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ABSTRACT

This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete
Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together
with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs
of image patches from the HR still image, high-frequency details are transferred from the HR source to the
LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain6 because of a
reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation.
Fast searching techniques like tree-structure vector quantization16 and coherence search1 are also key to the
improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR
synthesis approach.

Keywords: super-resolution synthesis, DCT, video restoration, low-quality videos, MJPEG.

1. INTRODUCTION

Today’s increased demand for electronic devices with audiovisual capabilities has resulted in the presence of
a video mode in a variety of handheld devices such as digital cameras and video phones. However, while the
race for extra functionalities on a single device is on, the performance of these additions are often not very
satisfactory. Due to limited memory and computational power, the video quality of these convergence products
is not comparable to that of dedicated devices. The image size is rather small (320x240 or 640x480) and the
compression is often severe (low quality MJPEG, H263). To bring the quality of these videos to the level of SVCD
or DVD for (high definition) television replay, software techniques are needed to increase the image resolution.

A popular approach in the signal and image processing community is super-resolution (SR) reconstruction
from a moving image sequence.10, 12, 19, 31 This approach first registers the low-resolution (LR) input frames
to a common reference. A high-resolution (HR) image is then constructed by fusion of the LR samples. This
HR image is finally deconvolved to recover high-frequency signals that were suppressed by optical blur and/or
sensor integration. As a result, the performance of SR reconstruction very much depends on the Signal-to-
Noise Ratio (SNR), optical Point Spread Function (PSF), and fill-factor of the CCD sensors.20 For example,
it has been estimated that under a practical assumption of 100% fill-factor, good signal-to-noise ratio (PSNR∗

≈ 34dB) and small registration error (max(∆r) ≈ 0.125 pixel), the super-resolution factor is limited to only
1.6.14 Furthermore, this factor cannot be improved by adding more LR frames. Although many papers claim
two-time upsampling results of real videos,12, 31 the actual resolution gain rarely approaches a factor of two
because the reconstructed images are often smooth.

Since SR reconstruction has a fundamental limit, many researches have recently shifted towards a Model-
Based approach for SR (MBSR).2, 6, 9 This second approach differs from the reconstruction approach in the
deblurring step where high-frequency signals are pasted into the blurry HR image after fusion. Instead of
performing a deconvolution, the model-based approach first learns the correspondence between a sharp image
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patch and its smoothed version from a large number of samples stored in a training dataset. It then pastes
plausible high-frequency textures into the blurry HR image following the learned correspondences. The logic
behind MBSR is very similar to multi-scale texture synthesis,1, 18, 28 both of which emerged around the same
period of time. Similar to texture synthesis, MBSR only performs favorably if a correct texture source is
available. Due to its learning and inference in the spatial domain, MBSR is not robust against noise or changes
in illumination.2 MBSR also performs poorly for compressed images,6 which frequently occur in practical
applications.

To resolve the current limitations of MBSR (i.e. lack of suitable texture and non-robust spatial-based syn-
thesis), we propose a SR texture synthesis approach in the DCT domain using a HR image of the same scene.
The DCT domain is chosen because DCT is the basis of most video codecs for consumer devices (e.g., MPEG,
H.263 and MJPEG). As a result, the LR video needs not be decompressed for SR synthesis. The HR reference
image can be provided by the user together with the video since most handheld devices have dual mode: HR still
and LR video. As an alternative, it can be selected from still images captured on the same event in HR mode.
Even better the camera can be configured to automatically capture an HR image after every scene transition to
guarantee the availability of a good HR texture source.

The rest of this paper is presented as follows. Section 2 points out some of the difficulties in applying SR
techniques to compressed images. Specifically, there is a slight reduction in the performance of image registration
and a severe truncation of the signal bandwidth at medium JPEG compression. Section 3 proposes an example-
based SR technique for DCT-based compressed images without the need of decompression. The results of this
DCT-based SR synthesis approach is presented in chapter 4. Chapter 5 concludes the paper with potential
applications and ideas for further refinement of the algorithm.

2. INFLUENCE OF JPEG COMPRESSION ON SUPER-RESOLUTION

Traditional SR reconstruction methods often involve three sub-tasks: image registration, image fusion, and
deconvolution. The level of attainable resolution enhancement depends heavily on the performance of each
task. Although there are procedures to measure the performance limit of SR,14, 20 they were developed for
uncompressed data corrupted by space-invariant blur and Gaussian noise. In this section, we analyze the diffi-
culties facing image registration and deconvolution due to a different type of signal degradation: space-variant
compression and spectrum-bandwidth reduction by DCT-based compression.

2.1. Performance of registration on compressed images

Image registration is a crucial part in any super-resolution algorithm. The input LR images should be registered
with sub-pixel accuracy so that mis-alignment does not become visible even after two- or four-times zoom. Due
to the complexity of motion in real videos, registration for video coding is performed as a local shift estimation
for every 16 × 16 macro blocks. If the motion of a block is purely translational, a very precise and unbiased
shift estimation can be achieved using an iterative gradient-based method.15 This shift estimator is shown to
be optimal under Gaussian noise,21 because its variance reaches the Cramer-Rao lower bound:
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where [vx vy] are the estimated shifts, [Ix Iy] are image derivatives along the x- and y-dimensions, S is the
region over which the shift is estimated, and Det(T) is the determinant of the gradient structure tensor T. The
optimality of the iterative shift estimation can be concluded from figure 1b, where the precision of the shift
estimation at JPEG quality 100 (i.e. almost lossless compression except for small quantization errors) is within
the proximity of the Cramer-Rao lower bound (dotted line versus continuous line with round marker).

Figure 1 also shows that the performance of our shift estimator does not degrade significantly for compressed
images at normal JPEG quality (quality≥60). Figure 1a shows a 16× 16 noisy and compressed Pentagon image.
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Figure 1. Performance of shift estimation on two compressed noisy 16 × 16 macro blocks that are [0.5 0.5] pixels apart.

The image is generated from a 1024 × 1024 original image after a Gaussian blurring (σ = 16) followed by 32-
times downsampling, Gaussian noise addition (σn = 5), and JPEG compression (quality=50). Registration of two
such images ([0.5 0.5] pixels apart) with different noise realizations produces a normal distributed result around
the true shift (figure 1a). Mean and deviation of the estimated shifts at various noise levels and compression
qualities are plotted in figure 1b-c, in which each data point is computed from the statistics of 500 different noise
realizations. Figure 1b shows a linear relationship between shift precision and noise as dictated by the Cramer-
Rao bound in equation (1). Surprisingly, the precision of shift estimation at normal JPEG quality (quality≥60)
does not deviate significantly from the optimal precision. A small bias for normal JPEG quality is observed
in figure 1c. All in all, figures 1b-c show that the registration is accurate enough for three-times SR of images
at normal SNR† (SNR ≥ 10dB) and normal compression (quality≥60). This is because the registration errors
do not exceed 0.15 LR pixel or 0.45 HR pixel in 99% of cases (confidence interval bounded by three times the
observed standard deviation). The underlying assumption is that if the registration error is less than 0.5 HR
pixel, it does not cause a visible artifact in the HR image after fusion.

2.2. Spectrum reduction by DCT-based compression

Although medium JPEG compression does not significantly degrade the accuracy of registration, it does corrupt
the signal in a destructive way. This is the most noticeable drawback of a DCT-based codec because not only
small features are suppressed but spurious details are also introduced in the compressed image. Because many
high-frequency DCT coefficients are set to zero by quantization, every 8 × 8 block in the compressed image is
essentially low-pass filtered with cyclic border conditions. Coarse quantization levels also mean sudden jumps of
quantized DCT coefficients as their values gradually change from one level to the next. This results in noticeable
intensity and texture mismatches across block boundaries, also known as blocking artifacts.

Although a single compressed frame is degraded locally within each 8× 8 block, the degradation approaches
that of global low-pass filter in the HR image constructed by fusion of multiple moving frames. Because all input
frames move, each HR pixel receives contributions from multiple LR pixels at different offsets with respect to
the 8 × 8 coded block. As a result, even though the compression error is space-variant within a coded block,22

the error averages out to a reduced and space-invariant noise over the HR image. Ringing and blocking artifacts
are also suppressed by multi-frame fusion.8 What is not recoverable by multi-frame fusion is the signal blur. As
illustrated in figure 2b, DCT quantization causes a sudden attenuation of DCT coefficients at high frequencies.
The DCT reduction factor plotted in figure 2c is comparable to the compression’s frequency transfer function.
Zero values at the tail of this transfer function indicates that all DCT coefficients at high frequencies are truncated
to zero. These high-frequency signals are therefore irrecoverable by deconvolution.

†Signal-to-noise ratio of an image is 10 log10(σ
2
I/σ2

n), where σ2
I & σ2

n are variances of the uncorrupted image & noise
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Figure 2. Overall attenuation of high-frequency coefficients due to JPEG compression at quality 80.

3. SUPER-RESOLUTION SYNTHESIS

Because compression at low-to-medium quality permanently damages the signal spectrum, deconvolution does
not yield a satisfactory SR result.25 The result suffers from unresolvable details and ringing artifacts around
edges. To overcome this limitation, prior knowledge is often incorporated into the restoration process. SR
synthesis2, 6, 9 uses a set of HR reference images to predict the missing HR information in the LR inputs. In
this section, we review an example-based SR technique and propose an adaptation for better handling of input
images in the DCT domain.

3.1. Texture synthesis approach to image restoration

Example-based SR6 is one of the first attempts to incorporate a strong prior knowledge into the restoration
process. From the observation that the high-frequency bands of a LR image corresponds to the medium-frequency
bands of an HR image, Freeman proposed a patch-wise synthesis approach that searches for a mid-band frequency
match from a database and transfer the corresponding hi-band frequency signal back to the interpolated LR
image. The search constraints are such that the intensities of the newly synthesized HR patch agree well with
the surrounding patches.

The original example-based SR algorithm, however, is known to perform poorly on compressed images.5, 6

Compression artifacts are often mistaken as signal and are therefore amplified rather than suppressed by the
SR synthesis process. Fortunately, this shortcoming can be resolved by using multi-frame fusion to reduce the
compression artifacts prior to texture synthesis (see figure 3). The modified example-based SR algorithm can
then be seen as a combination of SR reconstruction and texture synthesis.

 

Hi-Res texture 

source 
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Multi-frame 
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or 

Texture 
Transfer 

Hi-Res blurred 

intermediate video 
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output video 
Lo-Res aliased 

input video 

Figure 3. Proposed modification to Freeman’s example-based SR6 algorithm: using multi-frame fusion instead of a single-
frame upsampling in the interpolation step to prevent the amplification of compression artifacts by texture synthesis.
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3.2. Super-resolution synthesis in the DCT domain
Realizing the fact that band-pass frequency information is available directly in the DCT domain, we choose to
do example-based SR directly in the DCT domain. This has a number of advantages. First, no inverse DCT
is needed because the input images are already represented in the DCT format. Second, band-pass selection is
simply a matter of selecting DCT coefficients. Finally, since DCT is a compact and uncorrelated representation
of the spatial signal, computational savings can be achieved by comparing only a subset of the full 8 × 8 DCT
coefficients. In natural images, for example, the first 10 AC coefficients along the standard JPEG zigzag scan
path capture 85% of total signal variance. The comparison of high-frequency DCT coefficients should be avoided
because these coefficients are often truncated to zero by heavy quantization.

Another important feature of our SR algorithm is a stricter constraint on the HR texture source. Unlike
Freeman,6 who constructs a huge database of training patches for multi-purpose SR, we restrict the texture
source to images of similar content captured by the HR still mode of the same camera. Though it sounds very
limiting, the assumption is quite practical because most handheld devices have dual video and still capturing
modes. The user or, ultimately, the camera system can be trained to capture such a HR still image together
with the video. This suitable texture source increases the chance of finding a good match and allows spatial
coherence1 to speedup patch matching in subsequent frames.

The procedure for SR synthesis in the DCT domain is described as follows:

1. Rough affine registration of the first LR frame against the HR texture source: this is necessary so that the
training LR patches can be produced at the same zoom and orientation of the input images. To avoid a
full decompression of the input, the LR-to-HR registration can be performed on the DC component of the
compressed input. Once the first LR frame is registered to the HR source, other frames in the sequence
can also be registered by concatenation of background motion computed from the MPEG motion field.29

In most cases, only the scene translation and rotation need to be corrected because consumer cameras and
video phones often disable zoom while capturing.

2. LR-HR training pair generation: similar to the spatial-domain example-based SR,6 HR texture is inferred
from training pairs of corresponding LR-HR reference patches. A LR texture image is subsampled from
the HR texture source using the registration parameters found in step 1. 8 × 8 LR training patches are
taken from this LR texture image at every integer pixel position. To account for some rotational motions
in the input video, four more patches with slight tilts (∆θ = −π

8 ,− π
16 , π

16 , π
8 ) are also sampled around each

on-grid LR training patch. The corresponding zero-mean HR patches cover a slightly larger neighborhood
than that of the LR patches (see figure 4b where an 18 × 18 HR patch contains an 8 × 8 LR patch and
68 overlapping HR pixels). The LR patches are encoded using DCT with block size 8. The first ten
AC coefficients together with 68 overlapping HR pixels form a 78-dimension vector in the search space
(figure 4a).

3. Search for matching texture source: HR texture is synthesized in a raster scan order for every 8 × 8 DCT
block in the LR compressed input. We look for a HR patch that satisfies two constraints: the HR patch
must possess similar frequency information contained in the LR data, and its boundary should match the
already synthesized patches. The search vector is constructed from the first 10 AC coefficients of the input
8 × 8 normalized quantized DCT (directly after Huffman decoding and before dequantization26) and 68
overlapping pixels from the previously synthesized neighboring blocks. Since the frequency constraint is
more important than the spatial coherence constraint, the intensities components of the search vector are
multiplied by a small weight (α = 0.05, see figure 4a). Euclidean norm is used for the matching and the HR
texture linked to the training vector with the smallest norm is selected. For the first frame, a fast brute-
force search over the whole dataset is possible using tree-structure vector quantization.16 For subsequent
frames, the synthesized result of the previous frame can be used to reduce the search space by temporal
coherence search. Motion vector from the MPEG stream can be used to locate the position of a current
DCT block in the previous frame, and hence the position of probable HR patch in the texture source. In
addition to temporal coherence, spatial coherence1 with previously synthesized data within the current
frame can also be used. Figure 5 shows how k-coherence search24 (k=1,2) selects matching candidates for
a new patch from spatially coherent HR patches in the texture source.
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Figure 4. Example-based SR in the DCT domain: synthesizing HR image patches in a raster-order scan.
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Figure 5. Coherence search: candidates for the current block in figure 5c (striped block with a question mark) can
be found around the texture sources of previously synthesized blocks. The process can be done recursively, resulting in
k-coherence search in figure 5a.

4. RESULTS AND ANALYSIS

We apply the DCT-based SR synthesis algorithm to a low-quality carphone sequence. The QCIF sequence
(176 × 144) is compressed using MJPEG codec (each frame is an JPEG image) at quality 50. The HR texture
source in figure 6a is the first frame of the same sequence at CIF resolution (352× 288). Figure 6b and 6c show
frame 20 of the LR input and the synthesized SR output, respectively. Although only two-time zoom is applied,
the level of resolution enhancement is actually far greater than two because the input is compressed at very poor
quality.

(a) texture source (CIF frame 0) (b) MJPEG input (QCIF frame 20) (c) 2-time SR synthesis

Figure 6. Two-time super-resolution of low-quality video using DCT-domain SR synthesis.
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However, the SR result in figure 6c is not without a problem. Block boundaries are visible in several places.
In addition, regions outside the car window are not synthesized very well because a suitable texture source is
lacking. To alleviate the first problem, some blocking artifact concealment has to be implemented. The boundary
mismatch can also be reduced by using a subpixel sampling of the LR training patches and a finer perturbation
of patch tilt ∆θ in step 2 of the algorithm. The second problem is more difficult to solve for this sequence because
the background content keeps changing. The natural view outside the window can be better reconstructed by
using an extended set of natural texture. However, since the background is rarely the focus of attention, it could
be left unchanged or simply enhanced by a Laplacian filter.

We also compare the result of our DCT-based SR synthesis with that of an improved example-based SR
algorithm.4 This spatial-based SR algorithm uses first and second derivatives at each pixel to search for K-
nearest neighbors (K=5) of every 3 × 3 LR input patch. It then combines the K neighbors using Local Linear
Embedding (LLE)23 to generate a new HR patch that is a linear combination of existing patches in the training
set. By this LLE inference, the authors showed an improved mean square error of the new SR image over that
of Freeman’s nearest neighbor approach.

Images in figure 7 show the same facial region in frame 20 of the carphone sequence. The effect of low
resolution and severe compression is manifested in figure 7b, whose facial details such as eyes and ears appear
blurred compared to that of the original CIF image in figure 7a. JPEG compression also causes ringing artifacts
around the face and on the car interior. DCT-domain SR synthesis successfully recovers all facial and hair
details. Several LR patches did not have a good enough match from the training set so the high-frequency
information is not imported. Occasional mis-registration also causes some edge jaggedness along linear interior
structures. However, given all the mentioned shortcomings, DCT-based SR synthesis still outperforms example-
based SR using first and second derivatives. The gradient-based SR result in figure 7d shows no sign of detail
improvement. On the contrary, the overall sharpness enhancement results from increased ringing and other
compression artifacts. As previously stated, this is a typical problem of many other intensity-domain example-
based SR algorithms.5, 6

(a) ground truth (CIF) (b) MJPEG input (QCIF) (c) DCT-domain SR (d) intensity-domain SR4

Figure 7. Comparison of two-time SR synthesis of an MJPEG compressed frame in the DCT and intensity domain.

5. FUTURE RESEARCH DIRECTIONS

The experimental results in section 4 clearly show the advantages of DCT-based synthesis over spatial-based syn-
thesis for compressed images. However, the presented algorithm is rather basic and the results can be improved.
This section is a collection of ideas for further development of DCT-domain SR synthesis. In particular, four
subtasks need improvement: search space pruning, matching criteria, selective synthesis, and error concealment.

5.1. Accurate LR-HR registration for an improved coherence search

Coherence search is an effective way to prune the search space for SR synthesis. Different from texture synthesis,
in which the stochastic texture needs not be exactly constructed, SR synthesis requires a plausible reconstruction
of patterns well-recognized by the human eyes. HR texture patches should therefore ideally come from the same
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actual objects. This can be achieved by incorporating motion tracking in the SR synthesis algorithm. Although
motion vectors of macro blocks are available as part of an MPEG compressed stream, they are optimized for
coding purposes and may not reflect the true optic flow. Consequently, coherence search should look for the
matching position of a LR patch in the texture source around the location given by the optic flow (∆x,y =
−1, 0, 1). In addition, since the orientation of an 8× 8 LR block is computable from its DCT coefficients,13 the
tilt ∆θ of the oriented HR texture patch should also be sampled around this orientation (see the algorithm in
section 3.2). In other words, with the zoom corrected in step 1 for the whole sequence, step 2 should find a rigid
registration of LR patch against the LR texture source. The add-on registration parameters {∆x,∆y,∆θ} can be
refined to subpixel accuracy by fitting a parabola to find local maxima of the presumably smooth error surface.
This accurate localization of the coherent texture patch improves the LR input-HR source correspondence and
reduces mismatch between HR blocks after texture synthesis.

5.2. Re-weighting the DCT coefficients
Because example-based SR compares two filtered LR patches using their intensities, the weights given to all
elements in the search vector are equalled. DCT-based SR synthesis, on the other hand, compares two LR patches
based on their AC coefficients in the DCT domain. Since each AC coefficient carries a different signal energy,17 its
weight should be normalized by its variance computed over all coded blocks of the image. However, the problem
is not that straightforward because quantization adds further variations to the compressed coefficients. It has
been shown22 that the DCT quantization noise is uniform for non-zero coefficients and it is Laplacian distributed
for zero coefficients. Because we only use the first 10 AC coefficients in our matching, these coefficients are most
likely non-zero and are therefore uniformly distributed within their quantization interval. To make the variance
of this quantization noise equal, we use the quantized DCT coefficients for matching (i.e. DCT coefficient divided
by its quantization level). Although the current weighting scheme aims for the same quantization noise across
all DCT coefficients, it should be revised to incorporate the different signal energy contained in each coefficient.

5.3. Improvements on synthesis
Due to reasons such as noise, lack of input details, or lack of suitable texture, SR synthesis occasionally produces
unsatisfactory results as seen in figure 7c. Existing techniques such as Local Linear Embedding (LLE),23 brute-
force search, or Region Of Interest (ROI) processing can be used to improve the yield of SR synthesis. LLE, for
example, is not only applicable to spatial-based SR synthesis4 but also to our DCT-domain SR synthesis. Full
database search using fast nearest neighbor search algorithms16 can be used if a suitable HR texture patch is
not found by coherence search. Because we require a good texture source in our problem setting, the number
of times the brute-force search is used will generally be small. However, if the success rate of coherence search
falls, it is a good time to signal the hardware to capture another HR texture source. Finally, to improve the
frame throughput of the SR process, only selected regions of interest will be synthesized. This is especially
applicable to SR of video because viewers tends to fixate on a limited number of regions in an image that they
deem interesting.30 These ROIs usually have high spatial gradient or temporal gradient or both. Low contrast
background, for example, are not the focus of interest in the carphone sequence in section 4.

5.4. Boundary mismatch concealment
Due to a large size of the standard DCT-coded block (usually 8 × 8 in JPEG and MPEG1/2, but can also be
4× 4 or 16× 16 in MPEG-4), a small misalignment of the LR input against the HR texture can result in visible
artifacts at output block boundaries. One way to alleviate this problem is to synthesize HR texture for the
in-between DCT blocks as well. The DCT coefficients of these in-between blocks is computable from those of
adjadent blocks.3 The largely overlapping synthesized HR blocks are then blended together using a reducing
weight from the block center.

While HR blocking artifacts can be reduced by the extraneous in-between block synthesis, intensity mis-
matches may still occur due to poor texture synthesis. This is especially true when the LR image itself has
severe blocking artifacts, and the in-between DCT blocks are then not predicted well from their neighbors. A
better method for error concealment is required in these cases. Pixels with high intensity mismatch are de-
tected and re-synthesized.18 Note that this overlap re-synthesis is done in the spatial domain because both the
intermediate HR output and the texture source are represented with real intensities.
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6. CONCLUSIONS AND DISCUSSIONS

We have presented an example-based algorithm for super-resolution of compressed videos. The input of the
algorithm comes directly from the quantized DCT video stream. The SR performance, however, strongly depends
on the similarity between the HR texture source and the LR video. As a result, it works best if the HR texture
source is captured along with the video.

Apart from the application of video upscaling, the DCT-domain SR synthesis can be used in a number of
other applications. The SR scheme can be implemented in hardware (e.g. inside TVs, video players, or capturing
devices themselves), and the performance can be significantly increased with an automatic HR image acquisition
after a scene change or a time trigger. The SR algorithm is also applicable to multimedia coding. Current video
codecs can be modified to encode most frames in LR and only some key frames in HR to serve as a texture
source for SR synthesis at the decoding end. Another coding application of SR synthesis is the (re-)compression
of image archives of similar content. This technique resembles vector quantization encoding7 and is especially
useful to reclaim disk space or flash memory as the need arises.

While the idea of using a HR frame to enhance video quality is commercially viable, several considerations
must be taken into account. Because example-based SR is not a reconstruction method, the correctness of the
synthesized output is questionable. Such a software is therefore not suitable for scientific and forensic purposes. If
targeted at the entertainment business, on the other hand, the software should have more emphasis on synthesis
of high quality and realistic faces. Strong model-based priors such as eigen-faces27 or tensor faces11 together
with face recognition are useful in this case.
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