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ABSTRACT

Spectral wave models are widely used for wave prediction over large spatio-temporal
scales. Over global scales, spectral models (e.g. WAM and WAVEWATCH III) are used
regularly by environmental modelling centers, such as the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the American National Center for Environmen-
tal Prediction (NCEP), in order to support human activity at sea. Along the coasts,
practitioners rely on spectral models which are designated to the coastal environment
(e.g. SWAN and TOMAWAC) for applications such as coastal hazard assessment, future
coastal development, planning of defense strategies for coastal safety, evacuation plan-
ning of coastal communities and so forth.

An important property that characterizes the spectral approach and enables its ap-
plicability for large scales is efficiency. This property is achieved owing to the simple
wave description that underlies its formulation. Specifically, the spectral approach rep-
resents ocean wave fields as quasi-Gaussian, quasi-homogeneous and quasi-stationary
processes. These convenient statistical properties provide a full statistical description
of wave fields based on the energy spectrum alone, and therefore, allow to describe the
waves in the ocean in a complete statistical sense through the solution of a single trans-
formation equation - the energy balance equation.

The validity of this statistical modelling framework is based on the weak (in the
mean) wave forcing and the dispersion effects. These two agents provide reasonable
justifications that the deviation from the assumed statistical properties (i.e. Gaussianity,
homogeneity and stationarity) is kept negligible in the course of wave evolution. While
these arguments are reasonable in the open ocean (where dispersive effects are strong
and wave processes are characterized by large scales), they become somewhat loose for
the coastal environment (where wave dispersion weakens and wave processes develop
rapidly). Evidently, processes like medium-induced wave interferences and energy ex-
changes due to shallow water nonlinearity are not properly represented under this sta-
tistical framework.

This study is set forward with the aim of advancing the spectral modelling capabili-
ties in coastal waters by allowing the development of inhomogeneous and non-Gaussian
statistics. To this end, the effort of this work is directed to three different parts, con-
cerning three principle issues. The first part considers the formal connection between
the classical deterministic formulation (e.g. the Euler equations) and the statistical for-
mulation given by the so-called Wigner-Weyl formulation (a statistical framework that
includes the information of wave interferences and reduces to the energy balance equa-
tion when interference effects are negligible). The second parts aims to generalize the
Wigner-Weyl formulation (which presently accounts for wave-bottom interactions) to
allow for the interaction of waves and ambient currents. Finally, the third part is devoted
to the investigation of the quadratic modelling approach which defines the starting point
for the present phase-averaged formulation of shallow water nonlinearity.

ix



x ABSTRACT

The objective of the first part of this study is achieved by showing the equivalence be-
tween a formal definition of the Dirichlet-to-Neumann operator of waves over variable
bathymetry and the Weyl operator of the dispersion relation. This equivalence opens the
door to a formal use of Weyl calculus, based on which the Wigner-Weyl formulation is
formally derived. This result establishes the desired formal link between the determinis-
tic formulation for water waves and the statistical formulation given by the Wigner-Weyl
formulation, which includes the energy balance equation as a statistically well-defined
limiting case. In the second part of this study, the Wigner-Weyl formulation for water
waves is extended to account for wave-current interactions. The outcome is a gener-
alized action balance model that is able to predict the evolution of the wave statistics
over variable media, while preserving statistical contributions due to wave interferences.
Comparisons with results of the SWAN model and the REF/DIF 1 model through several
examples verify model performance and demonstrate that retention of interference con-
tributions is essential for accurate prediction of wave statistics in shear-current-induced
focal zones. Finally, the third part of this study explores the predictive capabilities of the
quadratic approach. This is performed by analyzing the nonlinear properties of six dif-
ferent quadratic formulations, three of which are of the Boussinesq type and the other
three are referred to as fully dispersive formulations. It is found that while the Boussi-
nesq formulations predict reliably the nonlinear development of coastal waves, the pre-
dictions by the fully dispersive formulations tend to be affected by false developments
of modulational instability. As a result, the predicted fields by the fully dispersive for-
mulations are characterized by unexpectedly strong modulations of the sea-swell part
and associated unexpected infragravity response. Additionally, this part of the study also
presents an attempt to push the limits of the predictive capabilities of the quadratic ap-
proach. The outcome is the model QuadWave1D: a fully dispersive quadratic model for
coastal wave prediction in one dimension. Based on a wide set of examples (including
monochromatic, bichromatic and irregular wave conditions), it is found that the new
formulation presents superior forecasting capabilities of both the sea-swell components
and the infragravity field.

In summary, the overall effort of this study provides an additional step toward the
broader goal of efficient and accurate spectral modelling capabilities of coastal waves.
This step includes strengthening the theoretical foundations of the spectral approach,
improving the spectral description of wave transformation over spatial inhomogeneity
and helping to minimize the errors associated with the spectral formulation of shallow
water nonlinearity. Ultimately, this study also points on and prepares the background to
additional required model developments.



SAMENVATTING

Spectrale golfmodellen worden veelal toegepast voor de voorspelling van windgolven
over grote ruimtelijke en temporele schalen. Op mondiale schaal worden deze modellen
(bijv. WAM en WAVEWATCH III) frequent gebruikt door gerenommeerde klimaat insti-
tuten, zoals het European Centre for Medium-Range Weather Forecasts (ECMWF) en
het American National Center for Environmental Prediction (NCEP), ten behoeve van
de ondersteuning van menselijke activiteiten op zee. Ook worden de spectrale model-
len ingezet door ze toe te passen op de kustomgeving (bijv. SWAN en TOMAWAC), zoals
kustrisicobeoordeling, toekomstige kustontwikkeling, planning van verdedigingsstrate-
gieën voor kustveiligheid, evacuatieplanning van kustgemeenschappen, enzovoort.

Een belangrijke eigenschap van de spectrale benadering is efficiëntie. Dit maakt de
toepasbaarheid op grote schaal mogelijk. Deze eigenschap wordt bereikt dankzij de een-
voudige golfbeschrijving die ten grondslag ligt aan de formulering ervan. In dit verband
worden oceaangolfvelden als quasi-Gaussiaanse, quasi-homogene en quasi-stationaire
processen beschouwd. Deze prettige statistische eigenschappen bieden een volledige
statistische beschrijving van golfvelden op basis van slechts het energiespectrum, en
maken het daarom mogelijk om de golven op de oceaan op een volledige statistische
wijze te beschrijven door de oplossing van een enkelvoudige vergelijking - de energieba-
lansvergelijking.

De validiteit van deze statistische modelleringsaanpak is gebaseerd op de zwakke
(gemiddelde) golf-forcering en de dispersie effecten. Deze twee aspecten bieden een
voldoende rechtvaardiging in de zin dat de afwijking van de veronderstelde statistische
eigenschappen (d.w.z. Gaussianiteit, homogeniteit en stationariteit) verwaarloosbaar
wordt gehouden in het verloop van de golfevolutie. Hoewel deze argumenten aanne-
melijk zijn voor wat betreft golven op de open oceaan (waar de dispersie effecten sterk
zijn en de golfprocessen worden gekenmerkt door grote ruimtelijke schalen), worden
ze enigszins discutabel met betrekking tot golven dichtbij de kust (waar de golfdisper-
sie inmiddels is afgezwakt en de golfprocessen zich snel ontwikkelen). Het is evident dat
de processen zoals bodem-geïnduceerde golfinterferenties en energie-uitwisselingen als
gevolg van niet-lineariteit in ondiep water niet goed worden weergegeven in dit statisti-
sche referentiekader.

De onderhavige studie is opgezet met als doel de mogelijkheden voor spectrale mo-
dellering in kustwateren te verbeteren door de ontwikkeling van inhomogene en niet-
Gaussiaanse statistieken mogelijk te maken. Daartoe is het streven van dit werk gericht
op drie verschillende onderdelen die betrekking hebben op drie principiële kwesties.
Het eerste deel betreft het formele verband tussen de klassieke deterministische for-
mulering (zoals bijv. de Euler vergelijkingen) en de statistische formulering die wordt
gegeven door de zogenaamde Wigner-Weyl formulering (een statistisch referentiekader
dat de informatie over golfinterferenties omvat en reduceert tot de energiebalansverge-
lijking wanneer interferentie-effecten zijn te verwaarlozen). Het tweede deel heeft tot
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xii SAMENVATTING

doel de Wigner-Weyl formulering (die thans de golfbodeminteracties duidt) te genera-
liseren om de interactie van golven met de omgevingsstroom mogelijk te maken. Ten
slotte is het derde deel gewijd aan het onderzoek van de kwadratische modellerings-
benadering die het startpunt fungeert voor de huidige fasegemiddelde formulering van
niet-lineariteit in ondiep water.

Het doel van het eerste deel van deze studie wordt gerealiseerd door de gelijkwaar-
digheid tussen een formele definitie van de Dirichlet-to-Neumann operator van golven
over variabele bodem en de Weyl operator van de dispersierelatie aan te tonen. Deze
gelijkwaardigheid opent de deur naar een formeel gebruik van Weyl calculus, waarvan
de Wigner-Weyl formulering formeel is afgeleid. Dit resultaat legt de gewenste formele
link tussen de deterministische formulering voor watergolven en de statistische formu-
lering gegeven door de Wigner-Weyl formulering, die de energiebalansvergelijking als
een statistisch goed gedefinieerd grensgeval omvat. In het tweede deel van deze studie
wordt de Wigner-Weyl formulering voor watergolven uitgebreid om rekening te houden
met golf-stroominteracties. Het resultaat is een gegeneraliseerd actiebalansmodel dat
in staat is om de evolutie van de golfstatistieken over variabele media te beschrijven,
met behoud van statistische bijdragen als gevolg van golfinterferenties. Vergelijkingen
met de resultaten van het SWAN model en het REF/DIF 1 model door middel van ver-
schillende voorbeelden verifiëren de modelprestaties en tonen aan dat het behoud van
interferentiebijdragen essentieel is voor nauwkeurige voorspelling van golfstatistieken
in door stromingspatronen geïnduceerde focale zones. Ten slotte onderzoekt het derde
deel van deze studie de voorspellende mogelijkheden van de kwadratische benadering.
Dit wordt uitgevoerd door de niet-lineaire eigenschappen van zes verschillende kwa-
dratische formuleringen te analyseren, waarvan er drie van het Boussinesq-type zijn en
de andere drie volledig dispersieve formuleringen worden genoemd. Hoewel de Boussi-
nesq formuleringen de niet-lineaire ontwikkeling van kustgolven betrouwbaar voorspel-
len, hebben de voorspellingen van de volledig dispersieve formuleringen de neiging be-
ïnvloed te worden door de foutieve ontwikkelingen van de modulatie-instabiliteit. Dien-
tengevolge worden de voorspelde golfvelden door de volledig dispersieve formuleringen
gekenmerkt door onverhoeds sterke modulaties van de wind golven en de bijbehorende
infragravity respons. Daarnaast presenteert dit deel van de studie ook een poging om de
grenzen van de voorspellende mogelijkheden van de kwadratische benadering te verleg-
gen. Het resultaat is het model QuadWave1D: een volledig dispersief kwadratisch mo-
del voor kustgolfvoorspelling in één dimensie. Op basis van een groot aantal voorbeel-
den (waaronder monochromatische, bichromatische en onregelmatige golfcondities) is
gebleken dat de nieuwe formulering superieure voorspellingsmogelijkheden biedt voor
zowel de wind golf componenten als het infragravity veld.

Samengevat, het algehele onderzoek van deze studie biedt een nieuwe stap in de
richting van het bredere doel van efficiënte en nauwkeurige spectrale modelleringsmo-
gelijkheden van kustgolven. Deze stap omvat het versterken van de theoretische basis
van de spectrale benadering, het verbeteren van de spectrale beschrijving van golftrans-
formatie over ruimtelijke inhomogeniteit en het helpen minimaliseren van de fouten die
samenhangen met de spectrale formulering van niet-lineariteit in ondiep water. Tot slot
biedt deze studie de basis voor vervolgonderzoek naar aanvullende vereiste modelont-
wikkelingen.



1
INTRODUCTION

1.1. OCEAN WAVES: QUALITATIVE DESCRIPTION AND IMPACTS
The energy of ocean surface waves is obtained by the action of the wind and transported
through the ocean basins to the coasts. Wave evolution away from the generation area
is characterized by frequency and direction dispersion. These processes disintegrate
the generated fields into their regular long crested components (see, e.g., the detailed
description by Holthuijsen, 2007, section 6.4.2). Therefore, if other wave processes are
negligible, wave fields closer to shore become narrow-banded and are characterized by
lower wave heights. More generally though, deep ocean waves evolve due to a com-
bination of several physical processes. In addition to wave dispersion, the waves also
interact nonlinearly and slowly exchange energy through resonant interactions of wave
quartets (Phillips, 1960, Longuet-Higgins, 1962, Hasselmann, 1962). Non-conservative
processes (wind generation and dissipation due to, e.g., wave breaking) apply as well
and significantly contribute to the development of wave fields (see Komen et al., 1994
and references therein).

For certain conditions at sea, the combination of the different wave processes may
lead to severe wave fields (e.g. Onorato et al., 2001, Kharif and Pelinovsky, 2003, Janssen,
2003, Onorato et al., 2009, Fedele et al., 2016, Toffoli et al., 2017). Extreme wave fields may
also develop due to spatial inhomogeneities of the oceanic medium (induced by ambi-
ent currents and bottom topography) which may scatter and focus the waves through a
process called refraction (see, e.g., the reviews on the spatial focusing mechanism given
by Kharif and Pelinovsky, 2003 and Dysthe et al., 2008). Violent sea states have already
caused many disasters and led to many casualties, and are continuously threatening
deep water human activities (e.g. Nikolkina and Didenkulova, 2011).

Over coastal waters, wave fields evolve more rapidly due to medium inhomogeneities
of smaller scales (e.g., submerged shoals and channels and small scale eddies and jets).
In addition, as waves penetrating further towards the shore and propagating over shal-
lower waters, their energy focuses due to the process known as shoaling. The waves
become higher and nonlinear and start to interact and exchange energy through near-
resonant interactions of wave triads (e.g. Mei and Ünlüata, 1972, Bryant, 1973). This

1
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process transforms the typical quasi-sinusoidal appearance of the surface elevation into
a skewed and asymmetric saw-tooth like shape. The associated spectral transformation
shows significant development of higher harmonics (e.g. Elgar and Guza, 1985, Herbers
and Burton, 1997). The combination of wave shoaling and nonlinearity also results in
the development of the field’s modulations and the associated infragravity response (e.g.
Battjes et al., 2004). Ultimately, the waves break leading to substantial dissipation of the
primary and the higher harmonics and to weaker modulations and associated weaker
coupling with the infragravity components (e.g. Janssen et al., 2003). Breaking waves
induce wave setup (e.g. Longuet-Higgins and Stewart, 1964), alongshore currents (e.g.
Bowen, 1969, Longuet-Higgins, 1970, Reniers and Battjes, 1997, Ruessink et al., 2001),
return flow (e.g. Dyhr-Nielsen and Sørensen, 1970, Stive and De Vriend, 1994) and asso-
ciated sediment transport processes (e.g. Fredsoe and Deigaard, 1992, Van Rijn, 1993). In
addition, the associated decoupling between the field’s modulations and the infragrav-
ity components generates freely propagating wave energy at the infragravity band that
penetrates into the surfzone and significantly contributes to shoreline processes such as
wave run-up and overtopping on dikes and dunes (e.g. Van Gent, 2001), dune erosion
and sediment transport (e.g. Roelvink and Stive, 1989, Roelvink et al., 2009), and har-
bour oscillations (e.g. Bowers, 1977). These wave impacts may lead to significant conse-
quences for the coastal environment and coastal communities. For example, sediment
transport and coastal erosion jeopardize the integrity and utility of coastal infrastruc-
tures, such as, coastal defence structures, foundations of buildings along the shore, etc.
(e.g. Ruggiero et al., 2001). Furthermore, wave setup, run-up and overtopping contribute
to the threat of flooding, thereby endangering the lives and property of coastal residents
(see, e.g., Hoeke et al., 2013, Roeber and Bricker, 2015, Chen, 2016).

In conclusion, the above discussion clearly emphasizes the importance of predicting
the evolution of ocean waves offshore and in the coastal environment in order to avoid,
mitigate, protect against and design with respect to their associated impacts. Wave pre-
diction is commonly based on numerical models which are discussed next.

1.2. WAVE MODELLING

1.2.1. LARGE AND SMALL SCALE MODELLING APPROACHES

There are many different wave models aiming to predict the evolution of waves and their
impacts. Roughly speaking, wave models can be classified according to their designated
applications which determine the governing spatio-temporal scales and the wave pro-
cesses to be described. For example, the problem of wave-induced pressure on coastal
or marine structures requires a modelling approach that can resolve the detailed wave-
structure interactions, which involve complex and rapid wave processes such as wave
breaking. While for the determination of shipping routes, the required wave information
is much less detailed, but should be provided over much larger spatio-temporal scales
and should take into account, e.g., contribution due to wave generation by wind.

Models intended for detailed wave description are referred to here as small-scale
models, while models intended for wave forecasting over larger spatio-temporal scales
are referred to as large-scale models. Small-scale modelling typically refers to different
approximations of the primitive governing equations (i.e., the Navier-Stokes equations).
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Common models in this class are, e.g., the Boussinesq models (well-known Boussinesq
formulations are the classical weakly-nonlinear formulation of Peregrine, 1967, and the
advanced fully-nonlinear formulation of Wei et al., 1995), the Serre–Green Naghdi mod-
els (see, e.g., Bonneton et al., 2011) and other detailed modelling approaches such as
the non-hydrostatic (e.g. Zijlema et al., 2011) or the particle-based (e.g. Dalrymple and
Rogers, 2006) approaches. On the other hand, large-scale modelling usually refers to
spectral models which are formulated based on the assumption that the fluid flow can be
represented by a superposition of progressive sinusoidal wave components. This mod-
elling approach includes phase-averaged models (e.g., global-scale models such as WAM
model, WAMDI Group, 1988 and WAVEWATCH model, Tolman, 1991, and regional-scale
models such as SWAN model, Booij et al., 1999 and TOMAWAC model, Benoit et al., 1996)
and may also refer to phase-resolving models (e.g. Freilich and Guza, 1984 and Madsen
and Sørensen, 1993), which compared to the phase-averaged approach, are limited to
smaller scales.

Naturally, the different modelling strategies are complimentary. A small-scale model
that predicts detailed wave processes is usually nested in a large scale model. The latter
provides the boundary conditions for the former. This complementarity also manifests
itself in terms of computational efficiency. That is, large-scale models are usually effi-
cient enough to provide wave prediction over large domains in a reasonable amount of
time. While small-scale models are computationally expensive, and therefore limited to
small-scale domains. Nevertheless, the overlap regions between the different modelling
approaches (i.e., large-scale and small-scale approaches) tend to expand. There are two
reasons for that, one is the availability of advanced computational capabilities that allow
efficient complicated operations, and the second is the need to predict relatively rapid
wave processes over relatively large scales. The former allows to employ accurate small-
scale models over larger domains, whereas the latter motivates further developments of
large-scale models to accurately and efficiently predict rapid wave processes.

Typical regions where this "model approach competition" arises are coastal regions
which on one hand are commonly defined by large domains and on the other hand
are characterized by relatively rapid wave processes (e.g. triad wave interactions, wave
diffraction etc.). Therefore, the obvious demand for wave data over coastal regions of
large scales (e.g. for applications concern coastal management and coastal safety) pose
a challenge for small-scale models to meet the required efficiency and a challenge for
large scale models to meet the required accuracy.

Presently, advanced computational resources which enable the use of small-scale
models for coastal application over large domains are usually not available in practice,
i.e., to organizations such as consultancy firms and governmental agencies. Further-
more, over relatively large scales, wind generation becomes an important factor and
presently cannot be accounted for by the small-scale approaches. Finally, aspects such
as large-scale model validations and model coupling to other prediction tools (e.g., sur-
face circulation and transport models) are not developed enough for small-scale models.
As a result, practitioners usually rely on wave data obtained using large-scale models for
coastal hazard assessment, future coastal development, planning of defense strategies
for coastal safety, evacuation planning of coastal communities, etc. Obviously, it is de-
sired that these type of applications would rely on reliable wave information. This clearly
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calls to inspect and further develop the predication capabilities of large-scale models.

1.2.2. SPECTRAL MODELLING OF WAVES IN THE OPEN OCEAN
Large-scale wave forecasting commonly relies on phase-averaged spectral models (e.g.
the WAM model, WAMDI Group, 1988 and the WAVEWATCH III model, Tolman, 1991).
For example, these models are used regularly by environmental modelling centers, e.g.
the European Centre for Medium-Range Weather Forecasts (ECMWF) and the American
National Center for Environmental Prediction (NCEP) in order to support human activity
at sea. The main basic assumption underlying the development of the phase-averaged
approach is that waves at sea are subjected to weak (in the mean) conservative (e.g. re-
fraction and resonant wave-wave interactions, Phillips, 1960) and non-conservative (e.g.
wind generation, Miles, 1957 and white-capping dissipation, Hasselmann, 1974) forcing.
The weak forcing assumption allows to describe the evolution of ocean waves through
a quasi-linear approach. Specifically, under the weak forcing assumption, wave fields
at sea can be seen as multiple scale processes. At the leading order, wave fields are de-
scribed through a superposition of many wave components which originated from dif-
ferent well-separated oceanic regions, and therefore, may regarded as statistically inde-
pendent (Komen et al., 1994). These wave components are characterized by rapid phase
variations (governed by the wave period and length) and by slow variation of energy den-
sity. The slow evolving energy spectrum is governed by the weak forcing and is solved at
a higher order through the well-known energy balance equation (e.g. Komen et al., 1994
and Holthuijsen, 2007), written schematically as

∂t E = P +S (1.1)

where E(x ,k , t ) is the spectrum of the energy density given as a function of the phys-
ical space x , the wavenumber space, k and time t . The implicit terms on the right-
hand-side of (1.1), i.e. P and S, represent the propagation terms (corresponding to
the spatial and spectral energy radiation) and the source terms (due to processes such
as wind generation, white-capping dissipation and resonant quadruplet interactions).
Statistically, this quasi-linear description (representing wave fields at sea as a superpo-
sition of many slowly varying and statistically independent wave components) allows
to treat ocean wave fields as quasi-Gaussian, quasi-homogeneous and quasi-stationary
processes (Komen et al., 1994). These convenient statistical properties provide a full sta-
tistical description of wave fields based on the energy spectrum alone (e.g., Goodman,
1985). Moreover, the weakness of the forcing and the strong dispersion that character-
izes deep ocean waves provide reasonable justifications to assume that the deviation
from these statistical properties is kept negligible in the course of wave evolution (e.g.
Hasselmann, 1962, Benney and Saffman, 1966, Newell, 1968, Komen et al., 1994). There-
fore, the remarkable consequence of the weak (in the mean) forcing assumption is that
it allows to describe the waves in the ocean in a complete statistical sense (which to any
person observing the sea surface would seem impossible) through the solution of a sin-
gle transformation equation - the energy balance equation (1.1).

To summarize, phase-averaged spectral models essentially solve the energy balance
equation (1.1) (subjected to input forcing data, e.g. wind field) using a resolution that
corresponds to the slow evolution scale of the waves (e.g. typical spatial resolution over
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oceanic basins can be O(10−100) km). This explains the capabilities of this modelling
approach to predict the parameters of ocean waves over large-scales within a reasonable
computing time.

1.2.3. SPECTRAL MODELLING OF COASTAL WAVES
The success of the phase-averaged approach in the open ocean (e.g. Janssen et al., 1997)
has motivated its application to large-scale coastal water domains as well. As a result,
phase-averaged models, such as, the SWAN model (Booij et al., 1999) and the TOMAWAC
model (Benoit et al., 1996) were developed, and nowadays, are routinely used for coastal
applications (e.g. Wu et al., 2020). These models essentially solve the same single energy
balance equation, (1.1), which was developed for wave forecasting over global scales. Yet,
some modifications are implemented. At first, finite depth effects are taken into account
(e.g. Tolman, 1991). Second, important shallow water processes (e.g. near-resonant triad
interactions, Eldeberky, 1996, and depth-induced breaking, Eldeberky and Battjes, 1996)
are included using designated source terms in S (see (1.1)).

These modifications build upon the same statistical assumptions that coastal wave
fields can be regarded as quasi-Gaussian, quasi-homogeneous and quasi-stationary ran-
dom processes (e.g. Holthuijsen, 2007). However, as waves penetrate into shallower
waters, the mean forcing becomes stronger (e.g., triad interactions dominate quartet in-
teractions), and accordingly, waves evolve faster. Additionally, over shallower waters the
dispersion effect weakens. As a result, the arguments that provided the justification for
the preservation of the assumed statistical properties (i.e. weakly forced and strongly
dispersed wave fields) become weaker in shallower waters, thus raising a question mark
regarding the validity of the energy balance equation used in coastal phase-averaged
models and its capability to provide a complete statistical description of coastal wave
fields.

Two assumed properties clearly become questionable over coastal waters. The first is
the quasi-homogeneity, which to the leading order, disregards possible coherent struc-
tures induced by simple linear interference effects. However, these fundamental effects
often emerge over coastal waters where wave fields evolve rapidly due to medium inho-
mogeneities (bathymetry and ambient current patterns) of smaller scales (e.g. O’Reilly
and Guza, 1991). The second property that becomes questionable over coastal waters
is the quasi-Gaussianity. This property is questionable since over shallower coastal wa-
ters, wave triads are nearly resonant, and thus, develop strong correlations over rela-
tively small scales. Additionally, over shallower water, the dispersion effect, which serves
as a relaxation factor towards Gaussian statistics, becomes relatively weak. Therefore, it
would be plausible to assume that coastal waves which evolve over relatively shallow wa-
ter depths are strictly non-Gaussian (e.g. Benney and Saffman, 1966). To summarize, it is
clearly emphasised that the extension of the phase-averaged approach to coastal waters
requires further model development to account for the generation and transportation of
statistical inhomogeneous and non-Gaussian contributions.

1.2.4. SPECTRAL MODELLING OVER SPATIAL INHOMOGENEITY
To leading order, statistical inhomogeneity of wave fields is induced by variations in the
medium (due to slowly varying currents and bathymetry). The quasi-homogeneous as-
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sumption taken by the present phase-averaged formulations states that over relatively
small-scales, wave fields can be represented as a superposition of statistically inde-
pendent plane waves. Weak inhomogeneity is introduced over larger scales through
slow variations of the spectral energy density. This weak inhomogeneity is represented
through the propagation term, P , in (1.1) which is given explicitly by

∂t E =−∇x · (Cx E)−∇k · (Ck E) (1.2)

and is composed of two energy flux terms (written on the right-hand-side of (1.2)), de-
scribing the transport of energy over the spatial and the spectral domains with flux ve-
locities Cx and Ck , respectively.

The formulation in (1.2) is based on the well-known result of the
Wentzel–Kramers–Brillouin (WKB) approximation (e.g. Mei, 1989), which provides
a phase-averaged (slowly varying) description of individual wave components over
slowly varying media. However, in contrast to the WKB representation, which fol-
lows the slow evolution of each wave component separately, the expression given
by (1.2) shows a fully Eulerian representation (often referred to as the phase space
representation) based on the independent spatial and spectral variables x and k .

The relation between the two representations is obtained in the limit N →∞, where
N is the number of wave components. This relation was argued by Hasselmann (1963)
based on the wave-particle analogy (also refer to Komen et al., 1994). Specifically, over
large-scales (zooming out to the resolution where the typical spatial step of O(10−100)
km would seems like an infinitesimal surface point), Hasselmann (1963) proposed that
wave fields can be seen as a superposition of large number of non-interacting wave pack-
ets whose dimension is much smaller than the characteristic scale of medium variations.
The elegant result of this representation is that the large-scale dynamics of these wave
packets is completely analogous to the dynamics of a non-colliding system of classical
particles, where the position, wavenumber and frequency play the role of the generalized
coordinates, momenta and Hamiltonian, respectively. Consequently, Liouville’s theorem
becomes applicable to statistically describe the density of such wave packets. This result
and the linearity of the dispersion relation allows to describe the evolution of the energy
density, E , through the so-called collisionless Boltzmann equation (see additional de-
tails in Komen et al., 1994) which shows exactly the same structure of (1.2). Alternatively,
(1.2) can be derived directly, based on the following explicit relation between the energy
density, E , and the individual energy components, E j , of the N wave packets:

E(x ,k , t )d xdk =∑
j

E j∆(x , x j ,k ,k j ) (1.3)

where the function ∆ is equal 1 if the phase space location of wave packet j is found
within the volume dV = d xdk centered at (x ,k), and is equal 0 otherwise. Taking the
time derivative of both sides of (1.3) and using the canonical equations governing the
phase space (i.e., the mutual spatial and spectral space) trajectories of the wave pack-
ets (e.g., Dingemans, 1997) eventually leads to the phase-averaged formulation in (1.2)
(see details in, e.g., Willebrand, 1975, Hertzog et al., 2002 and Muraschko et al., 2015).
However, the particle-like representation underlying the above derivation alternatives
of (1.2) ignores the wave-like behaviour of the wave packets (note however that Dewar,
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1970 suggested a derivation starting with a similar representation of many slowly vary-
ing wave components but without invoking a "number density like" relation, e.g. (1.3),
which principally could have allowed him to preserve wave-like effects). Consequently,
the contributions of wave interference, which are statistically obtained by the cross cor-
relations of different wave components, are inherently neglected by the existing phase-
averaged models (e.g. WAM, WAVEWATCH III, SWAN).

Relying on the typical resolution implemented for ocean wave forecasting, the disre-
gard of interference contributions by the present phase-averaged approach seems rea-
sonable, since the relatively small-scale dimensions characterizing these contributions
are simply not resolvable (and accordingly not necessarily relevant for applications rely-
ing on global wave forecasting). However, if one is interested to capture the variation in
wave statistics over finer scales (e.g. for coastal applications), then interference contri-
butions may result in a significant signature (e.g., the emergence of lateral oscillations of
the significant wave height behind a submerged shoal, demonstrated experimentally by
Vincent and Briggs, 1989 and numerically using generalized phase-averaged models by
Janssen et al., 2008, Smit and Janssen, 2013 and Smit et al., 2015a).

Statistically, the importance of the cross correlations is determined by the ratio be-
tween the second-order correlation and medium variation scales (e.g., Smit and Janssen,
2013). In the open ocean, where medium inhomogeneity is typically O(100) km and
the wave spectrum is relatively broad, this measure would rarely indicate a significant
value and the particle-like representation of the wave components is therefore justified.
However, for conditions where the medium is characterized by variations of relatively
small-scales (i.e. O(1−10) km) and the wave field is rather narrow-banded, the second-
order statistics may be significantly affected by medium-induced interference patterns,
leading to non-negligible cross-correlation contributions. Such conditions are rather
typical over coastal waters, and thus, call for fundamental modifications of the phase-
averaged approach (i.e., (1.2)) for the forecasting of coastal waves over spatial inhomo-
geneity. Principally, in order to include cross-correlation contributions, it is required
to develop an evolution equation for the complete second-order statistics. Namely, be-
sides the energy related terms (the variance or auto-correlation terms), the generation
and transportation of the interference related terms (the cross-correlation terms) should
be accounted as well.

A generalized statistical framework that accounts for inhomogeneity induced by sta-
tistical wave interferences is provided by the Wigner-Weyl formalism (Moyal, 1949). The
associated Wigner-Weyl kinetic equation transports the Wigner distribution (a general-
ized energy density definition, e.g. Hlawatsch and Flandrin, 1997) of wave fields which
includes cross-correlation information that are ignored in E by definition (i.e. (1.3)). As
such, this generalized kinetic equation describes the evolution of the complete second-
order statistics, and accordingly, reduces to the energy balance equation, (1.2), when
cross-correlation contributions are negligible (see Smit and Janssen, 2013). The Wigner-
Weyl kinetic equation was implemented in other fields of physics (e.g. Leaf, 1968, Brem-
mer, 1973, Besieris and Tappert, 1976, McDonald and Kaufman, 1985, Zhu and Dodin,
2021) and recently proposed by Smit and Janssen (2013) for water waves to describe the
statistics of wave fields over relatively small-scale bathymetric variations. The Wigner-
Weyl formulation developed by Smit and Janssen (2013) (and later modified for imple-
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mentation in existing phase-averaged models by Smit et al., 2015a) was successfully ver-
ified against laboratory experiments and field observations. These verification exam-
ples emphasize the added value gained by the Wigner-Weyl formulation. Namely, its
ability to capture statistical wave interferences over bathymetric structures of relatively
small-scales (e.g. Smit et al., 2015a). The success of the Wigner-Weyl formulation to
describe the statistics of waves over bathymetry encourages its further development.
Specifically, two issues are left open. One relates to the theoretical foundations of the
Wigner-Weyl formulation and the other to its implementation. The required theoretical
development stems from the fact that the formulation developed by Smit and Janssen
(2013) and Smit et al. (2015a) is based on an assumed deterministic equation (i.e. Eq. (3)
in Smit and Janssen, 2013) which was only verified for specific conditions (i.e. constant
depth and slowly evolving monochromatic wave over mild sloping bathymetry) but not
derived rigorously. If available, such a derivation would provide a formal link between
the deterministic formulation (e.g. Euler equations) and the stochastic formulation of
the Wigner-Weyl formalism, which includes (1.2) as a statistically well-defined limiting
case. The second issue that should be resolved is the generalization of the development
achieved by Smit and Janssen (2013) and Smit et al. (2015a) to account for wave-current
interactions. In addition to the Doppler shift, this generalization should also include
the adiabatic effect of the current on the waves’ amplitudes (Longuet-Higgins and Stew-
art, 1961, Bretherton and Garrett, 1968). The latter is commonly taken into account im-
plicitly using the so-called action density (defined as the energy density divided by the
intrinsic frequency), which is conserved also in the presence of slowly varying currents
(Bretherton and Garrett, 1968). Therefore, if successful, the extension of the Wigner-Weyl
formulation to allow for wave–current interactions should result in a generalized action
balance equation that is able to predict the evolution of wave statistics over variable me-
dia while preserving inhomogeneous contributions induced by wave interferences.

1.2.5. SPECTRAL MODELLING OF SHALLOW WATER NONLINEARITY

The adjustment of the phase-resolving approach for coastal waters also requires to cope
with non-Gaussian statistical contributions. Non-Gaussianity arises due to the rapid de-
velopment of high-order correlations triggered by shallow water nonlinearity and the
associated near resonant interaction of wave triads (e.g. Benney and Saffman, 1966,
Herbers and Burton, 1997). Phase-averaged models for shallow water nonlinearity are
formulated based on a quadratic model (a deterministic system which is governed by
quadratic nonlinearity) and a statistical truncation assumption. Principally, these in-
gredients involve unrelated errors, and therefore, require separated investigation. Given
a quadratic model, the evolution equations of the statistical moments of a wave field
can be formulated. The quadratic term generates a hierarchical dependency between
the moments, therefore leading to an infinite set of equations which requires a trunca-
tion assumption. This expresses the famous closure problem of turbulence theory (e.g.
Orszag, 1970). The common truncation strategy is the so-called fourth-cumulant dis-
card, which result in a coupled set of two equations for the second-order spectrum and
third-order bispectrum (e.g. Herbers and Burton, 1997, Eldeberky and Madsen, 1999).

The neglect of the fourth-cumulant is justified based on the expectation of a weak
deviation from Gaussian statistics (e.g. see discussion by Herbers and Burton, 1997).
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However, when nonlinearity intensifies, this assumption leads to over-predicted bispec-
tral values (e.g. see discussions by Holloway and Hendershott, 1977 and Janssen, 2006).
This observation has motivated the development of heuristic closure strategies which
limit the significant deviation from Gaussian statistics (e.g. Holloway and Hendershott,
1977, Herbers et al., 2003, Janssen, 2006). The existing solutions to the closure problem
emphasize the challenge it poses, and the need for its further research and development.
Furthermore, numerical solution of the coupling between the spectrum and bispectrum
over relatively large-scales is too demanding in terms of computation time, and there-
fore, motivated further simplifications for practical use (e.g. Eldeberky, 1996, Agnon and
Sheremet, 1997, Becq-Girard et al., 1999, Toledo and Agnon, 2012, Salmon et al., 2016,
Vrecica and Toledo, 2016).

A separate problem is the formulation of the starting point quadratic model. The
errors associated with the quadratic model originate from several sources. The most
dominant one is the neglect of the high-order nonlinear terms (third-order and higher).
Thus, the description of wave nonlinearity essentially collapses into a single quadratic
term. This raises concerns with regard to the ability of the quadratic approach to pro-
duce reliable predictions especially for waves in shallow waters subject to strong non-
linearity. Nevertheless, since the pioneering study of Freilich and Guza (1984), efforts
have been mainly devoted to the improvement of the linear properties (e.g. Madsen
and Sørensen, 1993, Agnon et al., 1993, Kaihatu and Kirby, 1995, Eldeberky and Madsen,
1999, Bredmose et al., 2005). There is no doubt that these developments have improved
the linear characteristics of the quadratic modelling (i.e., dispersion and shoaling), how-
ever doubts arise concerning the improvement in the prediction of the nonlinear evolu-
tion. This doubt stems from the fact that the improvement of the linear properties of the
quadratic model is accompanied by a change in the quadratic coefficients, and there-
fore, also by a change in the truncation error obtained due to the modelling reduction
associated with the formulation of the quadratic model.

An example that clearly highlights the effect of improving the linear dispersion rela-
tion on the nonlinear model properties is given by the Whitham equation. The Whitham
equation was proposed by Whitham (1967) as a generalized Korteweg–de Vries (KdV)
equation that incorporates the full linear dispersion relation. Such a generalization is
expected to provide a more faithful description of wave field evolution which may also
be composed of shorter wave components. However, it is now known that this general-
ization is accompanied by a dramatic change in the characteristics of the modulational
instability occurring in shallower water than expected (e.g., Van Groesen, 1998, Hur and
Johnson, 2015). Thus, Whitham’s generalization turns the modulationally stable KdV
equation into a modulationally unstable Whitham equation, which together with im-
proved dispersion, will also predict faulty focusing/defocusing recurrence of narrow-
banded fields over regions of relatively shallow waters. This erroneous effect may not
only lead to false energy exchanges and thus incorrect evolution of the peak frequency
components, but may also contaminate the associated development of the infragrav-
ity components as a result of incorrect modulations of the wave field. This example
clearly emphasizes the need to investigate the existing quadratic formulations (which
present different approximations of the dispersion relation) and to search for a formu-
lation that adequately describes both the linear and nonlinear wave evolution. Such an



1

10 1. INTRODUCTION

investigation may help to minimize the errors associated with the development of the
phase-averaged formulation for shallow water nonlinearity.

1.3. OBJECTIVES AND OUTLINE
The introduction above describes a clear need to modify the phase-averaged formu-
lation (i.e. 1.1), which was originally designed for oceanic applications, in order to
meet the conditions and desired resolutions that characterize the coastal environment.
Specifically, inhomogeneous and non-Gaussian contributions must be included to ad-
equately represent wave statistics over regional coastal scales. To this general end, the
following objectives are defined:

(i) The first objective is to formally derive the starting point equation used by Smit
and Janssen (2013) for the development of the Wigner-Weyl formulation for water waves.
The significance of such a derivation is that it would allow for the establishment of a
formal link between the deterministic modelling approach (e.g. the Euler equations)
and the presently used stochastic modelling approach (i.e. the energy balance equation
given in (1.2)) and its generalization (i.e. the Wigner-Weyl formulation obtained by Smit
and Janssen, 2013). This theoretical development is pursued in Chapter 2 and is based
on the Weyl’s operational calculus which provides the key to the derivation of the starting
point equation and to the direct connection to the Wigner-Weyl kinetic equation.

(ii) The second objective concerns the generalization of the phase-averaged formula-
tion of Smit and Janssen, 2013 to account for wave-current interactions. The formulation
achieved by Smit and Janssen (2013) accounts for bathymetry-induced statistical contri-
butions due to wave interferences, which are ignored by presently used phase-averaged
formulations (e.g. the SWAN model). However, the inhomogeneity that characterizes
the coastal environment also involves ambient current patterns which should be taken
into account for a more complete description of the wave statistics. Apart from the usual
Doppler shift, the problem of wave-current interaction also involve the adiabatic effect
of the current on the waves’ amplitudes (Longuet-Higgins and Stewart, 1961, Bretherton
and Garrett, 1968). Thus, if successful, this part of the study should result in a generalized
action balance equation that is able to predict the evolution of wave statistics over vari-
able media (due to varying currents and bathymetry), while preserving inhomogeneous
contributions induced by wave interferences. This model development is considered in
Chapter 3.

(iii) The third objective of this study relates to the ambitious goal of obtaining an
adequate (accurate and efficient) statistical description of shallow water nonlinearity.
In principle, such a development involves two separated steps. The first concerns the
derivation of a well-behaved quadratic model. While the second is dedicated to the de-
velopment of a statistical closure. This part of the study considers the first step. Specif-
ically, it is aimed to gain a detailed picture of the nonlinear properties of the quadratic
modelling approach (i.e., second-order bound solutions, amplitude dispersion and sta-
bility characteristics). In addition, it is aimed to gain insight into the prediction capabil-
ities of different quadratic formulations to spectrally describe the nonlinear evolution of
coastal wave fields, including the development of the sea-swell components (i.e., the pri-
mary harmonics and the secondary super-harmonics) and the generation and evolution
of the infragravity components (i.e., the secondary sub-harmonics). Finally, this part of
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the study also attempts to push the limit of the predictive capabilities of the quadratic
approach through a heuristic formulation of a new quadratic model which combines ac-
curate linear and nonlinear properties achieved by searching for the optimal quadratic
coefficients under the constraint of full linear dispersion. Successful results of this in-
vestigation would minimize the overall error associated with the statistical formulation
of shallow water nonlinearity and may also be used as an independent tool for efficient
and accurate prediction of coastal wave evolution. The investigation and results of this
part of the study are detailed in Chapter 4.
Finally, concluding remarks and future perspectives close this study in Chapter 5.





2
WEYL RULE OF ASSOCIATION FOR

WATER WAVES APPLICATIONS

Weyl rule of association, proposed by Hermann Weyl for quantum mechanics applications
(Weyl, 1931), can be used to associate between the dispersion relation of water waves and a
non-local pseudo-differential operator. The central result of this study is that this operator
correctly approximates the Dirichlet-to-Neumann operator derived for linear waves over
a slowly varying bathymetry. This opens the door to a formal use of Weyl’s operational
calculus, and consequently, allowing straightforward derivations and generalizations of
water waves’ models (e.g., linear mild-slope, Boussinesq-type, Whitham-type, etc.) over
mild slopes. Most significantly, the formulation through Weyl rule of association allows to
derive a general linear kinetic equation for which the widely used energy balance equation
(the central equation of forecasting models such as SWAN and WAVEWATCH) serves as a
special case. As a consequence, Weyl rule of association leads to the establishment of a
formal link between the deterministic Euler equations and the stochastic energy balance
equation and its generalization.

13
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2.1. INTRODUCTION
Wave dynamics in coastal waters are characterized by a rich set of phenomena (e.g.,
shoaling, refraction, breaking etc.) that are triggered due to nonlinear wave-wave in-
teractions and through the interaction of waves with variable bottom topography and
ambient currents. The prediction of these complex dynamics is challenging and highly
important to coastal communities and municipalities and to engineers, as it forces
nearshore circulation (e.g., Longuet-Higgins, 1970, Bowen, 1969, Ruessink et al., 2001,
Reniers and Battjes, 1997) and sediment transport processes (e.g. Van Rijn, 1993, Fred-
soe and Deigaard, 1992), as well as controlling shipping operations and associated down-
time, and coastal safety through beach and dune erosion and potential inundation (e.g.,
Vellinga, 1982, Roelvink et al., 2009).

Wave prediction in regional domains is commonly based on deterministic models,
which are computationally feasible through a dimensional reduction. Traditionally, the
vertical dimension is reduced using Boussinesq or the mild-slope approach (Dingemans,
1997). However, these approaches impose constraints on the dispersive behaviour or
on the spectral width of the incident wave field. A continuous effort to derive deter-
ministic models in terms of the horizontal dimensions only, which do not impose such
constraints, led to the development of non-local formulations based on the so-called
Dirichlet-to-Neumann (DtN) operator (Watson and West, 1975, Milder, 1990, Craig and
Sulem, 1993). The DtN operator assigns to the Dirichlet information on the free surface
the Neumann information which incorporates the necessary interior information of the
fluid motion. In this way, the original problem is reduced to the free surface only, while
preserving the full linear dispersion relation. Initially, this fully dispersive approach was
developed for wave propagation in deep water or over constant depth (e.g., Watson and
West, 1975, West et al., 1987, Dommermuth and Yue, 1987, Craig and Sulem, 1993, Bate-
man et al., 2001), and subsequently generalized to capture bottom variations (e.g., Liu
and Yue, 1998, Smith, 1998, Craig et al., 2005, Guyenne and Nicholls, 2008, Gouin et al.,
2016). The development reported so far, concerning the DtN approach over bathymetry,
typically confined to the assumption of small bottom perturbations which may display
rapid variations. Frequently though, bottom slopes in coastal areas are mild and bottom
amplitudes may reach the order of the water depth. Therefore, such formulations experi-
ence difficulties to adequately predict the parameters of a wave field (e.g., the significant
wave height) that evolves from deeper to shallower waters.

Over long time and large spatial scales, the forecasting of wave statistics is inevitably
addressed through phase-averaged spectral models (e.g. WAM model, WAMDI Group,
1988, WAVEWATCH model, Tolman, 1991, SWAN model, Booij et al., 1999), which are
based on the so-called energy balance equation. The theoretical foundation of the en-
ergy balance equation relies on the traditional analogy between statistically independent
wave packets and non-colliding particles (Hasselmann, 1963). This statistical framework
supports the usual assumption of Gaussianity, but it is limited to quasi-homogeneous
wave fields. However, specifically in coastal regions, through the interaction with bottom
topography and ambient currents, waves are rapidly scattered and can form focal zones
which give rise to wave interferences (e.g., Vincent and Briggs, 1989). This results in a
significant deviation from the quasi-homogeneous state (e.g., Smit and Janssen, 2013,
Akrish et al., 2020). The contribution of wave interferences is statistically represented by



2.2. THE EQUIVALENCE BETWEEN WEYL AND DTN OPERATORS

2

15

cross-correlations which cannot be developed through the presently used energy bal-
ance equation. Therefore, the statistical description obtained based on the traditional
theory is incomplete as it is limited to cases where statistical wave interferences show
negligible contribution.

This study shows that Weyl rule of association can provide a key component to over-
come the above described difficulties that arise in both deterministic and stochastic
wave modelling. Weyl rule of association, introduced by Hermann Weyl for quantum
mechanics applications (Weyl, 1931), associates between a "phase-space" symbol (a
function dependent on the spatial space, x , and wavenumber space, k) and a non-local
pseudo-differential operator. For water waves applications, the linear dispersion rela-
tion can serve as the "phase-space" symbol. The principle result of this study is that
the corresponding operator correctly approximates the DtN operator derived for linear
waves over a slowly varying bathymetry. The equivalence of these two operators is dis-
cussed in Section 2.2. Based on this equivalence and using Weyl’s operational calculus
(e.g., Cohen, 2012), the evolution of linear waves over slowly varying depth can be de-
scribed through a compact Schrödinger-like equation as demonstrated in Section 2.3.
This allows a formal use of the so-called Wigner-Weyl formalism, and therefore, provides
a formal derivation of the energy balance equation and its generalization for the statis-
tical modelling of inhomogeneous wave fields. This statistical framework is detailed in
Section 2.4. Finally, Weyl rule of association can also be useful for modelling of finite-
amplitude waves. In particular, it is shown that based on the Weyl operator, the usual ex-
pansion of the nonlinear DtN operator (e.g., see review by Schäffer, 2008) is consistently
generalized to mild slope conditions. Such a generalization allows model formulation of
any order of nonlinearity that is valid for slowly varying bathymetries. This framework of
model derivation is discussed in Section 2.5. Concluding remarks are drawn in Section
2.6.

2.2. THE EQUIVALENCE BETWEEN WEYL AND DTN OPERA-
TORS OVER MILD SLOPES

The aim of this section is to show the equivalence between a formal definition of the DtN
operator and the Weyl operator over mild slopes. In fact, this is the principle result of this
study, through which, the attractive properties of the Weyl operator become formally
applicable for different implementations of wave modelling .

2.2.1. THE MILD-SLOPE DTN OPERATOR
The DtN operator was developed for applications in water waves in order to reduce the
complexity of the originally three-dimensional flow problem to a two-dimensional prob-
lem that is formulated on the free surface only (Watson and West, 1975). In order to show
the equivalence with the Weyl operator, this subsection aims to derive the leading con-
tributions of the linear DtN operator for mild slopes.

Under the framework of the potential theory, which considers the flow to be incom-
pressible, inviscid and irrotational, the water wave problem is formulated as a Laplace
problem in terms of the velocity potentialΦ in a three dimensional domain D. However,
it is well known that the interior solution, Φ, of the Laplace problem is fully determined
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by the flow values given on the boundaries, and therefore, the original problem can be
potentially reduced to a two-dimensional one. In an influential paper Zakharov (1968)
showed that it is possible to formulate the potential problem for water waves in terms
of the two canonical surface variables, φ and η. The former denote the surface potential
and the latter is the elevation function. Through the assumption of small surface fluctua-
tions of O(ϵ) (relative to the typical wave length of the fluctuations in deep/intermediate
water or to the water depth in shallow water) and by ignoring surface-tension effect, Za-
kharov’s formulation can be written as

H=
∫ (1

2
gη2 + 1

2
φW0

)
d x (2.1)

where H is the Hamiltonian (the sum of potential and kinetic energy), g is the gravita-
tional acceleration and W0 is the free surface vertical velocity defined as W0 = (∂zΦ)0.
Additionally, z denotes the vertical coordinate and x = (x, y) denote the horizontal coor-
dinates. Finally, the subscript ()0 represents terms that are evaluated on z = 0.

The linear Zakharov’s formulation (2.1) leaves the vertical velocity W0 as the only
non-free surface component, as it is defined through Φ. Therefore, in order to obtain
self-contained free-surface equations (provided by the canonical equation ∂tη = δφH
and ∂tφ=−δηH), it is required to relate between W0 and the free-surface variables. Such
a relation can be obtained through the constraint posed by the following Laplace prob-
lem: 

∆Φ= 0, i n D,

Φ=φ, on z = 0,

∂zΦ+∇x h ·∇xΦ= 0, on z =−h

(2.2)

where ∇x is defined as ∇x = (∂x ,∂y ) (while ∇ stands for ∇ = (∂x ,∂y ,∂z )), ∆ ≡ ∇·∇ and h
is the still water depth. Therefore, given a solution, Φ, of the Laplace problem (2.2), one
can formulate the following relation:

W0 =G0φ (2.3)

This relation introduces the so-called DtN operator, G0, that maps between the Dirichlet
value φ and the Neumann value W0. Consequently, if an explicit solutionΦ is found, the
corresponding DtN map (2.3) leads to the desired dimensional reduction of the potential
problem for linear water waves.

A general and explicit solution form of the linear Laplace problem (2.2) is achieved
through the Boussinesq approach. This amounts to the expansion of the velocity po-
tential Φ around some arbitrary level za , allowing to express its solution using only two
unknowns functions. If the level around which the expansion is performed is za = 0, then
the two unknowns are the surface potential φ and the vertical velocity W0, and thus, the
general solution receives the following form (see Agnon et al., 1999 for further details):

Φ= C(z|Dx |)φ+S(z|Dx |)|Dx |−1W0 (2.4)

where Dx is defined as Dx ≡ −i∇x . Note that the above formulation differs from the
formulation of Agnon et al. (1999) in terms of notation only. Here C and S indicate the
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pseudo-differential operators cosh(z|Dx |) and sinh(z|Dx |) (these types of operators can
be interpreted, for example, through their power series). In addition, the operator |Dx |
is defined here as |Dx | = (−∆x )1/2 (e.g, Milewski, 1998), where ∆x ≡ ∇x · ∇x . The equiv-
alence between the formulation using functions of (z∇x ) (e.g., Agnon et al., 1999) and
the formulation using functions of (z|Dx |) (e.g, Milewski, 1998) is understood due to the
functional symmetry of the operators involved (e.g., cosh(z|Dx |) ≡ cos(z∇x )). The ad-
vantage of using |Dx | relies on its direct correspondence with the wavenumber magni-
tude |k | = (k2

x +k2
y )1/2, where k = (kx ,ky ) defines the wavenumber space. Also note that

these types of solution forms were already proposed by earlier studies (e.g., Sen, 1927,
Miles, 1985).

Ultimately, the desired DtN relation between φ and W0, (2.3), is obtained through
the bottom boundary condition of the considered Laplace problem (2.2). Accordingly,
the expression forΦ, (2.4), is substituted into the bottom boundary condition (specified
in (2.2)) which results in

CW0 =S |Dx |φ+Dx h ·
(
C Dxφ−S|Dx |−1Dx W0

)
(2.5)

Note that through the substitution of z = −h (as is required by the bottom boundary
condition), the above expression does not dependent on the vertical coordinates, z (the
operators C and S are now functions of h|Dx |). In order to proceed, it should be re-
called that the aim here is to derive the leading contributions of the DtN relation for
mild slopes. To this end, W0 is written asymptotically as,

W0 =W (0)
0 +W (1)

0 + ... (2.6)

where, the superscript ()(m) represents contribution of O(βm), and β stands for the ra-
tio between the characteristic wave length and the characteristic variation length of h,
which for mild slopes, is assumed to be small. By substituting the expansion in (2.6) into
the expression in (2.5) one obtains

C
(
W (0)

0 +W (1)
0 + ...

)
=S |Dx |φ+Dx h ·

(
C Dxφ−S|Dx |−1Dx

(
W (0)

0 + ...
))

(2.7)

The contribution of the DtN relation at each order is consistently extracted by a care-
ful consideration of the operator compositions (C−1C) and (C−1S). Such compositions
arise as a result of isolating the contribution of W0 at each order on the left-hand-side
of (2.7). Since these operators (namely, C, S and C−1) are of the "Standard" type (op-
erators that are ordered such that all the factors Dx are placed to right of the x factors,
see details in Appendix 2.A), their composition can be expressed explicitly using (2.63)
(e.g, cosh−1(|k |h) and cosh(|k |h) would represent the symbols U and L in (2.63) in or-
der to calculate the symbol of the composition (C−1C), for which the operational form is
obtained by associating back from k to Dx ). Following (2.63), O(1) contribution of the
composition (C−1C) is simply the unit operator associated to 1, while O(1) contribution
of the composition (C−1S) is T , where T ≡ tanh(h|Dx |). In addition, (2.63) specifies that
O(β) contributions of these compositions can be written as{

(C−1C)O(β) =−h(Dx h) ·T 2Dx

(C−1S)O(β) =−h(Dx h) ·T Dx
(2.8)
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Following (2.7) and based on the above observations, the expression obtained for W (0)
0 is

given by,

W (0)
0 = T |Dx |φ (2.9)

whereas the expression for W (1)
0 is provided by

W (1)
0 = (C−1S)O(β)|Dx |φ− (C−1C)O(β)W

(0)
0 + (Dx h) ·

(
Dxφ−T |Dx |−1Dx W (0)

0

)
(2.10)

The expression for W (1)
0 can be written more explicitly by substituting the expressions for

the O(β) contributions of the operator compositions, (2.8), and the expression for W (0)
0 ,

(2.9), into (2.10). Finally, summing the contributions due to W (0)
0 and W (1)

0 leads to the
following formal mild-slope derivation of the DtN operator G0:

G0 = T |Dx |+ (Dx h) · (1−T 2)(1−hT |Dx |)Dx (2.11)

Next, it is aimed to show that the Weyl operator reduces, up to O(β), to the same expres-
sion for G0.

2.2.2. WEYL OPERATOR AND ITS ASYMPTOTIC FORM
The definition of the Weyl operator is based on the Weyl rule of association, namely,
the association between a "phase-space" symbol (a function which is defined in (x ,k)
space) and a pseudo-differential operator. For the considered linear Laplace problem
(2.2) and under the mild-slope assumption, the symbol G(x ,k) = σ2/g naturally arises
as the "phase-space" symbol (as is implied by the usual WKB analysis, e.g., Dingemans,
1997; also refer to Van Groesen and Molenaar, 2007), where σ is defined through the lin-
ear dispersion relation, σ(x ,k) = √|k |g tanh(|k |h). Given a "phase-space" symbol, the
corresponding operator in the physical space can be defined through the association
between k and Dx . However, because x and Dx do not commute, one must follow an as-
sociation rule. Hermann Weyl (Weyl, 1931) suggested a rule of association that is defined
through the following Fourier transform of G(x ,k) (see, e.g., Cohen, 2012):

G(x ,k) =
∫

Ĝ(q , p)exp(i q · x + i p ·k)d qd p (2.12)

The Weyl operator is then defined by substituting the operator Dx instead of k , which
provides the following expression:

Gw (x ,Dx ) =
∫

Ĝ(q , p)exp(i q · x + i p ·Dx )d qd p (2.13)

and which can be simplified using the Baker–Campbell–Hausdorff formula and through
the fact that the commutator, [i q · x , i p ·Dx ] =−i q ·p , is constant, to obtain

Gw (x ,Dx ) =
∫

Ĝ(q , p)exp(
i

2
q ·p)exp(i q · x)exp(i p ·Dx )d qd p (2.14)
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where the subscript ()w of the operator indicates that it is a Weyl operator. In order to
show the equivalence between the Weyl operator Gw (x ,Dx ) and the formal DtN opera-
tor up to O(β), an explicit asymptotic form of the Weyl operator is required. This explicit
asymptotic form is formally derived in Appendix 2.A and is given by (2.56). As an alter-
native of the formal derivation, the asymptotic form can be also observed directly from
(2.14). Where by associating between Dx and k , the corresponding symbol that is ob-
tained is expressed as follows:

R(x ,k) =
∫

Ĝ(q , p)exp(
i

2
q ·p)exp(i q · x + i p ·k)d qd p (2.15)

Here the association is unique, since the order of the factors x and Dx is explicitly given
in (2.14) such that all the factors Dx are placed to right of the x factors. Therefore, the
asymptotic form of the operator can be obtained by writing the symbol R(x ,k) asymptot-
ically and then associate back to the operator representation, preserving the rule that all
the factors Dx should be placed to right of the x factors. The asymptotic form of R(x ,k)
is directly obtained in terms of the original symbol G(x ,k) from the expression written
in (2.15) as

R(x ,k) = exp(
i

2
Dx ·Dk )G(x ,k) (2.16)

which exactly represents the operation of the first exponent in (2.56). Whereas the back
association is defined by the second exponent in (2.56). Neglecting O(β2) contributions,
the approximation of R(x ,k) reads

R(x ,k) ∼ (1+ i

2
Dx ·Dk )G(x ,k) (2.17)

which after some algebra simplifies to

R(x ,k) ∼ T |k |+ (Dx h) · (1−T 2)(1−hT |k |)k (2.18)

where T = tanh(h|k |) and recall that G(x ,k) = σ2/g , which means that G(x ,k) = T |k |.
Ultimately, the association back to the operator representation recovers the formal mild-
slope definition of the DtN, (2.11), and therefore, shows the equivalence between Weyl
and DtN operators over mild slopes.

Note that the expression in (2.18) could be written using a more recognizable form
using the relation ∇kG = 2CCg k/g , where C and Cg are the phase and group velocity,
defined as C = σ/|k | and Cg = ∂|k |σ. Then, one can write the approximation for the
symbol R(x ,k) as follows:

R(x ,k) ∼ 1

g

(
σ2 +Dx (CCg ) ·k

)
(2.19)

which seems to relate to the classical mild-slope operator (Berkhoff, 1972). Appendix
2.B presents a closer look on the relation between the Weyl operator and the classical
mild-slope operator and confirms that the former indeed reduces to the latter for quasi-
periodic wave fields.
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The equivalence between Weyl and DtN operators is the principle results of this study
since it opens the door to the formal use of the Weyl operator and Weyl calculus for
application in deterministic and stochastic modelling of water waves. Most significantly,
this result establishes the connection between Euler equations (and the associated linear
wave theory) and the widely used energy balance equation.

2.3. A SCHRÖDINGER-TYPE MODEL FOR LINEAR WAVES OVER

VARIABLE BATHYMETRY
The energy balance equation can be formally derived starting with the following
Schrödinger equation:

∂tζ=−iΣ(x ,Dx )ζ (2.20)

where Σ is the Weyl operator that is associated with the dispersion relation σ and ζ is a
complex variable which should be directly related to the energy density of the wave field.
Specifically, the complex variable ζ should satisfy the following:

ρ〈|ζ|2〉 = m0 +O(β) (2.21)

where the angular parentheses, 〈...〉, should be read as ensemble average, the variable
m0 provides a leading order measure (in β) of the mean energy density and ρ is the wa-
ter mass density. The specific definitions required for Σ and ζ provide a direct path to
the formulation of the energy balance equation as recently shown by Smit and Janssen
(2013). However, formal derivation of (2.20) is unavailable. This derivation is made pos-
sible based on Weyl’s operational calculus. The starting point is the linearized Hamilto-
nian given by (2.1). Then, the linear DtN map, (2.3), is employed to reduce the dimension
of the problem,

W0 =Gwφ (2.22)

where instead of G0, the equivalent Weyl operator, Gw , is now being used. Finally, the
evolution equations for η and φ are obtained through the canonical equations, ∂tη =
δφH and ∂tφ=−δηH as

∂t

[
η

φ

]
= A

[
η

φ

]
(2.23)

where the matrix A is defined as

A =
[

0 Gw

−g 0

]
(2.24)

In order to derive the Schrödinger equation, (2.20), based on the above linear system,
it is required that the matrix A is diagonalizable. Namely, A is required to satisfy the
following expression:
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A = PΛP−1 (2.25)

It is further required that the diagonal matrixΛ is composed of the Weyl operator Σ and
its complex conjugate on the main diagonal. Additionally, P is required to define the
following transformation:

[
ζ

ζ∗
]
= P−1

[
η

φ

]
(2.26)

such that the eigenvectors appearing along its columns provide the necessary relation
between the complex variable ζ (or ζ∗ where ()∗ denotes complex conjugate) and the
energy density.

The required result for Λ is obtained through the convenient formulas of operator
composition (2.65). In a certain sense, these formulas allow one to manipulate operators
as if they are simple functions. The "eigenvalues" of A, which are found on the main
diagonal of Λ and indicated by λ1,2, can be obtained by setting the determinant |A −
λ1,2I | to zero. This results in the following equation:

λ1,2 +Σ2 =O(β2) (2.27)

By neglecting O(β2) terms, the desired results that λ1 =−iΣ and λ2 = iΣ∗ are obtained.
The corresponding definition of P−1 can be written as

P−1 = 1√
2g

[
g iΣ
g −iΣ

]
(2.28)

This leads to the following definition for ζ:

ζ= 1√
2g

(
gη+ iΣφ

)
(2.29)

which by substituting in the required relation, (2.21), reads,

ρ〈|ζ|2〉 =
〈1

2
ρgη2

〉
+

〈 1

2g
ρ(Σφ)2

〉
(2.30)

This expression indeed equals to the leading order (O(β0)) contribution of m0 (see de-
tailed explanation in Akrish et al., 2020, Appendix B), which consists of the mean poten-
tial energy density (the first term on the right-hand-side of (2.30)) and the mean kinetic
energy density (the second term on the right-hand-side of (2.30)). This completes the
verification that the system consisting of the Schrödinger equation, (2.20) and its com-
plex conjugate is equivalent to the system given by (2.23)-(2.24). As a consequence, the
Schrödinger equation, (2.20), is now made formally available as a mild-slope equation
for linear water waves which can be conveniently used for the derivation of the energy
balance equation.
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2.4. THE WIGNER-WEYL FORMALISM AS A STATISTICAL

FRAMEWORK FOR WATER WAVES
The energy balance equation is the central equation underlying the widely used opera-
tional forecasting wave models (e.g. WAM model (WAMDI Group, 1988), WAVEWATCH
model (Tolman, 1991) and SWAN model (Booij et al., 1999)). This important equation
can written in the following form:

∂t E = {σ,E } (2.31)

where E represents the spectrum of the energy density and the brackets {} are the so-
called Poisson brackets which define the following operation:

{σ,E } ≡σ
(←−∇ x ·−→∇k −←−∇k ·−→∇ x

)
E (2.32)

where the arrows indicate the function on which the differential operator should oper-
ate, i.e., σ or E . The existing theoretical justification for the energy balance equation
is based on the heuristic analogy between wave packets and classical particles (Hassel-
mann, 1963). This derivation approach of the energy balance equation is referred here
as the traditional formulation.

The main aim of this section is to present an alternative formal derivation of the en-
ergy balance equation that is obtained directly from Euler equations. This is achieved
using the newly derived Schrödinger formulation, (2.20). In fact, based on (2.20), the en-
ergy balance equation is formally obtained as a special case of the more general kinetic
equation provided by the Wigner-Weyl formalism. The Wigner-Weyl kinetic equation
can be written as

∂tW = {{σ,W}} (2.33)

whereW is the Wigner distribution of the complex variable ζ (see detailed definitions for
W in Akrish et al., 2020). The Wigner distribution defines a generalized energy density,
as it incorporates also cross-correlation values that are ignored in E by definition. In
addition, the brackets {{}} are now the so-called Moyal brackets (Moyal, 1949) defined as

{{σ,W}} ≡ 2σsin
(←−∇ x ·−→∇k /2−←−∇k ·−→∇ x /2

)
W (2.34)

Following the asymptotic relation sin(x) ∼ x that applies for small values of x, one can

immediately see that {{}} ∼ {} when the products
(
σ
←−∇ x · −→∇kW

)
and

(
σ
←−∇k · −→∇ xW

)
are

small. Additionally, in such scenarios, cross-correlations that may develop due to vari-
ations in the medium are negligible and W becomes asymptotically equal to E which
ultimately leads to the reduction from (2.33) to (2.31) (also refer to Smit and Janssen,
2013 for further details). Consequently, beyond the fact that the Wigner-Weyl formalism
based on the Schrödinger equation (2.20) provides a formal alternative to the existing
traditional formulation, it also generalizes the statistical description of wave fields. In
order to understand the limitation involved in the traditional formulation, and thus, the
added value that is taken into account by the Wigner-Weyl formalism, the traditional for-
mulation is briefly introduced and qualitatively examined through an idealized example.



2.4. THE WIGNER-WEYL FORMALISM

2

23

2.4.1. THE TRADITIONAL FORMULATION OF THE ENERGY BALANCE EQUA-
TION

The traditional formulation of the energy balance equation is based on the fundamental
theorem of statistical mechanics known as Liouville’s theorem. The applicability of Li-
ouville’s theorem is obtained through the analogy between classical particles and wave
packets (Hasselmann, 1963). The basic assumption leading to this analogy is the repre-
sentation of the wave field as a superposition of large number of statistically indepen-
dent wave packets whose dimension is much smaller then the characteristic scale of the
medium variation. The elegant result of such representation is that the position, x j , and
the wavenumber, k j , of each packet (indicated by the subscript j ) are governed by the
following canonical equations (e.g., Dingemans, 1997)

d x j

d t
=∇k jσ j ,

dk j

d t
=−∇x jσ j (2.35)

where σ j = σ(x j ,k j ). Therefore, the wave packets effectively evolve as a non-colliding
system of particles, where x j , k j and σ play the role of the generalized coordinates, mo-
menta and the Hamiltonian. As a result, Liouville’s theorem becomes applicable to de-
scribe statistically the wave packet system through the number density of wave packets
in phase space, n(x ,k , t ). Sinceσ does not involve coupling of different wave packets (as
a result of the linearity of the problem), n is conserved along trajectories in phase space,
namely, it is governed by the so-called collisionless Boltzmann equation,

∂t n = {σ,n} (2.36)

which shows exactly the same structure of the energy balance equation. Thus, using
the constraint that each packet has the same total wave-energy, the number density n
becomes proportional to the energy density E (see Komen et al., 1994 for further details),
which completes the traditional derivation of the energy balance equation (2.31).

Based on the usual assumptions of quasi-homogeneity and Gaussianity, the tradi-
tional particle-picture actually leads to a complete statistical description of the wave
field. Since under these assumptions the probability-density-function of any ensemble
of temporal-spatial elevation points of the water surface is recovered by the knowledge
of E (assuming zero-mean field). However, there are situations where the representa-
tion of the wave field through a superposition of statistically independent wave packets
results in an incomplete description. Such situations can be demonstrated through the
following representative example. The example considers a rather narrow wave spec-
trum (as may often be the case for coastal wave fields which were generated far offshore)
entering a domain that consists of two homogeneous regions separated by a scattering
region. This example is illustrated in Fig. 2.1, where the scattering region (referred to as
’the scatterer’) is represented by a submerged shoal. The particle picture for this example
is illustrated by calculating the phase space trajectories of the wave packets using (2.35).
The solution is obtained here assuming some fixed number of packets with equal initial
wavenumber, k0, that represents the carrier wavenumber of the spectrum. The projec-
tion of the phase space trajectories on the considered domain results in the wave-rays
picture which qualitatively reflects on the packet density, and consequently, also on the
spatial structure of E . Considering now the correlation function around point A. Since
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the incoming spectrum is assumed to be relatively narrow, the corresponding correlation
function around point A may extend over an area (occupied by the dotted-dashed circle
in Fig. 2.1) such that correlation emerges between the incoming and the scattered wave
fields. This should then give rise to cross-correlations between different wave packets,
which were assumed to be statistically independent. As recently demonstrated (e.g. Smit
and Janssen, 2013, Akrish et al., 2020), cross-correlation contributions in such cases lead
to the development of prominent interference structures which significantly change the
wave statistics. Therefore, as a result of the assumption that different wave packets are
statistically independent, these contributions cannot be predicted by the traditional for-
mulation. On the other hand, for wider spectra (corresponding to smaller correlation
scales) interference patterns become effectively smoother following their superposition.
Under these conditions, cross-correlation contributions become negligible and predic-
tion due to the traditional formulation through the energy balance equation is expected
to agree with the generalized kinetic equation of the Wigner-Weyl formalism. Ultimately,
it remains to be seen how statistical interference patterns are taken into account by the
Wigner-Weyl kinetic equation. To this end, this generalized equation is briefly derived
and examined.
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Figure 2.1: Normally incident wave-rays due to k0 over a submerged shoal. The rays are indicated by solid
curved lines. The shoal topography is illustrated by the solid elliptical lines at the center of the figure. Finally,
the dashed circle line describe the effective support of the field’s correlation function around point A.
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2.4.2. A FORMAL DERIVATION OF THE ENERGY BALANCE EQUATION AND

ITS GENERALIZATION
The formal derivation of the Schrödinger equation, (2.20), allows direct and formal
derivation of the Wigner-Weyl kinetic equation, (2.33). The detailed derivation, starting
with (2.20), is provided by numerous studies in other fields of physics (e.g., Moyal, 1949,
Leaf, 1968, Bremmer, 1973, Besieris and Tappert, 1976, McDonald and Kaufman, 1985,
Zhu and Dodin, 2021). In the context of water waves, the derivation is given by Smit
and Janssen (2013). Concisely, the Wigner-Weyl kinetic equation is derived directly by
considering the time derivative of the correlation functionΓ(x1, x2, t ) = 〈ζ(x1, t )ζ∗(x2, t )〉.
Then, using the Schrödinger equation, (2.20), and the following definition of the Wigner
distribution:

W(x ,k , t ) =
∫
Γ(x +x ′/2, x −x ′/2, t )exp(−i k · x ′)d x ′ (2.37)

one arrives (also due to the properties of the Weyl operator Σ) at the correct expression
for the Wigner-Weyl kinetic equation, (2.33).

Returning now to the example above which emphasizes the importance of the cross-
correlations when considering a wave field with relatively narrow spectrum. As illus-
trated in Fig. 2.1, it may often be the case that the correlation function of such fields
bridges across scattering regions, and therefore, the corresponding Wigner distribution
is affected by interference patterns (obtained by the contribution of cross-correlations).

As discussed by Smit and Janssen (2013), in such scenarios, the product
(
σ
←−∇ x · −→∇kW

)
of the Moyal brackets, {{}}, as appear in (2.34) is not small. Thus, the interpretation of
{{}} through Taylor expansion is no longer valid (this also implies that the conventional
energy balance equation, (2.31), loses validity). Alternatively, the operation of {{}} can be
partially defined using a Fourier integral, leading to an integro-differential form, which
remains valid also for cases in which the correlation length is larger then the character-
istic scale of medium variation, but retains the assumption of weak spatial variability of
the field statistics as implied by the Taylor interpretation of the second product of {{}}.
This new interpretation of the Moyal brackets, {{}}, leads to a generalized energy balance
equation that can be written in the following form (see Smit et al., 2015a):

∂tW = {σ,W}+SQC (2.38)

where SQC is a scattering term that forces the generation of statistical wave interfer-
ences induced by variable bathymetry, and the subscript QC stands for ‘quasicoherent’
approximation (Smit and Janssen, 2013). The role of SQC is demonstrated numerically
through several representative examples of wave-bottom interactions (Smit and Janssen,
2013, Smit et al., 2015a) and has recently been generalized and demonstrated for cases
of wave-current interactions (Akrish et al., 2020).

2.5. DISCUSSION
The application of the Weyl rule of association for water waves is not limited to the linear
regime. In fact, in the following discussion it is shown that the Weyl operator, (2.14), nat-
urally serves as a building block in the usual asymptotic representation of the nonlinear
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DtN (see e.g., the review by Schäffer, 2008). The asymptotic expansion of the nonlinear
DtN through the Weyl operator allows a model construction with any degree of non-
linearity that is consistently formulated for mild slopes. Examples are provided for the
weak-nonlinear regime. In particular, a fully dispersive and weakly nonlinear model is
derived using the symbol G that corresponds to the full linear dispersion relation. Fi-
nally, based on this generalized weakly nonlinear model, formulations of known scaling
regimes (e.g., the classical Boussinesq scaling) are consistently derived.

2.5.1. FULLY NONLINEAR FORMULATION THROUGH WEYL RULE OF ASSO-
CIATION

The nonlinear formulation is also derived in a convenient manner through Zakharov’s
Hamiltonian framework, which by ignoring surface-tension effect, but preserving non-
linear contributions, can be written as

H= 1

2

∫ (
gη2 +φ[(1+∇xη ·∇xη)W −∇xη ·∇xφ]

)
d x (2.39)

To reduce the dimension of the problem it is again required to relate between W and the
surface variables, φ and η. However, this time, the relation is implicit since it is required
on the unknown level z = η. The usual approach to cope with this difficulty is to project
the mapping to the constant level z = 0 through a suitable asymptotic expansion (Dom-
mermuth and Yue, 1987). In this way W is evaluated asymptotically using the surface
variables only, which then completes the desired dimension reduction. This asymptotic
procedure is concisely summarized as follows. The starting point is the assumption of
finite, though small, fluctuations of the free surface, allowing to express the velocity po-
tential,Φ, as

Φ=
M∑

m=1
Φ(m) (2.40)

where, the superscript ()(m) represents contribution of O(ϵm) and M indicates the high-
est order of nonlinearity that is considered. Additionally, the value of eachΦ(m) on z = η
can be approximated as a Taylor expansion around z = 0. Ultimately, these asymp-
totic expansions can be combined to form an approximation for the surface potential
as (Dommermuth and Yue, 1987),

φ=
M∑

m=1

(M−m)∑
j=0

η j

j !
(∂ j

zΦ
(m))z=0 (2.41)

Effectively, (2.40) and (2.41) allow to replace the original Laplace problem that is sub-
jected to the nonlinear surface condition (Φ)z=η = φ with M Laplace problems, such as

given by (2.2), that are subjected to the linear condition (Φ(m))z=0 =Φ(m)
0 , where Φ(m)

0 is
given by 

Φ(m)
0 =φ, m = 1

Φ(m)
0 =−∑m−1

j=1

η j

j !
(∂ j

zΦ
(m− j ))z=0, m ̸= 1

(2.42)
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The advantage gained by breaking down the original Laplace problem into M Laplace
problems with linear surface condition is that for the latter, the solution is already pro-
vided by (2.4) (by merely replacing the surface variables φ and W0 with Φ(m)

0 and W (m)
0 ,

where W (m)
0 = (∂zΦ

(m))z=0). Accordingly, the linear DtN map in terms of the Weyl opera-
tor, (2.22),

W (m)
0 =GwΦ

(m)
0 (2.43)

is applicable as well. Ultimately, base on these results, the approximation of W at each
order m, which is written as

W (m) =
m−1∑
j=0

η j

j !
(∂ j+1

z Φ(m− j ))z=0, (2.44)

is formally extended to mild slopes, leading to a consistent generalization of the nonlin-
ear DtN formulation. To demonstrate this result, the contribution of the first three terms,
W (1), W (2) and W (3) are considered. These are calculated based on the asymptotic ex-
pansions (2.44) and (2.42) and based on the solution of the linearized Laplace system
(2.4) and the linear DtN map (2.43). The outcome is given as follows:

W (1) =Gwφ

W (2) =
(
ηD2

x −GwηGw

)
φ

W (3) =
(1

2
η2D2

xGw −ηD2
xηGw − 1

2
Gwη

2D2
x +GwηGwηGw

)
φ

(2.45)

The expressions above agree with the ones reported by Bateman et al. (2001) (Eqs. 22a-c)
and those reported by Schäffer (2008) (Eqs 3.13-3.15, with a minor difference shown by
the power of "G0" of the second term on right hand side of Eq. 3.15, which based on the
present calculation, should be "1" instead of "2"). Here though, through the definition
of the Weyl operator, these expression are now valid for mild slopes.

2.5.2. WEAKLY NONLINEAR WAVE MODELLING
By consistently substituting the approximation of W into the Hamiltonian (2.39), the
governing equations for η and φ are derived through the following canonical equations:
∂tη = δφH and ∂tφ = −δηH. In principle, this formulation allows model derivation of
any desired order of nonlinearity. However, for practical application the first leading or-
ders are usually sufficient. Here, the discussion focuses on wave modelling over coastal
waters, for which, if dissipation is absent, the first two orders already capture the domi-
nant physical processes. To this end, only the first two terms of the expansion for W are
required. Upon a consistent substitution in (2.39), the following second-order governing
equations are derived: {

∂tη=Gwφ−Gw (ηGwφ)+Dx · (ηDxφ)

∂tφ=−gη+ 1
2 [(Gwφ)2 +|Dxφ|2]

(2.46)

These equations allow weakly nonlinear and fully dispersive modelling of water waves
over mild slopes. Such modelling capabilities provide generalization to typical formula-
tions for coastal areas, which usually rely on the assumption of weak dispersion.
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As demonstrated for the linear mild-slope model (see Appendix 2.B), also here, the
relation of the present formulation with well-known classical formulations is derived
through appropriate approximations of the dispersion relation applied to the symbol
G . Here though, the approximations of the dispersion relation are not related to the
spectrum width, but to the characteristics of the wave components, which assumed to
be fairly long, and therefore, characterized by rather small values of the so-called depth
parameter µ = |k |h. Additionally, when nonlinearity is included, it is also necessary to
determine the relation between µ and ϵ. This parametric relation gives rise to a whole
range of model definitions (also refer to the discussion by Madsen and Schäffer, 1998),
starting from fully nonlinear and weakly dispersive (Serre-type) formulations, ranging
over Boussinesq-type of formulations (which may arbitrarily defined and include formu-
lations corresponding to the classical regime ϵ=O(µ2)) and heading towards Whitham-
type of formulations which combine full linear dispersion with weak nonlinearity de-
scribed by the classical Boussinesq terms. This range defines infinitely many model for-
mulations with different degrees of dispersion and nonlinearity. Under the limit of weak
nonlinearity, the derivation of other model formulations starting from the fully disper-
sive model, (2.46), is demonstrated for two special and well-known examples. The first
example is the well-known classical Boussinesq formulation of Peregrine (1967), con-
structed through the assumption that ϵ = O(µ2). The second example discusses the
derivation of the so-called Whitham system, which is derived by assuming a regime
implied by the so-called Whitham equation (Whitham, 1967) and formally defined by
Moldabayev et al. (2015).

For the first example, through the assumption that ϵ = O(µ2), Weyl operators which
operate on nonlinear terms are neglected altogether, while the Weyl operation on the
linear term in the first equation of (2.46) is approximated through the following approx-
imation of G :

G ∼ h|k |2
(
1− (|k |h)2

3

)
(2.47)

which through (2.17) leads to the following R symbol:

R ∼ h|k |2 − 1

3
h3|k |4 + (Dx h) ·k −2h2(Dx h) ·k |k |2 (2.48)

Then, by associating back from k to Dx , one obtains the following system:

 ∂tη= Dx · (hDxφ)−2h2Dx h ·Dx |Dx |2φ− 1

3
h3|Dx |4φ+Dx · (ηDxφ)

∂tφ=−gη+ 1
2 |Dxφ|2

(2.49)

By neglecting O(β2) terms, this system becomes equivalent to the classical Boussinesq
system (written in terms of the horizontal velocity at the still water level) introduced
by Peregrine (1967) (see Eqs. 16-17 in Peregrine’s paper). For the second example, the
derivation is rather straightforward. Since, as a result of its underlying scaling (see Mold-
abayev et al. (2015)), the Whitham system is described by the nonlinear classical Boussi-
nesq terms and fully dispersive linear terms. Consequently, the Whitham system re-
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quires no further derivation other than neglecting the nonlinear terms in (2.46) that in-
volve Weyl operators. This results in the following set of equations:{

∂tη=Gwφ+Dx · (ηDxφ)

∂tφ=−gη+ 1
2 |Dxφ|2

(2.50)

which are found to be equivalent to those reported by Moldabayev et al. (2015), Eqs. 16-
17, if the lateral dimension (with respect to y) and bottom variability are ignored. So
far, bottom variations for Whitham systems were formulated using the expansion de-
vised by Craig et al. (2005) (e.g., Aceves-Sánchez et al., 2013, Vargas-Magana and Panay-
otaros, 2016), which allows rapid, but small bottom variations (see also recent work by
Carter et al., 2021 which compares this expansion with the non-reduced implicit expres-
sion of the topographic operator proposed by Craig et al., 2005). Consequently, (2.50)
provides an alternative version of the Whitham system suited for wave prediction over
two-dimensional mildly sloped bathymetries, and allows bottom variations of O(h).

In summary, this discussion shows that Weyl rule of association provides a simple
tool allowing a consistent model derivation of any order of nonlinearity and dispersivity
over mild slopes. The starting point is the nonlinear DtN expansion which to a desired
order M can be written in terms of the Weyl operator (as demonstrated by (2.45)). Then,
a decision upon a relation between ϵ and µ determines the required approximation of
Gw for each order of nonlinearity (as demonstrated by the two examples above), which
is calculated by the corresponding approximation of the symbols G and R.

2.6. CONCLUSIONS
The principle result of this study is the equivalence between a formal definition of the
linear Dirichlet-to-Neumann operator for mild slopes and the Weyl operator that is as-
sociated with the linear dispersion relation of water waves. This allows formal use of the
Weyl operator and the Weyl operational calculus for deterministic and stochastic appli-
cations in water waves. Within the framework of linear wave theory, the formulation of
a wave field over bathymetry using the Weyl operator provides a generalized mild-slope
model which does not impose a limit on the spectral width and reduces to the classi-
cal time-dependent mild-slope model as a special case (Smith and Sprinks, 1975). It is
shown that this generalized linear formulation based on the Weyl operator can be rewrit-
ten as a Schrödinger-type model in terms of the complex variable ζ that is intimately re-
lated to the energy density of the wave field. This model form allows a formal derivation
of the Wigner-Weyl kinetic equation for water waves, which provides a general statistical
description of linear wave fields in variable media, and reduces to the well-known en-
ergy balance equation as a special case. In fact, this result provides a formal link between
Euler equations and the widely used energy balance equation. As such, Weyl rule of as-
sociation leads to the establishment of a formal theoretical foundation of this important
transport equation, and thus, provides an alternative foundation to the traditional for-
mulation based on the heuristic wave-particle analogy. Finally, the application of Weyl
rule of association for waves of finite amplitudes is discussed as well. It is shown that the
Weyl operator serves as a simple tool to derive and generalize mild-slope models of any
order of nonlinearity and dispersivity. As an example, the formulation through Weyl rule
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of association for the classical Boussinesq scaling leads to the well-known formulation
of Peregrine (1967). Additionally, for the Whitham scaling, the formulation through Weyl
rule of association provides a formal mild-slope version of the Whitham system.
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APPENDICES

2.A. WEYL CALCULUS
This appendix summarizes the main tools required to work with the Weyl operator and
its generalizations. The derivations here follow closely after the book by Leon Cohen,
"The Weyl operator and its generalization" (Cohen, 2012). The starting point of this ap-
pendix is the definition of the association between the phase-space symbol G(x ,k) and
the pseudo-differential operator G(x ,Dx ). Such an association is not uniquely defined
because x and Dx do not commute. However, the infinitely different possible associa-
tions can be analyzed in a unified manner through a generalization of Weyl’s definition
(Cohen, 2012). The generalized Weyl operator is defined as

Gg (x ,Dx ) =
∫

Ĝ(q , p)K(q , p)exp(i q · x + i p ·Dx )d qd p (2.51)

where Ĝ(q , p) is the Fourier transform of G(x ,k), the subscript ()g of the operator in-
dicates that it is a generalized operator and the kernel K(q , p) defines different rules of
associations. Using the Baker–Campbell–Hausdorff formula and utilizing the fact that
the commutator, [i q · x , i p ·Dx ] = −i q · p , is a constant, the operator definition can be
simplified as follows:

Gg (x ,Dx ) =
∫

Ĝ(q , p)K(q , p)exp(
i

2
q ·p)exp(i q · x)exp(i p ·Dx )d qd p (2.52)

The generalization expressed in the generalized operator definition amounts to the in-
clusion of the kernel K(q , p), as can be understood by substituting K(q , p) = 1, for which
the original definition of the Weyl association is recovered. For the purposes of this study,
besides the Weyl rule of association, the definition of the so-called Standard rule of asso-
ciation, for which K(q , p) = exp(−i q ·p/2), is needed as well. Therefore, it will be easier
to summarize the following definitions using the generalized operator definition.

2.A.1. ASYMPTOTIC OPERATIONAL FORM
The asymptotic operational form that follows from the operator definition (2.52) is re-
quired in order to present its operation explicitly and to extract its leading order contri-
butions. The derivation of the asymptotic operational form depends on a Taylor expan-
sion of the dispersion relation, and therefore (at least conceptually), should be defined
around k ̸= 0, since derivatives of the dispersion relation at k = 0 are singular. The start-
ing point of the derivation expresses the Fourier function Ĝ(q , p) in term of its inverse
Fourier transform around k as,

Ĝ(q , p) =
∫

exp(i k ·Dk )Ĝ(q ,k)exp(−i p · (k +k))dk (2.53)

31
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where the expansion exp(i k · Dk )Ĝ(q ,k) essentially represents the shifted function
Ĝ(q ,k +k). By substituting the relation (2.53) into (2.52) the following operational form
is obtained:

Gg (x ,Dx ) =
∫

exp(i k ·Dk )Ĝ(q ,k)exp(−i p ·k)K(q , p)exp(
i

2
q ·p)

exp(i q · x)exp(i p · (Dx −k))dkd qd p (2.54)

which, after Fourier transform with respect to k , reduces to,

Gg (x ,Dx ) =
∫
δ(p)

[
Ĝ(q ,k)exp(i q ·x)exp(i

←−
D k ·−→D p )K(q , p)exp[i p·(Dx−k+q

2
)]

]
d qd p

(2.55)

and eventually, leading to the following asymptotic form for the Weyl operator by setting
K(q , p) = 1:

Gw (x ,Dx ) =
[
G(x ,k)exp(

i

2

←−
D x ·←−D k )exp[i

←−
D k · (Dx −k)]

]
(2.56)

or to the asymptotic form for the Standard operator by setting K(q , p) = exp(−i q ·p/2):

Gs (x ,Dx ) =
[
G(x ,k)exp[i

←−
D k · (Dx −k)]

]
(2.57)

where the arrows indicate the function on which the differential operator should oper-
ate, and the subscripts ()w and ()s indicate on a Weyl or a Standard operator, respectively.
These expressions can be interpreted as a combination of two steps. First, define the
symbol that corresponds to the operator for which all the factors Dx are placed to right
of the x factors, such that the former does not operate on the latter. Secondly, replace
all the k factors with Dx . Note that the Standard rule already defines the original symbol
such that the factors Dx are placed to right of the x , and therefore, the first step is not
included in its asymptotic form (2.57).

2.A.2. OPERATOR COMPOSITION
Operator composition is defined symbolically as follows:

Ag (x ,Dx ) = (Ug ◦Lg )(x ,Dx ) (2.58)

where Ag , Ug and Lg are some generalized operators. A general formula of the above
generalized composition can be derived by substituting in (2.58) the definition of the
generalized operator (2.52) for Ug and Lg and by using the Baker–Campbell–Hausdorff
formula. This cumbersome derivation is detailed in Cohen (2012). Here only the end
result is given, written in terms of the corresponding symbols as

A(x ,k) =U (x ,k)J exp(−i
←−
D x ·−→D k /2+ i

←−
D k ·−→D x /2)L(x ,k) (2.59)

where J is defined in terms of the kernel K (see also Cohen, 2012) as
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J = K(
←−
D x ,

←−
D k )K(

−→
D x ,

−→
D k )

K(
←−
D x +−→

D x ,
←−
D k +−→

D k )
(2.60)

This result leads to the formulas for operator compositions (in terms of the correspond-
ing symbols) of two Weyl operators,

A(x ,k) =U (x ,k)exp(−i
←−
D x ·−→D k /2+ i

←−
D k ·−→D x /2)L(x ,k) (2.61)

or two Standard operators,

A(x ,k) =U (x ,k)exp(i
←−
D k ·−→D x )L(x ,k) (2.62)

The above formulas together with the tools that were summarized in this appendix al-
low to significantly simplify necessary operator manipulations. In particular, under the
mild-slope assumption for which O(β2) terms are neglected, these tools allow to define
and interpret the operation of operators in a straightforward manner. In the following,
several examples of operator compositions which arise in the main text are considered.
The first is the mild-slope composition of two Standard operators. For this case, the for-
mula in (2.62) provides the following approximation for A(x ,k):

A(x ,k) ∼U (x ,k)(1+ i
←−
D k ·−→D x )L(x ,k) (2.63)

for which an approximation for As (x ,Dx ) is obtained by associating between k and Dx ,
recalling that all the factors Dx should be placed to right of the x factors. The second
example is the mild-slope composition of two Weyl operators. The composition formula
for Weyl operators, (2.61), generates the following approximation for A(x ,k):

A(x ,k) ∼U (x ,k)(1− i
←−
D x ·−→D k /2+ i

←−
D k ·−→D x /2)L(x ,k) (2.64)

This approximation reveals the following useful mild-slope results:{
(Lw ◦Lw )(x ,Dx ) ↔ L2(x ,k)

(L−1
w ◦Lw )(x ,Dx ) ↔ 1

(2.65)

where ↔ means "associated with" and L−1
w (x ,Dx ) is the Weyl operator that is associated

with the symbol L−1(x ,k).

2.B. THE RELATION WITH THE CLASSICAL MILD-SLOPE EQUA-
TION

The formulation of linear water waves over bathymetry, as given by (2.23)-(2.24), pro-
vides a convenient starting-point for the derivation of the Schrödinger-type model dis-
cussed in Section 2.3. Here however, it is aimed to demonstrate the relation of this lin-
ear formulation with the classical mild-slope equation, for which, a convenient starting
point is the following combined form:

∂2
tφ+ gGwφ= 0 (2.66)
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This combined form is derived by time differentiating the second equation in the system
(2.23) and substituting the first equation accordingly. This combined formulation is re-
duced to the classical mild-slope equation (Smith and Sprinks, 1975) provided that the
following relation holds:

gGwφ∼
[

Dx · (CCg Dx )+ (σ2
0 −|k0|2CCg )

]
φ (2.67)

where σ2
0, C0 and Cg ,0 are defined as σ2

0 = gG(x ,k0), C0 = σ/|k0| and Cg ,0 = ∂|k0|σ, re-
spectively.

The asymptotic equivalence written above can be understood through the funda-
mental assumption underlying the derivation of the classical mild-slope equation, that
is, the assumption of quasi-periodic motion in time at any spatial point. Equivalently,
this assumption means that the spectrum of the field is narrowly supported in the di-
rection of |k | around |k0|. In order to see how this fundamental assumption leads to the
asymptotic relation, (2.67), it may be useful to demonstrate the effective operation of a
pseudo-differential operator operating on a function with narrow-banded spectrum. To
this end, consider a narrow-banded wave field propagating over a constant depth. In
such a case, the linear DtN relation (2.22) can be written as a simple function multipli-
cation in wavenumber space as,

Gw (Dx )φ(x) =
∫

G(k)φ̂(k)exp(i k · x)dk (2.68)

where the Fourier transform φ̂ is assumed to be narrowly supported around k0, say be-
tween [k0 −∆k ,k0 +∆k]. Using the change of variable k̄ = k −k0, the operation of Gw is
effectively given by

Gw (Dx )φ(x) = exp(i k0 · x)
∫ ∆k

−∆k
G(k0 + k̄)Â(k̄)exp(i k̄ · x)d k̄ + c.c. (2.69)

where Â(k̄) = φ̂(k0+ k̄) is the Fourier transform of the slowly varying complex amplitude
A(x) and c.c. stands for complex conjugate. This representation clearly shows that for
a function with narrow spectrum the operation of Gw requires only limited information
of G around k0. Consequently, G can be efficiently expanded around k0, leading to the
following representation:

Gw (Dx )φ(x) = exp(i k0 · x)
[
G exp(i

←−
D k ·−→D x )A

]
k=k0

(2.70)

where the arrows indicate the function on which the differential operator should op-
erate, i.e., G or A. To summarize, this example demonstrates the interpretation of a
pseudo-differential operation (e.g., Gw ) on a narrow-banded function. Where in the
limit given by φ̂ = Aδ(k −k0) (for which A is a constant) the operation becomes a mul-
tiplication by G(k0), while for a narrow spectrum of finite width, this operation can be
approximated as a polynomial in Dx , as described by (2.70).

These observations point out the expansion of G around k0 as the key to derive the
approximation (2.67) that relates the Weyl operator with the operator of the classical
mild-slope equation. However, in order to obtain a valuable model, the expansion of
G should admit some constraints. Most important, the approximated operator should
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be self adjoint and should allow wave propagation in all directions (recall that the fun-
damental assumption of the classical mild-slope equation does not prioritize any direc-
tion of propagation). This means that the expansion of G should preserve the symmetry
characterizes the original G , and therefore, requires a symmetrical expansion, namely an
expansion in terms of |k |. Additionally, it is also beneficial to preserve the symmetrical
structure of G , which means that the approximation should only consist of terms such as
|k |n where n is even number. This requirement avoids terms like |Dx | which are difficult
to interpret. Accordingly, an appropriate expansion is given as follows (Radder, 1999):

G(x ,k) ∼ 1

g

[
σ2

0 +C0Cg ,0(|k |2 −|k0|2)
]

(2.71)

where C0Cg ,0/g = (∂|k |2G)k=k0 and recall that σ2
0/g =G(x ,k0). The Weyl operator of this

approximation is obtained by calculating first the corresponding R(x ,k) symbol using
(2.17), which reads,

R(x ,k) ∼ 1

g

[
σ2

0 −|k0|2C0Cg ,0 +C0Cg ,0|k |2 + (DxC0Cg ,0) ·k
]

(2.72)

then, by the subsequent back association from k to Dx , the classical mild-slope operator,
as given by (2.67), is derived. This result shows that the Weyl operator of the full symbol
G is equivalent to the classical mild-slope operator for quasi-periodic wave fields, and
implies that the Weyl formulation as given by either of the formulations, namely (2.23)
or (2.66), provides a generalized mild-slope model for wave fields of arbitrary spectral
width.





3
MODELLING STATISTICAL WAVE

INTERFERENCES OVER SHEAR

CURRENTS

Wave forecasting in ocean and coastal waters commonly relies on spectral models based
on the spectral action balance equation. These models assume that different wave compo-
nents are statistically independent and as a consequence cannot resolve wave interference
due to statistical correlation between crossing waves, as may be found in, for instance, a
focal zone. This study proposes a statistical model for the evolution of wave fields over
non-uniform currents and bathymetry that retains the information on the correlation
between different wave components. To this end, the quasi-coherent model (Smit and
Janssen, 2013) is extended to allow for wave-current interactions. The outcome is a gener-
alized action balance model that predicts the evolution of the wave statistics over variable
media, while preserving the effect of wave interferences. Two classical examples of wave-
current interaction are considered to demonstrate the statistical contribution of wave in-
terferences: 1) swell field propagation over a jet-like current, and 2) the interaction of swell
waves with a vortex-ring. In both examples cross-correlation terms lead to development
of prominent interference structures, that significantly change the wave statistics. Com-
parison with results of the SWAN model demonstrates that retention of cross-correlation
terms is essential for accurate prediction of wave statistics in a shear-current induced focal
zones.

This chapter has been published as: Akrish, G., Smit, P., Zijlema, M., & Reniers, A. (2020). Modelling statistical
wave interferences over shear currents. J. Fluid Mech., 891.
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3.1. INTRODUCTION
Wind-generated waves play an important role in the dynamics of oceanic and coastal
waters. In the upper ocean, surface waves can force large scale circulations (e.g.,
Craik and Leibovich, 1976), whereas nearshore, they can drive alongshore currents (e.g.,
Longuet-Higgins, 1970, Bowen, 1969, Ruessink et al., 2001, Reniers and Battjes, 1997),
return flow (e.g., Dyhr-Nielsen and Sørensen, 1970, Stive and De Vriend, 1994) and asso-
ciated sediment transport processes (e.g., Van Rijn, 1993, Fredsoe and Deigaard, 1992).
Furthermore, waves control shipping operations and associated downtime as well as
coastal safety through beach and dune erosion and potential inundation (e.g., Vellinga,
1982, Roelvink et al., 2009).

The common approach of predicting statistical parameters of wind waves is via op-
erational (phase-averaged) wave models (e.g, WAM model, WAMDI Group, 1988, WAVE-
WATCH model, Tolman, 1991, SWAN model, Booij et al., 1999). These models solve nu-
merically the so-called spectral action balance equation that can be written in the fol-
lowing form:

∂t N +∇x · (Cx N )+∇k · (Ck N ) = S (3.1)

where N represents the spectrum of the action density, being equal to the spectrum of
the energy density, E , divided by the intrinsic frequency, σ. The propagation part, on the
left hand side, describes the kinematical behavior of the field as it propagates through
slowly varying current, U , and bathymetry, with propagation velocities Ck and Cx over
wavenumber space, k = (k1,k2), and physical space, x = (x1, x2), respectively. On the
right hand side, the equation is forced by source terms, S, to account for processes of
wave generation (by wind), dissipation (e.g., due to whitecapping) and wave-wave inter-
actions.

The statistical assumptions underlying the derivation of (3.1) are that the wave field
can be regarded as Gaussian and quasi-homogeneous. The former suggests that the field
is completely defined by its correlation function (assuming a zero-mean field), while the
latter proposes that the correlation between any two distinct wave components equals
zero. Based on these assumptions, variation of the field’s statistics is governed com-
pletely by variations of the waves’ variances (which are represented by N ), as indeed
described by (3.1).

In most circumstances at sea, the parameters of the wave field (e.g, wave amplitudes)
are evolving slowly over spatial scales of O(10km - 100km) due to the action of wind, slow
medium changes and weak nonlinearity. Under these conditions, the assumption of
quasi-homogeneity is easily met, and (3.1) remains valid. However, there might be situa-
tions where the field encounters medium variability over much smaller scales (O(100m -
1km)). Such situations can occur quite frequently in coastal regions, where currents and
bathymetry can vary rapidly (e.g., Chen et al., 1999, Ardhuin et al., 2003). Furthermore,
following recent studies (e.g., Poje et al., 2014, McWilliams, 2016), they may also occur
in the open ocean over small-scale currents (e.g., submesoscale currents). Physically, in
these situations, waves are rapidly scattered into multiple directions, and consequently,
can form focal zones which give rise to wave interferences. A well-known examples of
such wave-media interactions are given by the evolution of waves over a submerge shoal
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(e.g., Vincent and Briggs, 1989) or over a vortex-ring (e.g., Yoon and Liu, 1989). Statisti-
cally, the interference effects that arise in such cases are described by cross-correlations
between different wave components of the scattered field and may result in significant
and rapid variations of the wave statistics (Janssen et al., 2008, Smit and Janssen, 2013,
Smit et al., 2015a). The quasi-homogeneous assumption excludes the contribution of
the cross-correlation terms, and therefore, (3.1) cannot describe the effect of wave inter-
ferences arising in interactions between waves and rapidly varying media.

The ability to account for the effect of wave interferences in these situations is im-
portant, since they can alter dramatically the spatial distributions of wave parameters
(e.g., the significant wave height), which serve as input for numerous applications in
the coastal zones. In addition, through the interaction of waves with small-scale ocean
currents, generated interference structures may also introduce leading-order statistical
contributions for applications in the open ocean. For example, they may contribute to
changes driven by waves of submesoscale currents (McWilliams, 2018), or the interpre-
tation of noise obtained (due to the presence of waves) in measurements of the sea sur-
face, revealing the evolution of small-scale circulations (e.g., Ardhuin et al., 2017), and
they may also enhance and alter the spatial distribution of extreme elevations in ener-
getic focal regions (e.g., Metzger et al., 2014, Fedele et al., 2016).

In order to take into account the statistical effect of wave interference, Smit and
Janssen (2013) and Smit et al. (2015a) have recently developed an evolution equation
that allows for the generation and evolution of correlations between different wave com-
ponents when interacting over small scale bathymetry changes. This newly developed
stochastic model is called the quasi-coherent model (QCM). The main aim of the present
study is to extend the capabilities of the QCM so it can handle the interaction between
waves and ambient currents. The derivation of the extended QCM is detailed in 3.2. The
model is verified in 3.3 through the problem of interaction between swell field and a
jet-like current (e.g., Janssen and Herbers, 2009). Then, the model is used to study the
statistical mechanism for the generation of wave interferences in Section 3.4, through
the classical problem of interaction between swell waves and a vortex-ring (e.g., Yoon
and Liu, 1989). Finally, conclusions are drawn in Section 3.5.

3.2. STOCHASTIC MODEL FOR LINEAR WAVES OVER VARYING

CURRENT AND BATHYMETRY
Generally speaking, stochastic wave models are derived based on deterministic equa-
tions that physically describe the evolution of wave fields. This approach of deriving a
stochastic formulation is also adopted here. Therefore, the derivation starts with a phys-
ical description of the wave field which is effectively represented by the so-called action
variable. Subsection 3.2.1 introduces the definition of the action variable and its govern-
ing equation. As discussed in Subsection 3.2.2, the second-order statistics of the wave
field, including the statistics of wave interferences, is fully described through the corre-
lation function or the spectral distribution function of the action variable. These starting
points are used in Subsection 3.2.3 to formulate a stochastic model that takes into ac-
count the generation and transportation of wave interference contributions. Finally, the
numerical implementation of the model and an overview of the considered simulations
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are described in Subsection 3.2.4 and Subsection 3.2.5, respectively.

3.2.1. THE ACTION VARIABLE AND ITS EVOLUTION EQUATION
The formulation starts by considering the evolution of a random linear wave field
through a variable medium that can be represented by its surface potential and surface
elevation, φ(x , t ) and η(x , t ). It is assumed that the medium changes slowly so that the
ratio, ϵ= L/Lm , between the characteristic wave length, L, and the characteristic length
scale of medium variation, Lm , is small (ϵ≪ 1). Accordingly, the field can locally be ap-
proximated as a summation of plane waves with slowly varying phase and amplitude,
which to the leading order in ϵ, obey to the following general dispersion relation (e.g.,
Dingemans, 1997):

ω=U ·k +σ (3.2)

Variations in the medium are introduced by the ambient current, U (x) and by the wa-
ter depth, h(x). Using the medium information and the definition of the intrinsic fre-
quency, σ(x ,k) = √|k |g tanh(|k |h), the value of the absolute frequency, ω, is obtained
through (3.2), where, |k | stands for the magnitude of the local wavenumber, defined as

|k | =
√

k2
1 +k2

2 , and g is the gravitational acceleration. Finally, from the statistical point

of view, the field is assumed to be zero-mean, Gaussian and quasi-stationary.
Under this statistical and physical framework, it will be convenient to use the so-

called action variable (e.g., Besieris and Tappert, 1976; Krasitskii, 1994), ψ, which is de-
fined as,

ψ= 1√
2g

[
g A−1η+ iA φ

]
(3.3)

where A(x ,−i∇x ) is a pseudo-differential operator that is associated with the symbol
a(x ,k) =

√
σ(x ,k) (see detailed definition of this operator in Appendix A).

The convenience of working with the action variable, ψ, becomes significant in the
formulation of the second-order statistics of the field. As, through its definition, (3.3),
second-order statistical functions of ψ (e.g., the correlation function) are inherently re-
lated to the definition of the wave action (Bretherton and Garrett, 1968). As a conse-
quence, the action variable, ψ, is intimately related to the mean action density and the
mean energy density through the following expressions:

ρ〈|ψ|2〉 = m0/Σ+O(ϵ) (3.4)

ρ〈|Aψ|2〉 = m0 +O(ϵ) (3.5)

where, ρ is the water mass density, and the angular parentheses, 〈...〉, should be read as
ensemble average. The variable m0 provides a leading order estimation (in ϵ) of the mean
energy density (also known as the zero order moment of the spectral energy density) and
it is defined as follows:

m0 = ρ
〈1

2
gη2

0 +
1

2g
(Σφ)2

0

〉
(3.6)
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where now (in (3.4) and (3.6)) Σ(x ,−i∇x ) represents a pseudo-differential operator that
is associated with the intrinsic frequency, σ(x ,k), and the subscript 0 indicates on O(1)
terms (refer to Appendix A for the definition of Σ(x ,−i∇x ) and its leading order opera-
tion, e.g., (Σφ)0). Further details explaining why the expression in (3.6) defines the lead-
ing order estimation of the mean energy density are given in Appendix B.

An additional motivation for the definition of ψ, (3.3), is that, under the physical
assumptions made here, the governing equation of the wave field, can be written as (Be-
sieris and Tappert, 1976, Besieris, 1985)

∂tψ=−iΩ(x ,−i∇x )ψ (3.7)

where, Ω(x ,−i∇x ) is a pseudo-differential operator that is associated with the disper-
sion relation, ω(x ,k) (see Appendix A). This equation form is convenient since it can be
transformed directly into an evolution equation of the correlation function, which under
the assumption of Gaussian statistics, provides a complete statistical description of the
wave field. A verification of this equation for homogeneous and weakly inhomogeneous
media is described in Appendix B. For homogeneous media, (3.7) exactly describes the
evolution of the considered linear field. For weakly inhomogeneous media, the govern-
ing equation, (3.7), reduces for each wave component to the local dispersion relation,
(3.2) (or the eikonal equation, which governs the evolution of the wavenumber) at the
leading order, and the well-known transport equation for the mean action density, 〈|ψ|2〉
at O(ϵ). This indicates that at O(ϵ), (3.7) provides the correct representation of the field’s
evolution.

To summarize, the formulation presented here considers a random, linear, and
slowly varying wave field, which is concisely represented by the action variable, ψ. The
definition of this action variable introduces convenient properties which will eventually
lead to a derivation of a generalized action balance equation that accounts for the effect
of wave interferences. As a first step in this path, the next subsection aims to demon-
strate that the statistical information about wave interferences is naturally included in
the representative second-order statistical functions (i.e., the correlation function and
the Wigner distribution).

3.2.2. SECOND-ORDER STATISTICS
Following the statistical assumptions for the surface variables, η and φ, and following
the linearity of the definition (3.3), the action variable ψ(x , t ) is said to be a zero-mean,
complex Gaussian and quasi-stationary field (e.g., Soong, 1973). The statistics of such a
random field are defined completely by the following correlation function:

Γ(x , x ′, t ) = 〈ψ(x +x ′/2, t )ψ∗(x −x ′/2, t )〉 (3.8)

The statistical information carried by the correlation function is better seen using its
spectral form, written as,

Γ(x , x ′, t ) =
∫

dk exp(i k · x ′)
∫
Γ̂(k ,k ′, t )exp(i k ′ · x)dk ′ (3.9)

where, k and k ′ are defined as the average and difference of two interacting wavenum-
bers, namely, k = (k1 + k2)/2 and k ′ = k1 − k2. In addition Γ̂(k ,k ′, t ) is defined as,
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Γ̂(k ,k ′, t ) = 〈ψ̂(k+k ′/2, t )ψ̂∗(k−k ′/2, t )〉. The expression above reveals the spectral con-
tent of the correlation function. It shows that in general, Γ oscillates with a wavenumber
difference k ′ over the space x . Such an oscillation occurs when wave components with
two different wavenumber are statistically correlated, and thus, creating a spatial depen-
dent pattern of wave interference.

The assumption that the wave field is quasi-homogeneous trims the spectral infor-
mation provided by Γ̂ with respect to k ′ and accounts only for a narrow window around
k ′ = 0, which consists of the components that characterize the slow changes of the
medium. Therefore, under this assumption, the spectrum obtained by the Fourier trans-
form of Γ from x ′ to k only allows for slow variations of the variance terms of the field.
This spectrum is the conventional action density spectrum, N (x ,k , t ). In this study, how-
ever, statistical inhomogeneity of the wave field is taken into account by considering the
full spectrum provided by Γ̂ with respect to k ′. In this general case, the corresponding
spectral representation of wave action follows the definition of the Wigner distribution,
W(x ,k , t ):

W(x ,k , t ) =
∫
Γ(x , x ′, t )exp(−i k · x ′)d x ′ (3.10)

Therefore, the Wigner distribution of ψ captures the same information as the correla-
tion function and basically generalizes the concept of the action density spectrum by
including the cross-correlation terms that correspond to wave interferences (also see,
e.g., Hlawatsch and Flandrin, 1997). As such, the Wigner distribution provides a com-
plete spectral description of the second order statistics of the field. Finally note that, as
implied by (3.10), the zero-order moment of W equals to the variance of ψ, and there-
fore, following (3.4) gives a leading order evaluation of the mean action density.

Practically speaking, one would eventually be interested in certain field parameters
(e.g., characteristic wave height and period) for engineering applications. These param-
eters are commonly estimated based on the spectral moments of the energy density
(Rice, 1945). Most importantly is the zero-order moment, m0, which is used to esti-
mate ,e.g., the so-called "significant wave height", Hs (defined as the mean height of the
highest one-third of the waves in the field) through the following formula:

Hs (x , t ) = 4
√

m′
0 (3.11)

where m′
0 = m0/(ρg ). Therefore, in order to estimate Hs using (3.11) one is required to

calculate the transformation from the spectral representation of the action density to m0.
Using the conventional spectrum of the action density, N (x ,k , t ), m0 is easily obtained
as

m0 = ρ
∫
σ(x ,k)N (x ,k , t ) dk (3.12)

However, if cross-correlation terms are taken into account, (3.12) is no longer adequate
since the cross terms at (x ,k) should not be multiplied by σ(x ,k). In order to multiply
each term stored at (x ,k) by the correct factor, one must distinguish between the vari-
ance term and the cross-correlation terms. Therefore, for cases where cross-correlation
terms (e.g., interference terms) are important, a direct substitution of W(x ,k , t ) instead
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of N (x ,k , t ) in (3.12) would be inaccurate. A modified formula to calculate m0 based on
W(x ,k , t ) is given as follows:

m0 = ρ
∫ ∫ √

σ(x ,k +k ′/2)
√
σ(x ,k −k ′/2) Γ̂(k ′,k , t )exp(i k ′ · x) dk ′dk (3.13)

where,

Γ̂(k ,k ′, t ) =
∫
W(x ,k , t )exp(−i k ′ · x)d x (3.14)

Appendix C details on the derivation of (3.13) and also provides a simple example that
explains why the cross-correlation terms should be scaled differently.

To conclude, the Wigner distribution, W , of the action variable, ψ, generalizes the
concept of the action density spectrum (i.e., N ), by including the cross-correlation terms
that correspond to wave interferences. Once W is known, local field parameters (e.g.,
Hs ) can be derived and used for practical applications. The last step of the formulation
should therefore devoted to the derivation of a stochastic model for computing the evo-
lution of W .

3.2.3. EVOLUTION EQUATION FOR THE WIGNER DISTRIBUTION
The procedure to derive the evolution equation for W is analogous to the procedure
presented in Smit and Janssen (2013) and Smit et al. (2015a), and is briefly presented
below. Starting with the governing equation of the action variable, (3.7), the evolution
equation for the correlation function is derived (see e.g., Papoulis, 1965) by noting first
that,

∂tΓ(x1, x2, t ) = 〈ψ∗(x2, t )∂tψ(x1, t )+ψ(x1, t )∂tψ
∗(x2, t )〉 (3.15)

then, by substituting the governing equation ofψ into the above equation, and using the
variable transformation, x1 = x +x ′/2 and x2 = x −x ′/2, one obtains,

∂tΓ(x , x ′, t ) =−i [Ω(x+x ′/2,−i∇x ′′′−i∇x /2)−Ω(x−x ′/2,−i∇x ′′′+i∇x /2)]Γ(x , x ′, t ) (3.16)

The corresponding evolution equation for the Wigner distribution is derived through the
Fourier transformation, (3.10), and associating the factor x ′′′ with i∇k and the operator
−i∇x with k , as,

∂tW(x ,k , t ) =−iΩ(x + i∇k /2,k − i∇x /2)W(x ,k , t )+ c.c. (3.17)

where c.c. stands for complex conjugate. For the purpose of interpreting the operation
Ω upon W , (3.17) is written in the following, more explicit, form (see details in Appendix
D):

∂tW(x ,k , t ) =−iω(x ,k)exp[i
←−∇ x ·−→∇k /2− i

←−∇k ·−→∇ x /2]W(x ,k , t )+ c.c. (3.18)
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where the arrows indicate the function on which the differential operator should oper-
ate, i.e., ω or W .

Formally, equation (3.18) defines the evolution of W . Smit and Janssen (2013)
showed that essentially two parameters, β and µ, governing the order of approximation
introduced by a truncated version of the exponential operator in (3.18). The parameter
β arises due to the operation of the first term in the exponential operator (i.e., ∇x ·∇k /2),
and it represents the ratio between the correlation length scale Lc and the medium vari-
ation scale Lm , namely, β = Lc /Lm . The parameter µ arises due to the operation of the
second term in the exponential operator (i.e., ∇k · ∇x /2) and it is equal to the ratio be-
tween the wave length L, that corresponds to k and the characteristic length scale of the
interference structures stored in k , LW , i.e., µ = L/LW . Accordingly, Taylor expansion
may applied to define the operator in (3.17) by requiring that both, β≪ 1 and µ≪ 1.
Under these conditions, the general evolution equation, (3.17), can be approximated to
O(β,µ) by:

∂tW +∇kω ·∇xW −∇xω ·∇kW = 0 (3.19)

which is exactly the transport equation being employed in most commonly used third-
generation spectral wave models (e.g. SWAN). Therefore, the conventional transport
equation, (3.19), is only valid for certain sea conditions for which β and µ are small.

Assuming that the incident wave field is statistically homogeneous, Smit and Janssen
(2013) demonstrated that generated cross-correlations (and therefore, wave interfer-
ences) may have an important contribution for cases where the variation scale of the
medium is at the same order or smaller than the scale of the correlation length, namely,
for cases in which β≥O(1). Obviously, for such cases, the interpretation of the operator
in (3.17) using a Taylor expansion is no longer valid. Alternatively, the operator can be
partially defined using a Fourier integral (Smit and Janssen, 2013), leading to an integro-
differential form, which remains valid also for cases in which β ≥ O(1), but retains the
assumption of weak spatial variability of the field’s statistics (µ≪ 1). This form of the
operator is defined as (see Appendix D for details),

Ω(x+i∇k /2,k−i∇x /2)W(x ,k , t ) =
∫
ω̂(q ,k , x)(1−i

←−∇k ·−→∇ x /2)W(x ,k−q/2, t )d q (3.20)

where, ω̂(q ,k , x) is the Fourier transform of the dispersion relation around the point
x . Additionally, the part of the operator that results in the common transport terms of
(3.19), can be extracted out of the integral in (3.20) (see Smit et al., 2015a). However,
for cases in which β ≥ O(1), it will be convenient to extract only the spatial transport
term (∇kω ·∇xW) and to leave the refraction term (∇xω ·∇kW) inside the integral. This
is because such cases involve relatively rapid variations in the medium and also nar-
row spectrum, and therefore, require not only high resolution in the spatial space, but
also high resolution in the spectral space. Leaving the refraction term inside the integral
eliminates the need to evaluate the derivative of W with respect to k , and thus, prevents
excessive resolution in the spectral space. As a consequence, the integral of (3.20) can be
computed much more efficiently. To this end, the local value of the dispersion relation
at the point x is subtracted from the original dispersion relation and the remainder is
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defined as: ∆ω(x + x ,k) =ω(x + x ,k)−ω(x ,k) (where, due to computational considera-
tions, x is defined as x = x ′′′/2, see details in Appendix E). With this decomposition, the
evolution equation can be rewritten as,

∂tW +∇kω ·∇xW = SQC (3.21)

where, SQC , is a scattering source term that takes into account the statistical effects of
wave refraction and interference induced by medium variations. The expression that
defines this source term is given by,

SQC =−i
∫
∆ω̂(q ,k , x)(1− i

←−∇k ·−→∇ x /2)W(x ,k −q/2, t )d q

+ i
∫
∆ω̂(q ,k , x)(1+ i

←−∇k ·−→∇ x /2)W(x ,k +q/2, t )d q (3.22)

Note that the letters QC , which indicate this source term, stand for "quasi-coherent"
approximation (Smit and Janssen, 2013). The notion "quasi-coherent" refers to the as-
sumption thatµ≪ 1. Assuming thatµ is small, the model can accurately resolve only the
interference patterns with spatial variation, LW , larger than the length of the considered
wave, L.

The transport equation of W , (3.21), provides a generalization of the conventional
transport model (3.19), by allowing statistical interferences to be generated due to the
interaction of the wave field with variable bathymetry and currents. In that sense, (3.21)
can be seen as a generalized action balance equation. In the following, the numerical
implementation of (3.21) is discussed.

3.2.4. NUMERICAL IMPLEMENTATION
The numerical implementation of (3.21) is confined to steady-state solutions, for which
spatial and spectral discretizations are required. A detailed explanation on the dis-
cretization process and how SQC is implemented numerically is given in Appendix E. The
discretization process results in a coupled system of algebraic equations that is charac-
terized by a matrix of size Nx1Nx2Nk1Nk2 ×Nx1Nx2Nk1Nk2, where N j is the number of
grid points in the direction j . As a consequence of the implicit approach adopted here,
where the spatial derivatives and the terms that construct SQC are evaluated at the same
spatial point, the coupled system of algebraic equations must be solved iteratively. This
is performed using the Gauss–Seidel method, where the rows of the matrix are arranged
in accordance with the sweeping approach as detailed in Zijlema and van der Westhuy-
sen (2005). Once a steady-state solution of W is reached, the evaluation of m0 which is
required for the estimation of certain statistical field parameters, is computed through
(3.52) (see Appendix C for details). The next subsection describes the numerical simula-
tions which are considered in this study.

3.2.5. SETUP AND OVERVIEW OF THE CONSIDERED NUMERICAL SIMULA-
TIONS

Two classical examples of wave-current interactions are considered. The first concerns
the evolution of an incoming wave field over jet-like current. This example is used to
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verify the model in Section 3.3. In the second example, the field interacts with a vortex-
ring current. This example is used in Section 3.4 to study the statistical condition for
the effect of wave interferences to appear. A visual description of the spatial variation
of the considered current fields is presented by the arrows in fig:waverays jet for the jet-
like current and in Fig. 3.4 for the vortex-ring. Mathematically, these current fields are
defined as follows. The jet is defined as,

U (x1, x2) = [Ux1 ,0]

Ux1 =C1 f
[

tanh[(x2 +R)/(C2R)]− tanh[(x2 −R)/(C2R)]
]

f = 1+ tanh[(x1 −R)/(C2R)]

(3.23)

where, R = 200m, C1 =−0.1m/s and C2 = 0.5. In this case, the maximum opposing cur-
rent value is |Ux1 |max = 0.38m/s. Using cylindrical coordinates, the definition of the
vortex-ring is given by (Mapp et al., 1985):

U (r,θ) = [0,Uθ]

Uθ =
{

C1(r /R1)2, r ≤ R1

C2 exp[−(R2 − r )2/R2
3 ], r ≥ R1

(3.24)

for which the values of R1, R2, R3, C1 and C2, were chosen identical to those detailed in
Belibassakis et al. (2011). In this case, the maximum current value is |Uθ|max = 1.00m/s.

Both of these examples are formulated over a spatial domain of 4000m × 4000m and
a constant depth of h = 10m. Waves entering the domain along the left boundary, on x1 =
0. This is simulated by prescribing an incoming energy density, E0 = E(x1 = 0, x2,k1,k2).
Note that, as the incoming wave field is assumed to be statistically homogeneous, the
corresponding boundary condition of the Wigner distribution is readily obtained as fol-
lows: W0 = E0/σ. Finally, note that the lateral boundaries are treated as periodic.

Table 3.1: An overview of the considered simulations in terms of their physical, statistical and numerical pa-
rameters.

Si m. Hs 0 (m) T0 (s) θ0 (◦) S(k)
d

(1/m) S
( f )
d

(H z) S(θ)
d

(◦) α Lc (km) β

Jet1 1 20 15 0.001 0.0015 1.78 1 4 β≥O(1)
Jet2 1 20 15 0.005 0.0074 8.99 2 0.8 β=O(1)
Ring1 1 20 0 0.001 0.0015 1.78 1 4 β≥O(1)
Ring2 1 20 0 0.002 0.003 3.56 1 2 β=O(1)
Ring3 1 20 0 0.005 0.0074 8.99 2 0.8 β=O(1)

An overview of the simulations considered in this study is given in Table 3.1. These
simulations differ by the current type (indicated by the name of the simulation in the first
column of the table), and by the parameters characterizing the incoming spectrum, E0.
In all the simulations the incoming spectrum, E0, is defined as a 2d Gaussian centered
around k0. The incoming spectrum is therefore defined completely by the significant
wave height, Hs 0, the carrier wave period and direction, T0 and θ0 (which provide the
center point k0 through the linear dispersion relation) and by the standard deviation,
S(k)

d , which are given in the second, third, fourth and fifth column of Table 3.1, respec-
tively. In order to give a more intuitive physical interpretation of the width of the spec-
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trum, the table also provides the corresponding standard deviations of the transformed

spectrum written in terms of frequency and direction, S( f )
d and S(θ)

d , given in the sixth
and seventh column. Numerically, E0 is represented over the grid, Nk , with a resolution
that is determined by S(k)

d and the resolution parameter, α (see Appendix E) given in the
ninth column. The value of ∆x, on the other hand, cannot be deduced from the table
above. Appendix E guides how to choose a reasonable value for ∆x. This value is fixed
to ∆x = 25 m for all the simulations. In addition, the table also provides the correlation
length, Lc and the statistical parameter, β in the tenth and eleventh column. As outlined
in Appendix E, Lc is evaluated using S(k)

d . This can also be expected by the scaling prop-

erty of the Fourier transform (O(Lc ) = O(2/S(k)
d )). Throughout the analysis of the results

in the following subsections, the value of Lc (as opposed to the value taken into account
in the numerical model, see Appendix E) is defined as Lc = 4/S(k)

d . For the considered

Gaussian initial distribution, this value equals to the so-called 1/e2 width that provides
the diameter connecting the two points with 1/e2 times the maximum value of the corre-
lation function. Finally, the order of magnitude of β is obtained following its definition,
β= Lc /Lm .

3.3. MODEL VERIFICATION
The main aim of this section is to verify the performance of the QCM. The model is veri-
fied through a comparison with REF/DIF 1 (Kirby and Dalrymple, 1986), which solves
a parabolic approximation of the well-known mild-slope equation (e.g., Dingemans,
1997). Since REF/DIF 1 allows for monochromatic, uni-directional forcing at the in-
cident boundary, statistics for multi-directional and irregular incident waves are con-
structed by superposition of variances, under the assumption that waves at the incident
boundary are statistically independent (see details in Chawla et al., 1998). Additionally,
to demonstrate the statistical contribution of the interference terms, the results of QCM
are also compared to the results of the SWAN model (Booij et al., 1999). To this end, the
first two simulations detailed in Table 3.1, namely Jet1 and Jet2, are considered.

The simulations Jet1 and Jet2 describe the evolution of waves over the jet-like current
field. Ray tracing results (Fig. 3.1) show that for this jet-like current the waves refract
and form a focal zone close to x1 = 2000 m beyond which, interference structures may
emerge.

The physical pattern described by the rays in Fig. 3.1 is also reflected statistically in
the results of Fig. 3.2 and Fig. 3.3. While the results of QCM and of REF/DIF 1 agree
well and share a similar evolution pattern before and after the crossing zone in both of
the simulations, the SWAN results increasingly deviate beyond the crossing zone, where
interference effects emerge (see upper panels in Fig. 3.2 and Fig. 3.3) (note that the
small differences that arise at the lateral boundaries, as for instance appear in the results
of Section B in Fig. 3.3, are due to different boundary conditions assumed in each of
the models). The results also show that interference effects are not confined to caustic
regions (where geometric optics break down) but rather, spread over much greater dis-
tances in the down-wave direction, beyond the crossing zone (e.g., upper panels of Fig.
3.2). The differences between the models are less pronounced in the results of simula-
tion Jet2 which is initiated using a broader spectrum (see lower panels in Fig. 3.2 and Fig.
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Figure 3.1: Wave rays due to k0 over a jet-like current field indicated by the solid lines. The rays at x1 = 0
are obliquely incident with an angle of 15◦. In addition, the ambient current is marked by arrows. Finally, the
dashed vertical lines are sections along which the results of the significant wave height will be displayed.

3.3). In this case, all three models qualitatively predict a similar spatial structure of Hs

throughout the domain.
Model differences are principally due to the statistical contribution of wave inter-

ferences. The transport equation employed by third-generation spectral models (e.g.,
SWAN), (3.19), disregards the contribution of cross-correlations (correlations of different
wave components), which contain the information about wave interference. The QCM,
on the other hand, does account for this information, and therefore, as the statistical
contribution of wave interference becomes significant, the discrepancies between the
results of QCM (or REF/DIF 1) and SWAN are more pronounced. Therefore, it is neces-
sary to understand under which conditions the effect of wave interferences is important.

Generally speaking, the importance of the interference effects reduces as the spec-
trum of the incoming field becomes wider (e.g. Vincent and Briggs, 1989). Effectively,
the multiple out-of-phase interference patterns generated by each wave component of
the incoming field cancel each other out. Consequently, the superposition of the inter-
ference patterns becomes smoother as the incoming spectrum becomes wider. This is
the reason why differences between QCM (and REF/DIF 1) and SWAN are larger for Jet1

than Jet2. Whether or not interference effects can be expected may formally be related to
the ratio β between the correlation length scale of the incident wave field, Lc , and a typ-
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Figure 3.2: Comparison between QCM, REF/DIF 1 and SWAN in terms of the spatial distribution of the sig-
nificant wave height. Upper panels show the results of the simulation Jet1, while the lower panels display the
results due to Jet2.

ical length scale of the medium, Lm . Interference effects may become significant when
β≥ O(1) and are more pronounced for larger values of β (hence the difference between
Jet1 and Jet2). This statistical condition is discussed in detail next.

3.4. DISCUSSION
The statistical contribution of wave interferences as a function of the parameter β can
be analyzed conceptually as follows. Considering a certain point in space beyond the
crossing zone, where interference effects are expected to play a role and assuming that
the incoming field is monochromatic, for which β → ∞. In this case, the correlation
function at the considered point will extend over a very large spatial domain (Lc →∞),
and will generally be composed of in-phase variance terms of the scattered field and
out-of-phase cross-correlation terms between each pair of scattered waves. The cross-
correlation terms include contributions that were generated due to correlation between
the incoming field and the interference structures it forms. As the spectrum of the in-
coming field becomes wider (namely, S(k)

d becomes larger), the correlation function will
extend over smaller domains and accordingly, β will take smaller values. The corre-
sponding change in the interference effect can be analyzed from the physical point of
view, by examining the correlation function, Γ, or from the spectral point of view, by con-
sidering the Wigner distribution, W . From the physical point of view, when the incom-
ing spectrum becomes wider and β reduces, the correlation value between the incom-
ing field and the interference pattern it forms will become smaller, and consequently,
the contribution of wave interference, at the considered point, reduces as well. In the
limit, when β→ 0 (and therefore, Lc → 0), this correlation value converges to zero and
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Figure 3.3: A comparison between QCM, REF/DIF 1 and SWAN in terms of the significant wave height along
the sections that are indicated in Fig. 3.1. Upper panels show the results of the simulation Jet1, while the lower
panels display the results due to Jet2.

the contribution of wave interference is eliminated.
The spectral point of view examines the representation of the cross-correlation terms

in the Wigner distribution. Since the phases of the cross-correlation terms are not nec-
essarily zero, their amplitudes may either be positive or negative, and therefore, tend to
cancel each other and lose intensity. As a result, when the Wigner distribution at the
considered point is integrated over the spectral space for the purpose of computing the
total variance, and the corresponding value of, say Hs , the contribution of the cross-
correlation terms will be less pronounced with the increasing of S(k)

d , and therefore, less
pronounced with the decreasing of β.

3.4.1. THE EVOLUTION OF THE CROSS-CORRELATION TERMS

This subsection provides a numerical demonstration of the above discussion on the sta-
tistical condition to the appearance of interference effects in the scattered field. The
interaction problem between waves and a vortex-ring is a convenient example for this
purpose. This is due to the fact that in this case, the domain essentially consists of two
homogeneous regions separated by a scattering region, which are referred to as ’the in-
coming field’, ’the scatterer’ and ’the scattered field’, respectively (see Fig. 3.4). Con-
sequently, the statistical condition to wave interferences, which says that correlation
should emerge between the incoming field and the interference structure it forms, is
readily demonstrated through this interaction problem, as it can be replaced by the con-
dition that the correlation function should extend over a larger domain than the effective
domain of the vortex ring.

The statistical condition to the appearance of interference effects is examined by
considering the evolution of the correlation function and the Wigner distribution for
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simulations Ring1 and Ring3 (which differ by their initial spectrum width, see Table 3.1)
over a specific spatial path. The spatial path was selected such that it would pass over an
area where Hs is significantly affected by wave interferences (see Fig. 3.5). Finally, the
contribution of the interference terms are emphasized by compering the results of QCM
to the corresponding results of SWAN.
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Figure 3.4: Wave rays due to k0 over a vortex-ring. The rays are indicated by the solid lines, and the ambient
current is marked by arrows. Note that in this case, the rays at x1 = 0 are normally incident. Additionally,
the dashed vertical lines are sections along which the results of the significant wave height will be displayed.
Finally, the dotted lines distinguish between different regions of the wave field.

In order to identify wave interference effects, the manner in which the cross-
correlation terms (which represent the contribution of wave interferences) are repre-
sented is explained first (refer also to the definitions in (3.9) and (3.10)). Given two cor-
related wave components, their contribution in the correlation function results in two
variance terms with wavenumbers k1 and k2, and cross-correlation term (or interfer-
ence term) with a wavenumber (k1 +k2)/2. The amplitude of the cross-correlation term
depends on the amplitudes of the two wave components and their phase difference. If
the point, around which the correlation function is considered, is located at the trough
of the interference pattern generated by the two waves, then the amplitude of the cross-
correlation term will be negative and vice versa. Also recall that the correlation function
presented here follows the definition in (3.8). Consequently, Γ(x , x ′) is the correlation
between ψ(x + x ′/2) and ψ∗(x − x ′/2), which is different from the function that defines
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the correlation between ψ(x) and ψ∗(x +x ′).

Figure 3.5: The distribution of the significant wave height due to the interaction between waves and a vortex-
ring. The upper panels present the results of Ring1 and the lower panels present the results due to Ring3.
Additionally, the solid lines represent the wave rays due to k0. Finally, the three black points denoted by P1, P2
and P3 indicate the spatial path along which the evolution of the correlation function and the Wigner distribu-
tion is considered. P1, is located at (1000m,−525m), P2, is at (2000m,−625m) and P3, is at (3000m,−725m).

The analysis starts by examining the evolution results of the correlation function and
the Wigner distribution for the simulation Ring1. In this case β > 1, and therefore, the
effect of the cross-correlation terms on the structure of the correlation function and the
Wigner distribution is likely to be significant. This is indeed evident by comparing the
results of QCM (Fig. 3.6) to the results of SWAN (Fig. 3.7). Notable differences clearly ap-
pear in the results around P2 and P3, in ’the scattered field’, where interference effects are
significant. Both of these points are located along the trough of the interference pattern
(see Fig. 3.5). Indeed, the amplitudes of the cross-correlation terms, which are obtained
at these points, are negative, as indicated by the blue areas in the Wigner distribution
due to QCM. Note that these blue areas are located exactly between the red areas which



3.4. DISCUSSION

3

53

relate to the amplitudes of the variance terms. As expected, the blue areas do not appear
in the action density spectrum due to SWAN, as it disregards the cross-correlation terms
and only accounts for the variance terms. Moreover, in contrast to SWAN’s results which
only accounts for variance terms that are crossing close to the considered points, the
QCM also includes contribution of variance terms and related cross-correlation terms
that are crossing at some distance away from the considered points. This can be seen by
comparing the Wigner distribution due to QCM and the action density spectrum due to
SWAN and by referring to the wave rays in Fig. 3.4. Finally, note that the variance areas
in the Wigner distribution are somewhat more spread than the corresponding variance
areas appearing in the action density spectrum.

Figure 3.6: The evolution of the correlation function (shown by the upper panels) and the corresponding
Wigner distribution (shown by the lower panels) as presented by the spatial points, P1, P2 and P3. The values of
the results are normalized by |Γ(P j , x ′)|max and |W(P j ,k)|max . These results were obtained for the simulation
Ring1 using QCM.

The negative values of the cross-correlation amplitudes in the results due to QCM
lead to the fact that the correlation function at these points does not provide the maxi-
mum correlation value at its center (i.e., at x ′′′ = 0). Conversely, since the SWAN model
ignores the cross-correlation terms, the correlation function will always obtain the max-
imum value at x ′′′ = 0. Therefore, the correlation function as it defined in (3.8), does not
necessarily show the maximum value at x ′′′ = 0 for inhomogeneous fields.

Besides changing the correlation value at the central point, it is difficult to iden-
tify the cross-correlation terms directly through the correlation function. However, it
is clear that these terms significantly change the structure of the correlation function, as
reflected by the differences in the results due to QCM and SWAN (compare upper panels
in Fig. 3.6 and Fig. 3.7).

The significant contribution of wave interferences appearing in the results around
P2 and P3 implies that correlation emerges between the ’incoming field’ and ’the scat-
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Figure 3.7: The evolution of the correlation function (shown by the upper panels) and the corresponding
action density spectrum (shown by the lower panels) as presented by the spatial points, P1, P2 and P3. The
values of the results are normalized by |Γ(P j , x ′)|max and |N (P j ,k)|max . These results were obtained for the
simulation Ring1 using SWAN.

tered field’. This is indeed shown by the results of the correlation function around P1

in Fig. 3.6 (or in Fig. 3.7). The results show that the correlation function extends over
a much larger domain than the effective domain of the vortex ring and that strong cor-
relation values emerge between the incoming and the scattered field. Accordingly, the
generated cross-correlation terms at P1 have a clear signature on the structure of the
correlation function and the Wigner distribution due to QCM (compare the results of P1

in Fig. 3.6 and Fig. 3.7). These cross-correlation terms are transported along with the
variance terms, altering dramatically the statistics of the scattered field, as shown by the
significant differences between the results of QCM and SWAN around P2 and P3.

The differences in the results between QCM and SWAN for the simulation Ring3 are
much less prominent (see Fig. 3.8 and Fig. 3.9). The reason for this is that at P1, the corre-
lation function extends over a domain with about the same diameter as that of the vortex
ring, and only small correlation value arises between the incoming field and the interfer-
ence structure it forms in the vicinity of the crossing point at (x1, x2) = (1365m,−355m)
(see Fig. 3.5). As a consequence, at P1, the amplitudes of the generated cross-correlation
terms are quite low, as shown by the blue area in the Wigner distribution due to QCM
in Fig. 3.8. Over the ’scattered field’ region, at P2 and P3, the influence of the cross-
correlation terms is hardly detected through the correlation function, and indeed, at
these points the correlation function due to QCM and SWAN are almost identical. How-
ever, the presence of the cross-correlation terms is visible in the Wigner distribution due
to QCM by the blue area located between the variance areas. These cross-correlation
terms eventually result in a limited contribution to the statistics of the scattered field, as
for instance appears by the spatial distribution of Hs in Fig. 3.5.
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Figure 3.8: The evolution of the correlation function (shown by the upper panels) and the corresponding
Wigner distribution (shown by the lower panels) as presented by the spatial points, P1, P2 and P3. The values of
the results are normalized by |Γ(P j , x ′)|max and |W(P j ,k)|max . These results were obtained for the simulation
Ring3 using QCM. Note that the scale over which the correlation function is plotted is much smaller than the
corresponding scale used to present the results for Ring1.

To conclude, the examination of the evolution of the correlation function and
the Wigner distribution verifies the statistical condition for the generation of cross-
correlation as was introduced conceptually in the beginning of this section. Moreover,
the examination also demonstrates numerically, that the correlation value between the
incoming field and the interference structure it forms determines the dominance of the
interference patterns in the scattered field.

3.4.2. THE VALIDITY OF THE QCM
The final issue that is discussed here is the validity of the QCM versus the validity of
SWAN over the parameter β. As was explained in the derivation of the QCM in Subsec-
tion 3.2.3 and following the presentation of the results so far, the QCM, in contrast to
SWAN, seems to remain statistically valid for β ≥ O(1). The reason for this was exten-
sively discussed in the previous subsection, and in short, is simply because the QCM
accounts for statistical inhomogeneity of the wave field, generated due to interference
effects.

The validity of QCM over β is presented by demonstrating the convergence of its
results, obtained with an increasing value of β, to a single result of REF/DIF 1 obtained
with a specific high value ofβ. To this end, QCM is used to compute Hs along the sections
shown in Fig. 3.4 using simulations Ring1, Ring2 and Ring3 which are defined with a
decreasing value of β (i.e., Ring1 is defined with the highest β value, whereas Ring3 is
defined with the lowestβ value, see also Table 3.1). In addition, the result due to REF/DIF
1 is obtained through Ring1. Finally, the convergence of QCM results to the result of
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Figure 3.9: The evolution of the correlation function (shown by the upper panels) and the corresponding action
density spectrum (shown by the lower panels) as presented by the spatial points, P1, P2 and P3. The values of
the results are normalized by |Γ(P j , x ′)|max and |N (P j ,k)|max . These results were obtained for the simulation
Ring3 using SWAN. Note that the scale over which the correlation function is plotted is much smaller than the
corresponding scale used to present the results for Ring1.

REF/DIF 1 is shown by the upper panels in Fig. 3.10 and Fig. 3.11. The same procedure
is performed using SWAN and is presented by the lower panels in Fig. 3.10 and Fig. 3.11.

Over ’the scatterer’ region, before the focusing zones, SWAN seems to remain valid
(see Fig. 3.10, section A) even for the highest β considered, that corresponds to the
simulation Ring1. However, over ’the scattered field’ region, where interference effects
emerge, SWAN does not converge to REF/DIF 1 when β increases. On the other hand,
QCM does converge to REF/DIF 1, and seems to remain valid for the scattered field as
well.

It is important to remember that the capabilities of QCM over β involve a constraint.
This constraint is that ϵ≪ 1, introduced by the deterministic model, (3.7), which under-
lies the development of QCM. Finally, recall that QCM is also limited to small values of µ,
which basically limits its capabilities to accurately evolve interference terms with a wave
length of LW ≤O(L), where L is the wave length of the considered point k (see details in
Smit and Janssen, 2013).

3.5. CONCLUSIONS
This study presents the development of a statistical model for problems of wave-current
interaction, taking into account the effect of wave interferences. The theoretical basis
of this model lies in the definition of the Wigner distribution W , of the action variable,
ψ. This distribution provides a complete spectral description of the second-order statis-
tics of the wave field. It includes cross-correlation terms, which provide the statistical
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Figure 3.10: On the validity of QCM (upper panels) and SWAN (lower panels) over the parameter β, shown
through the convergence of the significant wave height to the result of REF/DIF 1 with Ring1. The results are
given along sections A and B that are indicated in Fig. 3.4.

information about wave interferences. As such, W generalizes the concept of the action
density spectrum, N , which only accounts for the information of wave variances.

Using the procedure described in Smit and Janssen (2013) and Smit et al. (2015a),
an evolution model for W (the QCM) is developed. This model provides a generaliza-
tion of the conventional action balance model (presently employed by third-generation
spectral wave model, e.g., SWAN and WAVEWATCH III), by allowing the generation and
transportation of statistical wave interferences.

The effect of wave interferences can contribute significantly for cases where the vari-
ation scale of the medium is at the same order or smaller than the scale of the correlation
length, namely, for cases in which β≥O(1). This statistical condition is explicitly exam-
ined for scenarios where the incoming field is statistically homogeneous, but develops
inhomogeneity while propagating over ambient currents. Specifically, in order to obtain
a statistical signature of wave interferences, the incident and scattered fields should be
correlated, with the dominance of the interference effect determined by the correlation
value itself.

In cases where this correlation is strong, the interference patterns alter the statis-
tics of the field significantly. The resulting effect on the significant wave height, Hs , is
demonstrated through two examples of wave-current interaction and by a comparison
to the SWAN model. It is demonstrated that in such cases, interference effects dramat-
ically change the distribution of Hs , not only at the vicinity of wave focusing areas, but
also in a significant distance away from the focusing points.

It is therefore concluded that for regions involving rapid variability in medium (e.g.,
coastal regions or oceanic regions which tend to contain submesoscale currents), con-
sideration of the statistical information of wave interference might by crucial for many
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Figure 3.11: On the validity of QCM (upper panels) and SWAN (lower panels) over the parameter β, shown
through the convergence of the significant wave height to the result of REF/DIF 1 with Ring1. The results are
given along sections C and D that are indicated in Fig. 3.4.

applications, such as, wave-induced circulation and transport processes in coastal re-
gions or for prediction of extreme elevations in the open ocean.
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APPENDICES

3.A. THE WEYL OPERATOR AND ITS ASYMPTOTIC FORM
The purpose of this appendix is to provide the definition of the pseudo-differential op-
erators employed in this study. To this end, the operator Ω(x ,−i∇x ) will serve as a rep-
resentative (the following also applies to the operators Σ(x ,−i∇x ) and A(x ,−i∇x ) that
were introduced in Section 3.2). Additionally, for convenience, the expressions in this
appendix (and in Appendix B) are presented using the slow scale coordinates xm = ϵx
and tm = ϵt . However, in order to avoid cumbersome formulations, the subscript, m,
indicating these slow scale coordinates will be removed, keeping in mind that for the
purposes of this appendix (and Appendix B), x and t are now serving as the slow scale
coordinates. An additional notation is the letter D j , which will be used here and in the
following appendices to represent the operator −i∇ j .

The definition of the pseudo-differential Ω(x ,ϵDx ) is based on its association with a
"phase-space" symbol (a function which is defined in (x ,k) space). Here, it is assumed
that such a "phase-space" symbol can be defined locally (in this case, it is the usual dis-
persion relation, (3.2)), which basically requires that the characteristic length scale of
the medium variation is much larger than the considered wave length (e.g., Dingemans,
1997), i.e., that ϵ≪ 1.

Given a "phase-space" symbol, the corresponding operator in the physical space can
be defined through the association between k and Dx . However, because x and Dx do
not commute, one must follow an association rule for an arbitrary symbol. Here, the
Weyl rule of association is adopted (see, e.g., Cohen, 2012), which is defined through the
following Fourier transform of ω(x ,k):

ω(x ,k) =
∫
ω̂(q , p)exp(i q · x + i p ·k)d qd p (3.25)

Then, the Weyl operator is obtained by substituting the operator ϵDx instead of k , which
provides the following expression:

Ω(x ,ϵDx ) =
∫
ω̂(q , p)exp(i q · x + iϵp ·Dx )d qd p (3.26)

and which can be simplified using the commutator value, [i q · x ,ϵi p ·Dx ] =−iϵq ·p , to
obtain,

Ω(x ,ϵDx ) =
∫
ω̂(q , p)exp(

i

2
ϵq ·p)exp(i q · x)exp(iϵp ·Dx )d qd p (3.27)

An important step is to define the asymptotic form of the Weyl operator, which will be
used quite often to understand and interpret the leading orders results of its operation
on a certain variable. As shown below, this asymptotic form depends on a Taylor expan-
sion of the dispersion relation, and therefore (at least conceptually), should be defined
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around k0 ̸= 0, since derivatives of the dispersion relation at k = 0 are singular. In order
to obtain the asymptotic form of the Weyl operator, the Fourier transform of the disper-
sion relation around k0 is replaced by the Taylor expansion of the dispersion relation
around that point,

Ω(x ,ϵDx ) =
∫

[exp(i k ·Dk )ω̂(q ,k)]k=k0 exp(−i p ·k)exp(
i

2
ϵq ·p)

exp(i q · x)exp(i p · (ϵDx −k0))dkd qd p (3.28)

which, after Fourier transform with respect to k , reduces to,

Ω(x ,ϵDx ) =
∫
δ(p)

[
exp(i q ·x)exp[i p·(ϵDx−k0+ϵq

2
)]exp(i

←−
D p ·−→D k )ω̂(q ,k)

]
k=k0

d qd p

(3.29)

and eventually, leading to the following asymptotic form:

Ω(x ,ϵDx ) =
[
ω(x ,k)exp(

i

2
ϵ
←−
D x ·←−D k )exp[i

←−
D k · (ϵDx −k0)]

]
k=k0

(3.30)

In the following, the operation of Weyl operator, using its asymptotic form, (3.30), is ex-
amined for two examples: the case of a plane wave over homogeneous medium, and the
case of a plane wave propagating over slowly varying medium. The operation of the Weyl
operator in the first case is easily worked out, as in this case, the dispersion relation is not
a function of x , and also the spatial derivatives on the representative variable of the field
can be resolved directly. This is demonstrated as follows. The plane wave is represented
by the surface potential as, φ= A exp[i (k0 ·x −ω0t )/ϵ], and consequently, the operation,
Ωφ, is obtained by the following:

Ω(ϵDx )φ=ω(k0)φ (3.31)

which is the desired result as detailed in the beginning of Appendix B.
In the second example, the considered wave component is represented by the sur-

face potential as, φ = A(x)exp[(S − iω0t )/ϵ]. In this case, the operation of the Weyl op-
erator is not immediately seen. The leading order (O(1)) term is obtained when the first
exponent in (3.30) is taken to be equal one, and the spatial derivative of the second expo-
nent, Dx , operates only on the exponent of φ. This term is the dispersion relation, (3.2).
Terms of O(ϵ) are obtained for three different set of conditions. Two of these sets instruct
to take the first exponent in (3.30) to be equal one, and at each expansion order of the
second exponent the spatial derivative, Dx , should operate once on A for the one set or
once on S, as instructed by the other set. The third term is obtained using the second
term of the expansion of the first exponent of the operator and when the spatial deriva-
tive of the second exponent, Dx , operates only on the exponent of φ. This description is
summarized as follows:
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Ω(x ,ϵDx )φ=ω(x ,Dx S)φ+ϵi
(
Dx A ·Dkω+ i

2
AD2

x SD2
kω

+ 1

2
ADx ·Dkω

)
k=Dx S

exp[(S − iω0t )/ϵ]+O(ϵ2) (3.32)

This closes the formal definition of the Weyl operator, (3.27), and its asymptotic form,
(3.30). The operation of the Weyl operator on representative variables in the homoge-
neous and weakly inhomogeneous case are used next to verify the evolution equation of
the action variable, ψ.

3.B. ON THE EVOLUTION EQUATION OF THE ACTION VARIABLE
This appendix aims to demonstrate that the starting point equation (the evolution equa-
tion of the action variable), (3.7), is exact for the case of linear wave propagation over
homogeneous medium, and reduces to the correct evolution equations for the weakly
inhomogeneous case. In the latter, the correct evolution equations are the dispersion
relation, (3.2), and the well-known action balance equation (e.g., Dingemans, 1997). For
these purposes, the starting point equation, (3.7), is written once again, using the slow
scale coordinates, as follows:

ϵ∂tψ=−iΩ(x ,ϵDx )ψ (3.33)

where, as in the previous appendix, these slow scale coordinates are indicated using the
same variable notation of the fast scale coordinates, x , t , in order to avoid cumbersome
formulations.

As introduced, the first aim here is to show that the starting point equation, (3.33),
describes exactly the correct solution of an incoming plane wave over an homogeneous
medium. To this end, the following example will be worked out. Considering a specific
domain of interest, the example assumes that into one of the domain’s boundaries enters
a monochromatic wave field with an absolute frequency, ω0. In this case, the surface
variables of the considered wave obey to the following form:

φ= A0 exp[(S − iω0t )/ϵ]+ c.c.

η= B0 exp[(S − iω0t )/ϵ]+ c.c.
(3.34)

where, B0 = i A0(ω0 −U · (Dx S))/g , as follows from the linear relation between φ and η

(see, e.g., Dingemans, 1997),

η=− 1

g
(∂t +U ·∇x )φ (3.35)

the wavenumber, Dx S, is constant, and the constant amplitude, A0, assumed to be a
"proper" (see, e.g., Lapidoth, 2017) Gaussian random variable, namely, 〈A2

0〉 = 0. The
corresponding form of ψ is obtained following its definition, (3.3),

ψ= 1√
2g

[
C0 exp[(S − iω0t )/ϵ]+D0 exp[(−S + iω0t )/ϵ]

]
(3.36)
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where, following (3.31), a = p
σ(Dx S), and the amplitudes, C0 and D0 are defined as,

C0 = g a−1B0 + i a A0, and, D0 = g a−1B∗
0 + i a A∗

0 . Using these starting points, it is now
aimed to show that (3.33) produces the correct magnitude of Dx S. By substituting (3.36)
into (3.33), one obtains that the first solution (with the amplitude C0), produces, as re-
quired, the equation: ω0 = ω(Dx S). Substituting this result into the definition of B0,
which becomes B0 = i A0σ(Dx S)/g , provides the necessary result that D0 = 0 (this is nec-
essary, since the second term of ψ is not a solution of (3.33)), whereas, the value of C0 is
then given by: C0 = 2i A0

p
σ(Dx S).

The second aim of this appendix is to show that the starting point equation (3.33)
reduces to the correct evolution equations for the weakly inhomogeneous case. To do
this, the same example as in the homogeneous case is considered. Following the WKB
method (e.g., Holmes, 1995), and assuming that the bathymetry and the current are not
time dependent, the surface velocity potential and elevation, φ and η, can be defined to
leading order in ϵ by (3.34), where now, A0 and S are functions of x . The corresponding
leading order definition ofψ is given by (3.36), but now, following (3.32), a =p

σ(x ,Dx S).
By substituting this definition into (3.33) and using the result of (3.32), the O(1) eikonal
equation is obtained to be, ω0 =ω(x ,Dx S), which can be written as,

ω0 =U ·Dx S +σ(x ,Dx S) (3.37)

Using this result, B0, is obtained to be, B0 = i A0σ(x ,Dx S)/g , leading to the same nec-
essary result as before, that D0 = 0, whereas, C0, is given by: C0 = 2i A0

p
σ(x ,Dx S). The

remaining unknown, A0, is found through the following O(ϵ) transport equation:(
DxC0 ·Dkω+ i

2
C0D2

x SD2
kω+ 1

2
C0Dx ·Dkω

)
k=Dx S

= 0 (3.38)

which alternatively, can be written as,

Dx · (〈|C0|2〉Dkω) = 0 (3.39)

In order to verify that (3.39) is the well-known action balance equation (e.g., Dingemans
(1997)), one should check that ρ〈|ψ|2〉 = ρ〈|C0|2〉 indeed defines the mean action density.
To see this, one may calculate 〈|ψ|2〉directly, using the definition ofψ, (3.3), which results
in,

ρ〈|ψ|2〉 =
[1

2
ρg 〈η2

0〉+
1

2g
ρ〈(Σφ)2

0〉
]

/Σ+O(ϵ) (3.40)

where, the subscript, 0, indicates on O(1) terms. The expression in the rectangular brack-
ets is exactly the mean energy density, m0 that was introduced in (3.6). Clearly, the first
term of the expression represents the mean potential energy density, though the con-
nection of the second term to the density of the kinetic energy might not be immedi-
ately obvious and should be clarified. Following (3.32), the first order operation, (Σφ)0,
is defined as (Σφ)0 = σ(x ,Dx S)φ. Substituting this result into (3.40), the second term
becomes equal to the mean kinetic energy density for homogeneous medium that is de-
fined by the local values, h(x) and U (x) (e.g., Section 6.3 in Van Groesen and Molenaar,
2007). Similarly, the first order operation due to Σ−1 is equivalent to the division of the
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expression in the rectangular brackets by the local intrinsic frequency, σ. The result is
the definition of the mean action density (Bretherton and Garrett (1968)).

3.C. FROM WIGNER DISTRIBUTION TO LOCAL ENERGY
To motivate the necessity for an alternative formula that links between the energy den-
sity, m0, and the Wigner distribution,W(x ,k , t ), the following example is discussed (note
that here, the formulation returns to be written in terms of the original spatial coordi-
nates, x and t ). The example assumes an idealized sea state composed of three coherent
and forward-propagating wave components in a 1d and homogeneous medium. The
waves are defined with the following wavenumbers: k1, k2, and k3 = (k1 +k2)/2. Accord-
ingly, at a certain moment in time t0, the wave field may be represented as follows:

φ=
3∑

n=1
An exp(i kn x)+ c.c.

η=
3∑

n=1
Bn exp(i kn x)+ c.c.

(3.41)

where, An and Bn are complex random amplitudes. The amplitude, Bn , is given by, Bn =
i Anσn/g , as follows from the linear relation between φ and η, (see, (3.35) in Appendix
B). The mean energy density, m0 in this example, is derived using the expression in (3.6),
and can be written as follows:

m0 = 2

g

3∑
n=1

3∑
m=1

σnσm〈An A∗
m〉exp[i (kn −km)x] (3.42)

The approach employed in this study to get to (3.42) is via the Wigner distribution of the
action variable, ψ, which for this example is given by,

W(x,k, t0) = 2

g

3∑
n=1

3∑
m=1

p
σn

p
σm〈An A∗

m〉exp[i (kn −km)x]δ[k − kn +km

2
] (3.43)

where δ(k) is now serving as the usual delta function. Now it can be seen explic-
itly that a simple substitution of (3.43) into (3.12) will not provide the result described
in (3.42). As an example, consider the components in W that multiply the function
δ[k − (k1 + k2)/2]. Following the definition of k3, there are two such components:
2σ3〈|A3|2〉/g and 2

p
σ1

p
σ2{〈A1 A∗

2 〉exp[i (k1 −k2)x]+ c.c}/g , which related to the vari-
ance of the third wave component and to the correlation between the first and the sec-
ond wave components, respectively. If W is substituted into (3.12), both of these com-
ponents will be factored by σ3, which by referring to (3.42), will not lead to the correct
interference term between the first and the second wave components. It is concluded
that in order to calculate the mean energy density correctly, one must distinguish be-
tween the variance term and the interference terms for each k, and only then multiply
by the correct factor. The derivation of an alternative formula to obtain m0 based on W
is detailed below.

The starting point of the following derivation is the relation between the action vari-
ble,ψ, and the mean energy density, m0, as given in (3.5), recalling that a(x ,Dx ) is a Weyl
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operator associated with the square root of the intrinsic angular frequency, σ1/2(x ,k).
Following the definition of Weyl’s operator, the expression in (3.5) can be written as,

〈|A(x ,Dx )ψ|2〉 =
∫

â(q1, p1)â∗(q2, p2)exp(
i

2
q1 ·p1 + i

2
q2 ·p2)

exp[i x · (q1 −q2)]〈ψ(x +p1, t )ψ∗(x −p2, t )〉d q1d q2d p1d p2 (3.44)

By substituting the Fourier transform of the correlation function, Γ= 〈ψ(x +p1, t )ψ∗(x −
p2, t )〉, the following expression is obtained:

〈|A(x ,Dx )ψ|2〉 =
∫

â(q1, p1)â∗(q2, p2)exp[i q1 · (x +p1/2)− i q2 · (x −p2/2)]

exp(i k1 ·p1 + i k2 ·p2)Γ̂(k1,k2, t )exp[i x · (k1 −k2)]dk1dk2d q1d q2d p1d p2 (3.45)

Integrating the above expression with respect to q1 and q2 leads to,

〈|A(x ,Dx )ψ|2〉 =
∫

â(x +p1/2, p1)â∗(x −p2/2, p2)exp(i k1 ·p1 + i k2 ·p2)

Γ̂(k1,k2, t )exp[i x · (k1 −k2)]dk1dk2d p1d p2 (3.46)

By assuming that σ is independent of x , (3.46) reduces to the following expression:

〈|A(x ,Dx )ψ|2〉 =
∫ √

σ(k +k ′/2)
√
σ(k −k ′/2) Γ̂(k ′,k , t )exp(i k ′ · x)dk ′dk (3.47)

where, the change of variables, k1 = k +k ′/2 and k2 = k −k ′/2, was applied.
Otherwise, (3.46) can be integrated once more. Now the integration is performed

with respect to p1 and p2, leading to the following result:

〈|A(x ,Dx )ψ|2〉 =
∫

[exp(
i

2
Dx ·Dk1 )a(x ,k1)][exp(− i

2
Dx ·Dk2 )a∗(x ,−k2)]

Γ̂(k1,k2, t )exp[i x · (k1 −k2)]dk1dk2 (3.48)

Ultimately, if terms of O(ϵ) are omitted, and by applying the same change of variables
over the wavenumber space (as indicated above), the following approximation for the
zero order moment of the energy density spectrum, m0, is derived,

m0 ∼ ρ
∫ √

σ(x ,k +k ′/2)
√
σ(x ,k −k ′/2) Γ̂(k ′,k , t )exp(i k ′ · x)dk ′dk (3.49)

which generalizes (3.47) for case with a slowly varying medium.
The numerical implementation of (3.49) is not straightforward. It requires perform-

ing Fourier transform of the Wigner distribution for each wavenumber, k , and around
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each spatial location, x . In addition, one should distinguish, at each location x , between
the Fourier components that relates to the slow variation of the variances and the Fourier
components of the cross-correlation terms.

A different direction to obtain an evaluation of m0 stems from an alternative formu-
lation of (3.49). This formulation is detailed as follows. At first, the Fourier components,
Γ̂(k ′,k , t )exp(i k ′ · x), are replaced by the Fourier transform of the Wigner distribution
around x :

m0 ∼ ρ
∫

f (x ,k ′,k) W(x +x ,k , t )exp(−i k ′ · x)d xdk ′dk (3.50)

where, f (x ,k ′,k) =
√
σ(x ,k +k ′/2)

√
σ(x ,k −k ′/2). Then, assuming that the Wigner dis-

tribution around x can be expressed as a Taylor expansion, and after integrating over x ,
the following approximation of m0 is obtained:

m0 ∼ ρ
∫
δ(k ′)[ f (x ,k ′,k)exp(i

←−
D k ′ ·−→D x )W(x ,k , t )]dk ′dk (3.51)

where, due to the symmetry of f around k ′ = 0, the exponent in the integral of the last
expression can be replaced by a cosine. As opposed to the numerical implementation of
(3.49), the implementation of (3.51) is straightforward. The first term in the expansion
of (3.51) is exactly the formula used in SWAN, as given by (3.12). The high-order terms
provide corrections (of O(µ), see the definition of µ in Subsection 3.2.3) to the cross-
correlation components that are stored in k . Ultimately, in the numerical examples, m0

is evaluated up to second order using the following expression:

m0 ∼ ρ
∫
σ(x ,k)W(x ,k , t )dk + 1

2

∫
[ f (x ,k ′,k)(

←−
D k ′ ·−→D x )2W(x ,k , t )]k ′=0dk (3.52)

3.D. THE EVOLUTION EQUATION FOR THE WIGNER DISTRIBU-
TION

This appendix presents a more detailed derivation of the transport equation for the
Wigner distribution, (3.21), based on Weyl’s rule of association. The starting point of
the derivation is the definition of the Weyl operator, (3.27). As a first step, the definition
of the Weyl opertor, (3.27), is used to define the operator that operates on the correlation
function in (3.16) as,

Ω(x +x ′/2,Dx ′′′ +Dx /2) =
∫
ω̂(q , p)exp[i q · (x +x ′/2)+ i p · (Dx ′′′ +Dx /2)]d qd p (3.53)

Then, the operator can be organized such that the exponential functions being gener-
ated due to the disentanglement of the exponential operators (for details, see Section 2.4
in Cohen, 2012) will cancel each other, leading to the following expression:

Ω(x+x ′/2,Dx ′′′+Dx /2) =
∫
ω̂(q , p)exp(i q ·x)exp(i p·Dx ′′′ )exp(i q ·x ′/2)exp(i p·Dx /2)d qd p

(3.54)
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Following the above expression and the operator correspondences, f (x ′) ↔ f (Dk ) and
f (Dx ′′′ ) ↔ f (k), the corresponding operator that operates on the Wigner distribution in
(3.17) is defined as,

Ω(x−Dk /2,k+Dx /2) =
∫
ω̂(q , p)exp(i q ·x)exp(i p·k)exp(−i q ·Dk /2)exp(i p·Dx /2)d qd p

(3.55)
where the exponential operators that depend on Dk and Dx (the third exponential and
the fourth exponential in the integral on the right hand side of (3.55)) can be written as
an external operators outside of the integral, resulting in the following formulation:

Ω(x−Dk /2,k+Dx /2) =
∫
ω̂(q , p)exp(i q ·x)exp(i p·k)d qd p exp(−i

←−
D x ·−→D k /2+i

←−
D k ·−→D x /2)

(3.56)
which is exactly the exponential form of the operator as presented in (3.18). For the next
steps, it will be convenient to write (3.56) as,

Ω(x −Dk /2,k +Dx /2) =
∫
ω̂(q ,k)exp(i q ·x)exp(i

←−
D k ·−→D x /2)exp(−i q ·−→D k /2)d q (3.57)

which when operates on the Wigner distribution, leads to the following equation:

Ω(x−Dk /2,k+Dx /2)W(x ,k , t ) =
∫
ω̂(q ,k)exp(i q ·x)exp(i

←−
D k ·−→D x /2)W(x ,k−q/2, t )d q

(3.58)
Finally, according to the assumption of small µ (see detailes in Subsection 3.2.3), the
exponential operator is defined through Taylor series. By approximating the exponential
operator to first order in µ, (3.58) becomes,

Ω(x −Dk /2,k +Dx /2)W(x ,k , t ) =
∫
ω̂(q ,k)exp(i q ·x)(1+ i

←−
D k ·−→D x /2)W(x ,k −q/2, t )d q

(3.59)
which is exactly the operator shown in (3.20).

A last an important step that is discussed here, which is necessary to the numerical
implementation of (3.21), is the representation of the left hand side of (3.59) in terms of
the correlation function, Γ(x , x ′, t ). One way to get to this representation involves a few
algebraic steps. The other way is to see it directly through the convolution theorem. In
order to present the second way, the multiplication term, ω̂(q ,k)exp(i q · x), is replaced
by the Fourier transform of ω around x , represented by: ω̂(q ,k , x). Then, using the con-
volution theorem, the following equation is obtained:

∫
ω̂(q ,k , x)(1+ i

←−
D k ·−→D x /2)W(x ,k −q/2, t )d q

=
∫
ω(x +x ′/2,k)(1+ i

←−
D k ·−→D x /2)Γ(x , x ′, t )exp(−i k · x ′)d x ′ (3.60)



3.E. ON THE NUMERICAL MODEL

3

67

3.E. ON THE NUMERICAL MODEL
The steady-state numerical solution of (3.21) uses the following two-dimensional and
equispaced grids: Nx , Nk , Nx , Nq (where x = x ′/2). These grids are constructed using the
following spatial and spectral steps: ∆x,∆k,∆x ,∆q . The value of∆k is chosen according
to the standard-deviation, S(k)

d , of the incoming wave spectrum as, ∆k = S(k)
d /α, where

α ≥ 1 serves as a resolution factor. Additionally, to ease the computation of the source
term SQC , the value of ∆k is selected such that ∆k = ∆q/2 (this selection prevents the
need to perform interpolation in the calculation of the integral in (3.22)).

Next, the choice of ∆q is explained. This choice stems from the fact that for any re-
alistic sea state, the correlation function around a certain point, x , will effectively have
a compact support in |x ′| < Lc /2, where Lc is the correlation length. Consequently, and
as implied by (3.60), instead of an integral operation, the source term in (3.21), SQC ,
can be calculated as a discrete convolution between ∆ω̂ and W (and their derivatives)
over the grid Nq . This is done without introducing any discretization error if∆q ≤ 4π/Lc

(for details which also include the additional treatment required to compute the discrete
version of ∆ω̂, see Smit et al., 2015a). If ∆q is chosen such that ∆q = 4π/Lc , then the ap-
plied value of Lc , which is taken into account in the numerical model, can be found from
the definition of ∆k as, Lc = 2πα/S(k)

d , which is consistent with the expected order that
should characterize the standard-deviation of the envelope of the correlation function
(O(1/S(k)

d )).
The choice of ∆x is argumented in a similar way to the selection of ∆q , but now

knowledge about the boundaries of W over Nk at a certain point, x (beyond which W
equals zero), is required. As for the correlation function, also here, the boundaries are
not easily predicted in advance, because the support of W over Nk can change signif-
icantly over Nx . For accuracy, the necessary ∆x is evaluated in accordance with the
boundaries introduced by Nk . A more economical selection of∆x, which also introduces
an acceptable error, is described by Smit et al. (2015b). Note that by introducing ∆x, the
summation in SQC becomes limited to the region [−qmax , qmax ], where qmax =π/∆x.

Finally, the derivation of ∆x is considered. Its value should be selected according to
the characteristic variation length of W over x , and according to the adopted scheme
for treating the spatial derivatives. Here, the second order upwind scheme (see Hirsch,
2007) is used. The local error introduced by this scheme is of O[(∆xµ/L)3], where L is the
characteristic wave length (L/µ represents the characteristic length of wave interference
at the considered location). Therefore, ∆x should be chosen to be small enough, so that
the global error due to such a magnitude of local error would be acceptable.





4
SPECTRAL FORECASTING OF

COASTAL SEA-SWELL AND

INFRAGRAVITY WAVES USING

QUADRATIC MODELS

Coastal wave forecasting over large spatial scales is essential for many applications (e.g.,
coastal safety assessments, coastal management and developments, etc.). This demand
explains the necessity for accurate yet effective models. A well-known efficient modelling
approach is the quadratic approach (members of this approach are often referred to as
frequency-domain models, weakly nonlinear mild-slope models, amplitude models, etc.).
The efficiency of this approach stems from a significant modelling reduction of the origi-
nal governing equations (e.g., Euler equations). The outcome is a model that describes the
evolution of wave fields based on the slowly varying amplitudes of the progressive com-
ponents only. Most significantly, the description of wave nonlinearity essentially collapses
into a single mode coupling term determined by the quadratic interaction coefficients.
Consequently, it is expected that together with efficiency, this significant modelling reduc-
tion will also involve a decrease in prediction accuracy. In order to gain further insight
into the predictive capabilities of this modelling approach, this study examines six differ-
ent quadratic formulations, three of which are of the Boussinesq type (i.e., Freilich and
Guza, 1984, Madsen and Sørensen, 1993 and Nwogu, 1993) and the other three are re-
ferred to as fully dispersive formulations (i.e., Whitham, 1967, Kaihatu and Kirby, 1995
and Bredmose et al., 2005). It is found that while Boussinesq formulations reliably predict
the evolution of coastal waves, the predictions by the fully dispersive formulations tend to
be affected by false developments of modulational instability. As a consequence, the pre-
dicted fields by the fully dispersive formulations are characterized by unexpectedly strong
modulations of the sea-swell part and associated unexpected infragravity response. As an
alternative to existing formulations, this study suggests a new modulationally stable and
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fully dispersive formulation. This formulation is an attempt to push the limit of the pre-
diction capabilities of coastal waves through the quadratic approach. To this end, a para-
metric process is proposed, striving to find the optimal quadratic interaction coefficients
under the constraint of full linear dispersion. Based on a wide set of examples (including
monochromatic, bichromatic and irregular wave conditions), it is found that the new for-
mulation presents superior forecasting capabilities of both the swell-sea components and
the infragravity field.
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4.1. INTRODUCTION
Over coastal waters, incoming ocean waves undergo a dramatic transformation due
to the interaction with the bathymetry and due to nonlinear wave-wave interactions.
Quasi-linear sinusoidal waves in deep water transform into skewed and asymmetric
saw-tooth like shape over shallower water. Ultimately, the waves break and dissipate
their energy close to shore.

These complex wave dynamics in coastal waters gives rise to many important phe-
nomena nearshore. Examples are, wave setup (e.g. Longuet-Higgins and Stewart, 1964),
alongshore currents (e.g. Bowen, 1969, Longuet-Higgins, 1970, Reniers and Battjes,
1997, Ruessink et al., 2001), return flow (e.g. Dyhr-Nielsen and Sørensen, 1970, Stive
and De Vriend, 1994) and associated sediment transport processes (e.g. Fredsoe and
Deigaard, 1992, Van Rijn, 1993) and the generation of freely propagating infragrvity
waves which may significantly influence wave run-up and overtopping on dikes and
dunes (e.g. Van Gent, 2001), dune erosion and sediment transport (e.g. Roelvink and
Stive, 1989, Roelvink et al., 2009), and harbour oscillations (e.g. Bowers, 1977).

In practice, engineers and governmental agencies require accurate wave parameters
over large spatial scales to correctly predict these processes. A well-known modelling ap-
proach that allows efficient wave prediction over large coastal scales is provided by the
so-called quadratic formulation (other names are frequency-domain formulation, non-
linear mild-slope models, amplitude models, etc.). This approach is referred here as the
quadratic approach to indicate its underlying weakly nonlinear assumption (terms of
third-order and higher are neglected). Apart from the weakly nonlinear assumption, the
efficiency of this approach is achieved by its formulation in terms of the slowly spatial
scale that characterizes the slow bathymetric variations and the variation due to wave
nonlinearity. Additionally, the quadratic modelling also neglects the effect of wave re-
flection and assumes that the wave field is composed of propagating modes only (the so-
called evanescent modes are ignored). As a result, this modelling approach essentially
solves the evolution of the field’s amplitudes assuming slowly varying bathymetry and
weakly nonlinear mode coupling. Obviously, such a simplified modelling approach con-
stitutes a significant reduction of the original incompressible and inviscid Euler equa-
tions. Therefore, a central question that this study aims to answer is, how reliable would
be the forecasting of coastal waves as provided by the quadratic formulation?

The earliest quadratic formulation was suggested by Freilich and Guza (1984) based
on the classical Boussinesq formulation of Peregrine (1967). Over relatively shallow wa-
ters, this model agrees well with observations (Freilich and Guza, 1984). However, due to
its weak dispersion assumption and the associated simplified shoaling description, its
prediction of propagating wave fields over shoaling regions from intermediate to shal-
lower waters may deviate significantly (e.g., Agnon et al., 1993). As a consequence of
the limitations posed by the classical Boussinesq formulation, efforts were set forward
to improve its dispersive behaviour and the associated linear shoaling. These efforts led
to the development of the so-called weakly nonlinear Boussinesq models with improved
dispersion (e.g., Witting, 1984, Madsen et al., 1991, Madsen and Sørensen, 1992, Nwogu,
1993). Based on this modelling paradigm, the quadratic model by Madsen and Sørensen
(1993) was developed. This quadratic model, which serves as the starting point for the
development of the nonlinear quadratic source term in the SWAN model (see Eldeberky,
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1997), indeed demonstrated good agreement for different examples of nonlinear wave
evolution from intermediate waters and over the shoaling and surf zones (e.g., Eldeberky
and Battjes, 1996). The success of the weakly nonlinear Boussinesq models with im-
proved dispersion has motivated further development in this direction. The goal was to
develop fully dispersive and weakly nonlinear models which were expected to improve
wave predictions without additional computational costs. Quadratic models with such
properties were proposed by Agnon et al. (1993) and Kaihatu and Kirby (1995) and later
generalized and further developed by numerous following studies (e.g., Eldeberky and
Madsen, 1999, Bredmose et al., 2005, Janssen, 2006, Sheremet et al., 2016, Ardani and
Kaihatu, 2019, Kim and Kaihatu, 2021).

There is no doubt that these developments have improved the linear characteristics
of the quadratic modelling (i.e., dispersion and shoaling), however doubt arises con-
cerning the improvement in the prediction of nonlinear evolution. This doubt stems
from the fact that the improvement of the linear properties of the quadratic model is
accompanied by a change in the quadratic coefficients, and therefore, also by a change
in the truncation error obtained due to the modelling reduction associated with the for-
mulation of the quadratic model. An indication for that is presented by the study of
Bredmose et al. (2005), which proposes a fully dispersive quadratic model with exact
second-order transfer. In other words, bound wave solutions obtained by this model ex-
actly match the second-order bound wave predictions of Stokes theory (expressions of
which are given by, e.g., Hasselmann, 1962, Sharma and Dean, 1981, Dalzell, 1999). Al-
though it seems promising, Bredmose et al. (2005) observed phase errors of the model
predictions by comparing to laboratory experiments. These phase errors were explained
by the significant over prediction of the amplitude dispersion embedded in this model.
However, apart from cumulative phase errors, errors in amplitude dispersion may lead
to much more dramatic consequences. In specific, it is well known that the amplitude
dispersion has a decisive impact on the evolution of narrow-banded fields (e.g., Lighthill,
2001, Whitham, 1974), controlling energy exchanges through the modulational instabil-
ity mechanism (Benjamin and Feir, 1967). A well-known example that clearly highlights
the effect of improving the linear dispersion relation on the stability characteristics in the
context of weak nonlinear modeling is given by the Whitham equation. The Whitham
equation was proposed by Whitham (1967) as a generalized Korteweg–de Vries (KdV)
equation that incorporates the full linear dispersion relation. Such a generalization is
expected to provide a more faithful description of wave field evolution which may also
composed of shorter wave components. However, it is now known that this general-
ization is accompanied by a dramatic change in the characteristics of the modulational
instability occurring in shallower water than expected (the threshold is µ> 1.146, which
is lower than the usual threshold ofµ> 1.363, see, e.g., Van Groesen, 1998, Hur and John-
son, 2015, where µ= kp h and kp is the characteristic wavenumber of a considered wave
field and h represents the water depth). Thus, Whitham’s generalization turns the modu-
lationally stable KdV equation into a modulationally unstable Whitham equation which
will predict faulty focusing/defocusing recurrence of narrow-banded fields over regions
of relatively small µ. This erroneous effect may not only lead to false energy exchanges
and thus incorrect evolution of the peak frequency components, but may also contami-
nate the associated development of the infragravity components as a result of incorrect
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modulations of the wave field.
This study aims to reveal in further detail the nonlinear properties of the quadratic

modelling approach and to gain insight into the prediction capabilities of different
quadratic formulations to spectrally describe the nonlinear evolution of coastal wave
fields, including the development of the sea-swell components (i.e., the primary har-
monics and the secondary super-harmonics) and the generation and evolution of the
infragravity components (i.e., the secondary sub-harmonics). In total six different for-
mulations are examined and compared. These formulations consist of three Boussinesq
formulations and three fully dispersive formulations. The leading order nonlinear prop-
erties of these formulations, including their second-order bound wave solutions, ampli-
tude dispersion and stability characteristics are explored and compared in Section 4.2.
The study also proposes a new fully dispersive formulation referred to as QuadWave1D.
The main aim of QuadWave1D is to improve the prediction of coastal wave evolution
based on the quadratic modelling paradigm. This is achieved by combining accurate lin-
ear properties and adequate nonlinear balance provided by the quadratic coefficients.
The derivation of QuadWave1D is detailed in Section 4.3. The performances of Quad-
Wave1D and the other six different quadratic formulations are compared to laboratory
observations for monochromatic, bichromatic and irregular wave fields in Section 4.4.
Finally, conclusions are drawn in Section 4.5.

4.2. MODEL ANALYSIS OVER FINITE DEPTH
This section aims to gain further insight into the leading order contributions of the non-
linear evolution of a considered wave field as obtained by different quadratic formula-
tions. As in the rest of this study, the considered wave field is assumed to be composed
of long-crested waves (i.e., this study is confined to one-dimensional wave propagation).
For the purpose of the following analysis, the one-dimensional formulation (ignoring for
now the effect of bathymetry changes) of the quadratic model is given as follows:

∂x an − i kn an =−i
∑

r
Vr,n−r ar an−r (4.1)

where Vl ,m are the quadratic interaction coefficients which stand at the center of interest
of this study. Moreover, an and kn are the nth complex-amplitude and wavenumber of a
time-periodic wave field, represented through the surface elevation function, η, as,

η=∑
n

an exp(−iωn t ) (4.2)

where ωn is the nth wave angular-frequency and x, t represent the spatial and temporal
coordinates. Further details on the derivation of the quadratic model (4.1) are provided
in Appendix 4.A.

The analysis here focuses on the bound wave solutions and the parameters which
control the evolution of narrow-banded seas. To this end, it is assumed here that non-
linear effects are relatively weak, such that Stokes theory can be applied to predict the
physical parameters of the wave field (e.g., surface elevation, fluid velocities, etc.). A
well-known parameter which provides an indication regarding the validity of Stokes ex-
pansion is the so-called Ursell parameter (or Stokes parameter), defined as
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Ur =
Hp L2

p

h3 (4.3)

where Hp and Lp are the characteristic wave height and length of the considered wave
field. Based on this definition, weak nonlinearity corresponds to Ur < 26, for which
Stokes theory applies (see Le Méhauté, 1976). This parameter provides a convenient
non-dimensional limit for the present analysis.

In total, six models are examined. The first three are the Boussinesq models proposed
by Freilich and Guza (1984) (the "consistent shoaling model"), Madsen and Sørensen
(1993) and Nwogu (1993). The other three are the fully-dispersive models proposed by
Whitham (1967), Kaihatu and Kirby (1995) and Bredmose et al. (2005). Note that Nwogu
(1993) and Whitham (1967) actually present time-domain model formulations. How-
ever, here those references are used to refer to the corresponding quadratic formulations
which are derived based on these original time-domain models. The nonlinear inter-
action coefficients and also the linear parameters (for the linear dispersion and wave
shoaling) of these six quadratic models are summarized in Appendix 4.A.

4.2.1. SECOND-ORDER BOUND WAVES
The leading nonlinear contributions to the evolution of wave fields, as provided by the
quadratic model (4.1), are extracted here under the conditions of unidirectional prop-
agation over constant and finite depth. Based on the assumption of weak nonlinearity
(i.e., Ur < 26), the following multiple-scale expansion is being employed (e.g., Holmes,
1995). It is assumed that the waves evolve over two spatial scales. The fast scale is
denoted by x1 = x and the slow scale is represented by x2 = ϵ2x, where the small pa-
rameter ϵ represents the ratio between the typical wave amplitude and wave length in
deep/intermediate water or the ratio between the amplitude and water depth in shallow
water. Note that x2 is defined as O(ϵ2) variable since resonance condition can only be
satisfied between four-waves as dictated by the dispersion relation (this statement con-
tradicts the so-called near-resonance assumption that underlies the development of the
quadratic model, see discussion in Appendix 4.A).

In addition to the definition of the two new spatial variables, it is also assumed that
the nth complex-amplitude, an , can be written as follows:

an = ϵa(1)
n +ϵ2a(2)

n +ϵ3a(3)
n + ... (4.4)

By substituting these assumptions into the quadratic model, (4.1), one obtains a set of
equations, each balances terms of mutual order. The first three equations are given as
follows:

∂x1 a(1)
n − i kn a(1)

n = 0 (4.5)

∂x1 a(2)
n − i kn a(2)

n =−i
∑

r
Vr,n−r a(1)

r a(1)
n−r (4.6)

∂x1 a(3)
n − i kn a(3)

n =−∂x2 a(1)
n − i

∑
r

Vr,n−r
(
a(1)

r a(2)
n−r +a(2)

r a(1)
n−r

)
(4.7)
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The interest here focuses on the bound wave solutions which can be obtained through
the solution of (4.6). To this end, knowledge of a(1)

n is required. This knowledge is
achieved through the solution of (4.5), given by

a(1)
n = An exp(i kn x1) (4.8)

where An is a complex amplitude that depends on the boundary condition, say at x = 0,
and the variable x2. In addition, the wavenumber, kn , is obtained through the disper-
sion relation, D(ωn ,kn) = 0, as defined by the different model formulations (see details
in Appendix 4.A). Returning now to the solutions of the bound waves which are obtained
through (4.6). These bound wave solutions are considered for each possible bichromatic
pair. To this end, a pair of two incoming primary wave component which are represented
by Al and Am , are assumed. Using the linear solution, (4.8), and assuming that the ho-
mogeneous solution of a(2)

n equals zero, the following expression is obtained:

a(2)
n =


2Gl ,m al am , l ̸= m

Gl ,m al am , l = m

0, m =−l

(4.9)

where n = l +m, and the so-called quadratic transfer function, Gl ,m , is given by

Gl ,m =Vl ,m/(kn −kl m) (4.10)

As in the rest of the text, notations like flm (e.g., kl m) are interpreted as fl m = fl + fm .
Note that for the case where m =−l , a(2)

n is zero since Vl ,−l is zero (see Subsection 4.3.1
for introduction on the general properties of Vl ,m). However, in the limit for which m
approaches to l , the value of Gl ,−m does not converges to zero, but it converges to the
coefficient that corresponds to the set-down associated with a monochromatic wave.

A computed demonstration of the bound solutions is presented in Fig. 4.1. The figure
compares the solutions according to each of the models, where the values are normal-
ized by the values of the solutions according to the second-order Stokes theory (expres-
sions of which are given by, e.g., Hasselmann, 1962, Sharma and Dean, 1981, Dalzell,
1999).

Following these results, the model of Bredmose et al. (2005) is clearly preferable over
the others with regard to the prediction of the bound waves. In fact, the solutions fol-
lowing Bredmose et al. (2005) match exactly to the solutions according to Stokes theory.
The deviation of the other models arises as a result of two factors. The first relates to the
nonlinear terms of the underlying time-domain models which construct the quadratic
coefficients, Vl ,m . These terms are subjected to some a priori assumed relation between
the depth parameter µ and the parameter for nonlinearity ϵ. For example, a well-known
relation is ϵ=O(µ2), which leads to the classical Boussinesq formulation (e.g., Peregrine,
1967). Therefore, under the classical Boussinesq regime, nonlinear terms involving cor-
rections of the dispersion relation are neglected (refer also to Madsen and Schäffer, 1998
for detailed discussion on the impact of the relation between µ and ϵ on the second-
order bound wave solutions). The second factor that leads to deviations in the bound
wave predictions, which is also embedded in Vl ,m , is the near-resonance assumption,
that is usually taken to derive the quadratic formulation (see details in Appendix 4.A).
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Figure 4.1: Second-order bound wave solutions normalized by the solutions of Stokes theory (or simply
Gl ,m /Gsl ,m where Gsl ,m is the quadratic transfer function according to Stokes theory). Solutions due to sum
interactions are given for km ≥ kl (upper triangular of each panel), while solutions of sub interactions are pro-
vided for km < kl (lower triangular of each panel).

The exception in this regard is the model by Bredmose et al. (2005), being formulated
through an operator splitting idea suggested by Agnon (1999). The operator splitting
idea bypasses the necessity to rely on the near-resonance assumption, and therefore,
avoids an additional error in the bound wave solutions (see further discussion in Bred-
mose et al., 2005 and in Appendix 4.A).

The exceptional performance of the model by Bredmose et al. (2005) in predicting
the bound waves, raises the anticipation of its preferable wave prediction capabilities in
general. However, account should also be paid to the fact that the different definitions
of the quadratic coefficients and dispersion relation are also accompanied by different
definitions for the truncation error (arising as a result of the modelling reduction asso-
ciated with the formulation of the quadratic model), which may significantly influence
the evolution of the waves, and thus, the model forecast.

4.2.2. AMPLITUDE DISPERSION
An important nonlinear property that is deteriorated as a result of the modelling re-
duction, introduced by the quadratic model, is the amplitude dispersion. As stated by
Whitham (1974), the dependence of the dispersion relation on the wave amplitudes does
not merely provide quantitative corrections, but in fact leads to significant qualitative
changes in the behaviour and introduces new phenomena. Here though, the focus is
on the direct quantitative contributions of the amplitudes to the dispersion relation and
how these contributions differ from one model to another.

The most general case that allows complete representation of the amplitude disper-
sion is the bichromatic case, which was introduced by Longuet-Higgins and Phillips
(1962) for deep water and later generalized for waves over finite depth (e.g., Madsen
and Fuhrman, 2006). Here, the amplitude dispersion is obtained based on (4.7). Gener-
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ally speaking, the solutions for a(3)
n , as also found for a(2)

n , consist of bound components
which provide high-order corrections to the primary solutions, a(1)

n . However, the prod-
ucts of a(1)

i and a(2)
j can also result in resonance interactions as would be clearly under-

stood for the product a(2)
2l a(1)

−l which would lead to an unbounded growth of a(3)
l . The

multiple-scale method allows to keep the solution bounded by balancing such forcing
terms with the derivatives of the primary solutions with respect to x2 (as given by the
right-hand-side of (4.7)). Namely, by requiring the following:

∂x2 a(1)
n =−i

∑
r

Vr,n−r
(
a(1)

r a(2)
n−r +a(2)

r a(1)
n−r

)
(4.11)

which for the considered bichromatic case leads to{
i∂x2 a(1)

l = Ll ,l |a(1)
l |2a(1)

l +2Ll ,m |a(1)
m |2a(1)

l

i∂x2 a(1)
m = Lm,m |a(1)

m |2a(1)
m +2Lm,l |a(1)

l |2a(1)
m

(4.12)

where Ll ,l and Ll ,m are the cubic interaction coefficients which arise due to the trivial
resonant quartets (see further details on the definition of the cubic interaction coeffi-
cients for trivial and non-trivial resonant quartets in Appendix 4.B).

The solution for (4.12) can be obtained explicitly, since the magnitudes square of a(1)
l

and a(1)
m are constant in x2 (as can be found from the corresponding evolution equations

for |a(1)
l |2 and |a(1)

m |2). This solution can be written as a(1)
l = A0

l exp
(
i kl x1 − i

(
Ll ,l |a(1)

l |2 +2Ll ,m |a(1)
m |2)x2

)
a(1)

m = A0
m exp

(
i km x1 − i

(
Lm,m |a(1)

m |2 +2Lm,l |a(1)
l |2)x2

) (4.13)

and it clearly shows the effect of the amplitudes on the dispersion relation through mod-
ifications of the wavenumbers. As an example, if the coefficients Li , j are positive, then a
particular wave component of a given wave field would not only travel faster due to self
interaction but also due to the presence of other waves.

The values of the amplitude dispersion as given by the different model formulations
are compared with those of the third-order Stokes theory over finite depth (Madsen and
Fuhrman, 2006) in Fig. 4.2 and Fig. 4.3. The computed values are not the corrections
for the wavenumbers, but the corrections for the angular frequencies. The latter are
obtained based on the following transformation:

ω(2)
l =Cg ,l k(2)

l (4.14)

where the correction for the wavenumber kl is defined as

k(2)
l = Ll ,l |a(1)

l |2 +2
∑
m

Ll ,m |a(1)
m |2 (4.15)

Note that the correction, k(2)
l , is subtracted from the linear wavenumber, while ω(2)

l is
added to the linear angular frequency, and therefore, these modifications change the
wave velocity in the same manner. Also note that the above transformation can be ex-
plained through a more general formulation which allows modulation in both space and
time. The assumption of periodicity in time or in space can then be applied to obtain the
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corresponding ω(2)
l or k(2)

l which differ by the factor Cg ,l (also see Appendix 4.C and the
alternative explanation in Bredmose et al., 2005).
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Figure 4.2: Model prediction of the amplitude dispersion contributions due to self interactions, ω(2)
l ,l

=
Cg ,l Ll ,l |a(1)

l
|2. The results are normalized by third-order Stokes theory as given by Madsen and Fuhrman

(2006).

The results demonstrated in Fig. 4.2 show a clear over prediction of the contribu-
tion due to the self interaction, ω(2)

l ,l = Cg ,l Ll ,l |a(1)
l |2, by most of the models. This over

prediction is reduced for increasing values of µ. The one exception here is the formula-
tion by Freilich and Guza (1984), which under-predicts the self interaction contribution.
Consequently, most of the models will typically predict faster traveling waves in coastal
waters, leading to cumulative phase errors as demonstrated by Bredmose et al. (2004)
and Bredmose et al. (2005). Ultimately, these results provide further evidence for the im-
plications of the modelling reduction associated with the formulation of the quadratic
model and how different assumptions (e.g., different relation between µ and ϵ) affect the
corresponding modelling errors.

The prediction of the mutual interactions’ contributions to the amplitude dispersion
due to the different model formulations is presented in Fig. 4.3. Over prediction is also
revealed here by comparing to Stokes theory. The over prediction is again stronger by the
formulation of Whitham (1967) and Bredmose et al. (2005). Nevertheless, the values due
to the fully-dispersive models are consistent with the expected physics implied by the
values of Stokes theory. Apart form being positive, which leads to faster traveling waves,
the values of the fully-dispersive models also correctly predict the fact that the influence
of a longer wave on the propagation of a shorter wave is stronger than the influence aris-
ing by the presence of a shorter wave on the propagation of a longer wave (this is made
clear by the two black points included in each of the panels in Fig. 4.3). The Boussi-
nesq models, on the other hand, do not appear to completely adhere to these physical
properties as demonstrated by their negative values. However, at least for small µ val-
ues, the over prediction of the Boussinesq models is much weaker. Finally, note that the
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Figure 4.3: Model prediction of the amplitude dispersion contributions due to mutual interactions, ω(2)
l ,m

=
C gl Ll ,m |a(1)

m |2. The results are normalized by |a(1)
m |2 and are compared to the results of third-order Stokes

theory as given by Madsen and Fuhrman (2006) (see lower-right corner panel). The contributions due to a
shorter wave in the presence of a longer wave and due to the opposite situation are compared using the two
black points at each panel.

results due to Freilich and Guza (1984) are excluded, since they are simply equal to zero,
as can be found by substituting the corresponding definitions for Vl ,m and kn (see (4.69)
and (4.66)) into the definition of Ll ,m . On the one hand, the results of Freilich and Guza
(1984) completely eliminates the physical contributions due to mutual interactions. On
the other hand, at least for µ < 1 these results show the smallest deviation with respect
to Stokes results.

The bichromatic case considered here provides a complete quantitative determina-
tion of the amplitude dispersion and emphasises its direct physical consequences. Con-
cisely, these refer to the change in wave velocity due to self and mutual interactions.
Inaccuracy in the prediction of the amplitude dispersion will obviously result in phase
errors with respect to, e.g., field/laboratory observations. However, beyond phase errors,
inaccurate prediction of the amplitude dispersion may lead to much more dramatic de-
viations. These deviations are related to the formation of instability mechanism known
as modulational instability, discussed next.

4.2.3. MODULATIONAL INSTABILITY

Narrowbanded wave fields which propagate over relatively deep water tend to develop
modulational instability. Such an instability leads to a relatively rapid grow of a field’s
modulation at the expense of the carrier wave energy. Coastal waters though are typi-
cally shallow, and therefore, coastal wave fields are commonly not affected by modula-
tional instability. However, model forecasting of coastal waves may be affected by such
a mechanism if it wrongly predicts the amplitude dispersion.

The role of the amplitude dispersion in the development of the modulational insta-
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bility is qualitatively described by Lighthill (2001) (page 462). Briefly speaking, the am-
plitude dispersion restructures the form of the carrier wave such that it becomes shorter
in front of the amplitude of the modulation and longer behind, leading to a decreasing
rate of energy transport across the modulation, and thus, to the accumulation of energy
at the modulation peak. Mathematically, the evolution of the modulational instability
can be analyzed by considering the interaction of three waves, namely, by considering
the trichromatic case. To this end, the O(ϵ) solution is now considered to be composed
of three components, indicated by the carrier component, a(1)

p , and the two side-bands,

a(1)
l and a(1)

m . The corresponding angular-frequencies are defined asωl =ωp (1−δωp ) and
ωm = ωp (1+δωp ), where δωp = ∆ω/ωp . Accordingly, the solvability condition (4.11) for
this case results in the following system of equations:


i∂x2 al =

(
Ll ,l |al |2 +2Ll ,p |ap |2 +2Ll ,m |am |2

)
al +Ll ,m,p,p a2

p a−m

i∂x2 ap =
(
Lp,p |ap |2 +2Lp,l |al |2 +2Lp,m |am |2

)
ap +2Lp,p,l ,m al am a−p

i∂x2 am =
(
Lm,m |am |2 +2Lm,l |al |2 +2Lm,p |ap |2

)
am +Lm,l ,p,p a2

p a−l

(4.16)

where the magnitude notation ()(1) that accompanies the amplitudes is removed here to
ease the presentation of the equations. Additionally, the formulation of each of the cubic
coefficients, e.g. Ll ,m,p,p , is defined in Appendix 4.B. The terms in the parenthesis on the
right-hand-side of these equations are the amplitude dispersion components due to self
and mutual interactions. These terms are real, and consequently, only result in phase
corrections. In contrast, the last terms on the right allow exchange of energy among
the components (e.g., Phillips, 1967). These last terms arise due to the interactions that
satisfies the equality 2ωp−ωl−ωm = 0. It could be argued that these last terms should not
be included to satisfy the solvability condition, since they correspond to a wavenumber
mismatch, i.e., 2kp −kl −km ̸= 0. However, if the wavenumber mismatch is close enough
to zero, that is to say, if 2kp −kl −km = O(ϵ2), its contribution is absorbed as part of the
slow spatial variation. Therefore, for such conditions, these terms should be included as
well.

MODULATIONAL INSTABILITY OF STOKES WAVES

Modulational instability concerns with the evolution of weakly modulated wave fields.
Accordingly, it is assumed that the side-band amplitudes are small compared to the am-
plitude of the carrier component. This allows to reduce the above coupled system (4.16)
to the following linear system (the so-called ’pump-wave’ approximation, e.g., Craik,
1985):


i∂x2 al = 2Ll ,p |ap |2al +Ll ,m,p,p a2

p a−m

i∂x2 ap = Lp,p |ap |2
i∂x2 am = 2Lm,p |ap |2am +Lm,l ,p,p a2

p a−l

(4.17)

The solution for ap corresponds to a monochromatic Stokes wave, while the solution of
either al or am is obtained through
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∂2
x Ãl/m + i (∆(1) −2∆(2)|Ap |2)∂x Ãl/m −Ll ,m,p,p Lm,l ,p,p |Ap |4 Ãl/m = 0 (4.18)

which is derived by combining the first and last equations of (4.17), through substitution
for al or for am , where 

Al = Ãl exp(−i 2Ll ,p |Ap |2x)

Am = Ãm exp(−i 2Lm,p |Ap |2x)

∆(1) = kl +km −2kp

∆(2) = Ll ,p +Lm,p −Lp,p

(4.19)

and recall that the definition of the j th complex-amplitude, A j , is given by (4.8). The
solution of (4.18) obeys to the following eigenvalues:

σ=− i

2
(∆(1) −2∆(2)|Ap |2)± i

p
R (4.20)

where R is defined as

R = 1

4
(∆(1) −2∆(2)|Ap |2)2 −Ll ,m,p,p Lm,l ,p,p |Ap |4 (4.21)

Therefore, the side-bands are expected to grow when R < 0, where the growth rate value
is provided by Im{

p
R} (Im{} =the imaginary part). In order to gain some insight into

the conditions for which modulational instability is expected to emerge, the assumption
of small modulation frequency is being employed. More specifically, it is assumed that
δωp = O(ϵ) (i.e., ∆ω≪ωp ). Accordingly, the following asymptotic relations are assumed
as well:

Ll ,m,p,p ∼ Lm,l ,p,p ∼∆(2) (4.22)

which can be understood by letting Ll ,m,p,p and Lm,l ,p,p to be defined through the con-
tinuous definition (instead of the discontinuous definition applied so far) of Li , j ,k,l (see
details in Appendix 4.B). Furthermore, the assumption that δωp ≪ 1 also allows to obtain
the relation

∆(1) ∼ ∂2
ωp

kp∆ω
2 (4.23)

Using these relations, R can be approximated to fourth order (in ϵ or δωp ) as follows:

R ∼ 1

4
(∂2
ωp

kp∆ω
2)2 −∆(2)|Ap |2∂2

ωp
kp∆ω

2 (4.24)

Accordingly, the requirement that R < 0 leads to the following instability condition:

1 <∆(2)|Ap |2 2ν3

αkpδ
2
ωp

(4.25)

This formulation is obtained using the relation ∂2
ωp

kp =−∂2
kp
ωp /C 3

g ,p , and transforming

to the notation described in Appendix 4.C, for which the expressions for Cg ,p and ∂2
kp
ωp
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are given in term of the non-dimensional parameters ν and α. An equivalent stability
condition is formulated in Appendix 4.C starting with the nonlinear Schrödinger equa-
tion (NLSE). A comparison of the two formulations (based on the NLSE and the one for-
mulated here) suggests the relation between the wavenumber correction, k(2)

p , defined

in (4.96) and the term∆(2)|Ap |2. To further explore this relation, the latter is written more
explicitly as follows:

∆(2)|Ap |2 = (2Gm,pVm+p,−p +2Gl ,pVl+p,−p −2Gp,pV2p,−p )|Ap |2
+ (2Gm,−pVm−p,p +2Gp,−l Vl−p,p )|Ap |2 (4.26)

Under the assumption of small modulation frequency and that each of the terms above
are smooth enough around ∆ω= 0 (see details in Appendix 4.B), the first group of terms
on the right-hand side of (4.26) converges to the definition of the wavenumber correc-
tion due to self interaction, while the second converges to a correction due to interaction
between the primary component and the component that represents the wave-induced
current. Therefore, at least qualitatively, the term arises through the analysis of NLSE,
k(2)

p , and the one found here, ∆(2)|Ap |2, seem to provide the same physical representa-
tion. Additionally, these terms also determine the condition for modulational instability.
Such that, stability is guaranteed only if the values of these terms are negative. This con-
dition is clearly seen based on the fact that the parameters ν and α are always positive.
This condition also highlights the opposite roles of the wavenumber correction due to
self interaction and the correction due to the interaction of the primary component with
the wave-induced current. As given by the definition of (4.26), the former is positive, and
thus, triggers energy focusing (as qualitatively explained in Lighthill, 2001, page 462),
whereas the latter is negative, and therefore, provides effect of stabilization (as discussed
by Whitham, 1974 and Janssen and Onorato, 2007). Finally, quantitative comparison of
k(2)

p as given by NLSE and k(2)
p = ∆(2)|Ap |2 as obtained through the different quadratic

formulations is demonstrate in Fig. 4.4.
The results above are compared with the corresponding result of the NLSE (Ap-

pendix 4.C). The latter demonstrates the well-known modulational instability thresh-
old of µ > 1.363. As expected, the Boussinesq models are not exposed to this instability
mechanism. Surprisingly though, this determination does not apply to the formulation
by Nwogu (1993), demonstrating relatively weak positive values of k(2)

p /|Ap |2. On the
other hand, the fully dispersive models are strongly affected by modulational instability.
The important result revealed here is that these models obey to a much lower instability
threshold. Consequently, using these formulation, predictions of narrow-banded fields
over coastal waters may be affected significantly by false unstable evolution. This finding
raises questions concerning the growth rate of the modulation and the ranges of δωp for
which this mechanism is expected to emerge. Answers to these questions are discussed
through Fig. 4.5.

Fig. 4.5 presents the growth rate of modulational instability as a function of the mod-
ulation frequency, ∆ f (recall that δωp = ∆ f / fp = ∆ω/ωp ), for three kp h values. For
two of which (kp h = 1.07 and kp h = 1.33), instability is unexpected, and for the third
(kp h = 2.10), instability is expected to be relatively weak. The growth rate is calculated
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Figure 4.4: Modulationally stable and unstable regions as predicted by the different quadratic formulations.

Instability is expected over kp h values for which k(2)
p > 0.

based on (4.21), which is not subjected to the small modulation frequency approxima-
tion. Note that the growth rate results based on (4.21) are expected to be somewhat
weaker than those that would have been obtained through the approximated expression
(4.24) (see Liu et al., 2022). Also note that the values presented are normalized by the
expressions of the growth rate and modulation frequency that are obtained for the maxi-
mum growth rate (according to NLSE) over infinitely deep water (see expressions (4.104)
and (4.105) in Appendix 4.C).

The results presented by the right panel of Fig. 4.5 (corresponding to kp h = 2.10)
were calculated using the following parameters: fp = 0.65 Hz, a = 0.1 m and h = 1.2 m.
These results show that the fully dispersive formulations of Bredmose et al. (2005) and
Whitham (1967) are subjected to much stronger growth rates than the expected growth
rate based on NLSE. The maximum growth rates and modulation frequencies presented
by these model are even greater than the ones which are expected for infinitely deep wa-
ter (which correspond to the values of 1 and

p
2, respectively). Note that the model by

Kaihatu and Kirby (1995) predicts zero growth rate for kp h = 2.10, a result that is consis-
tent with the stability ranges shown in Fig. 4.4.

The results for kp h = 1.07 and kp h = 1.33 were obtained using fp = 0.65 Hz, a = 0.06
m, h = 0.5 m and fp = 0.60 Hz, a = 0.08 m, h = 0.8 m, respectively. It is remarkable to see
that even for these cases, for which modulational instability is not expected to emerge
at all (as emphasized by the zero values of NLSE), the growth rates and modulation fre-
quencies demonstrated using the fully dispersive formulations are significant.

THE IMPACT OF MODULATIONAL INSTABILITY ON THE EVOLUTION OF IRREGULAR WAVES

The stability analysis presented so far allows to explain unstable evolution for the three
wave interaction case (i.e., monochromatic cases subjected to small side-bands). How-
ever, the significance of modulational instability is not obviously determined for the
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Figure 4.5: Normalized growth rate of modulational instability as a function of normalized modulation fre-
quency as obtained by the different model formulations for three different values of µ (recall that ϵ= 2|Ap |kp ).
The maximum modulation frequency considered is ∆ f = 0.5 fp . The vertical dashed line crosses in the middle
of each panel, thus indicates the value equal to a quarter of the peak frequency.

more general irregular cases. Two different perspectives were proposed to give an in-
dication for the expected impact of modulational instability on the evolution of irregular
wave fields. The first, due to Alber (1978), relies on statistical arguments which result in
the ratio between the expected modulation scale (a representative scale over which co-
herent structures due to modulational instability are formed) and the correlation scale (a
representative scale over which the field is still correlated). The second, due to Onorato
et al. (2001), relies on physical arguments which concern the ratio between nonlinear
and dispersion effects (equivalent arguments underlying the Ursell parameter). Ulti-
mately, these two perspectives share the same parameter, commonly referred to as the
Benjamin-Feir Index (BFI) (Janssen, 2003). An expression for this parameter is given by
(4.106) based on the parameter β (see Appendix 4.C). Here though, the BFI parameter is
written in terms of k(2)

p as follows:

BFI =
√√√√k(2)

p
cν3

αkpδ
2
ωp

(4.27)

This expression is merely the square root of the right-hand-side of (4.25). Small modifi-
cation though is introduced by the parameter c. The value of this parameter is c = 3.2,
selected such that the BFI value according to NLSE equals 1 for typical wave conditions
offshore (see details in Appendix 4.C). Furthermore, δωp should be interpreted now as
the bandwidth parameters, which defines the ratio between a representative of the spec-
tral bandwidth and the peak frequency, ωp (see specific definition in Appendix 4.C). Ad-
ditionally, the wave steepness should now be interpreted as a typical steepness value,
which commonly taken as 2kp |Ap | = kp Hs /2, where Hs is the significant wave height.

The BFI values as obtained by the NLSE and the different quadratic formulations
are examined and compared through the following example. The example considers a
shoaling wave field that is characterized by a JONSWAP spectrum with Tp = 2.25 sec and
Hs = 0.2 m (similar to the wave conditions of experiment A2 by Ruessink et al., 2013).
The water depth is assumed to increase linearly from a value of h = 0.2 m and up to h = 4
m. It is assumed that over this shoaling region Hs stays constant (see, e.g., Ruessink et
al., 2013). However, kp does change and is determined by the linear dispersion relation
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according to the mild slope assumption. These wave conditions result in a steepness
value of 2kp |Ap | ∼ 0.2 at the shallowest point and a value of 2kp |Ap | ∼ 0.08 at the deepest
point. The results of BFI as a function of kp h are presented in Fig. 4.6 for three different
values of the peak-enhancement factor: γ= 1,3.3,10.
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Figure 4.6: The BFI versus kp h as obtained by NLSE and the different quadratic formulations. The results are
based on a shoaling wave field characterized by JONSWAP spectrum with Tp = 2.25 sec, Hs = 0.2 m and for
three different peak-enhancement factor: γ= 1,3.3,10. The black dashed line provides the corresponding Ur
number (factored by 10−1).

The results shown in Fig. 4.6 provide further evidence for the expected effect of mod-
ulational instability on the predictions according to the fully dispersive quadratic formu-
lations. The discrepancies are particularly significant over 0.5 < kp h < 2, a region where
the effect of modulational instability is expected to be weak or absent (as confirmed by
the NLSE, and see also additional support provided by results of Akrish et al., 2016, Fig.
5). The results also demonstrate the effect of increasing γ. Higher γ values correspond to
narrower spectra, and thus also to weaker dispersion effects (or larger correlation scale).
Consequently, as γ increases, modulational instability becomes more dominant. Finally,
the inclusion of the Ur number highlights the significance of the results shown by the
fully dispersive quadratic formulations. The Ur number suggests that over 0.5 < kp h < 2
the expected wave evolution can be characterized as quasi-linear. However, the BFI due
to the fully dispersive formulations suggests that over this region of kp h, the evolution
may be significantly affected by the nonlinear modulational instability mechanism. This
point is further demonstrated and discussed through the following numerical example.

BICHROMATIC GROUP EVOLUTION OVER CONSTANT DEPTH

The example considered here concerns the evolution of a bichromatic wave group in a 60
m long flume with constant depth of h = 0.8 m. The group is assumed to be composed of
a primary frequency, f3 = 0.60 Hz, that is subjected to a side-band frequency of f2 = 0.45
Hz, and a forced subharmonic frequency of f1 = 0.15 Hz ( f1 = f3− f2). The corresponding
incoming amplitudes are assumed to be amp3 = 0.08 m and amp2 = 0.008 m, where the
amplitude of the forced subharmonic is obtained based on (4.9). These specifications
result in the following primary wave parameters:{

k3h = 1.33

δω3 = 0.25
(4.28)
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Therefore, as suggested by Fig. 4.5 (middle panel), the modulation of the group is ex-
pected to grow along the flume following the predictions by Whitham (1967) and Bred-
mose et al. (2005). Modulational growth indeed occur in both of these model formula-
tions as implied by the subharmonic growth shown in Fig. 4.7.
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Figure 4.7: Bichromatic group evolution in a flume of constant depth (shown in terms of the significant wave
heights, Hs ), as predicted by the different model formulations and the SWASH model. The vertical dashed
lines shown in the upper panel (located at x = 4 m, 24 m, 44 m) approximately indicate the spatial recurrence
of the group’s focusing/defocusing as obtained by the prediction following Bredmose et al. (2005).

The results shown in Fig. 4.7 are obtained numerically using a spatial step of ∆x =
0.05m and a spectral step of ∆ f = 0.05 Hz, where the highest frequency considered is
fmax = 4 f3. Based on these parameters, the spatial-dependent solution of the quadratic
system, (4.1), is achieved through the classical fourth-order Runge–Kutta (RK4) method.
Also note that the solutions shown here are phase-averaged over ten different realisa-
tions (assuming random phases for a3 and a2 at the flume’s boundary for each realiza-
tion). Finally, the results of the quadratic models are compared with the highly accurate
SWASH model (Zijlema et al., 2011), which is implemented here using two vertical layers,
spatial step of ∆x = 0.02 m, time step of ∆t = 0.005 sec and simulation time of 10 min,
where the results shown here are time-averaged over the last 5 min.

The significance of the results shown in Fig. 4.7 can be explained using the Ursell pa-
rameter, (4.3). The parameter value of the present example is estimated as Ur ∼ 4.4, in-
dicating that the amplitude spectrum, and accordingly also the significant wave heights,
are expected to stay approximately constant along the flume. The results show that most
of the quadratic formulations and SWASH indeed describe this permanent behaviour,
demonstrating roughly constant Hs values of the shorter and longer waves (the small
oscillation of the short wave prediction according to SWASH arises since it excludes
the bound superharmonics at the incoming boundary). In contrast, the predictions of
Whitham (1967) and Bredmose et al. (2005) present significant deviations from the pre-
diction of SWASH and the expected outcome based on Ursell parameter. These devia-
tions are the result of modulational instability, giving rise to significant energy transfers
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between the carrier and the side-band components. Accordingly, the initial weak modu-
lation, which forces relatively small subharmonic response, develops into a strong mod-
ulation and an abnormal subharmonic growth. As demonstrated by the lower panel of
Fig. 4.7, the prediction of the subharmonic Hs following Whitham (1967) and Bredmose
et al. (2005) is an order of magnitude higher than expected. Additionally, note that the
amplified side-bands also force a significant subharmonic response at f = 2 f1. Even-
tually, the significant growth of the side-bands and the corresponding modulations is
restricted by energy conservation. This leads to back and forth transfers of energy and
to the well-known long distance behavior of focusing/defocusing recurrence (e.g., Lake
et al., 1977), which is demonstrated through the prediction of Bredmose et al. (2005)
in Fig. 4.8. The energy spectra shown in Fig. 4.8 clearly demonstrate the impact of
the modulational instability mechanism. The initial weakly modulated monochromatic
field evolves into an almost fully modulated bichromatic field due to intensive energy
exchanges between the carrier and the side-band components. Close to the end of the
flume, the initial energy spectrum is almost recovered (see lower-right panel Fig. 4.8).
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Figure 4.8: Energy spectra demonstrating the stable group’s evolution according to Freilich and Guza (1984)
and the spatial recurrence of the group’s focusing/defocusing as obtained by the prediction following Bred-
mose et al. (2005).

To summarize, the analysis presented in this section shows that the positive effect of
improving the dispersion on the linear behaviour of wave fields also involves an unfavor-
able effect on the nonlinear evolution. Nonlinear effects are governed by the quadratic
interaction coefficients, Vl ,m , and generally, also by higher-order factors which are ne-
glected based on the quadratic modelling approach. As a consequence, a change of Vl ,m

due to improvement of the linear dispersion relation also involves a change of the ne-
glected higher-order residual. It turns out that this residual becomes significant for the
fully dispersive models, leading to over prediction of the amplitude dispersion, and as
a consequence, to changes in the modulational instability mechanism, including the
instability threshold, the growth rate and the modulation ranges over which this mech-
anism is expected. Hence, fully dispersive quadratic formulations not only tend to de-
velop significant phase errors, but are also exposed to intensive energy exchanges trig-
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gered by false modulational instability, which may even take place over relatively shallow
waters, where this mechanism is known to be weak or absent. These errors can lead to
significant deviations in predicting the evolution of the primary components, the devel-
opment of the secondary superharmonics (and therefore the development of the field’s
skewness and asymmetry) and the generation of subharmonics (the infragravity field).

4.3. QUADWAVE1D: A FULLY DISPERSIVE QUADRATIC MODEL

FOR COASTAL WAVE PREDICTION IN ONE DIMENSION
The aim of this section is to develop a new fully dispersive quadratic model for coastal
wave predictions which is not exposed to modulational instability. Moreover, it is aimed
that this new formulation will adequately describe energy exchanges due to super and
sub wave interactions, and thus, will adequately predict nonlinear wave development.
Instead of a rigorous physical-based formulation, the formulation proposed here is
based on a parameterization which relies on available data. This formulation aims to
find the quadratic coefficients that will lead to the most adequate prediction capabili-
ties, while using the full dispersion relation as a constraint. The search for the optimal
Vl ,m is subjected to additional constraints which are provided by general properties re-
quired for any candidate of Vl ,m . These general properties are detailed next.

4.3.1. GENERAL PROPERTIES FOR THE QUADRATIC INTERACTION COEFFI-
CIENTS

The properties required to be satisfied by the quadratic interaction coefficients are ex-
plained in the following. The starting point is the definition of η based on the Fourier
series in (4.2). Following this starting point, the reality of η yields the condition

(an)∗ = a−n (4.29)

Based on this condition and assuming that kn and Vl ,m are defined as real functions, the
general quadratic formulation (4.1) leads to the following properties:{

k−n =−kn

V−l ,−m =−Vl ,m
(4.30)

Without loss of generality, it will be convenient to assume the following symmetry:

Vl ,m =Vm,l (4.31)

This symmetry indeed holds for all the quadratic formulations presented so far. As a con-
sequence of the properties defined by (4.30) and (4.31), the following result is obtained:

Vl ,−l =−Vl ,−l = 0 (4.32)

An additional property is obtained through the analysis of the dynamical behavior of a
typical triad interaction of the quadratic system. To this end, consider the following triad
model:
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
∂x a1 − i k1a1 =−i 2V3,−2a3a−2

∂x a2 − i k2a2 =−i 2V3,−1a3a−1

∂x a3 − i k3a3 =−i 2V1,2a1a2

(4.33)

This model is derived based on the quadratic model (4.1), by restricting the dynamics
to three frequencies which satisfy the relation ω1 +ω2 =ω3. The corresponding coupled
equations for the variance spectrum, E j = a j a− j , are given by

∂x E1 = 4V3,−2Im{a3a−2a−1}

∂x E2 = 4V3,−1Im{a3a−2a−1}

∂x E3 =−4V1,2Im{a3a−2a−1}

(4.34)

This system leads to the following Manley-Rowe relations (e.g., Craik, 1985):

∂x

( E1

V3,−2
+ E3

V1,2

)
= 0, ∂x

( E2

V3,−1
+ E3

V1,2

)
= 0, ∂x

( E2

V3,−1
− E1

V3,−2

)
= 0 (4.35)

As is clearly described by these relations, the evolution of the variance spectrum is
bounded if the quadratic coefficients V1,2, V3,−1 and V3,−2 have the same sign. In that
case, the wave components are periodically exchanging energy (energy loss by a1 and a2

is gained by a3 and vice versa). Therefore, each variance component, E j , is spatially
oscillating, which implies on a conservative interaction (see further details by Craik,
1985 and Vanneste, 2005). This leads to the general conclusion that in order to obtain
a quadratic formulation that is characterized by conservative and bounded triad inter-
actions, its super and sub interaction coefficients should have the same sign, namely,

sg n{Vl ,m} = sg n{Vl ,−m} (4.36)

for which

sg n{l +m} = sg n{l −m} (4.37)

Finally, the last property considered here is derived from the solutions of the bound su-
per and sub harmonics. Specifically, it is required that Vl ,m > 0 for l +m > 0. Referring
back to (4.10), and following the linear dispersion relation, this property means that{

Gl ,m > 0, sg n{l } = sg n{m}

Gl ,m < 0, sg n{l } =−sg n{m}
(4.38)

Namely, secondary bound superharmonics are in phase with respect to the primary forc-
ing components, whereas secondary bound subharmonics are 180◦ out of phase with
respect to the primary forcing.

4.3.2. A PARAMETRIC DERIVATION OF IMPROVED FULLY DISPERSIVE

QUADRATIC COEFFICIENTS
Generally speaking, there are infinitely fully dispersive formulations that can be defined,
which satisfy the general properties of Vl ,m as defined above. Nevertheless, it is at-
tempted here to find the Vl ,m that optimizes prediction capabilities of nonlinear wave
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evolution. Since the interest here is devoted to the dynamics of coastal waves, the search
is for Vl ,m with optimal performance over water depths that roughly satisfy µ≤ 2.

In contrast to the conventional rigorous formulation approach, the search for the op-
timal Vl ,m is performed here through an alternative approach using data of laboratory
experiments and the well-validated time-domain model SWASH. Such an approach re-
quires an ensemble of wave simulations which were conducted under the desired depth
conditions and which describe spatially evolving and stationary (time-periodic) wave
fields. For each such simulation, it is required to extract the corresponding complex-
amplitude vector and its spatial derivative at several different locations in order to con-
struct an algebraic system which can be solved for Vl ,m (alternatively, it is also possi-
ble to construct similar system based on the energy-flux gradients and the bispectrum).
This complex process requires large data sets with different conditions and requires to
correctly evaluate numerical derivatives which pose difficulties due to the presence of
noise. An additional difficulty arises as a result of the dependence of the extracted Vl ,m

values on the amplitudes themselves, suggesting different values of Vl ,m for simulations
of different Ursell numbers. Given the complexity of this direct method, an alternative
procedure is proposed here. This procedure would not lead to the ambitious goal of find-
ing the optimal values of Vl ,m , but may allow formulating a satisfying and robust solution
for Vl ,m , which avoids the dependence on the amplitudes.

The alternative procedure proposed here relies on a weight function, Wl ,m , that is
defined through a basic parameter χ and through three additional parameters, α1, α2

and α3 as follows:

Wl ,m = exp

[
−

( χ
α3

)α2
]

(4.39)

where χ is defined as

χ= |kl m |h
( |klm |
|kn |

)α1
(4.40)

and where α1, α2 and α3 define ranges of positive numbers over which the optimization
is performed. This weight function together with the quadratic coefficients suggested by
Bredmose et al. (2005) are used to define the following weighed coefficients:

V W QC
l ,m =Wl ,mV BC

l ,m (4.41)

where the superscripts W QC and BC stand for ’Weighted Quadratic Coefficients’ and
’Bredmose Coefficients’, respectively. Thus, instead of finding many discrete optimal
values of Vl ,m directly, the optimization problem proposed here amounts to finding only
three values ofα1,α2 andα3 which minimize the prediction errors with respect to data of
laboratory experiments and SWASH. It remains to explain the selected functional struc-
ture of the weight function (which is also defined by χ) and the choice to use V BC

l ,m .
The chosen definition of Wl ,m is based on the following requirements. First, it should

be defined such that V W QC
l ,m complies with the general properties detailed in Subsection

4.3.1. Second, since in deeper waters triad interactions are far from being resonant and
for fully dispersive formulation tend to contaminate the predicted evolution due to over
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prediction of the amplitude dispersion, Wl ,m should converge to zero asµ increases, a re-
quirement that also complies with the assumption that deep water waves may regarded
as quasi-linear over coastal scales. The definition of Wl ,m as given by (4.39) satisfies the
first requirement due to its symmetry with respect to the indices l and m and since it is
positive. The second requirement is satisfied as well under the condition that χ is posi-
tive and represents in a certain way the parameter µ. The selected exponential structure
of Wl ,m indeed preserves weighted regions that correspond to interactions of waves over
relatively shallow waters and weakens weighted regions that correspond to interactions
in deep water.

The specific definition of χ, as given by (4.40), is intimately related to the quadratic
interaction coefficients of Freilich and Guza (1984) (see Eqs. (4.67)-(4.68)). The im-
plementation of this definition in Wl ,m generates a structure which roughly describes
straight contour lines with a 45◦ decreasing slope for the superharmonic interactions
and a −45◦ decreasing slope for the subharmonic interactions (see Fig. 4.9). This is more
or less the structure of the normalized coefficients and transfer function of Freilich and
Guza (1984) (see Janssen, 2006, Fig. 3.6 and Fig. 4.1). Thus, the weighted coefficients,
V W QC

l ,m , defined through the functional structure of Wl ,m , the definition ofχ and the coef-
ficients of Bredmose et al. (2005) presents a structure similar to that of Freilich and Guza
(1984). This choice is motivated by the success of the quadratic coefficients of Freilich
and Guza (1984) to accurately describe energy exchanges over shallow waters (e.g., Her-
bers et al., 2000, De Bakker et al., 2015, Rijnsdorp et al., 2022). Based on this motivation
one may argue that the quadratic coefficients of Freilich and Guza (1984) could be used
directly. However, following the experience of the present investigation, direct use of the
coefficients of Freilich and Guza (1984) under fully dispersive conditions would not yield
satisfying results.

At this stage, the roles of α1, α2 and α3 are introduced. The parameter α1 allows for
some structural deviations of the contour lines including their rotation (see the different
contour pattern obtained for different values of α1 in Fig. 4.9). The parameters α2 and
α3 determine the dispersion (similar to the definition of the standard deviation) and the
steepness (namely, how fast is the transition from 1 to 0) of the contours, respectively.
Different values of α1, α2 and α3 generate different contour patterns of V W QC

l ,m , resulting
in different dynamical balance of superharmonics and subharmonics energy transfers.
Finally, note that the allowable ranges for α1, α2 and α3 are limited, so that only rea-
sonable candidates of V W QC

l ,m are included as part of the optimization. For example, to

guarantee the convergence of V W QC
l ,m to zero for deep water interactions, it is required

that α1 > 0 (see Fig. 4.9). Additionally, to allow for a reliable subharmonic bound wave
forcing, α1 should also subjected to an upper bound limit of around 2 (refer again to Fig.
4.9). Similarly, the values for α2 and α3 are limited as well to exclude exceptional and
undesirable candidates of V W QC

l ,m .

THE OPTIMIZATION PROCESS

The optimization process is summarized by the following. In total, data of three exam-
ples of monochromatic wave propagation along a flume of constant depth are consid-
ered. These examples are referred to as E1, E2, and E3. The physical parameters that
define each of the examples are summarized in Table 4.1. These include the length of
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the flume L, the water depth h, the wave period T , the depth parameter µ, the incoming
wave amplitude amp I and the Ursell parameter Ur .

Table 4.1: Physical parameters of the examples considered for the optimization process.

Example L (m) h (m) T (s) µ ampI (m) Ur

E1 40 0.4 3.3 0.39 0.03 38
E2 25 0.4 2.5 0.53 0.042 29
E3 10 0.4 2 0.68 0.06 26

These examples were chosen such that the nonlinearity of the generated monochro-
matic wave is relatively weak (all the examples assigned to similar small Ur values to
avoid wave breaking). Additionally, the depth parameters of the examples were selected
such that a wide range sample of V W QC

l ,m values is generated. Specifically, the sample
should be concentrated over (kl h,kmh) region that corresponds to coastal water depths.
The effective sample of V W QC

l ,m values over (kl h,kmh) (including points that correspond

to interactions of up to O(ϵ4)) is described in Fig. 4.9. These points include V W QC
l ,m values

that correspond to the O(ϵ2) self interaction of the first harmonic, the O(ϵ3) super and
sub interactions between the first and the second harmonics, the O(ϵ4) self interaction
of the second harmonic and the O(ϵ4) super and sub interactions between the first and
the third harmonics.
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Figure 4.9: The weighted quadratic coefficients, V W QC
l ,m

, normalized by the quadratic coefficients of Bredmose

et al. (2005) (or simply the weight function Wl ,m ) for three values ofα1 and using the parameter valuesα2 = 1.4
and α3 = 5.5. The dots represent the sampled interaction coefficients that correspond to interactions of up
to O(ϵ4) due to the different considered examples. Red, black and green dots correspond to E1, E2, and E3
respectively.

Based on the above described examples (E1, E2, and E3), the optimization process
strives to find the weighted quadratic formulation (using the full linear dispersion rela-
tion and V W QC

l ,m ) which minimizes the prediction errors (defined by (4.43)) with respect
to given data. The search is performed over the following domain:


α1 = [0.5,2]

α2 = [1,2]

α2 = [2,10]

(4.42)
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The accuracy of the results at each point (α1,α2,α3) is examined with respect to ex-
perimental data and results of simulation using SWASH. To this end, the following nor-
malized error is defined:

e(α1,α2,α3) =∑
j

∑
i
|ampi , j −ampR,i , j |/amp I (4.43)

where j runs over the first three harmonics and i runs over the data locations. The refer-
ence amplitudes, ampR,i , j , are based on SWASH results for E1 and E3, and on the experi-
mental results of Chapalain et al. (1992) for E2. The results through SWASH are obtained
using two vertical layers, spatial step of ∆x = 0.01 m, time step of ∆t = 0.0025 sec and
simulation time of 10 min. The results of the quadratic model are computed based on
the RK4 method, using the first six harmonics only (the first harmonic also serves as the
frequency step and the maximum frequency is the sixth harmonic) and a spatial step of
∆x = 0.05 m. Finally, the normalized errors obtained through each of the examples are
summed together, providing the point which scores the minimum total normalized er-
ror with respect to the reference data. This point is given by (α1 = 1,α2 = 1.4,α3 = 5.5),
as partially described (over (α2,α3) only) by Fig. 4.10.
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Figure 4.10: Normalized total amplitude error with respect to experimental data following Chapalain et al.
(1992) and results of simulation using SWASH for α1 = 1.

The quadratic model with the optimized weighed quadratic coefficients is referred
here as the QuadWave1D model. The quadratic interaction coefficients of QuadWave1D
are described by the middle panel of Fig. 4.9 (the result of Fig. 4.9 were already computed
using the optimal values forα2 andα3). Note that, since QuadWave1D is fully dispersive,
the middle panel of Fig. 4.9 also describes the normalized second-order bound wave
solutions due to QuadWave1D (as is described due to the other considered formulations
in Fig. 4.1). Finally, the amplitude dispersion and the modulational instability threshold
which are obtained based on QuadWave1D are demonstrated in Fig. 4.11.

The nonlinear properties of QuadWave1D, as presented by Fig. 4.11, describe rela-
tively small overprediction of amplitude dispersion contributions for µ< 1. In contrast,
considerable underprediction is observed for deeper water depths. These observations
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suggest that for cases for which third-order Stokes theory applies, prediction with Quad-
Wave1D is expected to involve cumulative phase errors. The results of Fig. 4.11 also in-
dicate that predictions using QuadWave1D are not exposed to modulational instability,
since QuadWave1D is shown to be modulationally stable.

Ultimately, the satisfying performance of QuadWave1D for the examples E1, E2, and
E3 has only been announced so far, but has not been shown. An explicit presentation of
this performance is provided by Figs. 4.12-4.14.
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Figure 4.12: Amplitude evolution of the first four harmonics as obtained by the different quadratic formula-
tions (lines) and the SWASH model (circles) for example E1.

The results presented by Figs. 4.12-4.14 suggest that QuadWave1D adequately pre-
dicts the wave evolution in all of the three monochromatic examples considered. The
adequate prediction is measured here on the basis of the magnitude of the amplitudes
and the recurrence length, given by the beating pattern of the harmonics. The com-
parison between the quadratic formulations shows that QuadWave1D and the model by
Nwogu (1993) present the most satisfying agreement with the data. Additionally, excep-
tional unfavorable results are demonstrated by Kaihatu and Kirby (1995) and Bredmose
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Figure 4.13: Amplitude evolution of the first four harmonics as obtained by the different quadratic formula-
tions (lines) and the laboratory results measured by Chapalain et al. (1992) (circles) for example E2.

et al. (2005). These unfavorable results are attributed to inadequate dynamical balance
between the super and sub interactions which is controlled by the structure of Vl ,m and
especially by its dissipation pattern for increasing values ofµ. This implies a dependence
of the prediction of these models on the maximum considered frequency. To demon-
strate this dependence, Fig. 4.15 shows model predictions for the case E2 due to Kaihatu
and Kirby (1995), Bredmose et al. (2005) and QuadWave1D, and for two maximum fre-
quency values. Besides the unfavorable maximum frequency dependence of the models
by Kaihatu and Kirby (1995) and Bredmose et al. (2005), the results of Fig. 4.15 also sug-
gests the insensitivity of QuadWave1D to the maximum frequency. Note that the results
at the upper row of Fig. 4.15 given by the model of Kaihatu and Kirby (1995) can be also
compared with equivalent result performed with the same maximum frequency which
were considered by Kim and Kaihatu (2021), Fig. 6. This comparison verifies the compu-
tation conducted here. In summary, the observed dependence of model prediction on
the maximum considered frequency (which satisfies the frequency limit due to numeri-
cal stability), constitutes a serious modelling problem. Such a problem requires further
analysis which is beyond the scope of the present study.

Finally, the satisfying agreements presented by QuadWave1D should not provide a
firm conclusion regarding its overall performance. The judgment concerning the pre-
dictive capabilities of QuadWave1D should rather be determined on the basis of inde-
pendent cases, which are considered next.

4.4. MODEL VERIFICATION
The prediction capabilities of QuadWave1D and the other quadratic formulations con-
sidered here are studied through comparisons with different laboratory experiments.
For some examples, results due to the SWASH model are included as an additional ref-
erence. The presented verification considers first two basic monochromatic cases, and
later on, also more general cases where the incoming wave field is either bichromatic or
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Figure 4.14: Amplitude evolution of the first four harmonics as obtained by the different quadratic formula-
tions (lines) and the SWASH model (circles) for example E3.

described through a continuous spectrum.
Since most of the examples presented here involve bathymetry changes, the

quadratic formulation (4.1) discussed so far should be modified to include the effect of
wave shoaling (see discussion in Appendix 4.A). This can be readily implemented by us-
ing the energy-flux related amplitude, bn = an

√
Cg ,n , which for the linear case, stays

constant over mild slopes (see (4.76)). Therefore, the modified quadratic formulation
reads

∂x bn − i knbn =−i
∑

r

√
Cg ,n

Cg ,r Cg ,n−r
Vr,n−r br bn−r (4.44)

The quadratic model (4.44) is solved numerically using the RK4 method. For most of
the considered examples, the spatial step being used is ∆x = 0.05 m (the exception is
the monochromatic case in Subsection 4.4.1 for which ∆x = 0.025 m), while the spectral
resolution and thus also the number of realizations are determined for each example
specifically. Similarly, all the computations with SWASH are performed here using two
vertical layers, a spatial step of ∆x = 0.02 m and a time step of ∆t = 0.005 sec, while the
simulation time is determined separately for each example.

4.4.1. MONOCHROMATIC WAVE EVOLUTION
The predictive capabilities of the different quadratic formulations are first tested through
two monochromatic examples. The first example is given by the ’Trial D’ experiment
conducted by Chapalain et al. (1992). This experiment describes the evolution of a pro-
gressive monochromatic wave in a flume of constant depth (see schematic illustration
in Fig. 4.16). The incoming wave generated by the wavemaker is characterized by a rel-
atively large Ur (see Table 4.2), implying strong nonlinear effects. Such incoming wave
conditions provide a challenging case for prediction, especially when the prediction is
based on the quadratic formulation which neglects third and higher order terms.
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Figure 4.15: Model sensitivity to the maximum considered frequency as obtained for example E2. Results
shown at the upper row are based on the maximum frequency fmax = 5 fp where fp is the incoming frequency.
Results shown at the lower row are based on fmax = 8 fp . These results can be also compared with the results
shown in Fig. 4.13 for which fmax = 6 fp .

Figure 4.16: Schematic illustration of the experiments conducted by Chapalain et al. (1992) (left panel) and
Dingemans (1994) (right panel). The structures of the bathymetries are described by the thick green lines. The
thin vertical lines, plotted along the still water level (h = 0), indicating measurement locations.

The second example is an experiment conducted first by Beji and Battjes (1993) and
later by Dingemans (1994), which describes monochromatic wave propagation over a
submerged bar (see illustration in Fig. 4.16). Specifically, ’measuring condition A’ (as
referred to by Dingemans, 1994) are considered and detailed in Table 4.2. The evolu-
tion of the wave field being generated in this example involves several interesting phe-
nomena, which are briefly described as follows. The wave adjacent to the wavemaker
can be characterizes as a permanent second-order Stokes wave. Over the front slope of
the bar the wave steepens, suggesting the development of higher harmonics. This pro-
cess is accelerated over the head of the bar, where resonance due to triad interactions is
nearly met. Ultimately, behind the bar, the increasing water depth decreases the effect of
nonlinearity, and therefore, decouples the mutual forcing between the harmonics. As a
consequence, this de-shoaling process results with totally differed wave conditions than
the incoming conditions (compare the incoming and outgoing amplitudes presented by
the panels in Fig. 4.18). This combination of phenomena results from the interplay of
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nonlinearity and dispersion. The fact that in this example the roles of both of these wave
properties are important makes this example a standard test case for wave model verifi-
cation.

Table 4.2: Incoming wave parameters (indicated by the subscript ’I ’) and maximum Ursell number (Ur,max )
of the considered monochromatic examples.

Example T (sec) µI ampI (m) Ur,I Ur,max

Chapalain et al. (1992) (Trial D) 2.5 0.454 0.0354 45.2 45.2
Dingemans (1994) (Condition A) 2.02 0.67 0.01 4.5 101.5

The parameters detailed in Table 4.2 indicate that both of the examples describe
wave evolution in relatively shallow water depth. Note the distinction between the Ursell
number of the incoming wave and the maximum Ursell number. The latter is estimated
based on linear shoaling of the incoming monochromatic component. The relatively
high Ur value that characterizes the case of Chapalain et al. (1992) indicates on signif-
icant energy exchanges between wave harmonics along the entire flume. The second
case of Dingemans (1994) also presents high values of Ur , but these are limited only to
short segment of the domain. Specifically, Ur of the second case is higher than the valid-
ity limit of the second-order Stokes expansion (Ur = 26) over the region 10.5 ≤ x ≤ 14.8,
reaching to a very high value (Ur,max ) at the top of the bar.

These examples are computed with the different quadratic formulations using the
first six harmonics for the case of Chapalain et al. (1992) and using the first eight har-
monics for the case of Dingemans (1994) (the first harmonic serves as the frequency
step and the maximum frequency is the sixth or the eighth harmonic). The compari-
son between the different quadratic models and the measurements is discussed in the
following.

MONOCHROMATIC WAVE EVOLUTION OVER CONSTANT DEPTH

The predictions of the different quadratic formulations for the case of Chapalain et al.
(1992) are compared to laboratory observations in Fig. 4.17. As expected, the high value
of Ur leads to significant energy exchanges between the harmonics, such that the ampli-
tudes of the first and the second harmonics become approximately equal to each other
at certain locations. The predictive capabilities of the models are measured here with
respect to the magnitude of the amplitudes and the beat lengths. Generally speaking,
the Boussinesq models tend to underestimate the magnitude of the amplitudes, while
the fully dispersive models tend to overestimate those magnitudes. Additionally, most
of the predictions show some discrepancies of the beat lengths with respect to the mea-
surements. Clearly, the deviations in the predictions are much more pronounced by
the model results of the fully dispersive formulations. In part, these pronounced devi-
ations are also attributed to the unfavorable behaviour of these models in the presence
of very high frequencies (as briefly discussed in Subsection 4.3.2). The exceptional re-
sults are those of Nwogu (1993) and QuadWave1D. These model predictions show good
agreement with the laboratory observations in terms of both amplitude values and beat
lengths. Note however that the results due to Nwogu (1993) slightly overpredicts the
energy transfer between the harmonics, leading to more obvious deviations than those
obtained through QuadWave1D.
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Figure 4.17: Amplitude evolution of the first four harmonics as obtained by the different quadratic formula-
tions (lines) and the laboratory results measured by Chapalain et al. (1992) (circles).

MONOCHROMATIC WAVE EVOLUTION OVER A BAR

The evolution of monochromatic wave over a bar is described by the different quadratic
formulations in Fig. 4.18. Generally speaking, the comparison of the computed and
measured results suggests that all the formulations capture the expected physical phe-
nomena emerging in this example. Namely, the permanent Stokes behaviour over the
incoming zone, the harmonics’ growth over the bar and the decoupling of the harmon-
ics in deeper water beyond the bar where they are essentially propagate as linear waves
(this process effectively decomposes the initial wave into its harmonics, as nicely de-
scribed by Beji and Battjes, 1993). However, the main modelling challenge of this exam-
ple is to correctly describe the development of the harmonics outside the validity range
of second-order Stokes theory, i.e., over the region 10.5 ≤ x ≤ 14.8. As shown in Fig.
4.18, the fully dispersive models describe excessive energy exchanges between the har-
monics and thus inaccurately describe the development of the different amplitudes. As
a result, these models mispredict the output spectrum. In addition, these models also
describe rapid oscillations attributed to the sensitivity of these models to the presence
of very high frequencies (here fmax = 8 fp is used, while slightly better predictions of
these models are obtained when using fmax = 6 fp ). The predictions of the Boussinesq
models, on the other hand, seem much more adequate and show better agreement with
the measurements. Nevertheless, some deviations are demonstrated by these predic-
tions as well, given by the under-prediction of Freilich and Guza (1984) and Madsen and
Sørensen (1993) and over prediction of Nwogu (1993). Finally, QuadWave1D demon-
strates the most adequate results and accurately agrees with the measurements.

To summarize, the two examples considered here provide satisfying verification for
the modelling capabilities of QuadWave1D to describe the development of a monochro-
matic wave under significant nonlinear conditions and under conditions that combine
nonlinearity, dispersion and bathymetry changes. The Boussinesq models presented
satisfying predictions as well, demonstrating only limited deviations in comparison with
the measurements. However, the deviations observed through the fully dispersive mod-
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Figure 4.18: Amplitude evolution of the first six harmonics as obtained by the different quadratic formulations
(lines) and the laboratory results measured by Dingemans (1994) (circles).

els are significant. The unfavorable behaviour of these models requires further investi-
gation which is beyond the scope of the present study. It seems though that these formu-
lations are sensitivity to the presence of very high frequencies, which creates uncertainty
regarding the choice of the maximum frequency considered, and thus, limiting the ca-
pabilities of these models to provide reliable predictions. In the following, the predictive
capabilities of the different quadratic formulations are further investigated for more gen-
eral cases involving multi-component wave fields.

4.4.2. EVOLUTION OF BICHROMATIC GROUPS AND IRREGULAR WAVES

OVER A SLOPE
The predictions of the different quadratic formulations for more general cases are stud-
ied here using two sets of laboratory experiments conducted by Van Noorloos (2003) and
Ruessink et al. (2013). Generally speaking, these experiments describe one-dimensional,
nonlinear shoaling of wave fields over a mild slope. The settings of these experiments
are described schematically in Fig. 4.19 and the parameters of the incoming wave fields
are detailed in Table 4.3 and Table 4.4. Model capabilities are examined by compar-
isons to measured results and to the predictions of SWASH up to the breaking points
beyond which the quadratic formulations become invalid. The comparison focuses on
the evolution of the primary components and the generation and development of the
secondary components (the super and sub harmonics). Special attention is devoted to
the modelling performance of the different quadratic formulations to predict the gener-
ation and growth of the sub-harmonics (the infragravity components). Finally, recall that
the quadratic formulations only account for the incoming wave components. Therefore,
the examined cases considered here are such that the effect of wave reflection on the
evolution of the primary and secondary components is negligible (Rijnsdorp et al., 2014,
De Bakker et al., 2015). Accordingly, the measured data is not separated into incoming
and reflected wave components. Nevertheless, the simulations conducted with SWASH
attempt to avoid the contribution of the reflected part. This is performed by applying
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a radiation condition on the downwave side of the domain at a depth of h ∼ 0.057 m
accompanied by a sponge layer of 5 m in front of it. The combination of these mea-
sures allows an effective absorption of both the long and the short wave components, as
verified in Fig. 4.20 and Fig. 4.24.
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Figure 4.19: Schematic illustration of the experiments conducted by Van Noorloos (2003) (left panel) and
Ruessink et al. (2013) (right panel). The structures of the bathymetries are described by the thick green lines.
The thin vertical lines, plotted along the still water level (h = 0), indicating measurement locations. The vertical
dashed lines indicate the locations where computed and measured wave spectra are compared.

BICHROMATIC GROUPS OVER A SLOPE

Three bichromatic examples introduced by Van Noorloos (2003) (i.e., A1, B3 and B5) are
considered. Wave predictions for these examples as obtained by the different quadratic
formulations are compared to measured and SWASH results in Fig. 4.20. The compar-
ison is presented in terms of the Hs of the primary and super harmonics (defined by
f > fi g ,max and referred to as the sea-swell components) and the Hs of the sub harmon-
ics (defined by f ≤ fi g ,max and referred to as the infragravity (IG) components), where
the separating frequency takes the following value: fi g ,max = 0.3 Hz. Additionally, the re-
sults of the quadratic formulation are computed using spectral resolution of ∆ f = 0.025
Hz and maximum frequency of fmax = 4 fp (recall that fp is the peak frequency). Fur-
thermore, these results define ensemble average of 10 realizations. Finally, the results
according to SWASH define time average of the last 6 min, where the total simulation
time is chosen to be 10 min.

Table 4.3: Incoming wave parameters for the bichromatic examples of Van Noorloos (2003). The incoming
forced amplitude amp1 of the sub harmonic indicated by f1 is calculated based on second-order Stokes theory.
Additionally, Ur,max estimates the Ursell number at the breaking point and xs,max estimates the maximum
location for which Ur < 26.

Exp. f3 (Hz) f2 (Hz) f1 (Hz) amp3 (m) amp2 (m) µI Ur,I Ur,max xs,max (m)
A1 0.6714 0.4761 0.1953 0.06 0.012 1.43 4.7 41.8 21
B3 0.6470 0.5005 0.1465 0.06 0.024 1.35 5.6 39.2 20
B5 0.6470 0.5005 0.1465 0.06 0.036 1.35 6.0 38.6 19

The values given in Table 4.3 indicate that the considered examples describe incom-
ing wave groups over intermediate water depth. Additionally, these groups are charac-
terized by relatively small incoming Ur value (see Ur,I in Table 4.3). Therefore, it is ex-
pected that wave evolution up to x ∼ 10 would agree with the second-order permanent
Stokes solution. In fact, the Ursell number only becomes significant around the breaking
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area. Thus, the evolution is expected to be quasi-linear, namely, dominated by linear dis-
persion and shoaling along most of the domain (up to x ∼ xs,max ) for all the considered
examples. Based on these expectations, the predictions presented by the fully dispersive
models are surprising. These predictions describe significant energy transfers from the
primary component (i.e., the component with frequency f3) to secondary components,
as implied by the decrease of the sea-swell Hs and the relatively rapid Hs growth of the
IG components. The mechanism which triggers these energy exchanges is attributed to
modulational instability.
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Figure 4.20: A comparison of computed and measured Hs for the bichromatic examples A1 (upper row), B3
(middle row) and B5 (lower row) of Van Noorloos (2003). The vertical dashed lines provide estimation for the
wave breaking locations.

The impact of modulational instability on the group evolution may be explained
through the data detailed in Table 4.3. The depth parameter of the primary component
(given by µI ) provides an indication whether modulation instability can emerge. Follow-
ing Fig. 4.4, it is clear that all the three fully dispersive formulations (i.e., the formulations
by Whitham, 1967, Kaihatu and Kirby, 1995 and Bredmose et al., 2005) are subjected to
modulational instability for all the considered examples. However, the significance of
the energy transformation due to modulational instability is determined by the steep-
ness parameter (i.e., ϵ) and the normalized modulation frequency (i.e., δω3 ). As an exam-
ple, the wave conditions, based on which the growth rate shown in Fig. 4.5 (left panel) is
calculated, approximately describe the wave conditions of example B3 and B5 at x ∼ 15.
Consequently, it is expected that the predictions for these examples following the for-
mulations by Whitham (1967) and Bredmose et al. (2005) will be strongly affected by the
modulational instability mechanism. These models indeed describe rapid Hs growth of
the IG components, indicating significant modulational growth. On the other hand, the
Boussinesq formulations agree better with the measured and SWASH results and with
the expectation of quasi-linear evolution. However, exceptional Boussinesq results are
still described by the sea-swell Hs prediction due to Freilich and Guza (1984) and by the
Hs prediction of the infragravity response due to Madsen and Sørensen (1993). The for-
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mer develops due to over prediction of linear shoaling (see the comparison presented
in Fig. 4.28). Whereas the latter stems from the nonlinear balance generated by the
quadratic coefficients, Vl ,m , which is characterized by relatively strong tendency towards
sub interactions (as also described by the Gl ,m of Madsen and Sørensen, 1993, as given
in Fig. 4.1). In summary, it seems that the model by Nwogu (1993) and QuadWave1D
describe most adequately the development of the wave groups for the considered exam-
ples. These adequate predictions are obtained due to a combination of accurate linear
formulation (dispersion and shoaling) and adequate nonlinear balance provided by the
quadratic coefficients.

0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

a
m

p
lit

u
d

e
 (

m
)

x = 18 (m)

0.5 1 1.5 2
0

0.02

0.04

0.06

0.08
x = 22 (m)

Noorloos (2003)

SWASH

Freilich and Guza (1984)

0.5 1 1.5 2

f (Hz)

0

0.02

0.04

0.06

0.08

a
m

p
lit

u
d

e
 (

m
)

0.5 1 1.5 2

f (Hz)

0

0.02

0.04

0.06

0.08
Noorloos (2003)

SWASH

Madsen and Sørensen (1993)

Figure 4.21: A comparison of amplitude spectra as obtained by the measurements, SWASH and the models of
Freilich and Guza (1984) and Madsen and Sørensen (1993).
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Figure 4.22: A comparison of amplitude spectra as obtained by the measurements, SWASH and the models of
Nwogu (1993) and Kaihatu and Kirby (1995).
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Figure 4.23: A comparison of amplitude spectra as obtained by the measurements, SWASH, QuadWave1D and
the model of Bredmose et al. (2005).

The prediction capabilities of the different quadratic formulations is further investi-
gated using example B5, which describes the most significant incoming wave conditions
in terms of nonlinearity. Further insight is gained by considering the predicted spectral
development of the group along the flume. To this end, Figs. 4.21-4.23 present the am-
plitude spectra at two different locations in the vicinity of the breaking point. This spec-
tral point of view provides further evidence to the impact of modulational instability on
the evolution of the wave group. Especially, the results of Bredmose et al. (2005), but
also less prominently the results of Kaihatu and Kirby (1995), show significant energy
transfer from the primary component to the side-bands, providing explanation to the
amplitude increase of the modulation frequency (as apparent at x = 18 m). This initial
stage is followed by a significant spectrum broadening towards sub and super harmon-
ics (as presented at x = 22 m). The predictions of the rest of the models agree well with
the measured and SWASH results. Especially, the results of Freilich and Guza (1984),
Nwogu (1993) and QuadWave1D show accurate development of the complete spectrum.
The prediction of Madsen and Sørensen (1993) though, tend to under-predict the de-
velopment of the super harmonics (as also demonstrated earlier for the monochromatic
cases).

IRREGULAR WAVES OVER A SLOPE

This part presents the last validation examples devoted to the evolution of irregular wave
fields. The aim here is to study the prediction capabilities of the different quadratic for-
mulations for these more general wave conditions. The considered examples are the
irregular cases which were experimentally investigated by Ruessink et al. (2013). The
generated wave fields are defined based on the JONSWAP spectrum using the param-
eters detailed in Table 4.4. The computations through the quadratic formulations are
based on a spectral resolution of ∆ f = 0.015 Hz, maximum frequency of fmax = 4 fp and
averaging over 60 realizations. The computations through SWASH is based on a simula-
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tion time of 60 min, where the results represent time-average of the last 54 min.

Table 4.4: Wave parameters for the irregular examples of Ruessink et al. (2013). The incoming wave fields are
defined based on the JONSWAP spectrum requiring the values of fp , Hs and γ (recall that γ stands for the
peak-enhancement factor). Also here, Ur,max represents the Ursell number at the breaking point and xs,max
indicates the maximum location for which Ur < 26.

Exp. fp (Hz) Hs (m) γ fi g ,max µI Ur,I Ur,max xs,max (m)

A1 0.6329 0.1 3.3 0.37 1.5 2.1 47.5 61
A2 0.4444 0.2 3.3 0.26 0.9 11.4 52.5 37
A3 0.4444 0.1 20 0.26 0.9 5.7 77.3 49

The computed and measured results are compared in Fig. 4.24 in terms of Hs . Here
again, the values of Hs are presented separately for the shorter waves (denoted as the
sea-swell components and satisfy f > fi g ,max ) and for the longer waves (denoted as the
infragravity (IG) components and satisfy f ≤ fi g ,max ), where the separation frequency,
fi g ,max , is provided in Table 4.4 for each of the considered examples. For the interme-
diate to shallow water depth conditions that characterize these examples, the values of
xs,max define the regions over which second-order Stokes theory is expected to be valid.
Over these regions, wave evolution is expected to be dominated by linear dispersion and
shoaling, while evidence of nonlinear exchanges of energy is expected to be weak. This
highlights again the abnormal infragravity responses as presented by the fully disper-
sive formulations in Fig. 4.24. Here, the explanation for these results is based on the
BFI parameter. As an example, refer to the middle panel of Fig. 4.6 which shows the
BFI values due to the fully dispersive formulations under the same wave conditions as of
example A2. These BFI values indeed suggest that for the considered µ values, wave pre-
diction using the fully dispersive formulations (especially using the model by Whitham,
1967) would be strongly affected by the modulational instability mechanism. This may
lead to unexpectedly strong prediction of wave field’s modulations, and consequently,
to the prediction of unexpectedly strong responses of the infragravity components as in-
deed suggested by Fig. 4.24. Furthermore, the results of Fig. 4.24 provides an additional
evidence to the reliability of wave prediction using QuadWave1D and the Boussinesq
models. These models agree well with the measured and SWASH results up until the
breaking points. However, also here, the inaccurate shoaling prediction of Freilich and
Guza (1984) and the inadequate nonlinear balance due to the quadratic coefficients of
Madsen and Sørensen (1993) result in over prediction of the sea-swell Hs and the infra-
gravity Hs , respectively.

Further details explaining the prediction capabilities of the different quadratic for-
mulations are presented in Figs. 4.25-4.27. These results provide a limited view on the
spectral evolution as obtained for example A2 close to the breaking point. In order to
highlight the modelling capabilities of the infragravity components (which also provide
possible indication to the significance of modulational instability), the spectra are plot-
ted through logarithmic scales. The results provide another perspective on the effect of
modulational instability, which induces much faster spectral broadening than predicted
by the measurements (especially notable by the results of Bredmose et al., 2005 in Fig.
4.27, but also seen less obviously through the results of Kaihatu and Kirby, 1995 in Fig.
4.26). In addition, the tendency of the model by Madsen and Sørensen (1993) to over pre-



4

106 4. SPECTRAL FORECASTING OF COASTAL WAVES USING QUADRATIC MODELS

0 20 40 60 80
0

0.1

0.2

H
s
 (

m
)

H
s
 of the sea-swell components

Freilich and Guza (1984)

Madsen and Sørensen (1993)

Nwogu (1993)

Whitham (1967)

Kaihatu and Kirby (1995)

Bredmose et al. (2005)

QuadWave1D

SWASH

GLOBEX (2013)

0 20 40 60 80
0

0.05

0.1

H
s
 of the IG components

0 20 40 60 80
0

0.1

0.2

H
s
 (

m
)

0 20 40 60 80
0

0.05

0.1

0 20 40 60 80

x (m)

0

0.1

0.2

H
s
 (

m
)

0 20 40 60 80

x(m)

0

0.05

0.1

Figure 4.24: A comparison of computed and measured Hs for the irregular examples A1 (upper row), A2 (mid-
dle row) and A3 (lower row) of Ruessink et al. (2013). The vertical dashed lines provide estimation for the wave
breaking locations.

dict the sub-harmonic responses and to under-predict the super-harmonic responses is
revealed again through Fig. 4.25. In summary, QuadWave1D and the models by Freilich
and Guza (1984) and Nwogu (1993) seems to generate the most accurate prediction for
this example.
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Figure 4.25: A comparison of variance spectra as obtained by the measurements, SWASH and the models of
Freilich and Guza (1984) and Madsen and Sørensen (1993).

To summarize, the verification conducted for both bichromatic an irregular wave
conditions shows the preferable prediction capabilities of QuadWave1D and the Boussi-
nesq models. However, all the examples considered showed the tendency of Freilich and
Guza (1984) to over predict the sea-swell components due to inaccurate formulation of
linear shoaling and the tendency of Madsen and Sørensen (1993) to under-predict the
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Figure 4.26: A comparison of variance spectra as obtained by the measurements, SWASH and the models of
Nwogu (1993) and Kaihatu and Kirby (1995).
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Figure 4.27: A comparison of variance spectra as obtained by the measurements, SWASH, QuadWave1D and
the model of Bredmose et al. (2005).

sea-swell components and to over predict the IG components due to inadequate non-
linear balance provided by the quadratic coefficients. QuadWave1D and the model of
Nwogu (1993) present the most satisfying general agreement with the measured and
SWASH results, and together with the model of Freilich and Guza (1984) showed the most
accurate prediction of the infragravity response. Finally, as observed for the monochro-
matic cases, also here the predictions of the fully dispersive formulations deviated con-
siderably from the measurement results. However here, the mechanism that leads to the
observed deviations appears to be the modulational instability. This instability mecha-
nism triggered rapid energy exchanges and accompanying growth of wave modulations
over regions for which the waves are expected to develop (almost) linearly. As a result,
an unexpectedly strong response of the infragravity field is presented by the predictions
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of both these fully dispersive formulations.

4.5. DISCUSSION AND CONCLUDING REMARKS
The quadratic modelling approach proposes a significant modelling reduction of the
original Euler equations. The description of wave nonlinearity essentially collapses
into a single mode coupling term determined by the quadratic interaction coefficients.
Therefore, doubt arises regarding the prediction capabilities of this modelling approach
especially for coastal waves which are characterized by significant nonlinearity.

Since the first development of the quadratic formulation by Freilich and Guza (1984),
efforts were mainly devoted to the improvement of the dispersion relation and the in-
clusion of highly dispersive and weakly nonlinear terms. Beyond the improvement of
the linear wave properties, accounting for high-order dispersive terms also improves the
representation of the second-order bound waves (see Madsen and Schäffer (1998)). As
an example, the formulation by Bredmose et al. (2005) provides second-order bound
wave solutions which exactly match those of Stokes theory. However, as demonstrated
throughout this study, these added values also involve unfavourable consequences on
the nonlinear evolution. This unexpected impact can be explained by considering the
neglected residual (or truncation error) arising due to the modelling reduction of the
quadratic modelling approach. It turns out that this residual may becomes significant
for quadratic formulations with improved dispersion. Specifically, the residuals corre-
sponding to the fully dispersive models of Whitham (1967), Kaihatu and Kirby (1995)
and Bredmose et al. (2005) lead to considerable over predictions of the so-called ampli-
tude dispersion, and consequently, also to unfavourable modifications of the modula-
tional instability mechanism. Therefore, beyond phase errors, errors related to nonlin-
ear energy exchanges are expected to evolve as well using these models. Stability analysis
showed that these models become modulationally unstable over much shallower water
than expected and are subjected to much stronger growth rates and much larger modu-
lation ranges. As a result, predictions using these models may be significantly affected by
modulational instability even under conditions (e.g., water depth, spectral bandwidth)
for which this mechanism is expected to be weak or absent. Specifically, this study shows
the consequences of false development of modulational instability on the predication of
waves in coastal waters. As an example, the evolution of relatively linear waves (charac-
terized by small Ursell number) over relatively shallow waters (µ < 1.36) was examined
several times along this study. The expected evolution for such conditions should be well
described by linear theory. However, the fully dispersive formulations demonstrated en-
tirely different results, which are characterized by rapid growth of wave modulations and
associated growth of the infragravity field.

The fully dispersive formulations also showed significant deviations compared to ex-
periments for monochromatic cases, for which the modulational instability mechanism
is not expected to develop. In addition, it was found that for these cases the results de-
pend on the choice of the maximum frequency ( fmax ), taking into account the frequency
allowed to prevent numerical instability. Generally, it seemed that choosing relatively
lower fmax (say 4 fp , where fp is the peak frequency) leads to more reliable predictions.
This implies sensitivity of these models’ predictions to the presence of relatively high
frequencies, and thus, also to the choice of fmax . It is hypothesized that this sensitivity
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is caused by an inadequate balance between the super and sub interactions obtained by
the quadratic coefficients of these models, especially interactions involving high values
of µ. However, understanding the mechanism leading to this unfavourable behaviour
requires separated investigation which is beyond the scope of this study.

In contrast to the fully dispersive formulations, the predictions of the Boussinesq
models (i.e., the models by Freilich and Guza, 1984, Madsen and Sørensen, 1993 and
Nwogu (1993)) agreed well with the measured results for the examples considered.
Specifically, the model by Freilich and Guza (1984) predicts accurately the infragravity
field, but shows shoaling deviations of the shorter waves. Furthermore, the model by
Madsen and Sørensen (1993) demonstrated deviations of both the sub and super har-
monics. These deviations are explained by the inadequate nonlinear balance character-
izing the quadratic coefficients of Madsen and Sørensen (1993). Finally, the model by
Nwogu (1993) seems to predict well the evolution of both the sea-swell field and infra-
gravity field. Nevertheless, this study presents an attempt to push the limits of the pre-
diction capabilities of the quadratic approach. To this end, an optimization process was
put forward in order to find the optimal quadratic coefficients under the constraint of full
linear dispersion. The outcome is the model QuadWave1D: a fully dispersive quadratic
model for coastal wave prediction in one dimension. Based on accurate linear proper-
ties and adequate nonlinear balance, QuadWave1D showed satisfying agreements with
the measured results with respect to the evolution of both the sea-swell components and
the infragravity components. However, the verification of QuadWave1D only considered
long-crested wave conditions. Therefore, further development is required to generalize
the predictive capabilities of QuadWave1D for directional spectra. Ultimately, Quad-
Wave1D also serves as a reliable and accurate starting point for the implementation of a
nonlinear source term in operational spectral models for coastal waters (e.g. the SWAN
model, Booij et al., 1999).
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APPENDICES

4.A. DIFFERENT FORMULATIONS FOR THE QUADRATIC MODEL
Generally speaking, the derivation of the quadratic model starts with the underlying
time-domain model. The latter is usually written as a set of two equations for the surface
elevation, η, and for the fluid velocity variable (may be the depth-averaged horizontal ve-
locity or the horizontal velocity at a certain elevation level or the surface potential veloc-
ity etc.). However, in order to simplify the discussion, it is assumed that the underlying
time-domain model can be written through the following combined form:

D(i∂t ,−i∂x )η=N (i∂t (1) , i∂t (2) ,−i∂x(1) ,−i∂x(2) )η(1)η(2) (4.45)

where D is a linear differential operator and N defines a nonlinear operator. The su-
perscripts used on the right-hand-side of (4.45) (indicated by the numbers 1, 2) specify
the partial derivatives with superscript ( j ) operates on η( j ). Additionally, as implied by
(4.45), the effect of slow bottom variations is ignored here (otherwise the differential op-
erators were dependent on x). This is done based on the common assumption that this
effect, which is manifested by the so-called linear shoaling term, is of the same order as
of the quadratic nonlinear term. As such, the shoaling term can be simply added to the
quadratic model separately at a later stage.

The usual procedure to derive the quadratic model, (4.1), is through the multiple-
scale method. A detailed account for this derivation can be found for instance in Dinge-
mans (1997), Chapter 7. Here, this derivation is briefly summarized based on the com-
bined model form, (4.45). To start with, two spatial scales are defined, x1 = x and x2 = ϵx,
where recall that ϵ represents a small valued measure of the field’s nonlinearity. In addi-
tion, η is expanded as η= ϵη1 + ϵ2η2 + .... By substituting these assumptions into (4.45),
one obtains a set of equations, each balances terms of mutual order. Here, only the first
two equations are required. These are given by,

D1η1 = 0 (4.46)

D1η2 = iD′
1∂x2η1 +N1η

(1)
1 η(2)

1 (4.47)

where the subscript in D1 and N1 indicates that these operators are functions of the spa-
tial derivative ∂x1 . In addition, the definition of the operator D′

1 stems from the following
symbolic Taylor expansion:

D(i∂t ,−i∂x1 − iϵ∂x2 ) =D1 − iϵD′
1∂x2 −

ϵ2

2
D′′

1∂
2
x2
+ ... (4.48)

where the tag notation defines derivative with respect to the factor −i∂x1 .
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The non-trivial solution, η1, is assumed to be periodic in time and slowly modulated
in space, and therefore, it is assumed to take the following form:

η1 =
∑
n

An(x2)exp(i kn x1 − iωn t ) (4.49)

By substituting this solution into (4.46), the following linear dispersion relation is ob-
tained

D(ωn ,kn) = 0 (4.50)

and the substitution of η1 into (4.47) provides

D1η2 =
∑
n

exp(−iωn t )
[

i D ′
n∂x2 An exp(i kn x1)+∑

r
Nr,n−r Ar An−r exp

(
i (kr +kn−r )x1

)]
(4.51)

where now the tag of D ′
n indicates derivative with respect to kn and Dn = D(ωn ,kn). Ad-

ditionally, N is associated with the operator N1, such that Nr,n−r = N (ωr ,ωn−r ,kr ,kn−r ).
It is well-known that the dispersion relation does not allow resonance to occur be-

tween three waves, and therefore, at this stage, only bound wave solutions are expected
to exist. However, as the water depth becomes shallower, the wavenumber mismatch,
kr +kn−r −kn , becomes smaller, creating a weaker condition that is commonly referred
to as "near resonance", which practically allows energy exchange to take place. There-
fore, in order to keep the solution bounded over relatively shallow waters, it is required
that the right-hand-side of (4.51) is set to zero. This condition is expressed as follows:

i D ′
n∂x2 An exp(i kn x1)+∑

r
Nr,n−r Ar An−r exp

(
i (kr +kn−r )x1

)= 0 (4.52)

or, in terms of an = An exp(i kn x1)

∂x an − i kn an =−i
∑

r
Vr,n−r ar an−r (4.53)

As can be observed, this is exactly the quadratic model which is introduced by (4.1),
where since the scale separation has stopped to play a role at this stage, it is simply re-
duced. Additionally, the transition from (4.52) to (4.53) suggests the following relation:

Vl ,m =−Nl ,m/D ′
n (4.54)

where n = l +m. This relation can be conveniently used to derive the missing quadratic
coefficients of Nwogu (1993) and Whitham (1967).

The quadratic coefficients of four out of the six formulations considered here are well
reported. However, the quadratic coefficients of Nwogu (1993) and Whitham (1967) are
absent since these studies were designed for time-domain formulations. In the follow-
ing, the missing quadratic coefficients are derived based on the underlying time-domain
formulations and the relation given by (4.54).

The quadratic coefficients of Nwogu (1993) can be derived by formulating first the
combined equation with respect to η and then extracting the functions Nl ,n−l and D ′

n .
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Alternatively, these functions can be obtained based on the quadratic transfer function,
Gl ,m , which for time-domain models is defined as

Gl ,m = Nl ,m/Dlm (4.55)

This relation for the quadratic transfer function is easily obtained based on (4.47) and
the assumption that the forcing due to η1 only leads to bound wave solutions.

Following Nwogu’s transfer function (see Nwogu (1993), Eq. 40), the functions Nl ,m

and D ′
n are obtained as

Nl ,m =−ωl mklmh2L1,lm(ωl kmL2,m +ωmkl L2,l )+ωlωm(klmh)2L2,l m

2kl L2,l kmL2,mh3 (4.56)

and

D ′
n = 2

(
g knhL2,n +αω2

nknh2 − g (α+1/3)(knh)3
)

(4.57)

where L1(k) = (
1−α(kh)2

)
, L2(k) = (

1− (α+ 1/3)(kh)2
)

and α is a constant chosen by
Nwogu (1993) to be α = −0.39 in order to optimize the dispersion behaviour of the
model.

The corresponding functions of Whitham (1967) can be easily derived from the time-
domain formulation directly and are given as

Nl ,m =−i
3

4

√
g

h
kl m (4.58)

D ′
n = iCg ,n (4.59)

where Cg is the fully dispersive group velocity. This completes the derivation of the miss-
ing quadratic coefficients.

It is desired to stress a final point here that concerns the reason why quadratic formu-
lations which are derived based on the above procedure provide different bound wave
solutions from the ones obtained by the underlying time-domain formulations, and
why the formulation of Bredmose et al. (2005) is exceptional in that sense. Recall that
the bound wave solutions based on the quadratic model are governed by the quadratic
transfer function through (4.10). Therefore, using (4.54), the following alternative ex-
pression of Gl ,m is obtained:

Gl ,m = Nl ,m/
(
D ′

n(klm −kn)
)

(4.60)

On the other hand, time-domain formulations provide different expression for the
quadratic transfer function as presented by (4.55). These two predictions would agree
if 1/D ′

n would equal to (klm −kn)/Dlm . Yet this equality is obtained asymptotically at the
shallow water limit as suggested by

lim
klm→kn

klm −kn

Dl m
= lim

kl m→kn

1

D ′
lm

= 1

D ′
n

(4.61)
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This observation is indeed consistent with the near-resonance assumption of the
quadratic model derivation (see further discussion in Bredmose et al., 2005).

The exceptional derivation of the quadratic model by Bredmose et al. (2005) fixes
the disagreement between the quadratic formulations and the underlying time-domain
formulations with regard to the bound wave solutions. This is achieved due to an oper-
ator splitting idea suggested by Agnon (1999). The operator splitting idea bypasses the
necessity to rely on the near-resonance assumption, resulting in the following modified
quadratic coefficients:

Vl ,m =−Nl ,m/Hlm (4.62)

where Hlm = Dlm/(klm −kn). By substituting this definition into (4.10), one obtains an
exact match with the quadratic transfer function of the underlying time-domain model
as given by (4.55).

A summary of the six different quadratic formulations which are considered in this
study is given by the following subsections. These formulations include the models given
by Freilich and Guza (1984), Madsen and Sørensen (1993), Kaihatu and Kirby (1995),
Bredmose et al. (2005) and the two formulations which are derived here based on the
time-domain models of Nwogu (1993) and Whitham (1967).

4.A.1. DISPERSION RELATION

The dispersion relation, (4.50), of the Boussinesq models, namely the models by Freilich
and Guza (1984), Madsen and Sørensen (1993) and Nwogu (1993) can be summarized
through (also see Eq. 30 by Nwogu, 1993)

ωn = kn

√
g h

1− (α+1/3)(knh)2

1−α(knh)2 (4.63)

where

α=


−1/3, Freilich and Guza (1984)

−2/5, Madsen and Sørensen (1993)

−0.39, Nwogu (1993)

(4.64)

For the other fully dispersive models, the dispersion relation is defined as

ωn = kn

√
g tanh(knh)/kn (4.65)

For all but one model, the value of kn is evaluated numerically. The exceptional model
with this regard is the one by Freilich and Guza (1984) for which kn is evaluated asymp-
totically using the following expression:

kn = ωn√
g h

+
p

hω3
n

6g 3/2
(4.66)
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4.A.2. QUADRATIC COEFFICIENTS
The quadratic coefficients for each of the models are summarized by the following. The
expressions are presented using (4.54). For the model by Bredmose et al. (2005) though,
the quadratic coefficients are presented through (4.62).

Freilich and Guza (1984):
The functions Nl m and D ′

n which are used to calculate the quadratic coefficients by
Freilich and Guza (1984) obey to an additional assumption. The additional assumption
of Freilich and Guza (1984) dictates that the contribution to the dispersion relation
(which corrects the non-dispersive relation in shallow water) is of O(ϵ), and therefore,
should be ignored for the evaluation of Nlm and D ′

n . Accordingly, the reduced Nl m and
D ′

n are given by

Nl ,m =−3

2
g k2

lm (4.67)

D ′
n = 2g hkn (4.68)

for which kn = ωn/
√

g h. Therefore, using (4.54), the the quadratic coefficients by
Freilich and Guza (1984) are obtained as

Vl ,m = 3

4

ωn

h
√

g h
(4.69)

Madsen and Sørensen (1993):
The formulation of the quadratic coefficients by Madsen and Sørensen (1993) is com-
pletely consistent with the general derivation presented here, without any additional
assumptions. The expression for the functions Nlm and D ′

n are given by Madsen and
Sørensen (1993), Eqs. (5.4a) and (5.4f).

Nwogu (1993):
The quadratic coefficients of Nwogu (1993) are obtained through (4.56) and (4.57).

Whitham (1967):
The quadratic coefficients of Whitham (1967) are obtained through (4.58) and (4.59).

Kaihatu and Kirby (1995):

The functions Nl m and D ′
n which are used to calculate the quadratic coefficients of

Kaihatu and Kirby (1995) are given by

Nl ,m =−1

2

g

ωlωm

(
ω2

nkl km +ωnklm(klωm +kmωl )
)
− 1

2

ω2
n

g
(ωlωm −ω2

n) (4.70)

and

D ′
n = 2ωnCg ,n (4.71)
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which can be deduced based on the expressions in Eqs. (26-27) and Eq. (36) of Kaihatu
and Kirby (1995).

Bredmose et al. (2005):
The quadratic coefficients of Bredmose et al. (2005) are defined through (4.62), which
requires the expressions for Nl ,m and Hl m . These are summarized by the following:

Nl ,m =−1

2

g

ωlωm

(
ω2(kl m)kl km+ωnkl m(klωm+kmωl )

)
− 1

2

ω2
n

g

(ω2(kl m)

ω2
n

ωlωm−ω2(klm)
)

(4.72)
and

Hl m = ω2
n −ω2(kl m)

kn −klm
(4.73)

where ω2(klm) is given by ω2(klm) = kl m g tanh(klmh). Note that even though the start-
ing point equations of Kaihatu and Kirby (1995) and Bredmose et al. (2005) obey to sim-
ilar properties, the resulting quadratic coefficients are different. Apart from the reason
discussed above regarding the derivation methods, which result in the different denom-
inators D ′

n and Hl m , the differences in Nl ,m is explained by the different ways to obtain
the combined form for η as discussed by Eldeberky and Madsen (1999).

4.A.3. SHOALING TERM
As mentioned earlier, the shoaling term can be added into the quadratic formulation
separately by assuming it to be of the same order as the quadratic nonlinear term. The
derivation of the shoaling term is based on the usual WKB assumption allowing the
wavenumbers to be weakly dependent on x. Namely, the first order solution, η1, takes
now the following form:

η1 =
∑
n

An exp(i Sn(x)− iωn t ) (4.74)

where ∂x Sn = kn . The linear operator, D, is now weakly dependent on x as well. For
model formulations which are based on the so-called free-surface velocity potential (see
definition in, e.g., Zakharov, 1968), the slowly varying operator, D, can be treated as a
Weyl operator (Akrish et al. 2022). This is convenient since the Weyl operator provides
the following general formula for the shoaling term (see, e.g., Akrish et al., 2020, Eq. (A8)):

∂x An

An
=−∂x knD ′′

n +∂x D ′
n

2D ′
n

(4.75)

where D ′′
n indicates second derivative with respect to kn . This equation leads to the fol-

lowing well-known linear shoaling definition (which corresponds to the well-known en-
ergy flux conservation):

∂x

(
An

√
Cg ,n

)
= 0 (4.76)
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where Cg ,n is the fully dispersive group velocity if one of the fully dispersive models is
considered, while for the model by Freilich and Guza (1984), the shallow water approx-
imation, Cg ,n = √

g h, is used. Note that the shoaling term formula, (4.75) (or (4.76)), is
applied here also for the model by Whitham (1967) which was developed for constant
depth. This applicability is argued heuristically based on the derivations of the Whitham
systems in Moldabayev et al. (2015) and Akrish et al. (2022). A more rigorous derivation
is beyond the scope of this study. Finally, recall that the Weyl formula, (4.75), is valid for
models which are formulated based on the free-surface velocity potential. Accordingly,
this formula does not lead to the correct shoaling terms of Madsen and Sørensen (1993)
and Nwogu (1993). Furthermore, the expression in (4.76), written in terms of Cg ,n , is also
not found to agree with the shoaling terms of Madsen and Sørensen (1993) and Nwogu
(1993) (see discussions by Beji and Nadaoka, 1996 and Schäffer and Madsen, 1998). How-
ever, Fig. 3 in Schäffer and Madsen (1995) shows that the deviation of the shoaling terms
of Madsen and Sørensen (1993) and Nwogu (1993) from the fully dispersive shoaling
is practically negligible over depths that characterize coastal waters. Therefore, for the
computations performed here, the fully dispersive shoaling term is applied for the mod-
els by Madsen and Sørensen (1993) and Nwogu (1993) as well.

A comparison between the fully dispersive shoaling term and the shoaling term of
Freilich and Guza (1984) is shown in Fig. 4.28.

0 1 2 3
-0.4

-0.2

0

0.2

0.4

s

Freilich and Guza (1984)

Fully dispersive shoaling

Figure 4.28: The shoaling coefficient of the fully dispersive formulations and of Freilich and Guza (1984) as a
function of the depth parameter µ.

The comparison is presented in terms of the shoaling coefficient,αs , that defines the
following relation (see Madsen and Sørensen, 1992, Section 3):

∂x An

An
=−αs

∂x h

h
(4.77)

The comparison shown in Fig. 4.28 explains the tendency of the model by Freilich and
Guza (1984) to exaggerate the effect of linear shoaling over coastal waters (say, for µ val-
ues satisfy µ≤ 2).
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4.B. CUBIC INTERACTION COEFFICIENTS OF THE QUADRATIC

FORMULATION
The cubic interaction coefficients, Li , j ,k,l , are formulated through the solvability condi-
tion, (4.11), that is obtained at third order. This equation describes the interaction of
resonant quartets, which satisfy the conditions{

ωi +ω j =ωk +ωl

ki +k j = kk +kl +O(ϵ2)
(4.78)

for non-trivial interactions, while exact resonance is obtained for the trivial interactions
(the interactions which result in amplitude dispersion contributions). As implied by the
formulation of the solvability condition, the cubic coefficients of the cubic terms (ap-
pearing implicitly on the right-hand-side of (4.11)) are constructed as sums of multi-
plications of the quadratic coefficients, V , and the quadratic transfer function, G . To
demonstrate this explicitly, an example of a resonant quartet is considered. Consider
first the more common resonant case which satisfies the following:{

ωi −ωk =ωl −ω j

ω j −ωi ̸=ωi −ωk
(4.79)

In this case, any wave component participates in four trivial resonant interactions and
one non-trivial interaction, as is demonstrated for the component corresponding to ωi

as follows: 

ωi =ωi +ωi −ωi

ωi =ωi +ω j −ω j

ωi =ωi +ωk −ωk

ωi =ωi +ωl −ωl

ωi =ωl +ωk −ω j

(4.80)

The cubic coefficient corresponding to each of these interactions consists of different
products of G and V which are determined by the right-hand-side of the equations in
(4.80). For example, consider the formulation for the cubic coefficient of the non-trivial
interaction which is determined according to the last equation of (4.80). Each pair of
frequencies on the right-hand-side of this equation forces a second-order bound solu-
tion which is in resonant with the third frequency and with ωi . As a result, the following
expression is obtained:

Li , j ,k,l = 2Gl ,kVl+k,− j +2Gl ,− j Vl− j ,k +2Gk,− j Vk− j ,l (4.81)

The formulation for the cubic coefficients of the trivial interactions can be derived in a
similar fashion based on the other equations of (4.80). The resulted evolution equation
for ai is given by

i∂x2 ai =
(
Li ,i |al |2 +2Li ,k |ak |2 +2Li , j |a j |2 +2Li ,l |al |2

)
al +2Li , j ,k,l al ak a− j (4.82)
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which is coupled with the corresponding equations for ak , a j and al . Note that the com-
pact notations defined for the cubic coefficients of the trivial interactions Ln,n and Ln,m

conveniently represent the notations Ln,n,n,n and Ln,m,n,m , respectively. In addition,
note that for the special case which also satisfies the condition ω j −ωi = ωi −ωk , two
additional non-trivial interactions appears. These can be described as{

ωi =ω j +ωk −ωi

ωi =ω j +ω j −ωl
(4.83)

The above described formulation, when applied for cubic coefficients that correspond to
the trivial resonant interactions, raises some doubt due to apparent singularity demon-
strated by terms like Gn,−n . The quadratic model naturally bypasses this difficulty since
it excludes the set-down terms due to self interactions as a results of the property
given by (4.32) which states that Vn,−n = 0. The formulation of the cubic coefficients
based on the quadratic model is referred here as the discontinuous definition. On the
other hand, the continuous definition requires some assumptions regarding the limit of
Gn,−n , which should be identical through the different convergence paths described by
G(ωn ±∆ω,−ωn ±∆ω) and by taking the limit ∆ω→ 0. Thus, consider for instance the
cubic coefficient, Li ,i , defined by the right-hand-side of the first equation in (4.80). The
discontinuous definition expresses this coefficient as

Li ,i = 2Gi ,i V2i ,−i (4.84)

whereas the formulation following the continuous definition gives

Li ,i = 2Gi ,i V2i ,−i +4Gi ,−i Vi ,0 (4.85)

The continuous definition is used in this study to relate between the different cubic coef-
ficients for the case of three-wave interaction. An example of such case is defined by the
condition (4.79) and assuming thatω j =ωi . The three cubic coefficients that correspond
to the non-trivial interaction are given as follows:

Lk,l ,i ,i = 2Gi ,i V2i ,−l +4Gi ,−l Vi−l ,i

Ll ,k,i ,i = 2Gi ,i V2i ,−k +4Gi ,−kVi−k,i

Li ,i ,k,l = 2Gl ,kVl+k,−i +2Gl ,−i Vl−i ,k +2Gk,−i Vk−i ,l

(4.86)

Under the assumption of small modulation frequency, namely, ωi −ωk = ωl −ωi = ∆ω,
where ∆ω≪ωi , one obtains the approximation

Lk,l ,i ,i ∼ Ll ,k,i ,i ∼ Li ,i ,k,l ∼ Li ,i (4.87)

if the following conditions hold:
G(ωi ±∆ω,−ωi ±∆ω) =Gi ,−i +O(∆ω)

G(ωi ±∆ω,ωi ±∆ω) =Gi ,i +O(∆ω)

V (2ωi ±∆ω,−ωi ±∆ω) =V2i ,−i +O(∆ω)

V (ωi ±∆ω,±∆ω) =Vi ,0 +O(∆ω)

(4.88)
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4.C. SPATIAL MODULATIONAL GROWTH OF NARROW-BANDED

WAVE FIELDS
Modulational instability is conveniently studied through the well-known nonlinear
Schrödinger equation (NLSE). This equation is derived under the assumption of a
narrow-banded wave field represented by the complex envelope, A. Additionally, the
waves are assumed to be weakly nonlinear. Nevertheless, the NLSE accurately captures
third-order nonlinear effects, and thus, serves an adequate reference for comparison
with relevant results obtained through the quadratic formulations. Specifically, this ap-
pendix briefly summarizes the derivation of modulational instability threshold and its
spatial growth. For a one-dimensional settings, the NLSE can be formulated as follows
(e.g., Mei et al., 2005):

∂t2 A+ 1

2
ν
ωp

kp
∂x2 A+ i

1

8
α
ωp

k2
p
∂2

x1
A+ i

1

2
βωp k2

p A|A|2 = 0 (4.89)

where, as before, the subscripts introduce multiple scales with respect to the small pa-
rameter ϵ (e.g., x j = ϵ j x). In addition, kp and ωp are defined as the carrier wavenumber
and angular frequency, respectively. This formulation is easily adapted to deep water
conditions by setting ν = α = β = 1. For finite depth, these parameters are defined as
follows (e.g., Liu et al., 2022):



ν= 1+ 2kp h

sinh(2kp h)

α= 2−ν2 +8(kp h)2
cosh(2kp h)

sinh2(2kp h)

β= 8+cosh(4kp h)−2tanh2(kp h)

8sinh4(kp h)
− (2cosh2(kp h)+ν/2)2

sinh2(2kp h)(kp h/tanh(kp h)−ν2/4)

(4.90)

To study the spatial development of modulational instability, it is convenient to intro-
duce the following variable transformation (Djordjevié and Redekopp, 1978): x̄ = x2

τ= x1

Cg ,0
− t1

(4.91)

Based on these new variables, the NLSE (4.89) transforms into,

∂x̄ A+ i
α

ν3

kp

ω2
p
∂2
τA+ i

β

ν
k3

p A|A|2 = 0 (4.92)

which provides the starting point to the following linear stability analysis.

4.C.1. STABILITY CONDITION
In order to analyze the stability due to side-band perturbation of otherwise permanent
monochromatic Stokes wave, the complex envelop, A, is assumed to be defined as
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A = Ap (1+δAp ) (4.93)

where Ap defines the complex amplitude of the unmodulated field, namely, it satisfies
the reduced equation

∂x̄ Ap + i
β

ν
k3

p Ap |Ap |2 = 0 (4.94)

and therefore, it obeys to the solution

Ap =C exp(−i k(2)
p x̄) (4.95)

where C is some constant and k(2)
p is the wavenumber correction due to self interaction,

which is defined as

k(2)
p = β

ν
k3

p |Ap |2 (4.96)

Note that through the definition of β, this wavenumber correction includes the effect
of wave-induced current. Also note that through the usual analysis in time, one would
obtain the equivalent frequency correction ω(2)

p . The relation between these two correc-
tions is readily verified to be

ω(2)
p =Cg ,p k(2)

p (4.97)

By substituting the assumed structure (4.93) into (4.92) and linearizing in terms of the
disturbance δAp , one obtains the following equation (see details in Mei et al., 2005, Sec-
tion 13.4):

∂2
x̄δAp +

α2

ν6

k2
p

ω4
p
∂4
τδAp +2

αβ

ν4

k4
p

ω2
p
|Ap |2∂2

τδAp = 0 (4.98)

Assuming that the disturbance can be written as δAp = δ0
Ap

exp(i∆ωτ− i
p

Rx̄), where

δ0
Ap

is some constant (see physical interpretation in Mei et al., 2005, Section 13.4), the

following dispersion relation is obtained:

R =
α2k2

p

ν6

(
δ4
ωp

− 2ν2β

α
(kp |Ap |)2δ2

ωp

)
(4.99)

where δωp =∆ω/ωp . Therefore, instability emerges when R < 0 requiring that

1 < 2ν2β

α

(
kp |Ap |
δωp

)2

(4.100)

Since ν and α are defined positive (over µ), this condition can only be satisfied when
β> 0. Accordingly, when β≤ 0 the wave field is modulationally stable. Alternatively, the
condition for instability can be written it terms of the wavenumber correction, k(2)

p , as
follows:
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1 < k(2)
p

2ν3

αkpδ
2
ωp

(4.101)

where now, stability is guaranteed when k(2)
p ≤ 0.

4.C.2. SPATIAL MODULATIONAL GROWTH
As implicitly described by the condition for modulational instability, (4.100), modula-
tional growth emerges only over limited range of δωp given by

δωp ∈
(
0,

√
2ν2β

α
(kp |Ap |)

)
(4.102)

Therefore, the range of instability is essentially determined by δωp ,max =√
2ν2β/α(kp |Ap |). Over the unstable range, the spatial growth is determined by

Im{
p

R}, defined as

Im{
p

R} = αkp

ν3

√(2ν2β

α
(kp |Ap |)2δ2

ωp
−δ4

ωp

)
(4.103)

Accordingly, the maximum growth rate is equal to

Im{
p

R}max = kp (β/ν)(kp |Ap |)2 (4.104)

for which

δωp =
√
ν2β

α
(kp |Ap |) (4.105)

The two non-dimensional parameters p1 = ν2β/α and p2 = β/ν seem to play an im-
portant role in determining the growth rate values and the range of instability. These
parameters are described in Fig. 4.29 as functions of the depth parameter µ.
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Figure 4.29: The parameters p1 = ν2β/α and p2 =β/ν described as functions of µ.

This clearly shows that the maximum growth rate value and the maximum range of
instability are obtained for the infinite water depth limit, for which p1 = p2 = 1.
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4.C.3. BENJAMIN-FEIR INDEX (BFI)
The linear stability analysis described above may provide clear indication for the im-
pact of the modulational instability mechanism on monochromatic (weakly modulated)
cases. However, the determination of the importance of this mechanism for more gen-
eral irregular cases is less obvious. The need for a parameter that indicates whether the
evolution of a given field would be affected by modulational instability led to the formu-
lation of a statistical parameter by Alber (1978), which was later called the Benjamin-Feir
Index (BFI) (Janssen, 2003). The definition of BFI is given by the square root of the right-
hand-side of (4.100), written as

BFI =
√

cν2|β|
α

kp |Ap |
δωp

(4.106)

However now, the normalized modulation frequency, δωp , should be interpreted as the
bandwidth parameters, which defines the ratio between the spectral bandwidth (usually
defined as the standard deviation of the spectrum) and the peak frequency, ωp . Ad-
ditionally, the wave steepness should now be interpreted as a typical steepness value,
which commonly taken as kp |Ap | = kp Hs /2, where kp is the wavenumber that corre-
sponds to ωp and Hs is the significant wave height. Similarly to the definition of Ursell
number, also BFI defines qualitatively the typical ratio of the competing effects of dis-
persion, which tend to restrict the development of nonlinear coherent structures, and
nonlinearity, which generates them (also see discussion by Onorato et al., 2006, Section
2).

The BFI is computed here based on the definition of δωp as given by Liu et al. (2022),
Eq. (31). This definition provides lower values than the definition of the standard de-
viation (as it is less affected by the high frequencies tail). Furthermore, the value of the
parameter c is given by c = 3.2. This value is selected such that BFI equals 1 for the
typical deep water wave conditions characterized by a JONSWAP spectrum with peak-
enhancement factor of γ= 3.3 and peak steepness of kp Hs /2 = 0.1.





5
CONCLUSIONS AND OUTLOOK

This study was set forward with the aim of advancing the statistical forecasting capabil-
ities of coastal waves. Present operational forecasting models for coastal waves (e.g. the
SWAN model) rely on developments which are designated to the dynamics of waves in
the open ocean. However, over coastal waters, waves evolve much faster due to medium
inhomogeneities of smaller scales (e.g., submerged shoals and channels and small scale
eddies and jets) and since nonlinear interactions between wave triads become nearly
resonant. Consequently, the statistical assumptions of quasi-homogeneity and quasi-
Gaussianity valid in the open ocean become invalid over coastal waters. This clearly
calls for a fundamental improvement of the present statistical formulation for the fore-
casting of coastal waves. Specifically, the statistical formulation presently implemented
by operational forecasting models for coastal waves (e.g. the SWAN model) should be
modified to allow for inhomogeneous and non-Gaussian contributions. The develop-
ments achieved and the conclusions drawn along the journey of this study towards this
goal are discussed in the following.

5.1. CONCLUSIONS
To leading order, statistical inhomogeneity of wave fields is induced by linear interac-
tion of waves and a variable medium. Traditionally, linear inhomogeneity is formulated
based on the WKB approximation and the assumption that different wave components
are statistically independent (e.g. Hasselmann, 1963, Dewar, 1970, Willebrand, 1975,
Hertzog et al., 2002). This formulation results in the well-known energy balance equa-
tion that is presently implemented in operational forecasting models for coastal waves
(e.g. the SWAN model, Booij et al., 1999). Based on the energy balance equation, sta-
tistical inhomogeneity is described by the variance-related energy density radiation in
phase space, while the cross correlation contributions are totally ignored. However,
coastal waters are characterized by rather rapid medium variations which often induce
wave crossing and associated wave interference patterns. Such scenarios may result in
a significant statistical inhomogeneity if crossing waves are statistically correlated (e.g.,
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the emergence of lateral oscillations of the significant wave height behind a submerged
shoal, demonstrated experimentally by Vincent and Briggs, 1989). To account for cross
correlation contributions, Smit and Janssen (2013) developed a more general statistical
formulation known as the Wigner-Weyl formulation. This formulation accounts for the
generation and transformation of the complete second-order statistics, and effectively
reduces to the conventional energy balance equation when the statistical correlations
between crossing waves are superimposed to a negligible contribution. The formulation
proposed by Smit and Janssen (2013) rely on an assumed Schrödinger-type determinis-
tic equation that is written in terms of the Weyl operator of the linear dispersion rela-
tion. This starting point equation provides a direct and formal derivation of the Wigner-
Weyl kinetic equation for water waves. The detailed derivation, starting with a similar
Schrödinger-type equation, is provided by numerous studies in other fields of physics
(e.g., Leaf, 1968, Bremmer, 1973, Besieris and Tappert, 1976, McDonald and Kaufman,
1985, Zhu and Dodin, 2021). Therefore, the remaining gap to establish the statistical
development proposed by Smit and Janssen (2013) on solid foundations is the theoret-
ical justification of their starting point deterministic equation. The results of Chapter 2
close this gap by showing the necessary equivalence between a formal definition of the
Dirichlet-to-Neumann operator of waves over variable bathymetry and the Weyl opera-
tor of the dispersion relation. This equivalence eventually leads to the formal derivation
of the Schrödinger-type deterministic equation used as the starting point for the Wigner-
Weyl formulation of Smit and Janssen (2013). As a consequence, this derivation estab-
lishes the desired formal link between the deterministic formulation (e.g. Euler equa-
tions) and the stochastic formulation of the Wigner-Weyl formalism, which includes the
energy balance equation as a statistically well-defined limiting case.

Except for the presence of bathymetry, the coastal environment is also character-
ized by the presence of ambient currents, the effect of which is excluded in the sta-
tistical model of Smit and Janssen (2013). To include the effect of currents, Chapter 3
proposes a statistical model for the evolution of wave fields over non-uniform currents
and bathymetry. The model formulation is based on a Schrödinger-type deterministic
equation for the so-called action variable (a variable definition that is closely related to
the definition of the wave action). This equation is found to be exact for linear wave
interaction with homogeneous media and is found to reduce to the local dispersion re-
lation and to the transport equation for the mean action density under weakly inhomo-
geneous conditions and using the usual WKB ansatz. Through similar steps presented
by Smit and Janssen (2013), the proposed Schrödinger equation is readily transformed
into a kinetic equation for the Wigner distribution of the action variable. This distribu-
tion provides a complete spectral description of the second-order statistics of a given
wave field. It includes cross-correlation terms, which provide the statistical informa-
tion about wave interferences. As such, the Wigner distribution of the action variable
generalizes the concept of the action density spectrum, which only accounts for the in-
formation of wave variances. Consequently, the principle result presented in Chapter 3
is a generalized action balance equation which accounts for the generation and propa-
gation of statistical wave interference contributions. For cases where interference effects
are negligible, namely for cases where the ratio between the correlation length scale and
the medium variation scale is small, model verification showed the agreement of the



5.1. CONCLUSIONS

5

127

present model predictions with the predictions of the SWAN model. However, it is also
demonstrated that for cases where this ratio is relatively large, interference effects alter
the statistics of the wave field significantly and lead to significant deviations from SWAN
predictions which are not confined to the vicinity of the wave-focusing areas, but also
persist over significant distances away from the focusing points. These findings are sup-
ported by the well-verified REF/DIF 1 model (Kirby and Dalrymple, 1986). It is therefore
concluded that for regions involving rapid variability in medium (as often described by
the coastal environment), consideration of the statistical information of wave interfer-
ences might be crucial for correct wave forecasting.

Beyond statistical inhomogeneity, wave fields in coastal environment tend to de-
velop significant non-Gaussian contributions which are triggered by shallow water non-
linearity. The derivation of a statistical model that is able to properly describe the de-
velopment of non-Gaussian statistics is a challenging task. A principle difficulty relates
to the necessity to preserve computational efficiency for coastal applications of large-
scales. Consequently, statistical modelling of shallow water nonlinearity inevitably relies
on model reductions. Nonlinear statistical models for coastal applications are usually
formulated based on two separated approximations. The first is the quadratic approxi-
mation, which is obtained based on a reduction of a more detailed modelling approach
(e.g., the Euler equations). The second approximation relates to the stochastic closure
problem which requires a truncation of the hierarchical dependence between the sta-
tistical moments. Chapter 4 examines in detail the first approximation. Specifically, the
analysis carried out in Chapter 4 provides insight into the nonlinear properties of differ-
ent quadratic formulations in terms of the second-order bound wave solutions, ampli-
tude dispersion and stability characteristics. In agreement with the analysis of Madsen
and Schäffer (1998), it is demonstrated that the second-order bound solutions tend to
converge to the solutions of Stokes theory through the improvement in the dispersion
relation (i.e., by taking into account high-order linear and nonlinear dispersive terms).
As an example, the fully dispersive formulation proposed by Bredmose et al. (2005) pro-
vides second-order bound wave solutions which exactly match those of Stokes theory.
However, the analysis of Chapter 4 shows that the improvement in the dispersion prop-
erty and the associated improvement of the bound wave solutions may also involve un-
favourable impact on the nonlinear wave evolution. This is explained by the fact that the
modification of the dispersion property is accompanied by a change in the quadratic
coefficients, and therefore, also by a change in the truncation error obtained due to the
modelling reduction associated with the formulation of the quadratic model. In partic-
ular, the amplitude dispersion may be altered dramatically due to the enhancement in
dispersive effects. This may not only lead to phase errors, but also to unfavourable mod-
ifications of the modulational instability mechanism. To demonstrate this, the stability
analysis given in Chapter 4 shows that the fully dispersive models of Whitham (1967),
Kaihatu and Kirby (1995) and Bredmose et al. (2005) become modulationally unstable
over much shallower water than expected and are subjected to much stronger growth
rates and much larger modulation ranges. As a result, these models present unexpected
energy exchanges in several bichromatic and irregular examples considered throughout
this study. In some cases, these models even demonstrated significant energy exchanges
under conditions for which linear theory is expected to be valid (i.e., conditions char-
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acterized by an intermediate depth and a small Ursell number). These excessive energy
transfers not only lead to significant deviations in the sea-swell forecast, but also to unex-
pectedly strong field modulations and associated unexpected infragravity responses. In
contrast to the fully dispersive formulations, the examined Boussinesq models, namely
the models of Freilich and Guza (1984), Madsen and Sørensen (1993) and Nwogu (1993)
are found to predict well the nonlinear evolution of coastal wave fields, including the
development of the sea-swell components and the generation and evolution of the in-
fragravity components. This conclusion is based on comparisons to measured results
of a wide set of examples (including monochromatic, bichromatic and irregular wave
conditions). Finally, the study of Chapter 4 also presents an attempt to push the lim-
its of the prediction capabilities of the quadratic approach. To this end, an optimiza-
tion process was carried out in order to find the optimal quadratic coefficients under
the constraint of full linear dispersion. The outcome is the model QuadWave1D: a fully
dispersive quadratic model for coastal wave prediction in one dimension. Based on ac-
curate linear properties and adequate nonlinear balance, QuadWave1D showed satis-
fying agreements with the measured results with respect to the evolution of both the
sea-swell components and the infragravity components. This new formulation provides
a reliable starting point to further developments of the deterministic modelling capabil-
ities of the quadratic approach (e.g., modelling directional spectra over two dimensional
bathymetric patterns, modelling of wave breaking, etc.), and in addition, this model pro-
vides a well-behaved starting point for the development of a nonlinear source term for
the phase-averaged approach.

5.2. OUTLOOK
This study is part of a general effort to develop and improve the predictive capabili-
ties of the phase-averaged approach over coastal waters. The phase-averaged approach
strives to preserve computational efficiency for large-scale coastal applications. Accord-
ingly, this modelling approach is based on rather simplified formulations to describe the
complex wave processes that characterize the coastal environment (e.g., the interaction
of waves with inhomogeneous media, shallow water nonlinearity and depth-induced
wave breaking). Despite the success of existing formulations in the prediction of coastal
waves, there are still aspects that require further development (e.g. Gorrell et al., 2011).
These refer to the improvement in the prediction of complex wave processes (e.g. non-
linear wave evolution, wind generation, wave breaking, etc.) and even to the inclusion of
missing information (e.g. the generation and transformation of infragravity waves). This
study concerns with the improvement of wave interaction with variable media (i.e. vari-
able bathymetry and ambient currents) and takes part in the general effort to statistically
model shallow water nonlinearity.

In order to improve the statistical description of wave-medium interaction, the
present study extents upon the work of Smit and Janssen (2013). This extension includes
the theoretical foundations derived in Chapter 2 and the generalization of the statistical
framework suggested by Smit and Janssen (2013) to allow for wave-current interactions
as detailed in Chapter 3. The theoretical development discussed in Chapter 2 essentially
provides a formal connection between the deterministic formulation (e.g. Euler equa-
tions) and the energy balance equation and its generalization (the Wigner-Weyl formal-
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ism). However, this theoretical foundation excludes the effect of wave-current interac-
tion which is required for similar connection to the action balance equation. The in-
clusion of the effects due to ambient currents can be achieved through a formal deriva-
tion of the starting point equation of Chapter 3. To this end, similar steps as detailed
in Chapter 2 can be considered. These steps include the formulation of a generalized
mild-slope equation written in terms of the Weyl operator of the dispersion relation and
the subsequent transformation to a Schrödinger system that is written in terms of the
action variable and its complex-conjugate. If successful, this derivation would provide
a formal connection to the Wigner-Weyl formulation of Chapter 3, which includes the
action balance equation as a statistically well-defined limiting case. Preliminary results
indicate that the derivation of the generalized mild-slope equation which accounts for
the effect of ambient current is obtained straightforwardly. The results also verify the re-
duction of this generalized mild-slope formulation to the classical mild-slope model of
Kirby (1984) under the assumption of quasi-periodicity. However, the transformation of
this mild-slope formulation to the system consisting of the desired Schrödinger equation
and its complex-conjugate may not obviously be derived. One may either be required to
deal with an additional reflection-like term, which requires further assumptions to char-
acterize the current field (e.g. Dingemans, 1997) or one may propose an alternative (and
closely related) definition to the action variable. This discussion highlights the need for
further investigation of the transformation between those two systems.

Even though the statistical model of Chapter 3 presently relies on a starting point
equation which is only verified for idealized cases (evolution of wave field over homoge-
neous media, or evolution of a single wave component over weakly inhomogeneous me-
dia), its performance for more general cases is extensively demonstrated through com-
parisons with the SWAN model and the REF/DIF 1 model. Based on its satisfying perfor-
mance, this generalized action balance model is nowadays available for operational use
as part of the open source SWAN model using a source term known as the quasi-coherent
(QC) term (indicate by ’SCAT’ in SWAN, also see the SWAN manual that is available in the
SWAN website: https://swanmodel.sourceforge.io/). However, its improved predictive
capabilities come with rather expensive computational costs. Additionally, the present
formulation cannot cope with discontinuities (e.g., breakwaters and coastline patterns)
which create partially enclosed water areas dominated by wave diffraction. These issues
call for further model development to extend the utility of the QC source term for appli-
cation of larger scales (e.g., by somehow extracting the main wave interference contri-
bution which may allow to approximate the costly convolution integral required for the
computation of this source term) and for applications involving discontinuities (e.g., by
somehow extending the obstacle formulation in SWAN to allow radiation of the coherent
information between incoming waves in the vicinity of obstacles).

The final part of this study, described in Chapter 4, attempts to contribute to the
more general effort of formulating statistically the nonlinear evolution of waves in shal-
low water. Specifically, Chapter 4 concerns with the quadratic formulation that is used
as the starting point for the present phase-averaged nonlinear formulations (e.g. Elde-
berky, 1996, Herbers and Burton, 1997), but also provides an independent determinis-
tic tool for wave prediction over coastal waters (e.g., the model by Kaihatu and Kirby,
1995 and the TRIADS model by Sheremet et al., 2016). Generally speaking, Chapter 4 is
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divided into two parts. The first deals with the investigation of existing quadratic for-
mulations, including fully dispersive and Boussinesq formulations. The second part fo-
cuses on a heuristic derivation of a new fully dispersive quadratic formulation with op-
timized nonlinear performance (i.e. QuadWave1D). In the first part, the tendency of the
fully dispersive formulations to over predict the amplitude dispersion and the associated
unfavourable modifications of the modulational instability mechanism are discussed.
However, beyond these findings, the fully dispersive formulations also seem to suffer
from an additional unfavourable effect in the absence of modulational instability. In
particular, simple monochromatic cases suggest that the prediction results using these
formulations are sensitive to the presence of relatively high frequencies. This sensitivity
is demonstrated through significant deviations in the amplitude evolution of the various
harmonics characterized by rapid oscillations and by excessive energy exchanges. The
consequence of this sensitivity is that the predictions using these formulations become
dependent on the choice of the maximum frequency. It is assumed that this sensitivity
is related to an inadequate nonlinear balance created by excessive values of the interac-
tion coefficients involving high frequencies. However, in-depth investigation is required
to clarify the mechanism that leads to this unfavourable model sensitivity. Additional
issue that requires further investigation relates to the generalization of QuadWave1D (a
new quadratic formulation derived in the second part of Chapter 4) for the prediction
of directional spectra. Based on comparisons to other quadratic formulations and to
measured results, QuadWave1D indeed seems to provide superior forecasting capabil-
ities in one dimensional settings. However, its predictive capabilities were not verified
for non-collinear wave interactions. In principle, the parameterization based on which
QuadWave1D is formulated can also be applied for directional spectra since it is writ-
ten in terms of wavenumber magnitudes. However, whether this parameterization actu-
ally leads to adequate energy exchanges between non-collinear waves remains an open
question. Finally, the path toward an adequate phase-averaged formulation of shallow
water nonlinearity should also be noted. To this end, QuadWave1D provides a conve-
nient starting point (the nonlinearity is described by a single simple term) and enables a
computationally efficient investigation for the needs of gaining additional insights and
developing different prediction tools with minimal accompanying errors.
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