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The relationship between the amplitude of motion and the accumulation of motion

sickness in time is unclear. Here, we investigated this relationship at the individual and

group level. Seventeen participants were exposed to four oscillatory motion stimuli, in

four separate sessions, separated by at least 1 week to prevent habituation. Motion

amplitude was varied between sessions at either 1, 1.5, 2, or 2.5 ms−2. Time evolution

was evaluated within sessions applying: an initial motion phase for up to 60 min, a 10-min

rest, a second motion phase up to 30 min to quantify hypersensitivity and lastly, a 5-min

rest. At both the individual and the group level, motion sickness severity (MISC) increased

linearly with respect to acceleration amplitude. To analyze the evolution of sickness over

time, we evaluated three variations of the Omanmodel of nausea. We found that the slow

(502 s) and fast (66.2 s) time constants of motion sickness were independent of motion

amplitude, but varied considerably between individuals (slow STD = 838 s; fast STD =

79.4 s). We also found that the Oman model with output scaling following a power law

with an exponent of 0.4 described our data much better as compared to the exponent

of 2 proposed by Oman. Lastly, we showed that the sickness forecasting accuracy

of the Oman model depended significantly on whether the participants had divergent

or convergent sickness dynamics. These findings have methodological implications for

pre-experiment participant screening, as well as online tuning of automated vehicle

algorithms based on sickness susceptibility.

Keywords: motion sickness, mathematical modeling, sensory conflict, stimulus amplitude, power-law scaling,

forecasting

1. INTRODUCTION

Motion sickness is a syndrome that arises as a consequence of a wide range of self-motion
and orientation cues. It is characterized by symptoms of sweating, headache, dizziness, stomach
awareness, where these symptoms usually grow in severity until nausea, retching and ultimately
vomiting occurs (Bertolini and Straumann, 2016). The fact that adverse motions may, in a wide
range of species (Wang and Chinn, 1956; Wassersug et al., 1993; Bauerle et al., 2004; Hickman
et al., 2008), cause a diverse set of symptoms is peculiar.

Therefore, the etiology of motion sickness remains an active area of scientific inquiry. There are
two main theories of motion sickness, these are the “Sensory Conflict” (Reason, 1978; Oman, 1982)
theory and the “Postural Instability” theory (Riccio and Stoffregen, 1991). The most developed
mathematical models and tools exist for the sensory conflict theory (Bos and Bles, 1998; Khalid
et al., 2011; Wada, 2021). Therefore, this paper will study motion sickness through the concepts of
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state estimation and sensory conflict, and will not cover the
postural instability theory nor attempt to evaluate postural
precursors to motion sickness.

The sensory conflict theory (Reason, 1978) argues that motion
sickness is mainly due to a conflict between the sensed sensory
signals and the sensory signals expected by the brain. These
expectations originate from an internal model, which takes
the form of a neural store. The conflict leads to adaptation
of the internal model. In the formulation of Oman (1982)
this conceptual model is likened to a Luenberger Observer
(LO). The LO has an internal model of the system (body) and
sensor dynamics. Due to the imperfect and noisy nature of
the sensory signals, one cannot use the sensor measurements
directly. Instead, the true states of the system must be observed
(estimated) by integrating sensory information using an internal
model of the system itself. Indeed, there is strong neuronal
evidence for the use of internal models for state estimation
(Merfeld et al., 1999; Angelaki et al., 2004; Laurens et al., 2013;
Oman and Cullen, 2014). To quantify estimation accuracy, the
central state estimates are passed through an internal model
of sensory dynamics and compared with the actual sensory
signals. The resulting error is the estimation error, or the sensory-
expectancy conflict. It is hypothesized that the magnitude of the
conflict and the duration of exposure then leads to the subsequent
symptoms of motion sickness.

There are practical implications that come with a firm
understanding of the relationship between the magnitude of
sensory conflict and motion sickness accumulation. Firstly,
such knowledge allows us to better generalize motion sickness
predictions to mixed acceleration environments that are
ubiquitous to vehicular transport (Feng et al., 2017). Such
predictions may then be used as an objective function to
minimize sickening vehicle motions. Secondly, a functional
model will allow for the development of control algorithms that
can automatically adjust the amplitude of sickening simulator
motions such that participants track a desired sickness trajectory.
Currently, in experimental studies, researchers must fix their
stimulus beforehand and hope that participants do become
sick, but do not terminate the experiment prematurely. Active
control will allow for setting the desired level and variance of
motion sickness, which will increase the statistical quality of data
collected. Lastly, a predictive model of sickness accumulation
will allow for tuning of automated vehicle algorithms to the
susceptibility level of the individual passenger, whilst also
allowing prescreening of participants for a desired level of
susceptibility. To allow for these novel methods and technologies,
the mathematical process that links sensory conflict to the time
evolution of motion sickness must be elucidated.

For simple motions, such as single degree-of-freedom vertical
or horizontal accelerations, the conflict vector is assumed to be
proportional to the acceleration stimulus itself. There is literature
on the relationship between the acceleration magnitude (a proxy
for the magnitude of the conflict) and group-level responses to
sickness. Lawther and Griffin (1988), for instance, show a linear
relationship between the amplitude of vertical accelerations
on ships and motion sickness incidence (MSI), which is
the percentage of people who vomited during the exposure.

Likewise, using the more sensitive metric of mean subjective
illness score, they also observed a strongly linear relationship
between acceleration amplitude and sickness. However, their
tested acceleration amplitudes were only in the range of 0–0.7
ms−2, which covers a small linearisable part of the complete,
possibly nonlinear sickness amplitude dynamics. Indeed, looking
at the data of O’Hanlon and McCauley (1973), in the range
of 0.25–3.9 ms−2 there seems to be a sigmoidal relationship
between acceleration amplitude and MSI. The subjective vertical
model developed by Bos and Bles (1998) captures this sigmoidal
relationship by first rectifying the conflict vector, and then input
scaling it with a non-linear Hill-function. The resulting scaled
conflict is then integrated with a second-order system, to match
the MSI observations of O’Hanlon and McCauley (1973).

The approach of combining sensory conflict and
accumulation models is unique because it clearly discriminates
between conflict generation, which is a by-product of spatial
orientation and state estimation, and conflict integration, which
leads to motion sickness. There are two shortcomings in this
approach. Firstly, at the practical level, the motion sickness
prediction is made using motion sickness incidence (MSI),
defined as the percentage of people that have vomited. This
misses the finer increments in symptom development that
precede vomiting, which are more relevant for most practical
applications of motion sickness modeling. Secondly, the
approach conflates the internal dynamics that lead to sickness
at an individual-level with the averaged group-level dynamics.
For a physiologically valid model of motion sickness, the final
sickness predictions should map to individual ratings, not
group-averaged ones.

An individual-level model of the temporal dynamics
of motion sickness was developed by Oman (1990). This
model is also uniquely able to describe the phenomenon
of “hypersensitivity”, which is an essential part of sickness
development over time. Hypersensitivity is characterized by
the fact that after exposure to sickening motions, any further
exposure to sickening motions leads to a more rapid rise in
sickness than in the initial exposure (Golding et al., 1997).
Modeling hypersensitivity is particularly relevant for automated
driving, as sickening motions are usually separated by long
durations of rest (i.e., at the traffic lights). In our previous
work, the Oman model was validated in the context of motion
sickness generated by slalom maneuvers performed by a car
at 0.2 Hz with a lateral acceleration of 4 ms−2, for up to 30
min (Irmak et al., 2020). Here, it was seen that the model
provided a good fit to subjective sickness scores as measured on
the MIsery rating SCale (MISC) (Bos et al., 2010). Moreover,
using the Oman model, parameters governing the trajectory of
motion sickness could be used to predict individual responses
in re-exposure to the same paradigm. This indicated a high
degree of intra-individual repeatability in sickness dynamics.
In this previous experiment, we only used an acceleration
of a single magnitude. However, in traffic, humans generally
encounter mixed acceleration stimuli. The original form of
Oman (1990)’s model predicts the end level of sickness to be a
quartic of the input acceleration amplitude. This is because of
the model’s “slow” path acting as a gain on its “fast” path and the
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output power scaling, po shown in Figure 2, being set to 2. It is,
however, not clear whether this proposed amplitude relationship
is correct. Nor is it clear whether the Oman model can generalize
to fit sickness for different acceleration inputs, or whether its
parameters must be refitted on a case-by-case basis.

In the present study, we assessed the relationship between
conflict magnitude, using acceleration stimulus amplitude as a
proxy, and the temporal dynamics of motion sickness symptoms
at the individual-level. We did this by exposing 17 participants
to sinusoidal fore-aft motions of four different acceleration
amplitudes. The experiment was performed in the SIMONA
Research Simulator at the Aerospace Engineering faculty of
TU Delft (Stroosma et al., 2003; Berkouwer et al., 2005). In
the subsequent analyses, we first confirm previous literature
findings for the relationship between acceleration amplitude and
group-level responses. Uniquely, we show that motion sickness
at an individual-level for different stimulus amplitudes can be
modeled adequately with individually varying Oman model time
constants that are independent of motion amplitude, but using
the same group-level averaged power law scaling at the output
for all individuals. Moreover, we show that the Oman model
in its current form can forecast the future evolution of motion
sickness, but the accuracy of the forecasting is dependent on
the qualitative form of individuals’ sickness dynamics. This has
important consequences for prescreening of participants for
motion sickness experiments, and tuning of automated driving
algorithms to individual passengers.

2. METHODS

2.1. Participants
In total, 17 participants completed this study (mean age: 25.3
years, STD: 2.6 years; 2 female, 15 male). The 17 participants
had a mean motion sickness susceptibility questionnaire short
form (MSSQ-Short, Golding, 2006) score of 16.2 (STD =
10.1) indicating that they had above average susceptibility,
corresponding to the 65th percentile.

2.2. Apparatus
The experiment was performed in the SIMONA Research
Simulator at TU Delft (Figure 1). The simulator has a six degree-
of-freedom hydraulic hexapodmotion system, which can provide
a maximum displacement of 1.12 m, a maximum velocity of 0.9
ms−1 and a maximum acceleration of 13 ms−2 (Stroosma et al.,
2003; Berkouwer et al., 2005). The participants were placed inside
a closed cabin, within which they were seated and secured using
a five point harness. To prevent unwanted head movements,
their head was supported with a neck restraint. To remove any
visual cues, they wore blackened goggles and the cabin lights were
turned off (see Figure 1). Continuous communication with the
experimenter was possible via an intercom system.

2.3. Task
Each condition was tested on participants with a rest of at
least 1 week (mean: 30.6 days, STD: 20.6 days) in between
any two test conditions. In these sessions, participants were
subjected to sinusoidal fore-aft motions at a frequency of 0.3 Hz.

The amplitude of the accelerations used were; 1, 1.5, 2, and 2.5
ms−2. The choice of the highest acceleration was constrained by
the maximum possible simulator velocity of 0.9 ms−1. The choice
of the frequency was based on the highest frequency observed
for which the population incidence of sickness does not decrease
(Golding and Markey, 1996; Golding et al., 1997; Irmak et al.,
2020).

In each session, participants underwent two motion
exposures. The first exposure lasted for 60 min, or until the
participant reached a MISC of 6. They were then permitted 10
min rest, after which the second exposure lasted for 30 min, or
until they reached a MISC of 6. After this, they first rested for
5 min in the simulator, and then for as long as they desired to
in the staging room. At the beginning and end of each motion,
the motions were faded in and out with a linearly increasing
and decreasing amplitude from zero to the level specified over
a 10-s period.

Each session only tested one amplitude of the range of
acceleration stimuli. Due to time limitations and a desire to
sample as broad a range of amplitudes as possible, conditions
were not repeated. This is justified by good trial-to-trial
repeatability found previously in measured motion sickness
responses (Miller II and Graybiel, 1969; Irmak et al., 2020).
The order in which each amplitude was experienced was
balanced between participants using a Latin square. This
prevented confounding effects of habituation between the
different amplitudes.

2.4. Quantifying Sickness
Participants were instructed to report their sickness on the 11-
point MISC scale (Bos et al., 2010). The MISC scale is anchored
to specific motion sickness symptoms: 0 is no symptoms, 1
is uneasiness, 2, 3, 4, 5 represent increasing severity of non-
nausea symptoms from vague to severe, 6 is mild nausea, 7
is moderate nausea, 8 is severe nausea with 9 and 10 being
retching and vomiting, respectively. The MISC is useful because
the ratings are directly linked to symptoms, which is not the case
with other scales such as the Fast Motion Sickness Scale (FMS)
(Keshavarz and Hecht, 2011) and the Magnitude Estimate scale
(Bock and Oman, 1982). Having a non-anchored scale would
make the ultimate aim of minimizing of sickness predictions
with respect to vehicle motions infeasible. It has been reported
by Reuten et al. (2021) that there is a clear non-monotonic
relationship between a MISC level of 5 and 6 in terms of the
feelings of unpleasantness that are often used to characterize the
sickness response. However, recently (de Winkel et al., 2022)
have demonstrated that this observed break from monotonicity
was semantic in nature. The discomfort associated with each
level of the MISC, as it was used to express motion sickness
during exposure to a sickening stimulus, was found to increase
monotonously and the MISC could be characterized by a power
law of exponent 1.206 (de Winkel et al., 2022). All together, these
considerations were deemed sufficient to warrant using theMISC
directly for our modeling work.

Every 30 s, a 1 kHz beep was played over the simulator
intercom to prompt the participant to verbally state their MISC
level. In addition to this prompted response, participants were
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FIGURE 1 | Experimental setup. (A) is the SIMONA Research Simulator used in the experiment to elicit motion sickness via fore-aft sinusoidal motions of differing

amplitudes. (B) shows the second author as a participant in the experiment, wearing a 5-point safety harness, a neck restraint, and blackened glasses.

told that they could voluntarily give a MISC report whenever
they thought it changed substantially since the last response was
requested. Responses were recorded on audio and transcribed
after the experiment session by the experimenter. The audio
recordings were voice activated and recorded only for the
duration the participant was speaking. EachMISC rating given by
the participant was time stamped to the start of the audio sample.

2.4.1. Drop-Out Rate and MISC Rate
To quantify the dynamics of sickness with respect to acceleration
amplitude, the severity of sickness must be specified. To this end,
we used the MISC rate and the drop-out rate. The MISC rate
is defined as the MISC rating at the end of motion exposure,
divided by the time in minutes to this end. Whereas, the drop-
out rate is simply defined as the percentage of participants that
have prematurely terminated a motion exposure.

2.5. Sickness Model
The sickness accumulation model in this study is the Oman
(1990) model shown in Figure 2. Here, the input to the model
is the magnitude of the rectified sensory-expectancy conflict.
In advanced sensory integration models, the sensory conflict
is a product of the state estimation/motion perception process
(Clark et al., 2019; Wada, 2021). In this experiment, the
motions encountered were simple fore-aft accelerations and the
sensory conflict was therefore assumed to be proportional to the
acceleration stimulus itself.

The output of the model is a generic sickness level, which
may be quantified with a sickness rating scale such as the MISC.
In the model, there is a “fast” path and a “slow” path. The fast
path is given by a repeated root second-order system with a time
constant β1. The slow path is given by a repeated root second-
order system with a time constant β2. The slow path controls
the gain on the fast path. The existence of the two paths, rather
than one standard path as in the subjective vertical model (SVM),
enables (Oman, 1990)’s model to describe the phenomenon of
hypersensitivity.

The original form of the Oman model has an output scaling
(upo ), where the sum of the fast and slow paths are raised to
the power of 2 (po = 2), a choice which has, to the best of

our knowledge, not been validated. An alternative is an input
scaling, which represents a direct sensitivity relationship between
sensory-expectancy conflict and motion sickness at the input
level, as proposed in Bos and Bles (1998). In this study, both input
and output scaling were explored, but as output scaling provided
a better fit to the data, this is the model form reported in the
results. Nevertheless, we discuss the effect of input and output
scaling in the discussion section.

All poles of the Oman model are negative, meaning it has a
stable response that eventually converges to a steady-state level
of sickness MISCss. For a step input of amplitude A, the effect of
output scaling on the model output, is given by the equation

MISCss = (KA2 + A)po (1)

where K is the gain of the fast path and po is the output power
scaling of the conflict amplitude.

2.5.1. Error Metric
The formulation of the Oman model considered in this study has
four parameters. These are the fast and slow path time constants
β1, β2, the gain K and the output power scaling exponent po.

The error metric used for the optimization was the mean
absolute error (MAE), which is given by the equation:

MAE =
6n

t=1|Ft − At|

n
(2)

For each iteration of the optimization an error is calculated using
the predicted MISC ratings Ft and the measured At ratings. The
MAE is not scaled, thismeans it fits the higherMISC ratingsmore
faithfully than the lower scores. Moreover, it is easy to interpret,
as the MAE directly quantifies the average absolute deviation
from the observation.

2.5.2. Optimization Procedure
Three variations of Oman’s model were fitted to the individual
participants’ data:

1. Session Fit, Unit Power: As a baseline for how well the model
could feasibly fit the sickness profile, but also to assess how the
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FIGURE 2 | Oman’s model of motion sickness development in time. The rectified conflict signal |c| is fed in to the model. There is a fast (upper) path and a slow

(lower) path. The slow path multiplies with the conflict as the gain of the fast path. Both systems are second order with repeated poles. The fast and slow path are

then summed. The model has either an input power scaling or an output power scaling given by upi and upo , respectively.

FIGURE 3 | Main group-averaged results for the first motion exposure. (A) indicates the early termination rate where participants reached a MISC level of 6 prior to the

60-min mark in first motion exposure. (B) shows the median MISC Rate (as the solid black line inside blue shaded box) the mean MISC Rate (black circle) and the

25th and 75th percentiles (bounds of the box).

model parameters may vary between conditions, each session
was fitted separately. This means that the time constants β1,
β2 and the gain K were fitted for each individual session, and
thus stimulus amplitude. The power was assumed to be unity,
i.e., po = 1, and fixed for all fittings. The optimization was
performed using the MATLAB fmincon function. Due to the
presence of local minima, this was done using 10 multi-starts.

2. Joint Fit, Individual-Level Power: The first model does
not have a generalizable amplitude relationship from which
one can make predictions across acceleration levels. For this
reason, the sickness to amplitude relationship is assumed
to be an idiosyncratic property of the individual, and so
another model was fitted where the power law term was
allowed to vary between participants. The fits were done
jointly for all conditions for a given individual, meaning
that both the time constants (β1 and β2), the gain (K) and
the power law (po) terms did not vary within an individual

between the different conditions, but did vary between
individuals. The optimization was performed using fmincon
with 10 multi-starts.

3. Joint Fit, Group-Level Power: To assess whether an
individual power law was needed to adequately capture the
sickness observations, or whether a group-level power law
metric is sufficient, the model was fitted with a power law po
term that was fixed between participants. The fits were done
jointly for all conditions for a given individual, meaning that
both the time constants (β1 and β2) and the gain (K) did
not vary within an individual between the conditions. The
optimization was done using fmincon with 10 multi-starts.

2.6. Statistical Analysis
2.6.1. AICc
Models with more free parameters generally give better fits to
experimental data. To assess the significance of such additional
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model parameters, we used the corrected Akaike Information
Criterion (AICc). This is a measure of model fit that is based
on the likelihood of the data given the model, whilst including a
penalty term for the number of parameters. It is a corrected form
of the AIC where the parameter penalty scales quadratically, but
approaches the AIC when the number of observations, n is many
times larger than k2. Fab (2014) explains how to interpret the
absolute value of differences in the AICc between the models, in
terms of strength of evidence. According to these rules of thumb,
absolute differences in the indices >2, >6, and >10 provide
positive, strong, and decisive evidence, respectively, in favor of
the model with a lower AICc value.

2.6.2. Friedman Test
As our metrics do not satisfy the assumptions required for
parametric testing, the Friedman test was used for statistical
comparisons between different amplitude conditions. The
Friedman test is a non-parametric test analogous to the
parametric repeated-measures ANOVA. The significance level is
reported in much the same way as in an ANOVA, where a p-value
that is less or equal to 0.05 is taken as indication of a statistically
significant result.

2.6.3. Logrank test
Logrank test is a hypothesis test used to compare the survival
distribution of two samples. In this study, it was used to
compute a pairwise comparison between the termination curves
of different motion conditions.

3. RESULTS

3.1. Group-Level Observations
The experiment proved to be very sickening. Figure 3 shows
the group-level results for all 17 participants over the first 60-
min motion exposure. The dropout rate for all four conditions
is shown in Figure 3A and was high, whereby the three highest
amplitudes—2.5, 2.0, and 1.5 ms−2—had similar dropout rates
after 60 min of approximately 94%. The lowest amplitude
setting had an appreciably lower dropout rate of 64.7%. Using
a logrank test between the amplitudes 1 and 1.5 ms−2, 1.5 and
2 ms−2, and 2 and 2.5 ms−2, a significant increase in drop-
out was found between the survival curves of 1 and 1.5 ms−2

(Bonferroni corrected p = 0.0047), 1.5 and 2 ms−2 (p =

0.0107), but not between 2 and 2.5 ms−2 (p = 0.473). The
hazard ratios were 1.64, 1.56, and 1.25, respectively, indicating a
monotonic increase in the probability of dropout with increasing
acceleration amplitude.

In this experiment, the most discriminative measure of how
sickening a certain stimulus was given by the MISC rate.
Figure 3B shows a monotonically increasing MISC rate on
average across the group of participants (for the individual MISC
rates of all participants, see Supplementary Figure S1). This
monotonicity is further supported by the fact that a linear model
provides a significantly better fit to the MISC rate data than a
constant (intercept-only) model (AICc = –1.92 vs. AICc = 29.4).

Figure 4 shows a more detailed breakdown of time to reach
each a certain MISC rating, where the left-most lightest colored

FIGURE 4 | Time to reach a certain MISC level as a function of amplitude

during the first and the second motion exposures, given by the blue and

orange-shaded bars, respectively. The darker shades correspond to

increasing MISC levels.

bar graph for each condition is for a MISC of 1 and the right-
most darkest color is 6, for all tested amplitude conditions. Both
data for the first (shade of blue) and the second motion exposure
(shade of red) are presented. Figure 4 again shows that with
increasing amplitude, there is a decrease in the time it took to
reach a certain MISC level. Furthermore, the presence of motion
sickness hypersensitivity is observed during the second motion
exposure, shown in the yellow to orange colored bars, where time
to a certain MISC rating is reduced by 61% on average compared
to the first exposure.

3.2. Oman Model
As motivated in Section 2.5.2, three model variations were
evaluated: the Session Fit Unit Power, Joint Fit Group-level power
and Joint Fit Individual-level Power. The results for these cases
are presented separately in this section.

3.2.1. Session Fit, Unit Power
For the Session Fit, Unit Power case, the Oman model is fitted to
all amplitude conditions individually for each participant, as also
done in Irmak et al. (2020). Figure 5 shows Box plots of the fitting
errors (MAE), the gains, and the long and short time constants
for each amplitude condition.

A Friedman test shows significant differences in the MAE,
with an average of 0.54, (χ2 = 9.15, df = 3, p =

0.027) across motion amplitude conditions, meaning there is a
significant difference between model fitting accuracy across the
different amplitude conditions. A post-hoc test, however, shows
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FIGURE 5 | Box plots showing the mean absolute error, the gain and the two time constants of the Session Fit, Unit Power model variation. The Box plot is in

standard form, with the center black line indicating the median, the dots indicating the means, and the sides of the box indicating the quartiles. Some outliers are

above the maximum y-value limits chosen for the respective subplot.

FIGURE 6 | The error term Ejoint with respect to the output power scaling,

which is taken to be constant between participants. The lowest Ejoint occurs

when power is equal to 0.4.

no significant difference between any set of individual amplitude
conditions. On average, Ejoint is 0.94 (STD = 0.29).

Figure 5 shows a significant downward trend in the gain of
the model with increasing amplitude (χ2 = 12.8, df = 3,
p = 0.005). There were no significant differences in either
the fast nor the slow path time constants across the amplitude
conditions (χ2 = 4.05, df = 3, p = 0.26 and χ2 = 1.43,
df = 3, p = 0.7, respectively). On average, β1 and β2 had
median values of 73.6 and 510.4 s, respectively. The implication
of this is that the fast and slow path time constants are seen to
be acceleration amplitude invariant and can thus be considered a
constant property of each individual.

3.2.2. Joint Fit, Individual-Level Power
The Session Fit shows that the gains change as a function of input
amplitude, whereas the time constants may be fixed. To get a
single set of parameters (rather than amplitude dependent gains)
that will predict across all amplitudes, the model requires an
output power-law scaling. In the Joint Fit, Individual-level Power
model variation, the dynamics of sickness with respect to input
amplitude are given by allowing this output power scaling po, to
freely vary between individuals. This means that the amplitude
sensitivity, just like both the gains and the time constants, is
modeled as an idiosyncratic property unique to the individual.

For this model variation, the joint error Ejoint was 1.01 (STD
= 0.23), this is only marginally above the 0.94 of the Session
Fit model variation (which is clear from the time domain plots
shown in Figure 7), indicating that themodel simplification from
12 to 4 parameters was successful.

3.2.3. Joint Fit, Group-Level Power
In the previous model form, an individual power term was used.
This power term can be fixed such that only three individual
parameters are required to describe themotion sickness response,
rather than four.

Figure 6 shows the variation in the joint error term Ejoint as
a function of the output power scaling, which was fixed for the
whole population. It can be seen that the error term is minimized
to 1.028 (STD = 0.23) when the output power scaling po is 0.4.
The medians of the other Oman model parameters for output
power scaling were 66.2 and 502.4 s for the fast and the slow path
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FIGURE 7 | Representative sample of fittings for the three model variations for participants 11, 12, 13, and 14. The columns show responses for each amplitude

condition, increasing in magnitude from left to right. The rows show results for each participant.

time constants (β1 and β2), respectively, and 70.8 for the gain (K).
Using the output scaling of 2 proposed by Oman (1982) led to an
error of 2.54, higher than the minimum we find using an output
scaling of 0.4.

Contrary to previous findings by Irmak et al. (2020), there
was no correlation between the fast and slow time constants
(r = 0.074). This may be explained by the fact that we tested
multiple amplitudes rather than one in the current study, fitting
all concurrently with an associated output-scaling term. This
may have reduced any potential correlation between the two
time constants. A second factor may be that the previous
finding was a spurious correlation, which this study was not able
to replicate. This is plausible because the two time constants
in fact represent different classes of responses, hormonal and
neural (Oman, 1982). These are likely to be independent and
uncorrelated processes.

By setting po = 0.4 in equation 1, the relationship between
the conflict magnitude and the predicted sickness output of the
model is given by:

MISCss = (KA2 + A)0.4 (3)

K is the Oman model gain and is usually large with a median
value of 70.8. This means that the steady state sickness value
predicted by the model has an approximately linear relationship
to input motion amplitude MISCss ≈ K0.4A0.8

3.2.4. Fitting Comparison
The three variations of the model evaluated each have a joint
error Ejoint for each participant. These model errors (shown in
Table 1) can be compared using the Friedman Test across models
to evaluate whether their fit quality differs significantly. Doing
so, the three tested models were found to differ significantly
from each other (χ2 = 6.14, df = 3, p = 0.046) but this
difference was marginal and indeed pairwise testing revealed no
significant differences.

Figure 7 shows a representative sample of fittings for the three
model variations for participants 11, 12, 13 and 14 (for the data
of all participants, see Supplementary Figure S2). It is clear that
there is little difference between the three model variations. It
can therefore be concluded that individuals have time constants
that are invariant of the motion amplitude, and that an output
scaling of 0.4 allows the model to fit across multiple amplitude
conditions just as well as fitting to a single session. This means
that the 3 parameter model with the output power fixed across
participants, but the gain and the time constants allowed to vary
at the individual level offers a good compromise between fitting
performance and model complexity.

3.3. Amplitude Cross Validation
Evaluation of model variations so far was with respect to howwell
they could fit the data. However, for a predictive model, it is also
important to identify the capacity for generalizing to conditions
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TABLE 1 | Summary of fitting results, with the error averaged over participants

Ejoint, the standard deviation over participants in the MAE, and the number of

parameters for each model variation.

Model variation Average Ejoint STD # Parameters

Session fitting, No power 0.94 0.29 12

Joint fitting, Individual-level power 1.01 0.23 4

Joint fitting, Group-level power 1.03 0.23 3

FIGURE 8 | Box plot showing the mean absolute prediction errors for when 1,

2 and 3 cases are fitted to predict 3, 2 and 1 other conditions, respectively. The

orange Box plots show prediction errors for the individual-level power law, and

the blue Box plots show the prediction errors for the power law fixed to 0.4.

not explicitly fitted to. We therefore performed cross-validation
of the model between the different amplitude conditions. To do
this, we looked at the mean MAE when we fitted to one, two and
three conditions whilst predicting three, two and one condition.
There were 4 combinations for the 1 fitting case, 6 combinations
for the 2 fitting case and 4 combinations for the 3 fitting case,
leading to 14 cross-validation data sets.

Figure 8 shows a Box plot of the mean absolute prediction
errors for the procedure described above. Both models with an
individual-level and a group-level power term variations show
decreasing prediction errors with the number of conditions fitted.
The group-level power model with po = 0.4 has overall a
lower prediction error than the individual-level power model
(Friedman test, χ2 = 12.3, p < 0.001, df = 1), particularly for
when fitting to data from only 1 amplitude condition.

Importantly, the group-level power on average has a fitting
MAE of 0.90, which is close to the average prediction error of
1.15 after fitting only one condition. This indicates a high degree
of regularity in the amplitude response that can be predicted

by a power law of 0.4, and one that cannot be captured by the
individual-level power model without larger amounts of data.

3.4. Sickness Forecasting
One of the properties of an effective predictive model is its
ability to forecast future development of the modeled system’s
states. In this section, we evaluate this forecasting ability of the
Oman model.

Figure 9 shows the first motion phase responses of
participants 11–14, where the rows represent the different
participants and the columns the different amplitude conditions
(for the data of all participants, see Supplementary Figure S3).
In our experiment, participants 10, 11, 14 and 17 vomited or
retched (MISC 10 and 9, respectively) very shortly after (<30 s)
reaching a MISC level of 6. Because this occurred very shortly
after reaching 6, in Sections 3.2 and 3.3, a MISC of 6 was taken as
the end point of the experiment data used for fitting. In Figure 9

the full MISC trajectories are shown (blue lines), which for
participants 11, 12, and 14 show a region of stable growth until a
MISC of 6, then a blow-up to vomiting, as similarly reported in
the results of Graybiel (1969).

This phenomenon cannot be captured by the Oman model,
which, as noted before in Section 2.5, converges in a stable
manner to a final sickness level that may be higher than 10.
Predicting such high levels of sickness may not be a concern
for most practical applications, for which the aim generally is to
keep sickness at the lower MISC levels. Figure 9 shows Oman
model predictions (in orange) when the model is fitted to all data
up to a MISC value of 3 (blue shaded ranges) and sickness is
then forecasted until the end of the experiment. It can be seen
that this extrapolation from lower MISC levels in to the future
for some participants suffers from premature convergence (e.g.,
participant 11 in Figure 9), where the model captures an initial
seeming convergence of the MISC data to a final rating. This
effect is explained by the small amount of data provided (only up
to and including MISC 3) and the inherently convergent nature
of the Oman model.

Overall, it is the diverging sickness trajectories that show the
largest forecasting errors, e.g., participants 12 and 14 in Figure 9.
This can be shown statistically, by fitting a model of the form

MISC = atb (4)

as proposed in Irmak et al. (2020), where t is time since the
start of exposure and a, b are model coefficients. The responses
that can be described by b ≥ 1 have a diverging sickness
response with respect to time, whereas those with b < 1 have a
converging response. The fitted model had an average coefficient
b of 1.085 (25-75th percentiles: 1.043-1.448). This means that the
MISC is approximately linear with respect to time. When fitting
the Oman model using a long fitting window, it can describe
both converging and diverging responses equally well. This is
despite its natural tendency to converge. This is because for
divergent cases, the model estimates a very large steady-state
value, meaning that the initial rising part of the response is able
to approximate the divergent cases quite well. However, when
forecasting from lower MISC levels, using a shorter observation
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window, it is seen that forecasting performance for divergent
cases is significantly worse than forecasting for convergent cases.
This can be seen by comparing a constant (intercept-only) and a
linear mixed-effect model, relating the power term to the mean
absolute error in the forecast region (AICc = 149.0 and 136.9,
respectively). With a difference between AICc values > 10 (Fab,
2014), it can be seen that the linear model is significantly better,
meaning that the forecasting error increases with increasing
divergence of the sickness response. The cause of the suboptimal
forecasting is partly due to the model form, which is always
stable, but also due to the limited data used for fitting and
extrapolating from.

At the individual level, 15 out of 17 participants had MISC
responses that were in at least 3 out of 4 conditions either
consistently divergent or consistently convergent. The remaining
2 participants showed convergent MISC responses in half of
the conditions and divergent responses in the other half. This
means that, on average, individuals show a propensity toward one
type of motion sickness trajectory. This supports the existence
of idiosyncratic differences in the qualitative form of sickness
dynamics. We did not find a difference in the power term
between the motion conditions (χ2 = 1.2, df = 3, p = 0.75).
This indicates that the divergent/convergent dynamics is not
modulated by differences in the motion amplitude in the range
explored in this study.

In our study, theMSSQwas correlatedmarginally significantly
with overall sickness susceptibility (ρ = 0.50 p = 0.05). The
overall sickness susceptibility was quantified by averaging the
MISC rates during the first motion exposure of an individual
for all amplitude conditions. This finding indicates the usability
of the MSSQ for predicting sickness susceptibility and hence
as a tool for participant selection. However, a better selection
could be made by first perturbing the participants at 2.5 ms−2

until they reached a MISC of 3 which would on average
take 8 min. The Oman model may then be used to estimate
participants’ susceptibility directly. Doing this on the data from
the experiment, there is a very strong correlation between the
Oman model estimation of susceptibility and the overall sickness
susceptibility as computed from the average MISC rate for a
participant (ρ = 0.72 p = 0.002). This level of predictability
with respect to actual sickness susceptibility is directly useful in
candidate participant screening. A better predictive model would
have higher susceptibility discrimination, at even lower MISC
levels, requiring less simulator time. Indeed, the correlation
between the Oman model forecasting and overall susceptibility
is not significant ρ = 0.15 (p = 0.58) when data to only MISC of
2 is considered.

4. DISCUSSION

This study investigated the amplitude and temporal dynamics
of motion sickness at both the group and the individual
levels. Participants underwent fore-aft sickening motions at four
different acceleration amplitudes. Motion sickness development
over time was reported using the MISC scale. First, using the
dropout percentage and the MISC rate, the group-level response

to varying amplitudes was evaluated. Also, three variations
of the Oman model of nausea were used to characterize the
dynamics of motion sickness at the individual-level. This was
done by both fitting observed sickness at different amplitudes,
but also by assessing the cross-amplitude validity of the model.
Lastly, we investigated how well the Oman model can forecast
future sickness based on a shortened measurement of initial
sickness development.

4.1. Group-Level Observations
For the group-level response to increasing acceleration
amplitudes, we found a significant increase in sickness severity
with increasing acceleration amplitude, and hence sensory
conflict magnitude, on the development of motion sickness.
As seen in Figure 3, not only was this effect monotonous with
respect to the acceleration amplitude, it could also be accurately
characterized by a linear relationship, which was shown by
comparing a constant mixed-effect model of MISC rate with a
linear mixed-effect model (AICc = –1.92 vs. AICc = 29.4).

Previous studies by Griffin and Mills (2002), O’Hanlon and
McCauley (1973), and Alexander et al. (1947) also reported
a monotonic increase in sickness with respect to acceleration
amplitude. In the study of Griffin and Mills (2002) only low-
amplitude motions in the range of 0.4–1.56 ms−2 were used,
and only the last two conditions were significantly higher in
sickness severity from the baseline case of no motion. Therefore,
a functional relationship between motion amplitude and sickness
could not be formulated. The studies by O’Hanlon andMcCauley
(1973) and Alexander et al. (1947) assessed vomiting incidence
at the end of their experiments (MSI) and found a log-normal
relationship between MSI and acceleration amplitude. However,
it would be incorrect to say sickness itself exhibits log-normal
behavior for the range of accelerations used in these studies.
Indeed, in our study, we report both the dropout rate and
the rate of sickness development. For the dropout rate, which
is a similar metric to the MSI, dropout percentages for 2.5
and 2 ms−2 are not significantly different, whereas MISC rate
indicates a linear, rather than a log-normal, relationship between
sickness and acceleration amplitude. The data of Lawther and
Griffin (1988) suggest that this linear relationship may continue
down to the range of 0.1–0.7 ms−2, i.e., to lower amplitudes
than tested in our experiment. At the lowest acceleration
magnitudes, i.e., below 0.1 ms−2, experienced sickness did not
differ from the stationary case. This apparent ‘sickness threshold’
is equivalent to reported translational acceleration perception
thresholds (Gianna et al., 1996; Heerspink et al., 2005). As
remarked previously, acceleration is often used as a proxy for
sensory conflict for experiments lacking visual stimuli, and in our
current experiment set up the two are assumed to be proportional
to each other. Very sickening stimuli, such as the cross-coupled
coriolis, which can elicit vomiting in minutes as opposed to > 10
min as in this study, likely producemuch higher sensory conflicts,
which may be translated to an equivalent acceleration, indicating
that the monotonic amplitude relationship likely holds at even
higher accelerations than 2.5 ms−2. Approximately 95% of all
vehicle accelerations are within the maximum acceleration used
in this study (Feng et al., 2017). Therefore, we can conclude that
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FIGURE 9 | Representative sample of extrapolations from MISC 3 to the end of the first motion phase, for the Oman model. The columns show responses for each

amplitude condition, increasing in magnitude from left to right. The rows show results for participants 11, 12, 13, and 14. The blue shaded area gives the observations

the model uses to make forecasts.

linearity in the sickness response can be an adequate modeling
assumption at the group-level for automated vehicles.

With respect to the metrics used to quantify group-level
responses, we chose the drop-out rate and MISC rate. The
drop-out rate provides an easy to interpret measure of sickness,
whilst also allowing us to perform survival analysis. For our
experiment, the MISC rate is less directly dependent on our
selected termination criteria. It is defined as the MISC rating
at the end of motion exposure, divided by the time in
minutes to this final value. In the current study, we fitted the
model atb to all MISC responses; the resulting average value
for b is 1.085 (25-75th percentiles: 1.043–1.448). This means
that the MISC is approximately linear with respect to time,
increasing monotonously with respect to time, with no long-
duration decreases. Therefore, computing the average gradient
of the MISC curve, i.e., our MISC rate, is an appropriate
parametrisation of the response.

In cases such as naturalistic driving where such monotony is
not observed, a model-based approach may be more appropriate.
The kind of model used for this purpose is a formal accumulation
model, such as the Oman model. This is because in such a
scenario, the sickness response will be complex and time-varying,
depending on the accelerations encountered. Using traditional
ways of parametrising the sickness response will make both

within- and between-participant comparison difficult, requiring,
in the least, many sessions to average across a representative
sample of acceleration exposures. With a model-based approach,
the parameters of the fitted model will be invariant with respect
to the motions encountered and easier to compare.

4.2. Individual-Level Modeling
In this study, we showed that motion sickness development
over time could be accurately modeled at the individual level,
for the different tested amplitude conditions separately, with
a modified version of Oman’s sickness model. We found that
the time constants of sickness development were approximately
motion amplitude independent, with median time constants of
66.2 s and 502.4 s for the model’s ‘fast’ and ‘slow’ time constants,
respectively. One concern of automotive engineers in utilizing the
findings of motion sickness studies could be the fact that usually
the motions encountered in these studies are aggressive, with
the intent of quickly making participants motion sick, whereas
motions that lead to motion sickness in vehicles tend to be more
gradual and accumulate over the span of up to an hour. In
this study, we tested both aggressive motions (2.5 ms−2) and
gentle motions (1 ms−2). The fact that no difference in the
time constants was found implies that the temporal dynamics of
motion sickness are amplitude-independent, with only varying

Frontiers in Systems Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 866503

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Irmak et al. Amplitude and Temporal Dynamics of Motion Sickness

FIGURE 10 | Example showing the effect of input (blue line) and output

(orange line) power scaling on the predictions of the Oman model for constant

amplitude input.

scaling factors affecting the final level of sickness. This suggests
that the findings of sickness studies, all else equal, can be directly
applied to automotive control and design.

In this study, we report only on nonlinear output scaling in
Oman’s model. However, we also investigated the use of output
scaling, see Figure 2. The original Oman model has the conflict
vector as an input, which is processed by the two paths, whose
outputs are then summed. This summed output is the latent
sickness. The output power scaling transforms this latent sickness
in to a subjective magnitude estimate, via an exponential term
corresponding to Steven’s power law (Stevens, 1946), whichmaps
stimulus intensity to perceived intensity. As employed by Bos and
Bles (1998), the reasoning for input scaling is different. Here, the
conflict signal itself is assumed to be remapped with a nonlinear
scaling (sigmoid), where small sensory conflicts remap to zero
and large conflicts are saturated.We approximate this through an
input power law. We found that the output power law provided
a much better fit to our data, with a mean joint error (Ejoint) of
1.03 compared to 1.4 for the input scaling. As Figure 6 shows that
with output scaling for all powers up to 0.8 the joint fitting error
is below this optimum result for input scaling, we conclude that
output scaling on the modeled latent sickness metric is superior
for our experiment data.

While both with input and with output scaling Oman’s model
can model convergence to an identical final steady-state sickness
level (with adapted gain and power law exponent), see Figure 10,
this will always result in differences in the temporal dynamics.
In these example model responses, the input and output power
scaling, as well as the short and long time constants, are all
the same, while the model gain is adjusted such that both
modeled responses converge to the same steady-state sickness.
Regardless, it can be seen that for constant amplitude stimuli,
the output scaling responds faster to the input, particularly in the
hypersensitivity phase. This is because the output of the slow and
fast paths accumulate more slowly when the input signal strength
is reduced by an input scaling, than when it is not. The reason

why this steeper increase may better represent our data is that the
MISC is on an ordinal scale. Participants are likely to spend less
time at the lower ends of the MISC scale, which represent smaller
increments on a scale of subjective discomfort (de Winkel et al.,
2022), than the higher end of the MISC scale. This is particularly
relevant for the hypersensitivity phase.

As shown in Figure 6, an output scaling of 0.4 provided
the best fit to our dataset. The power of 0.4 approximately
linearizes the conflict to sickness relationship, where for large
values of K, Equation (3) reduces to MISCss ≈ K0.4A0.8.
Likewise, for the input scaling this optimal power was found
to be similar, i.e., 0.5. This value fully linearizes the conflict to
sickness relationship. This means that irrespective of the scale
used to measure sickness the Omanmodel, or any other model of
sickness accumulation, should have a power-law relationship that
enforces linearity, whereby only the gain of the system is expected
to change depending on the rating scale used. Finding the system
gain for the different rating scales would greatly contribute to
comparing and generalizing the findings of different motion
sickness experiments.

For the first time, this study evaluated forecasting/predicting
sickness at the level of the individual, based on a short duration of
initial sickness data (MISC<3). The development of sickness over
time in the first motion exposure could be predicted accurately,
with a MAE of 0.93. In our previous work (Irmak et al., 2020),
we identified two groups of participants by fitting a power law
to measured MISC as a function of time (see equation 4). The
participants for whom the exponent b ≥ 1 were classified as
divergent and those with b < 1 were classified as convergent.
In that study, the Oman model was able to fit both groups
equally well, which cast doubt on whether these two groups were
indeed qualitatively different. However, in the present study we
found that the Oman model had significantly higher accuracy
when predicting convergent, as compared to divergent cases,
thus supporting the notion that MISC trajectories are indeed
qualitatively different between individuals.

One notable property of the Oman model that affects
forecasting of future motion sickness is that it is always stably
convergent. That is, there is a steady-state sickness value MISCss

that it will converge to as time tends to infinity. This means
that if the participant has converging dynamics, and sickness is
observed until a MISC of 3, the model will predict a convergence
to approximately a MISC of 3. However, it is known from
the data that this is not the case, and that participants likely
continue to become more sick, especially if they have reached
moderate sickness relatively quickly. A striking example of this
issue is shown in Figure 9 for the first participant. Here, the
observations indicate convergent dynamics, even though the
participant reaches a MISC of 4 in under 4 min. This participant
will inevitably vomit in finite time. The model, however, cannot
account for this. Moreover, some participants (such as the first
participant of Figure 9) show convergent sickness behavior at
first, followed by a sudden increase toward vomiting. There
can be multiple reasons for this. One explanation is that the
participants use the MISC scale as a subjective discomfort scale,
and that for these participants, a MISC of 6, which was the
termination criterion in this study, was seen as the point after
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which they could not continue because they would otherwise
vomit. Alternatively, it can also be that these participants
experienced an unstable “avalanche” of symptoms. Such an effect
has been reported in literature (Graybiel, 1969; Bock and Oman,
1982). To account for both the stable and unstable behavior seen
in motion sickness responses, the next step should be to model
the dynamics of sickness as a bistable system. In this, participants
may have two equilibrium points. One that is at a level of sickness
below 10, depending on motion amplitude, and the other at a
MISC level of 10.Modeling this requires higher degree non-linear
differential equations than included in Oman’s model.

Sickness forecasting as demonstrated in this paper is not
only a theoretical exercise, but has methodological implications
for both motion sickness studies and applications such as the
individualization of automated driving algorithms. In this study,
we showed that using the Oman model and a short duration
perturbation at the highest amplitude, one can reliably predict
the overall motion sickness susceptibility of an individual. Such
a paradigm can be used as a screening method for ensuring
participants of similar sickness susceptibilities are enrolled in
to motion sickness studies. This would for instance increase
the power of studies comparing different mitigation methods.
Moreover, such a method provides a basis for individualized
and online sickness-mitigating adaptive tuning of automated
driving algorithms.

Well-known models of motion sickness development contain
two components, being 1) Conflict models predicting conflicts
resulting from sensory integration, and 2) Accumulation models
predicting motion sickness development in time. One example of
a motion sickness model is the subjective vertical conflict (SVC)
model (Bos and Bles, 1998; Wada, 2021). The conflict generation
part of the model is based on the difference between the sensed
vertical and the subjective vertical, which is thought to drive
motion sickness. It is a specific implementation of the idea of
sensory-expectancy conflict put forth in Oman (1982). Conflict
models are needed to capture sensitivity toward complex motion
stimuli, including multiple motion directions and frequencies.
The conflict derived in the SVC is then accumulated using
a simple second order filter. This accumulation model is less
sophisticated than the Oman model used in this study, which is
able to describe hypersensitivity.

Our study focuses on motion sickness accumulation in time
for a single degree-of-freedom motion stimulus, i.e., a 0.3 Hz
sinusoidal fore-aft seat motion. For such a simple stimulus,
conflict models degrade to a simple gain, where the exact gain
(proportion of fore-aft acceleration that is attributed to the
subjective vertical) is dependent on the stimulus frequency and
the subjective vertical time constant.

In our approach, this gain is (implicitly) identified in our
fitting of Oman’s model. Therefore, if the actual sensory conflict
would be only 50% of the input motion, then the gain of our fitted
model would simply be 50% larger. Thus, our method of using
acceleration as the input to Oman’s model is, for our specific
stimulus, equivalent to the conflict between the sensed and the
expected vertical that can be derived from the SVC model.

One important application of this work is that now that
the relationship between conflict and the subsequent sickness is

known, the system that maps motion inputs to sensory-conflict
can be identified by using closed-loop system identification
techniques (Rojas et al., 2007; Qian et al., 2016).

4.3. Limitations
As discussed previously, particularly at the lower amplitudes,
there might be an amplitude threshold below which people do
not experience motion sickness. In this study, the range of the
amplitudes studied was between 1 and 2.5ms−2. In future studies,
it is essential to also include lower amplitudes to also gain an
improved quantitative understanding of motion sickness severity
and temporal dynamics for low-amplitude stimuli. In addition
to increasing the range of accelerations for which our motion
sickness models are effective, experiments that include a high
number of different motion amplitudes measured within the
same experimental session, as representative of real vehicular
transportation, would further help to strengthen motion sickness
model validation.

In the present study, the model successfully described
hypersensitivity after a 10-min break. In a previous study, Irmak
et al. (2020) the break duration was until the participant reached
a MISC of 2, which only very rarely exceeded 10 min. This means
that the model can describe hypersensitivity observed after break
durations up to 10 min. One limitation is therefore the lack of
data to verify whether the same modeling accuracy is retained
for longer rest durations. Being able to model these longer
rest durations may not be relevant for short distance journeys,
however, it may be useful for predicting motion sickness during
multi-stage long distance travel.

Lastly, it is likely that the amplitude and temporal dynamics
found in this study do not depend on the direction of motion.
Therefore, pure vertical and lateral motions will likely have
similar time constants, gains and output power. This is given
by the fact that the severity of sickness in different directions
is similar to each other (Donohew and Griffin, 2004). However,
if a coupling exists between different degrees-of-freedom, such
that the resultant stimulus has a complex frequency spectrum,
this may cause currently unknown interactions in the conflict
signal due to differing frequency sensitivities (Irmak et al., 2021).
Similarly, with reducedmotion predictability (Kuiper et al., 2020)
compared to our current sinusoidal acceleration stimuli, a greater
sickness response is expected. In these cases, particularly the
gains of the accumulation model may need to be calibrated.

5. CONCLUSION

This study investigated the individual amplitude sensitivity in
motion sickness caused by sensory conflicts induced by fore-aft
accelerations. At the group-level, we found that sickness severity
increases linearly with acceleration amplitude between 1 and
2.5 ms−2 and argue that it does so for all relevant acceleration
amplitudes in vehicular transport. From fitting a modified
version of Oman’s model of sickness progression, we found that,
at the individual-level, sickness on average increased linearly with
acceleration amplitude, even though some participants exhibit
higher or lower order amplitude sensitivities. Importantly,
we note that the time constants governing motion sickness
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development vary between individuals, but are independent
of the acceleration amplitude. Furthermore, our data shows
that a group-level fixed output scaling with an exponent of
0.4 enables Oman’s model to inherently account for stimulus
amplitude variations, as considered in our tested amplitude
conditions. Lastly, we showed that the Oman model can be used
to forecast the temporal evolution of sickness beyond a brief
observed initial exposure. In this we found that forecasting works
better for convergent, rather than divergent responses, this is
largely due to the inherently convergent dynamics of the model.
Overall, these findings enable improved modeling of motion
sickness accumulation in mixed acceleration environments, such
as traffic, and better participant prescreening for motion sickness
experiments, as well as tuning of automated driving algorithms
for individual passengers.
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