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Abstract

Experiments have always been the way to study what the effect is of interventions.
Causal inference is an important aspect.

In this thesis we gave an introduction to causal inference. We did this by giving
an example that illustrates the Fundamental Problem of Causal Inference. The
Fundamental Problem of Causal Inference states that it is impossible to observe
the values of control and treatment on the same unit and therefore impossible to
observe the effect of the treatment on a unit.

We used a standard statistical model to later introduce the model for causal infer-
ence. The model we used for causal inference is Rubin’s model. We assumed that
there are two levels of treatment: control and treatment. Both are causes and we
determine an effect of a cause always relative to another cause.

We discussed a range of assumptions to make it possible to estimate the causal
effect. None of them are provable, the best we can do is convince ourselves and
others of its correctness. We divided the solutions in two categories: the scientific
solutions and statistical solutions.

The solutions were then used to investigate an issue about alcohol consumption
in some newspapers. We concluded that there has to be more awareness about
causal inference.
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Introduction

The central question in many branches of science and technology is: “Does inter-
vention have an effect?” For example, we want to investigate whether a drug has
a positive effect on a patient. Or we want to know if fertilizer works on trees.
Another example is whether a new way to learn in school works. We study these
questions on the basis of data. These data are gathered using one of the two
following methods: an experimental study or an observational study.

In an experimental setting, we set up an environment where we can manipulate a
particular factor. We do this in order to provide insight into the effect of this factor.
Usually, the experiments are in a laboratory setting to apply random assignment or
to completely control confounding factors. Random assignment is the technique to
assign people or other research objects to different groups by chance, for example
by flipping a coin. Confounding factors are, simply put, factors that influence
other relevant variables.

In an observational study however, we cannot manipulate a particular factor. This
can be impossible, impractical or unethical. As such, we need to know and account
for confounding variables. However, it is often difficult to control these variables,
that is, to keep them constant.

An interesting compromise is the case-control study. This is in essence an ob-
servational study, but the main difference between the two is that a case-control
study compares two existing groups with different outcome. The intervention of a
scientist is thus after the exposure and after the disease.

The question that arises in all of these studies is: “Is there a causal effect?” Often
times, we want to show that there is a causal effect or deny the fact that there
is one. The government can use it to make scientifically justified decisions, but a
toothpaste company can use it to show that their product is the best. But when
can we conclude rightly that there is a causal effect?

Huff (1954) illustrated multiple ways to lie with statistics. Some are obvious,
others are less apparent. One of the less obvious ones is wrongly drawing causal
inferences. Holland, Glymour, and Granger (1985) were among the first to show
that statistical models used to draw causal inferences are distinctly different from
those used to merely describe a relationship between two data sets.

10



Jasper van der Ster Causal inference: An introduction

This thesis introduces causal inference to both mathematicians and to non-mathematicians,
by delaying the mathematical part to a later section. It fills the gap1 between
the mathematical papers published about this subject and the needs of non-
mathematicians or starting mathematicians.

In order to this, we will first introduce the problem of causal inference in a non-
mathematical way. An example will provide a feeling for the Fundamental Prob-
lem, which will be discussed after the example. After that we will introduce
mathematical methods and explain the difference between a model for associative
analysis and a model for causal inference. In the end we will look at an exam-
ple about alcohol consumption where several media interpreted a research report
incorrectly.

1The concept of causal inference is hard to grasp for (non-)mathematicians and this thesis tries
to explain the core of causal inference to them and in a later section explains the fundamentals
to starting mathematicians.
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1 New drug: Treatment vs Control

In medical research an aim is to increase the longevity of humans. One way to
do this is to invent drugs that prevent or heal illness. After the inventing and
developing of such a new drug, we want to know how this drug performs. Most
people tend to forget that not every new drug is better than the last one. But
how do you test which one performs better? The standard way to test this is by
an experiment. In such an experiment, we distribute the patients into two groups.
One group gets the new drug, we will call this group the treatment group, and the
other group is the control group and gets an older drug as reference.

When doing an experiment as outlined in the previous paragraph, we could possi-
bly get the following fictional data. We have two equal groups of 20 people where
the control group gets the reference drug (“drug A”) and the treatment group gets
the new drug (“drug B”). In the control group of this fictional experiment, 10 out
of 20 people recover and 10 do not, see figure 1a. In the other group 15 out of 20
people recover, see figure 1b.

(a) Control group (drug A) (b) Treatment group (drug B)

Figure 1: Drug Test

This is all the available data from this experiment. However, we could also have
assigned every person to the other group, i.e. the control group could have been
exposed to drug B and the treatment group to drug A. This is contrary to the fact
of what we observed in the experiment, which is why we call this the counterfactual
outcome. In the optimum case we would have these data as well as the data of
the original experiment. When we have these data, the effect is easily calculated
on an individual basis. In the end, this is what we want to achieve with medical
research: acquire the best medical treatment for every person. As we outlined
however, this is not possible, because we cannot observe all data. As a result, we
can only draw conclusions from the data provided through the experiment as in
figure 1.
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It is obvious that we can only expose a specific patient to one drug. If we
would expose the same patient to both drugs at the same time, we do not
know which drug is responsible for the outcome. Moreover, the two drugs
might be affecting each other. Whether that is positively or negatively does
not matter, the data are useless.

In this fictional experiment we want to answer the question: “Which drug is better
than the other?” At first, it might be obvious to conclude that drug B is better
than drug A. The first thing people tend to rush into is asking the question whether
a difference in success rate of 25% would be significant in this case Given the data
from the experiment, this would be tempting to ask. However, as we stated earlier,
we do not (and in most cases cannot) know what would have happened when the
groups were exposed to the other drug. To illustrate the point that the conclusion
that drug B is better than drug A is drawn too quickly, we introduce the fictional
data when the groups were exposed to the other drug. In the control group, which
is exposed to drug B this time, only 5 out of 20 people recover, see figure 2a. In
the treatment group, this time exposed to drug A, everyone recovers, see figure 2b.

(a) Control group (drug B) (b) Treatment group (drug A)

Figure 2: Drug Test: Unobserved Data

When we have “all” the data of the 40 people in regards to the drugs, drawing
a conclusion is easier and one can do this with more confidence, since there are
no missing data. In both the control group and in the treatment group there are
more people who recover from drug A than from drug B. These data are fictional
however, but it illustrates that there is a problem when trying to draw conclusions
from data acquired from an experiment: we do not know what the counterfactual
outcome is. This leads us to the Fundamental Problem of Causal Inference, which
will be defined and explained in the next section.

13



Jasper van der Ster Causal inference: An introduction

2 Fundamental Problem of Causal Inference

As we said in the previous section, it would be ideal to observe both values on
the same unit. If we have both values of control and treatment on a unit, the
causal effect is simply the difference between the treatment and the control. This
estimated causal effect is on an individual basis. This is ideal in medical research
for example, especially with the upcoming trend of personalized medicine, where
the medication for a disease depends on the person.

Holland et al. (1985) state that the Fundamental Problem of Causal Inference lies
in the fact that it is impossible to observe the values of control and treatment on
the same unit and therefore it is impossible to observe the effect of the treatment
on a unit.

In the Fundamental Problem we emphasize the word observe, as Holland et al.
(1985) do. We do, because the impossibility to observe both the result when a
unit is exposed to a cause (control for example) and the result when the same unit
is exposed to another cause (treatment for example) is trivial in some cases, but
less obvious in others. As we saw in the previous section we do not observe all
data in a medical experiment. We only observe the effect of drug A on the patients
assigned to the control group. Similarly, we only observe the effect of drug B on
the patients assigned to the treatment group.

When we are dealing with another experiment this might be less obvious. For
example, everyone experiences some problems with their computer. Some are
caused by users, some are caused by bugs in software. For a fictional experiment,
we want to determine what a certain button, part of some software program,
does. One cause is that we click the button, another cause is that we do not.
We click the button and the computer crashes. We repeat this a few times and
every time we click the button, the computer crashes. We might be inclined to
conclude that the button causes the computer to crash, but this is only because of
certain assumptions that we can use to convince others of the correctness of the
experiment. One of those could be that the computer is fine, except for that piece
of software. If we knew that the computer crashes out of the blue, we might doubt
that we observe both effects of the two causes. In the next section, we will explain
this problem mathematically using Rubin’s model.
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3 Stochastic model

Before we explain the model for causal inference by Rubin, we will explain a model
for associative analysis. This standard statistical model is widely used and provides
a good introduction to the model for causal inference.

We use associative analysis to relate one data set to another. Where causal in-
ference is all about causality, associative analysis is merely about describing the
relationship between variables, in a descriptive sense. The difference is best made
clear with a classic example: ice cream consumption is correlated to homicide
rates, but there is no reason to expect this relationship to be causal.

The model we use for associative analysis is a standard statistical model which
relates two variables concerning a finite population. We call the population U ,
consisting of elements or units u.2 Most of the time we want to describe a rela-
tionship between two variables, we call them Y and A and both are functions on U .
The value of these variables is a number, given by measurements on a unit u.

For example, we are interested in the relationship between eye color and hair
length. We define A to be the color of the eye. We define Y to be the length
of the hair. A(u) gives information about eye color and Y (u) about the hair
length of unit u. We can look at the difference between the average hair length of
people with blue eyes (A(u) = 0) and people with brown eyes (A(u) = 1). This
describes a relationship between eye color and hair length. When we repeat this
measurement after a certain time, the value of Y is probably different than the
first measurement. The value of attribute A however is most likely the same.

This example exposed a subtle difference between Y and A. Formally, Y and A
are of the same nature, because both are variables defined on U . However, we
call A an attribute because its value does not change in time and is in that way
different than Y .

In statistics we are interested in probabilities, distributions and expected values
concerning variables on U . We use them to compare data sets. In this model, the
probability of an event is nothing more than a proportion of units corresponding
to that event in U . Conditional expected values are expected values of a subset
of U , where this subset is defined by the condition in the expectation.

For example, the probability of a unit having a blue eye color, P (A(u) = 0), is the
proportion of the number of units in U with blue eyes divided by the total number
of units in U . The conditional expected value of the hair length given a brown

2In more formal mathematical language, U is an outcome space where u is a possible outcome
with a uniform distribution.
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eye color, E(Y | A(u) = 1), is the expected value or mean of the hair length of all
units with brown eye color.

The majority of the information of this model is contained in the values of Y (u)
and A(u) for all u in U . The joint distribution of Y and A is defined by
P (Y = y, A = a). P (Y = y, A = a) is the proportion of u in U where Y (u) = y
and A(u) = a. An example is P (Y = 185, A = 0) where Y , the height of a person,
is 185cm and A, the eye color, is blue. We calculate the probability by taking the
number of people that meet this condition and dividing that by the total number
of people in U .

We are usually interested in the expected value given an attribute. For example,
we want to know what the expected length is of people with a certain eye color.
We call this the regression of Y on A and estimate it with E(Y | A = a). One of
the expressions to describe a relationship between to variables is association. We
call this association α:

α = E(Y | A = 1)− E(Y | A = 0). (1)

This will explain some relationship between two data sets and associative analysis
is descriptive in this sense. Causal inference uses equation (1) in some instances
to estimate a causal effect (see section 4.2.1), but we need another model in order
to draw those conclusions.

3.1 Rubin’s model for Causal Inference

In the previous section we explained a model for associative analysis and discussed
regression. In this section we explain Rubin’s model for causal inference and point
out what the problem is with this definition in section 3.2.

An experiment is not the only way to investigate causality, but it is the simplest
method (Holland et al., 1985). It is important to note that whatever way we use
to determine an effect, the effect of a cause is always relative to another cause. For
example, “A causes B” almost always means that A causes B is relative to some
other cause with the condition “not A”. For example, when a drug heals you, it
is the drug that causes you to be healthier than when you would not have taken
the drug.

For simplicity, we use the language of experiments: treatment and control. Treat-
ment is a cause and so is control, which is another cause. We determine the effect
of the treatment relative to the control. It is important that there is always poten-
tial (but it might be hard or impossible in reality) for every unit to be exposed to
both the treatment and the control. In some cases in reality, this is obvious. When
you are sick for example, you can either take a drug (treatment) or not (control).

17
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In terms of experiments, we assume that we work in a controlled experimental
setting. That means that we are in control of what cause a unit is exposed to.
There could be several causes, for example multiple drugs, or multiple categories
of treatment.

Let us assume there are two levels of treatment: control (c) and treatment (t).
Let S be a variable which indicates the level of treatment of a unit in U . In other
words, S(u) = t means that a unit u is exposed to t and likewise S(u) = c means
that a unit u is exposed to c. For every unit u in U with S(u) = c, S(u) could
potentially have been t. This also holds the other way around: for every unit u
in U with S(u) = t, S(u) could potentially have been c. Remember that we are in
a controlled experiment and thus could have exposed the unit to the other cause.
This is even true in uncontrolled studies, albeit out of control of the experiment.

Once set, S(u) will not change. In that way, S is similar to A from the model for
associative analysis (see section 3). A is an attribute of u and we can treat S as
an attribute as well. There is one subtle difference however: S is forced upon a
unit in a controlled experiment, while A is not. For example, A(u) is the gender
of a unit u, where S(u) is the kind of drug where u is exposed to.

Analog to the model defined in section 3, we define a variable Y to be a function
on U , given by a measurement on u. We are interested in whether an intervention
has an effect on this variable. Yt(u) denotes the value of Y when unit u is exposed
to t and Yc denotes the value of Y when exposed to c. The model contains three
variables, S, Yt and Yc. However, we only have two variables involved in the process
of observation, S and YS.

In causal inference, time is important when it makes a difference when a unit u
is exposed to a cause. When you are sick for example, the earlier you apply a
treatment like a drug, the likelier it is that you recover. We divide the variables in
two categories: pre-exposure variables and post-exposure variables. Pre-exposure
variables are variables which are measured before exposure to a cause and post-
exposure variables are variables which are measured after a cause. The post-
exposure variables are thus variables that are possibly influenced by a specific
cause, either t or c. Besides that, they can also be influenced by the point in time
when a unit is exposed to a cause. This is nothing more than saying that causes
have effect, which is the main principle of causal inference. We use the notation Yc
and Yt for the post-exposure variables, where Yc(u) is the value of variable Y (u)
when u is exposed to c and Yt(u) is the value of variable Y (u) when u is exposed
to t.

We are interested in the effect of a cause. As we said earlier in this section, this is
always relative to another cause. To measure the effect on a unit u, we take the

18
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difference of Yt(u) and Yc(u). Holland et al. (1985) denote this with the algebraic
difference:

Yt(u)− Yc(u). (2)

This difference is what we call the causal effect of t on u. They stress that this
effect is relative to the cause c. As we can see, the causal effect is defined for
every specific unit u. Within this definition, there is a problem that Holland et
al. (1985) call the “Fundamental Problem of Causal Inference”. We discussed the
problem in section 2. This problem will be discussed more mathematically in the
next section.

3.2 Fundamental Problem of Causal Inference (mathemat-
ically)

With this model for causal inference, we can have another view of the Fundamental
Problem. We state the Fundamental Problem once more and then explain the
problem.

The Fundamental Problem of Causal Inference lies in the fact that it is impossible
to observe the values of control and treatment on the same unit and therefore it
is impossible to observe the effect of the treatment on a unit.

The impossibility to observe both Yt(u) and Yc(u) is trivial in some cases, but
less obvious in others. For example, if the unit u is a computer and t means we
double click on an mp3 file, c means we do not and Y indicates the computer is
playing music after c or t, then we might believe that we know the values of both
Yc(u) and Yt(u) by simply double clicking the file. However, this is only because
of a certain assumption that we can use to convince ourselves and others of the
correctness of the experiment. If for example the computer was randomly playing
the music file because of some internal error, we might doubt that we know the
values of both Yc(u) and Yt(u).

Another example is the medical experiment from section 1. In that case, it is
obvious that we cannot observe both Yc and Yt. We can only apply either drug A
or drug B to a patient. If we exposed a patient to both of them, the results would
be unusable, because we do not know which drug is responsible for the outcome.

The implicit problem that follows from the Fundamental Problem is that causal
inference is impossible. Holland et al. (1985) claim that we should not jump to this
conclusion too quickly. By saying we cannot observe both values, we do not mean
to say we cannot derive information about them. We will explain some solutions
to this Fundamental Problem in the next section.

19
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4 Solutions to the Fundamental Problem

There are two types of solutions for the Fundamental Problem of Causal Inference.
Holland et al. (1985) call one type the scientific solution and the other type the
statistical solution. We will discuss both in this section and give examples when
they could be applicable. An important aspect of these solutions is that the
applicability depends on the extent to which the assumptions are correct, but we
will return to this issue within each solution.

4.1 Scientific Solution

The scientific solution is to make assumptions about homogeneity and invariance.
Invariance is the property that the experiment is the same at a specific point of
time in the future (see section 4.1.1). Homogeneity is the assumption that the
units are identical in all the relevant aspects (see section 4.1.2). All of these
assumptions are non-testable. However, one can convince themselves and others
that the assumption is correct. By doing so carefully, one can claim the correctness
of an assumption, but never prove it.

4.1.1 Temporal stability and causal transience

A way to apply the scientific solution is to assume that:

(a) The value of Yc(u) does not change when u is being exposed to c and Y (u)
is being measured.

(b) The value of Yt(u) does not change when u is being exposed to t after also
being exposed to c as in (a).

It is simple to calculate the causal effect when both of these assumptions are
plausible. Indeed, we can first expose u to c and then to t, while measuring Y
after each exposure. The first assumption is the temporal stability, from which
follows that the response to a cause is constant. The second assumption, the causal
transience, claims that the effect of c on u does not change the later measured Yt(u).

For example, we can setup an experiment where we test a new version of aspirin.
We define U to be a “super population”, consisting of people where the state ‘needs
aspirin’ may occur. This way, u is a person who sometimes needs an aspirin. We
denote the control and treatment variables as follows: c is applying the old drug
and t is applying the new drug. Y indicates the extent in which u gets better. In
this example, it is plausible to assume both (a) and (b). One can convince others
that these assumptions hold, by saying that the old aspirin will leave the body of u
in a specific amount of time. You cannot prove this however. The same applies to
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the other assumption, the temporal stability, which might be true and arguable,
but cannot be proved. If plausible, the causal effect of t can be easily calculated,
we can first expose u to c and then at a later moment to t, while measuring Y
after each exposure. The exposure to t is when u reaches the state ‘needs aspirin’
again. Then Yt(u)− Yc(u) is the causal effect, on an individual basis.

4.1.2 Homogeneity in units

A second way to bypass the Fundamental Problem of Causal Inference is to as-
sume Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2) for each two units u1, u2 ∈ U . Holland
et al. (1985) call this assumption the homogeneity in units. The causal effect of
t is the value of Yt(u1) − Yc(u1) = Yt(u1) − Yc(u2). In other words, when dealing
with two related units, one can estimate the effect by applying one cause to one
unit and the other cause to the other unit.

As with the other assumptions, this one cannot be proven. One can convince
others of the plausibility however. For example, when doing an experiment to test
a new drug, you can take twins and apply one treatment to one of them and the
other treatment to the other. This is possible if you can assume that the twins are
identical in all the relevant aspects in regards to the drug.

Another example where this assumption can hold, is when we have cloned units.
The last few years we are increasingly able to clone and we can use this in medical
research to research the effect of certain interventions. The reason why we can do
this is because of the assumption of homogeneity.

The assumption of homogeneity implies a constant effect, in other words
Yt(u1) − Yc(u1) = Yt(u2) − Yc(u2). The effect is then constant across all units in
U . We will elaborate on this relation between the homogeneity and the constant
effect in section 4.2.2.1.

4.2 Statistical solution

Besides the scientific solutions, there are also statistical solutions. While the sci-
entific solution uses assumptions about homogeneity and invariance, the statistical
solutions uses characteristics of a population. We will start with explaining the
average causal effect.

4.2.1 Average causal effect

Up to this point, we were mostly interested in the causal effect on a particular unit.
However, we can also look at the average causal effect on a set of units. That also
corresponds to the way we conduct most of our experiments. We inspect a group
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of people to estimate an average effect. The way we conducted our experiments in
the past can indeed be correct, as we will show below.

The assumption we use is that the population U consists of a large set of units. We
conduct an experiment and observe pairs of the variables (S, YS). Recall that this
is the cause to which the unit is exposed and the result of that cause as measured
by Y . The average causal effect T can now be estimated from E(Yt) and E(Yc).
The observed data gives information about E(YS | S = t) = E(Yt | S = t)
and E(YS | S = c) = E(Yc | S = c), since that is the way we set up the experiment.

It is important to note that E(Yt) and E(Yt | S = t) are in general different. In-
deed, not every unit u is exposed to t. The same holds for E(Yc) andE(Yc | S = c).
There is however an assumption where they are equal, which is again (luckily)
common in experiments. The assumption is that the units in U were randomly
assigned to either the control group or treatment group. Then we can estimate
the average causal effect T :

T = E(Yt)− E(Yc) = E(Yt | S = t)− E(Yc | S = c). (3)

Both terms on the right hand side are known when conducing an experiment and
as such, the average causal effect can be calculated. Recall that the associative
parameter in 1 was defined as α = E(Yt | A = 1) − E(Yc | A = 0). When we
change A to S, we have α = E(Yt | S = t) − E(Yc | S = c). When Y and S are
independent, that is the treatment is assigned randomly, α = T .

Relative to the other solutions for the Fundamental Problem of Causal Inference,
this one is fairly simple to achieve and to convince others of its correctness. There
is a big disadvantage though: the average causal effect does not indicate whether
any particular individual would be positively or negatively affected by the treat-
ment. In medical research, this is unfortunate to say the least. Some parts of the
population might be harmed by a drug, even though the average causal effect is
positive. This is at odds with the intentions of personalized medicine, where the
treatment is adapted to the patient.

4.2.2 Constant effect

The average causal effect T is an average and Holland et al. (1985) state that
it likewise has all the benefits and disadvantages of an average. Like we said
in section 4.2.1, the average causal effect does not indicate whether any particu-
lar individual would be positively or negatively affected by the treatment. The
assumption of a constant effect solves this problem, at the cost of another assump-
tion.

22



Jasper van der Ster Causal inference: An introduction

As the name implies, the assumption is that the causal effect is constant among
the population. Every unit is equally affected by exposure to the treatment. In
other words, T = Yt(u)− Yc(u) for all u in U and thus constant. The assumption
of a constant effect allows the value of an average causal effect to be relevant for
every unit and thus allows to draw causal inferences based on T on individual
units.

4.2.2.1 Relation to the homogeneity assumption

Holland et al. (1985) remark that the assumption of a constant effect is implied by
the homogeneity. In other words, when Yt(u1) = Yt(u2) and Yc(u1) = Yc(u2) then
it is trivial that Yt(u1)−Yc(u1) = Yt(u1)−Yc(u2). Thus we can see the assumption
of a constant effect as a weakening of the homogeneity assumption.

The situations where the assumption of a constant effect is correct or at least
realistic are rare. The treatment has to have the same effect on all units in U .
When dealing with patients in medical research, this is debatable. People are
all different and could potentially react different to a treatment. However, there
are some cases where the assumption of a constant effect can hold. All cases
where there is unit homogeneity there is also a constant effect, as we showed in
the previous paragraph. Because of that, we can test a drug on twins, where
we assume and check, if possible, that they are similar in all relevant aspects of
the experiment. For example, they have the same DNA, same history on alcohol
consumption and both are not smoking. The list can go on indefinitely with
characteristics of the twins which could be relevant for the research. When we do
have two “identical” persons, we can assume there is a constant effect because of
the homogeneity assumption.

Another example with a constant effect, where there is no homogeneity, is hard
to find. We can even ask the question if there are any of these instances. It does
not help that the assumption of a constant effect is hard to prove. We can assume
this in a fictional experiment. We want to investigate how the amount of sunshine
affects the growth of a certain type of plant. We use U for the units, in this case
the plants. The control group gets 0 hours of sunshine, which we denote with c.
The treatment group gets exposed to t, 4 hours of daily sunshine. Y is the height
measured after one week of the plant. When we assume there is a constant effect,
we can calculate it with T = Yt(u) − Yc(u) and this holds for all plants by the
assumption of a constant effect.
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In this case, it might be plausible that the effect is constant. It does not matter
what plant you have, they could all benefit the same amount from sunshine
hours and all die when not exposed to sunshine. In this fictional experiment,
it could also be that the plants are similar in all relevant aspects and thus
comply with the homogeneity assumption. This could easily be the case: all
plants die when not exposed to sunshine.

4.2.2.2 Constant effect over time

Many experiments have taken place in the past. Whenever we wanted to research
something, we used an experiment and still do. However, the results of the past
might not correspond with the results when the experiment was conducted again
at a later moment. For example, smoking could have possibly decreased over the
course of the last 20 years (NHS Digital, 2017). This could possibly have influenced
the results of experiments in health care, to give an example. We could extend
the assumption of constant effect for some cases where we are sure that the effect
is also constant in time. This would mean that the experiment only has to be
conducted once to estimate the effect, which is constant across units in time. This
assumption where an effect is constant in time is however not provable. This thus
makes it hard to convince others of its correctness, which is what we want to
defend our results. The reason that one cannot prove this is because even in the
future, with unpredictable changes, the effect has to be constant.

4.2.3 Causal inference in observational studies

There are many studies where we would like to know what the effect is of some-
thing, but cannot study this with an experiment. This could be because of limita-
tions originating from the subject, or ethical limitations. An observational study is
done in these cases. With an observational study, people are not randomly divided
in a control group and treatment group, but they ”choose” their group by their
behavior. For example, when we would be studying the causal effect of alcohol
consumption on life expectancy, we cannot force people to drink a certain amount
of alcohol, they do it themselves.

Holland et al. (1985) say that an important idea is that the pre-exposure variables
can be used to replace the independence assumption with the weaker conditional
independence assumptions. According toHolland et al. (1985), this idea stems
from Rubin (1974, 1977, 1978), Rosenbaum (1984a, 1984b, 1984c), Rosenbaum
and Rubin (1983a, 1983b, 1984a, 1984b, 1985a, 1985b), Holland and Rubin (1983).

The extent to which the results from observational studies are true is hard to
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estimate. There are too many variables to draw conclusions from one study, for
example: how did you question people, is there a selection bias and are there
confounding variables? So when can we use the results of an observational study?
Wasserman (2004) said that results from observational studies are credible when:

1. The results of the study correspond to the results of earlier studies.

2. Every study is controlled by plausible confounding variables.

3. There is a plausible scientific explanation of the existence of the deduced
causal relationship.

We will apply this knowledge in an example in the next section.
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5 An illustration: Alcohol Consumption

We apply the knowledge from the last section to an example. We use the assump-
tions for causal inference to illustrate that they are easily overlooked when drawing
causal relations.

An extensive research was done by Wood et al. (2018) in April 2018 about risk
thresholds for alcohol consumption. Wood et al. (2018) studied individual-participant
data from nearly 600 000 current drinkers without previous cardiovascular disease.
The data were collected from three large-scale data sources in 19 high income coun-
tries. The objective was to find a risk threshold for alcohol consumption and death
(all causes) and sub types of cardiovascular diseases. The risk threshold was the
amount of alcohol with the lowest risk for all-cause mortality and cardiovascular
disease.

5.1 Data collecting

Wood et al. (2018) only looked at people who do drink, to prevent the following:

1. Former drinkers could have stopped drinking because of health problems.
This would result in a bias in the non-drinkers, because the unhealthy former
drinkers are included in the same group.

2. Residual confounding; the distortion that remains after controlling for the
confounding variables through the design of a study. All observational studies
are by definition experiencing distortion because of residual confounding.
The distortion caused by the people who do not drink was better to avoid.

3. People that have never drunk alcohol can systematically differ from drinkers
in immeasurable or difficult to measure ways, but are important in regard to
the research.

Wood et al. (2018) collected data from other studies, where the participant needed
to keep track of information about the following for at least a year: alcohol con-
sumption and status, as well as age, history of diabetes and smoking. In addition,
the participant should not have had cardiovascular diseases in the past.

The data was then categorized in 8 categories. The alcohol consumption was
therefore converted to consumption in grams to have a standard scale across all
data. The categories were made on the basis of this new scale: (0, 25], (25, 50],
(50, 75], (75, 100], (100, 150], (150, 250], (250, 350] and (350,∞) gram per week.
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5.2 Findings

In the 599 912 current drinkers included in the analysis, Wood et al. (2018)
recorded 40 310 deaths and 39 018 incident cardiovascular disease events dur-
ing 5.4 million person-years of follow-up. These data made the following finding:
“In comparison to those who reported drinking (0, 100] gram per week, those who
reported drinking (100, 200] gram per week, (200, 350] gram per week, or (350,∞)
gram per week had a lower life expectancy at age 40 years of approximately 6
months, 12 years, or 45 years, respectively.” (Wood et al., 2018)
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5.3 Media

Several media picked up this news, each with a different story. The paper itself did
not draw a conclusion, neither did it make a causal relationship. The news media
however, did draw conclusions. We will look into a few of them and explain why
their conclusions were wrong and how it could have been right when the original
study was done differently.

5.3.1 AD

AD (Algemeen Dagblad), a Dutch newspaper, wrote the following on this topic, in
response to this research: “An extra glass of alcohol can shorten your life with 30
minutes. Those who want to become as old as possible, are better off not drinking
any alcohol.” (Buitenlandredactie, 2018)

The article in the newspaper assumes implicitly that the participants are assigned
randomly to a level of alcohol consumption and that the effect of alcohol consump-
tion is the same on every individual. If both assumptions were true, there would
still be one minor problem: the research does not say anything about those who
do not drink alcohol and thus the conclusion that you are better off not drinking
is not correct.

Besides that, a lot of information, like the age of 40 and when extra is extra, is
further down the article of the newspaper, which means that it is less important
in the eyes of the journalist. It is also important to note that the original research
article does not draw causal conclusions and that this is all “derived” from the
research article.

5.3.2 The Guardian

This mistake was not only made in The Netherlands, but also in English news-
papers, like The Guardian. This newspaper also headlines with the fact that one
extra glass of alcohol a day will shorten your life by 30 minutes (Boseley, 2018).
In the rest of the article, this saying gets nuanced. However, “on average” gets
left out a lot, which implicitly assumes that the effect of alcohol consumption is
the same on every individual.

5.3.3 De Volkskrant

De Volkskrant, another Dutch newspaper, published something along the lines of
what the other newspapers did. However, they retracted this in a revision. The
conclusion that every glass was shortening your life by 30 minutes was “not in the
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study”. Half a year, one and a half year earlier or 30 minutes earlier dead per glass
is “juggling with statistics”. (Sahadat, 2018)

5.4 Carefulness

As showed in this example, a mistake regarding causal inference is easily made.
Therefore, it is advisable to be aware of these pitfalls when investigating something
or writing something about a research report. The most important thing to watch
out for is being too eager to conclude a causal effect.
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6 Summary

In summary, this thesis gave an introduction to causal inference. First of all,
we showed an example where we elucidated the difference between treatment and
control. In medical research, there is always a control group and a treatment
group. The control group gets one drug and the treatment group another one, all
with the goal to find out which drug is better.

We saw that a specific patient can only be exposed to one of the two drugs and not
(simultaneously) to both. We are however interested in what the other drug would
have done on the same person. This is usually not possible. That is one of the
reasons that incorrect conclusions are drawn from experiments due to incomplete
data. The impossibility to observe the effect of both drugs on the same person is
in essence the Fundamental Problem of Causal Inference.

The Fundamental Problem of Causal Inference lies in the fact that it is impossible
to observe the values of control and treatment on the same unit and therefore
impossible to observe the effect of the treatment on a unit. (Holland et al., 1985)
The emphasis is on the word observe, because it is impossible to observe both the
result when a unit is exposed to a cause and the result when a unit is exposed to
another cause.

We used a standard statistical model to later introduce the model for causal in-
ference. We use associative analysis to relate one data set to another. In order
to do so, we define a population U , a variable A and an attribute Y . These are
formally of the same nature, but A will not change in time. The majority of the
information of this model is contained in the values of Y (u) and A(u).

The model we used for causal inference is Rubin’s model. We assumed that there
are two levels of treatment: control and treatment. Both are causes and we de-
termine an effect of a cause always relative to another cause. In this case that
means treatment relative to control, where control could also be “not treated”. It
was important to think about the fact that the cause to which a unit was exposed
always could have been different, even in observational studies.

We stated that time did not matter in associative analysis as much as it did in
causal inference. In causal inference, time is important when it makes a difference
when a unit u is exposed to a cause. To make a difference between variables that
are influenced by time, we divided the variables in two categories: pre-exposure
and post-exposure variables. The post-exposure variables are those variables that
are influenced by a specific cause and possibly influenced by the time at which a
unit is exposed to a cause.

We explained this model because we are interested in the effect of a cause. To
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measure the effect on a unit u, we calculate Yt(u) − Yc(u). This however gave
the problem we saw earlier: the Fundamental Problem of Causal Inference. The
implicit problem that follows from this is that causal inference is impossible. How-
ever, we can derive information about both values under certain assumptions.

We discussed a range of assumption to make it possible to estimate the causal
effect, or the weaker average causal effect. None of them are provable, the best
one can do is convince themselves and others of its correctness. We divided them
into two categories: the scientific solutions and statistical solutions. Temporal
stability and causal transience was one of the scientific solutions, which assumes
that the effect fades away over time and thus makes it possible to measure the
effect of both causes at a different time.

Another solution, also scientific, was the homogeneity in units. This was the
assumption that the effect of a cause is the same across two units because the units
are similar in all relevant aspects. In this case, the effect equals Yt(u1)− Yc(u1) =
Yt(u1)− Yc(u2) and both can be measured.

Then we discussed the statistical solutions, where we used characteristics of a
population to calculate the (average) causal effect. The first one was the average
causal effect. Instead of looking at the effect on an individual basis, we did look at
it on a population basis. We randomly assign treatment and control to calculate
the average causal effect T = E(Yt)−E(Yc) = E(Yt | S = t)−E(Yc | S = c). This
is the simplest to achieve of all assumptions, by correctly setting up an experiment,
but we lose some detail. We can no longer make any statements on an individual
basis with the average causal effect.

We dealt with this unfortunate side effect by assuming that the effect is constant
across all units. This is a weakening of the assumption of unit homogeneity and
often this assumption is better to argue. When we introduced time we obtained
an even stronger result, the conclusions regarding the effect are more powerful,
but the assumption became impossible to prove.

The last assumption is a weakening of the average causal effect to use it in observa-
tional studies. In observational studies it is impossible to assign people randomly
to be exposed to a cause. However, there are three points that make the results of
an observational studie credible (Wasserman, 2004):

1. The results of the study correspond to the results of earlier studies.

2. Every study is controlled by plausible confounding variables.

3. There is a plausible scientific explanation of the existence of this causal
relationship.
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Finally, we have taken a look at the media and their story about a recent research
regarding alcohol consumption. It went wrong in translating an associative conclu-
sion into a causal relationship. However, one of the newspapers did a revision and
came back to their original article. They all however misinformed their readers
initially and need to be more careful when drawing causal relations from studies.
The most important thing to watch out for is being too eager to conclude a causal
effect.
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7 Discussion

A recommendation for future papers regarding causal inference is a more math-
ematical way of describing the model for causal inference, i.e. by setting up a
probability space and work from there.

For future research, it would be interesting to have a qualitative study where
mathematicians reach out to journalists to find out their way of thinking and their
motives to do so. That way there might be a point in time where the reader is
no longer misinformed by causal relations based on associative studies. Moreover,
every causal relation then drawn will be based on a correctly executed study and
thus more reliable.
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