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Propositions
accompanying the thesis

Full-Step Interior-Point Methods
for Symmetric Optimization

Guoyong Gu

1. For since the fabric of the universe is most perfect and the work of a most
wise creator, nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear. — Leonhard Euler

2. The analysis of feasible interior-point methods provides a sound basis for
the analysis of full-step infeasible interior-point methods.

3. The ‘adaptive strategy’ improves the practical efficiency of full-step infea-
sible interior-point methods tremendously without changing the theoretical
efficiency.

4. There is still some room to improve the implementation of ‘adaptive strat-
egy’.

5. To get an algorithm run is just the first step; it’s a long way to make it
robust and efficient.

6. MEX-files are not appropriate for all applications in Matlab.

7. From the recent experience at TU Delft of migrating to the centralized
ICT infrastructure, it appears that centralization may conflict with local
interests.

8. Practice is the sole criterion for testing truth.

9. In developing countries seeking to expand their economic activities, consid-
eration for environmental conservation often receives a low priority.

10. To teach is to learn.

These propositions are considered opposable and defendable and as
such have been approved by the supervisor, Prof. dr. ir. C. Roos.



Stellingen
behorende bij het proefschrift

Volle-stap Inwendige Punt Methoden
voor Symmetrische Optimalisering

Guoyong Gu

1. Want aangezien de structuur van het universum uiterst volmaakt is en het
werk van een uitermate wijze schepper, gebeurt er nergens in het universum
iets waaruit niet een of andere regel van maximum of minimum blijkt. —
Leonhard Euler

2. De analyse van toelaatbare inwendige punt methoden vormt een solide basis
voor de analyse van niet-toelaatbare inwendige punt methoden.

3. De ‘adaptieve strategie’ verbetert de practische efficiëntie van volle-stap
inwendige punt methoden zonder dat de theoretische efficiëntie verandert.

4. Er is nog ruimte om de implementatie van de ‘adaptieve strategie’ te ver-
beteren.

5. Het werkend krijgen van een algoritme is niet meer dan een eerste stap; het
is een lange weg om het robuust en efficiënt te maken.

6. MEX-files zijn niet geschikt voor alle toepassingen in Matlab.

7. Uit de recente ervaring aan de TU Delft van migratie naar een gecen-
traliseerde ICT-infrastructuur, blijkt dat centralisatie ten koste kan gaan
van locale belangen.

8. De praktijk is het enige criterium voor het testen van waarheid.

9. In ontwikkelingslanden die streven naar uitbreiding van hun economische
activiteiten krijgt de aandacht voor milieubehoud vaak een lage prioriteit.

10. Onderwijzen is leren.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn
als zodanig goedgekeurd door de promotor, Prof. dr. ir. C. Roos.
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Chapter 1

Introduction

For since the fabric of the universe is most perfect and the work
of a most wise creator, nothing at all takes place in the universe in
which some rule of maximum or minimum does not appear.

— Leonhard Euler, 1744

In mathematics, optimization refers to the study of problems in which one seeks
to minimize or maximize a real function by systematically choosing the values of
real or integer variables from within an allowed set.

Optimization is a branch of applied mathematics that is widely and increas-
ingly used in science, engineering, economics, management, industry, and other
areas. As a flourishing research activity, it has led to theoretical and computa-
tional advances, new technologies and new methods in developing optimal designs
of different systems, efficiency and robustness in minimizing the costs of opera-
tions in a process, etc.

1.1 Milestones in linear optimization

Linear Optimization (LO), as the name implies, is concerned with the minimiza-
tion or maximization of a linear function subject to linear equality and (or) linear
inequality constraints on its variables.1

1Historically, the field of optimization was founded by George Dantzig, who invented the
Simplex method, a systematic method to solve so-called Linear Programming problems. Nowa-
days, the word “programming” usually refers to the activity of writing computer programs, and
as a consequence its use instead of the more natural word “optimization” gives rise to confusion.
Following others, like Padberg [82], we prefer to use the name Linear Optimization in this the-
sis. It may be noted that in the nonlinear branches of the field of Mathematical Programming
(like Combinatorial Optimization, Discrete Optimization, Semidefinite Optimization, etc) this
terminology has already become generally accepted.

1
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1.1.1 The simplex method

The feasible region of an LO problem in standard form (cf. Section 2.1) is a
polyhedron. If the LO problem is solvable, then there must exist an optimal
vertex of the polyhedron. Unfortunately, the number of the vertices associated
with an LO problem can be exponential in its dimensions. Except for small size
problems, this number is so large that it prevents examining all possible vertices
for searching an optimal vertex ([114, Chapter 1]).

The simplex method, invented in 1947 by George Dantzig [15], is a proce-
dure for examining candidate vertices for optimality in an intelligent fashion. It
constructs a sequence of adjacent vertices with improving values of the objective
function. Thus, the method travels along edges of the polyhedron until it reaches
an optimal vertex.

Complexity theory attempts to describe how difficult it is for an algorithm to
find a solution to a problem. An important aspect of the theory is to categorize
computational problems and algorithms into complexity classes. The complexity
theory framework focusses mainly on decision problems. Such problems have only
two possible solutions or answers, “yes” or “no”. The complexity class P is the
class of problems that can be solved in polynomial time, and the complexity class
NP consists of problems which given a certificate, a “yes” answer can be verified
in polynomial time. The most important open question of complexity theory is
whether the complexity class P is the same as the complexity class NP, or whether
it is a strict subset as is generally believed [31, 83]. As this led to the development
of the theory of NP-completeness and many deep extensions, people wanted to
know whether LO is solvable in polynomial time or not.

In 1972, Klee and Minty [52] gave an example of an LO problem in which
the polyhedron is a distortion of an n-dimensional cube. They showed that the
simplex method using Dantzig’s classic most-negative-reduced-cost pivot rule (fre-
quently referred to as the “Dantzig rule”) visits all 2n vertices before arriving at
the optimal vertex. This means that the worst-case complexity of the method is
exponential. Since then exponential examples have been found for almost every
deterministic pivot rule, including the best-neighbor rule which solves LO prob-
lems over the original Klee-Minty examples in just one pivot, and the steepest-
edge rule which is the basis for the fast simplex codes of today. It is still an open
question if there is a pivot rule with polynomial time, or even sub-exponential
worst-case complexity.

Despite its exponential worst-case complexity, the expected behavior of the
simplex method on a random LO problem drawn from some distribution is poly-
nomial [1, 2, 13, 98]. The simplex method turns out to be remarkably efficient in
practice. On average, the number of vertices visited by the simplex method seems
to be roughly linear or even logarithmic to the size of the problem. Improved in
various ways, the simplex method continues to be one of the best choices for
solving LO problems.
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1.1.2 The ellipsoid method

The ellipsoid method was originally developed for convex nonlinear optimization
by Yudin and Nemirovski [116] and independently, related work was done by
Shor [97], but it became famous when Khachiyan [50, 51] used it to obtain a
polynomial-time algorithm for LO.

The basic idea of the ellipsoid method is well-known. At each iteration an
ellipsoid is given which contains all optimal solutions. By considering the center
of the ellipsoid, a hyperplane is constructed so that all optimal solutions lie on
one side of the hyperplane (and the center either lies strictly on the other side
(a deep cut) or on the hyperplane itself (a central cut)). Then a new ellipsoid is
found which contains all points in the old ellipsoid and on the correct side of the
hyperplane. The new constructed ellipsoid contains the optimal solution set, and
undergoes a guaranteed reduction in volume, so that the solution set is squeezed
more tightly at each iteration [104].

For an LO problem with n inequalities and integral data with total bit length
L, the ellipsoid method generates an approximate solution from which an exact
solution can easily be obtained in O(n2L) iterations, requiring O(n4L) arithmetic
operations on numbers with O(L) digits.2 This gives a polynomial bound, and
thus Khachiyan was the first to show that LO is in the class P of polynomial-time
solvable problems.

Based on the expectation that a polynomial LO algorithm would be faster than
the simplex method, the ellipsoid method was studied intensively by theoreticians
as well as practitioners. It was a great disappointment that the number of steps
required for the ellipsoid method to terminate is typically very close to its worst-
case bound, so that despite a number of refinements the method is not competitive
for LO [10]. Thus, after the dust eventually settled, the prevalent view among LO
researchers was that Khachiyan had proved a genuinely polynomial LO algorithm,
but the simplex method remained the clear winner in practice.

1.1.3 Interior-point methods

The above irony, the fact that an algorithm with the desirable theoretical prop-
erty of polynomiality might nonetheless compare unfavorably with the (worst-case
exponential) simplex method, set the stage for exciting new developments. Kar-
markar’s projective method [49] is an important improvement on the theoretical
result of Khachiyan that an LO problem can be solved in polynomial time. It
sparks great interest and activity, which lead to the whole field of Interior-Point
Methods (IPMs).

The new ideas employed are very intriguing: at each iteration a projective
transformation is used to bring the current iterate into the center of the feasible
region, and a nonlinear potential function, invariant under such transformations,

2These bounds appear in Khachiyan [51]; his earlier extended abstract [50] gave a bound of
O(n5L) arithmetic operations on numbers with O(nL) digits.
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is used to measure progress. The idea of making a projective transformation is
to bring the current iterate to a point far from the constraints so that a steepest
descent step (on the transformed objective function or the potential function) will
give good decrease. Projective transformations are not used in IPMs nowadays.
However, the key concept of making a transformation or changing the metric so
that the current iterate is in some sense far from the boundary remains highly
valuable [104].

The complexity bound was only slightly better than that of the ellipsoid
method. For a problem with n inequalities and integer data of total bit length L,
the number of steps of the algorithm is O(nL), each step requires O(n2.5) arith-
metic operations, and each arithmetic operation requires a precision of O(L) bits.
So totally we need O(n3.5L) arithmetic operations on numbers with O(L) digits.

Besides having polynomial complexity, IPMs are also highly efficient in prac-
tice. Computational experience with sophisticated procedures suggests that the
number of iterations grows much more slowly than the dimension grows. After
an initial controversy it has been established that for very large, sparse prob-
lems, subsequent variants of Karmarkar’s method often outperform the simplex
method.

1.2 More about IPMs

Since the publication of the seminal paper of Karmarkar [49], IPMs have revolu-
tionized virtually every area of continuous optimization. Many new algorithms
were proposed and almost all of these algorithms have been shown to be effi-
cient, at least from a theoretical point of view. In this section, we recall some
possible links with earlier literature, their generalization to convex optimization,
and primal-dual IPMs for a subclass of convex optimization, namely Symmetric
Optimization (SO)3.

The aim of this section is to give some background of our research. For a
comprehensive treatment of IPMs, we refer to the books of Roos, Terlaky and Vial
[93], Vanderbei [108], Wright [112] and Ye [114] for LO; for convex optimization,
the seminal monograph of Nesterov and Nemirovski [81], the books of Ben-Tal and
Nemirovski [8], Nesterov [80], and Renegar [88]; for Semidefinite Optimization
(SDO), the handbook of Wolkowicz, Saigal, and Vandenberghe [110]; and for
general nonlinear optimization, the survey articles of Forsgren, Gill and Wright
[26] and Gould, Orban and Toint [34].

3Under mild assumptions, any optimization problem can be reformulated as a conic convex
optimization problem (which optimizes a linear objective function subject to linear constraints
and over a pointed, closed, convex cone). If in addition the associated cone is symmetric
(cf. Definition 4.19), we call it an SO problem.
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1.2.1 IPMs for LO

Shortly after the publication of Karmarkar’s projective algorithm for LO, some
possible links with earlier literature were found.

Gill, Murray, Saunders, Tomlin and Wright [32] noticed the close similarity
between the search directions in Karmarkar’s algorithm and in the logarithmic
barrier approach proposed by Frisch [29] and later extensively studied by Fiacco
and McCormick [25] in the context of nonlinear optimization. Indeed, the log-
arithmic barrier approach could also be proved to be polynomial. Renegar [87]
proposed an algorithm with O(

√
nL) iterations, an improvement over Karmarkar’s

algorithm. Renegar’s scheme was a clever implementation of Huard’s method of
centers [45, 46].

Moreover, it turns out that the IPM implemented by Karmarkar [3] (the
affine-scaling method), besides being discovered simultaneously by a number of re-
searchers in the mid 1980s [19], had in fact been proposed in 1967 [17] and analyzed
in 1974 [18] by Dikin. The polynomiality question for the (primal) affine-scaling
method is unsettled. Instead we have primal-dual variants of Dikin’s affine-scaling
method that are polynomial [48, 70]. We refer the reader to Tsuchiya [106] for a
survey.

Another very important concept in the IPM literature is the central path,
which was first recognized by Sonnevend [99] and Meggido [64]. Most polynomial-
time variants of IPMs use the central path as a guideline to the optimal set
and some variant of Newton’s method to follow the central path approximately.
Particularly, Megiddo [64] related the central path to the classical barrier path in
the framework of the primal-dual complementarity relationship. Kojima, Mizuno
and Yoshise [55] used this framework to describe a primal-dual interior-point
method that traces the central trajectory and has a worst time complexity of
O(nL) iterations. Monteiro and Adler [69] present a path following primal-dual
algorithm that requires O(

√
nL) iterations.

1.2.2 IPMs for convex optimization

Convex analysis, the mathematics of convex sets, functions, and optimization
problems, is a well developed subfield of mathematics [90]. The first formal argu-
ment that convex optimization problems are easier to solve than general nonlinear
optimization problems was made by Nemirovski and Yudin in their 1983 book [73].

In fact the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.

— Rockafellar, 1993, [91]

The IPM approach to LO has a natural generalization to the wider field of
convex (nonlinear) optimization. Nesterov and Nemirovski [81] are the first to
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point out that IPMs can solve many convex optimization problems. Specifi-
cally, it was proved that generic convex problems4, under some computability
and boundedness assumptions, are polynomially solvable. In contrast to this, no
efficient algorithms for typical generic non-convex problems are known, and there
are strong reasons to believe that no such algorithms exist (e.g., programs with
quadratic objective and constraints are not polynomially solvable unless P=NP
[74]).

The barrier function is a smooth convex function defined in the interior of the
set, tending to +∞ as the boundary is approached. It turned out that the key
property is that the barrier function should be self-concordant, i.e., its derivatives
satisfy certain Lipschitz continuity properties.

Nesterov and Nemirovski [81] also showed that, at least in principle, any con-
vex optimization problem could be provided with a self-concordant barrier. How-
ever, as the generated barrier could not be efficiently evaluated in general, this is
purely an existence result. So the class of optimization problems to which the gen-
eralized IPMs can be efficiently applied consists of those with a computationally
tractable self-concordant barrier. To contrast with the general case, Nesterov and
Nemirovski listed a considerable number of important problems where computa-
tionally tractable self-concordant barriers are available, and provided a calculus
for constructing such functions for more complicated sets [75]. A very significant
special case is that of the positive semidefinite cone, leading to SDO. Indepen-
dently, Alizadeh [4] developed an efficient IPM for SDO, with the motivation of
obtaining strong bounds for combinatorial optimization problems.

The theory of self-concordant barriers is limited to convex optimization. How-
ever, this limitation has become less burdensome as more and more scientific and
engineering problems have been shown to be amenable to convex optimization
formulations. A number of seemingly non-convex problems arising in engineering
design can be reformulated as convex optimization problems: see Ben-Tal and
Nemirovski [8] and Boyd and Vandenberghe [14].

1.2.3 Primal-dual IPMs for SO

Primal-dual path-following IPMs trace simultaneously the primal and dual central
paths. It turns out that tracing the paths together is much more advantageous
than tracing only one of them. As there are a lot of symmetries in SO, IPMs may
achieve maximal flexibility. Consequently, we may generalize primal-dual IPMs
for LO to SO.

In their seminal papers [77, 78], Nesterov and Todd provided a theoretical foun-
dation of efficient IPMs for convex optimization problems expressed in conic form,
when the cone and its associated barrier are self-scaled. The class of self-scaled
cones is defined by a set of properties owned by the associated self-concordant

4Theoretically, any optimization problem is equivalent to a convex problem. Make the ob-
jective function linear by adding a new variable if necessary and replace the feasible set by its
convex hull. Here, we exclude these theoretical cases.
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barriers. Prima-dual IPMs achieve their full power when the underlying cones
are self-scaled, which is the case in linear, second-order cone, and semidefinite
optimization.

Güler [38] observed that self-scaled cones are precisely symmetric cones, which
have been much studied and even characterized. See, for example, the compre-
hensive book of Faraut and Koranyi [20], where they stated that symmetric cones
coincide with cones of squares in Euclidean Jordan algebras. Hence, we may use
the well developed theory of Euclidean Jordan algebras to deal with SO.

Faybusovich is the first who has exploited the advantages given by the Jordan
algebraic setting in the study of SO. He started his in-depth research by a study
of non-degeneracy conditions for SO in [23]. Subsequently, he analyzed various
interior-point strategies for SO in [21, 22, 24], where Jordan algebras played a
crucial role. The ideas of Faybusovich have been followed by many optimizers.
For instance, Sturm presented the theoretical basis of his SeDuMi software in
terms of Jordan algebras [101]. Later, Schmieta and Alizadeh [94, 95], Hauser
and Lim [42] and Rangarajan [86] used this setting in further studies of IPMs for
SO.

1.2.4 Feasible or infeasible IPMs

IPMs are iterative algorithms. To initialize the algorithm a starting point is
needed. According to the choice of the starting point, one may distinguish between
feasible IPMs and infeasible IPMs (IIPMs).

Feasible IPMs start with a strictly feasible point5 and maintain strict feasi-
bility during the solution process. An elegant and theoretically sound method
to find a strictly feasible starting point is to use a self-dual embedding model,
by introducing artificial variables. The idea of self-dual embedding for LO dates
back to the 1950’s and the work of Goldman and Tucker [33]. With the arrival
of IPMs, the embedding idea was revived by Ye, Todd, and Mizuno [115]. Sub-
sequent references are [16, 59, 93]. Some well-known software packages are based
on this approach; for example, MOSEK6 [6] and SeDuMi7 [100] are based on the
use of the self-dual embedding model. Also, the leading commercial LO pack-
age CPLEX8 includes the self-dual embedding as a possible option. Despite the
desirable theoretical properties, the self-dual embedding model adds two dense
columns and rows in the coefficient matrix, which may need some special tricks
to handle [93, Chapter 20].

Most of the existing software packages use IIPMs. IIPMs deal in a more
straightforward way with the situation where no feasible starting point is available.
For LO, IIPM starts with an arbitrary positive but infeasible starting point, and

5A strictly feasible point is also called an interior point. For LO, it is defined as a point that
satisfies all constraints and, in particular, strictly satisfies all inequality constraints.

6MOSEK is available from http://www.mosek.com/.
7SeDuMi is available from http://sedumi.ie.lehigh.edu/.
8CPLEX is available from http://cplex.com/.

http://www.mosek.com/
http://sedumi.ie.lehigh.edu/
http://cplex.com/
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seeks feasibility and optimality simultaneously. The first primal-dual IIPMs were
proposed by Lustig [60] and Tanabe [102]. Global convergence was shown by Ko-
jima, Megiddo, and Mizuno [54], whereas Zhang [117] proved an O(n2L) iteration
bound under the assumption that both primal and dual problems have feasible
points. Shortly after that, Mizuno [65] proved that a modification of the Kojima-
Meggido-Mizuno algorithm also has an O(n2L) iteration bound. Mizuno also con-
structed an IIPM that has O(nL) iteration bound by using the idea of the interior-
point predictor-corrector algorithm proposed by Mizuno, Todd and Ye [66]. An-
other O(nL) iteration bound predictor-corrector IIPM for LO was proposed by
Potra [85]. Other relevant references are [9, 11, 27, 56, 67, 79, 76, 84, 96, 105, 111].
A detailed discussion and analysis of IIPMs can be found in the book by Wright
[112] and, with less detail, in the books by Ye [114] and Vanderbei [108]. The
performance of existing IIPMs highly depends on the choice of the starting point,
which makes these methods less robust than the methods that use the self-dual
embedding technique.

1.3 Motivation and outline

This thesis mainly deals with the generalization to SO of a full-Newton step IIPM
for LO that was proposed by Roos [92] in 2006. The analysis of our algorithm
highly depends on the use of Euclidean Jordan algebras.

1.3.1 Motivation

In this subsection, we introduce the main idea underlying the full-step IIPMs
presented in this thesis.

In IIPMs, the iterates are not feasible, and apart from reaching optimality one
needs to strive for feasibility. This is reflected by the choice of the search direction
for classical IIPMs. In LO, normally, after a full step the new iterate satisfies the
feasibility constraints, except possibly the nonnegativity constraints. In fact, in
general, the new iterate will have negative components, and, to keep the iterate
positive, one is forced to take a damped step, for which the step size usually is
found by performing a line search.

Instead of reaching feasibility in one step, the last two decades have made it
very clear that to get a theoretically more efficient method one should be less
greedy and work with a search direction that moves the iterates only slowly in
the direction of feasibility and optimality. This is because the best complexity
results hold for methods that are much less greedy and that use full-Newton
steps. The reason is that only then one can take full advantage of the efficiency
of Newton’s method, which is the workhorse in all IPMs. Similarly, striving to
reach feasibility in one step might be too greedy and may deteriorate the overall
behavior of a method. One should better exercise a little patience and move slower
in the direction of feasibility. Therefore, in our approach the search directions are
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designed in such a way that a full-Newton step reduces the sizes of the residual
vectors with the same speed as the duality gap. The outcome of the analysis and
the subsequent numerical test in this thesis show that this is a sound strategy.

1.3.2 Outline

Based on the aforementioned motivation, Roos [92] designed the first primal-dual
IIPM with full-Newton steps for LO problems. The complexity of his algorithm
coincides with the best iteration bound for IIPM algorithms, namely,

O

(
n log

(x0)T s0,
∥∥b−Ax0

∥∥ ,
∥∥c−AT y0 − s0

∥∥
ε

)
.9

Here we consider LO problems in standard form (see Section 2.1), x0 > 0, y0 and
s0 > 0 denote the starting points, and b− Ax0 and c− AT y0 − s0 are the initial
primal and dual residue vectors, respectively, whereas ε is an upper bound for the
duality gap and the norms of residual vectors upon termination of the algorithm.

This thesis can basically be divided into two parts. The first part is based
on [35], where we give an improved variant of the full-Newton step IIPM for LO.
Then in the second part, which is based on [37], we generalize the improved IIPM
for LO to SO, using the well developed properties of Jordan algebras.

More in detail, the first part consists of two chapters. In Chapter 2, we
present some results of feasible IPMs for LO, as these will be used to analyze the
centering steps of our IIPM. The improved version of the full-Newton step IIPM
for LO is given in Chapter 3. As in Roos’s original IIPM, every main step of
our improved full-Newton step IIPM consists of one feasibility step and several
centering steps. We use a more natural feasibility step, which targets at the µ+-
center of the new perturbed problems. For the centering steps, we apply a sharper
quadratic convergence result, which results in a slightly wider neighborhood for
the feasibility steps.

The second part of the thesis starts from Chapter 4, where we recall the main
properties of Jordan algebras, as well as their connection to symmetric cones.
In addition, we derive more properties which are needed in our generalization.
Based on the results of Jordan algebras, we give a full Nesterov-Todd step (NT-
step) feasible IPM for SO in Chapter 5. As for the linear case, this is needed
in analyzing the centering steps of the IIPM for SO. Our main result follows in
Chapter 6, where we generalize the improved full-Newton step (which can also
be viewed as NT-step) IIPM for LO to full NT-step IIPM for SO. Moreover, to
improve the practical efficiency, we propose a more aggressive adaptive updating
strategy, and numerical tests are given in Chapter 7.

Finally, Chapter 8 offers some concluding remarks and topics for further re-
search, and as a supplement, in the appendix, we give a counter example to the

9If the norm is not further specified, ‖·‖ will always refer to the Euclidean norm or 2-norm.
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conjecture in [92]. Though our simplified analysis of IIPM for LO does not de-
pend directly on the conjecture anymore, it does indicate that one of our main
inequalities for the analysis of the IIPM for LO is tight in the order.



Chapter 2

A Feasible IPM for LO

In preparation for dealing with our IIPM for LO, in this chapter we briefly recall
the classical way to obtain a polynomial-time primal-dual path-following feasible
IPM for LO. We refer to [93, 114] for more details.

2.1 LO problem in standard form

We consider the LO problem in the standard form

min
{
cT x : Ax = b, x ≥ 0

}
, (P)

where A ∈ Rm×n, c, x ∈ Rn, and b ∈ Rm. Without loss of generality we assume
that A has full row rank m.

The problem (P) has the following dual problem:

max
{
bT y : AT y + s = c, s ≥ 0

}
, (D)

where s ∈ Rn and y ∈ Rm. We call (D) the standard dual problem.
The feasible regions of (P) and (D) are denoted by P and D, respectively:

P := {x : Ax = b, x ≥ 0} ,

D :=
{
(y, s) : AT y + s = c, s ≥ 0

}
.

If P is empty we call (P) infeasible, otherwise feasible. Assume (P) is feasible,
then if the objective value cT x is unbounded below on P, (P) is called unbounded,
otherwise bounded. We use similar terminology for the dual problem (D).

Since we assumed that A has full (row) rank m, we have one-to-one correspon-
dence between y and s in the pairs (y, s) ∈ D. In order to facilitate the discussion
we feel free to refer to any pair (y, s) ∈ D either by y ∈ D or s ∈ D. The (relative)

11
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interiors of P and D are denoted by intP and intD:

intP := {x : Ax = b, x > 0} ,

intD :=
{
(y, s) : AT y + s = c, s > 0

}
.

In addition, we say that (P) and (D) satisfy the Interior-Point Condition (IPC)
if both intP and intD are nonempty.

2.2 Duality results

In this section, we recall the well known duality results for LO problem in standard
form.

Proposition 2.1 (Weak duality, cf. [93, Proposition II.1]). Let x and s be feasible
for (P) and (D), respectively. Then cT x− bT y = xT s ≥ 0. Consequently, cT x is
an upper bound for the optimal value of (D), if it exists, and bT y is a lower bound
for the optimal value of (P), if it exists. Moreover, if the duality gap xT s is zero
then x is an optimal solution of (P) and (y, s) is an optimal solution of (D).

A direct consequence of Proposition 2.1 is that if one of the problems (P) and
(D) is unbounded, then the other problem is infeasible. The classical duality re-
sults for the primal and dual problems in standard form boil down to the following
two results.

Theorem 2.2 (Strong Duality, cf. [93, Theorem II.2]). If (P) and (D) are feasible
then both problems have optimal solutions. Then, if x ∈ P and (y, s) ∈ D, these
are optimal solutions if and only if xT s = 0. Otherwise neither of the two problems
has optimal solutions: either both (P) and (D) are infeasible or one of the two
problems is infeasible and the other one is unbounded.

Theorem 2.3 (Goldman-Tucker Theorem, cf. [93, Proposition II.3]). If (P) and
(D) are feasible then there exists a strictly complementary pair of optimal solu-
tions, that is an optimal solution pair (x∗, s∗) satisfying x∗ + s∗ > 0.

2.3 The central path

The strong duality theorem (Theorem 2.2) indicates that finding an optimal so-
lution of (P) and (D) is equivalent to solving the following system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0.1
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In these so-called optimality conditions the first two constraints represent primal
and dual feasibility, whereas the last equation is the so-called complementarity
condition. The nonnegativity constraints in the feasibility conditions make the
problem already nontrivial: only iterative methods can find solutions of linear
systems involving inequality constraints. The complementarity condition is non-
linear, which makes it extra hard to solve this system.

To solve the above system, the simplest approach is to apply Newton’s method
directly, using a step length less than one if it is necessary to maintain positivity
of x and s. However, as x and s move too sharply toward the boundary, the
step length needs to be set to a small value. In path-following IPMs, a less
greedy approach is used to satisfy the complementarity condition. We replace the
complementarity condition by the so-called centering condition xs = µe, where µ
may be any positive number. This yields the system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = µe.

(2.1)

Surprisingly enough, if this system has a solution for some µ > 0, then a solution
exists for every µ > 0, and this solution is unique. This happens if and only if
(P) and (D) satisfy the IPC (cf. [93, Chapter 5]).

If the IPC is satisfied, then the solution of (2.1) is denoted by (x(µ), y(µ), s(µ))
and called the µ-center of (P) and (D). The set of all µ-centers forms a path, which
is called the central path. As µ goes to zero, x(µ) and (y(µ), s(µ)) converge to
optimal solutions of (P) and (D), respectively. Of course, system (2.1) is still
hard to solve, but by applying Newton’s method one can easily find approximate
solutions.

2.4 The Newton step

We proceed by describing Newton’s method for solving (2.1), with µ fixed. Given
any x and (y, s), we want to find displacements ∆x, ∆y, and ∆s such that

A(x + ∆x) = b,

AT (y + ∆y) + s + ∆s = c,

(x + ∆x)(s + ∆s) = µe.

Neglecting the quadratic term ∆x∆s in the left-hand side of the third equation,
we obtain the following linear system of equations in the search directions ∆x,

1For LO, we denote by 0 and e (used later) the zero and all-one vector, respectively, of
appropriate size. Moreover, if x, s ∈ Rn, then xs denotes the componentwise (or Hadamard)
product of the vectors x and s.
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∆y, and ∆s:
A∆x = b−Ax,

AT ∆y + ∆s = c−AT y − s,

s∆x + x∆s = µe− xs.

(2.2)

Since A has full row rank, and the vectors x and s are positive, one may easily
verify that the coefficient matrix in the linear system (2.2) is nonsingular. Hence
this system uniquely defines the search directions ∆x, ∆y, and ∆s. These search
directions are used in all existing primal-dual (feasible and infeasible) IPMs and
are equivalent to Newton’s method for solving the equations in system (2.1).

If x is primal feasible and (y, s) dual feasible, then it follows that b− Ax = 0
and c−AT y − s = 0, whence the above system reduces to

A∆x = 0,

AT ∆y + ∆s = 0,

s∆x + x∆s = µe− xs,

(2.3)

which gives the usual search directions for primal-dual feasible IPMs.
We use full-Newton steps, thus, the new iterate is given by

x+ = x + ∆x,

y+ = y + ∆y,

s+ = s + ∆s.

2.5 A full-Newton step feasible IPM algorithm

In the analysis of the algorithm, we need a quantity that measures proximity of
the feasible triple (x, y, s) to the current µ-center (x(µ), y(µ), s(µ)). Following
[93], this quantity is defined as follows:

δ(x, s;µ) := δ(v) :=
1
2

∥∥v − v−1
∥∥ , where v :=

√
xs

µ
.2 (2.4)

A graphical illustration of one iteration of the algorithm is given in Figure 2.1.
This figure depicts the xs-space projected onto its first two coordinates. In the
xs-space the cental path of the primal-dual pair of problems is a straight line
consisting of µe, for µ > 0. The small neighborhoods of µ and µ+-centers are
illustrated by shaded regions around the µ and µ+-centers, respectively. At every
iteration, we start from a point in the small neighborhood of the µ-center, and
by one full-Newton step (illustrated by dashed curve with arrow) we come to the
small neighborhood of the µ+-center.

2The short-hand notation in the definition of v means that v is the vector obtained by taking
square roots of the elements of the vector xs/µ.
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Figure 2.1: One iteration of the full-Newton step feasible IPM.

Assume that a primal feasible solution x0 > 0 and a dual feasible pair (y0, s0)
with s0 > 0 are given that are “close to” x(µ) and (y(µ), s(µ)), respectively, for
some µ = µ0. The primal-dual feasible IPM algorithm is given in Algorithm 2.1.

2.6 The analysis of the Newton step

An important observation on system (2.3) is that ∆x lies in the null space of A,
whereas ∆s belongs to the row space of A. This implies that ∆x and ∆s are
orthogonal, i.e., ∆xT ∆s = 0. As a consequence we have the important property
that after a full-Newton step the duality gap assumes the same value as at the
µ-centers, namely nµ.

Lemma 2.4 (cf. [93, Lemma II.47]). After a primal-dual Newton step, one has
(x+)T s+ = nµ.

It is crucial for us to know the effect on δ(x, s;µ) of a full-Newton step targeting
at the µ-center of (P ) and (D). For that purpose [93, Theorem II.50] was used in
[92]. This theorem states that if δ := δ(x, s;µ) ≤ 1, then the primal-dual Newton
step is feasible, i.e., x+ and s+ are nonnegative, and, moreover, if δ < 1, then x+

and s+ are positive and

δ(x+, s+;µ) ≤ δ2√
2(1− δ2)

.



16 CHAPTER 2. A FEASIBLE IPM FOR LO

Algorithm 2.1 A full-Newton step feasible IPM for LO.

Input:
accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
strictly feasible triple (x0, y0, s0)
with (x0)T s0 = nµ0 and δ(x0, s0;µ0) ≤ 1/2.

Begin
x := x0; y := y0; s := s0; µ := µ0;
while xT s ≥ ε

µ-update:
µ := (1− θ)µ;

Newton step:
(x, y, s) := (x, y, s) + (∆x,∆y, ∆s).

endwhile
end

This result implies that the Newton process is locally quadratically convergent,
and has been crucial in the analysis in [92]. Here, we use a tighter upper bound
for δ(x+, s+;µ), which provides a slightly wider neighborhood for the feasibility
step of our IIPM. As the previous lemma, we recall it without proof.

Theorem 2.5 ([93, Theorem II.52]). If δ := δ(x, s;µ) < 1 then

δ(x+, s+;µ) ≤ δ2√
2(1− δ4)

.

As a result, the following corollary follows trivially.

Corollary 2.6. If δ := δ(x, s;µ) ≤ 1
4√2

, then δ(x+, s+;µ) ≤ δ2.

2.7 Iteration bound

The iteration bound depends on a lemma that quantifies the effect of the proximity
measure on an update of the barrier parameter to µ+ = (1− θ)µ.

Lemma 2.7 (cf. [93, Lemma II.54]). Let (x, s) be a positive primal-dual pair and
µ > 0 such that xT s = nµ. Moreover, let δ := δ(x, s;µ) and let µ+ = (1 − θ)µ.
Then

δ(x, s;µ+)2 = (1− θ)δ2 +
θ2n

4(1− θ)
.

For Algorithm 2.1, at the start of each iteration we have xT s = nµ and
δ(x, s;µ) ≤ 1/2. After the barrier parameter is updated to µ+ = (1 − θ)µ, with
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θ = 1/
√

2n, Lemma 2.7 yields that δ(x, s;µ+) ≤ 1/
√

2 (cf. the proof of [93,
Theorem II.53]). Then after the primal-dual Newton step to the µ+-center we
have, by Corollary 2.6, δ(x+, s+, µ+) ≤ 1/2. Also, due to Lemma 2.4, we have
(x+)T s+ = nµ+ = (1− θ)nµ.

As the duality gap is reduced by the factor (1 − θ), the total number of
iterations now easily follows from the following lemma.

Lemma 2.8 (cf. [93, Lemma I.36]). After at most⌈
1
θ

log
nµ0

ε

⌉
iterations we have nµ ≤ ε.

The above results are summarized in the next theorem which requires no
further proof.

Theorem 2.9 (cf. [93, Theorem II.53]). If θ = 1/
√

2n, then the algorithm requires
at most ⌈√

2n log
nµ0

ε

⌉
iterations. The output is a primal-dual pair (x, s) such that xT s ≤ ε.





Chapter 3

An Infeasible IPM for LO

In the case of an infeasible IPM for LO we call a triple (x, y, s) an ε-optimal
solution of (P) and (D) if the 2-norms of the residual vectors b−Ax and c−AT y−s
do not exceed ε, and also the duality gap satisfies xT s ≤ ε.

In this chapter, we present several improvements of the full-Newton step infea-
sible IPM for LO introduced by Roos [92]. Each main step of the method consists
of a feasibility step and several centering steps. We use a more natural feasibility
step, which targets at the µ+-center of the new perturbed problems. As for the
centering steps, we apply a sharper quadratic convergence result, which results in
a slightly wider neighborhood for the feasibility steps.

3.1 The perturbed problems

We assume that (P) and (D) have an optimal solution (x∗, y∗, s∗), which implies
that the duality gap vanishes, i.e., (x∗)T s∗ = 0. As has become usual for infeasible
IPMs, we start the algorithm with a triple (x0, y0, s0) and µ0 > 0 such that

x0 = ζe, y0 = 0, s0 = ζe, µ0 = ζ2, (3.1)

where ζ is a (positive) number such that

x∗ + s∗ ≤ ζe. (3.2)

The IIPM algorithm present in this chapter will generate an ε-optimal solution
of (P) and (D), or establish that there do not exist optimal solutions satisfying
(3.2). The initial values of the primal and dual residual vectors are denoted as r0

p

and r0
d, respectively. So we have

r0
p = b−Ax0,

r0
d = c−AT y0 − s0.

19
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In general, we have r0
p 6= 0 and r0

d 6= 0. In other words, the initial iterate is not
feasible. The iterates generated by the algorithm will (in general) be infeasible
for (P) and (D) as well, but they will be feasible for perturbed versions of (P) and
(D) that we introduce in the sequel.

For any ν with 0 < ν ≤ 1 we consider the perturbed problem (Pν), defined by

min
{(

c− νr0
d

)T
x : Ax = b− νr0

p, x ≥ 0
}

, (Pν)

and its dual problem (Dν), which is given by

max
{(

b− νr0
p

)T
y : AT y + s = c− νr0

d, s ≥ 0
}

. (Dν)

Note that if ν = 1, then x = x0 yields a strictly feasible solution of (Pν) and
(y, s) = (y0, s0) a strictly feasible solution of (Dν). We conclude that if ν = 1,
then (Pν) and (Dν) satisfy the IPC.

Theorem 3.1 ([114, Theorem 5.13]). The original problems, (P) and (D), are
feasible if and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν)
and (Dν) satisfy the IPC.

Proof. Suppose that (P) and (D) are feasible. Let x̄ be a feasible solution of (P)
and (ȳ, s̄) a feasible solution of (D). Then Ax̄ = b and AT ȳ + s̄ = c, with x̄ ≥ 0
and s̄ ≥ 0. Now let 0 < ν ≤ 1, and consider

x = (1− ν)x̄ + νx0,

y = (1− ν)ȳ + νy0,

s = (1− ν)s̄ + νs0.

One has

Ax = A((1− ν)x̄ + νx0) = (1− ν)Ax̄ + νAx0 = (1− ν)b + νAx0 = b− νr0
p,

showing that x is feasible for (Pν). Similarly, we have (y, s) is feasible for (Dν).
Since ν > 0, x and s are positive, thus proving that (Pν) and (Dν) satisfy the
IPC.

To prove the inverse implication, suppose (Pν) and (Dν) satisfy the IPC for
each ν satisfying 0 < ν ≤ 1. Obviously, then (Pν) and (Dν) are feasible for these
values of ν. Letting ν go to zero it follows that (P) and (D) are feasible.

It should be mentioned that this kind of perturbed problems have been studied
first in [67], and later also in [28].

In the sections to follow we assume that (P) and (D) are feasible. Only in
Section 3.6 will we discuss how our algorithm can be used to detect infeasibility
or unboundedness of (P) and (D). It may be worth noting that if x0 and (y0, s0)
are feasible for (P) and (D), then (Pν) ≡ (P) and (Dν) ≡ (D) for each ν ∈ (0, 1].
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3.2 The central path of the perturbed problems

Let (P) and (D) be feasible and 0 < ν ≤ 1. Then Theorem 3.1 implies that the
perturbed problems (Pν) and (Dν) satisfy the IPC, and hence their central paths
exist. This means that the system

Ax = b− νr0
p, x ≥ 0, (3.3)

AT y + s = c− νr0
d, s ≥ 0, (3.4)

xs = µe

has a unique solution for every µ > 0. This unique solution is denoted by
(x(µ, ν), y(µ, ν), s(µ, ν)), and is the µ-center of the perturbed problems (Pν) and
(Dν). In what follows the parameters µ and ν always satisfy the relation µ = νµ0.
Thus we may denote the µ-centers of the perturbed problems (Pν) and (Dν) sim-
ply as (x(ν), y(ν), s(ν)).

Note that since x0s0 = µ0e, x0 is the µ0-center of the perturbed problem (P1)
and (y0, s0) the µ0-center of (D1). In other words, (x(1), y(1), s(1)) =

(
x0, y0, s0

)
.

3.3 A full-Newton step infeasible IPM algorithm

We just established that if ν = 1 and µ = µ0, then x = x0 is the µ-center of the
perturbed problem (Pν) and (y, s) = (y0, s0) the µ-center of (Dν). This is our
initial iterate.

We measure proximity to the µ-center of the perturbed problems by the quan-
tity δ(x, s;µ) as defined in (2.4). Thus, initially we have δ(x, s;µ) = 0. In what
follows we assume that at the start of each iteration, just before the feasibility
step, δ(x, s;µ) is smaller than or equal to a (small) threshold value τ > 0. So this
is certainly true at the start of the first iteration.

Now we describe one (main) iteration of our algorithm. Suppose that for
some µ ∈ (0, µ0] we have (x, y, s) satisfying the feasibility conditions (3.3) and
(3.4) with ν = µ/µ0, and such that xT s = nµ and δ(x, s;µ) ≤ τ . We reduce µ to
µ+ = (1−θ)µ, and accordingly ν to ν+ = (1−θ)ν = µ+/µ0 with θ ∈ (0, 1). Next,
we find a new iterate (x+, y+, s+) that satisfies (3.3) and (3.4) with ν replaced by
ν+, and such that (x+)T s+ = nµ+ and δ(x+, s+;µ+) ≤ τ .

To be more precise, this is achieved as follows. Each main iteration consists
of a feasibility step and a few centering steps. The feasibility step serves to get
an iterate (xf , yf , sf ) that is strictly feasible for (Pν+) and (Dν+) and is close
to their µ+-center (x(ν+), y(ν+), s(ν+)). In fact, the feasibility step is designed
in such a way that δ(xf , sf ;µ+) ≤ 1/ 4

√
2, i.e., (xf , yf , sf ) lies in the quadratic

convergence neighborhood with respect to the µ+-center of (Pν+) and (Dν+). We
then can easily get an iterate (x+, y+, s+) that is strictly feasible for (Pν+) and
(Dν+) and such that (x+)T s+ = nµ+ and δ(x+, s+;µ+) ≤ τ , just by performing
a few centering steps starting from (xf , yf , sf ) and targeting at the µ+-center of
(Pν+) and (Dν+).
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A graphical illustration of one main iteration of the algorithm is given in
Figure 3.1. Again, the figure is drawn in the xs-space projected onto its first
two coordinates. Hence, the central paths of the perturbed problems are straight
lines. We start with z0, which is feasible and close to the µ-center of the perturbed
problem pair (Pν) and (Dν). After the feasibility step, the iterate is feasible for
the new perturbed problem pair (Pν+) and (Dν+). In addition, this iterate lies in
the quadratic convergence neighborhood with respect to the µ+-center of the new
perturbed problem pair (the region shaded with light gray). Then we perform
several centering steps, which bring our iterate close enough to the µ+-center of
the new perturbed problem pair.
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Figure 3.1: One main iteration of the full-Newton step infeasible IPM.

A formal description of the algorithm is given in Algorithm 3.1. Recall that
after each iteration the residuals and the duality gap are reduced by the factor
(1− θ). The algorithm stops if the norms of the residuals and the duality gap are
less than the accuracy parameter ε.

3.4 Analysis of the feasibility step

In this section, we define and analyze the feasibility step. This is the most difficult
part of the analysis. In essence we follow the same chain of arguments as in [92],
but at several places the analysis is simpler, more precise, and also more elegant.
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Algorithm 3.1 A full-Newton step infeasible IPM for LO.

Input:
accuracy parameter ε > 0;
update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;
initialization parameter ζ > 0.

Begin
x := ζe; y := 0; s := ζe; µ := µ0 = ζ2; ν := 1;
while max(xT s, ‖b−Ax‖ ,

∥∥c−AT y − s
∥∥) ≥ ε

feasibility step:
(x, y, s) := (x, y, s) + (∆fx,∆fy, ∆fs);

update of µ and ν:
µ := (1− θ)µ; ν := (1− θ)ν;

centering steps:
while δ(x, s;µ) ≥ τ

(x, y, s) := (x, y, s) + (∆x,∆y, ∆s).
endwhile

endwhile
end

3.4.1 Definition

In this subsection, we describe the feasibility step in detail. The analysis will
follow in subsequent subsections. Suppose we have strictly feasible iterate (x, y, s)
for (Pν) and (Dν). This means that (x, y, s) satisfies (3.3) and (3.4), with ν =
µ/µ0. We need displacements ∆fx, ∆fy, and ∆fs such that

xf = x + ∆fx,

yf = y + ∆fy,

sf = s + ∆fs,

are feasible for (Pν+) and (Dν+). One may easily verify that (xf , yf , sf ) satisfies
(3.3) and (3.4), with ν replaced by ν+ = (1− θ)ν, only if the first two equations
in the following system are satisfied.

A∆fx = θνr0
p, (3.5)

AT ∆fy + ∆fs = θνr0
d, (3.6)

s∆fx + x∆fs = (1− θ)µe− xs. (3.7)

The third equation is inspired by the third equation in system (2.3) that we used
to define search directions for the feasible IPM, except that we are now targeting
at the µ+-center of (Pν+) and (Dν+).
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Indeed, (3.7) is the linearization of xfsf = (1 − θ)µe. While in [92], the
linearization of xfsf = µe is used (targeting at the µ-center), and in [62], the
linearization of xfsf = xs (targeting at the old xs). As our aim is to calculate a
feasible solution to the problem pair (Pν+) and (Dν+), which should also lie in the
quadratic convergence neighborhood with respect to its µ+-center, the direction
used here (directly targeting at the µ+-center of (Pν+) and (Dν+)) is more natural
and intuitively better.

We conclude that after the feasibility step the iterate satisfies the affine equa-
tions (3.3) and (3.4), with ν = ν+. The hard part in the analysis will be to
guarantee that xf and sf are positive and satisfy δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

3.4.2 Feasibility

As we have established in Subsection 3.4.1, the feasibility step generates new
iterate (xf , yf , sf ) that satisfies the feasibility conditions for (Pν+) and (Dν+),
except possibly the nonnegativity constraints. This is handled in this subsection.

Define

df
x :=

v∆fx

x
, df

s :=
v∆fs

s
, (3.8)

where v is defined in (2.4). We have, using (3.7) and (3.8),

xfsf = xs + (s∆fx + x∆fs) + ∆fx∆fs

= (1− θ)µe + ∆fx∆fs

= µ
[
(1− θ)e + df

xdf
s

]
, (3.9)

where the last equality follows from xs = µv2.

Lemma 3.2 (cf. [93, Lemma II.46]). The iterate (xf , yf , sf ) is feasible if and
only if (1− θ)e + df

xdf
s ≥ 0 and strictly feasible if and only if (1− θ)e + df

xdf
s > 0.

Proof. The “only if” part of both statements in the lemma follows immediately
from (3.9). For the proof of the converse implication we introduce a step length
α ∈ [0, 1], and define

xα = x + α∆fx,

sα = s + α∆fs.

We then have x0 = x, x1 = xf and similarly s0 = s, s1 = sf . Hence, we have
x0s0 = xs > 0. The proof uses a continuity argument, namely that x1 and s1 are
nonnegative if xαsα is positive for all α in the open interval (0, 1). We write

xαsα = (x + α∆fx)(s + α∆fs) = xs + α(s∆fx + x∆fs) + α2∆fx∆fs.

Using (2.4), (3.7) and (3.8) we obtain

xαsα = xs + α[(1− θ)µe− xs] + α2∆fx∆fs

= µ[(1− α)v2 + α(1− θ)e + α2df
xdf

s ].
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Suppose (1− θ)e + df
xdf

s ≥ 0, i.e., df
xdf

s ≥ −(1− θ)e. Substitution gives

xαsα ≥ µ
[
(1− α)v2 + α(1− θ)e− α2(1− θ)e

]
= µ(1− α)

[
v2 + α(1− θ)e

]
.

Since v2 and e are positive it follows that xαsα > 0 for 0 ≤ α < 1. Hence, none
of the entries of xα and sα vanish for 0 ≤ α < 1. Since x0 and s0 are positive,
this implies that xα > 0 and sα > 0 for 0 ≤ α < 1. Therefore, by continuity, the
vectors x1 and s1 cannot have negative entries. This completes the proof of the
first statement in the lemma.

Assuming (1− θ)e + df
xdf

s > 0, we derive in the same way

xαsα > µ(1− α)
[
v2 + α(1− θ)e

]
.

This implies that x1s1 > 0. Hence, by continuity, x1 and s1 must be positive,
proving the second statement in the lemma.

3.4.3 Proximity

A crucial element in the analysis is to show that after the feasibility step we have

δ(xf , sf ;µ+) ≤ 1/
4
√

2,

i.e., the iterate (xf , yf , sf ) is within the neighborhood where the Newton process
targeting at the µ+-center of (Pν+) and (Dν+) is quadratically convergent.

We proceed by deriving an upper bound for δ(xf , sf ;µ+). According to defi-
nition (2.4) one has

δ(xf , sf ;µ+) =
1
2

∥∥∥vf − e

vf

∥∥∥ , where vf =

√
xfsf

µ+
.

In the sequel we denote δ(xf , sf ;µ+) also shortly by δ(vf ), and we have the
following result.

Lemma 3.3. If ‖df
xdf

s‖∞ < 1− θ, then

4δ(vf )2 ≤

∥∥∥df
xdf

s

1−θ

∥∥∥2

1−
∥∥∥df

xdf
s

1−θ

∥∥∥
∞

.

Proof. After division of both sides in (3.9) by µ+ we get

(vf )2 =
µ
[
(1− θ)e + df

xdf
s

]
µ+

= e +
df

xdf
s

1− θ
.
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Hence, we have

4δ(vf )2 =
n∑

i=1

(
(vf

i )2 + (vf
i )−2 − 2

)
=

n∑
i=1

1 +
df

xid
f
si

1− θ
+

1

1 + df
xid

f
si

1−θ

− 2


=

n∑
i=1

(
df

xid
f
si

1−θ

)2

1 + df
xid

f
si

1−θ

≤
n∑

i=1

(
df

xid
f
si

1−θ

)2

1−
∣∣∣df

xid
f
si

1−θ

∣∣∣ ≤
n∑

i=1

(
df

xid
f
si

1−θ

)2

1−
∥∥∥df

xdf
s

1−θ

∥∥∥
∞

=

∥∥∥df
xdf

s

1−θ

∥∥∥2

1−
∥∥∥df

xdf
s

1−θ

∥∥∥
∞

,

where the inequalities are due to
∥∥df

xdf
s

∥∥
∞ < 1− θ. This proves the lemma.

As we may easily verify that∥∥df
xdf

s

∥∥
∞ ≤

∥∥df
xdf

s

∥∥ ≤ ∥∥df
x

∥∥∥∥df
s

∥∥ ≤ 1
2

(∥∥df
x

∥∥2
+
∥∥df

s

∥∥2
)

, (3.10)

substitution into the inequality of Lemma 3.3 yields that

4δ(vf )2 ≤

∥∥∥df
xdf

s

1−θ

∥∥∥2

1−
∥∥∥df

xdf
s

1−θ

∥∥∥
∞

≤

1
4

(
‖df

x‖2
+‖df

s‖2

1−θ

)2

1− 1
2

‖df
x‖2

+‖df
s‖2

1−θ

. (3.11)

Thus, we have derived an upper bound for δ(vf ), but in terms of
∥∥df

x

∥∥2 +
∥∥df

s

∥∥2.
To proceed, we need an upper bound for

∥∥df
x

∥∥2 +
∥∥df

s

∥∥2.

3.4.4 Upper bound for
∥∥df

x

∥∥2
+
∥∥df

s

∥∥2

Obtaining an upper bound for
∥∥df

x

∥∥2 +
∥∥df

s

∥∥2 is the subject of this subsection. In
the sequel this will enable us to find a default value for the update parameter θ,
such that after the feasibility step the iterate (xf , yf , sf ) lies in the quadratic con-
vergence neighborhood with respect to the µ+-center of the perturbed problems
(Pν+) and (Dν+), namely δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

One may easily check that the system (3.5)–(3.7), which defines the search
directions ∆fx, ∆fy, and ∆fs, can be expressed in terms of the scaled search
directions df

x and df
s as follows:

Ādf
x = θνr0

p, (3.12)

ĀT ∆fy

µ
+ df

s = θνvs−1r0
d, (3.13)

df
x + df

s = (1− θ)v−1 − v, (3.14)
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where
Ā = AV −1X, V = diag(v), X = diag(x).

From the above definition of Ā we deduce that Ā =
√

µAD, where

D = diag
(

xv−1

√
µ

)
= diag

(√
x

s

)
= diag

(√
µ vs−1

)
.

For the moment, let us define

r̄p := θνr0
p, r̄d := θνr0

d, r̄ := (1− θ)v−1 − v. (3.15)

With ξ := −∆f y
µ we then have (by eliminating df

s from (3.12)–(3.14))

√
µADdf

x = r̄p, (3.16)
√

µDAT ξ + df
x = r̄ − 1

√
µ

Dr̄d. (3.17)

By multiplying both sides of (3.17) from the left with
√

µAD and using (3.16) it
follows that

µAD2AT ξ + r̄p =
√

µAD

(
r̄ − 1

√
µ

Dr̄d

)
.

Therefore,

ξ =
1
µ

(AD2AT )−1

[
√

µAD

(
r̄ − 1

√
µ

Dr̄d

)
− r̄p

]
.

Substitution into (3.17) gives

df
x = r̄ − 1

√
µ

Dr̄d −
1
√

µ
DAT (AD2AT )−1

[
√

µAD

(
r̄ − 1

√
µ

Dr̄d

)
− r̄p

]
=
[
I −DAT (AD2AT )−1AD

](
r̄ − 1

√
µ

Dr̄d

)
+

1
√

µ
DAT (AD2AT )−1r̄p.

To simplify notation we denote

P̄ = DAT (AD2AT )−1AD.

Note that P̄ is (the matrix of) the orthogonal projection to the row space of the
matrix AD. We now may write

df
x = [I − P̄ ]

(
r̄ − 1

√
µ

Dr̄d

)
+

1
√

µ
DAT (AD2AT )−1r̄p.

Let (x̄, ȳ, s̄) be such that Ax̄ = b and AT ȳ + s̄ = c. Then we may write

r̄p = θνr0
p = θν(b−Ax0) = θνA(x̄− x0),

r̄d = θνr0
d = θν(c−AT y0 − s0) = θν

(
AT (ȳ − y0) + s̄− s0

)
.
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Thus we obtain

df
x = [I − P̄ ]

(
r̄ − θν

√
µ

D
(
AT (ȳ − y0) + s̄− s0

))
+

θν
√

µ
P̄D−1(x̄− x0).

Since I − P̄ is the orthogonal projection to the null space of AD, we have

[I − P̄ ]DAT (ȳ − y0) = 0,

and the expression for df
x reduces to

df
x = [I − P̄ ]

(
r̄ − θν

√
µ

D
(
s̄− s0

))
+

θν
√

µ
P̄D−1(x̄− x0).

To proceed we further simplify the notation by defining

ux =
θν
√

µ
D−1(x̄− x0), us =

θν
√

µ
D(s̄− s0). (3.18)

Then we may write
df

x = [I − P̄ ](r̄ − us) + P̄ ux.

For df
s we obtain, by using (3.14) and the definition of r̄ in (3.15),

df
s = r̄ − df

x = r̄ − [I − P̄ ]r̄ + [I − P̄ ]us − P̄ ux = [I − P̄ ]us + P̄ (r̄ − ux).

We denote [I−P̄ ]r̄ = r̄1 and P̄ r̄ = r̄2, and use similar notations for the projections
of ux and us. Then from the above expressions for df

x and df
s we derive that

df
x = r̄1 − us

1 + ux
2 ,

df
s = us

1 + r̄2 − ux
2 .

Therefore, using orthogonality of the vectors with different subscripts, we may
write ∥∥df

x

∥∥2
+
∥∥df

s

∥∥2

= ‖r̄1 − us
1‖

2 + ‖ux
2‖

2 + ‖us
1‖

2 + ‖r̄2 − ux
2‖

2

= ‖r̄1‖2 + ‖us
1‖

2 − 2r̄T
1 us

1 + ‖ux
2‖

2 + ‖us
1‖

2 + ‖r̄2‖2 + ‖ux
2‖

2 − 2r̄T
2 ux

2

= ‖r̄‖2 + 2 ‖ux
2‖

2 + 2 ‖us
1‖

2 − 2r̄T
1 us

1 − 2r̄T
2 ux

2 .

Further by the Cauchy-Schwartz inequality and the properties of orthogonal pro-
jection, we obtain∥∥df

x

∥∥2
+
∥∥df

s

∥∥2 ≤ ‖r̄‖2 + 2 ‖ux
2‖

2 + 2 ‖us
1‖

2 + 2 ‖r̄1‖ ‖us
1‖+ 2 ‖r̄2‖ ‖ux

2‖
≤ ‖r̄‖2 + 2‖ux

2‖2 + 2‖us
1‖2 + ‖r̄1‖2 + ‖us

1‖2 + ‖r̄2‖2 + ‖ux
2‖2

≤ 2 ‖r̄‖2 + 3
(
‖ux‖2 + ‖us‖2

)
. (3.19)
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Since v and v−1 − v are orthogonal and ‖v‖2 = n, we have from (3.15) and the
definition of δ

‖r̄‖2 =
∥∥(1− θ)v−1 − v

∥∥2
=
∥∥(1− θ)(v−1 − v)− θv

∥∥2

= (1− θ)2
∥∥v−1 − v

∥∥2
+ θ2 ‖v‖2 = 4(1− θ)2δ2 + θ2n. (3.20)

Due to (3.18) we have

‖ux‖2 + ‖us‖2 =
θ2ν2

µ

(∥∥D−1(x̄− x0)
∥∥2

+
∥∥D(s̄− s0)

∥∥2
)

. (3.21)

Let (x∗, y∗, s∗) be an optimal solution satisfying (3.2). It follows that Ax∗ = b
and AT y∗ + s∗ = c. Therefore we may take x̄ = x∗, ȳ = y∗ and s̄ = s∗. Since
x∗ is feasible for (P) we have x∗ ≥ 0. Similarly we derive s∗ ≥ 0. Hence we have
0 ≤ x∗ ≤ x∗ + s∗ ≤ ζe, or equivalently 0 ≤ x̄ ≤ ζe. In the same way we derive
that 0 ≤ s̄ ≤ ζe. Moreover, we derive that

0 ≤ x0 − x̄ ≤ ζe, 0 ≤ s0 − s̄ ≤ ζe.

Thus, it follows that∥∥D−1(x̄− x0)
∥∥2

+
∥∥D(s̄− s0)

∥∥2

≤ ζ2
(∥∥D−1e

∥∥2
+ ‖De‖2

)
= ζ2eT

( s

x
+

x

s

)
= ζ2eT

(
x2 + s2

xs

)
≤

ζ2eT
(
x2 + s2

)
mini |xisi|

≤
ζ2
[
eT (x + s)

]2
µmini v2

i

. (3.22)

Summarizing, while using (3.19), (3.20), (3.21), (3.22) and µ = νζ2, we obtain

∥∥df
x

∥∥2
+
∥∥df

s

∥∥2 ≤ 8(1− θ)2δ2 + 2θ2n +
3θ2

[
eT (x + s)

]2
ζ2 mini v2

i

. (3.23)

To continue, we need an upper bound for eT (x+s) and a lower bound for mini vi,
which we derive in the next subsection.

3.4.5 Bounds for eT (x + s) and vi

Recall that x is feasible for (Pν) and (y, s) for (Dν) with xT s = nµ and, moreover,
δ(x, s;µ) ≤ τ , i.e., the iterate is close to the µ-center of (Pν) and (Dν). Based
on this information, we present the following two lemmas to estimate an upper
bound for eT (x + s) and a lower bound for mini vi.

Lemma 3.4. Let x and (y, s) be feasible for the perturbed problems (Pν) and
(Dν), respectively, with xT s = nµ, ζ as defined in (3.2), and (x0, y0, s0) as in
(3.1). We then have

eT (x + s) ≤ 2nζ.
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Proof. Let (x∗, y∗, s∗) be an optimal solution satisfying (3.2). Then from the
feasibility conditions (3.3) and (3.4) of the perturbed problems (Pν) and (Dν), it
is easily seen that

A
[
x− νx0 − (1− ν)x∗

]
= 0,

AT
[
y − νy0 − (1− ν)y∗

]
+
[
s− νs0 − (1− ν)s∗

]
= 0.

This implies that [x− νx0− (1− ν)x∗] and [s− νs0− (1− ν)s∗] belong to the null
space and row space of A, respectively. Thus,[

x− νx0 − (1− ν)x∗
]T [

s− νs0 − (1− ν)s∗
]

= 0.

By expanding the above equality and using the fact that (x∗)T
s∗ = 0, we obtain

ν
((

x0
)T

s +
(
s0
)T

x
)

= xT s + ν2
(
x0
)T

s0 − (1− ν)
(
xT s∗ + sT x∗

)
+ ν(1− ν)

((
x0
)T

s∗ +
(
s0
)T

x∗
)

. (3.24)

Since (x0, y0, s0) is as defined in (3.1), we have(
x0
)T

s +
(
s0
)T

x = ζeT (x + s),(
x0
)T

s0 = nζ2,(
x0
)T

s∗ +
(
s0
)T

x∗ = ζeT (x∗ + s∗).

Due to (3.2) we have eT (x∗ + s∗) ≤ nζ. Furthermore, xT s = nµ = νζ2n, and
xT s∗ + sT x∗ ≥ 0. Substitution of these relations into (3.24) gives

νζeT (x + s) ≤ νζ2n + nν2ζ2 + ν(1− ν)nζ2 = 2nνζ2.

This implies the lemma.

Lemma 3.5 (cf. [93, Theorem II.62]). Let ρ(δ) = δ +
√

1 + δ2. Then

1
ρ(δ)

≤ vi ≤ ρ(δ), 1 ≤ i ≤ n.

Substituting the results of the above two lemmas into (3.23), we obtain∥∥df
x

∥∥2
+
∥∥df

s

∥∥2 ≤ 8(1− θ)2δ2 + 2θ2n + 12θ2n2ρ(δ)2

≤ 8δ2 + 2θ2n + 12θ2n2ρ(δ)2. (3.25)

Remark 3.6. In [92], the bound for eT (x/s + s/x) is derived as follows:

eT
(x

s
+

s

x

)
≤ 2eT

(
x(ν)2

µ
+

s(ν)2

µ

)
=

4nζ2

µ
κ(ζ, ν)2 ≤ 4nζ2

µ
κ̄(ζ)2.1
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It was proved that κ̄(ζ) ≤
√

2n and conjectured, based on extensive numerical
tests, that κ̄(ζ) ≤ 1. As the complexity bound depends linearly on the parame-
ter κ̄(ζ), this would yield an O(

√
n log(n/ε)) iteration bound full-Newton step

infeasible IPM for LO. Unfortunately, the conjecture turns out to be not true. A
counter example is given in Appendix A. During the construction of the counter
example, we have a byproduct that eT (x(ν)2 + s(ν)2) is indeed in the order of
n2ζ2. Since x(ν) and s(ν) are special cases of our x and s, we may conclude that
our bound for eT (x2 + s2) derived here, namely,

eT (x2 + s2) ≤
[
eT (x + s)

]2 ≤ 4n2ζ2, 2

is tight in the order.

3.5 Choosing the update parameter θ

We want to choose θ, with 0 < θ < 1, as large as possible, and such that
(xf , yf , sf ) lies in the quadratic convergence neighborhood with respect to the
µ+-center of the perturbed problems (Pν+) and (Dν+), i.e., δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

Using (3.11), we derive this is the case when

1
4

(
‖df

x‖2
+‖df

s‖2

1−θ

)2

1− 1
2

‖df
x‖2

+‖df
s‖2

1−θ

≤ 2
√

2.

Considering ‖df
x‖2

+‖df
s‖2

1−θ as a single term, and by some elementary calculations,
we obtain that the above inequality is equivalent to∥∥df

x

∥∥2 +
∥∥df

s

∥∥2

1− θ
≤ 2

√
2
(√

1 +
√

2− 1
)
≈ 1.566. (3.26)

Note that by (3.10), this implies∥∥df
xdf

s

∥∥
∞ ≤ 1

2

(∥∥df
x

∥∥2
+
∥∥df

s

∥∥2
)
≤
√

2
(√

1 +
√

2− 1
)

(1− θ) ≈ 0.783(1− θ),

which, by Lemma 3.2, guarantees that the iterate (xf , yf , sf ) is strictly feasible.
The above inequality also implies that the condition for Lemma 3.3 holds.

Due to (3.25), the inequality (3.26) holds if

8δ2 + 2θ2n + 12θ2n2ρ(δ)2 ≤ 2
√

2
(√

1 +
√

2− 1
)

(1− θ).

1The definitions of κ(ζ, ν) and κ̄(ζ) can be found in Section A.1.
2The inequalities follow from (3.22) and Lemma 3.4.
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For the threshold parameter, we choose τ = 1/16.3 As already indicated, we have
δ ≤ τ . Obviously, the left-hand side of the above inequality is increasing in δ, due
to the definition ρ(δ) = δ +

√
1 + δ2. Using this fact one may easily verify that if

θ =
1
4n

, (3.27)

then the above inequality is satisfied, i.e., with θ as chosen above, the iterate
(xf , yf , sf ) is strictly feasible and satisfies δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

3.6 Iteration bound

In the previous sections we have found that if at the start of a main iteration the
iterate satisfies δ(x, s;µ) ≤ τ , with τ = 1/16, then after the feasibility step, with
θ as defined in (3.27), the iterate satisfies δ(xf , sf ;µ+) ≤ 1/ 4

√
2.

After the feasibility step we perform a few centering steps in order to get the
iterate (x+, y+, s+) which satisfies (x+)T s+ = nµ+ and δ(x+, s+;µ+) ≤ τ . By
using Corollary 2.6, the required number of centering steps can easily be obtained.
Indeed, assuming δ(xf , sf ;µ+) ≤ 1/ 4

√
2, after k centering steps we will have iterate

(x+, y+, s+) that is still feasible for (Pν+) and (Dν+) and satisfies

δ(x+, s+;µ+) ≤
(

1
4
√

2

)2k

.

From this one easily deduces that δ(x+, s+;µ+) ≤ τ will hold after at most

2 +
⌈
log2

(
log2

1
τ

)⌉
(3.28)

centering steps.
With τ = 1/16, we have that, after the feasibility step, at most

2 +
⌈
log2

(
log2

1
τ

)⌉
= 4

centering steps then suffice to get the iterate (x+, y+, s+) satisfy δ(x+, s+;µ+) ≤ τ
again. Thus, each main iteration consists of at most 5 inner iterations (one
feasibility step and at most 4 centering steps), in each of which we need to compute
a search direction (for either a feasibility step or a centering step).

It has become a custom to measure the complexity of an IPM by the required
number of inner iterations. In each main iteration both the duality gap and
the norms of the residual vectors are reduced by the factor (1 − θ). Hence,

3To make full use of the centering steps (choosing τ such that log2

�
log2

1
τ

�
in (3.28) is an

integer), τ may be chosen as 2(21), 2(22), 2(23), . . .. Among these values, we use τ = 1/16.
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using
(
x0
)T

s0 = nζ2, it follows from Lemma 2.8 that the total number of main
iterations is bounded above by

1
θ

log
max

{
nζ2,

∥∥r0
p

∥∥ ,
∥∥r0

d

∥∥}
ε

.

Taking the value of θ as in (3.27), the total number of inner iterations is bounded
above by

20n log
max

{
nζ2,

∥∥r0
p

∥∥ ,
∥∥r0

d

∥∥}
ε

.

Thus, we may state without further proof the main result of this chapter.

Theorem 3.7. If (P) and (D) are feasible and ζ > 0 is such that ‖x∗ + s∗‖∞ ≤ ζ
for some optimal solutions x∗ of (P) and (y∗, s∗) of (D), then after at most

20n log
max

{
nζ2,

∥∥r0
p

∥∥ ,
∥∥r0

d

∥∥}
ε

inner iterations the algorithm finds an ε-optimal solution of (P) and (D).

Note that this bound is slightly better than that in [92, Theorem 4.8].

Remark 3.8. The above iteration bound is derived under the assumption that
there exists some optimal solutions of (P) and (D) with ‖x∗ + s∗‖∞ ≤ ζ. One
might ask what happens if this condition is not satisfied. In that case, during the
course of the algorithm it may happen that after some main steps the proximity
measure δ (after the feasibility step) exceeds 1/ 4

√
2, because otherwise there is no

reason why the algorithm would not generate an ε-optimal solution. So if this
happens it tell us that the problems (P) and (D) do not have any optimal solution
that satisfies ‖x∗ + s∗‖∞ ≤ ζ. Recall that our starting point is defined in (3.1),
which depends on ζ. It may happen that the value of ζ has been chosen too small.
If it is the case one might run the algorithm once more with a larger ζ.





Chapter 4

Analysis of Symmetric
Cones

For LO, we have recalled a full-Newton step feasible IPM and derived an improved
full-Newton step infeasible IPM. In the following chapters, we generalize these
methods to the more general class of SO problems. In order to do this we need
to deal first with Jordan algebras.

Jordan algebras were initially created in quantum mechanics, and they turned
out to have a very large spectrum of applications. Indeed, some Jordan algebras
were proved more than a decade ago to be an indispensable tool in the unified
study of IPMs for SO [23].

As a preparation, this chapter offers an introduction to the theory of Jordan
algebras, Euclidean Jordan algebras and symmetric cones. The presentation is
mainly based on Faraut and Korányi [20]. After presenting the basic properties
of Jordan algebras and Euclidean Jordan algebras, we state a fundamental result,
due to M. Koecher and E.B. Vinberg, namely that the cone of squares in a Euclid-
ean Jordan algebra is a symmetric cone, and every symmetric cone is obtained
in this way. Based on this, we derive some more properties of Euclidean Jordan
algebras and their associated symmetric cones, as needed for the optimization
techniques we present later. We restrict ourselves to finite-dimensional algebras
over the real field R. For omitted proofs and more details, we refer to the given
references and also to [7, 20, 47, 53, 63, 109].

4.1 Jordan algebras

In this section, we introduce Jordan algebras as well as some of their basic prop-
erties.

35
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4.1.1 Definition

Definition 4.1 (Bilinear map). Let J be a finite-dimensional vector space over
R. A map ◦ : J × J 7→ J is called bilinear if for all x, y, z ∈ J and α, β ∈ R:

(i) (αx + βy) ◦ z = α(x ◦ z) + β(y ◦ z);

(ii) x ◦ (αy + βz) = α(x ◦ y) + β(x ◦ z).

Definition 4.2 (R-algebra). A finite-dimensional vector space J over R is called
an algebra over R if a bilinear map from J × J into J is defined.

Definition 4.3 (Jordan algebra). Let J be a finite-dimensional R-algebra along
with a bilinear map ◦ : J ×J 7→ J . Then (J , ◦) is called a Jordan algebra if for
all x, y ∈ J the following holds:

(i) x ◦ y = y ◦ x (Commutativity);

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x (Jordan’s Axiom).

In the sequel, we always assume that (J , ◦) is a Jordan algebra, which we
simply denote as J . For an element x ∈ J , let L(x) : J 7→ J be the linear map
defined by

L(x)y := x ◦ y, for all y ∈ J .

Consequently, Jordan’s Axiom in Definition 4.3 means that the operators L(x)
and L(x2) commute.

We define xn (n ≥ 2) recursively by xn = x ◦ xn−1. An algebra is said to be
power associative if, for any x in the algebra, xm ◦ xn = xm+n. This means that
the subalgebra generated by x is associative. Jordan algebras are not necessarily
associative, but they are power associative [20, Proposition II.1.2].

4.1.2 Characteristic polynomial

Let J be a Jordan algebra over R. An element e ∈ J is said to be an identity
element if

e ◦ x = x ◦ e = x, for all x ∈ J .

Note that the identity element e is unique: if e1 and e2 are identity elements of
J , then e1 = e1 ◦ e2 = e2.

From now on, we always assume the existence of the identity element e. Let
R[X] denote the algebra over R of polynomials in one variable with coefficients
in R. For an element x in J we define

R[x] := {p(x) : p ∈ R[X]} .

Since J is a finite-dimensional vector space, for each x ∈ J , there exists a
positive integer k (bounded above by the dimension of J ) such that e, x, x2, . . . , xk



4.1. JORDAN ALGEBRAS 37

are linearly dependent. This implies the existence of a nonzero polynomial p ∈
R[X], such that p(x) = 0. If, in addition, this polynomial is monic (i.e., with
the leading coefficient equal to 1) and of minimal degree, we call it the minimal
polynomial of x.

The minimal polynomial of an element x ∈ J is unique. As if p1 and p2 are
two distinct minimal polynomials of x, their difference p1 − p2 vanishes in x as
well. Since p1 and p2 are monic and of the same degree, the degree of p1 − p2 is
smaller than that of p1 (and p2). This contradicts the minimality of the degree
of p1 (and p2).

We define the degree of an element x ∈ J , denoted as deg(x), as the degree of
the minimal polynomial of x. Obviously, this number is bounded by the dimension
of the vector space J . Moreover, we define the rank of J as

r := max {deg(x) : x ∈ J } ,

which is again bounded by the dimension of J . An element x ∈ J is called regular
if deg(x) = r. An important result concerning regular elements is contained in
the following proposition.

Proposition 4.4 (cf. [20, Proposition II.2.1]). The set of regular elements is
open and dense in J . There exist polynomials a1, a2, . . . , ar on J such that the
minimal polynomial of every regular element x is given by

f(λ;x) = λr − a1(x)λr−1 + a2(x)λr−2 + · · ·+ (−1)rar(x).

The polynomials a1, . . . , ar are unique and ai is homogeneous of degree i.

The polynomial f(λ;x) is called the characteristic polynomial of the regular
element x. Since the regular elements are dense in J , by continuity we may
extend the polynomials ai(x) and consequently the characteristic polynomial to
all elements of J . Note that the characteristic polynomial is a polynomial of
degree r in λ, where r is the rank of J . Moreover, the minimal polynomial
coincides with the characteristic polynomial for regular elements, but it divides
the characteristic polynomial of non-regular elements.

The coefficient a1(x) is called the trace of x, denoted as tr(x), and the coef-
ficient ar(x) is called the determinant of x, denoted as det(x). In the following
proposition, we recall an important property about the trace.

Proposition 4.5 (cf. [20, Proposition II.4.3]). The symmetric bilinear form tr(x◦
y) is associative, i.e.,

tr ((x ◦ y) ◦ z) = tr (x ◦ (y ◦ z)) , for all x, y, z ∈ J .

An element x is said to be invertible if there exists an element y in R[x] such
that x ◦ y = e. Since R[x] is associative, y is unique. It is called the inverse of x
and denoted by x−1. A relationship between x−1 and the inverse of L(x) is given
below.
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Proposition 4.6 (cf. [20, Proposition II.2.3]). If L(x) is invertible, then x is
invertible and x−1 = L(x)−1e.

Remark 4.7. The equality x◦y = e does not by itself imply that y is the inverse
of x, and the fact that x is invertible does not imply that L(x) is invertible, as can
be seen in the following example. Let S2 be the vector space of 2× 2 symmetric
matrices, and the binary operation ◦ defined by

X ◦ Y =
XY + Y X

2
.1

Since the usual product of matrices is associative, (S2, ◦) is a Jordan algebra, with
its identity element equals to the 2× 2 identity matrix. Let

X =
[
1 0
0 −1

]
, Y =

[
1 α
α −1

]
, Z =

[
0 α
α 0

]
, α ∈ R.

Then X is invertible and X−1 = X. We have X ◦ Y = e, but Y does not belong
to R[X] for α 6= 0. Also, L(X) is not invertible since L(X)Z = X ◦ Z = 0.

4.1.3 Quadratic representation

Let J be a finite-dimensional Jordan algebra over R with the identity element e.
For x ∈ J we define

P (x) = 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x). The map P (·) is called the quadratic representation of
J . Below we list several important properties of the quadratic representation.

Proposition 4.8 (cf. [20, Proposition II.3.1]). An element x ∈ J is invertible if
and only if P (x) is invertible. In this case,

P (x)x−1 = x,

P (x)−1 = P (x−1).

Proposition 4.9 (cf. [20, Proposition II.3.3]). One has:

(i) The differential of the map x 7→ x−1 is −P (x)−1.

(ii) If x and y are invertible, then P (x)y is invertible and

(P (x)y)−1 = P (x−1)y−1.

(iii) For any two elements x and y:

P (P (y)x) = P (y)P (x)P (y).

In particular, the equation in (iii) of the above proposition is known as the
fundamental formula (cf. [53, Chapter IV.1]).

1Normally, we use capitalized letters to denote matrices.
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4.1.4 Examples

To make our presentation more concrete, we examine the following two examples
of Jordan algebras.

Example 4.10 (The quadratic terms algebra Ln+1). The quadratic terms algebra,
or Jordan spin algebra, or spin factor is widely used in applications, ranging from
statistics to relativistic mechanics. In optimization, we utilize this algebra to deal
with second-order cone optimization. Let Ln+1 be the (n + 1)-dimensional real
vector space whose elements are indexed from zero. For simplicity, we denote
(x0;x1; . . . ;xn) ∈ Rn+1 as x = (x0; x̄) with x̄ := (x1; . . . ;xn) ∈ Rn.2 Define the
product as

x ◦ y := (xT y;x0ȳ + y0x̄).

It is easily verified that (Ln+1, ◦) is a Jordan algebra. The identity element is the
vector e = (1; 0; . . . ; 0). Every vector x satisfies the quadratic equation

x2 − 2x0x + (x2
0 − ‖x̄‖

2)e = 0.

Thus, the rank of the quadratic terms algebra Ln+1 is 2, independent of the
dimension of its underlying vector space. Each element x has two eigenvalues,
x0 ± ‖x̄‖. In addition, tr(x) = 2x0 and det(x) = x2

0 − ‖x̄‖
2. Except for multiples

of the identity element, every element has degree 2. From the definition of Jordan
multiplication, it is seen that

L(x) =
[
x0 x̄T

x̄ x0I

]
.3

Then, by definition, and after some elementary calculations, we easily get

P (x) = 2L(x)2 − L(x2) =
[

xT x 2x0x̄
T

2x0x̄ det(x)I + 2x̄x̄T

]
.

Example 4.11 (Jordan algebra of Sn). Let Sn be the matrix space of n × n real
symmetric matrices with the symmetrized multiplication defined as

X ◦ Y =
XY + Y X

2
.

Here, XY denotes the usual matrix product. Commutativity and Jordan’s Axiom
are readily seen to be satisfied by this new multiplication. Hence, (Sn, ◦) is a Jor-
dan algebra, and its identity element is the identity matrix I. Since X ◦X = XX,
we can easily conclude that the powers of X are equal wether we consider the Jor-
dan algebra (Sn, ◦) or the algebra of symmetric matrices with the usual product.

2We follow the convention of some high level programming languages, such as MATLAB,
and use “;” for adjoining vectors in a column.

3We use I to denote the identity matrix of appropriate size.
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Thus, the characteristic polynomials and consequently, eigenvalues, trace and de-
terminant coincide with the usual ones in symmetric matrices. Note that deg(X)
is the number of distinct eigenvalues of X and, thus, is at most n for an n × n
symmetric matrix. In other words the rank of the Jordan algebra (Sn, ◦) is n.
The “vec” operator concatenates the columns of a matrix (in the natural order)
into a vector. Applying it, we get

vec(X ◦ Y ) = vec
(

XY + Y X

2

)
=

1
2
(I ⊗X + X ⊗ I) vec(Y ),

where ⊗ denotes the Kronecker product4. Thus, for (Sn, ◦),

L(X) =
1
2
(I ⊗X + X ⊗ I).

By using the properties of the Kronecker product, it easily follows that

P (X) = X ⊗X.

By definition, we obtain
P (X)Y = XY X.

4.2 Euclidean Jordan algebras versus symmetric
cones

Euclidean Jordan algebras (also called formally real Jordan algebras, cf. [7] or [20,
Section III.1, Section VIII.4]) form a subclass of Jordan algebras. In this section,
we recall their basic properties as well as their relation with symmetric cones.

4.2.1 Euclidean Jordan algebras

We consider a finite-dimensional Jordan algebra J over R and assume the exis-
tence of the identity element e. The Jordan algebra J is said to be Euclidean if
there exists a positive definite symmetric bilinear form on J which is associative;
in other words, there exists an inner product denoted by 〈·, ·〉, such that

〈x ◦ y, z〉 = 〈x, y ◦ z〉, for all x, y, z ∈ J .

In the sequel, unless stated otherwise, we always assume that J is a Euclidean
Jordan algebra with the identity element e. An element c ∈ J is said to be an
idempotent if c2 = c. Two idempotents c1 and c2 are said to be orthogonal if
c1 ◦ c2 = 0. Since

〈c1, c2〉 = 〈c2
1, c2〉 = 〈c1, c1 ◦ c2〉,

4See [44, 61] for properties of the Kronecker product.



4.2. EUCLIDEAN JORDAN ALGEBRAS VERSUS SYMMETRIC CONES 41

orthogonal idempotents are orthogonal with respect to the inner product. More-
over, an idempotent is primitive if it is non-zero and cannot be written as the sum
of two (necessarily orthogonal) non-zero idempotents. We say that {c1, . . . , cr} is
a complete system of orthogonal primitive idempotents, or Jordan frame, if each
ci is a primitive idempotent and

ci ◦ cj = 0, i 6= j,
r∑

i=1

ci = e.

Jordan frames play a crucial role in characterizing the elements of Euclidean
Jordan algebras. The results are known as “spectral theorem”, which are listed
below. Note that in the case of real symmetric matrices, it specializes to the usual
spectral theorem (see Example 4.37).

Theorem 4.12 (Spectral theorem, first version, cf. [20, Theorem III.1.1]). For
x in J , there exist unique real numbers λ1, λ2, . . . , λk, all distinct, and a unique
complete system of orthogonal idempotents c1, c2, . . . , ck such that

x =
k∑

i=1

λici.

For each i = 1, . . . , k, we have ci ∈ R[x]. The numbers λi are said to be the
eigenvalues and

∑k
i=1 λici the spectral decomposition of x.

Now it is possible to extend the definition of any real valued, continuous uni-
variate function f(·) to elements of a Euclidean Jordan algebra, using eigenvalues:

f(x) := f(λ1)c1 + · · ·+ f(λk)ck.

Particularly, we have:

Inverse: x−1 := λ−1
1 c1+· · ·+λ−1

r ck, whenever all λi 6= 0 and undefined otherwise;

Square root: x1/2 := λ
1/2
1 c1 + · · · + λ

1/2
r ck, whenever all λi ≥ 0 and undefined

otherwise;

Square: x2 := λ2
1c1 + · · ·+ λ2

rck.

For each i = 1, . . . , k we have ci ∈ R[x]. Moreover

x−1 ◦ x = (λ−1
1 c1 + · · ·+ λ−1

k ck) ◦ (λ1c1 + · · ·+ λrck) = e.

Hence, the expression of x−1 defined here, using a spectral decomposition of x,
coincides with the algebraic definition of inverse in Subsection 4.1.2. In the same
way it follows that x1/2 ◦ x1/2 = x and x2 = x ◦ x.
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Theorem 4.13 (Spectral theorem, second version, cf. [20, Theorem III.1.2]).
Suppose J has rank r. Then for x in J there exist a Jordan frame c1, c2, . . . , cr

and real numbers λ1, λ2, . . . , λr such that

x =
r∑

i=1

λici.

The numbers λi (with their multiplicities) are uniquely determined by x. Further-
more,

tr(x) =
r∑
i

λi, det(x) =
r∏

i=1

λi.

More generally,
ak(x) =

∑
1≤i1<···<ik≤r

λi1 . . . λik
,

where ak(1 ≤ k ≤ r) is the polynomial defined in Proposition 4.4.

It follows that a Jordan frame always contains r primitive idempotents, where
r is the rank of J . In fact, the above λ1, . . . , λr, are exactly the roots of the
characteristic polynomial f(λ;x) (see Proposition 4.4). To express their depen-
dence on x, we denote them as λ1(x), . . . , λr(x), or simply as a vector λ(x) ∈ Rr.
We call them the eigenvalues (or spectral values) of x. Moreover, we denote the
largest eigenvalue of x as λmax(x), and analogously the smallest as λmin(x). Note
that since e has eigenvalue 1, with multiplicity r, it follows that tr(e) = r and
det(e) = 1.

Theorem 4.14 (cf. [20, Theorem III.1.5]). Let J be a Jordan algebra over R
with the identity element e. The following two properties are equivalent.

(i) J is a Euclidean Jordan algebra.

(ii) The symmetric bilinear form tr(x ◦ y) is positive definite.

The above theorem implies that if J is a Euclidean Jordan algebra, then
tr(x ◦ y) is an inner product. In the sequel, 〈x, y〉 will always denote this inner
product, and we refer to it as the trace inner product.

The norm induced by the above inner product is named as the Frobenius norm,
which is given by

‖x‖F :=
√
〈x, x〉 =

√
tr(x2).

In fact, the above norm can also be obtained via eigenvalues. By Theorem 4.13,
x ∈ J has a spectral decomposition x =

∑r
i=1 λi(x)ci, and x2 =

∑r
i=1 λ2

i (x)ci.
Hence

‖x‖F =
√
〈x, x〉 =

√
tr(x2) =

√√√√ r∑
i=1

λ2
i (x) = ‖λ(x)‖ .
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Moreover, the operators L(x) and P (x) are self-adjoint with respect to this inner
product (cf. Proposition 4.5 and the definition of the quadratic representation,
respectively).

4.2.2 Symmetric cones

In this subsection, we recall some definitions concerning symmetric cones.

Definition 4.15 (Convex set). A set K is convex if for any x, y ∈ K and any α
with 0 ≤ α ≤ 1, we have αx + (1− α)y ∈ K.

Definition 4.16 (Cone). A set K is called a cone if for every x ∈ K and α ≥ 0,
we have αx ∈ K.

Therefore, a set K is called a convex cone if it is convex and a cone, which
means that for any x, y ∈ K and α, β ≥ 0, we have αx + βy ∈ K.

Definition 4.17 (Dual cone). Let K ⊆ J be a cone. The set

K∗ := {y ∈ J : 〈x, y〉 ≥ 0, for all x ∈ K}

is called the dual cone of K.

As the name suggests, K∗ is a cone, and is always convex, even when the
original cone is not. If cone K and its dual K∗ coincide, we say that K is self-dual.
In particular, this implies that K has a nonempty interior and does not contain
any straight line (i.e., it is pointed).

Definition 4.18 (Homogeneity). The convex cone K is said to be homogeneous
if for every pair x, y ∈ intK, there exists an invertible linear operator g for which
gK = K and gx = y.

In fact, the above linear operator g is an automorphism of the cone K, i.e.,
g ∈ Aut(K), which is defined later in subsection 4.2.5.

Definition 4.19 (Symmetric cone). The convex cone K is said to be symmetric
if it is self-dual and homogeneous.

In [20] the self-dual cone and consequently the symmetric cone are defined
to be open. Here, we follow the definition used by the optimization community
(cf. e.g. [95, Definition 1], [14, Section 2.6]). This minor difference will not affect
the essence.

4.2.3 One-to-one correspondence

In this subsection, we recall a fundamental result which establishes the one-to-
one correspondence between (cones of squares of) Euclidean Jordan algebras and
symmetric cones.
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Let J be a Euclidean Jordan algebra. We define the cone of squares K(J ) of
J as

K(J ) :=
{
x2 : x ∈ J

}
.

The set K(J ) is a cone and therefore its dual K∗(J ) is a closed convex cone:

K∗(J ) =
{
y ∈ J : 〈y, x2〉 ≥ 0, for all x ∈ J

}
.

Since
〈y, x2〉 = 〈y ◦ x, x〉 = 〈L(y)x, x〉,

we have
K∗(J ) = {y ∈ J : L(y) is positive semidefinite} .

The following theorem brings together some major properties of the cone of
squares in a Euclidean Jordan algebra.

Theorem 4.20 (cf. [20, Theorem III.2.1, Proposition III.2.2]). Let J be a Euclid-
ean Jordan algebra, then K(J ) is a symmetric cone, and is the set of elements x
in J for which L(x) is positive semidefinite. Furthermore, if x is invertible, then

P (x) intK(J ) = intK(J ).

The above theorem indicates that the cone of squares in a Euclidean Jordan
algebra is a symmetric cone. Conversely, given any symmetric cone in a Euclidean
space, one may define a Euclidean Jordan algebra such that the given cone is its
cone of squares (cf. [20, Theorem III.3.1]). Therefore, we have the following Jordan
algebraic characterization of symmetric cones.

Theorem 4.21 (cf. [20, Section III.2–5]). A cone is symmetric if and only if it
is the cone of squares of some Euclidean Jordan algebra.

Because of the above one-to-one correspondence, the notions of cone of squares
in a Euclidean Jordan algebra and symmetric cone are equivalent. In the sequel,
K will always denote a symmetric cone, and J a Euclidean Jordan algebra for
which K is its cone of squares.

We associate with the proper cone5 K the partial order defined by

x �K y ⇔ x− y ∈ K.

We also write y �K x for x �K y. Similarly, we define an associated strict partial
order by

x �K y ⇔ x− y ∈ intK,

and write y ≺K x for x �K y.
The next proposition contains a result of crucial importance in the design of

IPMs within the framework of Jordan algebras.

Proposition 4.22 (cf. [23, Lemma 2.2]). Let x, s ∈ K. Then tr(x ◦ s) ≥ 0. We
have tr(x ◦ s) = 0 if and only if x ◦ s = 0.

5A cone is called a proper cone if it is pointed, closed, convex, and with nonempty interior.
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4.2.4 Simple Jordan algebras

Another consequence of the one-to-one correspondence between Euclidean Jordan
algebras and symmetric cones is the unique decomposition of every symmetric
cone into a direct product of irreducible ones. As usual, we start with some
definitions.

Definition 4.23 (Ideal). Let J be an R-algebra. An ideal I of J is a vector
subspace of J such that for every x ∈ I and every y ∈ J the elements x ◦ y and
y ◦ x belong to I.

Definition 4.24 (Simple algebra). An R-algebra J is simple if it contains only
two ideals, namely {0} and J (trivial ideals).

Proposition 4.25 (cf. [20, Proposition III.4.4]). If J is a Euclidean Jordan
algebra, then it is, in a unique way, a direct sum of simple ideals.

The previous proposition immediately implies that any Euclidean Jordan al-
gebra is, in a unique way, a direct sum of simple Euclidean Jordan algebras.

A symmetric cone K in a Euclidean space J is said to be irreducible if there do
not exist non-trivial subspaces J1, J2, and symmetric cones K1 ⊂ J1, K2 ⊂ J2,
such that J is the direct sum of J1 and J2, and K is the direct sum of K1 and
K2.

Proposition 4.26 (cf. [20, Proposition III.4.5]). Any symmetric cone K is, in a
unique way, the direct product of irreducible symmetric cones.

The following theorem states that there are only five kinds of simple Euclidean
Jordan algebras and correspondingly five kinds of irreducible symmetric cones.

Theorem 4.27 (cf. [20, Chapter V]). Let J be a simple Euclidean Jordan algebra.
Then J is isomorphic to one of the following algebras.

(i) The algebra in space Rn+1 with Jordan multiplication defined as

x ◦ y = (xT y;x0ȳ + y0x̄),

where x := (x0; x̄) and y := (y0; ȳ) with x0, y0 ∈ R and x̄, ȳ ∈ Rn.

(ii) The algebra of real symmetric matrices with Jordan multiplication defined
as

X ◦ Y = (XY + Y X)/2.

(iii) The algebra of complex Hermitian matrices with Jordan multiplication de-
fined as in (ii).

(iv) The algebra of quaternion Hermitian matrices, with Jordan multiplication
defined as in (ii).

(v) The algebra of 3×3 octonion Hermitian matrices with Jordan multiplication
defined as in (ii).
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4.2.5 Automorphisms

Let J be a Euclidean Jordan algebra and K its cone of squares (or equivalently
its associated symmetric cone). In this section, we recall definitions and some
properties concerning automorphisms of J and K.

We denote henceforth the set of all invertible linear maps from J into itself
by GL(J ).

Definition 4.28 (Automorphism of J ). A map g ∈ GL(J ) is called an auto-
morphism of J if for every x and y in J , we have g(x ◦ y) = g(x) ◦ g(y), or
equivalently, gL(x)g−1 = L(gx). The set of automorphisms of J is denoted as
Aut(J ).

Definition 4.29 (Automorphism of K). A map g ∈ GL(J ) is called an automor-
phism of K if gK = K. The set of automorphisms of K is denoted as Aut(K).

We say that a linear map is orthogonal if g∗ = g−1. The set of orthogonal
automorphisms of K is denoted as OAut(K), that is

OAut(K) =
{
g ∈ Aut(K) : g∗ = g−1

}
.

We would like to stress that Aut(J ) 6= Aut(K). For example, g = 2P (e) is in
Aut(K), but it does not satisfy g(x ◦ y) = gx ◦ gy.

Proposition 4.30 (cf. [20, Proposition II.4.2]). The trace and the determinant
are invariant under Aut(J ).

The next proposition establishes a connection between the automorphism
group of a Euclidean Jordan algebra and the orthogonal automorphism group
of its associated symmetric cone.

Proposition 4.31 (cf. [109, Theorem 2.8.4]). We have

Aut(J ) = OAut(K).

Proposition 4.32 (cf. [20, Proposition IV.2.5]). Let J be a simple Euclidean
Jordan algebra. If {c1, . . . , cr} and {d1, . . . , dr} are two Jordan frames, then there
exists an automorphism g in Aut(J ) such that

gci = di, for all 1 ≤ i ≤ r.

4.2.6 The Peirce decomposition

In this subsection we recall the Peirce decomposition, first with respect to a single
idempotent, and then with respect to a complete system of primitive idempotents,
or Jordan frame. Much of this could be done more generally, but we restrict
ourselves to the case of Euclidean Jordan algebras.
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Notice that for an idempotent c, since c2 = c, one can show that [20, Propo-
sition III.1.3]

2L(c)3 − 3L(c)2 + L(c) = 0.

Therefore, eigenvalues of L(c) are 0, 1/2 and 1. Furthermore, the eigenspace
corresponding to each eigenvalue of L(c) is the set of x such that L(c)x = ix or
equivalently c ◦ x = ix, for i = 0, 1/2, 1. Therefore,

Theorem 4.33 (Peirce decomposition, type I, cf. [20, Section IV.1]). Let J be
a Euclidean Jordan algebra and c an idempotent. Then J , as a vector space, can
be decomposed as

J = J0(c)⊕ J1/2(c)⊕ J1(c),

where
Ji(c) = {x : c ◦ x = ix} .

The subspaces J0(c) and J1(c) are subalgebras of J . They are orthogonal in the
sense that

J0(c) ◦ J1(c) = {0} .

Furthermore,

(J0(c)⊕ J1(c)) ◦ J1/2(c) ⊆ J1/2(c),
J1/2(c) ◦ J1/2(c) ⊆ J0(c)⊕ J1(c).

With respect to a Jordan frame, one can give a finer decomposition:

Theorem 4.34 (Peirce decomposition, type II, cf. [20, Theorem IV.2.1]). Let J
be a Euclidean Jordan algebra and {c1, . . . , cr} a Jordan frame. Then

(i) The space J decomposes in the following orthogonal direct sum:

J =
⊕
i≤j

Jij ,

where

Jii = Ji(ci) = Rci,

Jij = J1/2(ci) ∩ J1/2(cj), i 6= j.

(ii) If we denote by Pij the orthogonal projection onto Jij, then

Pii = P (ci),
Pij = 4L(ci)L(cj).

(iii) Furthermore,

Jij ◦ Jij ⊆ Jii + Jjj ,

Jij ◦ Jjk ⊆ Jik, if i 6= k,

Jij ◦ Jkl ⊆ {0} , if {i, j} ∩ {k, l} = ∅.
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As a consequence, we have

Corollary 4.35 (cf. [95, Lemma 12]). Lex x ∈ J and its spectral decomposition
x =

∑r
i=1 λici. Then the following statements hold.

(i) The matrices, L(x) and P (x) commute and thus share a common system of
eigenvectors; in fact the ci are among their common eigenvectors.

(ii) The eigenvalues of L(x) have the form

λi + λj

2
, 1 ≤ i ≤ j ≤ r.

(iii) The eigenvalues of P (x) have the form

λiλj , 1 ≤ i ≤ j ≤ r.

4.2.7 Examples continued

Given some associative inner product, the two Jordan algebra examples in Sub-
section 4.1.4 turn out to be Euclidean Jordan algebras. In this subsection, we
further investigate their cones of squares and spectral decompositions.

Example 4.36 (The quadratic terms algebra Ln+1). Consider the Jordan algebra
(Ln+1, ◦) defined in Example 4.10. We have that (Ln+1, ◦) is Euclidean Jordan
algebra with the associative inner product defined as

〈x, y〉 := tr(x ◦ y) = 2xT y.

It is straightforward to show that the cone of squares of Ln+1 is

Ln+1
+ =

{
x ∈ Rn+1 : x0 ≥ ‖x̄‖

}
,

which is known as the second-order cone, the Lorentz cone6, the quadratic cone,
or the ice-cream cone. Moreover, any x ∈ Ln+1, with x̄ 6= 0 (the spectral decom-
position is trivial for x̄ = 0), has the spectral decomposition

x = λ1c1 + λ2c2,

where λ1 = x0 − ‖x̄‖, λ2 = x0 + ‖x̄‖ are eigenvalues, and

c1 =
1
2

[
1

− x̄
‖x̄‖

]
, c2 =

1
2

[
1
x̄
‖x̄‖

]
.

6The cone is called after the Dutch physician Hendrik Antoon Lorentz who, together with
his student Pieter Zeeman received the Noble prize in 1902 for their work on the so-called
“‘Zeeman-effect”.
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Example 4.37 (Jordan algebra of Sn). Let (Sn, ◦) be the Jordan algebra defined
in Example 4.11. With the associative inner product defined as

〈X, Y 〉 := tr(X ◦ Y ) = tr(XY ),

(Sn, ◦) is a Euclidean Jordan algebra. A symmetric matrix is square of another
symmetric matrix if and only if it is positive semidefinite. Thus the cone of squares
of Sn is the cone of positive semidefinite matrices. Every symmetric matrix can
be diagonalized by an orthogonal matrix: X = QΛQT . This relation may be
written as

X = λ1q1q
T
1 + · · ·+ λnqnqT

n ,

where the λi are the eigenvalues of X and qi, the columns of Q, are their corre-
sponding eigenvectors. Since all qi form an orthonormal set, it follows that the
set of rank one matrices qiq

T
i form a Jordan frame:

(qiq
T
i )2 = qiq

T
i , (qiq

T
i )(qjq

T
j ) = 0 for i 6= j,

n∑
i=1

qiq
T
i = e.

This gives a spectral decomposition of X.

4.3 More algebraic properties

In this section we recall or derive some more properties of Euclidean Jordan
algebras and their associated symmetric cones. These results play a key role
in our analysis of optimization techniques for symmetric cones. Recall that we
always assume K is a symmetric cone (or equivalently the cone of squares of some
Euclidean Jordan algebra).

4.3.1 NT-scaling

When defining the search directions in our algorithms, we need a rescaling of the
space in which the symmetric cone lives. In this subsection, we show the existence
and uniqueness of the NT-scaling point w corresponding to any points x, s ∈ intK,
such that P (w) takes s into x. This was done by Nesterov and Todd for self-scaled
cones in [77, 78]. Later, Faybusovich [24] derived it in the framework of Euclidean
Jordan algebras.

As a preparation, we recall the following two propositions.

Proposition 4.38. If x ∈ K, then x1/2 is well defined and P (x1/2) = P (x)1/2.

Proof. Since x is in the cone of squares, all its eigenvalues are nonnegative. Hence,
x1/2 is well defined. By the definition of the quadratic representation, we have

P (x1/2)e =
(
2L(x1/2)2 − L(x)

)
e = x.
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Therefore, by the fundamental formula (cf. Proposition 4.9),

P (x) = P (P (x1/2)e) = P (x1/2)P (e)P (x1/2) = P (x1/2)2.

Moreover, since P (x1/2) is self-adjoint, P (x)1/2 = P (x1/2).

Proposition 4.39 (cf. [58, Lemma 2.3]). Given x, s ∈ intK with P (x) = P (s),
then x = s.

Proof. Since P (x) = P (s), we have

x2 = P (x)e = P (s)e = s2.

It follows that

0 = x2 − s2 = (x + s) ◦ (x− s) = L(x + s)(x− s).

Since x, s ∈ intK, it follows that x + s ∈ intK. The proposition follows from the
positive definiteness of L(x + s).

Proposition 4.40 (NT-scaling, cf. [24, Lemma 3.2]). Given x, s ∈ intK, there
exists a unique w ∈ intK such that

x = P (w)s.

Moreover,

w := P (x)1/2(P (x)1/2s)−1/2
[
= P (s)−1/2(P (s)1/2x)1/2

]
, (4.1)

and we call w the scaling point of x and s (in this order).

Proof. From Theorem 4.20, Proposition 4.9, and Proposition 4.38, it readily fol-
lows that

w = P (x)1/2(P (x)1/2s)−1/2 ∈ intK.

By Proposition 4.38 and the fundamental formula, we have

P (w) = P (x)1/2P ((P (x)1/2s)−1/2)P (x)1/2.

Hence

P (w)−1x = P (x)−1/2P ((P (x)1/2s)1/2)P (x)−1/2x

= P (x)−1/2P ((P (x)1/2s)1/2)e

= P (x)−1/2P (x)1/2s = s.

Conversely, assume x = P (w)s. Then by the fundamental formula,

P (x) = P (w)P (s)P (w).
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Therefore,[
P (x)1/2P (w−1)P (x)1/2

]2
= P (x)1/2P (w)−1P (x)P (w)−1P (x)1/2

= P (x)1/2P (s)P (x)1/2,

or equivalently, by taking square root at both sides,

P (P (x)1/2w−1) = P ((P (x)1/2s)1/2).

By Proposition 4.39,
P (x)1/2w−1 = (P (x)1/2s)1/2.

Then w = P (x)1/2(P (x)1/2s)−1/2 follows from part (ii) of Proposition 4.9. Hence
the uniqueness is proved.

For the proof of the second equality of (4.1), we have, by Proposition 4.39,
that this equality holds if

P (x)1/2P ((P (x)1/2s)−1/2)P (x)1/2 = P (s)−1/2P ((P (s)1/2x)1/2)P (s)−1/2

or equivalently,

P (s)1/2P (x)1/2P ((P (x)1/2s)−1/2)P (x)1/2P (s)1/2 = P ((P (s)1/2x)1/2).

Since both sides are positive definite, the above equation follows from[
P (s)1/2P (x)1/2P ((P (x)1/2s)−1/2)P (x)1/2P (s)1/2

]2
=
[
P ((P (s)1/2x)1/2)

]2
,

which holds trivially by the fundamental formula. The proof is complete.

Remark 4.41. In fact, the point w is exactly the geometric mean of x and s−1

[109, Section 5.4]. Hence the above results also follows from the properties of
geometric mean, which is studied in detail by Lim [58]. Moreover, the point w
coincides with the unique scaling point introduced by Nesterov and Todd [77, 78]
for self-scaled cones.

4.3.2 Similarity

Recall that two matrices X and S are similar if they share the same set of eigen-
values; in this case, we write X ∼ S. Analogously, we say that two elements x and
s in J are similar, denoted as x ∼ s, if x and s share the same set of eigenvalues.
In what follows, we list some basic results regarding similarity. For more details
we refer to [95, 101, 109].

Proposition 4.42 ([95, Proposition 19]). Two elements x and s of a Euclidean
Jordan algebra are similar if and only if L(x) and L(s) are similar.
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Proposition 4.43 ([95, Corollary 20]). Let x and s be two elements in intK.
Then x and s are similar if and only if P (x) and P (s) are similar.

Proposition 4.44 ([95, Proposition 21]). Let x and s be two elements in intK,
then P (x)1/2s and P (s)1/2x are similar.

Following are two important generalizations. Because of their importance we
include the proofs, where we often use the fact that for any two positive definite
matrices X and S we have XS ∼ X1/2SX1/2.

Lemma 4.45 ([95, Proposition 21]). Let x, s, u ∈ intK. Defining x̃ = P (u)x and
s̃ = P (u−1)s, one has

P (x̃1/2)s̃ ∼ P (x1/2)s.

Proof. By the fundamental formula,

P (P (x̃1/2)s̃) = P (x̃1/2)P (s̃)P (x̃1/2) ∼ P (x̃)P (s̃).

Similarly P (P (x1/2)s) ∼ P (x)P (s). Since both P (x̃1/2)s̃ and P (x1/2)s lie in
intK (cf. Theorem 4.20), by Proposition 4.43, it suffices to show that P (x̃)P (s̃) ∼
P (x)P (s). Using the fundamental formula again, we obtain

P (x̃)P (s̃) = P (P (u)x)P (P (u−1)s)

= P (u)P (x)P (u)P (u−1)P (s)P (u−1)
∼ P (x)P (s).

Hence the proof is complete.

Lemma 4.46 (cf. [109, Proposition 3.2.4]). Let x, s ∈ intK, and w the scaling
point of x and s, then

(P (x1/2)s)1/2 ∼ P (w1/2)s.

Proof. From Theorem 4.20 and Proposition 4.38, it readily follows that

(P (x1/2)s)1/2 ∈ intK, P (w1/2)s ∈ intK.

Then Proposition 4.43 implies that the statement is equivalent to

P ((P (x1/2)s)1/2 ∼ P (P (w1/2)s).

Since we have, by the fundamental formula,

P (P (w1/2)s) = P (w)1/2P (s)P (w)1/2 ∼ P (w)P (s).

the statement is also equivalent to

P ((P (x1/2)s)1/2 ∼ P (w)P (s).
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From Proposition 4.40, we have that w = P (x1/2)(P (x1/2)s)−1/2. Then by the
fundamental formula and Proposition 4.38

P (w) = P (P (x1/2)(P (x1/2)s)−1/2) = P (x1/2)P (P (x1/2)s)−1/2P (x1/2).

Hence, by substitution and using the fundamental formula again, we derive

P (w)P (s) = P (x1/2)P (P (x1/2)s)−1/2P (x1/2)P (s)

∼ P (P (x1/2)s)−1/2P (x1/2)P (s)P (x1/2)

= P (P (x1/2)s)1/2.

The lemma follows.

4.3.3 Inequalities

To analyze our algorithms, we need some inequalities, which are presented in this
subsection.

Lemma 4.47. Let x ∈ K, then

tr(x2) ≤ tr(x)2.

Proof. Since x ∈ K, we have λ(x) ≥ 0. Therefore

tr(x2) =
r∑

i=1

λi(x)2 ≤

(
r∑

i=1

λi(x)

)2

= tr(x)2.

This proves the lemma.

Lemma 4.48. Let x ∈ J , then ∥∥x2
∥∥

F
≤ ‖x‖2F .

Proof. Using the definition of Frobenius norm, we have∥∥x2
∥∥2

F
= tr((x2)2) ≤ tr(x2)2 = (‖x‖2F )2,

where the inequality follows from Lemma 4.47. Since both
∥∥x2
∥∥

F
and ‖x‖F are

nonnegative, the lemma follows.

Lemma 4.49. Let J be a Euclidean Jordan algebra, and x, s ∈ J with 〈x, s〉 = 0.
Then one has

(i) − 1
4 ‖x + s‖2F e �K x ◦ s �K 1

4 ‖x + s‖2F e;

(ii) ‖x ◦ s‖F ≤ 1
2
√

2
‖x + s‖2F .
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Proof. We write

x ◦ s =
1
4
(
(x + s)2 − (x− s)2

)
.

Since (x + s)2 ∈ K, we have

x ◦ s +
1
4
(x− s)2 ∈ K.

Using
(x− s)2 �K λmax

(
(x− s)2

)
e �K ‖x− s‖2F e,

it follows that
x ◦ s +

1
4
‖x− s‖2F e ∈ K,

which means that − 1
4 ‖x− s‖2F e �K x ◦ s. In a similar way one derives that

x ◦ s �K 1
4 ‖x + s‖2F e. Since 〈x, s〉 = 0, it follows that ‖x− s‖F = ‖x + s‖F , and

hence, part (i) of the lemma follows.
For the proof of part (ii), we observe that

‖x ◦ s‖2F =
∥∥∥∥1

4
((x + s)2 − (x− s)2)

∥∥∥∥2

F

=
1
16

tr
(
((x + s)2 − (x− s)2)2

)
=

1
16
[
tr
(
(x + s)4

)
+ tr

(
(x− s)4

)
− 2 tr

(
(x + s)2 ◦ (x− s)2

)]
.

Since (x+ s)2 and (x− s)2 belong to K, the trace of their product is nonnegative.
Thus, we obtain

‖x ◦ s‖2F ≤ 1
16
[
tr
(
(x + s)4

)
+ tr

(
(x− s)4

)]
=

1
16

[∥∥(x + s)2
∥∥2

F
+
∥∥(x− s)2

∥∥2

F

]
.

Using Lemma 4.48 and ‖x + s‖F = ‖x− s‖F again, we get

‖x ◦ s‖2F ≤ 1
16

[
‖x + s‖4F + ‖x− s‖4F

]
=

1
8
‖x + s‖4F .

This implies part (ii) of the lemma. Hence, the proof of the lemma is complete.

Proposition 4.50 (cf. [23, Theorem 5.13]). Given x ∈ intK, we have

〈x, s〉 > 0, for all s ∈ K \ {0}.

Lemma 4.51. If x ◦ s ∈ intK, then det(x) 6= 0.

Proof. By Theorem 4.13, the element x can be write as

x =
r∑

i=1

λi(x)ci,
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where {c1, . . . , cr} is a Jordan frame. Suppose det(x) = 0, then there must exist
an integer k with 1 ≤ k ≤ r, such that λk(x) = 0. Since x ◦ s ∈ intK and
ck ∈ K \ {0}, by Proposition 4.50,

0 < 〈x ◦ s, ck〉 = 〈s, x ◦ ck〉 = 0.

This contradiction completes the proof.

Lemma 4.52 (Cauchy-Schwarz inequality). Let x, s ∈ J , then

〈x, s〉 ≤ ‖x‖F ‖s‖F .

Proof. As the inequality is trivially true in the case s = 0, we may assume 〈s, s〉
is nonzero. Let α ∈ R, then

0 ≤ ‖x− αs‖2F = 〈x− αs, x− αs〉 = 〈x, x〉 − 2α〈x, s〉+ α2〈s, s〉.

The above expression is valid for any α, which implies that discriminant is nega-
tive, i.e.,

4〈x, s〉2 − 4〈s, s〉〈x, x〉 ≤ 0,

and from this the lemma follows.

Lemma 4.53. Let x, s ∈ J , then

‖x ◦ s‖F ≤ 1
2

∥∥x2 + s2
∥∥

F
.

Proof. Since

x2 + s2 + 2x ◦ s = (x + s)2 ∈ K,

x2 + s2 − 2x ◦ s = (x− s)2 ∈ K,

we have
〈x2 + s2 + 2x ◦ s, x2 + s2 − 2x ◦ s〉 ≥ 0,

which is equivalent to

〈x2 + s2, x2 + s2〉 − 4〈x ◦ s, x ◦ s〉 ≥ 0,

or, equivalently, ∥∥x2 + s2
∥∥2

F
− 4 ‖x ◦ s‖2F ≥ 0.

This implies the lemma.

Lemma 4.54. Let x ∈ J and s ∈ K, then

λmin(x) tr(s) ≤ tr(x ◦ s) ≤ λmax(x) tr(s).
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Proof. For any x ∈ J we have λmax(x)e − x ∈ K. Furthermore, since s ∈ K, it
follows that

tr((λmax(x)e− x) ◦ s) ≥ 0.

Hence, the second inequality in the lemma follows by writing

tr(x ◦ s) ≤ tr(λmax(x)e ◦ s) = λmax(x) tr(s).

The proof of the first inequality goes in the similar way.

Lemma 4.55 (cf. [86, Lemma 2.9]). Given x ∈ intK, we have∥∥x− x−1
∥∥

F
≤
∥∥x2 − e

∥∥
F

λmin(x)
.

Proof. The assertion follows from∥∥x− x−1
∥∥

F
=
∥∥L(x−1)(x2 − e)

∥∥
F
≤
∥∥L(x−1)

∥∥
F

∥∥(x2 − e)
∥∥

F
,

where
∥∥L(x−1)

∥∥
F

is the operator norm induced by ‖·‖F . Since the ‖·‖F is the
norm induced by the inner product 〈·, ·〉, the operator norm coincides with the
spectral norm. Using Corollary 4.35, we have∥∥L(x−1)

∥∥ = λmax(L(x−1)) = λmax(x−1).

Hence, it follows that∥∥x− x−1
∥∥

F
= λmax(x−1)

∥∥(x2 − e)
∥∥

F
=

∥∥(x2 − e)
∥∥

F

λmin(x)
,

which proves the lemma.

Lemma 4.56 (cf. [95, Lemma 30]). Let x, s ∈ intK, then∥∥∥P (x)1/2s− e
∥∥∥

F
≤ ‖x ◦ s− e‖F .

Proof. By the definition of the Frobenius norm, we have∥∥∥P (x)1/2s− e
∥∥∥2

F
= 〈P (x)1/2s− e, P (x)1/2s− e〉

= 〈P (x)1/2s, P (x)1/2s〉 − 2〈P (x)1/2s, e〉+ 〈e, e〉
= 〈s, P (x)s〉 − 2〈x, s〉+ 〈e, e〉.

Analogously, we have

‖x ◦ s− e‖2F = 〈x ◦ s− e, x ◦ s− e〉 = 〈s, L(x)2s〉 − 2〈x, s〉+ 〈e, e〉.

Note that L(x)2 − P (x), by Corollary 4.35, has eigenvalues of the form(
λi + λj

2

)2

− λiλj =
(

λi − λj

2

)2

≥ 0.

Therefore L(x)2 � P (x). This implies the lemma.
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Next, we recall the Lyapunov lemma for Euclidean Jordan algebras.

Lemma 4.57 (Lyapunov lemma). Let x ∈ intK. Then

L(x)−1 intK ⊆ intK, L(x)−1K ⊆ K.

Sturm [101, Corollary 3], along with extensions to many properties of symmetric
matrices, provided a proof of the above lemma. Later, an alternative constructive
proof was given by Rangarajan [86, Lemma 2.12], and a different argument given
by Baes [7, Remakrk 2.8.9]. This lemma is needed for the proof of the next lemma.

Lemma 4.58 (cf. [101, Theorem 4]). Let x, s ∈ intK, then

λmin(P (x)1/2s) ≥ λmin(x ◦ s).

Proof. We have

L(x)(s− λmin(x ◦ s)x−1) = x ◦ s− λmin(x ◦ s)e ∈ K.

Pre-multiplying the above equality with L(x)−1, and using Lemma 4.57, it follows
that

s− λmin(x ◦ s)x−1 ∈ K.

If we pre-multiply this inclusion with P (x)1/2, we obtain

P (x)1/2s− λmin(x ◦ s)e ∈ K,

which shows that λmin(P (x)1/2s) ≥ λmin(x ◦ s).

An alternative proof for the above lemma can be found in [86, Lemma 3.5],
which also uses the Lyapunov lemma. In fact, analogously we have [95, Lemma 30]

λmax(P (x)1/2s) ≤ λmax(x ◦ s),

i.e., the eigenvalues of x ◦ s are more disperse than that of P (x)1/2s.





Chapter 5

A Feasible IPM for SO

In this chapter we present a full NT-step feasible IPM for SO and its analysis.
The quadratic convergence result in Theorem 5.6 unifies the analysis known for
LO (cf. [93, Theorem II.50]) and SDO (cf. [16, Lemma 7.4]). It will also be used
later on when dealing with a full NT-step infeasible IPM for SO, which is the
main purpose of this thesis.

5.1 The SO problem

During the last two decades, major developments in convex optimization were
focusing on Conic Optimization (CO), primarily, on LO, Second-Order Cone Op-
timization (SOCO), and SDO. The conic form reveals rich structure of these
problems. It allows to exploit this structure in order to solve the problems effi-
ciently.

In this section, we introduce the SO problems in conic form. This unifies the
representation for LO, SOCO and SDO. For more details, we refer to [74, 95].

Let J be a Euclidean Jordan algebra with rank r and cone of squares (i.e., its
associated symmetric cone) K. Consider the primal-dual pair of SO problems

min {〈c, x〉 : Ax = b, x ∈ K} (CP)

and
max

{
bT y : AT y + s = c, y ∈ Rm, s ∈ K

}
. (CD)

Here c and the rows of A lie in J , and b ∈ Rm. Without loss of generality we
assume that the rows of A are linearly independent. If ai is the i-th row of A,
then Ax = b means that

〈ai, x〉 = bi, for each i = 1, . . . ,m,

59
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while AT y + s = c means
m∑

i=1

yiai + s = c.

We say that x is in the null space of A if x ∈ J and Ax = 0, and s in the
row space of A (or column space of AT ), if s = AT y for some y ∈ Rm. Moreover,
we say that x and s are orthogonal with respect to the trace inner product if
tr(x ◦ s) = 0 (or equivalently 〈x, s〉 = 0). Note that if x is in the null space of A
and s in the row space of A, then

〈x, s〉 = 〈x,AT y〉 = (Ax)T y = 0,

i.e., they are orthogonal (with respect to the trace inner product).

5.2 Conic duality

We call (CP) feasible if there exists x ∈ K such that Ax = b, and strictly feasible,
if in addition, x ∈ intK. Similarly, we call (CD) feasible if there exists (y, s) ∈
Rm ×K such that AT y + s = c, and strictly feasible, if in addition s ∈ intK.

Let x and (y, s) be a primal-dual feasible pair, i.e., a pair comprised of feasible
solutions to (CP) and (CD). Then

〈c, x〉 − bT y = 〈AT y + s, x〉 − bT y = 〈x, s〉 ≥ 0,

where 〈x, s〉 is called the duality gap.

Theorem 5.1 ([8, Theorem 2.4.1]). If the primal problem (CP) is strictly feasi-
ble and below bounded, then the dual (CD) is solvable and the optimal values in
the problems coincide. Similarly, if the dual (CD) is strictly feasible and above
bounded, then the primal (CP) is solvable and the optimal values coincide. More-
over, if both of the problems (CP) and (CD) are strictly feasible, then both of them
are solvable, and the optimal values coincide.

5.3 The central path

In the sequel to the current section, we always assume that both (CP) and (CD)
satisfy the IPC, i.e., both (CP) and (CD) are strictly feasible. Then it follows
from Proposition 4.22 and Theorem 5.1 that finding an optimal solution of (CP)
and (CD) is equivalent to solving the following system (cf. [23, 95]).

Ax = b, x ∈ K,

AT y + s = c, s ∈ K,

x ◦ s = 0.

(5.1)
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The basic idea of primal-dual IPMs is to replace the third equation in (5.1), the
so-called complementarity condition for (CP) and (CD), by the parameterized
equation x ◦ s = µe, with µ > 0. Thus we consider the system

Ax = b, x ∈ K,

AT y + s = c, s ∈ K,

x ◦ s = µe.

(5.2)

For each µ > 0 the system (5.2) has a unique solution (x(µ), y(µ), s(µ)), and we
call x(µ) and (y(µ), s(µ)) the µ-centers of (CP) and (CD), respectively. The set
of µ-centers (with µ running through all positive real numbers) gives a homotopy
path, which is called the central path of (CP) and (CD). If µ → 0, then the limit
of the central path exists and since the limit points satisfy the complementarity
condition, the limit yields optimal solutions for (CP) and (CD) [23].

5.4 The NT-search direction

The natural way to define a search direction is to follow Newton’s approach and
to linearize the third equation in (5.2). This leads to the system

A∆x = 0,

AT ∆y + ∆s = 0,

x ◦∆s + s ◦∆x = µe− x ◦ s.

(5.3)

Due to the fact that x and s do not operator commute in general, i.e.,

L(x)L(s) 6= L(s)L(x),

the system (5.3) does not always have a unique solution. In particular, for SDO,
the system defines the AHO direction, which is not necessarily unique [23, 71]. It
is now well known that this difficulty can be solved by applying a scaling scheme
as follows [95]. Let u ∈ intK. Then we have

x ◦ s = µe ⇔ P (u)x ◦ P (u−1)s = µe.

Since x, s ∈ intK, this is an easy consequence of Proposition 4.9 (ii), as becomes
clear when using the fact that x ◦ s = µe holds if and only if x = µs−1. Now,
replacing the third equation in (5.3) by P (u)x◦P (u−1)s = µe, and then applying
Newton’s method, we obtain the system

A∆x = 0,

AT ∆y + ∆s = 0,

P (u)x ◦ P (u−1)∆s + P (u−1)s ◦ P (u)∆x = µe− P (u)x ◦ P (u−1)s.

(5.4)
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Some best-known choices of u for SDO are listed in the Table 5.1. In fact, these
scaling points are designed for, or can easily be generalized to SO. By choosing
u appropriately, namely, in a subclass of the Monteiro-Zhang family called the
commutative class [72, 95, 103, 118], system (5.4) can be used to define search
directions uniquely.

u Reference
I Alizadeh et al. [5]

X− 1
2 Kojima et al. [57], Monteiro [68]

S
1
2 Helmberg et al. [43], Kojima et al. [57], Monteiro [68]

W−1/2 1 Nesterov and Todd [77, 78]

Table 5.1: Choices of the scaling matrix for SDO.

Here we focus on the scaling point u = w−1/2, where w is the NT-scaling point
of x and s as defined in Subsection 4.3.1. For that case we define

v :=
P (w)−1/2x

√
µ

[
=

P (w)1/2s
√

µ

]
, (5.5)

and

dx :=
P (w)−1/2∆x

√
µ

, ds :=
P (w)1/2∆s

√
µ

. (5.6)

This enables us to rewrite the system (5.4) as follows:
√

µAP (w)1/2dx = 0, (5.7)(√
µAP (w)1/2

)T ∆y

µ
+ ds = 0, (5.8)

dx + ds = v−1 − v. (5.9)

It is easy to verify that the substitution of (5.5) and (5.6) into the first two
equations of (5.4) yields (5.7) and (5.8). It is less obvious that the third equation
in (5.4) yields (5.9). By substitution we get, after dividing both sides by µ,
v ◦ (dx + ds) = e − v2. This can be written as L(v)(dx + ds) = e − v2. After
multiplying both sides from the left with L(v)−1, while using L(v)−1e = v−1

and L(v)−1v2 = v, we obtain (5.9). It easily follows that the above system
has a unique solution. Since (5.7) requires that dx belongs to the null space
of
√

µAP (w)1/2, and (5.8) that ds belongs to the row space of
√

µAP (w)1/2, it
follows that system (5.7)–(5.9) determines dx and ds uniquely as the (mutually
orthogonal with respect to the trace inner product) components of the vector
v−1 − v in these two spaces. From (5.9) and the orthogonality of dx and ds we
obtain

‖dx‖2F + ‖ds‖2F = ‖dx + ds‖2F =
∥∥v−1 − v

∥∥2

F
. (5.10)

1W = X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2
�
= S−1/2(S1/2XS1/2)1/2S−1/2

�
.
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Therefore the displacements dx, ds (and since
√

µAP (w)1/2 has full row rank, also
∆y) are zero if and only if v−1 − v = 0. In this case it easily follows that v = e,
and this implies that x and (y, s) coincide with the respective µ-centers. To get
the search directions ∆x and ∆s in the original space we simply transform the
scaled search directions back to the x and s-space by using (5.6):

∆x =
√

µP (w)1/2dx,

∆s =
√

µP (w)−1/2ds.
(5.11)

Then the new iterate is obtained by taking a full NT-step, as follows:

x+ = x + ∆x,

y+ = y + ∆y,

z+ = z + ∆z.

(5.12)

5.5 Proximity measure

For the design and analysis of the algorithms, we need to measure the distance
of the iterate (x, y, s) to the current µ-center (x(µ), y(µ), s(µ)). The aim of this
section is to present such a measure and to show how it depends on the eigenvalues
of the vector v.

The proximity measure that we are going to use is defined as follows:

δ(x, s;µ) ≡ δ(v) :=
1
2

∥∥v − v−1
∥∥

F
, (5.13)

where v is defined in (5.5). Note that this proximity measure is a natural gener-
alization from the linear case (cf. (2.4)). It follows that

4δ2(v) =
∥∥v − v−1

∥∥2

F
= tr(v2) + tr(v−2)− 2 tr(e), (5.14)

which expresses δ2(v) in the eigenvalues of v2 and its inverse.

5.6 A full NT-step feasible IPM algorithm

The full NT-step feasible IPM algorithm is given in Algorithm 5.1. We show
below (cf. Lemma 5.4) that after a full NT-step the duality gap 〈x, s〉 gets its
target value µ tr(e). The algorithm stops when the duality gap that equals µ tr(e)
is less than ε.

5.7 The analysis of the NT-step

5.7.1 Feasibility

Our aim is to find a condition that guarantees feasibility of the iterate after a full
NT-step. As before, let x, s ∈ intK, µ > 0 and let w be the scaling point of x and
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Algorithm 5.1 A full NT-step feasible IPM for SO.

Input:
accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
strictly feasible triple (x0, y0, s0)
such that tr(x0 ◦ s0) = µ0 tr(e) and δ(x0, s0;µ0) ≤ 1/2.

Begin
x := x0; y := y0; s := s0; µ := µ0;
while tr(x ◦ s) ≥ ε

µ-update:
µ := (1− θ)µ;

NT-step:
(x, y, s) := (x, y, s) + (∆x, ∆y,∆s).

endwhile
end

s. Using (5.5), (5.6) and (5.12), we obtain

x+ = x + ∆x =
√

µP (w)1/2(v + dx),

s+ = s + ∆s =
√

µP (w)−1/2(v + ds).
(5.15)

Since P (w)1/2 and its inverse P (w)−1/2 are automorphisms of intK (cf. Theo-
rem 4.20), x+ and s+ will belong to intK if and only if v + dx and v + ds belong
to intK. For the proof of our main result in this subsection, which is Lemma 5.3,
we need the following lemma.

Lemma 5.2. If δ(v) ≤ 1 then e + dx ◦ ds ∈ K. Moreover, if δ(v) < 1 then
e + dx ◦ ds ∈ intK.

Proof. Since dx and ds are orthogonal with respect to the trace inner product,
Lemma 4.49 implies that the absolute values of the eigenvalues of dx ◦ ds do not
exceed 1

4 ‖dx + ds‖2F . In addition, it follows from (5.10) and (5.13) that

‖dx + ds‖2F =
∥∥v − v−1

∥∥2

F
= 4δ(v)2.

Hence, the absolute values of the eigenvalues of dx ◦ ds do not exceed δ(v)2. This
implies that 1− δ(v)2 is a lower bound for the eigenvalues of e + dx ◦ ds. Hence,
if δ(v) ≤ 1, then e + dx ◦ ds ∈ K and if δ(v) < 1, then e + dx ◦ ds ∈ intK. This
proves the lemma.

Lemma 5.3. The full NT-step is feasible if δ(v) ≤ 1 and strictly feasible if
δ(v) < 1.
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Proof. We introduce a step length α with 0 ≤ α ≤ 1, and define

vα
x = v + αdx,

vα
s = v + αds.

We then have v0
x = v, v1

x = v + dx, and similarly v0
s = v, v1

s = v + ds. It follows
from (5.9) that

vα
x ◦ vα

s = (v + αdx) ◦ (v + αds) = v2 + αv ◦ (dx + ds) + α2dx ◦ ds

= v2 + αv ◦ (v−1 − v) + α2dx ◦ ds = (1− α)v2 + αe + α2dx ◦ ds.

Since δ(v) ≤ 1, Lemma 5.2 implies that dx ◦ ds �K −e. Substitution gives

vα
x ◦ vα

s �K (1− α)v2 + αe− α2e = (1− α)(v2 + αe).

If 0 ≤ α < 1, the last vector belongs to intK, i.e., we have

vα
x ◦ vα

s �K 0, for α ∈ [0, 1).

By Lemma 4.51, det(vα
x ) and det(vα

s ) do not vanish for α ∈ [0, 1). Since

det(v0
x) = det(v0

s) = det(v) > 0,

by continuity, det(vα
x ) and det(vα

s ) stay positive for all α ∈ [0, 1). Moreover, by
Theorem 4.13, this implies that all the eigenvalues of vα

x and vα
s stay positive for

all α ∈ [0, 1). Again by continuity, we obtain that all the eigenvalues of v1
x and

v1
s are nonnegative. This proves that if δ(v) ≤ 1 then v + dx ∈ K and v + ds ∈ K.

For δ(v) < 1, we have by Lemma 5.2, dx ◦ ds �K −e and similar arguments
imply that det(vα

x ) and det(vα
s ) do not vanish for α ∈ [0, 1], whence v+dx ∈ intK

and v + ds ∈ intK. This proves the lemma.

Lemma 5.4. Let x, s ∈ intK and µ > 0, then 〈x+, s+〉 = µ tr(e).

Proof. Due to (5.15) we may write

〈x+, s+〉 = 〈√µP (w)1/2(v + dx),
√

µP (w)−1/2(v + ds)〉 = µ〈v + dx, v + ds〉.

Using (5.9) we obtain

〈v + dx, v + ds〉 = 〈v, v〉+ 〈v, dx + ds〉+ 〈dx, ds〉
= 〈v, v〉+ 〈v, v−1 − v〉+ 〈dx, ds〉
= tr(e) + 〈dx, ds〉.

Since dx and ds are orthogonal with respect to the trace inner product, the lemma
follows.
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5.7.2 Quadratic convergence

In this subsection we prove quadratic convergence to the target point (x(µ), s(µ))
when taking full NT-steps. According to (5.5), the v-vector after the step is given
by:

v+ :=
P (w+)−1/2x+

√
µ

[
=

P (w+)1/2s+

√
µ

]
, (5.16)

where w+ is the scaling point of x+ and s+.

Lemma 5.5 ([109, Proposition 5.9.3]). One has

v+ ∼
(
P (v + dx)1/2(v + ds)

)1/2

.

Proof. It readily follows from (5.16) and Lemma 4.46 that

√
µv+ = P (w+)1/2s+ ∼

(
P (x+)1/2s+

)1/2

.

Due to (5.15) and Lemma 4.45, we may write

P (x+)1/2s+ = µP
(
P (w)1/2(v + dx)

)1/2

P (w)−1/2(v + ds)

∼ µP (v + dx)1/2(v + ds).

From this the lemma follows.

Theorem 5.6. If δ := δ(v) < 1, then the full NT-step is strictly feasible and

δ(v+) ≤ δ2√
2(1− δ2)

.

Proof. Since δ := δ(v) < 1, from Lemma 5.3 and its proof, it follows that v + dx,
v +ds, and (v +dx) ◦ (v +ds) belong to the intK. Let us, for the moment, denote

u := P (v + dx)1/2(v + ds),
ū := (v + dx) ◦ (v + ds).

Then, it follows from Lemma 5.5 that v+ ∼ u1/2. Therefore

2δ(v+) =
∥∥v+ − (v+)−1

∥∥
F

=
∥∥∥u1/2 − u−1/2

∥∥∥
F

.

By applying Lemma 4.55, we obtain

2δ(v+) =
∥∥∥u1/2 − u−1/2

∥∥∥
F
≤

‖u− e‖F

λmin(u1/2)
=

‖u− e‖F

λmin(u)1/2
.
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In addition, we derive from Lemma 4.56 and Lemma 4.58 that

2δ(v+) ≤
‖u− e‖F

λmin(u)1/2
≤

‖ū− e‖F

λmin(ū)1/2
.

It follows from (5.9) that

ū = (v + dx) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds

= v2 + v ◦ (v−1 − v) + dx ◦ ds = e + dx ◦ ds,

and the substitution gives

2δ(v+) ≤
‖dx ◦ ds‖F

λmin(e + dx ◦ ds)1/2
=

‖dx ◦ ds‖F

[1 + λmin(dx ◦ ds)]1/2
.

Now we apply Lemma 4.49. Part (i) of this lemma implies that δ2 is a upper
bound for ‖λ(ds ◦ ds)‖∞, as we already established in the proof of Lemma 5.2.
Also using part (ii) of Lemma 4.49 we may now write

2δ(v+) ≤
‖dx ◦ ds‖F

[1 + λmin(dx ◦ ds)]1/2
≤

1
2
√

2
‖dx + ds‖2F√
1− δ2

=
√

2δ2

√
1− δ2

,

which implies the lemma.

As a result, the following corollary readily follows.

Corollary 5.7. If δ(v) ≤ 1/
√

2, then the full NT-step is strictly feasible and
δ(v+) ≤ δ(v)2.

5.8 Updating the barrier parameter µ

In this section we establish a simple relation between the values of our proximity
measure just before and after a µ-update.

Lemma 5.8. Let x, s ∈ intK, tr(x ◦ s) = µ tr(e), and δ := δ(x, s;µ). If µ+ =
(1− θ)µ for some 0 < θ < 1, then

δ(x, s;µ+)2 =
θ2 tr(e)
4(1− θ)

+ (1− θ)δ2.

Proof. When updating µ to µ+, the vector v is divided by the factor
√

1− θ.
Hence we may write

4δ(x, s;µ+)2 =
∥∥∥∥ v√

1− θ
−
√

1− θv−1

∥∥∥∥2

F

=
∥∥∥∥ θv√

1− θ
+
√

1− θ(v − v−1)
∥∥∥∥2

F

.
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We show below that the vectors v and v− v−1 are orthogonal with respect to the
trace inner product. From (5.5), it readily follows that µ tr(v2) = tr(x ◦ s), which
implies tr(v2) = tr(e). Hence, we have

tr(v ◦ (v − v−1)) = tr(v2 − e) = tr(v2)− tr(e) = 0.

Therefore, we may proceed as follows:

4δ(x, s;µ+)2 =
θ2

1− θ
‖v‖2F + (1− θ)

∥∥v − v−1
∥∥2

F
=

θ2

1− θ
tr(e) + 4(1− θ)δ2.

This implies the lemma.

5.9 Iteration bound

We conclude this chapter with an iteration bound for the Algorithm 5.1. The
arguments here generalize those in Section 2.7 for LO.

At the start of each iteration we have tr(x ◦ s) = µr (r = tr(e) is the rank of
the associated Euclidean Jordan algebra) and δ(x, s;µ) ≤ 1/2. After the barrier
parameter is updated to µ+ = (1− θ)µ, with θ = 1/

√
2r, Lemma 5.8 yields that

δ(x, s;µ+) ≤ 1/
√

2 (cf. the proof of [93, Theorem II.53]). Then, after the full NT-
step to the µ+-center we have, by Corollary 5.7, δ(x+, s+, µ+) ≤ 1/2. Moreover,
using Lemma 5.4, we have that the target value of the duality gap is attained,
i.e., tr(x+ ◦ s+) = µ+r = (1− θ)µr.

Since for each iteration the duality gap is reduced by the factor (1 − θ), the
total number of iterations now easily follows from Lemma 2.8 (we replace n by
r = tr(e)).

Theorem 5.9. If θ = 1/
√

2r, where r = tr(e) is the rank of the associated
Euclidean Jordan algebra, then the number of iterations of Algorithm 5.1 does not
exceed ⌈√

2r log
µ0r

ε

⌉
.



Chapter 6

An Infeasible IPM for SO

A triple (x, y, s) is called an ε-optimal solution of (CP) and (CD) if the norms of
the residual vectors b−Ax and c−AT y− s do not exceed ε, and also the duality
gap satisfies tr(x ◦ s) ≤ ε. In this chapter we present an infeasible-start algorithm
that generates an ε-optimal solution of (CP) and (CD), if it exists, or establish
that no such solution exists.

6.1 The perturbed problems

We assume (CP) and (CD) have an optimal solution (x∗, y∗, s∗) with vanishing
duality gap, i.e., tr(x∗ ◦ s∗) = 0. As it is common for infeasible IPMs we start the
algorithm with a triple (x0, y0, s0) and µ0 > 0 such that

x0 = ζe, y0 = 0, s0 = ζe, µ0 = ζ2, (6.1)

where ζ is a (positive) number such that

x∗ + s∗ �K ζe. (6.2)

The algorithm presented in this chapter will generate an ε-optimal solution of
(CP) and (CD), or establish that there do not exist optimal solutions with van-
ishing duality gap satisfying (6.2). The initial values of the primal and dual
residual vectors are denoted as r0

p and r0
d, respectively. So we have

r0
p = b−Ax0,

r0
d = c−AT y0 − s0.

In general, we have r0
p 6= 0 and r0

d 6= 0, i.e., the initial iterate is not feasible. The
iterates generated by the algorithm will (in general) be infeasible for (CP) and
(CD) as well, but they will be feasible for perturbed versions of (CP) and (CD)
that we introduce in the sequel.

69
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For any ν with 0 ≤ ν ≤ 1 we consider the perturbed problem (CPν), defined
by

min
{
(c− νr0

d)T x : b−Ax = νr0
p, x ∈ K

}
, (CPν)

and its dual problem (CDν), given by

max
{
(b− νr0

p)T y : c−AT y − s = νr0
d, s ∈ K

}
. (CDν)

Note that these problems are defined in such a way that if (x, y, s) is feasible
for (CPν) and (CDν) then the residual vectors for the given triple (x, y, s) with
respect to the original problems (CP) and (CD) are νr0

p and νr0
d, respectively.

If ν = 1 then x = x0 yields a strictly feasible solution of (CPν), and (y, s) =
(y0, s0) a strictly feasible solution of (CDν). This means that if ν = 1, then (CPν)
and (CDν) satisfy the IPC.

Lemma 6.1 (cf. [114, Theorem 5.13]). Let (CP) and (CD) be feasible and 0 <
ν ≤ 1. Then, the perturbed problems (CPν) and (CDν) satisfy the IPC.

Proof. Let x̄ be a feasible solution of (CP) and (ȳ, s̄) a feasible solution of (CD),
i.e., Ax̄ = b, x̄ ∈ K and AT ȳ + s̄ = c, s̄ ∈ K. Consider

x = (1− ν)x̄ + νx0,

y = (1− ν)ȳ + νy0,

s = (1− ν)s̄ + νs0.

Since x is the sum of the vectors (1−ν)x̄ ∈ K and νx0 ∈ intK, we have x ∈ intK.
Moreover

b−Ax = b−A[(1− ν)x̄ + νx0] = b− (1− ν)b− νAx0 = ν(b−Ax0) = νr0
p,

showing that x is strictly feasible for (CPν). In precisely the same way one shows
that (y, s) is strictly feasible for (CDν). Thus we have shown that (CPν) and
(CDν) satisfy the IPC.

6.2 The central path of the perturbed problems

Let (CP) and (CD) be feasible and 0 < ν ≤ 1. Then Lemma 6.1 implies that
the problems (CPν) and (CDν) satisfy the IPC, and therefore their central paths
exist. This means that for every µ > 0 the system

b−Ax = νr0
p, x ∈ K, (6.3)

c−AT y − s = νr0
d, s ∈ K, (6.4)

x ◦ s = µe (6.5)
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has a unique solution. This solution is denoted as (x(µ, ν), y(µ, ν), s(µ, ν)). These
are the µ-centers of the perturbed problems (CPν) and (CDν). In the sequel the
parameters µ and ν will always be in a one-to-one correspondence, according to

µ = νµ0 = νζ2.

Therefore, we feel free to omit one parameter and denote (x(µ, ν), y(µ, ν), s(µ, ν))
simply as (x(ν), y(ν), s(ν)).

Due to the choice of the initial iterate, according to (6.1), we have x0 ◦ s0 =
µ0e. Hence x0 is the µ0-center of the perturbed problem (CP1) and (y0, s0) the
µ0-center of the perturbed problem (CD1). In other words, (x(1), y(1), s(1)) =
(x0, y0, s0).

6.3 A full NT-step infeasible IPM algorithm

We just established that if ν = 1 and µ = µ0, then x = x0 and (y, s) = (y0, s0)
are the µ-centers of (CPν) and (CDν), respectively. This is our initial iterate.

We measure proximity to the µ-center of the perturbed problems by the quan-
tity δ(x, s;µ) as defined in (5.13). So, initially we have δ(x, s;µ) = 0. In the
sequel we assume that at the start of each iteration, just before the feasibility
step, δ(x, s;µ) is smaller than or equal to a (small) threshold value τ > 0. This
condition is certainly satisfied at the start of the first iteration. Since we then
have δ(x, s;µ) = 0. Also at the start we have tr(x ◦ s) = µ0 tr(e).

Now we describe one (main) iteration of our algorithm. Suppose we have x,
and (y, s) satisfying the feasibility conditions (6.3) and (6.4) for ν = µ/µ0, and
such that tr(x ◦ s) = µ tr(e) and δ(x, s;µ) ≤ τ . We reduce ν to ν+ = (1 − θ)ν,
and accordingly µ to µ+ = ν+µ0 = (1− θ)µ with θ ∈ (0, 1). Then, we find a new
iterate (x+, y+, s+) that satisfies (6.3) and (6.4), with ν replaced by ν+, and such
that tr(x+ ◦ s+) = µ+ tr(e) and δ(x+, s+;µ+) ≤ τ .

More in detail, every (main) iteration consists of a feasibility step and a few
centering steps. The feasibility step serves to get an iterate (xf , yf , sf ) that is
strictly feasible for (CPν+) and (CDν+), and such that δ(xf , sf ;µ+) ≤ 1/

√
2. In

other words, (xf , yf , sf ) belongs to the quadratic convergence neighborhood with
respect to the µ+-center of (CPν+) and (CDν+). Hence, because the NT-step
is quadratically convergent in that region, a few centering steps, starting from
(xf , yf , sf ) and targeting at the µ+-center of (CPν+) and (CDν+) will generate
an iterate (x+, y+, s+) that is strictly feasible for (CPν+) and (CDν+) and satisfies
tr(x+ ◦ s+) = µ+ tr(e) and δ(x+, s+;µ+) ≤ τ .

A formal description of the algorithm is given in Algorithm 6.1. Recall that
after each iteration the residuals and the duality gap are reduced by the factor
(1− θ). The algorithm stops if the norms of the residuals and the duality gap are
less than the accuracy parameter ε.
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Algorithm 6.1 A full NT-step infeasible IPM for SO.

Input:
accuracy parameter ε > 0;
update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;
initialization parameter ζ > 0.

Begin
x := ζe; y := 0; s := ζe; µ := µ0 = ζ2; ν := 1;
while max

(
tr(x ◦ s), ‖b−Ax‖F ,

∥∥c−AT y − s
∥∥

F

)
≥ ε

feasibility step:
(x, y, s) := (x, y, s) + (∆fx,∆fy, ∆fs);

update of µ and ν:
µ := (1− θ)µ; ν := (1− θ)ν;

centering steps:
while δ(x, s;µ) ≥ τ

(x, y, s) := (x, y, s) + (∆x, ∆y, ∆s).
endwhile

endwhile
end

6.4 Analysis of the feasibility step

In this section, we define and analyze the feasibility step. This is the most difficult
part of the analysis. In essence we follow the same chain of arguments as in
Section 3.4.

6.4.1 Definition

We describe the feasibility step in detail. The analysis will follow in subsequent
subsections. Suppose we have a strictly feasible iterate (x, y, s) for (CPν) and
(CDν). This means that (x, y, s) satisfies the feasibility conditions (6.3) and (6.4)
with ν = µ/ζ2. We need displacements ∆fx, ∆fy and ∆fs such that

xf := x + ∆fx,

yf := y + ∆fy,

sf := s + ∆fs,

(6.6)

are feasible for (CPν+) and (CDν+). One may easily verify that (xf , yf , sf ) satis-
fies (6.3) and (6.4), with ν replaced by ν+ and µ by µ+ = ν+µ0 = (1− θ)µ, only
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if the first two equations in the following system are satisfied.

A∆fx = θνr0
p,

AT ∆fy + ∆fs = θνr0
d,

P (u)x ◦ P (u−1)∆fs + P (u−1)s ◦ P (u)∆fx = (1− θ)µe− P (u)x ◦ P (u−1)s.

The third equation is inspired by the third equation in the system (5.4) that we
used to define search directions for the feasible case, except that we target at the
µ+-centers of (CPν+) and (CDν+). As in the feasible case, we use the NT-scaling
scheme to guarantee that the above system has a unique solution. So we take
u = w−1/2, where w is the NT-scaling point of x and s as given in (4.1). Then
the third equation becomes

P (w)−1/2x ◦ P (w)1/2∆fs + P (w)1/2s ◦ P (w)−1/2∆fx =

(1− θ)µe− P (w)−1/2x ◦ P (w)1/2s. (6.7)

Due to this choice of u the coefficient matrix of the resulting system is exactly
the same as in the feasible case, and hence it defines the feasibility step uniquely.

By its definition, after the feasibility step the iterate satisfies the affine equa-
tions in (6.3) and (6.4), with ν replaced by ν+. The hard part in the analysis will
be to guarantee that xf , sf ∈ intK and to guarantee that the new iterate satisfies
δ(xf , sf ;µ+) ≤ 1/

√
2.

Let (x, y, s) denote the iterate at the start of an iteration with tr(x◦s) = µ tr(e)
and δ(x, s;µ) ≤ τ . Recall that at the start of the first iteration this is certainly
true, because tr(x0 ◦ s0) = µ0 tr(e) and δ(x0, s0;µ0) = 0.

We scale the search directions, just as we did in the feasible case (cf. (5.6)),
by defining

df
x :=

P (w)−1/2∆fx
√

µ
, df

s :=
P (w)1/2∆fs

√
µ

(6.8)

with w denoting the scaling point of x and s, as defined in Proposition 4.40. With
the vector v as defined in (5.5), the equation (6.7) can be restated as

µv ◦ (df
x + df

s ) = (1− θ)µe− µv2.

By multiplying both sides of this equation from left with µ−1L(v)−1 this equation
becomes

df
x + df

s = (1− θ)v−1 − v.

Thus, we arrive at the following system for the scaled search directions in the
feasibility step:

√
µAP (w)1/2df

x = θνr0
p,(√

µAP (w)1/2
)T ∆fy

µ
+ df

s =
1
√

µ
θνP (w)1/2r0

d,

df
x + df

s = (1− θ)v−1 − v.

(6.9)
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To get the search directions ∆fx and ∆fs in the original x and s-space we use
(6.8), which gives

∆fx =
√

µP (w)1/2df
x,

∆fs =
√

µP (w)−1/2df
s .

The new iterate is obtained by taking a full step, as given by (6.6). Hence, we
have

xf = x + ∆fx =
√

µP (w)1/2(v + df
x),

sf = s + ∆fs =
√

µP (w)−1/2(v + df
s ).

(6.10)

From the third equation in (6.9) we derive that

(v +df
x)◦ (v +df

s ) = v2 + v ◦ [(1− θ)v−1− v]+df
x ◦df

s = (1− θ)e+df
x ◦df

s . (6.11)

As we mentioned before, the analysis of the algorithm as presented below is much
more difficult than in the feasible case. The main reason for this is that the scaled
search directions df

x and df
s are not (necessarily) orthogonal (with respect to the

trace inner product).

6.4.2 Feasibility

Using the same arguments as in Subsection 5.7 it follows from (6.10) that xf and
sf are strictly feasible if and only if v + df

x and v + df
s belong to intK. Using this

we have the following lemma.

Lemma 6.2. The iterate (xf , yf , sf ) is feasible if

(1− θ)e + df
x ◦ df

s ∈ K,

and strictly feasible if
(1− θ)e + df

x ◦ df
s ∈ intK.

Proof. Just as in the proof of Lemma 5.3 we introduce a step length α with
0 ≤ α ≤ 1, and define

vα
x = v + αdf

x,

vα
s = v + αdf

s .

We then have v0
x = v, v1

x = v + df
x, and similarly v0

s = v, v1
s = v + df

s . From the
third equation in (6.9), i.e., df

x + df
s = (1− θ)v−1 + v, it follows that

vα
x ◦ vα

s = (v + αdf
x) ◦ (v + αdf

s ) = v2 + αv ◦ (df
x + df

s ) + α2df
x ◦ df

s

= v2 + αv ◦ [(1− θ)v−1 − v] + α2df
x ◦ df

s

= (1− α)v2 + α(1− θ)e + α2df
x ◦ df

s .
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If (1 − θ)e + df
x ◦ df

s ∈ K, we have df
x ◦ df

s �K −(1 − θ)e. Substituting this into
the above equality gives

vα
x ◦ vα

s �K (1− α)v2 + α(1− θ)e− α2(1− θ)e = (1− α)(v2 + α(1− θ)e).

Since v2 ∈ intK, we have v2 + α(1− θ)e ∈ intK. Hence,

vα
x ◦ vα

s �K (1− α)(v2 + α(1− θ)e) �K 0, for α ∈ [0, 1).

By Lemma 4.51, it follows that det(vα
x ) and det(vα

s ) do not vanish for α ∈ [0, 1).
Since

det(v0
x) = det(v0

s) = det(v) > 0,

by continuity, det(vα
x ) and det(vα

s ) stay positive for all α ∈ [0, 1). Moreover, by
Theorem 4.13, this implies that all the eigenvalues of vα

x and vα
s stay positive for

all α ∈ [0, 1). Again by continuity, we obtain that all the eigenvalues of v1
x and

v1
s are nonnegative. This proves that if (1 − θ)e + df

x ◦ df
s ∈ K, then v + df

x ∈ K
and v + df

s ∈ K, i.e., the iterate (xf , yf , sf ) is feasible.
If (1 − θ)e + df

x ◦ df
s ∈ intK, or equivalently df

x ◦ df
s �K −(1 − θ)e, similar

arguments imply that det(vα
x ) and det(vα

s ) do not vanish for α ∈ [0, 1], whence
v + df

x ∈ intK and v + df
s ∈ intK. This proves the lemma.

It is clear from the above lemma that the feasibility of the iterate (xf , yf , sf )
highly depends on the eigenvalues of the vector df

x ◦ df
s .

6.4.3 Proximity

We proceed by deriving an upper bound for δ(xf , sf ;µ+). Let wf be the scaling
point of xf and sf . Denoting the v-vector after the feasibility step with respect
to the µ+-center as vf , we have, according to (5.5),

vf :=
P (wf )−1/2xf√

µ(1− θ)

[
=

P (wf )1/2sf√
µ(1− θ)

]
. (6.12)

Lemma 6.3. One has

√
1− θ vf ∼

[
P (v + df

x)1/2(v + df
s )
]1/2

.

Proof. It follows from (6.12) and Lemma 4.46 that√
µ(1− θ) vf = P (wf )1/2sf ∼ (P (xf )1/2sf )1/2.

Due to (6.10) and Lemma 4.45, we may write

P (xf )1/2sf = µP
(
P (w)1/2(v + df

x)
)1/2

P (w)−1/2(v + df
s )

∼ µP (v + df
x)1/2(v + df

s ).



76 CHAPTER 6. AN INFEASIBLE IPM FOR SO

Thus, we obtain √
µ(1− θ) vf ∼ √

µ
[
P (v + df

x)1/2(v + df
s )
]1/2

,

and the statement of the lemma follows.

The above lemma implies that

(vf )2 ∼ P

(
v + df

x√
1− θ

)1/2(
v + df

s√
1− θ

)
. (6.13)

In the sequel we denote δ(xf , sf ;µ+) shortly as δ(vf ).

Lemma 6.4. If
∥∥λ(df

x ◦ df
s )
∥∥
∞ < 1− θ, then

4δ(vf )2 ≤

∥∥∥df
x◦d

f
s

1−θ

∥∥∥2

F

1−
∥∥∥λ(df

x◦df
s )

1−θ

∥∥∥
∞

.

Proof. Since
∥∥λ(df

x ◦ df
s )
∥∥
∞ < 1 − θ, from Lemma 6.2 and its proof, it follows

that v + df
x, v + df

s , and (v + df
x) ◦ (v + df

s ) belong to the intK. Let us, for the
moment, denote

u := P

(
v + df

x√
1− θ

)1/2(
v + df

s√
1− θ

)
,

ū :=
(

v + df
x√

1− θ

)
◦
(

v + df
s√

1− θ

)
.

Then, since vf ∼ u1/2 (cf. (6.13)), we have

2δ(vf ) =
∥∥vf − (vf )−1

∥∥
F

=
∥∥∥u1/2 − u−1/2

∥∥∥
F

.

By applying Lemma 4.55, we obtain

2δ(vf ) =
∥∥∥u1/2 − u−1/2

∥∥∥
F
≤

‖u− e‖F

λmin(u1/2)
=

‖u− e‖F

λmin(u)1/2
.

Now, from Lemma 4.56 and Lemma 4.58 we derive

2δ(vf ) ≤
‖u− e‖F

λmin(u)1/2
≤

‖ū− e‖F

λmin(ū)1/2
.

From the third equation in (6.9) it follows that

(1− θ)ū = (v + df
x) ◦ (v + df

s ) = v2 + v ◦ (df
x + df

s ) + df
x ◦ df

s

= v2 + v ◦ ((1− θ)v−1 − v) + df
x ◦ df

s = (1− θ)e + df
x ◦ df

s ,
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and substitution into the above inequality gives

2δ(vf ) ≤

∥∥∥df
x◦d

f
s

1−θ

∥∥∥
F

λmin

(
e + df

x◦df
s

1−θ

)1/2
≤

∥∥∥df
x◦d

f
s

1−θ

∥∥∥
F(

1−
∥∥∥λ(df

x◦df
s )

1−θ

∥∥∥
∞

)1/2
,

which proves the lemma.

From the definition of the Frobenius norm, Lemma 4.53, Lemma 4.48, we have∥∥λ(df
x ◦ df

s )
∥∥
∞ ≤

∥∥df
x ◦ df

s

∥∥
F
≤ 1

2

∥∥(df
x)2 + (df

s )2
∥∥

F

≤ 1
2
(∥∥(df

x)2
∥∥

F
+
∥∥(df

s )2
∥∥

F

)
≤ 1

2

(∥∥df
x

∥∥2

F
+
∥∥df

s

∥∥2

F

)
.

(6.14)

Substitution of the above inequality into the inequality of Lemma 6.4 yields that

4δ(vf )2 ≤

∥∥∥df
x◦d

f
s

1−θ

∥∥∥2

F

1−
∥∥∥λ(df

x◦df
s )

1−θ

∥∥∥
∞

≤

1
4

(
‖df

x‖2

F
+‖df

s‖2

F

1−θ

)2

1− 1
2

‖df
x‖2

F
+‖df

s‖2

F

1−θ

. (6.15)

We have derived an upper bound for δ(vf ), in terms of
∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F
. As

our ultimate goal is to choose θ, 0 < θ < 1, as large as possible, such that
δ(vf ) ≤ 1/

√
2, we need an upper bound for

∥∥df
x

∥∥2

F
+
∥∥df

s

∥∥2

F
.

6.4.4 Upper bound for
∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F

Obtaining an upper bound for
∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F
is the goal of this subsection. In

the sequel this will enable us to find a default value for the update parameter θ.
For the moment, let us define

r̄p := θνr0
p, r̄d := θνr0

d, r̄ := (1− θ)v−1 − v. (6.16)

With ξ := −∆f y
µ , the system (6.9) (by eliminating df

s ) reduces to

√
µAP (w)1/2df

x = r̄p, (6.17)(√
µAP (w)1/2

)T

ξ + df
x = r̄ − 1

√
µ

P (w)1/2r̄d. (6.18)

Multiplying both sides of (6.18) from the left with
√

µAP (w)1/2 and using (6.17)
it follows that

µAP (w)AT ξ + r̄p =
√

µAP (w)1/2

(
r̄ − 1

√
µ

P (w)1/2r̄d

)
.
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Therefore,

ξ =
1
µ

(AP (w)AT )−1

[
√

µAP (w)1/2

(
r̄ − 1

√
µ

P (w)1/2r̄d

)
− r̄p

]
. (6.19)

Substitution into (6.18) gives

df
x = r̄ − 1

√
µ

P (w)1/2r̄d

− 1
√

µ
P (w)1/2AT (AP (w)AT )−1

[
√

µAP (w)1/2

(
r̄ − 1

√
µ

P (w)1/2r̄d

)
− r̄p

]
=
[
I − P (w)1/2AT (AP (w)AT )−1AP (w)1/2

](
r̄ − 1

√
µ

P (w)1/2r̄d

)
+

1
√

µ
P (w)1/2AT (AP (w)AT )−1r̄p.

To simplify the above expression we denote

P̄ = P (w)1/2AT (AP (w)AT )−1AP (w)1/2.

Note that P̄ is (the matrix of) the orthogonal projection (with respect to the trace
inner product) to the row space of the matrix AP (w)1/2. We now may write

df
x = [I − P̄ ]

(
r̄ − 1

√
µ

P (w)1/2r̄d

)
+

1
√

µ
P (w)1/2AT (AP (w)AT )−1r̄p.

Let (x̄, ȳ, s̄) be such that Ax̄ = b and AT ȳ + s̄ = c. Then we may write

r̄p = θνr0
p = θν(b−Ax0) = θνA(x̄− x0),

r̄d = θνr0
d = θν(c−AT y0 − s0) = θν

(
AT (ȳ − y0) + s̄− s0

)
.

Substituting the expressions of r̄p and r̄d into the expression for df
x, we obtain

df
x = [I− P̄ ]

(
r̄ − θν

√
µ

P (w)1/2
(
AT (ȳ − y0) + s̄− s0

))
+

θν
√

µ
P̄P (w)−1/2(x̄−x0).

Since I − P̄ is the orthogonal projection to the null space of AP (w)1/2 we have

[I − P̄ ]P (w)1/2AT (ȳ − y0) = 0.

Hence, it follows that

df
x = [I − P̄ ]

(
r̄ − θν

√
µ

P (w)1/2
(
s̄− s0

))
+

θν
√

µ
P̄P (w)−1/2(x̄− x0).
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To proceed we further simplify the above expression by defining

ux =
θν
√

µ
P (w)−1/2(x̄− x0), us =

θν
√

µ
P (w)1/2(s̄− s0). (6.20)

Then we may write
df

x = [I − P̄ ](r̄ − us) + P̄ ux.

For df
s we obtain, by using the third equation in (6.9) and the definition (6.16) of

r̄,

df
s = r̄ − df

x = r̄ − [I − P̄ ]r̄ + [I − P̄ ]us − P̄ ux = [I − P̄ ]us + P̄ (r̄ − ux).

We denote [I−P̄ ]r̄ = r̄1 and P̄ r̄ = r̄2, and use similar notations for the projections
of ux and us. Then from the above expressions for df

x and df
s we derive that

df
x = r̄1 − us

1 + ux
2 , df

s = us
1 + r̄2 − ux

2 .

Therefore, using the orthogonality (with respect to the trace inner product) of
vectors with different subscripts, we may write∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F

= ‖r̄1 − us
1‖

2
F + ‖ux

2‖
2
F + ‖us

1‖
2
F + ‖r̄2 − ux

2‖
2
F

= ‖r̄1‖2F + ‖us
1‖

2
F − 2〈r̄1, u

s
1〉+ ‖ux

2‖
2
F + ‖us

1‖
2
F + ‖r̄2‖2F + ‖ux

2‖
2
F − 2〈r̄2, u

x
2〉

= ‖r̄‖2F + 2 ‖ux
2‖

2
F + 2 ‖us

1‖
2
F − 2〈r̄1, u

s
1〉 − 2〈r̄2, u

x
2〉.

Using the Cauchy-Schwartz inequality (cf. Lemma 4.52), and the properties of
orthogonal projection, we further obtain∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F
≤ ‖r̄‖2F + 2 ‖ux

2‖
2
F + 2 ‖us

1‖
2
F + 2 ‖r̄1‖F ‖u

s
1‖F + 2 ‖r̄2‖F ‖u

x
2‖F

≤ ‖r̄‖2F + 2 ‖ux
2‖

2
F + 2 ‖us

1‖
2
F + ‖r̄1‖2F + ‖us

1‖
2
F + ‖r̄2‖2F + ‖ux

2‖
2
F

≤ 2 ‖r̄‖2F + 3
(
‖ux‖2F + ‖us‖2F

)
. (6.21)

Since v and v−1 − v are orthogonal (with respect to the trace inner product) and
‖v‖2F = tr(e), we have

‖r̄‖2F =
∥∥(1− θ)v−1 − v

∥∥2

F
=
∥∥(1− θ)(v−1 − v)− θv

∥∥2

F

= (1− θ)2
∥∥v−1 − v

∥∥2

F
+ θ2 ‖v‖2F = 4(1− θ)2δ(v)2 + θ2r, (6.22)

where r = tr(e) is the rank of the associated Euclidean Jordan algebra. On the
other hand, due to (6.20) we have

‖ux‖2F +‖us‖2F =
θ2ν2

µ

(∥∥∥P (w)−1/2(x̄− x0)
∥∥∥2

F
+
∥∥∥P (w)1/2(s̄− s0)

∥∥∥2

F

)
. (6.23)
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Let (x∗, y∗, s∗) be the optimal solution satisfying (6.2). It follows that Ax∗ = b
and AT y∗ + s∗ = c. Therefore, we may choose x̄ = x∗, ȳ = y∗ and s̄ = s∗.
Since x∗ is feasible for (CP) we have x∗ �K 0. Also s∗ �K 0. Hence we have
0 �K x∗ �K x∗ + s∗ �K ζe, or equivalently 0 �K x̄ �K ζe. In a similar way we
derive that 0 �K s̄ �K ζe. Therefore, it follows that

0 �K x0 − x̄ �K ζe, 0 �K s0 − s̄ �K ζe.

We first consider the term
∥∥P (w)−1/2(x̄− x0)

∥∥2

F
. Using that P (w)1/2 is self-

adjoint with respect to the inner product and P (w)e = w2, we have∥∥∥P (w)−1/2(x̄− x0)
∥∥∥2

F
=
∥∥∥P (w)−1/2(x0 − x̄)

∥∥∥2

F
= 〈P (w)−1(x0 − x̄), x0 − x̄〉

= 〈P (w)−1(x0 − x̄), ζe〉 − 〈P (w)−1(x0 − x̄), ζe− (x0 − x̄)〉
≤ 〈P (w)−1(x0 − x̄), ζe〉 = ζ〈P (w)−1e, x0 − x̄〉
= ζ〈P (w)−1e, ζe〉 − ζ〈P (w)−1e, ζe− (x0 − x̄)〉
≤ ζ2 tr(w−2).

Similarly, it follows that∥∥∥P (w)1/2(s̄− s0)
∥∥∥2

F
≤ ζ2 tr(w2).

Substitution of the last two inequalities into (6.23) gives

‖ux‖2F + ‖us‖2F ≤ θ2ν2ζ2

µ
tr(w2 + w−2).

By using µ = νµ0 = νζ2 we derive

‖ux‖2F + ‖us‖2F ≤ θ2ν tr(w2 + w−2). (6.24)

Lemma 6.5. One has

tr(w2 + w−2) ≤ tr(x + s)2

µλmin(v)2
.

Proof. For the moment, let u := (P (x1/2)s)−1/2. Then, by Proposition 4.40,
w = P (x1/2)u. Using that P (x1/2) is self-adjoint, and also Lemma 4.54, we
obtain

tr(w2) = 〈P (x1/2)u, P (x1/2)u〉 = 〈u, P (x)u〉 ≤ λmax(u) tr(P (x)u).

Using the same arguments as above and the fact that P (x)e = x2 we may write

tr(P (x)u) = tr(P (x)u ◦ e) = 〈P (x)u, e〉 = 〈u, P (x)e〉 = 〈u, x2〉 ≤ λmax(u) tr(x2).
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Combining the above inequalities we obtain

tr(w2) ≤ λmax(P (x−1/2)s−1) tr(x2).

Due to P (s1/2)x ∼ P (x1/2)s ∼ (P (w)1/2s)2 ∼ (P (w−1/2)x)2 = µv2, we have

λmax(P (x−1/2)s−1) tr(x2) =
tr(x2)

λmin(P (x1/2)s)
=

tr(x2)
µλmin(v)2

.

Thus, we obtain

tr(w2) ≤ tr(x2)
µλmin(v)2

.

Recalling that w−1 is the scaling point of s and x, it follows from the above
inequality, by interchanging the role of x and s, that

tr(w−2) ≤ tr(s2)
µλmin(v)2

.

By adding the last two inequalities we obtain

tr(w2 + w−2) ≤ tr(x2) + tr(s2)
µλmin(v)2

.

Since x, s ∈ K, we have tr(x ◦ s) ≥ 0. Together with the fact that tr(u2) ≤ tr(u)2

for each u ∈ K (cf. Lemma 4.47), we obtain

tr(x2) + tr(s2) ≤ tr(x2) + tr(s2) + 2 tr(x ◦ s) = tr
(
(x + s)2

)
≤ tr(x + s)2.

Substitution yields

tr(w2 + w−2) ≤ tr(x + s)2

µλmin(v)2
,

which completes the proof.

Substituting the result of the above lemma into inequality (6.24), we obtain

‖ux‖2F + ‖us‖2F ≤ θ2ν
tr(x + s)2

µλmin(v)2
. (6.25)

Concluding this subsection, we have, by substituting (6.22) and (6.25) into
(6.21), and using the fact that µ = νµ0 = νζ2,∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F
≤ 2

[
4(1− θ)2δ(v)2 + θ2r

]
+ 3θ2ν

tr(x + s)2

µλmin(v)2

= 2
[
4(1− θ)2δ(v)2 + θ2r

]
+ 3θ2 tr(x + s)2

ζ2λmin(v)2
, (6.26)

where r is the rank of the associated Euclidean Jordan algebra. To continue, we
need an upper bound for tr(x + s), and a lower bound for λmin(v), which we will
derive in the next subsection.
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6.4.5 Bounds for tr(x + s) and λmin(v)

Lemma 6.6. Let x and (y, s) be feasible for the perturbed problems (CPν) and
(CDν), respectively, and tr(x ◦ s) = µ tr(e). With (x0, y0, s0) as defined in (6.1)
and ζ as in (6.2), we then have

tr(x + s) ≤ 2ζr,

where r = tr(e) is the rank of the associated Euclidean Jordan algebra.

Proof. Let (x∗, y∗, s∗) be the optimal solution satisfying (6.2). Then from the
feasibility conditions of the perturbed problems (CPν) and (CDν), it is easily
seen that

A
[
x− νx0 − (1− ν)x∗

]
= 0,

AT
[
y − νy0 − (1− ν)y∗

]
+
[
s− νs0 − (1− ν)s∗

]
= 0.

This implies that

tr
((

x− νx0 − (1− ν)x∗
)
◦
(
s− νs0 − (1− ν)s∗

))
= 0.

By expanding the above equality and using the fact that tr(x∗◦s∗) = 0, we obtain

ν
(
tr(x0 ◦ s) + tr(s0 ◦ x)

)
= tr(x ◦ s) + ν2 tr(x0 ◦ s0)− (1− ν) tr(x ◦ s∗ + s ◦ x∗)

+ ν(1− ν) tr(x0 ◦ s∗ + s0 ◦ x∗).
(6.27)

Since (x0, y0, s0) is as defined in (6.1), we have

tr(x0 ◦ s) + tr(s0 ◦ x) = ζ tr(x + s),

tr(x0 ◦ s0) = ζ2 tr(e),

tr(x0 ◦ s∗) + tr(s0 ◦ x∗) = ζ tr(x∗ + s∗).

Due to (6.2) we have tr(x∗ + s∗) ≤ ζ tr(e). Furthermore, tr(x ◦ s) = µ tr(e) =
νζ2 tr(e). Finally, tr(x ◦ s∗+ s ◦x∗) ≥ 0. Substitution of the above equations into
(6.27) gives

νζ tr(x + s) ≤ νζ2 tr(e) + ν2ζ2 tr(e) + ν(1− ν)ζ2 tr(e) = 2νζ2 tr(e),

which implies the lemma.

Lemma 6.7 (cf. [93, Lemma II.62]). If δ := δ(v) is defined by (5.13), then

1
ρ(δ)

≤ λmin(v) ≤ λmax(v) ≤ ρ(δ),

where
ρ(δ) := δ +

√
1 + δ2.
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Proof. By the definition of δ(v) (cf. (5.13)), we have

2δ =
∥∥v − v−1

∥∥
F

=

√√√√ r∑
i=1

(λi(v)− 1/λi(v))2.

Since λi(v) > 0, we derive

−2δλi(v) ≤ 1− λi(v)2 ≤ 2δλi(v),

which implies

λi(v)2 − 2δλi(v)− 1 ≤ 0 ≤ λi(v)2 + 2δλi(v)− 1.

Rewriting this as

(λi(v)− δ)2 − 1− δ2 ≤ 0 ≤ (λi(v) + δ)2 − 1− δ2,

we obtain
(λi(v)− δ)2 ≤ 1 + δ2 ≤ (λi(v) + δ)2,

which implies

λi(v)− δ ≤ |λi(v)− δ| ≤
√

1 + δ2 ≤ λi(v) + δ.

Thus, we obtain the bounds for λi(v)

−δ +
√

1 + δ2 ≤ λi(v) ≤ δ +
√

1 + δ2 = ρ(δ).

The lower bound above can be written as

−δ +
√

1 + δ2 =
1

δ +
√

1 + δ2
=

1
ρ(δ)

,

which proves the lemma.

By substituting the results of Lemma 6.6 and Lemma 6.7 into (6.26), with
δ := δ(v), we derive an upper bound for

∥∥df
x

∥∥2

F
+
∥∥df

s

∥∥2

F
as follows.

∥∥df
x

∥∥2

F
+
∥∥df

s

∥∥2

F
≤ 2

[
4(1− θ)2δ2 + θ2r

]
+ 3θ2 (2ζr)2ρ(δ)2

ζ2

= 2
[
4(1− θ)2δ2 + θ2r

]
+ 12θ2r2ρ(δ)2, (6.28)

where r = tr(e) is the rank of the associated Euclidean Jordan algebra.
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6.5 Choosing the update parameter θ

We want to choose θ, 0 < θ < 1, as large as possible, and such that (xf , yf , sf )
lies in the quadratic convergence neighborhood with respect to the µ+-center of
the perturbed problems (CPν+) and (CDν+), i.e., δ(vf ) ≤ 1/

√
2. By (6.15), we

derive that this is the case when

1
4

(
‖df

x‖2

F
+‖df

s‖2

F

1−θ

)2

1− 1
2

‖df
x‖2

F
+‖df

s‖2

F

1−θ

≤ 2.

Considering
‖df

x‖2

F
+‖df

s‖2

F

1−θ as a single term, and performing some elementary cal-
culations, we obtain that∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F

1− θ
≤ 2

√
3− 2 ≈ 1.4641. (6.29)

By (6.28), the above inequality holds if

2
[
4(1− θ)2δ2 + θ2r

]
+ 12θ2r2ρ(δ)2 ≤ (2

√
3− 2)(1− θ).

Choosing τ = 1/16, one may easily verify that if

θ =
1
4r

, (6.30)

then the above inequality is satisfied. Moreover, using (6.14) and (6.29) we have∥∥λ(df
x ◦ df

s )
∥∥
∞ ≤ 1

2
(
∥∥df

x

∥∥2

F
+
∥∥df

s

∥∥2

F
) ≤ (

√
3− 1)(1− θ) < 1− θ,

which, by Lemma 6.2, means that (xf , yf , sf ) are strictly feasible. Thus, we have
found a desired θ.

6.6 Iteration bound

In the previous sections we have found that if at the start of an iteration the iterate
satisfies δ(x, s;µ) ≤ τ , with τ = 1/16, then after the feasibility step, with θ as
defined in (6.30), the iterate is strictly feasible and satisfies δ(xf , sf ;µ+) ≤ 1/

√
2,

i.e., (xf , yf , sf ) lies in the quadratic convergence neighborhood with respect to
the µ+-center of the perturbed problems (CPν+) and (CDν+).

After the feasibility step we perform a few centering steps in order to get
iterate (x+, y+, s+) which satisfies x+T

s+ = nµ+ and δ(x+, s+;µ+) ≤ τ . From
Chapter 5 we precisely know how to analyze these steps. By Corollary 5.7, after
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k centering steps we will have the iterate (x+, y+, s+) that is still feasible for
(CPν+) and (CDν+) and such that

δ(x+, s+;µ+) ≤
(

1√
2

)2k

.

From this one easily deduces that δ(x+, s+;µ+) ≤ τ will hold after at most⌈
log2

(
log2

1
τ2

)⌉
= 1 +

⌈
log2

(
log2

1
τ

)⌉
(6.31)

centering steps.
According to (6.31), and since τ = 1/16, at most three centering steps then

suffice to get iterate (x+, y+, s+) that satisfies δ(x+, s+;µ+) ≤ τ again. So each
main iteration consists of at most four so-called inner iterations, in each of which
we need to compute a search direction (for either a feasibility step or a centering
step).

It has become a custom to measure the complexity of an IPM by the required
number of inner iterations. In each main iteration both the duality gap and the
norms of the residual vectors are reduced by the factor (1 − θ). Hence, using
tr(x0 ◦ s0) = rζ2, the total number of main iterations is bounded above by

1
θ

log
max

{
rζ2,

∥∥r0
p

∥∥
F

,
∥∥r0

d

∥∥
F

}
ε

.

Due to (6.30) and the fact that we need at most four inner iterations per main
iteration, the total number of inner iterations is bounded above by

16r log
max

{
rζ2,

∥∥r0
p

∥∥
F

,
∥∥r0

d

∥∥
F

}
ε

.

Thus, we may state without further proof the main result of this chapter.

Theorem 6.8. If (CP) has an optimal solution x∗ and (CD) has an optimal
solution (y∗, s∗), which satisfy tr(x∗ ◦ s∗) = 0 and x∗ + s∗ �K ζe for some ζ > 0,
then after at most

16r log
max

{
rζ2,

∥∥r0
p

∥∥
F

,
∥∥r0

d

∥∥
F

}
ε

inner iterations the Algorithm 6.1 finds an ε-optimal solution of (CP) and (CD).
Here r = tr(e) is the rank of the associated Euclidean Jordan algebra.

Note that this bound is slightly better than that in [92, Theorem 4.8], where
the coefficient is 16

√
2.
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Remark 6.9. As for LO, the iteration bound in Theorem 6.8 is derived under
the assumption that there exists an optimal solution pair (x∗, y∗, s∗) of (CP) and
(CD) with vanishing duality gap and satisfying x∗+ s∗ �K ζe. During the course
of the algorithm, if at some main iteration, the proximity measure δ after the
feasibility step exceeds 1/

√
2, then it tells us that the above assumption does not

hold. It may happen that the value of ζ has been chosen too small. In this case
one might run the algorithm once more with a larger value of ζ.

6.7 Adaptive updating strategy

Our full NT-step infeasible IPM algorithm (Algorithm 6.1) admits the best known
iteration bound, but from a practical perspective a severe shortcoming is its worst-
case-oriented nature: it will always perform according to its worst-case theoretical
complexity bound. An obvious way to reduce the number of iterations is to make
larger updates of the barrier parameter while keeping the iterates in the region of
quadratic convergence. This is called the adaptive updating strategy, which we
discuss in this section.

Observe that the iteration bound in Theorem 6.8 was obtained by requiring
that after each feasibility step the proximity measure satisfies δ(vf ) ≤ 1/

√
2. In

order to make clear how this observation can be used to improve the performance
of the algorithm without losing the iteration bound, let us briefly recall the idea
behind the proof of this theorem. At the start of a main iteration we are given
(x, y, s) satisfying the feasibility conditions (6.3) and (6.4) for ν = µ/µ0, and such
that tr(x ◦ s) = µ tr(e) and δ(x, s;µ) ≤ τ . We reduce ν to ν+ = (1 − θ)ν, and
accordingly µ to µ+ = (1 − θ)µ with θ ∈ (0, 1). Then we make a feasibility step
to the µ+-center of the perturbed problem pair (CPν+) and (CDν+). The feasi-
bility step yields (xf , yf , sf ), which are strictly feasible for (CPν+) and (CDν+),
and such that δ(xf , sf ;µ+) ≤ 1/

√
2. In other words, (xf , yf , sf ) belongs to the

quadratic convergence neighborhood with respect to the µ+-center of (CPν+)
and (CDν+). Since τ = 1/16, at most three centering steps then suffice to get
the iterate (x+, y+, s+) that is feasible for (CPν+) and (CDν+) and that satisfies
tr(x+ ◦ s+) = µ+ tr(e) and δ(x+, s+;µ+) ≤ τ .

Our estimates in the proof of Theorem 6.8 were such that it has become clear
that the default value θ = 1/(4r) guarantees that δ(xf , sf ;µ+) ≤ 1/

√
2 will hold.

But actually the new proximity may be much smaller than 1/
√

2.
This opens a way to speed up the algorithm without degrading the iteration

bound. For if we take θ larger than the default value 1/(4r), thus, enforcing a
deeper update of the barrier parameter in such a way that δ(xf , sf ;µ+) ≤ 1/

√
2

still holds, then the analysis in the proof of the theorem remains valid but the
number of iterations decreases. The question arises of how deep the update might
be.

To answer the above question, we need to separate the system (6.9) into fol-
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lowing two systems,
√

µAP (w)1/2dff
x = νr0

p,(√
µAP (w)1/2

)T ∆ffy

µ
+ dff

s =
1
√

µ
νP (w)1/2r0

d,

dff
x + dff

s = −v−1,

and √
µAP (w)1/2dfc

x = 0,(√
µAP (w)1/2

)T ∆fcy

µ
+ dfc

s = 0,

dfc
x + dfc

s = v−1 − v.

Obviously, each system has a unique solution, and

(df
x,∆fy, df

s ) = θ(dff
x ,∆ffy, dff

s ) + (dfc
x ,∆fcy, dfc

s ). (6.32)

Remark 6.10. The above two systems share the same coefficient matrix. Hence,
solving them both just adds slightly more computational work. In other words,
the adaptive strategy will not burden every main iteration too much (assume the
same number of centering iterations).

On the other hand, from the definition of the Frobenius norm, we have∥∥λ(df
x ◦ df

s )
∥∥
∞ ≤

∥∥df
x ◦ df

s

∥∥
F

.

Hence, provided that
∥∥df

x ◦ df
s

∥∥
F

< 1− θ, the result of Lemma 6.4 can be relaxed
to

4δ(vf )2 ≤

∥∥∥df
x◦d

f
s

1−θ

∥∥∥2

F

1−
∥∥∥df

x◦df
s

1−θ

∥∥∥
F

.

This implies that if

∥∥∥∥df
x ◦ df

s

1− θ

∥∥∥∥
F

< 1 and

∥∥∥df
x◦d

f
s

1−θ

∥∥∥2

F

1−
∥∥∥df

x◦df
s

1−θ

∥∥∥
F

≤ 2,

then δ(xf , sf ;µ+) ≤ 1/
√

2 will hold, i.e., after the feasibility step, the iterate
(xf , yf , sf ) lies in the quadratic convergence neighborhood with respect to the
µ+-center of the perturbed problems (CPν+) and (CDν+). Considering

∥∥∥df
x◦d

f
s

1−θ

∥∥∥
F

as a single term, we derive that if∥∥∥∥df
x ◦ df

s

1− θ

∥∥∥∥
F

≤
√

3− 1,
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then δ(xf , sf ;µ+) ≤ 1/
√

2. Substituting (6.32) into the above inequality, we
obtain ∥∥∥∥ (θdff

x + dfc
x ) ◦ (θdff

s + dfc
s )

1− θ

∥∥∥∥
F

≤
√

3− 1. (6.33)

The above inequality is equivalent to the following quartic polynomial inequality
in θ

θ4
∥∥dff

x ◦ dff
s

∥∥2

F

+θ3
[
2〈dff

x ◦ dff
s , dfc

x ◦ dff
s + dff

x ◦ dfc
s 〉
]

+θ2
[
2〈dff

x ◦ dff
s , dfc

x ◦ dfc
s 〉+

∥∥dfc
x ◦ dff

s + dff
x ◦ dfc

s

∥∥2

F
− (

√
3− 1)2

]
+θ
[
2〈dfc

x ◦ dff
s + dff

x ◦ dfc
s , dfc

x ◦ dfc
s 〉+ 2(

√
3− 1)2

]
+
[∥∥dfc

x ◦ dfc
s

∥∥2

F
− (

√
3− 1)2

]
≤ 0. (6.34)

Our goal is to choose θ, 0 < θ < 1, as large as possible, such that (6.34) holds
for all values in [0, θ]. From the analysis in Section 6.4 we know beforehand
that under the conditions of Theorem 6.8 the value of θ is at least 1/(4r), i.e.,
if θ ∈ [0, 1/(4r)], then (6.34) always holds. On the other side, if (6.33) holds
for all 0 < θ < 1, then we may easily verify that θ = 1 will yield an optimal
solution to (CP) and (CD). Otherwise, we have, as a result of equivalence, that
(6.34) will not hold. This, by continuity, implies that there exist at least one θ
such that θ ∈ [1/(4r), 1) and (6.34) holds with equality. Using the properties of
polynomials, we need to choose the smallest real root between zero and one as
our update parameter θ. Remember that under the conditions of Theorem 6.8,
the resulting θ must larger than or equal to 1/(4r).



Chapter 7

Numerical Experiments

In this chapter we present numerical tests of our full NT-step IIPM for SO. All
our numerical experiments are carried out on a workstation with Intel® Core™ 2
Duo CPU at 3GHz and 4GB of physical memory. The workstation runs MATLAB
version 7.7.0.471 (R2008b) on Windows XP Professional operating system.

7.1 Some details about the implementation

We implement our full NT-step IIPM for SO with both short (with θ = 1/(4r))
and adaptive updates. The input arguments closely follow these used in SeDuMi1,
namely,

A, b, c: SO problem data as described in Section 5.1;
K: a structure variable defines the structure of the conic constraints:

K.l is the number of nonnegative components,
K.q lists the dimensions of second-order cone constraints,
K.s lists the dimensions of positive semidefinite constraints;

ε: accuracy parameter (optional);
ζ: initialization parameter ζ > 0 (optional).

7.1.1 Initialization parameter

Our algorithms can start with an infeasible starting point. However, the perfor-
mance of these algorithms is quite sensitive to the choice of the starting point.
Theoretically, we need a starting point that satisfies (6.1) and (6.2). It is desir-
able to choose the initialization parameter ζ such that the starting point at least
has the same order of magnitude as an optimal solution. If ζ is not known, the

1SeDuMi is available from http://sedumi.ie.lehigh.edu/.
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following ζ is used: 2

ζ = max
{
ξl, ηl, ξq

i , ηq
i , ξs

i , η
s
i

}
,

where

ξl = max
{

10,
√

K.l,
√

K.l max
1≤k≤m

1 + |bk|
1 + ‖Al(k, :)‖

}
;

ηl = max
{

10,
√

K.l, max
{∥∥cl

∥∥ ,
∥∥Al(1, :)

∥∥ , . . . ,
∥∥Al(m, :)

∥∥}} ;

ξq
i = max

{
10,
√

K.q(i),
√

K.q(i) max
1≤k≤m

1 + |bk|
1 + ‖Aqi(k, :)‖

}
;

ηq
i = max

{
10,
√

K.q(i),max {‖cqi‖ , ‖Aqi(1, :)‖ , . . . , ‖Aqi(m, :)‖}
}

;

ξs
i = max

{
10,
√

K.s(i),K.s(i) max
1≤k≤m

1 + |bk|
1 + ‖Asi(k, :)‖

}
;

ηs
i = max

{
10,
√

K.s(i),max {‖csi‖ , ‖Asi(1, :)‖ , . . . , ‖Asi(m, :)‖}
}

.

Here Al is an m×K.l matrix block of A corresponding to the nonnegative block
of x, and similarly we use notations Aqi , Asi and cl, cqi , csi .

7.1.2 Stopping criteria

If the accuracy parameter ε is not given, we use

ε = 10dlg(max(tr(x◦s),‖b−Ax‖F ,‖c−AT y−s‖
F
)/1016)e

= 10dlg(max(tr(x◦s),‖b−Ax‖F ,‖c−AT y−s‖
F
))e−16

as our default accuracy parameter. So we reduce the initial duality gap and the
resuduals by a factor of approximately 1016. The algorithm is stopped when any
of the following cases occur.

(i) Solutions with the desired accuracy have been obtained, i.e.,

max
(
tr(x ◦ s), ‖b−Ax‖F ,

∥∥c−AT y − s
∥∥

F

)
≤ ε.

2Our choice of ζ is based on the choice of the initial iterate for SDPT3 [107, Section 3]. In
fact, with the starting point

x0 = ζxe, y0 = 0, s0 = ζse, µ0 = ζxζs,

where ζx and ζs are (positive) numbers such that

x∗ �K ζxe, s∗ �K ζse,

we may still prove that the inequality (6.28) holds and subsequently, the value of the updater
parameter θ and Theorem 6.8 stay the same. Here, the initialization parameters may be chosen
as

ζx = max
n

ξl, ξq
i , ξs

i

o
, ζs = max

n
ηl, ηq

i , ηs
i

o
.
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(ii) There is no optimal solution with vanishing duality gap that satisfies (6.1)
and (6.2) namely, after the feasibility step, we have{

δ > 1/
√

2, for short updates;
θ < 1/(4r), for adaptive updates.

(iii) Numerical problems are encountered, such as the iterate violates the cone
constraints, or after three centering steps, the proximity measure δ(v) is still
larger than τ = 1/16, etc.

7.1.3 Scaling point for semidefinite cones

The main purpose of this subsection is to show that the NT-scaling point (cf. (4.1))
for semidefinite cones can be computed using two Cholesky factorizations and one
Singular Value Decomposition (SVD). The presentation here mainly follows [103].

Let the Cholesky factorizations of the positive definite matrices X and S be

X = LLT , S = RRT ,

and let UDV T = RT L be the SVD of RT L. Define Q := L−1X1/2, then

QQT = L−1X1/2X1/2L−T = L−1XL−T = L−1LLT L−T = I,

i.e., Q is an orthogonal matrix. It is easily seen that

X1/2SX1/2 = QT (LT R)(RT L)Q = (QT V )D2(V T Q).

Since QT V is orthogonal, we have

(X1/2SX1/2)−1/2 = (QT V )D−1(V T Q).

Then the NT-scaling point W can be computed easily:

W = LV D−1V T LT = GGT ,

where
G := LV D−1/2.

In the implementation, we use the scaling matrices G and G−1 = D1/2V T L−1

in the computation of the feasibility directions or centering directions. For exam-
ple, X and S are scaled to the same diagonal matrix D,

GT SG = G−1XG−T = D.

Remark 7.1. In the implementation, we do not need to keep the orthogonal ma-
trix U ; V and D are all we need. In fact, V D2V T is the eigenvalue decomposition
of LT RRT L = LT SL, so we could use this instead of the SVD. But the condition
number of this matrix is the square of that of RT L, which may lead to a less
stable algorithm.
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7.2 Short updates versus adaptive updates

In this section we start with a straightforward implementation of the full NT-step
IIPM for SO with standard short updates, namely, Algorithm 6.1 with θ = 1/(4r).
After that we make some modifications of the algorithm as described in Section 6.7
that increase the practical efficiency of the algorithm without destroying the the-
oretical iteration bound.

We solve the problem truss13 (from SDPLIB [12]) using both the short up-
dating algorithm and the adaptive updating one. For both algorithms, the ini-
tialization parameter ζ is computed as described in Subsection 7.1.1 (for truss1,
ζ = 10), and the accuracy parameter ε is set to 10−9. For each iteration we list
the iteration number (It.), the update parameter θ, proximity measure after the
feasibility step δ(vf ), proximity measure after the centering steps δ(v), parameter
ν, the duality gap tr(x ◦ s), the norm of primal infeasibility ‖rp‖F (rp = b−Ax),
and the norm of dual infeasibility ‖rd‖F (rd = c−AT y − s).

For the algorithm with short updates, we need 1437 main iterations to reach
our accuracy. Since there are too many iterations, in Table 7.1, after the first
iteration we show only iterations whose number is a multiple of 100, and the last
iteration. Note that the update parameter θ is constant (θ = 1/(4r)) in this
example.

It. θ δ(vf ) δ(v) ν tr(x ◦ s) ‖rp‖F ‖rd‖F

0 – – 0 1.0000+00 1.3000+03 7.7363+01 3.5791+01
1 0.019231 2.150−04 1.736−08 9.8077−01 1.2750+03 7.5875+01 3.5103+01

100 0.019231 8.767−05 2.305−09 1.4344−01 1.8648+02 1.1097+01 5.1340+00
200 0.019231 9.911−05 2.075−09 2.0576−02 2.6749+01 1.5918+00 7.3645−01
300 0.019231 4.783−05 1.982−10 2.9515−03 3.8370+00 2.2834−01 1.0564−01
400 0.019231 7.716−06 8.635−13 4.2338−04 5.5040−01 3.2754−02 1.5153−02
500 0.019231 1.121−06 2.783−13 6.0732−05 7.8951−02 4.6984−03 2.1737−03
600 0.019231 1.610−07 1.883−12 8.7116−06 1.1325−02 6.7396−04 3.1180−04
700 0.019231 2.311−08 8.135−12 1.2496−06 1.6245−03 9.6675−05 4.4726−05
800 0.019231 3.304−09 7.412−11 1.7925−07 2.3303−04 1.3867−05 6.4156−06
900 0.019231 1.038−09 6.778−10 2.5713−08 3.3427−05 1.9892−06 9.2029−07

1000 0.019231 2.561−09 7.263−09 3.6884−09 4.7949−06 2.8534−07 1.3201−07
1100 0.019231 6.945−08 1.886−08 5.2907−10 6.8780−07 4.0931−08 1.8936−08
1200 0.019231 2.668−07 2.274−07 7.5893−11 9.8660−08 5.8713−09 2.7163−09
1300 0.019231 2.683−06 1.802−06 1.0886−11 1.4152−08 8.4220−10 3.8963−10
1400 0.019231 1.385−05 2.198−05 1.5616−12 2.0301−09 1.2080−10 5.5892−11
1437 0.019231 3.725−05 2.612−05 7.6127−13 9.8965−10 5.8892−11 2.7245−11

Table 7.1: Full NT-step IIPM for truss1 with short updates.

3We choose this problem only because it is the problem in SDPLIB with the smallest rank r,
which in turn requires least number of main iterations when using the short updating algorithm.
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For the algorithm with adaptive updates, we list all the iterations. From
Table 7.2, we see that the adaptive updating strategy reduced the number of
main iterations from 1437 to 10. Since for both algorithms the work in every
main iteration is almost the same, this is really a huge reduction.

It. θ δ(vf ) δ(v) ν tr(x ◦ s) ‖rp‖F ‖rd‖F

0 – – 0 1.0000+00 1.3000+03 7.7363+01 3.5791+01
1 0.542133 0.581227 0.002693 4.5787−01 5.9523+02 3.5422+01 1.6388+01
2 0.562885 0.528824 0.003163 2.0014−01 2.6018+02 1.5483+01 7.1632+00
3 0.695392 0.329394 0.029860 6.0964−02 7.9253+01 4.7164+00 2.1820+00
4 0.664871 0.322266 0.015685 2.0431−02 2.6560+01 1.5806+00 7.3124−01
5 0.670462 0.324459 0.014783 6.7327−03 8.7526+00 5.2086−01 2.4097−01
6 0.703068 0.351603 0.008555 1.9992−03 2.5989+00 1.5466−01 7.1552−02
7 0.832277 0.361225 0.001646 3.3531−04 4.3590−01 2.5940−02 1.2001−02
8 0.959861 0.360385 0.000190 1.3459−05 1.7497−02 1.0412−03 4.8171−04
9 0.998235 0.359214 0.000044 2.3749−08 3.0874−05 1.8373−06 8.5001−07

10 0.999976 0.046595 0.000068 5.7971−13 7.5362−10 4.4167−11 2.0753−11

Table 7.2: Full NT-step IIPM for truss1 with adaptive updates.

7.3 SDPLIB problems

In this section we describe the numerical results of our full NT-step IIPM for SO
with adaptive updates, on problems from SDPLIB collection of Borchers [12]. To
make our algorithm more efficient, we make some efforts to assemble the Shur
complement matrix AP (w)AT (cf. (6.19)). Following [30], we exploit the sparsity
of the part of the coefficient matrix corresponding to the semidefinite blocks. In
addition, we use Mex subroutines compiled from programs written in C.

Numerical results are given in Table 7.3.4 By default, we use initialization
parameter ζ and accuracy parameter ε estimated by the algorithm. We adjust the
accuracy parameter ε only when the algorithm fails to reach it. For each problem,
we list the initialization parameter ζ, the accuracy parameter ε, the number of
main iterations required, the primal objective value, and the dual objective value.

Generally, our algorithm is slower than the latest version of SDPT3 (SDPT3-
4.0-beta)5. We think the main reason is that our algorithm uses adaptive updating
strategy, which means that the iterates always lie in the quadratic convergence

4As for the latest version of SDPT3 (SDPT3-4.0-beta), we cannot solve the largest two maxG
problems (maxG55 and maxG60) from SDPLIB. Since in the algorithm we store x, s, as well as
the search directions, this requires a lot of memory. Moreover, Matlab duplicates the data when
calling a subroutine, and this makes the situation even worse. On the other hand, our algorithm
is a primal-dual method storing the primal iterate x, it cannot exploit common sparsity in c and
the constraint matrix as well as dual methods or nonlinear-programming based methods.

5SDPT3 is available from http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
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Problem ζ ε it. primal obj. dual obj.
arch0 1.960080+004 1.0−004 70 -5.664629−001 -5.665339−001
arch2 1.960077+004 1.0−004 66 -6.714678−001 -6.715268−001
arch4 1.960077+004 1.0−004 70 -9.725819−001 -9.726377−001
arch8 1.960090+004 1.0−004 69 -7.056927+000 -7.057000+000

control01 2.517596+004 1.0−006 33 -1.778463+001 -1.778463+001
control02 4.954101+004 1.0−005 35 -8.300066+000 -8.300003+000
control03 6.120488+004 1.0−004 43 -1.363336+001 -1.363328+001
control04 8.716397+004 1.0−004 46 -1.979449+001 -1.979425+001
control05 1.052365+005 1.0−004 51 -1.688373+001 -1.688362+001
control06 1.484766+005 1.0−003 62 -3.730680+001 -3.730456+001
control07 1.588696+005 1.0−003 63 -2.062617+001 -2.062517+001
control08 1.866582+005 1.0−003 62 -2.028768+001 -2.028649+001
control09 2.074063+005 1.0−003 61 -1.467638+001 -1.467557+001
control10 2.221099+005 1.0−003 87 -3.853708+001 -3.853316+001
control11 2.727531+005 1.0−002 77 -3.197998+001 -3.195949+001
equalG11 8.010000+002 1.0−004 48 -6.291552+002 -6.291553+002
equalG51 1.009909+003 1.0−004 64 -4.005601+003 -4.005601+003

gpp100 1.000000+002 1.0−005 47 4.494354+001 4.494354+001
gpp124-1 1.240000+002 1.0−005 49 7.343071+000 7.343069+000
gpp124-2 1.240000+002 1.0−005 50 4.686228+001 4.686229+001
gpp124-3 1.240000+002 1.0−005 51 1.530141+002 1.530141+002
gpp124-4 1.240000+002 1.0−005 88 4.189876+002 4.189876+002
gpp250-1 2.500000+002 1.0−004 45 1.544498+001 1.544491+001
gpp250-2 2.500000+002 1.0−004 45 8.186901+001 8.186894+001
gpp250-3 2.500000+002 1.0−004 50 3.035393+002 3.035393+002
gpp250-4 2.500000+002 1.0−004 56 7.473283+002 7.473282+002
gpp500-1 5.000000+002 1.0−004 57 2.532062+001 2.532053+001
gpp500-2 5.000000+002 1.0−004 54 1.560605+002 1.560604+002
gpp500-3 5.000000+002 1.0−004 50 5.130177+002 5.130176+002
gpp500-4 5.000000+002 1.0−004 50 1.567019+003 1.567019+003

hinf01 1.200000+001 1.0−005 28 -2.034139+000 -2.033369+000
hinf02 1.200000+001 1.0−004 29 -1.097437+001 -1.096869+001
hinf03 1.389576+001 1.0−003 42 -5.709390+001 -5.700073+001
hinf04 4.596982+001 1.0−004 34 -2.747976+002 -2.747807+002
hinf05 6.392141+001 1.0−003 44 -3.642457+002 -3.632350+002
hinf06 2.942494+001 1.0−003 80 -4.500583+002 -4.494233+002
hinf07 8.155415+001 1.0−003 56 -3.909963+002 -3.908684+002
hinf08 4.707387+001 1.0−003 39 -1.169842+002 -1.163869+002
hinf09 7.130835+001 1.0−002 89 -2.363351+002 -2.355179+002
hinf10 9.653183+001 1.0−002 91 -1.101387+002 -1.094250+002
hinf11 1.127458+002 1.0−002 79 -6.676545+001 -6.631436+001
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problem ζ ε it. primal obj. dual obj.
hinf12 4.410098+001 1.0−001 73 -3.358319+001 -2.911997+001
hinf13 2.800000+001 1.0−001 74 -4.925325+001 -4.609890+001
hinf14 3.200000+001 1.0−003 50 -1.301100+001 -1.300101+001
hinf15 3.600000+001 1.0−001 84 -2.855134+001 -2.545825+001
infd1 2.076438e+003 1.0−007 18 θ < 1/(4r)
infd2 3.993056e+002 1.0−009 17 θ < 1/(4r)
infp1 9.394030e+001 1.0−010 7 θ < 1/(4r)
infp2 7.082406e+001 1.0−010 7 θ < 1/(4r)

maxG11 8.000000+002 1.0−007 49 -6.291648+002 -6.291648+002
maxG32 2.000000+003 1.0−006 61 -1.567640+003 -1.567640+003
maxG51 1.000000+003 1.0−007 49 -4.006256+003 -4.006256+003
mcp100 1.000000+002 1.0−010 25 -2.261574+002 -2.261574+002

mcp124-1 1.240000+002 1.0−009 28 -1.419905+002 -1.419905+002
mcp124-2 1.240000+002 1.0−009 27 -2.698802+002 -2.698802+002
mcp124-3 1.240000+002 1.0−009 27 -4.677501+002 -4.677501+002
mcp124-4 1.240000+002 1.0−009 26 -8.644119+002 -8.644119+002
mcp250-1 2.500000+002 1.0−008 34 -3.172643+002 -3.172643+002
mcp250-2 2.500000+002 1.0−008 32 -5.319301+002 -5.319301+002
mcp250-3 2.500000+002 1.0−008 32 -9.811726+002 -9.811726+002
mcp250-4 2.500000+002 1.0−008 32 -1.681960+003 -1.681960+003
mcp500-1 5.000000+002 1.0−007 41 -5.981485+002 -5.981485+002
mcp500-2 5.000000+002 1.0−007 41 -1.070057+003 -1.070057+003
mcp500-3 5.000000+002 1.0−007 39 -1.847970+003 -1.847970+003
mcp500-4 5.000000+002 1.0−007 39 -3.566738+003 -3.566738+003

qap05 5.905421+002 1.0−009 18 4.360000+002 4.360000+002
qap06 8.839910+002 1.0−005 38 3.813595+002 3.813997+002
qap07 9.601125+002 1.0−005 42 4.247678+002 4.247943+002
qap08 1.539013+003 1.0−005 42 7.568138+002 7.568855+002
qap09 2.407917+003 1.0−005 44 1.409864+003 1.409903+003
qap10 2.411985+003 1.0−005 34 1.092337+003 1.092474+003
qpG11 1.325483+003 1.0−006 53 -2.448659+003 -2.448659+003
qpG51 1.656854+003 1.0−006 78 -1.181800+004 -1.181800+004

ss30 1.332305+003 1.0−005 69 -2.023950+001 -2.023951+001
theta1 5.000000+001 1.0−010 19 -2.300000+001 -2.300000+001
theta2 1.000000+002 1.0−010 24 -3.287917+001 -3.287917+001
theta3 1.500000+002 1.0−009 25 -4.216698+001 -4.216698+001
theta4 2.000000+002 1.0−009 28 -5.032122+001 -5.032122+001
theta5 2.500000+002 1.0−008 28 -5.723231+001 -5.723231+001
theta6 3.000000+002 1.0−008 32 -6.347709+001 -6.347709+001

thetaG11 8.010000+002 1.0−007 91 -4.000000+002 -4.000000+002
thetaG51 1.001000+003 1.0−006 91 -3.490000+002 -3.490000+002
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problem ζ ε it. primal obj. dual obj.
truss1 1.000000+001 1.0−011 11 8.999996+000 8.999996+000
truss2 1.199960+001 1.0−009 42 1.233804+002 1.233804+002
truss3 1.500000+001 1.0−009 22 9.109996+000 9.109996+000
truss4 1.000000+001 1.0−010 13 9.009996+000 9.009996+000
truss5 2.999900+001 1.0−008 41 1.326357+002 1.326357+002
truss6 1.000000+001 1.0−006 192 9.010013+002 9.010014+002
truss7 1.000000+001 1.0−006 190 9.000014+002 9.000014+002
truss8 5.699810+001 1.0−007 50 1.331146+002 1.331146+002

Table 7.3: Full NT-step IIPM for SO on SDPLIB problems.

neighborhood with respect to some perturbed problems. As a consequence, the
improvement over optimality and feasibility in every main iteration is smaller
than that for large update methods. Therefore, we need more main iterations,
normally 2 to 3 times more than that of SDPT36. Moreover, we use NT-direction
in our algorithm, while the default direction in SDPT3 is HRVW/KSH/M direc-
tion, which is universally faster than NT-direction on problems with semidefinite
blocks, especially for sparse problems with large semidefinite blocks. The reason
that the NT-direction is slower is because computing the NT-scaling matrix re-
quires a full eigenvalue decomposition. This computation can dominate the work
at each inner iteration when the problem is sparse [107].

7.4 The counter example

In Appendix A we construct a counter example for LO showing that κ̄(ζ) is in
the order of

√
n, which in turn implies that the update parameter θ for our full

NT-step IIPM algorithm with standard short updates is tight in the order. As a
consequence, it seems that our full NT-step IIPM algorithm with adaptive updates
will result in minor improvements over the algorithm with short updates.

In this section, we present typical numerical results of our full NT-step IIPM
algorithm with adaptive updates on the counter example as well as a random
problem for comparison. We follow exactly the same line as in Appendix A to
generate our counter example problem with dimension n = 400 and ν = 1/400.
For the random problem, we generate the coefficient matrix A randomly with
the same dimension as in our counter example. Then we use the same optimal
solutions as in our counter example to compose b and c.

The output of our adaptive updating algorithm for the counter example is
listed in Table 7.4. We see that at some iterations (iteration 3, 4) the update
parameter θ is really small. The output for the random example is contained in

6The iteration number for SDPT3 can be found in their user’s guide, but for HRVW/KSH/M
direction.
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It. θ δ(vf ) δ(v) ν tr(x ◦ s) ‖rp‖F ‖rd‖F

0 – – – 1.0000+00 4.0000+02 1.9967+01 1.1756+01
1 0.933523 0.682593 0.010870 6.6477−02 2.6591+01 1.3274+00 7.8154−01
2 0.234841 0.704583 0.013006 5.0865−02 2.0346+01 1.0156+00 5.9800−01
3 0.086448 0.705139 0.003284 4.6468−02 1.8587+01 9.2784−01 5.4630−01
4 0.097065 0.705043 0.022271 4.1958−02 1.6783+01 8.3777−01 4.9328−01
5 0.148434 0.704586 0.005878 3.5730−02 1.4292+01 7.1342−01 4.2006−01
6 0.252086 0.701992 0.000798 2.6723−02 1.0689+01 5.3358−01 3.1417−01
7 0.415739 0.677546 0.002496 1.5613−02 6.2452+00 3.1175−01 1.8356−01
8 0.584069 0.437202 0.007433 6.4940−03 2.5976+00 1.2967−01 7.6346−02
9 0.508806 0.359555 0.001494 3.1898−03 1.2759+00 6.3691−02 3.7501−02

10 0.418970 0.359502 0.000334 1.8534−03 7.4135−01 3.7006−02 2.1789−02
11 0.367215 0.359505 0.000126 1.1728−03 4.6911−01 2.3417−02 1.3788−02
12 0.337189 0.359505 0.000091 7.7734−04 3.1093−01 1.5521−02 9.1387−03
13 0.321393 0.359505 0.000121 5.2751−04 2.1100−01 1.0533−02 6.2016−03
14 0.316393 0.359505 0.000196 3.6061−04 1.4424−01 7.2002−03 4.2395−03
15 0.320866 0.359505 0.000335 2.4490−04 9.7960−02 4.8899−03 2.8792−03
16 0.334885 0.359500 0.000603 1.6289−04 6.5155−02 3.2524−03 1.9150−03
17 0.359699 0.359473 0.001157 1.0430−04 4.1719−02 2.0825−03 1.2262−03
18 0.397242 0.359294 0.002368 6.2866−05 2.5146−02 1.2552−03 7.3908−04
19 0.444636 0.358118 0.004724 3.4913−05 1.3965−02 6.9711−04 4.1046−04
20 0.462980 0.355261 0.004844 1.8749−05 7.4996−03 3.7436−04 2.2042−04
21 0.415502 0.358565 0.000273 1.0959−05 4.3835−03 2.1882−04 1.2884−04
22 0.371625 0.362127 0.002009 6.8863−06 2.7545−03 1.3750−04 8.0958−05
23 0.348489 0.364162 0.002897 4.4865−06 1.7946−03 8.9582−05 5.2745−05
24 0.341300 0.365351 0.003225 2.9552−06 1.1821−03 5.9007−05 3.4743−05
25 0.346493 0.365940 0.003276 1.9313−06 7.7251−04 3.8562−05 2.2705−05
26 0.362179 0.365947 0.003165 1.2318−06 4.9272−04 2.4595−05 1.4482−05
27 0.387680 0.365221 0.002902 7.5426−07 3.0170−04 1.5060−05 8.8674−06
28 0.423888 0.363604 0.002481 4.3454−07 1.7381−04 8.6764−06 5.1086−06
29 0.473897 0.361146 0.002011 2.2861−07 9.1444−05 4.5647−06 2.6877−06
30 0.542105 0.357468 0.001574 1.0468−07 4.1872−05 2.0901−06 1.2307−06
31 0.632748 0.350431 0.000973 3.8444−08 1.5378−05 7.6761−07 4.5196−07
32 0.753218 0.341228 0.001070 9.4872−09 3.7949−06 1.8943−07 1.1154−07
33 0.839775 0.310414 0.001883 1.5201−09 6.0804−07 3.0352−08 1.7871−08
34 0.789479 0.279784 0.000246 3.2001−10 1.2800−07 6.3897−09 3.7622−09
35 0.871525 0.279112 0.000034 4.1113−11 1.6445−08 8.2091−10 4.8335−10
36 0.973113 0.279029 0.000001 1.1054−12 4.4216−10 2.2071−11 1.2996−11

Table 7.4: Full NT-step IIPM with adaptive updates on the counter example.

Table 7.5. We notice that the total number of iterations is approximately half of
that for the counter example.
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It. θ δ(vf ) δ(v) ν tr(x ◦ s) ‖rp‖F ‖rd‖F

0 – – – 1.0000+00 4.0000+02 3.9863+03 1.9435+03
1 0.976793 0.360216 0.005074 2.3207−02 9.2827+00 9.2508+01 4.5103+01
2 0.744812 0.354630 0.000051 5.9221−03 2.3688+00 2.3607+01 1.1510+01
3 0.546422 0.354996 0.000090 2.6861−03 1.0744+00 1.0708+01 5.2205+00
4 0.455168 0.355445 0.000161 1.4635−03 5.8539−01 5.8339+00 2.8443+00
5 0.408278 0.355931 0.000247 8.6597−04 3.4639−01 3.4520+00 1.6830+00
6 0.385256 0.356390 0.000334 5.3235−04 2.1294−01 2.1221+00 1.0346+00
7 0.377418 0.356750 0.000402 3.3143−04 1.3257−01 1.3212+00 6.4415−01
8 0.380504 0.356919 0.000436 2.0532−04 8.2129−02 8.1847−01 3.9905−01
9 0.392228 0.356795 0.000434 1.2479−04 4.9915−02 4.9744−01 2.4253−01

10 0.411393 0.356242 0.000402 7.3451−05 2.9381−02 2.9280−01 1.4275−01
11 0.437797 0.355070 0.000347 4.1295−05 1.6518−02 1.6461−01 8.0257−02
12 0.472855 0.353104 0.000262 2.1768−05 8.7073−03 8.6774−02 4.2307−02
13 0.520383 0.350326 0.000144 1.0440−05 4.1762−03 4.1618−02 2.0291−02
14 0.585182 0.346064 0.000024 4.3309−06 1.7323−03 1.7264−02 8.4172−03
15 0.671503 0.337622 0.000038 1.4227−06 5.6907−04 5.6712−03 2.7650−03
16 0.788239 0.328767 0.000111 3.0127−07 1.2051−04 1.2009−03 5.8552−04
17 0.825182 0.289628 0.000113 5.2667−08 2.1067−05 2.0995−04 1.0236−04
18 0.797427 0.278804 0.000085 1.0669−08 4.2676−06 4.2529−05 2.0735−05
19 0.896075 0.278963 0.000050 1.1088−09 4.4351−07 4.4199−06 2.1549−06
20 0.983405 0.290358 0.000281 1.8400−11 7.3601−09 7.3313−08 3.5761−08
21 0.990449 0.366145 0.000009 1.7575−13 7.0300−11 7.5669−10 3.4167−10

Table 7.5: Full NT-step IIPM with adaptive updates on a random example.

In summary, the counter example does affect the performance of the full
NT-step IIPM algorithm with adaptive updates, but not so severally to pre-
vent the improvements (the update parameter θ for our short updating algo-
rithm is 1/(4r) = 1/1600, from Table 7.4 we see that θ is much larger than
this value). We think the reasons are twofold. First, the κ̄(ζ) is in the order of√

n, but the coefficient is small; second, the update parameter θ in fact relies on
κ(ζ, ν) (κ̄(ζ) = max0<ν≤1 κ(ζ, ν)), which is not always in the order of

√
n for all

0 < ν ≤ 1.



Chapter 8

Conclusions

8.1 Concluding remarks

In this thesis we analyze full-step infeasible IPMs for LO and SO. Since the
analysis requires a quadratic convergence result for the feasible IPM, primal-dual
feasible IPMs with full steps are presented as well.

The work is motivated by [92], where Roos proposed the first full-Newton step
IIPM for LO. The full-step IIPMs can also be viewed as homotopy methods, which
turn out to have many nice properties. First, as the name suggests, they use full
steps, so there is no need to calculate the step length. Second, the iterates always
lie in the quadratic convergence neighborhood with respect to some perturbed
problems, which makes the algorithm more stable. Third, during the solution
process, both “feasibility” and “optimality” are improved at the same rate, which
is also credited by Potra [85]. Finally, the iteration bound coincides with the
currently best-known iteration bound for IIPMs.

As in Roos’s original IIPM, each iteration of the algorithm consists of a step
that restores the feasibility for an intermediate problem (the so-called feasibility
step) and a few (usually one to four) centering steps. The thesis starts with
some improvements over the original full-Newton step IIPM for LO. We use a
more natural feasibility step, which targets at the µ+-center of the new perturbed
problems. For the centering steps, we apply a sharper quadratic convergence
result, which results in a slightly wider neighborhood for the feasibility steps
(This is better when using adaptive updates, cf. Section 6.7). Also, the analysis
is simplified, which benefits the later generalization to SO.

Based on extensive computational evidence (hundreds of thousands of ran-
domly generated problems) Roos made a conjecture in [92], whose validity would
reduce the iteration bound of full-Newton step IIPM for LO by

√
n. In the ap-

pendix, we falsify the conjecture by a counter example, which also indicates that
one of our main inequalities for the analysis of the IIPM for LO is tight in the
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order.
Using the properties of Jordan algebras, we generalize the improved version of

full-Newton step IIPM for LO to full NT-step IIPM for SO, which includes LO,
SOCO, and SDO as special cases. The order of the resulting iteration bound coin-
cides with the bound derived for LO, which is the currently best known iteration
bound for SO.

Although our devised IIPMs admit the best known iteration bound, from a
practical perspective they will always perform according to their worst-case the-
oretical complexity bounds. As a remedy, we propose a more aggressive adaptive
updating strategy.

Finally, we implement our full NT-step IIPM for SO with both standard short
and adaptive updates. The significant improvement in performance of the adap-
tive updating strategy over the original short updating strategy is illustrated. The
algorithm with adaptive updates is used to solve problems from the well known
library SDPLIB [12] of test problems. The results are promising, and to some
extend competing with SDPT3 [107].

8.2 Further research

We mention some possible directions for further research that are related to the
topics discussed in this thesis.

• In our improved IIPM for LO, a stronger quadratic convergence result is
used (cf. Theorem 2.5). This results in a slightly wider quadratic conver-
gence neighborhood, which is better when using adaptive updates. Can we
generalize this result to SO?

• In the thesis, the full-step IIPM for SO is based on the NT-direction. A
natural generalization is to use directions in the commutative class, or more
generally the directions in the MZ-family (maybe with different proximity
measures). In fact, the HRVW/KSH/M direction generally outperforms the
NT-direction for problems involving semidefinite cones [107]. Also, SDPA
is based on the HRVW/KSH/M search direction [113].

• For the adaptive updating strategy we want to choose the update parameter
θ, 0 < θ < 1, as large as possible, such that after the feasibility step, the
iterate lies in the quadratic convergence neighborhood (with respect to the
new perturbed problem pair), or, equivalently, δ(vf ) ≤ 1/

√
2. Due to some

difficulties in the analysis of SO, we can only use the loose bound derived
in Lemma 6.4 to calculate θ, which means that there is a gap between the θ
used in our adaptive strategy and the optimal θ we may choose. A typical
graph of δ(vf ), as a function of θ, is as depicted in Figure 8.1.

• For LO, the feasible IPMs converge to the analytic center of the optimal set
[93], while for SDO it becomes more complicated [40, 41]. For our IIPMs,
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Figure 8.1: Typical behavior of δ(vf ) as a function of θ.

we only know that in general the homotopy path does not converge to the
analytic center of the optimal set. Thus, the convergence properties of our
full-step IIPMs need further investigation.

• The SO problem is much more subtle than the LO problem. For example,
it is possible that both the primal and the dual problem are feasible, but
their optimal values are not equal. Also, either problem may be infeasible
without there being a certificate (so-called weak infeasibility). So detecting
infeasibility robustly is always a challenge for the SO solvers. For our IIPM,
when it terminates without an optimal solution, we can only say that there is
no optimal solution with vanishing duality gap that satisfies (6.1) and (6.2).
Hence, more work is needed to detect infeasibility, indicate the infeasibility
pattern, and give a certificate of infeasibility if it exists.

• In this thesis, we generalize the full-Newton step IIPM for LO to full NT-
step IIPM for SO. Can we generalize the full-step IIPM to more general
classes of cones. For example, the hyperbolicity cones, which are more
general than symmetric cones, but have some structure that may help in
developing efficient IPMs [39, 89].





Appendix A

Counter Example to a
Conjecture

In A full-Newton step O(n) infeasible interior-point algorithm for linear opti-
mization [92], Roos proved that the devised full-Newton step infeasible IPM has
O(n log(n/ε)) worst-case iteration bound. This bound depends linearly on a pa-
rameter κ̄(ζ), which is proved to be less than

√
2n. Based on extensive compu-

tational evidence (hundreds of thousands of randomly generated problems) Roos
conjectured that κ̄(ζ) = 1 (Conjecture 5.1 in the above mentioned paper), which
would yield an O(

√
n log(n/ε)) iteration bound full-Newton step infeasible IPM.

In this chapter we present an example, which is based on [36], showing that κ̄(ζ)
is in the order of

√
n, the same order as has been proved in Roos’s original paper.

In other words, the conjecture is false.

A.1 The conjecture

We define

κ(ζ, ν) :=

√
‖x(ν)‖2 + ‖s(ν)‖2

ζ
√

2n
, 0 < ν ≤ 1,

where (x(ν), y(ν), s(ν)) is the µ-center of the perturbed problems (Pν) and (Dν)
with µ = νµ0 = νζ2 as defined in Subsection 3.2. In addition, we denote

κ̄(ζ) = max
0<ν≤1

κ(ζ, ν).

In [92], the total number of inner iterations (cf. [92, Section 4.7]) is bounded above
by

16κ̄(ζ)
√

n log
max

{
nζ2, ‖b−Aζe‖ , ‖c− ζe‖

}
ε

.
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There, Roos proved that
κ̄(ζ) ≤

√
2n, (A.1)

which implies that the inner iteration bound is O(n log(n/ε)) (the best iteration
bound for infeasible interior-point methods). Based on extensive computational
evidence (hundreds of thousands of randomly generated problems) Roos made the
following conjecture.

Conjecture A.1 (Conjecture 5.1 in [92]). If (P) and (D) are feasible and ζ ≥
‖x∗ + s∗‖∞ for some pair of optimal solutions x∗ and (y∗, s∗), then κ̄(ζ) = 1.

Clearly, the correctness of the above conjecture will reduce the iteration bound
by

√
n.

A.2 Counter example

Due to the choice of the optimal solution (x∗, y∗, s∗), we have

Ax∗ = b, 0 ≤ x∗ ≤ ζe,

AT y∗ + s∗ = c, 0 ≤ s∗ ≤ ζe,

x∗s∗ = 0.

(A.2)

To simplify notation in the rest of this section, we denote x := x(µ, ν), y := y(µ, ν)
and s := s(µ, ν). Then x, y and s are uniquely determined by the system in
Subsection 3.2. Using (A.2) we get the following equivalent system

Ax∗ −Ax = ν(Ax∗ −Aζe), x > 0,

AT y∗ + s∗ −AT y − s = ν(AT y∗ + s∗ − ζe), s > 0,

xs = νζ2e.

We rewrite this system as

A(x∗ − x− νx∗ + νζe) = 0, x > 0,

AT (y∗ − y − νy∗) = s− s∗ + νs∗ − νζe, s > 0,

xs = νζ2e.

(A.3)

Hence the maximal value that κ̄(ζ) can attain is obtained by solving the problem

max
0<ν≤1


√
‖x‖2 + ‖s‖2

ζ
√

2n
: (A.2) and (A.3)

 . (A.4)

In this problem we maximize over all possible values of A, b, c, ζ, ν, x∗, y∗, s∗,
x, y, and s satisfying (A.2) and (A.3). Note that if (A.2) and (A.3) are satisfied,
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then after replacing x∗, y∗, s∗, x, y, s, b, and c by x∗/ζ, y∗/ζ, s∗/ζ, x/ζ, y/ζ, s/ζ,
b/ζ, and c/ζ, respectively, we get a solution of (A.2) and (A.3) with ζ = 1, and
in that case the value of the objective function in (A.4) does not change. Hence,
without loss of generality we may assume below that ζ = 1.

Our aim is to construct a feasible solution for (A.2) and (A.3) such that the
objective value of (A.4) is of the same order as

√
n, thus showing that the order

of the theoretical bound for κ̄(ζ) in (A.1) is sharp. This will be done by first
constructing suitable vectors x∗, y∗, s∗, x, y, s such that, for some fixed value of
ν ∈ (0, 1),

0 ≤ x∗ ≤ e, 0 ≤ s∗ ≤ e, x∗s∗ = 0, x > 0, s > 0, xs = νe, (A.5)

and such that the objective value in (A.4) is of the same order as
√

n. After this
we will construct A, b and c such that (A.2) and (A.3) are satisfied (for ζ = 1). It
follows that the constructed (x, y, s) is just the µ-center of the perturbed problem
pair (Pν) and (Dν) with µ = νµ0 = νζ2 = ν. This will suffice to falsify Conjecture
A.1.

Using that the row space of a matrix and its null space are orthogonal, we
relax for the moment the first two equations in the system (A.3) to

(x∗ − x− νx∗ + νe)T (s− s∗ + νs∗ − νe) = 0, x > 0, s > 0. (A.6)

Since x∗ and s∗ are orthogonal, we may rewrite the above equation as follows.

xT

[
1− ν

ν
s∗ + e

]
+ sT

[
1− ν

ν
x∗ + e

]
= (1− ν)eT (x∗ + s∗) + n(1 + ν). (A.7)

At this stage we choose a fixed value of ν ∈ (0, 1) and x∗ and s∗ such that their
positive entries are small enough to have

1− ν

ν
s∗ + e ≈ e,

1− ν

ν
x∗ + e ≈ e, (1− ν)eT (x∗ + s∗) + n(1 + ν) ≈ n(1 + ν).

(A.8)
Then it follows from (A.7) that

xT e + sT e ≈ n(1 + ν).

Yet we choose
xi = si =

√
ν, for i > 1, (A.9)

leaving x1 and s1 free for the moment. This gives

x1 + s1 + 2(n− 1)
√

ν ≈ n(1 + ν),

or, equivalently,
x1 + s1 ≈ (n− 1)

(
1−

√
ν
)2 + (1 + ν). (A.10)
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Our aim is to make x and s the µ-centers of the perturbed problems corresponding
to µ = νµ0 = νζ2, and then to compute κ(ζ, ν). This holds if xs = µe. Since
ζ = 1, and because of (A.9), this holds if x1s1 = ν. We may easily check that
there exists x1 and s1 which satisfy (A.10) and x1s1 = ν. Hence

x2
1 + s2

1 = (x1 + s1)
2 − 2x1s1 ≈

[
(n− 1)

(
1−

√
ν
)2 + (1 + ν)

]2
− 2ν,

Thus we obtain

‖x‖2 + ‖s‖2 ≈
[
(n− 1)

(
1−

√
ν
)2 + (1 + ν)

]2
− 2ν + 2(n− 1)ν.

Since ζ = 1 this implies

κ(1, ν) =

√
‖x‖2 + ‖s‖2
√

2n
≈

√[
(n− 1) (1−

√
ν)2 + (1 + ν)

]2
+ 2(n− 2)ν

√
2n

.

(A.11)
Note that for fixed ν (0 < ν < 1) the last expression is of the same order as

√
n.

E.g., for ν = 1/4 it equals
√

(n + 16)/32. Note that if ν is too small, then (A.8)
will not be a good approximation.

Until now the vectors x∗, y∗, s∗, x, y, s only satisfy (A.5) and (A.6). It remains
to show that there exist A, b and c such that (A.2) and (A.3) are satisfied. This
is easy. We take for A any matrix whose row space is equal to the orthogonal
complement of the linear space generated by the vector x∗ − x− νx∗ + νe. Then
the vector s∗− s− νs∗+ νe belongs to the row space of A, and hence there exists
a vector y such that AT y = s∗− s− νs∗+ νe. Taking y∗ = 0 it follows that (A.3)
holds. Finally, taking b = Ax∗ and c = AT y∗ + s∗, also (A.2) holds. Thus we
have shown the existence of a feasible solution of (A.4) for which the κ(ζ, ν) has
the order of

√
n, and hence κ̄(ζ) will be at least of this order.

Just to add some numerical evidence to the above analysis we applied the
above described construction for several values of n and ν. We took for x∗ and s∗

randomly generated nonnegative and orthogonal vectors, whose positive entries
are uniformly distributed in (0, 1/1000) 1. For the computation of x1 and s1 we
used (A.7), instead of its approximation (A.10). As a consequence x and s are
the µ-centers of the perturbed problems (Pν) and (Dν) with µ = νζ2 = ν, and
κ(1, ν) is well-approximated by (A.11). We choose ν = 1/2, 1/4, 1/16, 1/256; the
resulting values of κ(ζ, ν) and κ̄(ζ) with ζ = 1 are listed in Table A.1.

For different values of ν, we plot κ̄(1) according to
√

n in Figure A.1. From
the figure, we notice that κ̄(1) increases almost linearly with respect to

√
n.

1Here x∗ + s∗ ≤ 1/1000, and we choose ζ = 1 (much larger than 1/1000). One natural
question is what about the situation when ζ is tight for x∗ + s∗. The answer is that we may
slightly change our example, it still works. Indeed, upon our original example, we change x∗1 to
0 and s∗1 to 1, hence ζ = 1 is tight. When calculate x1 and s1 from (A.7) and x1s1 = ν, we set
x1 the larger one and s1 the smaller one accordingly. We may see from (A.7) that this will not
affect our example too much, which is also indicated by the numerical test.
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ν = 1/2 ν = 1/4 ν = 1/16 ν = 1/256
n = 22 κ(1, ν) 0.7975 0.7901 0.9860 1.2829

κ̄(1) 1.0000 1.0000 1.1344 1.3311
n = 32 κ(1, ν) 0.8089 0.8834 1.3268 1.8778

κ̄(1) 1.0299 1.2625 1.6239 1.9334
n = 42 κ(1, ν) 0.8246 0.9991 1.6927 2.4944

κ̄(1) 1.1877 1.5560 2.1203 2.5851
n = 52 κ(1, ν) 0.8444 1.1307 2.0685 3.1003

κ̄(1) 1.3430 1.8671 2.6135 3.2163
n = 62 κ(1, ν) 0.8679 1.2734 2.4515 3.7157

κ̄(1) 1.5057 2.1871 3.1220 3.8597
n = 72 κ(1, ν) 0.8950 1.4236 2.8400 4.3271

κ̄(1) 1.6770 2.5173 3.6338 4.4846
n = 82 κ(1, ν) 0.9253 1.5791 3.2273 4.9449

κ̄(1) 1.8506 2.8389 4.1382 5.1343
n = 92 κ(1, ν) 0.9584 1.7389 3.6183 5.5528

κ̄(1) 2.0335 3.1725 4.6459 5.7512

Table A.1: Typical values of κ(1, ν) and κ̄(1) for some values of n and ν.

2 3 4 5 6 7 8 9
1
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Figure A.1: Illustration of κ̄(1) vs
√

n, for ν = 1/2, 1/4, 1/16, 1/256.
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It is clear from the Table A.1 and Figure A.1 that Conjecture A.1 ([92, Con-
jecture 5.1]) is false.
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[38] Osman Güler. Barrier functions in interior point methods. Math. Oper.
Res., 21(4):860–885, 1996.
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of the Alizadeh-Haeberly-Overton direction for semidefinite programming.
Math. Programming, 78(3, Ser. A):393–396, 1997.

[72] Renato D. C. Monteiro and Yin Zhang. A unified analysis for a class of long-
step primal-dual path-following interior-point algorithms for semidefinite
programming. Math. Programming, 81(3, Ser. A):281–299, 1998.



BIBLIOGRAPHY 115

[73] A. S. Nemirovski and D. B. Yudin. Problem complexity and method effi-
ciency in optimization. A Wiley-Interscience Publication. John Wiley &
Sons Inc., New York, 1983. Translated from the Russian and with a preface
by E. R. Dawson, Wiley-Interscience Series in Discrete Mathematics.

[74] Arkadi Nemirovski. Advances in convex optimization: conic programming.
In International Congress of Mathematicians. Vol. I, pages 413–444. Eur.
Math. Soc., Zürich, 2007.
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Notation

Sets
R the field of real numbers.
R+ Nonnegative real number.
R++ positive real numbers.
Rn Real n-vectors (n× 1 matrices).
Rm×n Real m× n matrices.
Ln+1

+ Second-order cones.
Sn Symmetric n× n matrices.
Sn

+ Symmetric positive semidefinite n× n matrices.
Sn

++ Symmetric positive definite n× n matrices.

Vectors and matrices
0 Zero vector or matrix of appropriate size.
I Identity matrix of appropriate size.
·T Transpose of a vector or matrix.

Jordan algebra
◦ Jordan product.
e the identity element.
λ(·) the eigenvalues.
λmin(·) the smallest eigenvalue.
λmax(·) the largest eigenvalue.
tr(·) trace.
det(·) determinant.
L(·) Linear operator.
P (·) Quadratic operator.
〈·, ·〉 Inner product.
‖·‖ Euclidean norm.
‖·‖F Frobenius norm.
⊗ Kronecker product.
⊕ Direct sum.
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120 NOTATION

Generalized inequalities
�K Generalized inequality induced by the proper cone K.
≺K Strict generalized inequality induced by the proper cone K.

Abbreviations
IPC Interior-Point Condition.
IPM(s) Interior-Point Method(s).
IIPM(s) Infeasible Interior-Point Method(s).
LO Linear Optimization.
SOCO Second-Order Cone Optimization.
SDO Semidefinite Optimization.
SO Symmetric Optimization.
CO Conic Optimization.
NT Nesterov-Todd.
SVD Singular Value Decomposition.



Index

adaptive updating strategy, 86
algebra, 36

Jordan algebra, 36
Euclidean Jordan algebra, 40
simple Jordan algebra, 45

simple algebra, 45
algorithms

full NT-step feasible IPM for SO,
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full NT-step infeasible IPM for SO,
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full-Newton step feasible IPM for
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full-Newton step infeasible IPM for
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automorphism, 46

bilinear map, 36

central path, 12, 21, 60, 70
characteristic polynomial, 36
complexity class NP, 2
complexity class P, 2
cone, 43

dual cone, 43
proper cone, 44
self-dual cone, 43

symmetric cone, 43
self-scaled cone, 6

cone of squares, 44
convex set, 43

determinant, 37

ellipsoid method, 3

Frobenius norm, 42
fundamental formula, 38

homogeneity, 43

ideal, 45
idempotent, 40

primitive idempotent, 41
identity element, 36
Interior-Point Condition (IPC), 12, 60
Interior-Point Methods (IPMs), 3

feasible IPMs, 7
infeasible IPMs (IIPMs), 7
primal-dual IPMs, 6

invertible element, 37

Jordan frame, 41

Lyapunov lemma, 57

minimal polynomial, 37

NT-scaling, 50, 91

optimization, 1
Conic Optimization (CO), 59
Linear Optimization (LO), 1, 11
Symmetric Optimization (SO), 4,

59

Peirce decomposition, 46
perturbed problem, 19, 69
proximity measure, 14, 63

quadratic representation, 38

rank, 37
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regular, 37

similarity, 51
simplex method, 2
spectral decomposition

first version, 41
second version, 42

strong duality, 12, 60

trace, 37

weak duality, 12, 60



Summary

Full-Step Interior-Point Methods for Symmetric Optimiza-
tion

In [92] Roos proposed a full-Newton step Infeasible Interior-Point Method (IIPM)
for Linear Optimization (LO). It is a primal-dual homotopy method; it differs from
the classical IIPMs in that it uses only full steps. This means that no line searches
are needed.

In this thesis, we first present an improved full-Newton step IIPM for LO.
Then, based on the properties of Euclidean Jordan algebras, we generalize the
improved full-Newton step IIPM for LO to full Nesterov-Todd step (NT-step)
IIPM for Symmetric Optimization (SO). Since the analysis requires a quadratic
convergence result for the feasible case, primal-dual feasible IPMs with full steps
are presented as well.

Although our devised IIPMs admit the best known iteration bound, from a
practical perspective they are not efficient. This is because they always perform
according to their worst-case theoretical complexity bounds, which means that
only tiny reductions of the so-called barrier parameter are admitted. As a remedy,
we propose a more aggressive (adaptive) updating strategy.

Finally, our full NT-step IIPM for SO is implemented with both standard
and adaptive updates of the barrier parameter. The significant improvement in
performance of the adaptive updating strategy over the original short updating
strategy is illustrated. The algorithm with adaptive updates is also used to solve
problems from the well known library SDPLIB [12] of test problems. The results
are promising, and to some extend competing with SDPT3 [107].
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Samenvatting

Volle-stap Inwendige Punt Methoden voor Symmetrische Op-
timalisering

In [92] presenteerde en analiseerde Roos een Ontoelaatbare Inwendige Punt Meth-
ode (OIPM) voor Lineaire Optimalisering (LO). Het is een primaal-duale homo-
topie methode die zich onderscheidt van de klassieke methoden doordat alleen
volle Newton stappen worden gebruikt. Er zijn dus geen lijnzoekmethoden nodig.

We beginnen dit proefschrift met een verbeterde volle-Newton-stap OIPM voor
LO. Vervolgens, gebruikmakend van de eigenschappen van Euclidische Jordan
algebras, generaliseren we de aldus verbeterde OIPM voor LO naar een volle
Nesterov-Todd-stap OIPM voor Symmetrische Optimalisering (SO). Omdat de
analyse van deze methode een kwadratisch convergentie resultaat gebruikt voor
toelaatbare IPMn, kijken we eerst naar primaal-duale toelaatbare IPMn met volle
stappen.

Ofschoon de door ons bedachte OIPMn de best bekende iteratiegrens hebben,
zijn zij vanuit praktisch oogpunt inefficiënt, doordat hun praktische performance
niet veel beter is dan de theoretische slechtse-geval performance. Dit komt doordat
de theorie slechts kleine reducties van de zogenaamde barriëre parameter toelaat.
Als remedie stellen wij een agressievere (adaptieve) aanpassingstrategie voor.

Tenslotte is onze volle NT-stap OIPM voor SO geımplementeerd met zowel
standaard als adaptieve aanpassingen van de barriëre parameter. De hierdoor te
bereiken verbetering in performance van de adaptive strategie ten opzichte van de
standaard strategie wordt aan de hand van een voorbeeld duidelijk gemaakt. Het
algortime met de adaptieve strategie is ook gebruikt om problemen op te lossen
uit de welbekende bibliotheek SDPLIB [12] van testproblemen. De gepresenteerde
resultaten zijn veelbelovend, en tot op zekere hoogte vergelijkbaar met die van
SDPT3 [107].
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