder as CPC but without
longitudinal inputs. All SSL pretraining is performed on un-
labeled longitudinal hip X-rays, and the resulting encoders
are fine-tuned and evaluated on downstream KL-grade classi-
fication to assess their relative effectiveness.

The remainder of this paper is organized as follows. In
Section 2, we review relevant work on SSL and longitudi-
nal pretext tasks in medical imaging. Section 3 describes our
methodology, including CPC, the SimCLR–inspired base-
line, and our three hybrid pretraining schemes. In Section 4,
we evaluate these approaches on the Osteoarthritis Initiative
(OAI) hip X-ray dataset [12] through downstream KL-grade
classification under varying label regimes. Section 5 presents
our quantitative and qualitative results. In Section 6, we dis-
cuss ethical considerations and responsible use of SSL in clin-
ical imaging. Finally, Section 7 summarizes our findings and
outlines directions for future work.

Our main contributions are:
1. We compare temporal (CPC) and non-temporal

(SimCLR-style) SSL pretraining on the OAI hip X-ray
dataset to see which better supports OA grading.

2. We introduce a spatial hybrid control—combining con-
trastive learning with a patch-prediction task—to show
whether improvements come from using multiple tasks
or specifically from temporal data.

3. We demonstrate that interleaving temporal and non-
temporal objectives during pretraining gives the best
KL-grade classification accuracy when only limited la-
bels are available.

2 Related Work
Supervised deep-learning models achieve high accuracy in
KL-grade classification but require large annotated datasets
[11]. For example, Tiulpin et al. [17] trained a multimodal
CNN on hundreds of labeled knee X-rays, and Thomas et
al. [16] evaluated Inceptionv3 and DenseNet backbones for
hip OA grading under a similar supervised setup. Chen et
al. [7] applied style-based manifold extrapolation to capture
temporal progression and predict future OA severity, yet it
too depends on manually assigned KL labels. This reliance
on extensive annotation motivates our exploration of self-
supervised approaches that can learn disease dynamics with-
out per-scan labels.

To reduce annotation demands, self-supervised learning
(SSL) has been adopted across medical imaging. Large-scale
works (e.g., Azizi et al. [2]) and surveys (Shurrab et al. [14];
Zhang et al. [20]; Wang et al. [19]) report that contrastive
methods (SimCLR [4], BYOL) and reconstruction tasks im-
prove downstream performance with far fewer labels. How-
ever, these methods treat each radiograph as a standalone

sample, discarding temporal links that as expressed in our
aforementioned hypothesis could provide progression cues or
stabilize representations against patient-specific anatomy and
scanner effects.

Contrastive Predictive Coding (CPC) [18] brings sequence
modeling into SSL by predicting future latent states from past
ones. CPC has succeeded in modalities ranging from au-
dio to histopathology [15], but its application to longitudi-
nal radiographs—where images of the same joint are taken
at multiple visits—has not been systematically evaluated. In
osteoarthritis, supervised models have shown that using lon-
gitudinal scans can boost prediction [13], yet no work has
directly compared CPC-based temporal pretraining to static
contrastive SSL on hip X-rays.

Our work fills this gap: we benchmark CPC against a
SimCLR-style baseline, and we introduce hybrid schemes to
isolate the benefit of temporal supervision from that of multi-
task training. This side-by-side evaluation on the OAI hip X-
ray cohort clarifies when—and why—leveraging longitudinal
sequences enhances self-supervised pretraining for KL-grade
classification.

3 Methodology
3.1 Data Assumptions
Our SSL methods assume access to longitudinal hip radio-
graphs, where each patient has multiple anteroposterior X-
rays taken at distinct visits (e.g. baseline, mid-follow-up, fi-
nal follow-up). These scans must share a common view and
sufficient resolution for femoral landmark detection, allowing
us to form ordered triplets (or longer sequences) for temporal
pretext tasks.

3.2 Self-Supervised Pretraining Tasks
We design three self-supervised learning (SSL) strategies to
learn representations from unlabeled hip radiographs: a static
contrastive task (SimCLR), a temporal predictive task (Con-
trastive Predictive Coding, CPC), and a multitask configura-
tion combining both. Each strategy is implemented with a
dedicated architecture and contrastive loss.

Temporal Contrastive Predictive Coding (CPC)
CPC [18] learns to predict the representation of a future scan
from earlier scans of the same patient. Let (xt, xt+1, xt+2)
be three chronologically ordered radiographs. If a patient
has four or more scans, we can extend the prediction horizon
to k > 1, training the model to forecast embeddings multi-
ple steps ahead (e.g. using (xt, xt+1) to predict (xt+2, xt+3),
thereby exploiting richer temporal context when the data per-
mit.

Images are encoded as zt = genc(xt). A context network
gar summarises past embeddings into ct = gar(zt, zt+1), from
which a prediction head ψ estimates the future embedding
ẑt+2 = ψ(ct). InfoNCE is applied between ẑt+2 and the true
zt+2; negatives are embeddings from other time-points and
patients. After training, genc is retained, discarding gar and ψ.

Static Contrastive Learning (SimCLR Baseline)
As a non-temporal benchmark, we use a SimCLR-style con-
trastive learning approach that learns from individual radio-



Figure 1: Original CPC architecture illustration reproduced from
Van den Oord et al. [18]. Although the schematic depicts an audio
sequence, the same encoder–context–predictor design is used in our
study for longitudinal hip radiographs.

graphs in isolation. During pretraining, we select only the
most recent X-ray from each patient—on the assumption that
it exhibits the greatest range of OA-related changes—and ran-
domly augment it twice to create a positive pair, while all
other images in the batch act as negatives. The objective
encourages representations of the same image’s augmenta-
tions to be similar and those of different images to be dis-
tinct, teaching the model to capture invariant features of hip
anatomy without any temporal or label information. After
this stage, the learned encoder is fine-tuned on the down-
stream KL-grade classification task using available labels.

Combined / Multitask Setup
To capture both progression dynamics and per-scan invari-
ances in a single model, we hypothesize that jointly training
on temporal (CPC) and static (SimCLR) objectives will yield
richer representations than either task alone. Our primary hy-
brid schemes therefore combine CPC and SimCLR in two
ways:

• Interleaved CPC+SimCLR: alternate CPC and Sim-
CLR losses on successive minibatches, so the encoder
continuously learns from both tasks.

• Sequential CPC→SimCLR: first pretrain with CPC to
instill temporal progression knowledge, then continue
with SimCLR to reinforce snapshot consistency.

This design allows us to test whether combining temporal
progression modeling with contrastive snapshot learning im-
proves downstream KL-grade classification more than single-
task pretraining.

If these hybrids outperform single-task pretraining, it could
be due either to temporal information from CPC or simply
to the benefit of multi-task learning. To disentangle these
effects, we introduce a non-temporal control task that mir-
rors CPC’s architecture and loss but uses only the latest scan
per patient. We split each X-ray into three horizontal equal-
width bands, encode the first two bands to predict the third
via the same context and prediction heads used in CPC,
and apply the InfoNCE loss between predicted and true em-
beddings—matching CPC’s complexity without longitudinal
data. We then combine this patch-prediction task with Sim-
CLR in a third sequential hybrid:

• Sequential Patch→SimCLR: pretrain first on patch

prediction, then fine-tune the encoder with the SimCLR
contrastive loss.

With this third multitask setup, we are effectively copy-
ing our CPC→SimCLR hybrid but replacing the temporal
CPC objective with the patch-prediction task. This allows
us to match CPC’s model complexity and multi-task train-
ing regime without any longitudinal data, isolating the unique
contribution of temporal supervision. We limit our investiga-
tion to sequential multitask training—rather than both inter-
leaved and alternating schemes—because our primary goal
is to assess whether adding a second task (temporal or non-
temporal) in a straightforward “train-then-train” pipeline in-
fluences performance, and sequential scheduling is both sim-
pler to implement and faster to set up

All three multitask schemes share the same ResNet-18 en-
coder and maintain separate projection heads for each task
during pretraining. After pretraining, we discard these heads
and retain only the shared encoder for downstream KL-grade
classification. By comparing performance across all hy-
brids and single-task baselines, we can determine whether
improvements stem specifically from temporal progression
modeling or from the act of combining multiple pretext tasks.
This ensures we correctly attribute any gains to longitudinal
supervision rather than mere multi-task learning.

3.3 Implementation Details
All models are implemented in PyTorch 2.7
with PyTorch Lightning 2.5, and our full code-
base and configuration files are publicly avail-
able at https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/
contrastive-and-longitudinal-ssl-xray-comparison.

4 Experiments
In this section, we describe our protocol for evaluating how
different self-supervised pretraining strategies affect down-
stream osteoarthritis classification performance. We first de-
tail the data sources, inclusion criteria, and preprocessing
steps. Next, we outline each of the six SSL pretraining
variants under comparison. We then present our standard-
ized fine-tuning procedure—freezing the encoder and train-
ing only a lightweight classifier head—to isolate represen-
tation quality. Finally, we explain how we measure repro-
ducibility and quantify run-to-run variability via multiple
seeds, describe our ablation configurations, and define our
evaluation metrics.

4.1 Data Acquisition and Preparation
We use 4,755 subjects from the Osteoarthritis Initiative (OAI)
dataset, with the visit distribution shown in Table 1. Each
subject was scheduled for up to three clinical visits: baseline
(year 0), year 6, and year 10. Due to missing follow-ups,
2,745 subjects have complete 3-visit data. Only the left hip
is used to avoid inter-hip correlation. This ensures each im-
age represents an independent patient-level sample: since a
person’s two hips share anatomy and disease characteristics,
including both could allow the model to learn patient-specific
features rather than generalizable osteoarthritis patterns.

https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/contrastive-and-longitudinal-ssl-xray-comparison
https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/contrastive-and-longitudinal-ssl-xray-comparison


Table 1: Distribution of subjects by number of available clinic visits
in the OAI dataset.

Number of visits 3 visits 2 visits 1 visit
Subjects 2,745 1,045 965

A 30% subset of patients is used as labeled data and split at
the patient level into 70% training, 15% validation, and 15%
test. The remaining 70% are used only for self-supervised
pretraining. For the CPC setup, we restrict to subjects with
three available visits, using the first two timepoints to predict
the third. This design mirrors the temporal prediction goal
and ensures temporal consistency across sequences.

All radiographs undergo a preprocessing pipeline to en-
sure consistency: images are normalized in intensity, femoral
heads are automatically localized and cropped to a fixed
region, and crops are resampled to a uniform pixel spac-
ing. These prepared images are then used directly in
both SSL pretraining and downstream evaluation. The pre-
processing pipeline can be found at https://gitlab.tudelft.nl/
osteoarthritis-2025-bsc/example-preprocessing-code

We follow clinical precedent by casting KL-grade predic-
tion as a binary task—distinguishing mild/absent OA (KL <
2) from moderate/severe OA (KL ≥ 2). This mirrors treat-
ment decision thresholds and simplifies evaluation to a single,
clinically meaningful decision boundary.

4.2 Self-Supervised Pretraining
We evaluate six SSL pretraining strategies:

• Static SimCLR: contrastive learning on each patient’s
most recent X-ray.

• CPC-only: sequence prediction by forecasting the third
visit embedding from the first two.

• Patch-only: spatial predictive task on the latest scan,
predicting the deepest band from the other two.

• Interleaved CPC+SimCLR: alternating CPC and Sim-
CLR losses within each minibatch.

• Sequential CPC→SimCLR: first pretrain with CPC,
then continue with SimCLR.

• Sequential Patch→SimCLR: first pretrain on patch
prediction, then fine-tune with SimCLR.

All strategies share the same training setup: ResNet-18 en-
coder, 100 epochs, batch size 64, learning rate 1× 10−3, and
InfoNCE temperature 0.07. We do not employ early stopping
- in line with standard SSL protocols - to maintain equal train-
ing budgets and avoid validation-based tuning biases follow-
ing standard SSL practice [4, 5]. After pretraining, we retain
the final-epoch encoder weights for downstream evaluation.
These encoders are then frozen and assessed on KL-grade
classification using a uniform fine-tuning protocol.

4.3 Fine-Tuning Protocol
To assess the quality of each pretrained encoder, we adopt
the standard linear evaluation protocol, in which a classifier
is trained on top of a frozen base network and test accuracy

serves as a proxy for representation quality [21, 18, 3]. This
approach ensures that any differences in downstream perfor-
mance reflect the effectiveness of the SSL pretraining rather
than disparities in fine-tuning capacity.

Our classifier head consists of three linear layers inter-
leaved with ReLU activations and an optional dropout layer.
First, the encoder’s output vector is projected down to 128
features. A ReLU activation introduces non-linearity, fol-
lowed by a second linear layer that maps these 128 features
to 64, and another ReLU. Finally, a dropout layer (rate tuned
via validation) regularizes the 64-dimensional activations be-
fore a last linear layer reduces them to a single logit. We omit
a softmax or sigmoid activation here because our loss func-
tion—PyTorch’s binary cross entropy with logits—
“combines a Sigmoid layer and the BCELoss in one single
class. This version is more numerically stable than using a
plain Sigmoid followed by a BCELoss”1.

Hyperparameters for fine-tuning were determined by a
one-time grid search on the SimCLR-pretrained encoder. The
best combination—learning rate = 1e-3, weight decay = 0,
batch size = 32, dropout = 0.0, cosine learning-rate sched-
uler, and seed = 0—was then applied uniformly across all
pretrained encoders to ensure a fair comparison.

Because moderate-to-severe OA cases (KL ≥ 2) are less
frequent, we apply minority oversampling during fine-tuning
to mitigate class imbalance. High-grade examples are over-
sampled inversely to improve the learning signal for the posi-
tive class. We did not experiment with omitting this oversam-
pling strategy, so its individual impact remains untested.

Throughout fine-tuning, the encoder weights remain frozen
and only the classifier head is updated. This design preserves
the learned SSL representations and prevents their degrada-
tion by overfitting to the limited labeled data. All downstream
results are averaged over the three random seeds to account
for variability in data splits, initialization, and training order.

To ensure that each classifier is evaluated at its optimal
point, we select the checkpoint (epoch) that minimizes val-
idation loss on the held-out validation split. All downstream
metrics (AUROC, accuracy, precision, recall) are then com-
puted on the test set using this best-epoch model. This strat-
egy prevents evaluation at arbitrary or late epochs—when
overfitting can inflate loss—thereby providing a fair and con-
sistent comparison of representation quality across all pre-
trained encoders.

4.4 Experimental Variability and Random Seeds
To ensure exact reproducibility and assess variability, we re-
peat every SSL pretraining and downstream fine-tuning run
with three fixed random seeds: 0, 1, and 2. Each seed con-
trols:

• Patient-level splits into the unlabeled pretraining pool
and the labeled train/validation/test pools.

• All data-loader operations (shuffling, augmentation or-
der).

• Model weight initialization.

1https://pytorch.org/docs/stable/generated/torch.nn.functional.
binary cross entropy with logits.html

https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/example-preprocessing-code
https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/example-preprocessing-code
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All reported metrics are the mean and standard deviation over
these three runs.

4.5 Ablation Configurations
To pinpoint the source of any downstream gains, we compare
our SSL-pretrained encoders against a fully supervised base-
line (no pretraining) and then evaluate six distinct pretrain-
ing settings: CPC-only, Patch-only, Static SimCLR, Inter-
leaved CPC+SimCLR, Sequential CPC→SimCLR, Sequen-
tial Patch→SimCLR.

Evaluating this suite of models under identical data splits,
preprocessing, and fine-tuning protocols allows us to attribute
performance differences specifically to temporal dynamics,
spatial forecasting, multi-task training, or simply the act of
pretraining itself.

4.6 Evaluation Metrics
We report Area Under the ROC Curve (AUROC) and accu-
racy on the test set. AUROC is threshold-independent and
robust to class imbalance [6]. Accuracy is reported for com-
pleteness.

5 Results
We report performance on the test set for each pretraining
configuration in terms of AUROC and accuracy.

Figure 2 summarises the discriminative power of each
model in terms of area under the ROC curve (AUROC). The
Interleaved CPC + SimCLR and Sequential CPC→ SimCLR
hybrids achieve the highest AUROC scores (0.87 each), fol-
lowed by the CPC-only model (0.74). The best non-temporal
alternatives trail behind: Sequential Patch→ SimCLR attains
0.70, and SimCLR-only reaches 0.69. The fully supervised
baseline manages 0.60, while the Patch-only ablation records
the lowest AUROC at 0.59.

Because moderate–to–severe OA examples (KL 2) form
the minority of the cohort, a naı̈ve majority-class predictor
would already attain an accuracy of 0.72. Overall accuracy
can therefore overstate performance; throughout this section
we regard AUROC as the primary metric and use accuracy
only as a secondary, easily interpretable figure.

In terms of raw classification accuracy in Figure 3, the
two hybrid models again lead with a mean accuracy of 0.92,
clearly outperforming the best single-task temporal model
(CPC-only, 0.87) and the supervised baseline (0.89). Purely
spatial objectives fare worse: SimCLR-only reaches 0.85,
and adding patch prediction does not improve it (Sequential
Patch→ SimCLR: 0.85). The Patch-only configuration lags
behind at 0.82.

Key observations.
• Temporal information helps. Even the CPC-only

model exceeds the best non-temporal variant by 0.04
AUROC points (0.74 vs. 0.70), and combining CPC with
SimCLR raises that gap to 0.17 (0.87 vs. 0.70).

• Hybrid training is beneficial. Interleaving or sequen-
tially combining CPC with SimCLR lifts AUROC from
0.74 (CPC-only) to 0.87 and raises accuracy from 0.87
to 0.92.

Figure 2: Area-under-the-ROC-curve (AUROC) obtained by each
pre-training strategy, averaged over the three experimental seeds.

• Patch prediction underperforms. Despite matching
CPC in model capacity, the Patch-only objective deliv-
ers the weakest performance (AUROC 0.59, ACC 0.82),
suggesting that this pretext task fails to encourage the
encoder to learn clinically useful features. A stronger
non-temporal alternative—such as masked-image mod-
elling—would likely provide a fairer comparison to
CPC.

• Adding patch prediction before SimCLR yields no
benefit. The sequential Patch prediction→ SimCLR hy-
brid (AUROC 0.70, ACC 0.85) is virtually indistinguish-
able from SimCLR-only (AUROC 0.69, ACC 0.85).

As an additional experiment, to further validate the dis-
criminative power of our multitask-pretrained encoder, we
also examined the learned feature space by applying UMAP
(Uniform Manifold Approximation and Projection [10]) to
the test-set embeddings produced by our sequentially pre-
trained (CPC→SimCLR) encoder. As shown in Figure 4, the
positive (red) and negative (blue) OA cases form two well-
separated clusters, confirming that the multitask pretraining
yields representations in which disease status is readily dis-
tinguishable in low dimensions.



Figure 3: Overall classification accuracy (ACC) for the same models
as in Fig. 2.

6 Responsible Research
This section discusses how ethical and reproducible research
practices were applied throughout this classification study
based on medical imaging data.

6.1 Ethical Considerations
The dataset used in this study comes from the publicly avail-
able Osteoarthritis Initiative (OAI) [12], which includes lon-
gitudinal X-ray images and associated clinical data. Although
the data are de-identified and released for research purposes
under specific terms, they still represent sensitive medical in-
formation. Therefore, we adhered strictly to the usage poli-
cies provided by the National Institute on Aging and the Na-
tional Institutes of Health, ensuring that no attempt was made
to re-identify individuals or share the data outside of approved
research settings. Only aggregated, non-identifiable results
and model performance metrics are reported in this paper.

When using deep learning in healthcare-related contexts,
one must also consider the risks associated with biased learn-
ing and opaque model behavior. Our models were im-
plemented using standard PyTorch and PyTorch Lightning
components, including pl.LightningModule, nn.Conv2d,
nn.Module, nn.GRU, and nn.Linear. While fairness or sub-
group performance analysis was not conducted at this stage,
we recognize this as a critical direction for future work. Fur-
thermore, given the complexity of the models, interpretability
remains a concern. As of now, the model is not explainable
enough for clinical deployment.

Importantly, the models developed in this project are ex-
perimental and should not be used for clinical diagnosis or
decision-making. Their outputs can only support expert judg-
ment and are not intended to replace medical professionals.

6.2 Reproducibility of Methods
Reproducibility is a key aspect of trustworthy machine learn-
ing research. To support replicability, the report provides a
detailed description of the experimental setup, including the
dataset structure, preprocessing steps, training objectives, and
evaluation procedures.

The codebase relies on widely used open-source frame-
works and will be made publicly available in a version-
controlled repository which can be found at the fol-
lowing link: https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/

Figure 4: UMAP (Uniform Manifold Approximation and Projec-
tion) of test-set embeddings from the encoder pretrained sequen-
tially with CPC then SimCLR. Red and blue points denote positive
and negative OA cases, showing clear class separation.

contrastive-and-longitudinal-ssl-xray-comparison. This will
allow other researchers to reproduce, verify, and build upon
our work.

7 Discussion and Conclusion
We began with the idea that giving the model several scans of
the same hip taken in different years—instead of considering
only a single image per patient—would help it learn richer
features for classifying osteoarthritis (OA). The results sup-
port that view, but only partly. A model pretrained purely
with a temporal prediction (CPC) task is a little better than
the best single-image baseline (SimCLR: AUROC 0.69 →
0.74). Clear progress shows up only when the two ideas are
combined: the multitask approaches, interleaved or sequen-
tial, reach AUROC 0.87 and ACC 0.92, well ahead of any
single-task model and the fully supervised baseline.

Why does this mix help? Each pretext task supplies the
encoder what the other cannot. CPC captures progression
cues—gradual cartilage loss and joint-space narrowing that
mark worsening OA over time—while SimCLR focuses on
what stays the same in one scan and learns to ignore lighting,
view angle, and scanner noise. CPC alone is still sensitive to
those image quirks, and SimCLR alone knows nothing about
change over time. Using both objectives together guides the
model toward patterns that truly reflect OA severity while dis-

https://gitlab.tudelft.nl/osteoarthritis-2025-bsc/contrastive-and-longitudinal-ssl-xray-comparison
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carding distracting variation, leading to the large gain in per-
formance.

Our control experiment with patch prediction shows that
simply adding a second task is not enough. Patch-only scores
poorly (AUROC 0.59) and, even when paired with SimCLR,
adds almost no benefit (0.70). Because the patch task is so
weak, it does not let us fully separate the value of “any” mul-
titask training from the value of temporal information. A
stronger non-temporal control will be needed to tease apart
those contributions more convincingly.

Many hospitals store years of hip X-rays but have few
expert labels. A single self-supervised pretraining run that
blends CPC and SimCLR can turn that unlabelled archive
into a strong encoder—better than a supervised model trained
from scratch.

This study has limits. First, all experiments used only the
Osteoarthritis Initiative cohort; performance on other datasets
is still unknown. Second, each patient has only three visits;
longer timelines might let CPC do even better without Sim-
CLR. Third, patch prediction is a very simple stand-in for
“another task”; stronger pretext tasks could give a fairer com-
parison.

Next steps are to repeat the study on independent datasets,
try other pretext tasks alongside SimCLR for the multitask
pretraining, and include longer follow-up series.

In short, using the longitudinal relationship between scans
during pretraining helps the model, but it really pays off only
when it is combined with a another task - in our case the
SimCLR one. This multitask approach clearly beats single-
task SSL and a supervised baseline, supporting our original
idea that temporal information helps and shows that combin-
ing temporal and within-scan contrastive learning can yield
stronger models for hip OA severity assessment.

A Appendix One: Use of Large Language
Models (LLMs)

Large Language Models (LLMs) were used to support the
writing process of this report in a limited and responsible
manner. The tool was used mainly for language refinement
— to help improve the clarity and scientific tone of passages
originally drafted by the authors. The content and structure
of the report, including all sections were developed entirely
by the authors.

Specifically, we used LLMs to rephrase and improve cer-
tain sentences or paragraphs that were already written.

For example, when drafting the abstract, we initially
wanted to phrase the idea that the method uses multiple years
of scans of the same patient to capture disease progression,
but weren’t satisfied with how it read.

We prompted the LLM with:

Paraphrase this in a writing style that is more
proper for a scientific paper and so it is easier
to understand: ”representation learning utilising
multiple years of a scan of the same patient that
express disease progression.”

The LLM (ChatGPT) responded with:

”This study investigates how to leverage tempo-
ral information from radiographic scan sequences
of the same patient—capturing disease progression
over time—for improved SSL.”

This output was reviewed and manually edited before in-
clusion in the final version.

No content was generated autonomously without author re-
view and/or edit. All use of LLMs was limited to surface-
level editing and phrasing fixes. The scientific content, struc-
ture, analysis, and conclusions of the report reflect the inde-
pendent work of the authors.
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[17] Aleksei Tiulpin, Jérôme Thevenot, Esa Rahtu, Petri
Lehenkari, and Simo Saarakkala. Automatic knee os-
teoarthritis diagnosis from plain radiographs: A deep
learning-based approach. Scientific Reports, 8(1):1727,
2018.

[18] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[19] Wei-Chien Wang, Euijoon Ahn, Dagan Feng, and Jin-
man Kim. A review of predictive and contrastive self-
supervised learning for medical images. Machine Intel-
ligence Research, 20(4):483–513, 2023.

[20] Chuyan Zhang and Yun Gu. Dive into self-supervised
learning for medical image analysis: Data, models and
tasks. arXiv preprint arXiv:2209.12157, 2022. v2, last
revised 17 Apr 2023.

[21] Richard Zhang, Phillip Isola, and Alexei A. Efros. Col-
orful image colorization. 2016.

https://nda.nih.gov/oai/

	Introduction
	Related Work
	Methodology
	Data Assumptions
	Self-Supervised Pretraining Tasks
	Temporal Contrastive Predictive Coding (CPC)
	Static Contrastive Learning (SimCLR Baseline)
	Combined / Multitask Setup

	Implementation Details

	Experiments
	Data Acquisition and Preparation
	Self-Supervised Pretraining
	Fine-Tuning Protocol
	Experimental Variability and Random Seeds
	Ablation Configurations
	Evaluation Metrics

	Results
	Responsible Research
	Ethical Considerations
	Reproducibility of Methods

	Discussion and Conclusion
	Appendix One: Use of Large Language Models (LLMs)

