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a b s t r a c t

The substitution of conventional mechanical fasteners by adhesive joints has been advocated by the air-
craft and aerospace industries due to the weight saving potential. Flaws such as debonding of the adhe-
sive layer between the skin and the stiffener may greatly affect the structural behavior of composite
panels. Within this context, this work presents a semi-analytical approach for the numerical investigation
on the effects of skin-stiffener bonding flaw size on the vibration and linear buckling behavior of T-
stiffened composite panels. Skin and stiffener have been modeled using an assembly of curved and flat
panel components, with each domain approximated using a set of hierarchical polynomial functions. A
penalty-based approach has been used to assemble the various domains and to model the debonded
region between the stiffener flange base and the plate. This approach ensures full compatibility in terms
of displacements and rotations between the stiffener’s base top face and the panel bottom face allowing
to model different skin/stiffener debonding lengths. The results obtained using the proposed semi-
analytical models have been compared and verified against numerical predictions based on finite element
analyses.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Flat and curved composite panels constitute a major portion of
aircraft structures. They are found in aerospace structures such as
wing surfaces, horizontal and vertical stabilizers, and fuselage sec-
tions as well as in spacecraft andmissile structural applications [1].
Nowadays there exist many methods for bringing together stiffen-
ers and skin in terms of the joining technique. Conventional
mechanical joints such as bolted, pinned or riveted are preferred
due to their simplicity and disassembly capability for both metallic
or composite parts. However, mechanical joints are prone to local
damage at the fastener holes due to stress concentrations [2–4],
leading to the degradation of the joint which ultimately jeopar-
dizes the structural integrity of the assembled structure. The
demands for designing lightweight structures without any loss of
stiffness and strength have turned many researchers and design
engineers to seek for alternate joining methods. Adhesive bonding
is a material joining process in which an adhesive placed between
the adherent surfaces solidifies to produce an adhesive bond. The
field of structural adhesive bonding has matured with the develop-
ment of a wide range of adhesives from the chemical industry.
Both adhesive bonding or co-cure offer several advantages over
conventional joining technologies which includes [5]: (a) Often,
thinner gage materials can be used with attendant weight and cost
savings; (b) The number of production parts can be reduced,
whereas the design is more simplified; (c) The need for milling,
machining and forming operation of details is reduced; (d) Large
area bonds can be made with a minimum work force without spe-
cial skills; (e) Adhesive bonding provides a high strength to weight
ratio with three times higher the shearing force of riveted joints; (f)
Improved aerodynamic/hydrodynamic smoothness and visual
appearance; (g) Use as a seal, and/or corrosion preventer when
joining incompatible materials.

Most of the work reported in the open literature have focused
on the effects of the skin-stiffener interfacial debonding flaws on
the static behavior of stiffened composite panels. Previous studies
on the effects of the skin/stiffened delamination in co-cured stiff-
ened panels uniaxially loaded in compression in the post-
buckling regime are presented in Refs. [6–9]. Ambur et al. [9] pre-
sented a similar study for composite panels loaded in shear. Rijn
and Wiggenraad [10] investigated experimentally the strength of
the skin-stiffener interface in composite aircraft panels using the
seven-point bending test apparatus. Closed-form [11–14] and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2016.10.026&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2016.10.026
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Fig. 1. T-Stiffened Panel.

Fig. 2. Assembly scheme for semi-analytical models.
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semi-analytical approaches [15–17] to deal with the local buckling
of stiffened panels and plates have been presented in the literature,
but a semi-analytical approach that takes into account global buck-
ling modes and debonding flaws are currently not available.

The skin/stiffener interface behavior plays an important role in
the overall dynamic characteristics of the stiffened panel, such as
natural frequencies, mode shapes, and non-linear response charac-
teristics to external excitations. The joint represents a discontinu-
ity in the structure and results in high stresses that often nucleate
failure [18]. The stresses and slip in the vicinity of contact regions
determine the static strength, cyclic plasticity, frictional damping,
and vibration levels associated with the structure. The need for
developing methodologies for constructing predictive models of
structures with joints and interfaces has recently been discussed
by Dohner [19].

Modern mechanical design and analyses are based on determin-
istic finite element (FE) and multi-body dynamics computer codes
[20]. The main objectives of these codes are to estimate the system
eigenvalues, system response statistics, and probability of failure
[21,22]. Ibrahim and Pettit [22] presented an assessment of the
role of joint uncertainties and relaxation in the design and dynamic
behavior of structural systems. Basic considerations in the design
of joints of composite structures are discussed by Agarwal and
Broutman [23].

The main goal of this paper is to present a semi-analytical
approach to investigate the effects of skin-stiffener bonding flaw
size on the linear buckling and vibration behavior of T-stiffened
composite panels subjected to any static loads. Various laminate
configurations for the skin and stiffener as well as different geo-
metric configurations were investigated in an attempt to map the
general behavior of such panels under the presence of a skin/stiff-
ener debonding flaw. The problem is solved using an assembly of
semi-analytical models that can be adapted to a large variety of
problems, producing efficient parameterized tools for the investi-
gation of various types of structures. The Ritz Method is chosen
to derive the equations for each semi-analytical domain using
the weak form, with each semi-analytical domain and their assem-
bly formulated using the kinematic assumptions from the Classical
Laminated Plate Theory (CLPT). Finite element models were used
to verify the obtained results and the convergence behavior of
the approximation functions here adopted.

2. T-Stiffened panel with debonded region

Fig. 1. shows a T-Stiffened panel with the respective coordinate
system for the skin (x; y; z), stiffener’s base (x0; y0; z0) and flange
(x00; y00; z00). A debonding defect exists and it is assumed to always
extend all over the stiffener’s base width (bb) and has its length d
measured by its extent along coordinate x. The T-Stiffener is
assumed to extend all over the skin panel length, parallel to x, with
the origin of coordinate system x00; y00; z00 located at y ¼ b=2. All
dimensions necessary to define the T-Stiffener cross section and
the skin thickness are also shown in Fig. 1.

In order to compute linear static displacements, linear buckling
modes and vibration modes for the stiffened panel of Fig. 1, the
authors have first attempted to apply a semi-analytical model for
which the skin region was modeled using a single domain, with
just one set of continuous approximation functions. For those
attempts Legendre’s hierarchical polynomials of orders as high as
24 for each coordinate were used as approximation functions for
the displacements u;v ;w, leading to an insufficient resolution of
the displacement field. The successful strategy herein explained
in details consists on dividing the skin, stiffener’s base and stiff-
ener’s flange in subdomains, as illustrated in Fig. 2, where each
subdomain has its own set of approximation functions and the
assembly is accomplished using connection matrices based on
compatibility relations. The unsuccessful single domain approach
could theoretically be improved by higher order polynomials, but
the 24th order polynomials already started to become computa-
tionally expensive and prone to numerical instability with a
numerical precision of 64-bits (double), whereas the multi-
domain approach allows the use of considerably lower order poly-
nomials for each domain, keeping the computational cost low and
the numerical stability high even for complex and displacement
fields, verified nearby the debonded region. Note that in the assem-
bly scheme of Fig. 2 the debonded region is the connection
between panels P05 and P12, and the defect is produced when this
connection is omitted. Since non-linear analyses are not performed
in the current study, contacts between panels P05, P12 and P13 at



Fig. 4. Connection skinbot $ basetop .

Fig. 5. Connection base $ flange.
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the debonding region are not monitored, and the linear buckling or
vibration results are expected to show modes where these panels
inter-penetrate, as for the finite element model used in the
verifications.

In the assembly configuration of Fig. 2 four compatibility rela-
tions are necessary and are defined in Eqs. (1)–(4) for the CLPT.

ðpi $ pjÞxcte

u ¼ u

v ¼ v
w ¼ w

w;x ¼ w;x

8>>><
>>>:

ðat constant xÞ ð1Þ

ðpi $ pjÞycte

u ¼ u

v ¼ v

w ¼ w

w;y ¼ w;y

8>>>>><
>>>>>:

ðat constant yÞ ð2Þ

skinbot $ basetop

ubot ¼ u0
top

vbot ¼ v 0
top

wbot ¼ w0
top

8><
>: ðover areaÞ ð3Þ

base $ flange

u0 ¼ u00

v 0 ¼ w00

w0 ¼ �v 00

w;0y0 ¼ w;00y00

8>>>><
>>>>:

ðat constant yÞ ð4Þ

where u;v ;w represent the skin, u0;v 0;w0 the base and u00; v 00;w00 the
flange displacements. Displacements ðu;v ;wÞbot are taken at the
skin bottom face (z ¼ �h=2) whereas ðu0;v 0;w0Þtop are taken at the
stiffener’s base top face (z0 ¼ hb=2).

The connection between two panels pi and pj at a constant x
coordinate (xcte) is achieved applying condition ðpi $ pjÞxcte shown
in Eq. (1) at xi ¼ ai for panel pi and at xj ¼ 0 for panel pj, as illus-
trated in Fig. 3-a. Similarly, the connection at constant y (ycte) is
achieved by applying the condition of Eq. (2) at yi ¼ bi for panel
pi and at yj ¼ 0 for panel pj, as illustrated in Fig. 3-b.

Fig. 4 illustrates the skinbot $ basetop connection, from where
the following relations can be derived:

ubot ¼ uþ ðh=2Þw;x

vbot ¼ v þ ðh=2Þw;y

wbot ¼ w

u0
top ¼ u0 � ðhb=2Þw0;x0

v 0
top ¼ v 0 � ðhb=2Þw0;y0

w0
top ¼ w0

ð5Þ
Fig. 3. Illustration of connections ðpi $ pjÞxcte and ðpi $ pjÞycte .
with u;v ;w and u0;v 0;w0 being the displacements at the skin and
stiffener’s base mid-surfaces, respectively. Noting that there are
no deformations normal to the shell surfaces:

w;x ¼ w0;x0

w;y ¼ w0;y0
ð6Þ

Applying Eq. (6) in Eq. (5), the connection between the panel
and the stiffener’s base, cf. Eq. (3), can be written as:

u0 ¼ uþ h
2w;x þ hb

2 w;0x0

v 0 ¼ v þ h
2w;y þ hb

2 w;0y0

w0 ¼ w

ð7Þ

Connection base $ flange, cf. Eq. (4), is illustrated in Fig. 5,
where a connection at the mid-surface is assumed between the
stiffener’s base and flange. The connection is performed by apply-
ing Eq. (4) for each stiffener’s base segment (P10, P12 and P14) at
y0 ¼ bb=2, and for each respective stiffener’s flange segment (P11,
P13 and P15) at y00 ¼ 0.

Table 1 summarizes all connection pairs and the respective con-
nection types.
2.1. Compatibility equations using natural coordinates

In order to apply the hierarchical polynomials that will be pre-
sented in Section 5 as approximation functions, natural coordinate
systems must be used and Fig. 6 shows a cylindrical panel with
radius r with a cylindrical and a curved natural coordinate system
that correlate using Eq. (8).



Fig. 6. Cartesian system for panel using natural coordinates.
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n ¼ 2xp
ap

� 1

g ¼ 2yp
bp

� 1
ð8Þ

Applying the variable transformation of Eq. (8) to Eq. (6) leads
to:

w;x ¼ w0;x0 ! w;n ¼ w0;n0

w;y ¼ w0;y0 ! bb
b w;g ¼ w0;g0

ð9Þ

such that the skinbot $ basetop compatibility that connects the
skin panel to the stiffener’s base can be written as:

u0 ¼ uþ 2dsb
a w;n

m0 ¼ mþ 2dsb
b w;g

w0 ¼ w

dsb ¼ h=2þ hb=2

ð10Þ

The other three compatibilities: ðpi $ pjÞxcte, ðpi $ pjÞycte and

base $ flange are not affected by the variable transformation of
Eq. (8).

3. Linear buckling equations

The general eigenproblems for linear buckling [24] is derived
using the Neutral Equilibrium Criterion, which states that:

d2W ¼ 0 ð11Þ
at a neutral equilibrium point of a minimum or maximum, whereW
is the total potential energy of the system, defined as:

W ¼
X

Up þ Uconnections þ V ð12Þ
with Up is the strain energy of a given panel in the assembly of
Fig. 2; Uconnections contains the penalty terms that result when the
connections of Eqs. (1)–(4) are applied and will be further discussed
in Section 6; V is the energy due to the external work, required to
determine actual stress state, detailed in Section 3.1.

Integrating over the natural domain n;g of Fig. 6 using the vari-
able transformation of Eq. (8), the strain energy of a given panel
(Up) can be written as:

Up ¼ apbp

4

� �Z
n

Z
g
ðeTpNp þ jT

pMpÞdndg ð13Þ

where for each panel the following relation exists between the
strain field ep, jp and the membrane force Np and bending moment
Mp fields:

Np

Mp

� �
¼ Fp

ep
jp

� �

Fp ¼ A B
B D

� � ð14Þ
with:

NT
p ¼ fNxx Nyy Nxy g MT

p ¼ fMxx Myy Mxy g

ðAij;Bij;DijÞ ¼
Xnplies
k¼1

R zkþ1
zk

�Q ðkÞ
ij ð1; z; z2Þdz

ð15Þ

and �Q ðkÞ
ij given in Appendix A.

Eq. (16) presents the kinematic equations for a given panel of
the assembly of Fig. 2, derived using the Classical Laminated The-
ory (CLT) [25] with Donnell-type of shell equations [26]:

eTp ¼ f eð0Þxx eð0Þyy cð0Þxy g
jT

p ¼ fjxx jyy jxy g

eð0Þxx ¼ 2
ap

� �
u;n þ 2

a2p

� �
w;2n eð0Þyy ¼ 2

bp

� �
v ;g þ flagcyl

1
r wþ 2

b2p

� �
w;2g

cð0Þxy ¼ 2
bp

� �
u;g þ 2

ap

� �
v ;n þ 4

apbp

� �
w;nw;gjxx ¼ � 4

a2p

� �
w;nn

jyy ¼ � 4
b2p

� �
w;gg jxy ¼ �2 4

apbp

� �
w;ng

ð16Þ
where flagcyl ¼ 1 for the skin panels and the stiffener’s base, both
cylindrical panels; and flagcyl ¼ 0 for the stiffener’s flange, modeled
as a flat panel. Using the Ritz Method, the displacement field vector
for each panel up is approximated as [1]:

up ¼ S cp

up ¼
u
v
w

2
64

3
75S ¼

Su

Sv

Sw

2
64

3
75 ð17Þ

where Su, Sv and Sw are sub-matrices with 1 row and 3�m� n col-
umns containing the shape of the approximation functions for u, v
and w, respectively; cp is a vector of size 3�m� n containing the
amplitude of each term in the approximation function. Constants
m and n determine how many approximation terms are required
along x and y, respectively; or along n and g when natural coordi-
nates are used.

Using the approximation of Eq. (17), the kinematic relations of
Eq. (16) can conveniently be written in matrix form as [25–28]:

ep ¼ B0p þ 1
2BLp

� 	
cp

jp ¼ Bjpcp
ð18Þ

such that:

B0p ¼

2
ap

� �
@Su
@n

2
bp

� �
@Sv
@g þ flagcyl

1
r S

w

2
bp

� �
@Su
@g þ 2

ap

� �
@Sv
@n

2
66664

3
77775Bjp ¼

� 4
a2p

� �
@2Sw

@n2

� 4
b2p

� �
@2Sw

@g2

�2 4
apbp

� �
@2Sw
@n@g

2
6666664

3
7777775

BLp ¼

4
a2p

� �
w;n

@Sw
@n

4
b2p

� �
w;g

@Sw
@g

4
apbp

� �
w;n

@Sw
@g þw;g

@Sw
@n

� �

2
6666664

3
7777775

ð19Þ

Note that matrix BLp contains non-linear terms that become impor-
tant in analyses with large displacements, but in the current study
are only required to derive the geometric stiffness matrix. Using the
definitions of Eq. (19) it is possible to apply the same derivation of
Castro et al. [29] to solve the neutral equilibrium criterion of Eq.
(11), resulting in the following generalized eigenvalue problem:



Fig. 7. Load and boundary condition for linear buckling analysis.
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ðK þ kCRKGÞc ¼ f0g ð20Þ
where K is the global constitutive stiffness matrix, KG the global
geometric stiffness matrix and c the global set of Ritz constants that
define the approximation functions for all panels in the assembly of
Fig. 2, kCR a scalar load multiplier that renders the instability condi-
tion of Eq. (20). There are as many kCR, c pairs as there are indepen-
dent approximation terms describing the displacement field
variables. Matrix K is assembled as:

K ¼

KP01 0
KP02

. .
.

sym KP15

2
66664

3
77775 ð21Þ

where KP01 is the constitutive matrix of panel P01, KP02 of panel P02
and so forth.

The constitutive stiffness matrix of a given panel, Kp, is calcu-
lated with:

Kp ¼ apbp

4

� �Z
n

Z
g
BT ij

0p FpB
k‘
0pdndg ð22Þ

where indices i; j define the row-wise and k; ‘ the column-wise posi-
tion within the matrix.

The global geometric stiffness matrix KG is assembled similarly
to K , cf. Eq. (21), and the contribution of each panel is defined as:

KGp ¼ apbp

4

� �Z
n

Z
g
GTij

p

Nxx Nxy

Nxy Nyy

� �
Gk‘

p dndg ð23Þ

with Gp computed for each panel as:

Gp ¼
2
ap

� �
@Sw
@n

2
bp

� �
@Sw
@g

2
64

3
75 ð24Þ

Appendix B gives the detailed expressions needed to calculate
Kp in Eq. (B.1) and KGp in Eq. (B.2).

3.1. Loading and boundary conditions

Fig. 7 illustrates the axial compression load and the boundary
conditions applied to six edges of the panel assembly model. Note
that stiffened panel is under a load-controlled axial compression
where the compressive load is applied at one edge of the skin (pan-
els P07, P08 and P09) and at one edge of the stiffener’s base (panel
P14) and one edge of the stiffener’s flange (panel P15); with all
these edges free to move along the load direction (parallel to the
stiffener).

Due to the load configuration of Fig. 7 the following external
energy term can be defined for panels P07, P08 and P09:

V skin ¼ bp

2
Nxx

Z
g
Sudgcp ð25Þ

where bp is the width (along y) of the corresponding panel. Gener-
alizing, the contribution of each panel to the external work is:

Vp ¼ cTpf extp ð26Þ
where f extp is the external force vector and cp the local set of
unknown Ritz constants, both for a given panel ‘‘p”.

The load scheme of Fig. 7 will result in a non-constant mem-
brane stress state and therefore the initial stress stiffness matrix
KG is computed numerically, where for each integration point
the actual membrane stress state is obtained based on linear static
analysis using following system of equations:

f ext ¼ Kc ð27Þ
where c is the unknown global set of Ritz constants. For each inte-
gration point within each panel the local set of Ritz constants cp,
directly obtained from c, is applied to compute the strains as per
Eq. (18), which are then used to compute the stresses using Eq.
(14). The calculated membrane stresses Nxx, Nyy and Nxy are finally
used in Eq. (B.2) to compute KGp . Legendre-Gauss quadrature [30]
was used to obtain the integration points’ positions and weights
and a convergence analysis was performed in order to show the
minimum quadrature order that should be used.

Fig. 7 also shows how the boundary conditions are distributed
for the skin and stiffener. The skin edges that move along x due
to the applied load have v ¼ w ¼ 0 and the edge passing through
panels P01, P02 and P03 have u ¼ v ¼ w ¼ 0. The stiffener’s base
has all edges free and the flange has v 00 ¼ w00 ¼ 0 at the loaded edge
and u00 ¼ v 00 ¼ w00 ¼ 0 at the unloaded edge. Despite having all
edges free, the stiffener’s base has the support from all adjacent
panels in the assembly.

4. Free vibration equations

The harmonic natural frequency analysis consists on the follow-
ing generalized eigenproblem [31]:

ðK �x2MÞc ¼ f0g ð28Þ
where K is the constitutive stiffness matrix,M is the mass matrix,x
is the angular frequency that corresponds to the vibration mode cal-
culated using c and the approximation functions. The mass matrix
M is assembled similarly to K , cf. Eq. (21), and computed using
Eq. (B.3).

Fig. 8 illustrates the boundary conditions that were applied for
the vibration analysis, where the skin is restrained at the four
edges by u ¼ v ¼ w ¼ 0, the stiffener’s base with all edges free
and the flange with u00 ¼ v 00 ¼ w00 ¼ 0 at both extremity edges.
Despite the stiffener’s base has its edges free, its proper support
is guaranteed by the adjacent structures in the assembly.

5. Approximation functions

Vescovini and Bisagni [17] presented a semi-analytical model
for omega stiffened panels using trigonometric approximation



Fig. 8. Boundary condition for vibration analysis.
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functions, valid for local buckling predictions where no displace-
ment occurs at the connection and only the rotations must be cou-
pled. The use of more flexible approximation functions such as the
Legendre polynomials herein explored permits the generalization
of the modelling approach presented by Vescovini and Bisagni,
allowing any displacement and rotation coupling at the interfaces
between adjacent panels, which are necessary to achieve the pro-
posed assembly of Fig. 2.

Rodrigues derived a form of Legendre hierarchic orthogonal
polynomials [32,33] largely applied by Bardell et al. on the vibra-
tion problems [34–36]. In this form the first four terms
i ¼ 1;2;3;4 consist of Hermite cubic polynomials:

si¼1ðn or gÞ ¼ 1
2 � 3

4 nþ 1
4 n

3� 	
flagt1

si¼2ðn or gÞ ¼ 1
8 � 1

8 n� 1
8 n

2 þ 1
8 n

3� 	
flagr1

si¼3ðn or gÞ ¼ 1
2 þ 3

4 n� 1
4 n

3� 	
flagt2

si¼4ðn or gÞ ¼ � 1
8 � 1

8 nþ 1
8 n

2 þ 1
8 n

3� 	
flagr2

ð29Þ

Flags flagt1, flagr1, flagt2 and flagr2 will always be 0 or 1. Using
these flags the first four terms of Rodrigues polynomials can be
used to enable/disable the translation and rotation of each domain
boundary. Flag flagt1 is used to control the translation at boundary
1 (n ¼ �1), which is possible because using Rodrigues polynomials
this is the only term among all terms in the approximation func-
tion that produces siðn ¼ �1Þ ¼ 1. Similarly, flagt2 is used to control
the translation at boundary 2 (n ¼ þ1). The rotation at n ¼ �1 and
n ¼ þ1 is respectively controlled using flagr1 and flagr2, since they
are the only terms that produce a non-null rotation @s=@n at each
respective domain boundary. A detailed overview of the produced
shape functions is given by Bardell [34].

All terms with i > 4 are higher order K-orthogonal hierarchic
polynomials that always generate null translation (si ¼ 0) and null
rotation (@si=@n ¼ 0) at both extremities (n ¼ �1 or n ¼ þ1),
defined as:

si>4ðn or gÞ ¼
Xi=2
p¼0

ð�1Þpð2i� 2p� 7Þ!!
2pp!ði� 2p� 1Þ! ni�2p�1 ð30Þ

where !q ¼ qðq� 2Þ . . . ð2or1Þ0!! ¼ ð�1Þ!! ¼ 1 and i=2 in the summa-
tion is an integer division.

Rodrigues’ form of Legendre’s polynomials can be directly
applied as approximation functions for domains expressed in nat-
ural coordinates like the one shown in Fig. 6, with i ¼ 1;2;3; . . . ;m
terms along coordinate n and j ¼ 1;2;3; . . . ; n terms along coordi-
nate g. Given that all boundary conditions required for each panel
in the assemblies of Figs. 7 and 8 can be achieved using the flags of
Eq. (29), it is possible to use the same set of shape functions for u, v
and w, being also the same for either n or g.

The fact that the same set of shape functions can be used for all
panels and for all displacement field variables facilitates the ana-
lytical integration of the matrices given in Eqs. (B.1) and (B.3)
regarding that constant constitutive properties are used within
each panel domain. No publication dealing with the analytical inte-
gration of the constitutive and connectivity matrices for the analy-
sis of stiffened panels using Rodrigues’ modification on Legendre
hierarchic polynomials has been found in the literature. In the cur-
rent implementation [37] the analytical integrations are performed
as shown in Eq. (31), where it is demonstrated how to separate the
terms depending on n and g. After every ik (or j‘) combinations are
calculated, they are stored in lookup tables such that the stiffness
matrices are efficiently integrated.
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where cij and ck‘ represent Ritz constants.

6. Penalty approach for the assembly

The compatibilities of Eqs. (1)–(4) are imposed using a penalty
approach, where the penalty energy terms for each case are,
respectively:

Upipjxcte
¼ bpi

2

� � R
g k

c1
t ðui � ujÞ2 þ ðv i � v jÞ2 þ ðwi þwjÞ2
h

þ 2
api

w;ni � 2
apj

w;nj

� �2

kc1r =kc1t

#
dg

Upipjycte
¼ api

2

� � R
n k

c2
t ðui � ujÞ2 þ ðv i � v jÞ2 þ ðwi þwjÞ2
h

þ 2
bpi

w;gi � 2
bpj

w;gj

� �2

kc2r =kc2t

#
dn

Upibot pjtop
¼ api bpi

4

� �Z
n

R
g k

c3
t uþ 2dij

api
w;n

� �
� u0

� �2
�

þ v þ 2dij
bpi

w;g

� �
� v 0

� �2
þ ðw�w0Þ2

�
dndg

Ubf ¼ a
2

� 	Z
n
kc4t ðu0 � u00Þ2 þ ðv 0 �w00Þ2 þ ðw0 þ v 00Þ2

h

þ 2
bb
w;0g0 � 2

bf
w;00g00

� �2
kc4r =kc4t

�
dn

ð32Þ

with kcit and kcir being constant translational and rotational penalty
stiffnesses; subscripts pi and pj indicate the panels being connected.
The energy terms of Eq. (32) are added to the global constitutive
stiffness matrix K according to the connectivity scheme of Table 1.

Theoretically, the penalty stiffnesses kcit and kcir can be arbitrarily
high in order to impose the energy penalty. However, the use of
high values is associated with numerical instabilities such that
one should choose the penalty stiffnesses that are just high enough
to impose the proper penalties, but not excessively high. In the cur-

rent study it is proposed to calculate kcit and kcir based on laminate
properties of the panels being connected, instead of using fixed
high values, a common practice in the literature.



Table 1
Connectivity types.

Location Pair Connection Location Pair Connection

Skin-Skin P01M P02 ðpi $ pjÞycte Skin-Skin P08M P09 ðpi $ pjÞycte
Skin-Skin P01M P04 ðpi $ pjÞxcte Skin-Base P02M P10 skinbot $ basetop
Skin-Skin P02M P03 ðpi $ pjÞycte Skin-Base P05M P12 Debonded

Skin-Skin P02M P05 ðpi $ pjÞxcte Skin-Base P08M P14 skinbot $ basetop
Skin-Skin P03M P06 ðpi $ pjÞxcte Base-Base P10M P12 ðpi $ pjÞxcte
Skin-Skin P04M P05 ðpi $ pjÞycte Base-Base P12M P14 ðpi $ pjÞxcte
Skin-Skin P04M P07 ðpi $ pjÞxcte Base-Flange P10M P11 base $ flange
Skin-Skin P05M P06 ðpi $ pjÞycte Base-Flange P12M P13 base $ flange

Skin-Skin P05M P08 ðpi $ pjÞxcte Base-Flange P14M P15 base $ flange
Skin-Skin P06M P09 ðpi $ pjÞxcte Flange-Flange P11M P13 ðpi $ pjÞxcte
Skin-Skin P07M P08 ðpi $ pjÞycte Flange-Flange P13M P15 ðpi $ pjÞxcte
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All penalty stiffnesses are calculated assuming that the mem-
brane and bending loads Nxx, Nyy, Mxx and Myy are continuous from
one panel to another, and that the compatibility of strains is such
that the strain at the connection is assumed to be the average
between the strains at the adjacent panels. Four strain compatibil-
ity scenarios are used, as presented in Eq. (33).

aÞ e
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pj
xx

2 ¼ econnxx bÞ j
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pj
xx

2 ¼ jconn
xx

cÞ e
pi
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pj
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pj
yy

2 ¼ jconn
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ð33Þ

The compatibility of Eq. (33)-a is used to compute kc1t . For both
panels the simplification exx ¼ Nxx=A11 is assumed, with A11 defined

in Eq. (15). From a dimensional analysis of Eq. (32) the units of kc1t
must be [F=L2], such that the strain at the connection can be stated

as econnxx ¼ Nxx=ðkc1t hÞ, where hwill be taken as the average thickness
of both panels of the connection. Holding these assumptions, the
compatibility of Eq. (33)-a gives:
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With similar assumptions and using Eq. (33)-b with

jconn
xx ¼ Mxx=ðkc1r hÞ and for both panels using jxx ¼ Mxx=D11, with

D11 defined in Eq. (15); kc1r can be computed as:

kc1r ¼ 4Dpi
11D

pj
11

ðDpi
11 þ D

pj
11Þðhpi þ hpj Þ ð35Þ

To compute kc2t and kc2r , which respectively have the same units

of kc1t and kc1r , the procedure is carried out using Eq. (33)-c and
(33)-d, with the assumptions eyy ¼ Nyy=A22 and jyy ¼ Myy=D22,
resulting in:
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pj
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and:
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22D
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From Eq. (32) the units of kc3t must be [N=m3] and since the con-
nection consists of normal loads acting on the shell, the compati-

bility relations of Eq. (33) no longer apply. In this case kc1t is
used, with a dimensional correction:
kc3t ¼ kc1t
minðap; bpÞ ð38Þ

where ap and bp are illustrated in Fig. 6.

Finally, kc4t and kc4r used at the connection between the stiff-
ener’s base and stiffener’s flange are assumed to be the same as

kc2t and kc2r , respectively, giving:

kc4t ¼ kc2t ð39Þ
and:

kc4r ¼ kc2r ð40Þ

Penalty constants kcit and kcir calculated as herein suggested
showed to provide numerically stable results for a wide range of
inputs, with Legendre polynomial orders up to 25th, which is the
highest order tested by the authors.

7. Results

Following analyses correspond to various values of a=b and
b=bb, fixing bb ¼ 2bf and b = 1 m . The orthotropic laminae proper-
ties are E1 ¼ 142:5 GPa, E2 ¼ 8:7 GPa, m12 ¼ 0:28, G12 ¼ 5:1 GPa
with a ply thickness of 1:25� 10�4 m. The detailed discussion pre-
sented along this section is based on the results obtained for the
stiffened panels shown in Table 2. The applied debonding defect
is centered at x ¼ a=2 for all investigated cases.

7.1. Convergence of the numerical integration scheme

The geometric stiffness matrix representing the pre-buckling
state is calculated by integrating Eq. (23). An analytical
integration is straightforward when each panel domain has a
constant membrane stress state, whereas general stress states
require numerical integration. A Legendre-Gauss quadrature
[30] rule was chosen and this section shows how the critical
buckling load converges with the increase of the quadrature
order selected.

Laminate configuration #1 of Table 2 was chosen with the
geometry: a=b ¼ 10; bb ¼ b=5; with a debonding defect of
d ¼ 0:4a. An edge load Nxx is applied as illustrated in Fig. 7.
Fig. 9-a shows the convergence of NxxCR for a flat panel; and
Fig. 9-b for a curved panel with r ¼ 10 m. Note that using a 10th
order quadrature rule produces converged linear buckling result
for the approximation of each panel domain using up to
m ¼ n ¼ 8 terms. The authors observed that for smaller a=b ratios
lower quadrature rule orders can be used to achieved converged
results. The 10th order quadrature rule will be used for all results
presented in the next sections.



Table 2
Laminates for stiffened panels analyzed.

Stiffened panel Label Skin Base Flange

#1 – ½0;�45;90;�45;0� ½0;90;0�4 ½0;90;0�8
#2 Sym angled 45 stiffener 0,90 ½ð�45Þ2�sym ½0;90;90;0�4 ½0;90;90;0�8
#3 Angled 45 stiffener 0,90 ½04; ð�45Þ2� ½0;90;90;0�4 ½0;90;90;0�8
#4 Sym angled 45 stiffener 0,45 ½ð�45Þ2�sym ½0;�45;0�4 ½ð0;�45;0Þ4; ð0;�45;0Þ4�
#5 Angled 45 stiffener 0,45 ½04; ð�45Þ2� ½0;�45;0�4 ½ð0;�45;0Þ4; ð0;�45;0Þ4�
#6 Sym angled 30 stiffener 0,90 ½ð�30Þ2�sym ½0;90;90;0�4 ½0;90;90;0�8
#7 Angled 30 stiffener 0,90 ½04; ð�30Þ2� ½0;90;90;0�4 ½0;90;90;0�8
#8 Sym angled 30 stiffener 0,45 ½ð�30Þ2�sym ½0;�45;0�4 ½ð0;�45;0Þ4; ð0;�45;0Þ4�
#9 Angled 30 stiffener 0,45 ½04; ð�30Þ2� ½0;�45;0�4 ½ð0;�45;0Þ4; ð0;�45;0Þ4�
#10 Sym angled 60 stiffener 0,90 ½ð�60Þ2�sym ½0;90;90;0�4 ½0;90;90;0�8
#11 Angled 60 stiffener 0,90 ½04; ð�60Þ2� ½0;90;90;0�4 ½0;90;90;0�8
#12 Sym angled 60 stiffener 0,45 ½ð�60Þ2�sym ½0;�45;0�4 ½ð0;�45;0Þ4; ð0;�45;0Þ4�
#13 Angled 60 stiffener 0,45 ½04; ð�60Þ2� ½0;�45;0�4 ½ð0;�45;0Þ4; ð0;�45;0Þ4�

Fig. 9. Convergence of the quadrature order.
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7.2. Linear buckling with different defect lengths

The effect of the defect length d on the critical linear buckling
load was investigated for various different geometries of the stiff-
ened panel of Fig. 1. NX Nastran was used to provide finite element
results, where a mesh size of 0.02 m and linear quadratic elements
(CQUAD4) were used, with the same load and boundary conditions
explained in Section 3.1. The interface between the skin and the
stiffeners’ base is rendered using RBE2 elements that are created
in rows along y, and the variable defect length d is produced by
removing a desired number RBE2 rows.

Table 3 presents a convergence analysis including a verification
against the finite element (FE) model. All errors are relative to the
corresponding FE result. Stiffened panel #1 from Table 2 was used
in these comparisons with a=b ¼ 0:5 and b=bb ¼ 5, where a very
good correlation is observed already with m ¼ n ¼ 5. Using
m ¼ n ¼ 8 produced errors of less than 1% for all the range of inter-
est of the defect length (0 6 d=a 6 0:9), and therefore it will be the
precision adopted for the approximated functions in all next stud-
ies, unless otherwise specified. Using a similar configuration of
Table 3 but adding a curvature of r ¼ 10 m to the skin and stiff-
ener’s base leads to the convergence results of Table 4, where
m ¼ n ¼ 8 also produce errors of less than 1% for all range of defect
length. For either flat or curved panels with higher a=b the authors
verified an even better convergence behavior.

The displacement field and the pre-buckling membrane stress
state calculated from static analysis results were compared with
finite elements. Stiffened panel #1 Table 2 was chosen with a flat
skin, with the geometry: a=b ¼ 2; b=bb ¼ 5. Each panel domain is
approximated with m ¼ n ¼ 10. Fig. 10 compares the pre-
buckling displacement field u; and Fig. 11 the membrane stress
field Nxx. Two configurations were compared, one with d ¼ 0 and
another with d=a ¼ 0:6. It can be seen that the displacement field
matches exactly whereas the membrane stress field matches very
well qualitatively, with differences for Nxxmin

of �8:1% and þ2:0%,
respectively for d ¼ 0 and d=a ¼ 0:6; and for Nxxmax of þ0:5% and
�10:1% for d ¼ 0 and d=a ¼ 0:6. Note in Fig. 11 that there is a dis-
continuity of Nxx at the interface between panels P02, P05 and P08,
indicating that the compatibility equations herein adopted are not
guaranteeing a smooth transition of strains and stresses among the
domains, despite the displacement transition was verified to be
smooth for all cases.

Fig. 12 shows normalized linear buckling results for flat panels
using stiffened panel #1 of Table 2 with different a=b and b=bb

ratios, where Nd¼0
xxCR

is the critical linear buckling load without the
debonding defect (i.e. for d=a ¼ 0). A similar behavior for all three
b=bb ratios is observed and there is a clear degradation of NxxCR for
larger defect lengths and the degradation becomes more abrupt for
stiffened panels with higher a=b values. The curves also show that
higher a=b values will lead to smaller thresholds of critical debond-
ing defect size. Results for the stiffened panel laminates #2 to #15
are very similar to the results for stiffened panel #1 shown in
Fig. 12 (cf. Appendix C).

Eigenvector results for different geometry configurations using
b=bb ¼ 5 are presented in Fig. 13, where the skin panel domains
are identified and their boundaries highlighted in dashed lines.
The abrupt reduction of the critical linear buckling load coincides
with the change on the critical eigenvector from two semi-waves
on each side of the stiffener to one semi-wave centered at the
defect region.

From the curves of Fig. 12 and the eigenvectors of Fig. 13 it
becomes clear that the reason why higher a=b values lead to smal-
ler debonding defect thresholds is that for such panels the semi-
wave centered at the defect region is easily formed.

Eigenvectors for a=b ¼ 1 and two defect lengths (d=a ¼ 0:5 and
d=a ¼ 0:9) from Fig. 13 where verified against eigenvectors



Table 3
Convergence and verification with FE analysis, flat panel, linear buckling.

d=a 0.000 0.200 0.400 0.600 0.807 0.907

m ¼ n ¼ 5 NxxCR 6.05 6.04 5.96 5.77 5.36 5.03
Error 1.19% 1.57% 2.31% 3.16% 3.96% 3.35%

m ¼ n ¼ 6 NxxCR 6.03 6.01 5.91 5.69 5.26 4.95
Error 0.78% 1.02% 1.41% 1.76% 2.06% 1.84%

m ¼ n ¼ 8 NxxCR 6.01 5.98 5.86 5.63 5.20 4.89
Error 0.43% 0.51% 0.60% 0.67% 0.74% 0.52%

m ¼ n ¼ 10 NxxCR 6.00 5.96 5.85 5.61 5.18 4.87
Error 0.29% 0.30% 0.31% 0.34% 0.37% 0.07%

FE NxxCR 5.98 5.95 5.83 5.59 5.16 4.86

a=b ¼ 0:5, b=bb ¼ 5, b ¼ 1 m
NxxCR unit is ½N=m�.

Table 4
Convergence and verification with FE analysis, curved panel, linear buckling.

d=a 0.000 0.200 0.400 0.600 0.807 0.907

m ¼ n ¼ 5 NxxCR 33.61 33.59 33.18 32.63 32.51 32.84
Error 4.96% 5.13% 4.63% 4.44% 7.05% 10.27%

m ¼ n ¼ 6 NxxCR 32.69 32.65 32.35 31.74 30.88 30.37
Error 2.08% 2.18% 2.04% 1.60% 1.68% 1.99%

m ¼ n ¼ 8 NxxCR 31.93 31.88 31.62 31.12 30.28 29.68
Error �0.27% �0.22% �0.27% �0.38% �0.30% -0.35%

m ¼ n ¼ 10 NxxCR 31.92 31.86 31.59 31.10 30.26 29.65
Error �0.31% �0.28% �0.36% �0.47% �0.36% �0.43%

FE NxxCR 32.02 31.95 31.71 31.24 30.37 29.78

a=b ¼ 0:5, b=bb ¼ 5, b ¼ 1 m, r ¼ 10 m.
NxxCR unit is ½N=m�.

Fig. 10. Pre-buckling displacement field u for the skin ½m�.
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Fig. 11. Pre-buckling stress field Nxx for the skin ½N=m�.
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obtained from finite element simulations, shown in Fig. 14. A close
correlation can be observed, even for the non-symmetric mode
obtained with d=a ¼ 0:9.

7.3. Natural frequency with different defect lengths

Natural frequency analyses were performed solving Eq. (28) and
using the boundary conditions shown in Fig. 8. Table 5 shows a
convergence study and verification against FE results, where the
error is relative to the FE model. Stiffened panel #1of Table 2 with
r ¼ 10 m was used in these comparisons, with a=b ¼ 0:5 and
b=bb ¼ 5. Similarly to the convergence study performed for linear
buckling, errors below 1% start to occur with m ¼ n ¼ 8 and this
is the chosen refinement applied for all natural frequency runs,
unless otherwise specified.

The sensitivity of the natural frequency behavior to various
debonding defect lengths was studied for stiffened panel #1 of
Table 2, and the results as shown in Fig. 15, where xd¼0

CR is the nat-
ural frequency with no debonding defect. Results for the other
stiffened panel laminate configurations of Table 2 are shown in
Appendix C. Interestingly, the impact of the debonding defect
length on the natural frequency behavior is very similar to the
impact on the linear buckling response already discussed, i.e. the
threshold of debonding defect that drastically reduces the first nat-
ural frequency is inversely proportional with a=b. Again, b=bb

showed to have a minor influence on the natural frequency sensi-
tivity to d=a.

Natural frequency modes for various a=b ratios and debonding
defect sizes are presented in Fig. 16 for b=bb ¼ 5, showing that
the abrupt decrease on the first frequency value is due to a change
on the critical skin vibration mode. Higher a=b ratios will allow this
change to occur for lower d=a thresholds, similarly to what was
observed for linear buckling modes.

Fig. 17 shows analysis results for stiffened panel #1 of Table 2
with r ¼ 10 m, where the natural frequency sensitivity is clearly
less dependent on a=b than for flat panels with similar laminates
and geometry (cf. Fig. 15). Another important distinction is that
for curved panels the b=bb drastically influences the threshold of
d=a that will cause abrupt changes on the vibration frequencies.

Critical modes for various configurations of curved panels with
b=bb are presented in Fig. 18 with an eigenvector scale ranging
from blue (most negative) to red (most positive), where it becomes
apparent that for higher d=a and a=b ratios the dominant mode no
longer belongs to the skin. In fact, it was observed for these cases
that the critical mode belongs to the stiffener’s base, which has a
free edge at the defect region. For the case with the largest skin-
to-stiffener ratio, i.e. b=bb ¼ 10, it was observed that the skin mode
remains dominant even for configurations with high d=a and high
a=b; and that is why these configurations are considerably less sen-
sitive to d=a than the flat panel counterparts, as observed compar-
ing Figs. 15 and 17 for b=bb ¼ 10.
8. Conclusions

The proposed strategy to assemble semi-analytical models
showed to be successful to predict the linear buckling and natural
vibration behavior of stiffened panels. For the examples herein
studies an absolute difference of less than 1% when compared to
a finite element model was observed for approximation functions
with m ¼ n ¼ 8 terms. Conventional single-domain models
showed not to allow the prediction of complex and discontinuous



Fig. 12. Effect of defect on linear buckling of T-stiffened flat panels.
Fig. 13. Linear buckling eigenvectors, with b=bb ¼ 5.

Fig. 14. Finite element eigenvectors for laminates #1, with a=b ¼ 1 and b=bb ¼ 5.
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displacement fields, which are created when debonding defects are
present. The strategy proposed to calculate the penalty stiffnesses
based on laminate properties of the adjacent panels showed to
result in numerically stable analyses, in contrast to adopt an arbi-
trarily fixed high value.

Regarding the computational efficiency, it was observed that
the stiffness matrices generated for the assembly approach are
much sparser compared to single domain models, leading to a con-
siderable reduction of the solving time. The converged finite ele-
ment herein adopted for the comparisons spent about 12.8 s per
linear buckling run, while the proposed model with m ¼ n ¼ 8
spent about 3.9 s per run. It is noteworthy to say that for the
assembly model the number of terms can be easily reduced if
higher performances are required, especially aiming optimization
tasks involving huge design spaces. Thus, using for each domain
m ¼ n ¼ 6 would reduce the run time to 1.2 s, and using
m ¼ n ¼ 5 to only 0.7 s per run.

The main limitation that one may encounter when applying
assembled models are related to the unavailability to find a
semi-analytical models for a given domain, e.g. curved cutouts
would require special integration schemes not yet implemented
[37], and the programming complexity that one may encounter
when assembling already existing domains.

The studies carried out with the developed models showed that
for debonding defect sizes in the range of d=a 6 0:1 both flat and
curved T-stiffened panels have skin-dominant modes, for both lin-
ear buckling and natural frequency.
The vibration analysis of curved panels showed that larger
defects in the range d=a > 0:1 will result in critical modes at the
stiffener’s base. This is due to the new free edge with the length



Fig. 16. Natural frequency modes, with b=bb ¼ 5 for a flat panel.Fig. 15. Effect of defect on natural frequency of T-stiffened flat panels.

Table 5
Convergence and verification with FE analysis, curved panel, natural frequency.

d=a 0.00 0.207 0.407 0.607 0.807 0.907

m ¼ n ¼ 5 xCR 69.81 69.67 68.56 65.45 60.59 57.77
Error 7.86% 7.97% 7.96% 7.09% 5.39% 4.01%

m ¼ n ¼ 6 xCR 65.85 65.68 64.69 62.23 58.39 56.14
Error 1.74% 1.79% 1.87% 1.83% 1.57% 1.08%

m ¼ n ¼ 8 xCR 65.17 64.98 63.99 61.59 57.83 55.69
Error 0.69% 0.71% 0.76% 0.78% 0.60% 0.28%

m ¼ n ¼ 10 xCR 65.13 64.93 63.92 61.52 57.77 55.62
Error 0.63% 0.62% 0.66% 0.66% 0.48% 0.15%

FE xCR 64.72 64.52 63.50 61.12 57.49 55.54

a=b ¼ 0:5, b=bb ¼ 5, b ¼ 1 m.
xCR unit is ðHzÞ.
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of the debonding defect. Panels with high skin-to-stiffener ratio
tend to be more skin-dominant in the critical mode, showing con-
siderably less sensitivity to the defect size when compared to pan-
els with lower skin-to-stiffener ratio.

Flat panels do not have the curvature stiffening effect acting on
the skin such that in all cases herein investigated the dominant
mode belongs to the skin, for either linear buckling or natural
frequency analysis. A very characteristic mechanism of mode
change with increasing defect size has been observed, which is
characterized by a shift between one semi-wave at each side of
the T-stiffener to a single buckle centered at the debonding defect
region. When the mode shifts to a single buckle there is an abrupt
change of either the critical linear buckling load or the first natural
frequency, leading to a critical d=a defect size value. This threshold
decreases with the increase of a=b ratio.

As an ultimate conclusion, it was observed that debonding
defects up to d=a ¼ 0:1 do not significantly affect the critical linear
buckling load neither the first natural frequency of T-stiffened flat
panels or curved panels. However, further studies are recom-
mended to extend the current investigation in order to obtain a
more thorough guideline:



Fig. 18. Natural frequency modes, with b=bb ¼ 5 for a cylindrical panel with
r ¼ 10 m.

Fig. 17. Effect of defect on natural frequency of T-stiffened curved panels.
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- linear buckling and natural frequency sensitivity to a debonding
defect for loads perpendicular to the stiffener axis (Nyy) and
combined load cases;

- configurations with various radius-to-thickness ratios in order
to verify if a threshold beyond which only skin-dominant
modes exist (such as it was observed for the flat panels herein
addressed);

- different bf =bb ratios for T-stiffened panels;
- different stiffener profiles;
- non-linear analysis considering stress concentrations at the
region near the debonding defect in order to achieve more real-
istic simulation scenarios.

Additional studies could also extend the present model to sim-
ulate riveted stiffened panels in order to address the effect of
defects produced by losing one or more rivets in the residual
strength. Further studies are also encouraged applying the mod-
elling technique herein addressed to structures with cutouts, for
which the displacement field has discontinuities and therefore
single-domain models would not be easily applicable. The semi-
analytical models herein proposed are made available in the
CompMech scientific package [37]
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Appendix A. Constitutive stiffenesses for laminae

The local stiffness terms [25] of the laminae engineering con-

stants for the kth layer are:

Q11 ¼ E1
1�m12m21 ; Q12 ¼ m12E2

1�m12m21
Q22 ¼ E2

1�m12m21 ; Q66 ¼ G12

ðA:1Þ

The global stiffness terms for the kth layer in respect to the laminate
coordinates system is given as follows [25]:



Fig. C.1. Linear buckling, T-stiffened flat panels with b=bb ¼ 5.
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�Q11¼Q11 cos4hþ2ðQ12þ2Q66Þsin2hcos2hþQ22 sin
4h

�Q12¼ðQ11þQ22�4Q66Þsin2hcos2hþQ12ðsin4hþcos4hÞ
�Q22¼Q11 sin

4hþ2ðQ12þ2Q66Þsin2hcos2hþQ22 cos4h

�Q16¼ðQ11�Q12�2Q66Þsinhcos3hþðQ12�Q22þ2Q66Þsin3hcosh

�Q26¼ðQ11�Q12�2Q66Þsin3hcoshþðQ12�Q22þ2Q66Þsinhcos3h
�Q66¼ðQ11þQ22�2Q12�2Q66Þsin2hcos2hþQ66ðsin4hþcos4hÞ

ðA:2Þ
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Appendix B. Expressions for structural matrices

In the equations below u, v and w are in fact abbreviations for
Su, Sv and Sw, for the sake of clarity.

Since three degrees of freedom exist each minimum repeatable
term of each panel matrix (K , Kp and Mp) will consist of a 3 � 3
square matrix, located row-wise by indices i; j and column-wise
by indices k; ‘. Therefore, only the calculation of this minimum
repeatable term has to be given.

Constitutive stiffness matrix Kp:
2 a
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Fig. C.2. Natural frequency, T-stiffened flat panels with b=bb ¼ 5.

Fig. C.3. Natural frequency, T-stiffened curved panel with b=bb ¼ 5 and r ¼ 10 m.
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Initial stress (or geometric) stiffness matrix KGp :

Kijkl
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with Nxx, Nyy and Nxy calculated using Eq. (14)
Mass matrix Mp:
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Appendix C. Results for configurations of Table 2

See Figs. C.1–C.3
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