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Abstract. Urban catchments are typically characterised by a
more flashy nature of the hydrological response compared to
natural catchments. Predicting flow changes associated with
urbanisation is not straightforward, as they are influenced by
interactions between impervious cover, basin size, drainage
connectivity and stormwater management infrastructure. In
this study, we present an alternative approach to statistical
analysis of hydrological response variability and basin flashi-
ness, based on the distribution of inter-amount times. We
analyse inter-amount time distributions of high-resolution
streamflow time series for 17 (semi-)urbanised basins in
North Carolina, USA, ranging from 13 to 238 km2 in size.
We show that in the inter-amount-time framework, sampling
frequency is tuned to the local variability of the flow pattern,
resulting in a different representation and weighting of high
and low flow periods in the statistical distribution. This leads
to important differences in the way the distribution quan-
tiles, mean, coefficient of variation and skewness vary across
scales and results in lower mean intermittency and improved
scaling. Moreover, we show that inter-amount-time distribu-
tions can be used to detect regulation effects on flow patterns,
identify critical sampling scales and characterise flashiness
of hydrological response. The possibility to use both the clas-
sical approach and the inter-amount-time framework to iden-
tify minimum observable scales and analyse flow data opens
up interesting areas for future research.

1 Introduction

Hydrological response in urban catchments tends to be more
flashy compared to natural ones as a result of their higher de-
gree of imperviousness. Increases in flashiness are typically
characterised by shorter response times to rainfall, higher
run-off ratios and higher peak flows (Berne et al., 2004;
Smith et al., 2005). On the other hand, high impervious de-
grees may reduce base flows and lead to intermittent flow
during dry periods. At the same time, urbanisation is usu-
ally tied to development of urban drainage infrastructure, as-
sociated with artificial flow control as well as higher peak
flows due to increased drainage connectivity. Predicting the
degree of flashiness or base flow reduction associated with
urbanisation is not straightforward, as it depends on the in-
terplay of impervious cover, basin size and shape, soil prop-
erties, basin slope, drainage connectivity, and control struc-
tures such as detention ponds, weirs and pumps (Emmanuel
et al., 2012; Fletcher et al., 2013; Smith et al., 2013). Tra-
ditional analyses of flow time series tend to focus on spe-
cific aspects and flow characteristics, aiming for example at
predicting low flow durations or peak flow magnitudes. For
analysis of change in hydrological response, it may be bene-
ficial to combine both peak flow and low flow statistics into
a single framework. This applies in particular to the context
of urban hydrology where urbanisation and human interven-
tion alter both high flow and low flow characteristics of the
hydrological response. Combining both aspects in a single
analysis is difficult, as flow distributions are highly skewed
and frequencies of low and high flow values are very differ-
ent. In this paper, we show how alternative sampling of flow
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time series based on inter-amount times leads to more bal-
anced statistical distributions, better representation of both
high and low flows in a single framework, and more robust
behaviour of statistical distributions across scales.

1.1 Statistical analysis of hydrological response

Many authors have investigated methods for characterising
hydrological response and changes therein, including uni-
variate analysis and multivariate statistics, combining several
hydrograph properties such as flood peak, flood volume and
flood duration (e.g. Salvadori and De Michele, 2004; Favre
et al., 2004; Grimaldi and Serinaldi, 2006; Vittal et al., 2015).
Traditional statistical analysis techniques tend to focus on ei-
ther left or right tail properties of statistical distributions, but
not necessarily using the same statistical framework. Low
flow analyses for example are primarily concerned with the
total time the flow stays below a critical threshold (see for
example Smakhtin, 2001, for an extensive review). By con-
trast, peak flow analysis puts more weight on total accumu-
lated flows at a given timescale using annual flow maxima or
peak-over-threshold values to derive extreme value statistics
and establish flood frequency curves (e.g. Stedinger, 1983;
Lang et al., 1999; Villarini et al., 2009; Smith and Smith,
2015). Both approaches are valid and solidly rooted in the
context of extreme event analysis, with numerous applica-
tions in drought and flood risk analysis. However, the statis-
tical frameworks they rely on are not necessarily the same.
Low flow analysis favours “time” as a random variable. Peak
flow analysis on the other hand treats the “flow amount” over
a fixed time interval as the main random quantity. This might
seem more intuitive to many but there is no strong com-
pelling reason to prefer one approach over the other a priori.
For example, one might as well adopt an alternative frame-
work in which the unknown random variable is the “time”
necessary to cumulate a fixed, critical amount of flow. By
doing so, both low flows and peak flows can be analysed us-
ing the same statistical framework. This approach is known
as the inter-amount time (IAT) method (Schleiss and Smith,
2016) and has been previously proposed to analyse the prop-
erties of intermittent rainfall time series. An important goal
of this paper is to derive properties of statistical distributions
obtained by applying the IAT formalism to flow time series
and to compare the results to the ones obtained using the clas-
sical fixed-time framework.

1.2 Change in hydrological response, basin flashiness

An important characteristic that has been used to analyse
change in hydrological response is basin flashiness, qualita-
tively described by Poff (2002) as one of the indicators char-
acterising change in natural flow regimes and how this affects
the ecological integrity of river ecosystems. Richter (1996)
developed a set of 33 indices, the Indicators of Hydrological
Alteration (IHA), including indicators for conditions associ-

ated with flashiness, such as frequency and duration of high
and low pulses, and rate and frequency of change in flow
conditions. Smith and Smith (2015) quantified flashiness of
5436 catchments in the contiguous United States based on
peak flows exceeding 1 m3 s−1 km−2 normalised flows (i.e.
flows normalised by basin area). A frequently used index
in the literature is the Richards–Baker (R–B) flashiness in-
dex (Baker et al., 2004), based on the Richards pathlength
(Gustafson et al., 2004). The R–B index is defined as the sum
of absolute values of changes in flow values divided by the
total cumulative flow, and is usually computed at the daily
timescale. Similar to the coefficient of variation, it measures
the relative dispersion of the flow at a given scale. A down-
side of the R–B index is that it highly sensitive to the scale
of analysis. Baker et al. (2004) argued that for smaller basins
(< 50 km2) the use of hourly instead of daily flow data should
be considered to compute the R–B flashiness index, but also
found that R–B flashiness values computed at hourly scale
are highly sensitive to diurnal or other sub-daily low flow
fluctuations. An important and still unanswered question re-
mains how to overcome scale sensitivity of flashiness indica-
tors in different hydrological basins. This is crucial for estab-
lishing how urbanisation impacts flashiness and how changes
relate to basin characteristics such as size, slope, impervi-
ousness degree, and whether urbanisation thresholds can be
identified, at a value above which basin response is charac-
teristically urban (Praskievicz and Chang, 2009).

1.3 Scaling analysis of hydrological flows

Scaling behaviour of river flows has been investigated by
various authors, aiming to identify characteristic length and
timescales and to detect scale dependence of hydrological
response processes. Among the various statistical methods
that have been proposed to investigate scaling, fractals and
multifractals are among the most popular and powerful. Ap-
proaches for fractal analysis include spectral analysis based
on second-order properties and trace moment analysis based
on a wider range of statistical moments, typically between
0.1 and 4. The universal multifractal framework is based
on the identification of scaling exponents summarising the
changes in flow distributions across a given range of scales,
(see Schertzer and Lovejoy, 1987 and Schertzer and Lovejoy,
2011 for a review). One important drawback of multifrac-
tal analyses is that scaling of hydrological flow time series
only holds in approximation and only over a limited range of
scales. Many studies report the existence of “scale breaks” at
which scaling parameters change and significant departures
from (multi)fractality can be observed. Table 1 summarises
findings from selected scaling analyses of flow time series
in the literature. It shows that the number and location of the
scale breaks, as well as the values of the multifractal parame-
ters, are sensitive to the method applied to estimate them and
the resolution of the data used to conduct the analysis. For
example, Labat et al. (2013) performed spectral analysis and
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Table 1. Summary of results reported on the literature for (multi)fractal analysis of hydrological flows. MA: moment analysis, MFA: multi-
fractal analysis, SA: spectral analysis, TMA: trace moment analysis.

Reference Method Sampling Basins Time series Scale break Value Value
scale length C1 alpha

Tessier et al. (1996) MFA day 30 basins in FR 11–30 years 16 days 1–16 days: 0.2± 0.1 1–16 days: 1.45± 0.25
40–200 km2 16 days 30–4096 days: 0.2± 0.1 30–4096 days: 1.45± 0.2

Sauquet et al. (2008) SA Hour 34 basins in FR 16–37 years 8.7 h–7 days – –
Sauquet et al. (2008) MA Hour 12.7–703 km2 16–37 years 10 h-6.25 days∗ – –
Sauquet et al. (2008) SA Day Idem Idem 12 days – –
Pandey et al. (1998) SA Day 19 basins USA 9–73 years 8 days 1–8 days: 0.2± 0.1 1–8 days: 1.65± 0.12,

5–1.8× 106 km2 9–73 years 8 days 1–8 days: 0.2± 0.1 1–8 days: 1.65± 0.12
Labat et al. (2013) SA 30 min 3 basins in FR – 1 day – –
Labat et al. (2013) TMA 30 min ca. 13 km2 – 16 h 30 min–16 h: 0.22 30 min–16 h: 1.18

> 16 h: 0.35 >16 h: 0.79
∗ only for higher-order moments.

trace moment analysis for 30 min flow time series and iden-
tified different flow regimes with scale breaks at 1 day for
spectral and 16 h for trace moment analysis. But when they
performed the same analysis at daily and at 3 min resolution,
they identified different scaling regimes, with scale breaks
at 16 days and 1 h for daily and 3 min resolution, respec-
tively. Similarly, Sauquet et al. (2008) found different scaling
regimes in their scaling analysis of flows for 34 basins, with
scale breaks at 12 days for daily resolution and scale breaks
varying between 8.7 h and 7 days across basins when using
hourly data resolution, based on spectral analysis. When they
applied trace moment analysis for the same time series at
hourly resolution, they found no scale breaks for the lower-
order moments and scale breaks between 10 and 150 h for
higher-order moments. This shows that while most flows ex-
hibit some sort of scaling behaviour, the identified scaling
laws are not very robust or consistent, as they are dependent
on analysis methods and data resolution.

1.4 Statistical analysis of hydrological response based
on adaptive sampling using inter-amount times

In this paper, the IAT formalism is applied to flow time se-
ries and statistical distributions, and scaling properties are
compared to the ones obtained using the classical fixed-time
framework. To do this, we use flow observations collected
in 17 hydrological basins in Charlotte, North Carolina. We
aim to investigate what effects an adaptive sampling strategy
such as IAT sampling has on statistical properties of the time
series, in particular on the tails of the statistical distributions
associated with peak flow and low flow extremes. The main
problem with a fixed sampling rate, as in traditional flow
time series analysis, is that it can only accurately represent
frequencies of variations at timescales larger than a certain
threshold. When frequencies higher than that exist, errors are
introduced as information about the higher frequency vari-
ability is lost (Dippe and Wold, 1985). Increasing the sam-
pling resolutions solves this problem, but results in oversam-
pling of base flow values with respect to peak flows. An al-

ternative consists of adopting an adaptive sampling strategy,
i.e. one that adapts the sampling rate to the variability of the
signal itself (e.g. Feizi et al., 2011). This makes sense for
processes that are very unevenly distributed in time (such as
rainfall and hydrological flows), and means taking more sam-
ples during periods of high activity (e.g. peak flows follow-
ing storm events) and fewer during lower activity (e.g. peri-
ods of base flow). A well-designed adaptive sampling tech-
nique lowers the probability of missing an interesting fea-
ture like peak flow and avoids oversampling during periods
of small flow variations. We examine to what extent IATs in-
fluence the variance, skewness and shape of the sample dis-
tributions and how they can be used to better characterise
basin flashiness and derive more robust scaling laws. Our re-
sults show that because IATs give more weight to rare peak
flows compared to common base flows, they can provide dif-
ferent insights into flow properties and complement tradi-
tional flow time series analyses and metrics. Advantages of
IAT sampling compared to conventional time series analysis
are that IAT time series contain more information about peak
flows and evolve in a more predictable way across ranges of
smaller to larger scales. This makes them a more robust and
reliable source of information to make predictions about flow
characteristics at small, unobserved scales, including crucial
information about rapidly evolving peak flows.

This paper is organised as follows. In Sect. 2 we present
the flow datasets and methods used for analysis. We explain
the methodology for deriving normalised IATs and introduce
metrics we used to compare properties of flows and IAT time
series, to characterise hydrological response and compare re-
sponse across basins. In Sect. 3, results of the analyses are
presented and discussed, first based on results obtained us-
ing a daily sampling scale, and followed by results obtained
a range of sampling scales, from hourly up to seasonal sam-
pling scale. Conclusions and suggestions for future work are
summarised in Sect. 4.
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Table 2. Summary of hydrological basins in the Charlotte area: basin area (km2), imperviousness (%), average 24 h flow (m3), average 24 h
flow normalized by basin area (mm) and length of observation in years.

ID Name Area Imperv. Dams Mean flow Mean norm. flow N years

825 UBriar 13.3 24.0 22 12 275 0.92 17.4
315 Taggart 13.6 35.0 3 13 559 1.00 17.2
562 Campbell 15.3 28.0 48 13 567 0.89 16.2
175 Steele 17.9 32.0 21 17 838 1.00 17.4
700 McMullen 18.3 21.0 15 20 348 1.11 29.0
255 UMcAlpine 18.9 18.1 100 15 061 0.80 16.3
975 Irvins 21.8 8.0 62 14 821 0.68 16.3
970 Stewart 23.4 33.0 55 38 800 1.66 15.3
348 Coffey 23.8 25.0 72 24 104 1.01 17.0
409 LSugarM 31.7 48.0 2 46 775 1.48 21.0
022 LBriar 48.5 25.0 17 53 246 1.10 19.8
800 SixMile 52.6 15.0 −99 38 914 0.74 8.0
300 UIrwin 78.1 34.0 39 107 119 1.37 29.0
600 MMcAlpine 100.2 20.0 51 105 640 1.05 29.0
507 LSugarA 111.1 32.0 24 199 002 1.79 29.0
530 LSugarP 127.4 26.0 −99 205 202 1.61 18.3
750 LMcAlpine 238.4 19.4 −99 269 534 1.13 29.0

2 Data and methods

2.1 Flow datasets

The data used in the study were collected at 17 USGS stream
gauging stations in Charlotte–Mecklenburg county, North
Carolina. Gauging stations are located at the outlet of hy-
drological basins that range from 13 to 238 km2 in size. The
area is largely covered by low to high intensity urban de-
velopment, covering 60 to 100 % of basin areas. Percentage
of impervious cover varies from 8 % in the least developed
to 48 % in the most urbanised basin covering the city cen-
tre of Charlotte. Figure 1 shows a map with the location of
the area, boundaries of hydrological basins and location of
stream gauges used in the analysis. Table 2 summarises the
main characteristics of the 17 basins.

Stream gage data were collected at 5 to 15 min intervals
over the period 1986–2011. Table 2 summarises the charac-
teristics of the basins associated with each basin as well as
the time period covered by the data. The temporal scale of
observations changed from 15 to 5 min between 2010 and
2014, at different times for each gauge; overall 20–30 %
of the total observation record was covered by 5 min inter-
vals. Gauges measure water depth using pressure transduc-
ers and flow is derived using stage–discharge curves. These
curves were established based on protocols developed by
USGS and include manual flow measurements during site
visits performed by USGS staff. As part of this procedure,
stage–discharge curves are checked and recalibrated during
site visits several times per year (https://waterdata.usgs.gov/
nwis/measurements). The percentage of missing flow data
was smaller than 5 % for all gauges included in the analysis;

Figure 1. Map with the location of the area, boundaries of hydro-
logical basins and location of stream gauges used in the analysis.
NC: North Carolina. SC: South Carolina.

missing data were treated like zeros. The effect of missing
data on IATs is difficult to predict as this depends on the pat-
tern of missing values and whether or not they occur during
a period of low or peak flow. Sensitivity studies by Schleiss
and Smith (2016) have shown that the general effect of re-
placing missing values by zeros is that a few sample IATs
will be overestimated. This mostly affects the right tail of the
distribution and tends to have limited impact on peak flow

Hydrol. Earth Syst. Sci., 21, 1991–2013, 2017 www.hydrol-earth-syst-sci.net/21/1991/2017/
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characteristics. Another strategy would be to replace missing
values by mean or median flow value, which may slightly re-
duce the overestimation of IATs in case several missing val-
ues occur in row. However, in this paper only the worst-case
scenario will be considered, i.e. missing values were replaced
by zeros.

2.2 Definition of inter-amount times

In this paper we analyse hydrological flow variability, based
on the distribution of IATs. We use the following definition
of IATs, based on Schleiss and Smith (2016), when 1q > 0
denote a fixed flow amount: the series of IATs τn(1q) with
respect to 1q is defined as follows.

τn(1q)= tn(1q)− tn−1(1q), (1)

where tn(1q) denotes the time at which the cumulative flow
amount first exceeded n times (1q):

tn(1q)= inf{u :Q(u)≥ n ·1q}, (2)

whereQ(u) denotes the cumulated flow at time u,Q(0)= 0,
and inf stands for infimum, also known as the greatest lower
bound in a set.

A steady flow pattern with constant flow has equal IATs
for all values of 1q. A variable flow pattern, on the other
hand, is characterized by a more variable IAT distribution.

2.3 Normalized inter-amounts

Flow magnitudes strongly vary from one gauge to another.
To overcome this scale dependence and compare flow IATs
across basins with different sizes and flow amounts, one
needs to normalize IATs with respect to a common timescale.
A possible way to do this is to fix an average IAT τ (e.g. 24 h)
and determine the inter-amount 1qτ at this timescale:

1qτ = τ
QN

T
, (3)

where QN denotes the total cumulative flow amount at the
considered location and T is the length of the studied time
period. In other words, instead of comparing IATs for a
fixed accumulation, we choose the mean IAT τ and compute
(1q)τ such that the series of IATs {τn(1qτ ) : n= 1, . . .,N}
has mean τ . Two locations with different cumulative flow
amounts over a given period of time, e.g. over a year, there-
fore have different normalized inter-amounts.

2.4 Sample estimates and minimum inter-amount scale

Inter-amount times can be estimated from a sample flow time
series q1, ..,qN with temporal observation scale 1t that may
vary in time. But for simplicity, only the case with fixed tem-
poral resolution 1t will be considered below. A key step
in this procedure is the determination of the first passage
times t1, .., tn in Eq. (2). This is done by considering the

sample accumulated flow amounts Q1 < .. < QN at times
tn = t0+ n1t :

Qn =

n∑
i=1

qin= 1, . . .,N. (4)

The exact first passage times t1, .., tn for a fixed flow amount
1q > 0 are likely to be unknown due to the limited temporal
resolution of the data. But we can approximate them based
on linear interpolation:

t̂n(n1q)=1t

(
in1q −

Qin1q − n1q

qin1q

)
n= 1, . . .,N, (5)

where t̂n are the estimated passage times and in1q denotes
the index (in the sample) at which the total cumulated flow
first exceeded n times (1q):

in1q =min{i ∈ N|Qi ≥ n1q}n= 1, . . .,N. (6)

The sample IAT estimates are then given by the following:

τ̂n(1q)= t̂ (n1q)− t̂ (n1q −1q). (7)

Because of the linear interpolation in Eq. (5), each sample
IAT estimate, regardless of its length and the scale of analy-
sis, will be affected by a small interpolation error εn(1q) <
1t . This error is random and has little influence on key statis-
tics as long as IATs remain much larger than1t , as is usually
the case for large enough values of1q and during periods of
low to moderate flow. Most of the interpolation errors happen
during peak flows, when large flow amounts are accumulated
over small periods of time. It is therefore important, for any
given gauge, to identify the values of 1q above which re-
liable IAT estimates can be derived. To identify the range
of scales over which IATs can be reliably estimated, we con-
sider the worst-case scenario in which all interpolation errors
are equal to±1t . In this case, the maximum relative error af-
fecting IAT estimates is given by the following:

εn(1q)=
1t

τ̂n(1q)
. (8)

The minimum value of 1q for which IATs can be reliably
estimated depends on how strictly we want to control the es-
timation errors in Eq. (8). In our analysis, we set the mean
of absolute relative errors to be smaller than 50 %. This is
a rather conservative approach as the estimation errors in
Eq. (8) represent the worst-case scenario and actual errors
are likely to be much smaller than that. This leads to the fol-
lowing rule for determination of minimum inter-amounts1q
that can be used for analysis:

1qmin =min{1q > 0 : ε1q < 0.5}, (9)

where ε1q represents the arithmetic mean of the maximum
relative errors in Eq. (8).

www.hydrol-earth-syst-sci.net/21/1991/2017/ Hydrol. Earth Syst. Sci., 21, 1991–2013, 2017
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In addition to the lower bound, we also impose an upper
bound on the inter-amounts used in our analysis. This is nec-
essary to ensure IAT time series are long enough to com-
pute relevant statistical moments. Typically, there should be
at least 100 consecutive IATs, which yields the following up-
per bound for inter-amount 1q:

1qmax = b
QN

100
c, (10)

where bc denotes the lower integer part and QN is the total
cumulative flow for the considered time series.

It is worth pointing out that the lower bound on the inter-
amount in Eq. (9) also provides an indication of the left-tail
properties of IATs, and thus of the degree of flashiness of
the hydrological response, i.e. the smallest scale at which
flow variations can be studied given a fixed temporal obser-
vational resolution. We will elaborate on this in Sect. 2.7,
where we discuss this property in relation to basin flashiness.
More generally, the left tail properties of IAT distributions
provide a good indication of what observational resolution is
necessary to adequately capture the most extreme flow vari-
ations. For more details on this important point, the reader is
referred to the results section.

Note also that analyses of IATs were conducted for all
gauges over the entire period of available data, without dis-
tinguishing between year, season or hour of the day. This
was necessary as time series would otherwise be too short
to study IATs across different scales. This means we mostly
focus on average characteristics of IAT and flow distribu-
tions with respect to area size and imperviousness degree and
potential influence of flow regulation and stormwater deten-
tion facilities, as far as this information is available for the
17 basins. We refrain from investigating long-term trends, as
our time series are restricted to maximum 30 years and be-
cause a recent study by Villarini (2016) showed no signs of
long-term trends at 7506 gauges in the contiguous USA in
the last 30 years. Indeed, our own analyses revealed no sig-
nificant long-term trend in mean IAT or flow variability over
the considered time period.

2.5 Distribution of inter-amount times versus flows

Sample histograms of IATs and flows were analysed to in-
vestigate what different insights they provide into character-
istics of the flow regimes. We plotted sample histograms for
all gauges; appropriate bin widths were determined based on
Scott’s rule (Scott, 1979). We computed the coefficient of
variation (CV), defined as the standard deviation divided by
the mean, as an indicator for relative spread around the mean.
Values of skewness and “medcouple” (Brys et al., 2004), a
more robust skewness metric based on ordered statistics in-
stead of statistical moments, were computed to investigate
asymmetry of the histograms and influence of outliers. We
compared coefficient of variation, skewness and medcouple
values for IATs with those for traditional flow time series and

investigated relationships of the three statistics with basin
area and imperviousness degree.

2.6 Distribution of changes in inter-amount times

First-order differences of IATs and flows were computed to
look into characteristics of the rising and falling limbs of hy-
drographs. Because IATs are measured on an inverted scale,
positive differences are associated with the falling limb of
the hydrograph and negative differences with the rising limb
of the hydrograph. Narrow ranges of histogram values for
IAT differences indicate slowly varying flow; wide range his-
tograms indicate more flashy behaviour. Positively skewed
histograms for IAT differences indicate that the distribution
is dominated by values on the rising limb and short reces-
sion limbs, while negatively skewed histograms indicate a
larger part of the flow is associated with flow recession, i.e.
long, slowly receding hydrographs, for instance, induced by a
strong groundwater flow component. Differences were com-
puted at the 24 h timescale, imposed by the minimum inter-
amount scale rule. Similarly to the other histograms, bin
widths were chosen based on Scott’s rule.

2.7 Flashiness indicator and minimum observable scale

As mentioned earlier, the lower bound on the inter-amount
provides an indication of left-tail properties of IAT distri-
butions (i.e. short waiting times) and can therefore be used
to characterise the degree of flashiness of the hydrological
response. In flashier catchments, the flow can rise quicker,
resulting in lower IATs during times of heavy rain. The mini-
mum observable inter-amount represents the smallest scale at
which flow variations can be studied with acceptable interpo-
lation errors, given a fixed temporal observational resolution.
By extension, the lower tail of the IAT distribution provides
a good indication of what observational resolution is neces-
sary to adequately capture the most extreme flow variations.
The IAT flashiness indicator used in this paper is defined as
the mean scale µ (expressed in hours) at which the 1 % quan-
tile of the IAT distribution equals the observational scale 1t
(15 min in our case). That is, the IAT flashiness indicates the
average time needed to accumulate the amount of flow that
can be accumulated in 15 min or less, 1 % of the time. The
larger the flashiness, the more flow can be accumulated over
short amounts of time. To better interpret results, we com-
pared the IAT flashiness index with the frequently used R–B
flashiness index defined in Baker et al. (2004):

R−B index=

N∑
i=1
|qi − qi−1|

N∑
i=1
qi

, (11)

where qi denotes the flow at time step i. The R–B flashiness
index is dimensionless and can vary between 0 and 2. It is 0
for constant flow and 2 for highly variable and continuously
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changing flow. Its value is independent of the units chosen to
represent flow (Baker et al., 2004). However, index values do
depend on the timescale at which they are computed, as will
be discussed later in the results section. In our analysis, we
computed R–B flashiness indices on daily aggregated flow
values.

2.8 Scaling of inter-amount times

Multifractal analysis techniques were applied to investigate
the scaling behaviour of IAT time series across different
inter-amount scales. Multifractal analyses are based on the
assumption of generalised scale invariance, in which the sta-
tistical moments or order q > 0 of a stochastic process Xλ at
scale ratio λ are related by a power law:

〈X
q
λ〉 = C(q)λ

K(q), (12)

where 〈Xqλ〉 denote the moments of order q of X measured
at a scale ratio λ, C(q) is a constant (for each q) and K(q)
is called the moment scaling function. Within the universal
multifractal framework, K(q) is characterised with the help
of only three parameters, α, C1 and H (Schertzer and Love-
joy, 1987, 2011):

K(q)=


C1

α− 1
(qα − q)− qH if α 6= 1

C1q ln(q)− qH if α = 1
. (13)

The parameter C1 is referred to as the intermittency and
characterises the clustering of the time series at smaller and
smaller scales. C1 = 0 for a homogeneous field that fills the
embedded space and approaches 1 for an extremely concen-
trated field. The parameter α is called the multifractality in-
dex (0< α < 2) and it controls how the moments change
when going from one scale to another. Finally, H =−K(1)
is called the Hurst exponent. Note that in the case of IATs,
the mean inter-amount time τ and scaling ratio λ are in-
versely proportional to each other (i.e.1qτ ∼ λ−1). So either
of them can be used here as a measure of scale. The only dif-
ference will be the value of the constant C(q) and the sign of
the exponent in Eq. (12).

The scaling quality is assessed by noting that if Eq. (12) is
true, the log moments for fixed values of q should be a linear
function of the log-scale of ln(λ):

ln(〈Xqλ〉)=K(q) ln(λ)+ ln(C(q)). (14)

The extent to which this equality holds can be assessed by
fitting a linear regression model and computing the R2 val-
ues, i.e. the coefficient of determination of the log moments
versus the log-scale for each value of q. A R2 of 1 indicates
perfect scaling. The lower the coefficient of determination,
the larger the deviations from scale-invariance. The approach
was repeated for different values of q and the mean or mini-
mum value of R2 were chosen as a way to assess the overall

quality of the scaling. Based on recommendations by Lom-
bardo et al. (2014), we refrained from using too low- or high-
order moments and only considered values of q between 0.4
and 2.5, with an equal number of moments above and below
1 to avoid favouring one tail of the distribution over the other.
The range of IAT scales that was used for the analysis was
constrained by the length of the time series and the minimum
and maximum inter-amounts defined in Eqs. (9) and (10).
The corresponding scales varied from 0.1 to 0.6 days up to
28 to 100 days for the longest time series.

3 Results

In the following sections we compare statistical properties of
flow and IAT time series and highlight differences that re-
sult from the different sampling strategies. Analyses are first
conducted at the 24 h timescale and associated mean inter-
amount sampling scale. In the second part of this section, we
analyse how statistical properties of flow and IAT time se-
ries vary across scales, and quantify flashiness and scaling
behaviour of both time series.

3.1 Time series and variability analysis of inter-amount
times and flow values

Figure 2 shows an example of times series for flows and for
IATs for the gauge at Taggart Creek, a 13.6 km2 basin in the
Charlotte catchment, at 24 h sampling scale. The two graphs
bring out different aspects of flow variability: flow time series
have most of their data points concentrated in the low flow re-
gion, with intermittent peak flows characterising rain events.
For IATs, peak flows appear as minima, while periods of low
flow show up as maxima in the time series. The graph illus-
trates how IAT samples are more evenly distributed across
high and low values in the time series compared to flows. The
mean inter-amount for Taggart Creek at 24 h sampling scale
is 13 559 m3, equivalent to 0.998 mm when normalised by
basin area. Hence, in IAT analysis, the time series is sampled
each time 0.998 mm of normalised flow has been accumu-
lated, which amounts to frequent samples during high flows
and fewer samples during low flow periods. For instance, a
high concentration of IAT samples is clearly visible for the
wet year 2003: this year is represented by 802 IAT samples
compared to the 365 samples per year we have on average.

Figure 3 illustrates the adaptive sampling strategy based
on flow amounts as the sampling unit, instead of fixed time
steps. Figure 3b shows cumulative flow over a week, where
a storm event occurred on 7 August. In conventional flow
time series analysis, flow is sampled daily (in this example),
resulting in one sample representing the peak period of the
event (i.e. on 7 August). In IAT analysis, flow accumulation
determines the sampling frequency, so periods of low flow
are sparsely sampled, while the storm event is represented
by eight samples. This illustrates how, even for 24 h mean
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Figure 2. Example of times series for flow (a) and for associ-
ated inter-amount times (b) for the flow gauge at Taggart Creek,
a 13.6 km2 basin in the Charlotte catchment.

inter-amounts, sampling frequency can be much higher dur-
ing periods of peak flow.

Histograms of flow time series and IATs at daily timescale
are plotted in Fig. 4, for two basins, Taggart Creek (13.6 km2)
and LSugarA (111 km2). The corresponding inter-amounts
are 1 and 1.8 mm of normalised flow (for Taggart and LSug-
arA, respectively). Histograms for the other 15 basins are
available in the Supplement to this paper. Figure 4 shows that
both histograms of flows and IATs are positively skewed. In
both cases however, left and right tails represent very differ-
ent flow characteristics. The left tail of the flow’s histogram
essentially features common base flow values while the right
tail captures rare peak flow events. By contrast, the left tail
of IAT distributions, which makes up most of the values, pre-
dominantly features short IAT values associated with periods
of high flow. The rare samples that make up for the right tail
represent long waiting times associated with extended peri-
ods of low flow. The low density of the first bin in the flow
histogram for LSugarA reflects the effect of low flow reg-
ulation for this basin. The same effect is reflected in the bi-
modal shape of the IATs histogram. Note that the low density
0–0.5 bin in the flow histogram for LSugarA corresponds to
the > 3.5 day bins in the IAT histogram.

Figure 3. Illustration of inter-amount data sampling for cumulative
flow over a period of 7 days, for Taggart Creek. (a) Flow data series
at original 15 min observational resolution; (b) cumulative graph for
flows and IATs at the same mean sampling resolution, illustrating
how adaptive sampling based on IATs differs from classical fixed-
time sampling.

Tables 2 (6th and 7th columns) and 3 summarise statis-
tics of flow and IAT time series, at 24 h sampling scale. The
results show that mean inter-amounts vary from 12 275 m3

for the smallest to 269 534 m3 for the largest basin in
size. Mean normalised inter-amounts vary from 0.68 mm for
Irvins Creek, the least-urbanised basin (8.2 % impervious-
ness) to 1.79 mm for Little Sugar Creek at Archdale, one
of the largest basins with a high degree of imperviousness
(32 %). Coefficients of variation at the daily scale are consis-
tently higher for flows than for IATs (e.g. 1.7 times higher
on average), which highlights the more balanced nature of
IAT distributions. Skewness values at the daily timescale are
3.6 times higher for flows than for IATs, on average, and
even up to a factor of 15 higher for Stewart Creek. By con-
trast, medcouple values for flows are lower than for IATs by
a factor of 2.1 on average. This shows that statistical dis-
tributions of flows are strongly influenced by the presence
of a few very large outliers. Most of the weight, however,
lies close to the median (low medcouple). The IAT sampling
gives more weight to rare peak flow values and less to com-
mon base flow, therefore producing distributions with lower
skewness and more information about peak flow values. The
larger medcouple values mean that IATs above the median
value tend to be much further away from the median than
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Figure 4. Histograms of flow time series (a) and time series of inter-amount times (b) for Taggart Creek and Little Sugar Creek at Archdale
(LSugarA), for 24 h scale.

Table 3. Summary statistics of time series for flows and inter-amount times, at 24 h sampling scale: coefficient of variation (CV), skewness
(Skew) and medcouple (Mc).

name CV IAT CV flow Skew IAT Skew flow Mc IAT Mc flow Skew dIAT Skew dflow Mc dIAT Mc dflow

UBriar 1.95 3.69 4.91 14.79 0.84 0.41 0.39 −2.81 0.51 −0.30
Taggart 2.11 3.32 4.40 9.13 0.90 0.55 0.00 −0.16 0.57 −0.46
Campbell 2.02 3.25 4.26 10.40 0.84 0.51 −0.02 0.15 0.66 −0.41
Steele 2.24 3.65 4.39 10.21 0.86 0.58 −0.43 −0.41 0.74 −0.46
McMullen 2.22 3.37 5.35 10.10 0.90 0.56 −0.61 −0.40 0.61 −0.35
UMcAlpine 2.04 3.55 5.53 13.51 0.79 0.42 −2.48 2.17 0.63 −0.38
Irvins 2.52 4.32 8.37 11.74 0.89 0.42 −3.84 0.07 0.78 −0.41
Stewart 0.96 2.47 0.84 12.90 0.12 0.37 −0.23 −0.25 0.26 −0.02
Coffey 2.15 2.94 7.34 8.44 0.85 0.54 −1.05 0.21 0.64 −0.41
LSugarM 1.57 2.95 2.06 11.55 0.90 0.55 −0.43 0.73 0.37 −0.31
LBriar 1.74 3.30 3.13 13.77 0.87 0.51 −0.87 1.13 0.56 −0.32
SixMile 2.23 2.59 6.29 6.42 0.82 0.38 −1.34 1.23 0.69 −0.31
UIrwin 1.36 2.70 2.65 14.43 0.69 0.53 −0.32 1.77 0.45 −0.22
MMcAlpine 2.00 3.19 5.42 10.30 0.84 0.50 −1.51 0.66 0.68 −0.38
LSugarA 1.16 2.28 8.62 12.04 0.44 0.51 0.77 0.40 0.33 −0.26
LSugarP 1.04 2.10 1.52 9.20 0.49 0.58 −0.71 −1.04 0.33 −0.33
LMcAlpine 2.16 2.84 6.56 7.65 0.88 0.50 −1.63 0.27 0.50 −0.32

values below the median. In other words, the right part of the
distribution, which features long waiting times during low
flow conditions, can be very stretched.

These results show that adaptive sampling based on inter-
amounts leads to more balanced representation of high and
low flows, resulting in lower coefficients of variation reflect-
ing more stable statistical variance compared to traditional
flow time series sampling. We would like to point out that
these results were obtained at the 24 h sampling scales. In
Sect. 3.4, behaviour of the statistical distributions of flows
and IATs, as well as associated CV, skewness and medcou-

ple values, will be analysed across a range of sub-daily to
seasonal scales.

3.2 Statistical distribution properties comparison
across different hydrological basins

Subsequently, we compared properties of IAT and flow dis-
tributions across the 17 basins in relation to basin charac-
teristics. Figure 5 shows scatter plots of mean normalised
inter-amounts, CV, skewness and medcouple values for flows
and IATs as a function of basin area and imperviousness de-
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Table 4. Summary statistics of time series for flows and inter-amount times, at 24 h sampling scale: coefficient of variation (CV), skewness
(Skew) and medcouple (Mc), for three sets of connected sub-basins in the Charlotte catchments: Irwin, Little Sugar and McAlpine.

ID Name CV IAT CV flow Skew IAT Skew flow Mc IAT Mc flow Skew dIAT Skew dflow Mc dIAT Mc dflow

970 Stewart 0.96 2.47 0.84 12.90 0.12 0.37 −0.23 −0.25 0.26 −0.02
300 UIrwin 1.36 2.70 2.65 14.43 0.69 0.53 −0.32 1.77 0.45 −0.22

825 UBriar 1.95 3.69 4.91 14.79 0.84 0.41 0.39 −2.81 0.51 −0.30
022 LBriar 1.74 3.30 3.13 13.77 0.87 0.51 −0.87 1.13 0.56 −0.32
409 LSugarM 1.57 2.95 2.06 11.55 0.90 0.55 −0.43 0.73 0.37 −0.31
507 LSugarA 1.16 2.28 8.62 12.04 0.44 0.51 0.77 0.40 0.33 −0.26
530 LSugarP 1.04 2.10 1.52 9.20 0.49 0.58 −0.71 −1.04 0.33 −0.33

562 Campbell 2.02 3.25 4.26 10.40 0.84 0.51 −0.02 0.15 0.66 −0.41
255 UMcAlpine 2.04 3.55 5.53 13.51 0.79 0.42 −2.48 2.17 0.63 −0.38
975 Irvins 2.52 4.32 8.37 11.74 0.89 0.42 −3.84 0.07 0.78 −0.41
600 MMcAlpine 2.00 3.19 5.42 10.30 0.84 0.50 −1.51 0.66 0.68 −0.38
750 LMcAlpine 2.16 2.84 6.56 7.65 0.88 0.50 −1.63 0.27 0.50 −0.32

gree. The results show a positive correlation of 24 h mean
normalised flows or inter-amounts with basin size (Spear-
man correlation 0.55). This is mainly explained by a lower
likelihood of low flows that have a large influence at this
scale (24 h). Mean normalised flows correlate positively with
imperviousness degree (Spearman correlation 0.58), which
is likely to be explained by a generally growing importance
of flow regulation, resulting in maintenance of higher mean
base flows in urbanised basins.

Looking at CV values across all basins (Fig. 5c, d), we
found that CV values for both flows and IATs generally de-
crease with basin size and with imperviousness degree. CV
values are significantly negatively correlated with basin size
for flows (Spearman rank correlation−0.75). This can be ex-
plained by an increased smoothing effect on flow variation,
in particular a lower likelihood of low flow extremes during
dry periods for larger basins. CV values for IAT distributions
do not show a significant correlation with basin size, while
they are significantly negatively correlated with impervious-
ness (Spearman rank correlation −0.57). Since IAT distribu-
tions put more weight on high flows compared to low flows
as a result of their adaptive sampling strategy, this probably
indicates stronger influence of flow regulation in urbanised
basins resulting in more uniform run-off during rainy peri-
ods. IATs during these periods concentrate relatively more
closely to the mean and show fewer extremes (this is clearly
visible for the most urbanised basin, LSugarM, gauge 409).
The effect of urbanisation as reflected by imperviousness de-
gree on IAT statistics appears to be more important than basin
size.

Scatter plots for skewness and medcouple values
(Fig. 5e, f, g, h) show generally weak correlation with
basin area (Spearman correlations not significant at the 5 %
level). Skewness of IAT distributions is significantly nega-
tively correlated with imperviousness (Spearman rank corre-
lation −0.63). Similar to CV values, this probably indicates
stronger influence of flow regulation on flows in urbanised

basins. Medcouple values for IATs clearly show three low-
value outliers: for Stewart Creek (970), LSugarP (530) and
LSugarA (507). In these basins, active low flow control is ap-
plied1 preventing occurrence of low flow extremes and high
IAT extremes. The effect shows up more clearly for IAT med-
couple values, as a result of the adaptive sampling strategy
that gives more weight to peak flows, leading to generally
higher medcouple values, but also reflecting more clearly the
absence of low flow extremes. Some of the basins in this
study are sub-basins of each other, which implies that flows
can be correlated. Table 4 summarises CV, skewness and
medcouple values for three sets of sub-basins in the Char-
lotte catchment. The results show that variability in skew-
ness and medcouple values is unrelated to inter-basin con-
nections. The same applies for flow CV values, while CV
values for IATs seem to be clustered by group of sub-basins,
indicating that inter-basin correlation plays a role in explain-
ing IAT second-order variability. The fact that the effect is
only visible for IAT, not for flows, indicates that correlation
is mainly associated with occurrence of peak flows, which
receive more weight in IAT than in flow statistics.

In this section we discussed distributions of IATs and flows
at the 24 h scale. Results showed that larger basins are gen-
erally characterised by stronger smoothing of flows, result-
ing in higher mean flow, lower CV and lower skewness of
the flow histograms. Flow variability is clearly correlated
with basin size, which is mainly a result of smoothing of
low flows, in the left tail of the flow histogram. This con-
firms results previously reported in the literature on scaling
between flows and basin area (e.g. Goodrich et al., 1997;
Smith, 1992) and specifically between CV of flows and basin
area (Bloeschl and Sivapalan, 1997). These authors also re-
fer to complexities in hydrological response resulting in de-
viations from this general relationship. The same applies for
the basins in our study, where basin area only explains part
of the flow variability, especially for smaller basins. Results

1USGS, water year reports
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Figure 5. Scatter plots for mean normalised flow inter-amounts (a, b), coefficient of variation (c, d) and medcouple values (e, f) for flows and
inter-amount times versus basin area and imperviousness degree. Grey triangle symbols represent inter-amount times, black circles represent
flows.

showed that larger imperviousness is associated with higher
mean flows and significantly lower CV values for IATs, while
there was not significant correlation between CV values for
flows and imperviousness. This is probably explained by ur-
banisation being mainly associated with stronger flow regula-
tion by detention and capacity constraints in the drainage sys-
tem. Since IATs are relatively more sensitive to high flows,
this effect showed up more clearly in CV values for IATs
than for flows. CV and skewness values are much higher for
flows than for IATs, while medcouple values are lower for
flows, indicating strong asymmetry of the flow distributions
and low representation of high flow extremes in the statisti-
cal distribution. While Kjeldsen (2010) reported a decrease
in CV and skewness associated with urbanization for basins

in the UK, we did not find significant correlations based on
CV and skewness indicators for flows. Skewness for IATs
was significantly negatively correlated with imperviousness;
as stated before, this is probably associated with IAT statis-
tics being more sensitive to variability in high flows than con-
ventional flow statistics.

3.3 Distribution of changes in inter-amount times

Figure 6 shows histograms of first-order differences in
IATs and flows at the 24 h analysis scale, for Irvins Creek
(the least-urbanised basin), LSugarM (the most impervious
basin), Stewart Creek (a basin with low flow regulation) and
McAlpine (the largest of all studied basins). In the flow his-
tograms, negative differences are associated with recession,
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Figure 6. histograms of first-order differences in flows (a, b) and inter-amount times (c, d), at 24 h analysis sampling scale, for Irvins Creek
and LSugarM Creek.

positive differences with flow rise. Conversely, negative dif-
ferences in IATs occur during flow rise, positive differences
during flow recession. Most flow differences are concen-
trated in the 0 to −0.5 mm bin, associated with slow flow
recession of 0.5 mm day−1. Most IAT differences are concen-
trated in the 0 to 0.1 or 0.2 day bin, associated with steeper
flow recession of approximately 5 to 10 mm day−1. This re-
flects the relatively higher sampling of rapid flow response
for IATs compared to conventional flow sampling. Skew-
ness and medcouple values of the histograms provide indi-
cations of hydrograph shape, in particular of the steepness
of the hydrograph recession limb: higher skewness, and thus
more weight of the distribution concentrated in one of the
tails, indicates slow flow recession compared to relatively
rapid flow rise. Figure 7 shows scatter plots for skewness
and medcouple values versus basin size and imperviousness,
for all basins. The three basins with low flow regulation
(970, 530, 507) can be recognised by their low medcouple
values for IAT difference indicating near-symmetrical his-
tograms, i.e. flow rise and recession occur at similar rates.
Most IAT difference histograms are negatively skewed, with
a longer left tail than right tail, i.e. IATs generally decrease
quicker (flow rise) than they increase (flow recession). The
strongest negative skewness for IAT differences was found
for the least-urbanised basin (Irvins Creek, gauge 975), in-
dicative of steep flow rise occurring in this basin. Significant
positive correlation was found between skewness of IAT dif-
ference histograms and imperviousness (Spearman correla-
tions 0.75), indicating lower probability of steep flow rise in
higher urbanised basins. Negative correlation was found be-

tween medcouple and imperviousness (Spearman correlation
−0.55); thus relatively more symmetrical hydrographs with
flow rise and recession at similar rates occur for urbanised
basins. Here, sub-basin correlation appears to play role: med-
couple values are higher overall in the McAlpine sub-basins
than in Little Sugar Creek and Irwin sub-basins (see Ta-
ble 4). Significant correlations of IAT difference skewness
and medcouple with imperviousness show that urbanisation
is associated with more regulated flows, confirming findings
in Sect. 3.1.

3.4 Inter-amount-time variability across scales, from
sub-daily to seasonal sampling scale

In this section we analyse the variability of IATs and flows
across a wide range of sampling scales. We investigate how
the statistical distributions and hydrological response char-
acteristics change when moving from inter-event (multi-
ple days) to intra-event (sub-daily) scales. Figure 8 shows
quantile plots for normalised flows and IATs at scales be-
tween 12 h and 64 days, for Taggart Creek. On the horizontal
axis is the sampling scale, i.e. fixed sampling time for con-
ventional flow statistics or, equivalently, mean inter-amounts
for IAT statistics. Note that for the IAT analysis, mean inter-
amounts are normalised by basin area size and reported in
millimetres to allow easier interpretation of flow magnitudes
and to allow easier comparison between basins. For instance,
the normalised inter-amount 1q for Taggart Creek at the
daily scale is 0.998 mm. The vertical axis shows quantiles
of normalised flows and IATs corresponding to the sampling
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Figure 7. Scatter plots of skewness (a, b) and medcouple values (c, d) of histograms for differences in flows and inter-amount times, plotted
versus basin size and imperviousness degree. Grey triangle symbols represent inter-amount times, black circles represent flows.

scale in time or 1q. Values on both x and y axes are plotted
on log scales to allow easier visualisation of quantile values
that vary by 2 to 4 orders of magnitude. The bold black line
denotes the mean, and the dotted black line shows median
values. The central part of the quantile plots represents the
25–75 percentile range, upper and lower whiskers 10–90 per-
centiles and crosses the 1 and 99 percentiles.

We can see that mean values of normalised flows and IATs
decrease log-linearly with sampling scale, as indicated by a
straight line in the log–log plot, i.e. the sampling mean fol-
lows power-law scaling. As histogram analysis at the 24 h
scale already showed, statistical distributions of both flows
and IATs are highly skewed. Moreover, skewness increases
at smaller scales, as indicated by an increasing distance be-
tween mean and median values. Median values for flows fol-
low close to log-linear scaling (albeit steeper compared to the
mean) but exhibit stronger departures from log-linear scal-
ing for IATs. In particular, the median of IATs shifts from
close to log-linear scaling between 16 and 64 mm (associated
with about 16 to 64 days) to non-log-linear scaling between
1 and 14 mm scales (1–14 days) and again to near-log-linear
scaling below 1 mm. Coincidentally, these transitions corre-
spond to the range of scales over which IATs generally transi-
tion from being inter-event to intra-event dominated. Indeed,
IATs at coarser scales mostly combine the properties of mul-
tiple storms, resulting in a more symmetric distribution. This
effect is much stronger in IAT than in flow distributions, be-
cause it is mainly associated with changes in sampling of
peak flows which are more frequently sampled in the IAT
framework than in the conventional fixed time approach.

Figure 8. Quantile plots of flows (a) and inter-amount times (b) for
Taggart Creek for a range of scales, from 12 h to 60 days. The bold
black line denotes the mean values. The dotted black line shows me-
dian values. The central part of box plots represents the 25–75 per-
centile range, upper and lower whiskers the 10–90 percentile range,
crosses the 1–99 percentile range.
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Comparing the 10–90 and 1–99 percentile ranges in
Fig. 8a and b we see that the 10–90 percentile range of IATs
gradually increases towards smaller scales. For flows, the 10–
90 percentile range remains approximately constant; how-
ever, distance between 90 and 99 percentile values rapidly
increases towards smaller scales. This reflects the highly
skewed nature of flow distributions caused by oversampling
of low flows compared to high flows; an effect that increases
progressively towards smaller scales. By contrast, 10–90 and
1–99 percentile ranges for IATs increase more or less simi-
larly with scale, for sampling scales ranging from 0.51 mm to
approximately 10–16 mm. This indicates that the tails of IAT
distributions are more or less equally sampled, at least up to
the 1 and 99 percentiles. The upper 75, 90 and 99 IAT per-
centiles of IATs, associated with low flow periods, change
approximately log-linearly with scale, showing that upper
tail percentiles of IAT values refer to the same low flow pe-
riods across all scales, up to 8–16 mm scale. Associated low
flows are approximately 0.1 mm day−1. The 1 percentiles for
flows are associated with approximately 0.02 mm day−1, for
the 12 h to 4-day scale, showing that the distribution tail as-
sociated with low flows captures lower flow extremes in con-
ventional sampling than in IAT sampling. This is a result of
the relatively high frequency at which low flows are sam-
pled. Conversely, peak flows, associated with the right tail of
the flow distribution, are sampled less frequently in conven-
tional flow sampling: the 99 percentiles are associated with
peak flows of 0.78 to 0.38 mm h−1 for 12 h to 4-day scale.
The 1 percentiles of IATs are associated with peak flows of
about 20 mm h−1, at the 0.5 to 4 mm inter-amount scale, as-
sociated with mean IATs of 12 h to 4 days. This shows that
the IAT distribution captures more extreme peak flow values
than conventional flow sampling, at the same sampling scale.

Quantile plots of inter-amounts over a range of scales were
created for all 17 gauges included in our analysis (results
are added as a Supplement to this paper). This allowed us
to compare transition ranges between inter-event-dominated
and intra-event-dominated IAT distributions for all basins.
Results show that for 10 % IAT quantiles, the lower end of
the transition range, where intra-event characteristics start to
be mixed with inter-event phenomena, lies roughly between
10 and 25 mm mean inter-amounts, being accumulated in
about 1 h in most of the basins. Lower values are found for
basins with higher urbanisation degree and for basins where
low flow control is applied, reflecting the smoothing influ-
ence of flow control measures on peak flows. Similarly, one
can compare the amount of flow that is being generated in an
hour, compared to the mean flow. This can be derived from
the IAT quantile plots by looking at the scale at which a given
IAT quantile, for instance 10 % or 1 %, equals 1 h. For Tag-
gart Creek, the IAT 1 percentile equals 1 h at sampling scale
of 18 mm of mean normalised flow or, equivalently, 18 days
of mean IAT. This means there is a 1 % probability of exceed-
ing 18 mm of flow accumulation in 1 h or less, or, in terms of
time, it implies that there is a 1 % chance to accumulate the

amount of flow measured on average over a period of 18 days
in 1 h or less. Thus, higher values of 1 h, 1 percentiles indi-
cate stronger flashiness of basin response. Comparing values
across basins, we found that higher values of 1 %, 1 h accu-
mulations were strongly correlated with basin area, while no
significant correlation with imperviousness was observed.

Subsequently, we investigated scaling behaviour from the
perspective of statistical moments, by looking at coefficients
of variation for flows and IATs across scales. For the pur-
pose of statistical analysis and downscaling applications, it
is important to have a robust scaling model that predicts how
distributions change when going from one scale to another.
Scale invariance means that a distribution can be derived at
any scale, especially small scales, by shifting and scaling the
distribution at larger scales. One way to assess the property
of scale invariance is to check if the statistical moments of
distributions follow a power law of scale. Figure 9 shows co-
efficients of variation, computed as the ratio of the second-
over the first-order moment, for four gauges, across a range
of sub-daily (3 to 12 h) up to bi-monthly (60–68 days) scales.
Results show that coefficients of variation for flows vary
non-linearly with scale, while they approximately follow a
power law with scale for IATs. For Irvins Creek, the most
natural basin in this study (8.2 % imperviousness, Fig. 9a),
CV values of IATs and flows are similar over a range of 10
to 50 days. At smaller scales, CV values for flows increase
more rapidly than for IATs, indicating that IAT variance re-
mains more stable at smaller scales, while variance rapidly
increases at small scales for flows, as a result of growing
skewness of the statistical distribution, caused by relative
oversampling of low flows, or conversely, undersampling of
high flows. CV values for Upper LSugar Creek, the most ur-
banised basin are lower than for Irvins Creek, especially at
smaller scales (Fig. 9b). This is explained by the influence of
flow control measures in this basin, as flows are constrained
by the stormwater drainage system. The difference is more
pronounced for IATs, because IAT variance is more sensi-
tive to peak flows as a result of the adaptive sampling strat-
egy. Figure 9c shows that for LMcAlpine, the largest basin
(238.4 km2), CV values for flow are more or less stable be-
tween 3 and 24 h scale, due to strong smoothing of peak flows
at this intra-event scale. In contrast, CV values for IATs in-
crease over this range, due to scale sensitivity of the upper
tail of the IAT distribution, where long IATs at this small
scale (0.1 to 1.1 mm for 3 to 24 h) are broken up more un-
evenly, creating increased CV and skewness. This shows that
for analysis of low flows, especially in basins characterised
by strongly smoothed flow variability, IAT analysis offers lit-
tle advantage and conventional flow statistics are more suit-
able. CV values for Stewart Creek in Fig. 9d show very low
CV values for IATs that vary little with scale, while CV val-
ues for flows are much higher and strongly sensitive to scale.
Stewart Creek is a small, semi-urbanised basin (33 % imper-
viousness) where active low flow control is applied. This re-
sults in very low variability in IATs across the entire range
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Figure 9. Coefficients of variation for flows and inter-amount-time scales across a range of sub-daily (3 to 12 h) up to bi-monthly (60–
68 days) scale, for Irvins Creek, LSugarM, Stewart Creek and McAlpine. Grey triangle symbols represent inter-amount times, black circles
represent flows.

of scales, while CV values for flows are lower than those for
similar basins, but highly sensitive to scale, probably due to
unbalanced sampling of peak flows compared to very stable
low flows.

In Sect. 3.1 we analysed skewness and medcouple values
of flow and IAT distributions at the 24 h scale and found that
skewness values were lower and medcouple higher for IATs
than for flows. This was explained by the sensitivity of flow
distributions to rare peak flows compared to frequently sam-
pled low flows. Initial analyses of skewness and medcouple
values across scales showed that results are highly sensitive
to the sampling scale. While CV values show a stable pattern
across scales, results for skewness and medcouple are much
more variable, across scales and across basins. Explanation
of this scale sensitivity of skewness metrics and what infor-
mation can be derived from this about the tails of the dis-
tributions requires deeper analysis that will be part of future
work.

3.5 Flashiness indicators and minimum observable
scale

Two flashiness indicators were computed, as explained in
Sect. 2: the classical R–B flashiness index and an IAT flashi-
ness indicator based on characteristics of the IAT distribu-
tion. Table 3 summarises flashiness values for all gauges, as
well as minimum and maximum observable inter-amounts,
as defined in Eqs. (9) and (10). IAT flashiness indicators vary
between 12.5 and 165 h; higher values are generally asso-
ciated with smaller basins. R–B flashiness values vary be-

tween 0.8 and 1.3, indicative of moderately variable flows
(R–B flashiness can vary between 0 and 2). Values are in
the same range as those reported by Baker et al. (2004) for
smaller basins: they found R–B flashiness values larger than
1 for basins smaller than 50 km2. R–B flashiness is strongly
correlated with CV values (Fig. 10c, Spearman correlation
0.77); this confirms that R–B flashiness is essentially a metric
of flow variability. Figure 10a shows that IAT-based flashi-
ness and R–B flashiness are moderately correlated (Spear-
man rank correlation 0.55), yet there are some striking dif-
ferences. The three low-flow-regulated basins have very low
R–B flashiness values, while IAT flashiness values are in line
with values for other basins. This is explained by R–B flashi-
ness being strongly sensitive to low flow variability, while
IAT flashiness is more sensitive to occurrence of peak flow
values. For instance, the McAlpine basin (gauge 255) has a
very high IAT flashiness as a result of high occurrence of
peak flows. On the other hand LSugarM (gauge 409), the
most urbanised basin, has low IAT flashiness as a result of
peak values being capped by maximum capacity of pipes in
the drainage network.

Figure 10b and d show scatter plots of IAT flashiness
(left y axis) and R–B flashiness (right y axis) versus basin
area and imperviousness, for all gauges. They show a clear
relationship between flashiness and basin area (Spearman
correlation −0.83 for IAT, −0.71 for R–B flashiness), with
a large range of flashiness values for the smallest basins
(< approx. 30 km2). Here,other processes than basin size
clearly play a role in explaining flashiness. Correlations be-
tween R–B and IAT flashiness versus imperviousness degree
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Figure 10. Scatter plots of flashiness versus basin area and imperviousness, for all gauges. Grey triangle symbols represent inter-amount
times, black circles represent flows.

are not significant at the 5 % level. For R–B flashiness, the
most pervious and the most impervious basins (gauges 975
and 409 respectively) are both in the high range of flashi-
ness values, showing that other influences, such as basin size
and presence or absence of low flow regulation play a more
important role than imperviousness degree. IAT flashiness
tends to decrease for a combination of higher imperviousness
and larger basins, basin size playing a stronger role than ur-
banisation. The most urbanised basin, LSugarM (gauge 409,
31.7 km2, 48 % imperviousness) has a relatively low flashi-
ness value of 48.8 h, while the least impervious basin, Irvins
Creek (gauge 975, 21.8 km2, 8 % imperviousness) has a high
flashiness value of 102.8 h. As discussed in Sect. 3.1, the
effect of urbanisation on flow patterns for the basins in the
study area seems to be mainly determined by increased flow
regulation associated with introduction of dams, stormwater
detention basins and stormwater drains with capacity limita-
tions. While higher imperviousness leads to higher mean run-
off flows (for instance, 1.5 mm for LSugarM versus 0.68 mm
for Irvins Creek, at 24 h scale), rainfall tends to run off rel-
atively more uniformly in impervious basins, without rapid
flow rise or sharp flow peaks, depending on the degree of
flow regulation. The leads to a mixed effect of basin size, im-
perviousness and flow regulation on IAT flashiness and peak
flows. In this study, IAT flashiness values were defined as the
time that is needed on average to accumulate the amount of
flow that is accumulated in 15 min or less, 1 % of the time.

R–B flashiness indices were computed at the daily scale,
to allow comparison with results obtained by Baker et al.
(2004). For a fair comparison, both flashiness indices should
be computed at similar scales, as far as possible, given that

definitions used in the two approaches are different. We
aimed to compute both indices at hourly scale, as this is
an appropriate scale in relation to the size of most of the
basins in our analysis and a reasonable compromise between
the 15 min and 24 h timescales used for IAT flashiness and
R–B flashiness index respectively. Note that Baker et al.
(2004) stated that the hourly scale would be more suitable for
smaller basins (< 30 km2), but never computed R–B flashi-
ness values at this scale, only Richard’s pathlengths. When
we computed R–B flashiness indices at the hourly scale, us-
ing the same definition, we found lower flashiness than at the
daily scale, which is rather counterintuitive, as one would
expect higher flashiness at smaller scales due to the fact that
Richard’s pathlengths increase from daily to hourly scales.
However, R–B flashiness is based on absolute differences of
flow values, not gradients (i.e. differences per unit of time).
And since flow differences decrease when moving toward
smaller scales, R–B index also decreases. Alternatively, one
could use discharges instead of flow amounts, but then val-
ues could grow much larger than 2. Regardless of the ap-
proach used, R–B flashiness index appears to be rather sen-
sitive to the scale of analysis. By contrast, the IAT flashiness
index proposed in this paper tends to be much more robust.
Additional sensitivity analyses (not shown) revealed almost
no changes in IAT flashiness estimates for 15 min to 3–6 h
aggregation scales. Beyond that, significant underestimation
started to occur as the resolution is not sufficient anymore to
correctly capture peak flow variability. For data aggregated
at 24 h resolution (instead of the original 15 min), IAT flashi-
ness values were underestimated by 20–80 %, depending on
the considered gauge.
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Table 5. Minimum and maximum observable scales (in hours), flashiness index for 15 min observation time (in hours) and fitted multifractal
parameters α and C1 for inter-amount time flows.

ID Min. scale Max. scale Flash RB Min. R2 IAT Min. R2 flow Alpha IAT Alpha flow C1 IAT C1 flow

UBriar 13.75 1462 128.75 1.15 0.999 0.994 1.05 1.53 0.21 0.35
Taggart 12.50 1443 118.75 1.22 0.999 0.993 0.88 1.30 0.26 0.36
Campbell 9.25 1360 106.00 1.17 1.000 0.993 1.01 1.45 0.24 0.33
Steele 9.50 1457 57.25 1.21 1.000 0.991 0.86 1.30 0.25 0.36
McMullen 11.00 2420 92.25 1.25 0.999 0.992 0.94 1.32 0.26 0.32
UMcAlpine 10.00 1367 165.00 0.99 1.000 0.990 1.24 1.59 0.19 0.33
Irvins 13.75 1367 102.75 1.14 0.999 0.991 1.25 1.40 0.22 0.35
Stewart 6.25 1284 64.00 0.82 1.000 0.994 0.72 2.06 0.09 0.24
Coffey 4.75 1422 26.25 1.09 0.999 0.997 1.53 1.37 0.21 0.28
LSugarM 7.50 1752 48.75 1.16 1.000 0.996 0.66 1.48 0.20 0.33
LBriar 6.75 1658 61.50 1.12 1.000 0.996 0.88 1.51 0.20 0.31
SixMile 3.00 672 12.50 0.97 0.999 0.995 1.64 1.36 0.21 0.26
UIrwin 5.00 2420 55.25 0.97 1.000 0.995 1.14 1.81 0.14 0.25
MMcAlpine 5.50 2420 30.75 1.09 1.000 0.996 1.28 1.46 0.20 0.28
LSugarA 3.50 2420 30.75 0.85 0.995 0.996 2.89 1.89 0.07 0.22
LSugarP 2.75 1532 18.00 0.83 1.000 0.996 1.37 1.87 0.09 0.20
LMcAlpine 3.00 2420 15.75 0.98 0.999 0.997 1.64 1.32 0.19 0.24

Figure 11. Example of log–log plots for flows and inter-amount times (a, b), for Mc Alpine Creek, illustrating departures from linearity
at high-order moments. Reported R2 values are for the entire range of results, without scale breaks. Log–log curve for moment q = 2.4
illustrating scale breaks for flows and inter-amount times (c, d).

Quantile plots of IAT distributions furthermore provide in-
formation about the minimum observable scale at a given
observational resolution (15 min, in the data series used in
our analysis), i.e. the degree of flow variability that occurs at
scales smaller than the observation scale. When moving to-

wards smaller sampling scales, a growing percentage of flow
accumulations occurs in less than 15 min, and hence cannot
be analysed at the given observational resolution. This typi-
cally coincides with peak flows and implies that during peak
events, the observational resolution is too low to measure
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flow variability. IAT analysis can thus be used to identify a
critical resolution for flow observations, if a given peak flow
accumulation is of interest. This could be associated with, for
instance, the capacity of detention ponds or flooding caused
by exceedance of stormwater drainage capacity. For the ex-
ample of Taggart Creek (Fig. 8b), the scale at which 1 % of
flow accumulations occurs in less than 15 min is associated
with an inter-amount sampling scale of 4.76 mm. This im-
plies that flows that exceed 4.76 mm in 15 min, i.e. peak flows
above 19.0 mm h−1, cannot be observed 1 % of the time. If
correct observation of peak flows of this magnitude or larger
is important, flow data need to be collected at a higher than
15 min resolution during times of peak flows. This is typ-
ically the case in urban basins, where stormwater drainage
systems are often designed for peak flows associated with
10- to 50-year return periods.

3.6 Scaling of inter-amount times across scales:
multifractal analysis

As explained in Sect. 2, log–log plots of statistical moments
versus sampling scale can be used to study scaling behaviour
of time series. In the following, we plotted the moments 〈Xqλ〉
of order q of IATs as a function of mean inter-amount scale
1q (proportional to the inverse of the scaling ratio λ), on
a log–log scale, for moments of order 0.6 to 2.4. We ap-
plied the same procedure for flow time series over the same
range of equivalent scales. Figure 11 shows examples of log–
log plots for flow volumes and IATs for McAlpine Creek
(gauge 750). They show that log-linear fits are better for IATs
than for flows, especially for higher-order moments; mini-
mum R2 values, that are associated with fits for higher-order
moments, are 0.9972 and 0.9993 for flows and IAT respec-
tively.

Plots in Fig. 11 show stronger departures from linearity
in the log–log plots for flows than for IATs, especially for
higher-order moments. Figure 11c and d illustrate this for
log–log curves of moment q = 2.4, where a scale break was
detected at 22 h for flows. Based on a Davies test (Davies,
2002), two breakpoints were significant for flows (p value
0.001). For IATs, there was at least one significant break-
point, but the test for two breakpoints returned a p value of
0.071. This shows that scaling is slightly better for IATs than
for flows. Similar analyses were conducted for all gauges,
Table 5 summarises minimum R2 values for log-moment fits
for flows and IATs. Log moments for IATs show near perfect
fits for all gauges, with minimum R2 values between 0.995
and 1.000. Quality of log moments is consistently lower for
flows, for all basins; minimum R2 values are between 0.990
and 0.997, lower quality fits generally occurring for smaller
basins. Investigation of departures from linearity showed that
for flows, most gauges exhibited a scale break between 8
and 20 days. Similar scale breaks, between timescales of 8
to 16 days, were found in scaling analyses of flow data by
other authors based on flow data at daily resolution (Tessier

et al., 1996; Labat et al., 2002; Sauquet et al., 2008). Labat
et al. (2013) and Sauquet et al. (2008) found scale breaks in
the range of 16 to 27 h, respectively, for 30 min hourly reso-
lution. We did not detect any strong departures from linear-
ity in the IAT framework except for the three gauges where
low flow regulation is applied (LSugarA, 507, LSugarP, 530,
Stewart Creek, 750).

Using the empirical log moments, we fitted the multifrac-
tal parameters C1 and α for IATs and flow amounts. Ta-
ble 5 summarises C1 and α values for all basins, for flows
and for IATs. Results show that C1-values, characterising in-
termittency of the time series, are lower for IATs than for
flows. This makes sense and can be explained by the adap-
tive sampling strategy of IATs, especially the fact that low
flows are sampled less often than in the classical fixed-time
framework. Values of the multifractality index α are gener-
ally lower for IATs, with the exception of four basins. Two
of these basins are characterised by low flow regulation; one
basin has anomalous land-use distribution with a high con-
centration of imperviousness in the upper part of the basin.
Time series of the fourth basin is short (8 years), which might
influence outcomes of the scaling analysis. C1 and α values
for flows are in the range of values found by other authors.
Figure 12 shows scatter plots of values for C1 and α for flow
and for IATs versus basin size and imperviousness. C1 val-
ues are clearly negatively correlated with basin area. Rank
correlations for IATs are −0.67 and −0.85 for flows. No sig-
nificant correlation of C1 with imperviousness was found,
but the three basins with low flow control stand out with
lower-than-average C1 values. This shows up both in the IAT
analyses and in the classical approach based on flows. The
α values for IATs are positively correlated with area (0.6)
and negatively with imperviousness (−0.56). No significant
correlation with area or imperviousness was detected. For
IATs, negative correlation of α with imperviousness comes
from the fact that IATs in highly impervious basins are redis-
tributed more evenly when moving from large to small scales
(due to high imperviousness).

4 Summary and conclusions

In this study, we introduced an alternative approach for anal-
ysis of hydrological flow time series, using an adaptive sam-
pling framework based on inter-amount times (IATs). The
main difference between flow time series and time series for
IATs is the rate at which low and high flows are sampled; the
unit of analysis for inter-amount times is a fixed flow amount,
instead of a fixed time window. Thus, in IAT analysis, sam-
pling rate is adapted according to the local variability in flow
time series, as opposed to time series sampling using fixed
time steps. We aimed to investigate the effect of adaptive IAT
sampling on flow statistics, especially on the tails of the sta-
tistical distributions associated with peak flow and low flow
extremes. We analysed and compared statistical distributions
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Figure 12. Multifractal parameters C1 and alpha for scaling analysis of flows and inter-amount times, as a function of drainage area and
imperviousness degree. Grey triangle symbols represent inter-amount times, black circles represent flows.

of flows and IATs across a wide range of sampling scales to
investigate sensitivity of statistical properties such as distri-
bution quantiles, variance, scaling parameters and flashiness
indicators to the sampling scale. We did this based on stream-
flow time series for 17 (semi-)urbanised basins in North Car-
olina, USA. The following conclusions were drawn from the
analyses:

1. Adaptive sampling of flow time series based on inter-
amounts leads to higher sampling frequency during high
flow periods compared to conventional sampling based
on fixed time windows. This results in a more bal-
anced representation of low flow and peak flow values
in the statistical distribution. While conventional sam-
pling gives a lot of weight to low flows, as these are
most ubiquitous in flow time series, IAT sampling gives
relatively more weight to high flow periods, when given
flow amounts are accumulated in shorter time. As a con-
sequence, IAT sampling gives more information about
the tail of the distribution associated with high flows,
while conventional sampling gives relatively more in-
formation about low flow values.

2. Statistical analysis of IATs and flows at the 24 h scale
showed that coefficient of variation (CV) and skew-
ness values were much higher for flows than for IATs,
while medcouple values were lower for flows, indi-
cating strong asymmetry of the flow distributions and
low representation of high flow extremes in the sta-
tistical distribution. Larger basins were generally char-
acterised by stronger smoothing of flows, resulting in

higher mean flow, lower CV values and lower skewness
of the histograms. Flow variability decreased with basin
size. Larger imperviousness was associated with higher
mean flows and lower variability of IATs, while there
was not a clear relation with variability of flows.

3. Comparison of CV across the 17 basins showed that
CV values of flows were significantly negatively cor-
related with basin size. CV values of IAT distributions
were not significantly correlated with basin size. This
was explained by basin size having a stronger smooth-
ing effect on low flow variability, strongly represented
in conventional flow time series, than on peak flows
that are more frequently represented in IAT time se-
ries. By contrast, CV values of IAT distributions were
negatively correlated with imperviousness, while cor-
relation between CV values for flows and impervious-
ness was not significant. Negative correlation between
CV values of IATs and imperviousness probably indi-
cates a stronger influence of flow regulation by deten-
tion and capacity constraints of stormwater drains in
more urbanised basins, resulting in more uniform run-
off during rainy periods. IATs during these periods con-
centrate relatively more closely to the mean and show
fewer extremes. This result is contrary to findings re-
ported in the literature, where urbanisation tends to be
associated with higher peak flows. (e.g. Rose and Peters,
2001; Cheng and Wang, 2002; Du et al., 2012; Huang
et al., 2008). On the other hand, several studies have
found mixed effects of urbanisation on flow peaks asso-
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ciated with a combination of imperviousness and flood
mitigation measures, especially for basins in the USA
where urbanisation has predominantly taken place after
implementation of stormwater legislation to lower peak
discharges (e.g. Smith et al., 2013; Hopkins et al., 2015;
Miller et al., 2014). For the basins in Charlotte water-
shed, urbanisation has taken place before as well as after
stormwater legislation, and a combination of flow regu-
lation by detention facilities and peak flow restrictions
induced by capacity constraints results in an overall ef-
fect of peak flow reduction associated with urbanisation.

4. Histograms of first-order differences showed negative
skewness for IATs and positive skewness for flows, for
most of the basins, indicating the prevalence of slow
flow recession compared to flow rise. The three basins
with low flow regulation could be recognised by their
relatively low medcouple values (< 0.4) for IAT dif-
ferences, showing that hydrographs tend towards be-
ing symmetrical in these basins. Significant correlations
were found between skewness and medcouple of IAT
differences and imperviousness (Spearman correlations
0.75 and −0.55), showing that urbanisation is associ-
ated with more regulated flows, thus relatively more
symmetrical hydrographs with flow rise and recession
at similar rates and lower frequencies of steep flow rise.
Here, sub-basin correlation appears to play a role: med-
couple values were higher overall in the McAlpine sub-
basins than in Little Sugar Creek and Irwin sub-basins.
No significant correlations were found for differences in
flows.

5. Quantile plots of flows and IATs plotted over a range
of sub-daily to seasonal scales showed the influence of
the different sampling strategy for IATs compared to
conventional flow sampling on median, 25–75, 10–90
and 1–99 percentile ranges of the distributions. The 25–
75 and 10–90 percentile ranges for flows remained ap-
proximately constant, but the distance between 90 and
99 percentile values rapidly increased towards smaller
scales. This reflects the highly skewed nature of flow
distributions caused by oversampling of low flows com-
pared to high flows; an effect that increased progres-
sively towards smaller scales. By contrast, 10–90 and
1–99 percentile ranges for IATs increased more or less
similarly with scale, for sampling scales ranging from
0.51 mm to approximately 10–16 mm, largely associ-
ated with intra-event flow variability. This indicates that
the tails of IAT distributions are more or less equally
sampled, at least up to the 1 and 99 percentiles.

6. Quantile plots for IATs showed different scaling at
small scales (up to inter-amount scale 8–10 mm) and
large scales (roughly exceeding 20 mm inter-amounts),
with a transition range in between. At smaller scales,
IATs are mostly dominated by intra-event variability,

while at large-scales IATs span multiple events. Flows
sampled over fixed time intervals did not clearly exhibit
this transition, probably because peak flow variability is
being poorly sampled by fixed time window sampling.
Because IATs adapt the sampling rate depending on the
level of activity, they still capture a fair amount of peak
flow statistics and intra-event properties, even at coarser
scales.

7. Comparison of the tails of flows and IAT distribu-
tions showed that the distribution tail associated with
low flows captures lower flow extremes in conventional
sampling than in IAT sampling (0.02 mm day−1 com-
pared to 0.1 mm day−1). Conversely, IAT distributions
capture more extreme peak flow values than conven-
tional flow sampling, at the same sampling scale: the
99 percentiles for flows are associated with peak flows
of 0.38 to 0.78 mm h−1 (sampling scales 12 h to 4 days),
while 1 percentiles of IATs are associated with peak
flows of about 20 mm h−1 (sampling scales 0.5 to 4 mm
inter-amounts, associated with IATs of 12 h to 4 days).

8. Analysis of CV values of flow and IAT distribution
across scales showed that at smaller scales, CV values
for flows increase more rapidly than for IATs, indicat-
ing that IAT variance remains more stable at smaller
scales, while variance rapidly increases at small scales
for flows. This is as a result of growing skewness of
the statistical distribution of flows, caused by relative
oversampling of low flows, or conversely, undersam-
pling of high flows. This shows that for analysis of peak
flows, IAT analysis offers advantages of the fixed-time
sampling framework, as it samples peak flows more
frequently and results in more stable variance across
scales. For analysis of low flows, especially in basins
characterised by strongly smoothed flow variability, IAT
analysis offers little advantage and conventional flow
statistics are more suitable.

9. An IAT flashiness indicator was defined as the inter-
amount scale at which 1 % of flow accumulations oc-
cur in less than 15 min. Comparison between IAT-based
flashiness and the commonly applied R–B flashiness
index showed that indices were moderately correlated
(Spearman rank correlation 0.55), yet there were some
striking differences. R–B flashiness was shown to be
strongly sensitive to low flow variability, while IAT
flashiness was more sensitive to occurrence of peak val-
ues. Both flashiness indices showed strong correlation
with basin area. R–B flashiness showed no clear rela-
tionship with imperviousness. IAT flashiness tends to
decrease for a combination of higher imperviousness
and larger basin size, basin size playing a stronger role
than urbanisation. The effect of urbanisation on flow
patterns for the basins in the study area is a mixture of
faster run-off flows due to imperviousness and stronger
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flow regulation by dams and detention basins. This leads
to a mixed effect of basin size, imperviousness and flow
regulation on IAT flashiness and peak flows.

10. A minimum observable inter-amount scale was defined
as the smallest scale at which flow variations can be
studied given a fixed temporal observational resolution.
At higher sampling scales, a growing percentage of flow
accumulations occurs in less than the given observa-
tional resolution, 15 min in this study. This typically co-
incides with peak flows and implies that during peak
events, the observational resolution is too low to mea-
sure flow variability. IAT analysis can thus be used to
identify a critical resolution for flow observations, if a
given peak flow accumulation is of interest. If correct
observation of peak flows of a given magnitude is im-
portant, flow data need to be collected at a higher than
15 min resolution during times of peak flows. This is
typically the case in urban basins, where stormwater
drainage systems are often designed for peak flows as-
sociated with 10 to 50-year return periods.

11. Multifractal analysis of IATs and flows was applied
over a range of sub-daily to seasonal scales. Both ap-
proaches exhibited relatively good scaling, as indicated
by R2 values above 0.99. IATs systematically scaled
better than flows and showed departures from multifrac-
tality for only three basins, subject to low flow regula-
tion, while flows exhibited departures from multifrac-
tality for most basins. This showed that IATs can help
to better predict peak flow characteristics at small un-
observable scales based on coarse-resolution data. Ad-
ditionally, they provide new interesting alternatives for
the stochastic modelling and downscaling of flow data.

This study showed that properties of statistical distributions
of flow time series are very sensitive to the scale at which the
statistics have been derived. This influences values of sum-
mary statistics that are used to characterise flow patterns of
hydrological basins, like peak flows at given recurrence in-
tervals and flashiness indices. Adaptive sampling based on
inter-amount times helped to achieve more stable variance
across scales, yet the behaviour of other statistical properties
such as skewness or medcouple is less clear. Further inves-
tigations are needed to interpret changes of statistics across
scales. Future work will focus on multiscale analysis, how
to compare results at different scales and what can be learnt
from behaviour at different scales about flow variability in
hydrological basins in relation to basin characteristics.

Analyses in this study identified minimum observable
scales below which flow variability cannot be captured at
a given measurement resolution. The combination of being
able to identify these minimum observable scales and to
downscale flow data based on IATs is an interesting area for
future investigation. Results showed that scaling parameters
for IAT time series were more reliable than those based on

fixed-time sampling because of smaller departures from lin-
earity in log–log plots. Future work will focus on possible
ways to use IATs to downscale coarse-resolution flow data
with the help of multifractals and multiplicative random cas-
cades, to see if this leads to more robust and reliable results
than downscaling based on conventional flow time series.

Another aspect that remains to be investigated is how IATs
computed on flow data compare to IATs computed on associ-
ated rainfall time series. Because flow is linked to rainfall, the
comparison of the two could help better distinguish which as-
pects of flow variability are due to rainfall and which relate
to basin characteristics and stormwater management.

Data availability. Flow data used in this study are open datasets
made publicly available by USGS. They are available at
http://waterdata.usgs.gov/nc/nwis (USGS, 2016). The follow-
ing is a link to flow gauges in Mecklenburg County, used
in our study: https://waterdata.usgs.gov/nc/nwis/uv?referred_
module=sw&county_cd=37119&site_tp_cd=ST&format=
station_list&group_key=NONE&range_selection=days&period=
7&begin_date=2017-04-02&end_date=2017-04-09&date_
format=YYYY-MMDD&rdb_compression=file&list_of_search_
criteria=county_cd,site_tp_cd,realtime_parameter_selection.
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