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ABSTRACT   

This paper describes the development of an opto-mechanical simulation of a complete shearography system, including 
the shearography instrument, the samples and the test environment. This simulation is applied to the measurement of 3D 
strains in engineering samples. The samples are a cylinder loaded by internal pressure and a flat plate under axial load. 
Finite elements models are used to obtain the displacements fields. A 3D shearography instrument consisting of a laser 
and four cameras has been simulated using the optical model. Combining the finite elements and optical simulations 
allows phase maps to be generated, which are the predictions for measurements using the complete test setup. Errors due 
to sample material properties, loading inaccuracy and dimensional tolerances are included in the model and this allows 
the calculation of phase maps at the minimum and maximum error limits. The simulation through path lengths and the 
simulation by inverted shearography processing provide similar results and the difference is associated with the 
approximation introduced by the sensitivity vector. 

Keywords: 3D Shearography, strain measurement, finite element model, error analysis.  

1. INTRODUCTION  

Shearography1 is a speckle shearing interferometry technique capable of measuring surface displacement gradient, from 
which strain information can be extracted. Shearography is commonly used for non-destructive testing applications in 
high technology industries2. A typical modern shearography instrument is composed of a laser, an interferometer 
incorporating phase shifting, a digital camera and a computer for data processing, including phase extraction, filtering, 
and the calculation and display of displacement gradient fields. The 3D configuration of shearography can be used for 
quantitative 3D strain measurement, however to achieve this, effort is required to compensate for errors, ideally 
automatically in the instrument processing software.  

Errors due to the illumination and imaging geometry are related to the sensitivity vector of the system. The sensitivity 
vector is defined as the bisector of the illumination and observation directions and, in general, a constant sensitivity 
vector is adopted. However the use of an expanded laser beam3,4 and the finite size of the object as well as the camera 
sensor5, introduces variable illumination and observation vectors and as a result, variable sensitivity vectors are inherent 
to the system. Errors are also associated with the magnitude of the shear. An accurate measurement of the shear distance 
is difficult to perform and in most cases a known distance at the object surface is used6. As an alternative, digital image 
correlation may be used7. The shear magnitude may also be variable along the surface due to object curvature8 or because 
of the Michelson interferometer9. At the data processing level, errors may be introduced, for example, by filtering 
processes10. For 3D shearography, extra error sources are linked with matrix transformation operations8,11 and with the 
misalignment of the camera’s sensor plane with the object surface, which requires extra steps during processing for 
image dewarping and co-registration11. In this case, the dewarping algorithm also provides a method to obtain the 
observation vectors11.  

In order to calibrate a shearography instrument with multiple cameras and one laser source, a combination of finite 
element (FE) simulations and optical simulations have been used, which can subsequently be used to compare with an 
experimental instrument and test set-up, see figure 1. In this paper, two simulation methods for the opto-mechanical 
simulation have been identified and the strain and maps of phase change calculated by these methods are compared. 
Errors due to the uncertainty in Young’s modulus and Poisson’s ratio of the sample material, manufacturing tolerances 
and loading inaccuracy were simulated in the model and their effects on the phase maps are calculated. Also the 
uncertainty introduced by sensitivity vectors approximations is discussed. 

Optical Micro- and Nanometrology III, edited by Christophe Gorecki, Anand Krishna Asundi, Wolfgang Osten, 
Proc. of SPIE Vol. 7718, 771816 · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.853602

Proc. of SPIE Vol. 7718  771816-1

Downloaded from SPIE Digital Library on 10 Aug 2011 to 131.180.130.109. Terms of Use:  http://spiedl.org/terms



 

Figure 1. Shearography instrument calibration strategy. 

2. SHEAROGRAPHY THEORY 

Shearography is a measurement technique based on the interference of light. The object being measured is illuminated by 
an expanded laser beam and light scattered from the object surface is recorded by a digital camera. A shearing Michelson 
interferometer is placed in front of the camera and adjusted so that each pixel on the camera sensor receives light from 
two different points on the object surface. These two points are separated by the shear distance. The result is a double 
image, where the intensity of light at each pixel contains information related to the difference in the phase of the light 
rays from those two points. This image is known as interferogram. Mathematically, the intensity at each pixel in the 
interferogram is described by1: 

 2 (1 cos )oI I γ φ= +  (1) 

Where 2 2
1 2( ) / 2oI a a= + , 2 2

1 2 1 22 /( )a a a aγ = + , 1a  and 2a are the amplitudes of the light rays from points P1 and P2 on 

the object surface and φ  is the difference of phase between these two points. 

To perform a measurement, reference interferograms are recorded and a phase shift algorithm12 is applied to determine 
the difference of phase at each pixel. This forms the reference map of difference of phase. The object is then loaded to a 
second state, further interferograms are recorded and the phase shift algorithm is again used to determine the map of 
difference of phase at this second loading state. This is the signal map of difference of phase. Reference and signal maps 
are then correlated by subtraction to yield an image with fringes. This image is referred to as phase map ( φ∆ ). From the 

optics point of view, the phase of a light ray is associated with the light path between the laser source (S), a point on the 
object (for example P1) and the camera sensor (C), according to the figure below. 

 

Figure 2. Schematic of the optical and engineering mechanics interpretation of the phase change. 
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The phase map is then described by1: 

 ( ) ( )* *
1 1 2 2 1 2

2 2
path pathSP C SP C SP C SP C d d

π πφ
λ λ
   ∆ = − − − = −   

 (2) 

Still considering Figure 1, the engineering mechanics interpretation of the map of phase map may be obtained as: 
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 (3) 

Where dx is the shear distance. The equation may also be formed with the shear in y direction and in this case the 

displacement gradients are along y direction. The vector k
�

 is known as sensitivity vector and is approximated by: 

 1 1

1 1

PS PC
k

PS PC
= +
���� ����

�

���� ����  (4) 

A 3D shearography system with three cameras is capable of generating three maps of phase difference for each shearing 
direction, which allows isolation of each displacement gradient by solving a coordinate transformation5: 
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 (5) 

M is 3x3 matrix defined by concatenating the components of the sensitivity vector for each camera. 

3. EXPERIMENTAL DETAILS OF THE SYSTEM BEING MODELLED 

3.1 Shearography instrument 

The shearography system is composed of four cameras and one laser source. The interferometers are positioned at the 
tips of a cross and the laser source is placed just below the center of the cross as indicated by the figure below. 

 

Figure 3. 3D Shearography instrument, showing the locations of the laser and the interferometers. 
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These camera positions were considered to minimize errors in the matrix transformation on equation (5)13. A large 
viewing angle is desirable to minimize errors in the coordinate transformation. On the other hand, the area on the object 
covered by one pixel on the camera increases, is spatially distorted and a lower light intensity reaches the camera. These 
effects cause a loss of spatial resolution and increase the uncertainty and the minimum limit for the shear distance. For 
large working distance, the error in the sensitivity vector reduces1. The distance between the object and the shearography 
instrument in the modeled system is 800mm. The structure is about 1m in length (x direction) and 1m in height (y 
direction). Although three cameras are enough to characterize all components of in plane strain, one extra camera allows 
multiple measurement channels combinations at equation (5) and a better confidence level is then obtained14.  

3.2 Calibration Samples 

Two calibration samples were designed and manufactured. One is based on a cylinder, loaded by internal pressure, and 
the other is a flat plate loaded axially.  

One special focus is the measurement of curved surfaces, thus the first sample is a thin wall aluminum cylinder of length 
400mm, external diameter of 190mm and wall thickness of 5mm manufactured by rolling a plate and welding the seam. 
Aluminum end caps were welded to the cylinder. Oil is pumped into the cylinder by a mechanical pump and the loading 
magnitude is controlled by a pressure gauge.  

 

Figure 4. Cylinder calibration sample.  

The equations (adapted from the thick wall model15) for longitudinal and tangential strains are respectively: 

 
2

2 2

(1 2 )i
l

o i

r P

Er r

υε −= ⋅
−

 (6) 
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(2 )i
t

o i

r P

Er r

υε −= ⋅
−

 (7) 

Where ri and ro the internal and external radius. P is the internal pressure and E the elastic modulus. As observed by the 
equations, the uncertainty in the material properties (elastic modulus and Poisson’s ratio) has a strong influence in the 
strain. Also, curved surfaces are more challenging for the optical simulation, because of errors due to shear magnitude 
variation8. 

A flat sample is also desirable as a calibration sample, since the shear variation across the object surface is minimized. 
The displacement may also be directly controlled, which eliminates errors due to Young’s modulus uncertainty and 
sample thickness tolerances. For these reasons, as second sample, a flat plate 300 by 150 by 1 mm was manufactured 
from an aluminum sheet (2024 T3). A steel structure with a lever system is used to apply loading to the sample. The 
sample is attached to one of the arms of the lever and by controlling the angle between the lever arms, it is possible to 
control the displacement on the sample directly. Such design allows accurate loading control, although, the loading is not 
perfectly axial due to the lever system. This calibration sample is shown in Figure 5. 
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(a) (c)  

Figure 5. (a) Plate sample attached to the loading structure. (b) Side view demonstrating the loading condition and (c) the 
detail of the lever system. 

Using an analytical approach, the strains along the y direction (ε22) and x direction (ε11) can be calculated as: 

 22

1 s

o b

l
p

l l
ε θ= ⋅ ⋅  (8) 

 11 22

1 s

o b

l
p

l l
ε υε υ θ= − = − ⋅ ⋅  (9) 

where lo is the sample height, lb is distance between the support point and the loading screw, ls is the distance between the 
support point and the sample, θ is the loading screw turning angle, p is the loading screw pitch and ν is Poisson’s ratio. 
Using the analytical equations the parameters that influence strain distribution may be identified and the combination 
that generates the minimum and maximum strains may be determined. The following uncertainties were considered: 

Table 1. Considered uncertainties for input in the FE model and expected strains according to analytical model. 

 

4. SIMULATIONS 

4.1 Finite element models 

Finite element simulations of both samples were performed using Abaqus (version 6.8) on a Pentium D 3,40GHz with 
2GB of RAM. For the cylinder sample, a 2D model consisting of one quarter of the cylinder was prepared with adequate 
symmetry boundary conditions (axial degree of freedom normal to the cutting plane and in-plane rotational degrees of 
freedom set to zero). The mesh density in the cylindrical surface was selected to approximate the shearography 
instrument camera resolution (2456 pixels on the horizontal direction). It is desirable to use one node on the FE model 
for each pixel on the camera. In this way the phase maps from the shearography computational model have the same 
resolution of phase maps from the experimental shearography instrument. In summary a mesh with 0,17mm between 
consecutive nodes was used, with 31 nodes used along the thickness. 

Plate sample    Cylinder sample     
 Min error Nominal Max error  Min error Nominal Max error 
Elastic modulus 72,4GPa 72,4Pa 72,4GPa Elastic modulus 73,14MPa 69MPa 64,86MPa 
Poisson’s ratio 0,3234 0,3300 0,3366 Poisson’s ratio 0,3234 0.3300 0,3366 
Height 298,5mm 297mm 295,5mm External radius 95,11mm 95mm 94,89mm 
Loading screw angle  3,725turns 3,850turns 3.975 turns Internal radius 89,89mm 90mm 90,11mm 
Lever sample arm 5,17mm 5,5mm 5,85mm Pressure 4,28MPa 4,50MPa 4,72MPa 
Lever screw arm 61,0mm 60mm 59,0mm  
   Analytical strain  
Analytical strain    Radial -4,75·10-4 -5,65·10-4 -6,74·10-4 
Longitudinal ε22 1,28·10-3 1,43·10-3 1,59·10-4 Longitudinal 1,73·10-4 1,94·10-4 2,18·10-4 
Transversal ε11 -4,13·10-4 -4,72·10-4 -5,36·10-4 Tangential 8,21·10-4 9,54·10-4 1,11·10-3 
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The plate sample was divided into three components for the simulation, see figure 5. The regions where the sample is in 
contact with the structure (top and bottom regions) were defined as rigid body (relative displacement of nodes within the 
region is zero). All degrees of freedom of the bottom region were set to zero. A CAD model of the lever system was used 
to determine the axial (along y direction) and rotational (along x direction) displacements of the top region. Uncertainties 
on the lever arms lengths (Lb and Ls) were included in the CAD model and transferred to uncertainties on the top region 
displacements. The inspection area is the central region of the sample. Although 2056 nodes are desirable along the 
vertical direction in this region (to match camera resolution), only 515 nodes were used due to computational limitations. 
This FE model has one node for every 4 pixels on the camera. 

4.2 Shearography simulation - Path length method 

The phase map from this 3D shearography simulation is a 2D array where each element is a number in the range [0, 
255], representing phase differences in the range [0, 2π]. Two methods were used to obtain such map.  The first approach 
is derived from shearography theory, and is based on path length variation. The basic sequence of tasks for the 
simulation is: 1. Read displacements from the FE model output file and organize the data into a 2D array; 2. Calculate 
the coordinates of the nodes along the inspection surface (before loading); 3. Calculate the coordinates of the nodes after 
loading; 4. Read shear, laser wavelength and positions of the laser source and cameras into the simulation; 5. Calculate 
differences of path lengths; 6. Calculate the unwrapped phase map; 7. Calculate the wrapped phase map and 8. Rescale 
to 8bit range [0, 255]. 

A global coordinate system was defined as indicated in figure 6. A squared mesh with nodes aligned in the x and y 
directions is positioned along the xy plane and projected onto the object surface. Coordinates of the projected nodes are 
then calculated and each Cartesian component is stored in a separated 2D array referred to in this paper as Px(i,j), Py(i,j) 
and Pz(i,j), where i and j are row and column indexes. 

(a) (b) 

Figure 6. Adopted global coordinate system is with z direction aligned with the surface normal at the center of the object. 
C1, C2, C3 and C4 are the positions of the cameras.  

The FE simulation for the plate sample provides displacements vectors of these projected nodes. In the case of the 
cylinder sample, displacement vectors are in a cylindrical coordinate system which has an axis that coincides with axis of 
the cylinder (ul, ur and ut are the longitudinal, radial and tangential displacements, respectively). A rotation, described by 
equation (10), is performed to obtain displacement vectors along the global Cartesian coordinate system (u, v and w are 
the displacement along x, y and z direction respectively). The displacement components calculated were stored in 
separate 2D arrays. 

 ( ) ( )
( ) ( )

1 0 0( , ) ( )

( , ) 0 cos arcsin ( , ) / sin arcsin ( , ) / ( )

( , ) ( )
0 sin arcsin ( , ) / cos arcsin ( , ) /

l

y o y o t

r
y o y o

u i j u j

v i j P i j r P i j r u j

w i j u j
P i j r P i j r

 
    
       = ⋅       
           −     

 (10) 

where ro is the cylinder external radius.  

2D arrays containing coordinates of nodes after loading are obtained by adding the coordinates before loading to the 
displacement components. Equation (11) is the example for the x coordinate and similar equations can be determined for 
the other components. 

 * ( , ) ( , ) ( , )x xP i j P i j u i j= +  (11) 
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The arrays of path length differences for each camera are calculated using the source (S
��

) and the camera position (camC
��

) 

 * *( , ) ( , ) ( , ) ( , )cam campath cam
d i j P i j S C P P i j S C P i j   = − + − − − + −    

��� ���
�� �� �� �� �� ��

 (12) 

* ( , )P i j
���

 is the position of the node after loading ( )* * *( , ), ( , ), ( , )x y zP i j P i j P i j  and ( , )P i j
��

 is the original position of the 

node ( )( , ), ( , ), ( , )x y zP i j P i j P i j . 

The shear effect optically mixes points P1 with points P2
6, see figure 1. Points P2 represent the image that is fixed and 

points P1 represent the image that moves as one of the mirrors inside the interferometer is tilted16. The input variable 
called shear is an integer number responsible for selecting the nodes that will be correlated. 

(a) (b) 

Figure 7. Shear direction convention, (a) for x direction and (b) for y direction. 

Using the above convention, for shear in the x direction, the phase map described by equation (2) becomes: 

 1 2,

2 2
( , ) ( , ) ( , )path path path pathcam x cam cam
i j d d d i j shear d i j

π πφ
λ λ

  ∆ = − = − −   
 (13) 

And for shear along y direction it becomes: 

 1 2,

2 2
( , ) ( , ) ( , )path path path pathcam y cam cam
i j d d d i shear j d i j

π πφ
λ λ

  ∆ = − = + −   
 (14) 

On the edges of the sample, the algorithm tries to correlate points outside the sample, so the phase change is arbitrarily 
set to zero at these points. 

To obtain the wrapped phase map, the phase at each point should be shifted a certain value (a multiple of 2π). This is 
implemented by:  

 
, ,,

( , ) ( , ) ( , )wrapped cam shear cam shearcam shear
i j i j n i jφ φ φ∆ = ∆ − ⋅ ∆  (15) 

where n is obtained by dividing the phase map array (element wise) by 2π and then rounding the result to the nearest 
smaller integer. The last step is to rescale the wrapped phase map from the interval [0,2π] to [0,255] by linear 
interpolation. 

4.3 Shearography simulation – inverse shearography software method 

The second approach follows closely the shearography instrument processing software, but in the opposite direction. 
This algorithms basic sequence of tasks is: 1. Read displacements from the FE model output file and organize the data 
into a 2D array; 2. Read displacements from the FE model output file and organize data into a 2D array; 3. Calculate the 
coordinates of nodes along the inspection surface (before loading); 4. Read the shear, laser wavelength and positions of 
the laser source and cameras into the simulation; 5. Calculate displacement gradients; 6. Calculate sensitivity vectors; 7. 
Calculate the unwrapped phase map; 8. Calculate the wrapped phase map and 9. Rescale to 8bit range [0,255]. 

Arrays of displacements and nodal coordinates are calculated exactly in the same way used for the path length method.  

2D arrays containing displacement gradient are calculated using the displacement arrays and the actual shear distance 
(xshear and yshear). Equation (16) is for the displacement gradient along x direction: 

 
( , ) ( , )

( , )
shear

u u i j u i j shear
i j

x x

∂ − −=
∂

 (16) 
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And for the gradient along the y direction: 

 
( , ) ( , )

( , )
shear

u u i j u i shear j
i j

y y

∂ − +=
∂

 (17) 

The input variable shear is responsible for selecting the points that will be used for the displacement gradient calculation. 
The actual shear distance is a multiple of the distance between consecutive nodes. As example for x shear: 

 
1shear

L
x shear

N
 = ⋅ − 

 (18) 

The part between parentheses is the distance between consecutive nodes, obtained using the sample total length (L) and 
the total number of nodes along the x direction (N). For shear in y direction, the diameter (for the cylinder) and the 
sample height (for the plate sample) should be used in place of L as well as the total number of nodes along y direction. 
The shear convention is the same as adopted for the previous method. 

The Laser position (S
��

) and camera position (camC
��

) are defined as for the Path length method. The sensitivity vectors are 
described by equation (4) and are calculated for each camera and for shear in x direction using: 

 1 1

,
1 1

( , ) ( , )
( , )

( , ) ( , )

cam

cam x
cam

PS PC S P i j shear C P i j shear
k i j

PS PC S P i j shear C P i j shear

− − − −= + = +
− − − −

���� ���� �� �� �� ��

�

���� ���� �� �� �� ��  (19) 

where ( , )P i j shear−
��

is the original position of the node( )( , ), ( , ), ( , )x y zP i j shear P i j shear P i j shear− − − . 

For shear in the y direction, the sensitivity vector is: 

 1 1

,
1 1

( , ) ( , )
( , )

( , ) ( , )
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cam y
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PS PC S P i shear j C P i shear j
k i j
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���� ���� �� �� �� ��

�

���� ���� �� �� �� ��  (20) 

The unwrapped phase map for x shear is obtained by equation (3): 
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 (21) 

The phase map for shear in the y direction is obtained using equation (21), but with the displacement gradient and actual 
shear distance along the y direction. The above implementation causes division followed by multiplication by the actual 
shear distance. A simplified implementation using equation (22)  is also possible. In both cases the results are identical. 

 
2 1

2 1,

2 1

( , ) ( , )
2 2

( , ) ( , ) ( , )

( , ) ( , )
cam x

u u u i j u i j shear

i j k v v k u i j u i j shear

w w u i j u i j shear

π πφ
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− − −   
   ∆ = ⋅ − = ⋅ − −   
   − − −   

� �

 (22) 

5. SIMULATION RESULTS 

5.1 Cylinder sample 

The load applied to the cylinder generates spatially constant radial and axial displacements. The tangential displacement 
is null. When converted to the Cartesian coordinates of figure 6, by following a horizontal path, all displacements tend to 
maintain a constant value. This explains the lack of fringes in most of the phase map for x shear. For y shear, by 
following a vertical path, out of plane (z direction) displacements are obtained on the central region and are gradually 
substituted by in plane displacements. This behavior explains the variation in fringe density on the phase map with y 
shear. The regions close the end caps show fringe concentrations because these areas present subtle strain variation. 
Additionally, the end caps were welded to the cylindrical surface thus the accuracy of FE models for these regions is not 
so high. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Camera 1 Camera 2 Camera 3 Camera 4 

Figure 8. Phase maps of the cylinder sample with 1 mm x shear, obtained by inverted shearography software (a), (b), (c), (d) 
and by phase length method (e), (f), (g), (h). Phase maps for all the four cameras are shown. 

     
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Camera 1 Camera 2 Camera 3 Camera 4 

Figure 9. Phase maps from the cylinder sample with 1 mm y shear, obtained by inverted shearography software (a), (b), (c), 
(d) and by phase length method (e), (f), (g), (h). Phase maps for all the four cameras are shown. 

Image perspective distortion due to camera position was not take into account for the simulation, thus the resulting maps 
of phase change must be seen as images after dewarping to a normal viewing angle, see figure 6. The cameras have 
different sensitivity vectors, due to their positions, for this reason the phase maps are different for each camera.   

The uncertainty due to the material properties, manufacture tolerances and loading inaccuracy is observed in the form of 
an uncertainty of the phase valuesφ∆ . Equation (23) is an example showing how the uncertainty map at minimum error 

limit is calculated. 

 
min min lim

( , ) ( , ) ( , )
no al error it

i j i j i jφ φ φ∆ = ∆ − ∆  (23) 

 (a)  (b)  (c) 

≥+8π 

 (d)  (e)  (f) 
 

(g) ≤-8π 

Figure 10. Maps of phase uncertainty φ∆ at minimum (a), (d) and at maximum error (c), (f). Nominal phase maps for camera 

1 (b), (e). (a), (b) and (c) are for x shear and (d), (e) and (f) are for the y shear. The scale (g) is valid for the maps of 
phase uncertainty and each grey level represents a range of 2π radians. 
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For the central region, the difference between the phase maps at maximum error limit and minimum error limit do not 
exceed 0,5π radians for x shear and 4π radians for y shear. This difference reaches 20π radians for some points at the 
edge of the sample. 

5.2 Plate sample 

Both optical simulation methods generate phase maps with similar fringe shapes but with different fringe density for the 
same shear distance, cameras and source positions. This effect is difficult to observe on the cylinder sample due to high 
fringe density, but it becomes clear on the phase maps for the plate sample. 

 (a)  (b)  (c)  (d) 
Figure 11. Phase maps of the plate sample from camera 1 with obtained by the inverted shearography software method with 

x shear (a) and y shear (c) and by the path length method (b), (d). 

The loading causes close to uniform axial strain in the vertical direction. The strain components viewed for the x and z 
directions are present due to Poisson’s effect. An in plane shear strain is expected at all four corners of the sample due to 
the clamping system. The non-symmetry of the fringes is due to the camera position. These phase maps were also 
generated for cameras 2, 3 and 4. For cameras 2 and 4 generate symmetric maps are calculated and for camera 3 an 
asymmetric map that is the mirror of the map from camera 1 is generated. Large strain variation is expected on the 
bottom and top regions due to the bending effect of the loading and due to the clamping system, which explains the high 
fringe density obtained on these regions. 

The effect of the uncertainty on the material properties, manufacture tolerances and loading inaccuracy is also more 
apparent for the plate sample. For the central region, the difference between maps of phase change at maximum and 
minimum error limit does not exceed 4π for both shear directions. 

 (a)   (b)  ( c)  d)  (e) (f) 
Figure 12. Phase maps from camera 1, obtained by the path length method showing the fringe dislocation due to 

uncertainties. (a) (b) (c) are maps with x shear at minimum, nominal and maximum error limit respectively and (d), (e), 
(f) are maps with y shear at minimum, nominal and maximum error limits. 

6. DISCUSSION 

Although the difference on the unwrapped phase maps is visually not as clear as on the wrapped images  
due to the absence of fringes, unwrapped maps are suitable for a numeric comparison between the simulation methods. 
The figures below represent the difference, described by equation (24), between the two simulation methods.  

 
( , ) ( , )

( , ) , ( , ) 0
( , )

pathlength inverted

pathlength
pathlength

i j i j
difference i j if i j

i j

φ φ
φ

φ
∆ − ∆

= ∆ ≠
∆

 (24) 
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≥+100%  

0 
 

 (a)   (b)  ≤-100% (c) 
Figure 13. Comparison of unwrapped phase maps from camera 1 for the cylinder sample with x shear (a) and y shear (b). (c) 

scale where each grey level represents a range of 12,5% of difference. 

Regions with sudden error variation between -100% and +100% (indicated by the arrows on figure 13) are associated 
with areas at zero fringe order, where the phase change values becomes negative. The proximity to zero causes the 
percentage difference defined by equation (24) to increase significantly.  

Equation (2) is the main equation used on path length method. This equation is the starting point to deduce the main 
equation of the inverse shearography software method, which is equation (3). This deduction involves approximations 
which tend to be better for higher working distances (here defined as the distance between the origin of the global 
coordinate system and the cameras along z direction). From this point of view, the difference in the methods is a 
measurement of the influence of the approximations made for the sensitivity vector. 

Simulations were repeated with different working distances but keeping the viewing and illumination angles the same. 
The improvement of the sensitivity vector approximation with increasing working distance is found from the maximum 
absolute phase difference between the methods, as described by the equation below: 

 max ( , ) ( , )
pathlength inverted

i j i jφ φ∆ = ∆ − ∆  (25) 

Table 1. Effect of the working distance. The difference between the two simulation methods decreases with increasing work 
distance for most of the simulation set ups (shear directions and sample). 

 

Real phase maps may differ from the simulated images, as none of the methods described consider the finite size of the 
camera sensor, the optical path inside the interferometer and the variable shear distance due to the sample curvature as 
well as shear variation introduced by the Michelson interferometer. 

7. CONCLUSIONS 

Two simulation approaches for a 3D shearography system have been explained. The first method uses displacement data 
from the FEM to calculate displacement gradient. Sensitivity vector are calculated and are used to estimate the phase 
map. The second method uses displacements from the FE model to estimate the object surface position before and after 
loading. The difference of path length is used to estimate the phase map. 

The difference between the methods is seen as a measurement of the influence of the approximations made on the 
sensitivity vector. For the shearography instrument configuration analyzed on this paper, we found that the 
approximation causes a difference of 2π (one fringe) on the phase map when a working distance of 200mm is used. The 
approximation is greatly improved when the working distance is increased as expected from the shearography theory. A 
comparison of simulation methods with real shearography measurements is the subject of on-going research. 

Two test samples, a flat plate loaded axially and a cylinder loaded by internal pressure were simulated. Included errors 
are associated with the sample’s material properties uncertainty, loading inaccuracy and manufacturing tolerances. These 
uncertainties causes an error of 4π (two fringe) on the central area of the phase maps. 
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Plate sample    Cylinder sample  
Work distance 200mm 1000mm 5000mm  Work distance 200mm 1000mm 5000mm 
∆ for X shear 30,20 3,32 0,53  ∆ for X shear 7,34 1,29 0,22 
∆ for Y shear 37,30 9,74 2,03  ∆ for Y shear 21,52 36,66 38,27 
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