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Making Learners (More) Monotone
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Abstract. Learning performance can show non-monotonic behavior.
That is, more data does not necessarily lead to better models, even on
average. We propose three algorithms that take a supervised learning
model and make it perform more monotone. We prove consistency and
monotonicity with high probability, and evaluate the algorithms on sce-
narios where non-monotone behaviour occurs. Our proposed algorithm
MTHT makes less than 1% non-monotone decisions on MNIST while
staying competitive in terms of error rate compared to several baselines.
Our code is available at https://github.com/tomviering/monotone.

Keywords: Learning curve · Model selection · Learning theory

1 Introduction

It is a widely held belief that more training data usually results in better gener-
alizing machine learning models—cf. [11,17] for instance. Several learning prob-
lems have illustrated, however, that more training data can lead to worse gen-
eralization performance [3,9,12]. For the peaking phenomenon [3], this occurs
exactly at the transition from the underparametrized to the overparametrized
regime. This double-descent behavior has found regained interest in the context
of deep neural networks [1,18], since these models are typically overparametrized.
Recently, also several new examples have been found, where in quite simple set-
tings more data results in worse generalization performance [10,19].

It can be difficult to explain to a user that machine learning models can
actually perform worse when more, possibly expensive to collect data has been
used for training. Besides, it seems generally desirable to have algorithms that
guarantee increased performance with more data. How to get such a guarantee?
That is the question we investigate in this work and for which we use learning
curves. Such curves plot the expected performance of a learning algorithm versus
the amount of training data.1 In other words, we wonder how we can make
learning curves monotonic.

The core approach to make learners monotone is that, when more data is
gathered and a new model is trained, this newly trained model is compared to
1 Not to be confused with training curves, where the loss versus epochs (optimization

iterations) is plotted.
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the currently adopted model that was trained on less data. Only if the new model
performs better should it be used. We introduce several wrapper algorithms for
supervised classification techniques that use the holdout set or cross-validation
to make this comparison. Our proposed algorithm MTHT uses a hypothesis test
to switch if the new model improves significantly upon the old model. Using
guarantees from the hypothesis test we can prove that the resulting learning
curve is monotone with high probability. We empirically study the effect of the
parameters of the algorithms and benchmark them on several datasets including
MNIST [8] to check to what degree the learning curves become monotone.

This work is organized as follows. The notion of monotonicity of learning
curves is reviewed in Sect. 2. We introduce our approaches and algorithms in
Sect. 3, and prove consistency and monotonicity with high probability in Sect. 4.
Section 5 provides the empirical evaluation. We discuss the main findings of our
results in Sect. 6 and end with the most important conclusions.

2 The Setting and the Definition of Monotonicity

We consider the setting where we have a learner that now and then receives data
and that is evaluated over time. The question is then, how to make sure that the
performance of this learner over time is monotone—or with other words, how
can we guarantee that this learner over time improves its performance?

We analyze this question in a (frequentist) classification framework. We
assume there exists an (unknown) distribution P over X × Y, where X is the
input space (features) and Y is the output space (classification labels). To sim-
plify the setup we operate in rounds indicated by i, where i ∈ {1, . . . , n}. In
each round, we receive a batch of samples Si that is sampled i.i.d. from P . The
learner L can use this data in combination with data from previous rounds to
come up with a hypothesis hi in round i. The hypothesis comes from a hypothe-
sis space H. We consider learners L that, as subroutine, use a supervised learner
A : S → H, where S is the space of all possible training sets.

We measure performance by the error rate. The true error rate on P equals

ε(hi) =
∫

x∈X

∑
y∈Y

l0-1(hi(x), y)dP (x, y) (1)

where l0-1 is the zero-one loss. We indicate the empirical error rate of h on a
sample S as ε̂(h, S). We call n rounds a run. The true error of the returned hi

by the learner L in round i is indicated by εi, all the εi’s of a run form a learning
curve. By averaging multiple runs one obtains the expected learning curve, ε̄i.

The goal for the learner L is twofold. The error rates of the returned mod-
els εi’s should (1) be as small as possible, and (2) be monotonically decreasing.
These goals can be at odds with another. For example, always returning a fixed
model ensures monotonicity but incurs large error rates. To measure (1), we
summarize performance of a learning curve using the Area Under the Learn-
ing Curve (AULC) [6,13,16]. The AULC averages all εi’s of a run. Low AULC
indicates that a learner manages to quickly reduce the error rate.
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Monotone in round i means that εi+1 ≤ εi. We may care about monotonicity
of the expected learning curve or individual learning curves. In practice, how-
ever, we typically get one chance to gather data and submit models. In that
case, we rather want to make sure that then any additional data also leads to
better performance. Therefore, we are mainly concerned with monotonicity of
individual learning curves. We quantify monotonicity of a run by the fraction of
non-monotone transitions in an individual curve.

3 Approaches and Algorithms

We introduce three algorithms (learners L) that wrap around supervised learners
with the aim of making them monotone. First, we provide some intuition how
to achieve this: ideally, during the generation of the learning curve, we would
check whether ε(hi+1) ≤ ε(hi). A fix to make a learner monotone would be to
output hi instead of hi+1 if the error rate of hi+1 is larger. Since learners do
not have access to ε(hi), we have to estimate it using the incoming data. The
first two algorithms, MTSIMPLE and MTHT, use the holdout method to this end;
newly arriving data is partitioned into training and validation sets. The third
algorithm, MTCV, makes use of cross validation.

MTSIMPLE: Monotone Simple. The pseudo-code for MTSIMPLE is given by
Algorithm 1 in combination with the function UpdateSimple. Batches Si are split
into training (Si

t) and validation (Si
v). The training set St is enlarged each round

with Si
t and a new model hi is trained. Si

v is used to estimate the performance of
hi and hbest. We store the previously best performing model, hbest, and compare
its performance to that of hi. If the new model hi is better, it is returned and
hbest is updated, otherwise hbest is returned.

Because hi and hbest are both compared on Si
v the comparison is more accu-

rate because the comparison is paired. After the comparison Si
v can safely be

added to the training set (line 7 of Algorithm 1).
We call this algorithm MTSIMPLE because the model selection is a bit naive:

for small validation sets, the variance in the performance measure could be quite
large, leading to many non-monotone decisions. In the limit of infinitely large
Si

v, however, this algorithm should always be monotone (and very data hungry).

MTHT: Monotone Hypothesis Test. The second algorithm, MTHT, aims
to resolve the issues of MTSIMPLE with small validation set sizes. In addition,
for this algorithm, we prove that individual learning curves are monotone with
high probability. The same pseudo-code is used as for MTSIMPLE (Algorithm 1),
but with a different update function UpdateHT. Now a hypothesis test HT
determines if the newly trained model is significantly better than the previous
model. The hypothesis test makes sure that the newly trained model is not better
due to chance (such as an unlucky sample). The hypothesis test is conservative,
and only switches to a new model if we are reasonably sure it is significantly
better, to avoid non-monotone decisions. Japkowicz and Shah [7] provide an
accessible introduction to understand the frequentist hypothesis testing.



538 T. J. Viering et al.

Algorithm 1. MSIMPLE and MHT

input: supervised learner A, rounds n, batches Si

u ∈ {updateSimple, updateHT}
if u = updateHT: confidence level α, hypothesis test HT

1 St = {}
2 for i = 1, . . . , n do
3 Split Si in Si

t and Si
v

4 Append to St : St = [St; S
i
t ]

5 hi ← A(St)

6 Updatei ← u(Si
v, hi, hbest, α, HT ) // see below

7 Append to St : St = [St; S
i
v]

8 if Updatei or i = 1 then
9 hbest ← hi

10 end
11 Return hbest in round i

12 end

Function UpdateSimple
input: Si

v, hi, hbest

1 Pcurrent ← ε̂(hi, S
i
v)

2 Pbest ← ε̂(hbest, S
i
v)

3 return (Pcurrent ≤ Pbest)

Function UpdateHT
input: Si

v, hi, hbest, confidence level α,
hypothesis test HT

1 p = HT (Si
v, hi, hbest)// p-value

2 return (p ≤ alpha)

The choice of hypothesis test depends on the performance measure. For the
error rate the McNemar test can be used [7,14]. The hypothesis test should use
paired data, since we evaluate two models on one sample, and it should be one-
tailed. One-tailed, since we only want to know whether hi is better than hbest (a
two tailed test would switch to hi if its performance is significantly different). The
test compares two hypotheses: H0 : ε(hi) = ε(hbest) and H1 : ε(hi) < ε(hbest).

Several versions of the McNemar test can be used [4,7,14]. We use the McNe-
mar exact conditional test which we briefly review. Let b be the random variable
indicating the number of samples classified correctly by hbest and incorrectly by
hi of the sample Si

v, and let Nd be the number of samples where they disagree.
The test conditions on Nd. Assuming H0 is true, P (b = x|H0, Nd) =

(
Nd

x

)
( 12 )Nd .

Given x b’s, the p-value for our one tailed test is p =
∑x

i=0 P (b = i|H0, Nd).
The one tailed p-value is the probability of observing a more extreme sample

given hypothesis H0 considering the tail direction of H1. The smaller the p-value,
the more evidence we have for H1. If the p-value is smaller than α, we accept H1,
and thus we update the model hbest. The smaller α, the more conservative the
hypothesis test, and thus the smaller the chance that a wrong decision is made
due to unlucky sampling. For the McNemar exact conditional test [4] the False
Positive Rate (FPR, or the probability to make a Type I error) is bounded by
α: P (p ≤ α|H0) ≤ α. We need this to prove monotonicity with high probability.
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MTCV: Monotone Cross Validation. In practice, often K-fold cross valida-
tion (CV) is used to estimate model performance instead of the holdout. This
is what MTCV does, and is similar to MTSIMPLE. As described in Algorithm 2,
for each incoming sample an index I maintains to which fold it belongs. These
indices are used to generate the folds for the K-fold cross validation.

During CV, K models are trained and evaluated on the validation sets. We
now have to memorize K previously best models, one for each fold. We average
the performance of the newly trained models over the K-folds, and compare
that to the average of the best previous K models. This averaging over folds is
essential, as this reduces the variance of the model selection step as compared
to selecting the best model overall (like MTSIMPLE does).

In our framework we return a single model in each iteration. We return the
model with the optimal training set size that performed best during CV. This
can further improve performance.

Algorithm 2. MCV

input: K folds, learner A, rounds n, batches Si

1 b ← 1 // keeps track of best round
2 S = {}, I = {}
3 for i = 1, . . . , n do
4 Generate stratified CV indices for Si and put in Ii. Each index i

indicates to which validation fold the corresponding sample belongs.
5 Append to S: S ← [S;Si]
6 Append to I: I ← [I; Ii]
7 for k = 1, . . . , K do
8 hk

i ← A(S[I �= k]) // training set of kth fold

9 P k
i ← ε̂(hk

i , S[I = k]) // validation set of kth fold

10 P k
b ← ε̂(hk

b , S[I = k]) // update performance of prev. models

11 end
12 Updatei ← (mean(P k

i ) ≤ mean(P k
b )) // mean w.r.t. k

13 if Updatei or i = 1 then
14 b ← i
15 end
16 k ← arg mink P k

b // break ties

17 Return hk
b in round i

18 end

4 Theoretical Analysis

We derive the probability of a monotone learning curve for MTSIMPLE and
MTHT, and we prove our algorithms are consistent if the model updates enough.

Theorem 1. Assume we use the McNemar exact conditional test (see Sect. 3)
with α ∈ (0, 1

2 ], then the individual learning curve generated by Algorithm MTHT

with n rounds is monotone with probability at least (1 − α)n.
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Proof. First we argue that the probability of making a non-monotone decision
in round i is at most α. If H1 : ε(hi) < ε(hbest) or H0 : ε(hi) = ε(hbest) is
true, we are monotone in round i, so we only need to consider a new alternative
hypothesis H2 : ε(hi) > ε(hbest). Under H0 we have [4]: P (p ≤ α|H0) ≤ α.
Conditioned on H2, b is binomial with larger mean than in the case of H0, thus
we observe larger p-values if α ∈ (0, 1

2 ], thus P (p ≤ α|H2) ≤ P (p ≤ α|H0) ≤ α.
Therefore the probability of being non-monotone in round i is at most α. This
holds for any model hi, hbest and anything that happened before round i. Since
Si

v are independent samples, being non-monotone in each round can be seen as
independent events, resulting in (1 − α)n. ��

If the probability of being non-monotone in all rounds is at most β, we can
set α = 1 − β

1
n to fulfill this condition. Note that this analysis also holds for

MTSIMPLE, since running MTHT with α = 1
2 results in the same algorithm as

MTSIMPLE for the McNemar exact conditional test.
We now argue that all proposed algorithms are consistent under some con-

ditions. First, let us revisit the definition of consistency [17].

Definition 1 (Consistency [17]). Let L be a learner that returns a hypothesis
L(S) ∈ H when evaluated on S. For all εexcess ∈ (0, 1), for all distributions D
over X × Y , for all δ ∈ (0, 1), if there exists a n(εexcess,D, δ), such that for all
m ≥ n(εexcess,D, δ), if L uses a sample S of size m, and the following holds with
probability (over the choice of S) at least 1 − δ,

ε(L(S)) ≤ min
h∈H

ε(h) + εexcess, (2)

then L is said to be consistent.

Before we can state the main result, we have to introduce a bit of notation.
Ui indicates the event that the algorithm updates hbest (or in case of MCV it
updates the variable b). Hi+z

i to indicates the event that ¬Ui ∩ ¬Ui+1 ∩ . . . ∩
¬Ui+z, or in words, that in round i to i + z there has been no update. To fulfill
consistency, we need that when the number of rounds grows to infinity, the
probability of updating is large enough. Then consistency of A makes sure that
hbest has sufficiently low error. For this analysis it is assumed that the number
of rounds of the algorithms is not fixed.

Theorem 2. MTSIMPLE, MTHT and MTCV are consistent, if A is consistent
and if for all i there exists a zi ∈ N \ 0 and Ci > 0 such that for all k ∈ N \ 0 it
holds that P (Hi+kzi

i ) ≤ (1 − Ci)k.

Proof. Let A be consistent with nA(εexcess,D, δ) samples. Let us analyze round
i where i is big enough such that2 |St| > nA(εexcess,D, δ

2 ). Assume that

ε(hbest) > min
h∈H

ε(h) + εexcess, (3)

2 In case of MTCV, take |St| to be the smallest training fold size in round i.
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otherwise the proof is trivial. For any round j ≥ i, since A produces hypothesis
hj with |St| > nA(εexcess,D, δ

2 ) samples,

ε(hj) ≤ min
h∈H

ε(h) + εexcess (4)

holds with probability of at least 1 − δ
2 . Now L should update. The probability

that in the next kzi rounds we don’t update is, by assumption, bounded by
(1−Ci)k. Since Ci > 0, we can choose k big enough so that (1−Ci)k ≤ δ

2 . Thus
the probability of not updating after kzi more rounds is at most δ

2 , and we have
a probability of δ

2 that the model after updating is not good enough. Applying
the union bound we find the probability of failure is at most δ. ��

A few remarks about the assumption. It tells us, that an update is more and
more likely if we have more consecutive rounds where there has been no update.
It holds if each zi rounds the update probability is nonzero. A weaker but also
sufficient assumption is ∀i : limz→∞ P (Hi+z

i ) → 0.
For MTSIMPLE and MTCV the assumption is always satisfied, because these

algorithms look directly at the mean error rate—and due to fluctuations in the
sampling there is always a non-zero probability that ε̂(hi) ≤ ε̂(hbest). However,
for MTHT this may not always be satisfied. Especially if the validation batches
Nv are small, the hypothesis test may not be able to detect small differences in
error—the test then has zero power. If Nv stays small, even in future rounds the
power may stay zero, in which case the learner is not consistent.

5 Experiments

We evaluate MTSIMPLE and MTHT on artificial datasets to understand the influ-
ence of their parameters. Afterward we perform a benchmark where we also
include MTCV and a baseline that uses validation data to tune the regulariza-
tion strength. This last experiment is also performed on the MNIST dataset
to get an impression of the practicality of the proposed algorithms. First we
describe the experimental setup in more detail.

Experimental Setup. The peaking dataset [3] and dipping dataset [9] are
artificial datasets that cause non-monotone behaviour. We use stratified sam-
pling to obtain batches Si for the peaking and dipping dataset, for MNIST we
use random sampling. For simplicity all batches have the same size. N indicates
batch size, and Nv and Nt indicate the sizes of the validation and training sets.

As model we use least squares classification [5,15]. This is ordinary linear
least squares regression on the classification labels {−1,+1} with intercept. For
MNIST one-versus-all is used to train a multi-class model. In case there are
less samples for training than dimensions, the required inverse of the covariance
matrix is ill-defined and we resort to the Moore-Penrose Pseudo-Inverse.

Monotonicity is calculated by the fraction of non-monotone iterations per
run. AULC is also calculated per run. We do 100 runs with different batches
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and average to reduce variation from the randomness in the batches. Each run
uses a newly sampled test set consisting of 10000 samples. The test set is used
to estimate the true error rate and is not accessible by any of the algorithms.

We evaluate MSIMPLE, MHT and MCV and several baselines. The standard
learner just trains on all received data. A second baseline, λS , splits the data in
train and validation like MSIMPLE and uses the validation data to select the opti-
mal L2 regularization parameter λ for the least square classifier. Regularization
is implemented by adding λI to the estimate of the covariance matrix.

In the first experiment we investigate the influence of Nv and α for MTSIMPLE

and MTHT on the decisions. A complicating factor is that if Nv changes, not
only decisions change, but also training set sizes because Sv is appended to the
training set (see line 7 of Algorithm 1). This makes interpretation of the results
difficult because decisions are then made in a different context. Therefore, for
the first set of experiments, we do not add Sv to the training sets, also not for
the standard learner. For this set of experiment We use Nt = 4, n = 150, d = 200
for the peaking dataset, and we vary α and Nv.

For the benchmark, we set Nt = 10, Nv = 40, n = 150 for peaking and
dipping, and we set Nt = 5, Nv = 20, n = 40 for MNIST. We fix α = 0.05
and use d = 500 for the peaking dataset. For MNIST, as preprocessing step we
extract 500 random Fourier-features as also done by Belkin et al. [1]. For MTCV

we use K = 5 folds. For λS we try λ ∈ {10−5, 10−4.5, . . . , 104.5, 105} for peaking
and dipping, and we try λ ∈ {10−3, 10−2, . . . , 103} for MNIST.

Results. We perform a preliminary investigation of the algorithms MSIMPLE

and MHT and the influence of the parameters Nv and α. We show several learning
curves in Fig. 1a and d. For small Nv and α we observe MTHT gets stuck: it does
not switch models anymore, indicating that consistency could be violated.

In Fig. 1b and e we give a more complete picture of all tried hyperparameters
in terms of the AULC. In Fig. 1c and f we plot the fraction of non-monotone
decisions during a run (note that the legends for the subfigures are different).
Observe that the axes are scaled differently (some are logarithmic). In some cases
zero non-monotone decisions were observed, resulting in a missing value due to
log(0). This occurs for example if MTHT always sticks to the same model, then
no non-monotone decisions are made. The results of the benchmark are shown
in Fig. 2. The AULC and fraction of monotone decisions are given in Table 1.

6 Discussion

First Experiment: Tuning α and Nv . As predicted MTSIMPLE typically
performs worse than MTHT in terms of AULC and monotonicity unless Nv is
very large. The variance in the estimate of the error rates on Si

v is so large
that in most cases the algorithm doesn’t switch to the correct model. However,
MTSIMPLE seems to be consistently better than the standard learner in terms
of monotonicity and AULC, while MTHT can perform worse if badly tuned.
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Fig. 1. Influence of Nv and α for MTSIMPLE and MTHT on the Peaking and Dipping
dataset. Note that some axes are logarithmic and b, c, e, f have the same legend.

Larger Nv leads typically to improved AULC for both. α ∈ [0.05, 0.1] seems
to work best in terms of AULC for most values of Nv. If α is too small, MTHT

can get stuck, if α is too large, it switches models too often and non-monotone
behaviour occurs. If α → 1

2 , MTHT becomes increasingly similar to MTSIMPLE

as predicted by the theory.
The fraction of non-monotone decisions of MTHT is much lower than α.

This is in agreement with Theorem 1, but could indicate in addition that the
hypothesis test is rather pessimistic. The standard learner and MTSIMPLE often
make non-monotone decisions. In some cases almost 50% of the decisions are
not-monotone.
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Fig. 2. Expected learning curves on the benchmark datasets.
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Table 1. Results of the benchmark. SL is the Standard Learner. AULC is the Area
Under the Learning Curve of the error rate. Fraction indicates the average fraction
of non-monotone decisions during a single run. Standard deviation shown in (braces).
Best monotonicity result is underlined.

Peaking Dipping MNIST

AULC Fraction AULC Fraction AULC Fraction

SL 0.198 (0.003) 0.31 (0.02) 0.49 (0.01) 0.50 (0.03) 0.44 (0.01) 0.27 (0.04)

MTS 0.195 (0.005) 0.23 (0.03) 0.45 (0.06) 0.37 (0.15) 0.42 (0.02) 0.11 (0.04)

MTHT 0.208 (0.009) 0.00 (0.00) 0.38 (0.08) 0.00 (0.00) 0.45 (0.02) 0.00 (0.00)

MTCV 0.208 (0.005) 0.34 (0.03) 0.28 (0.02) 0.19 (0.08) 0.45 (0.01) 0.30 (0.06)

λS 0.147 (0.003) 0.43 (0.03) 0.49 (0.01) 0.50 (0.03) 0.36 (0.02) 0.46 (0.05)

Second Experiment: Benchmark on Peaking, Dipping, MNIST. Inter-
estingly, for peaking and MNIST datasets any non-monotonicity (double descent
[1]) in the expected learning curve almost completely disappears for λS , which
tunes the regularization parameter using validation data (Fig. 2). We wonder if
regularization can also help reducing the severity of double descent in other set-
tings. For the dipping dataset, regularization doesn’t help, showing that it cannot
prevent non-monotone behaviour. Furthermore, the fraction of non-monotone
decisions per run is largest for this learner (Table 1).

For the dipping dataset MCV has a large advantage in terms of AULC. We
hypothesize that this is largely due to tie breaking and small training set sizes due
to the 5-folds. Surprisingly on the peaking dataset it seems to learn quite slowly.
The expected learning curves of MTHT look better than that of MTSIMPLE,
however, in terms of AULC the difference is quite small.

The fraction of non-monotone decisions for MTHT per run is very small as
guaranteed. However, it is interesting to note that this does not always translate
to monotonicity in the expected learning curve. For example, for peaking and
dipping the expected curve doesn’t seem entirely monotone. But MTCV, which
makes many non-monotone decisions per run, still seems to have a monotone
expected learning curve. While monotonicity of each individual learning curves
guarantees monotonicity in the expected curve, this result indicates monotonicity
of each individual curve may not be necessary. This raises the question: under
what conditions do we have monotonicity of the expected learning curve?

General Remarks. The fraction of non-monotone decisions of MTHT being
so much smaller than α could indicate the hypothesis test is too pessimistic.
Fagerland et al. [4] note that the asymptotic McNemar test can have more
power, which could further improve the AULC. For this test the guarantee
P (p ≤ α|H0) ≤ α can be violated, but in light of the monotonicity results
obtained, practically this may not be an issue.
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MTHT is inconsistent at times, but this does not have to be problematic. If
one knows the desired error rate, a minimum Nv can be determined that ensures
the hypothesis test will not get stuck before reaching that error rate. Another
possibility is to make the size Nv dependent on i: if Nv is monotonically increas-
ing this directly leads to consistency of MTHT. It would be ideal if somehow Nv

could be automatically tuned to trade off sample size requirements, consistency
and monotonicity. Since for CV Nv automatically grows and thus also directly
implies consistency, a combination of MTHT and MTCV is another option.

Devroye et al. [2] conjectured that it is impossible to construct a consistent
learner that is monotone in terms of the expected learning curve. Since we look
at individual curves, our work does not disprove this conjecture, but some of
the authors on this paper believe that the conjecture can be disproved. One step
to make is to get to an essentially better understanding of the relation between
individual learning curves and the expected one.

Currently, our definition judges any decision that increases the error rate, by
however small amount, as non-monotone. It would be desirable to have a broader
definition of non-monotonicity that allows for small and negligible increases of
the error rate. Using a hypothesis test satisfying such a less strict condition could
allow us to use less data for validation.

Finally, the user of the learning system should be notified that non-
monotonicity has occurred. Then the cause can be investigated and mitigated
by regularization, model selection, etc. However, in automated systems our algo-
rithm can prevent any known and unknown causes of non-monotonicity (as long
as data is i.i.d.), and thus can be used as a failsafe that requires no human
intervention.

7 Conclusion

We have introduced three algorithms to make learners more monotone. We
proved under which conditions the algorithms are consistent and we have shown
for MTHT that the learning curve is monotone with high probability. If one
cares only about monotonicity of the expected learning curve, MTSIMPLE with
very large Nv or MTCV may prove sufficient as shown by our experiments. If
Nv is small, or one desires that individual learning curves are monotone with
high probability (as practically most relevant), MTHT is the right choice. Our
algorithms are a first step towards developing learners that, given more data,
improve their performance in expectation.
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