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Quantifying Uncertainty due to Ties
in Rank Correlation Coefficients

Andreas Tsatsanis
Delft University of Technology

Abstract
Rank correlation coefficients are a common tool for describing sim-
ilarity between ordered data. This study examines the use of the
popular coefficient Kendall’s 𝜏 , specifically in the case where the
rankings contain tied items that should not be tied. Ties in this case
represent uncertainty in the ranking, induced by the system that
produced it, usually due to effects such as missing information or
loss of precision (rounding). We propose two variants, 𝜏𝑚𝑖𝑛 and
𝜏𝑚𝑎𝑥 , which represent the lowest and highest possible correlation
over all ways of arbitrating tied items. Our contribution is a novel
quadratic-time algorithm for computing an arbitration of tieswhich
yields the extremal correlation values 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 .We formally prove
the correctness of the algorithm for the original Kendall’s 𝜏 , and
we suggest an adaptation for weighted variants of 𝜏 , such as 𝜏𝐴𝑃
by Yilmaz et al. and 𝜏ℎ by Vigna. Empirical evaluation on both
synthetic ranking pairs and TREC ad-hoc system outputs demon-
strates that ties often induce wide intervals [𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 ], indicating
that no single value can fully encapsulate the uncertainty in corre-
lation. These wide intervals also appear in rankings where current
methods of computing 𝜏 correlation in presence of ties, namely 𝜏 𝑎
and 𝜏 𝑏 , have values large enough (≥ 0.9) for researchers to use as
evidence of strong correlation. This indicates that currently used
methods may yield false positive results. By reporting 𝜏 alongside
its uncertainty bounds 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 , researchers are able to make
more informed decisions, by demonstrating the reliability of corre-
lation in presence of uncertainty-induced ties.

CCS Concepts
• Information systems → Evaluation of retrieval results;
• Mathematics of computing → Exploratory data analysis.
ACM Reference Format:
Andreas Tsatsanis. 2025. Quantifying Uncertainty due to Ties in Rank Cor-
relation Coefficients. BachelorThesis.Delft University of Technology, Delft,
The Netherlands.

1 Introduction
The comparison of ranking systems often entails comparing the
rankings1 they produce, and deriving different conclusions from
there. Their “similarity”, often quantified by their “correlation”, is
calculated through different rank correlation coefficients. Some ex-
amples include Spearman’s 𝜌 [13], Kendall’s 𝜏 [7], 𝜏𝐴𝑃 by Yilmaz
et al. [17], Vigna’s 𝜏ℎ [15], and Rank Biased Overlap (RBO) by Web-
ber et al. [16]. Each of these coefficients attempts to encapsulate
the concept of how similar two rankings are, however, since the
concept of “similarity” can be defined in different ways, these co-
efficients do not represent “similarity” the same way.

Suppose one is comparing two document retrieval systems, with
the hypothesis that they generally rank the documents in a similar
way. To test this hypothesis, one may assemble a set of documents,
and ask the two systems to rank them. Computing the correlation
of the two produced rankings can give an informative numeric

1The order the systems assign to a list of items.
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Source code is available at https://github.com/andtsa/bsc_thesis.

value, whichmay either support or contradict the hypothesis. How-
ever, there is a source of error that has not been considered: one of
the ranking systems, faced with ordering two elements, does not
know which to put above the other, and instead chooses to label
these items as tied. The presence of ties in the produced rankings
reflects an uncertainty in the system. For a correlation coefficient
this is a problem: how should ties be represented in the correlation
value? Once again, there is no objective answer.

Rankings that inherently contain ties do exist in the real world
(such as the aforementioned example of document retrieval rank-
ings), and we often want to be able to measure their correlation.
These coefficients mentioned above give us only a number, and
this number does not show how much information was lost due to
ties. One method of quantifying the uncertainty caused by ties is to
find the upper and lower bound that the correlation could have had,
if the system chose some ordering instead of ranking items as tied.
This idea of using bounds as a measure of uncertainty was intro-
duced alongside the definition of RBO by Webber et al. [16], as the
upper and lower bounds RBOmax, RBOmin. Webber et al. initially
addressed uncertainty due to unseen items2, but a few years later
Corsi and Urbano [3] adapted the concept to instead quantify un-
certainty due to ties. They proposed two variants of RBO, namely
RBOlow and RBOhigh, that together can indicate the magnitude of
uncertainty introduced by ties. Since their paper has shown the
usefulness of these bounds for RBO, a natural question that arises
is whether the notion of bounds is applicable for other measures
of rank similarity.

Kendall’s 𝜏 is a popular non-parametric coefficient of rank sim-
ilarity, which defines similarity as correlation, measured through
concordance3.This definition hasworkedwell in practice, andmany
other coefficients have built upon it, extending the coefficient with
properties such as top-weightedness4 [12, 15] or average-precision
[17]. This class of coefficients, known as 𝜏 correlation coefficients,
due to their wide range of uses cases, is the focus of this study on
uncertainty. Currently there are no methods for quantifying uncer-
tainty due to ties in 𝜏 correlation, and thus this research proposes
the 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 variants for 𝜏 , akin to RBO’s RBOlow and RBOhigh.

The difficulty in quantifying uncertainty through the suggested
bounds is primarily a computational one: how do we find the min-
imum and maximum possible values of 𝜏 across all permutations
of tied elements? The trivial algorithm of try all possibilities has a
worst-case runtime of 𝑂(𝑛!2), which makes even a small-scale ex-
perimental evaluation impossible, let alone practical real-world use
of these bounds. If computed efficiently, these bounds can serve as
a useful statistical tool, akin to RBOlow and RBOhigh, but for the
widely used 𝜏 correlation coefficients.

Corsi and Urbano [3] have proposed two greedy algorithms for
computing bounds of RBO in quadratic time. Unfortunately, they
cannot be directly applied to 𝜏 , since RBO represents similarity
through overlap, while 𝜏 does so through concordance, and those
definitions do not have an obvious two-way translation between
2In the case where you only have access to a prefix of the ranking for evaluation. This
type of uncertainty does not arise in 𝜏 .
3See Definition 1.
4Think of search engines where the top few results are much more significant than
later pages of results. Two systems that agree on the first page but disagree on the
second are more similar than two that disagree on the first but agree on the second.
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each other. Therefore, a new set of algorithms is needed for the
concordance-based 𝜏 correlation coefficients.

Contribution
This research aims to show that the uncertainty due to ties carries
a statistical relevance, and to propose a method for quantifying it.
Concretely, these are:

• a new algorithm for finding a permutation of tied items that
yields the highest and lowest possible 𝜏 correlation value,

• a formal proof of correctness,
• a practical analysis of 𝜏 correlations compared to their un-
certainty bounds, evaluated on both synthetic data and real
(TREC) data5.

2 Background and previous work
The question of “are these two random variables correlated?” is a
truly fundamental problem in statistics. A brief review of the rel-
evant literature surfaces many ways, or coefficients, for assigning
this relationship a number. Auguste Bravais [2] first introduced in
1846 the concept that would later become the correlation coefficient,
and since then every new proposed coefficient attempts to amend
the limitations encountered with the previous one.

Thus the concept of ties enters the discussion first and foremost
as a practical obstacle: ties naturally appear in many real-world
rankings, for which we likely still want to be able to measure cor-
relation. How to do so is not obvious. Not all ties have the same
reason for appearing in rankings, and different coefficients (or vari-
ants of the same coefficient) interpret ties in significantly different
ways.

2.1 Interpreting ties
Depending on the nature of a ranking, ties canmean different things.
If we are ranking pole vault athletes by the maximum height they
jumped in the Olympics, then two (or more) athletes who jumped
the same height on their best attempt should be tied in the ranking.
Because the heights are discrete (integers, measured in centime-
tres) and there is no (remotely meaningful) uncertainty in mea-
surement, in this case there is no uncertainty. On the other hand, a
search engine assigning a relevance score to each document, may
assign the same score to two (or more) documents. This does not
mean the documents are the same, nor that the user is truly inter-
ested equally in both, but that the engine does not know the user’s
real preference, and this is often an uncertainty that ought to be
taken into account. The first case is addressed by Gazeel [6], and
we work with the second case.

2.2 Kendall’s 𝜏
In 1938, M.G. Kendall introduced the 𝜏 coefficient of rank correla-
tion [7], and in 1945 two variants, 𝜏 𝑎 and 𝜏 𝑏 , to be used in presence
of ties [8]. While its “superiority” over other coefficients is ambigu-
ous, its usefulness is undeniable, and its ability to handle ties makes
it an excellent candidate for ordinal data naturally containing ties.

Kendall computed correlation through concordance, which mea-
sures how much the two rankings agree upon the relative order of
items. Formally, it is defined as follows:

Definition 1 (Concordance). In two rankings

𝑅 = (𝒮, ≺𝑅) and 𝐵 = (𝒮, ≺𝐵)
a pair of distinct items 𝑖, 𝑗 ∈ 𝒮 is called “concordant” if the have
the same relative ordering in both rankings, and “discordant” if
they have an opposite ordering. Formally:

concordant𝑅,𝐵(𝑖, 𝑗) = { true, 𝑖 ≺𝑅 𝑗 ⟺ 𝑖 ≺𝐵 𝑗,
false, 𝑖 ≺𝑅 𝑗 ⟺ 𝑗 ≺𝐵 𝑖. (1)

5Data from the Text REtrieval Conference.

In the context of computing 𝜏 , concordance is more usefully de-
fined using the sign function sgn as follows:

c𝑅,𝐵(𝑖, 𝑗) = 𝑠𝑔𝑛(𝑅𝑖 − 𝑅𝑗) ⋅ 𝑠𝑔𝑛(𝐵𝑖 − 𝐵𝑗), (2)
where𝑋𝑦 is the numeric index of 𝑦 in ranking𝑋 , and sgn is defined
as:

𝑠𝑔𝑛(𝑥) = {−1, 𝑥 < 0,
1, 𝑥 > 0. (3)

Thus, for two rankings 𝑅 and 𝐵, Kendall’s 𝜏 correlation is defined
as:

𝜏 =
∑{𝑖,𝑗} 𝑐𝑅,𝐵(𝑖, 𝑗)
𝑛(𝑛 − 1)/2 , (4)

where:
• ∑{𝑖,𝑗} is a sum over all unordered pairs of different items
𝑖, 𝑗 in the item set of 𝑅 and 𝐵. For example, if 𝑅 = < 𝑎, 𝑏, 𝑐 >
and 𝐵 = < 𝑏, 𝑎, 𝑐 >, the summation would consider the pairs
{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}.

• 𝑛 is the length of the rankings6

• 𝑛(𝑛−1)/2, also seen as (𝑛2), is the total number of unordered
pairs of items in each ranking.

If the two rankings completely agree on how the items should be
ordered, then ∑{𝑖,𝑗} 𝑐𝑅,𝐵(𝑖, 𝑗) = (𝑛2) and 𝜏 = 1, and if they com-

pletely disagree, ∑{𝑖,𝑗} 𝑐𝑅,𝐵(𝑖, 𝑗) = −(𝑛2) and 𝜏 = −1.

2.3 Weighted 𝜏
Multiple weighed variations of Kendall’s 𝜏 have been introduced
since then, each with a different weight function, and for a differ-
ent use case. Some notable examples include the Average Precision-
based 𝜏𝐴𝑃 by Yilmaz et al. [17], and Vigna’s hyperbolic-weighted
𝜏ℎ [15]. When the rankings do not contain ties, they can be gener-
alised by Shieh’s 𝜏𝑤 [12]:

𝜏𝑤 =
∑{𝑖,𝑗} 𝑐𝑅,𝐵(𝑖, 𝑗)𝑤(𝑅𝑖, 𝑅𝑗)

𝑛(𝑛 − 1)/2 (5)

where 𝑤 ∶ ℕ × ℕ → ℝ is a symmetric (𝑤(𝑥, 𝑦) = 𝑤(𝑦, 𝑥)) weight
function over the indices of elements 𝑖, 𝑗 in the “reference” ranking
𝑅.This leads to an asymmetric correlation coefficient, that can then
be made symmetric by averaging the two 𝜏𝑤 values, as shown in
equation 6:

̄𝜏𝑤 (𝑅, 𝐵) =
𝜏𝑤 (𝑅, 𝐵) + 𝜏𝑤 (𝐵, 𝑅)

2 (6)

The definitionwe use generalises over Shieh’s 𝜏𝑤 , by using aweight
function:

𝑤 ∶ 𝒮 × 𝒮 → ℝ, 𝑤(𝑖, 𝑗) = 𝑓 (𝑅𝑖, 𝑅𝑗 , 𝐵𝑖, 𝐵𝑗) (7)

for any 𝑓 ∶ ℕ4 → ℝ. This definition is nearly identical to that
used by Vigna [15], with the only adjustments intended to allow
for weight functions that result in symmetric correlations7. For
brievety, we refer to the weight function described in equation 7
as 𝑤(𝑖, 𝑗).

2.4 Kendall’s 𝜏 with ties
For the initial definition of Kendall’s 𝜏 , two items could only be
concordant or discordant, meaning that two items may never oc-
cupy the same rank (be tied). Ties require special care when com-
puting correlation, and this requires answering questions with no
immediate answer, such as whether two rankings with all items
tied should be correlated. Variants 𝜏 𝑎 , 𝜏 𝑏 defined by Kendall [9], or
the lesser known 𝜏 𝑐 defined by Stuart [14], are possible solutions
for handling ties in the unweighted case, while Vigna has shown
6Kendall’s 𝜏 is only defined for conjoint rankings, meaning they contain the same ele-
ments, in a (possibly different) order. Since the two rankings have the same elements,
they also have the same length.
7The restrictions by Vigna allow for 𝜏𝑤 to be computed in 𝑂(𝑛 log 𝑛), which is not
necessary here since the algorithm we propose runs in 𝑂(𝑛2) anyway.
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how to compute the weighted 𝜏𝑤 with ties [15]. Details on their
computation can be found in appendix A.

Being relatively easy to compute and still providing somewhat
meaningful correlation values even in the presence of ties, the vari-
ants of Kendall’s 𝜏 have been widely used since. However, if these
variants were sufficient for all the interpretations of ties described
in Section 2.1, this paper would not exist. Consider two document
rankings by two IR systems:

𝑅 = < 𝑎, [𝑏, 𝑐, 𝑑], 𝑒 > (8)

𝐵 = < [𝑑, 𝑎, 𝑐], 𝑏, 𝑒 > (9)
We can calculate that 𝜏 𝑎(𝑅, 𝐵) = 5

10 = 0.5, 𝜏 𝑏(𝑅, 𝐵) = 5
7 ≈ 0.714,

and 𝜏 𝑐(𝑅, 𝐵) = 3
5 = 0.6. Given that 𝜏 𝑏 is most often the only im-

plementation available in software packages, the conclusion here
is likely to be that 𝑅 and 𝐵 are correlated. In Section 2.1 we argu-
mented why there is a case to be made for ties representing uncer-
tainty, and here we can see its effects:

𝑅1 = < 𝑎, 𝑏, 𝑑, 𝑐, 𝑒 >, 𝐵1 = < 𝑐, 𝑑, 𝑎, 𝑏, 𝑒 >, 𝜏 (𝑅1, 𝐵1) = 0

𝑅2 = < 𝑎, 𝑐, 𝑑, 𝑏, 𝑒 >, 𝐵2 = < 𝑎, 𝑐, 𝑑, 𝑏, 𝑒 >, 𝜏 (𝑅2, 𝐵2) = 1
Different permutations of the tied items can yield very different
correlations. Clearly the answer is not as simple as “𝑅 and 𝐵 are
correlated”, and some additional context is needed.

2.5 Uncertainty due to ties in Rank Biased
Overlap

The interpretation of ties as a product of uncertainty in the ranking
itself is not new. Corsi and Urbano [3] not only discussed this con-
cept in detail, but also proposed two algorithms, namely RBOlow

and RBOhigh for computing the optimal arbitration of ties such that
overlap is minimised or maximised respectively.

Both of these algorithms work by linearly constructing the de-
sired rankings, instead of computing the RBO value for different
permutations. Their algorithms work by looking at a prefix of the
rankings, checking if there are any ties at that depth, “fixing” items
in place (i.e. removing them from their tie-groups and assigning a
final position) such that overlap is minimised for RBOlow and max-
imised for RBOhigh, and then extending the prefix. The reason this
works is that in RBO any permutation of ties which maximises the
overlap (between the two rankings) as early as possible, also max-
imises the final RBO value. This property did not emerge acciden-
tally though. In the words of Webber [16]:

[𝑅𝐵𝑂] achieves this by using a convergent set ofweights
across successive prefixes, preventing the weight of
the unseen tail from dominating that of the observed
head.

While these algorithmsmay not be directly applicable, or adaptable,
for computing the min/max bounds for 𝜏, they could hint that a
greedy approach may work for 𝜏 as well.

2.6 Orders and rankings
So far we have referred to rankings as lists of items, with some items
being ranked higher or lower than others. For the rest of this paper,
we use the formalisations described in this section to prevent any
ambiguity.

In the definition of concordance (Definition 1) we already saw
the symbol (≺𝑥 ) for an order. We define what a ranking is based on
the definition of an order:

Definition 2 (Order). An order over some set 𝒮 is a transitive
binary relation8 over 𝒮 × 𝒮. A total order is one where the bi-
nary relation ≺ is defined between every pair of distinct elements:
∀𝑎, 𝑏 ∈ 𝒮 ∶ 𝑎 ≠ 𝑏 ⟺ (𝑎 ≺ 𝑏 ∨ 𝑏 ≺ 𝑎). A binary relation is
transitive if ∀𝑎, 𝑏, 𝑐 ∈ 𝒮 ∶ (𝑎 ≺ 𝑏) ∧ (𝑏 ≺ 𝑐) ⟹ (𝑎 ≺ 𝑐).
8See https://en.wikipedia.org/wiki/Homogeneous_relation

In this paper, we always refer to one of two special cases of or-
ders, namely strict total orders and partial total orders.

• Strict total order: a total order ≺ that is irreflexive (¬(𝑎 ≺
𝑎), i.e. no element is related to itself) and asymmetric (𝑎 ≺
𝑏 ⟺ ¬(𝑏 ≺ 𝑎))

• Partial total order: a partial total order ⪯ is some total or-
der that is not necessarily strict: i.e. it is possible that ∃𝑎, 𝑏 ∈
𝒮 such that 𝑎 ⪯ 𝑏 ∧ 𝑏 ⪯ 𝑎.

Definition 3 (Ranking). A ranking is an ordered set, or formally,
a 2-tuple 𝑅 = (𝒮, ≺𝑅) of a set of items 𝒮 and a total order ≺𝑅 over
the elements in 𝒮. Additionally:

• A ranking can contain ties, in which case its order is a partial
total order, and denoted by ⪯𝑅.

• Two rankings that have the same items are called conjoint.
Since the 𝜏 coefficients only operate on conjoint rankings,
we only ever consider this case, and refer to the (shared)
collection of items as the item set 𝒮 of the rankings.

3 Methods
There are numerous ways to approach the problem of designing an
algorithm for computing the bounds of 𝜏 uncertainty. First we dis-
cuss some notable ones, along with their limitations. Then in Sec-
tion 3.2 we describe the chosen problem representation, followed
by the tractability assumption in section 3.3.

3.1 Approaches
The space of all possible combinations of permutations is bounded
by 𝑂(𝑛!2), and thus a brute-force search is virtually impossible.
While a thought could be to try to narrow the search space, pos-
sibly taking inspiration from pruning in SAT solvers, no search al-
gorithm that finds all the optimal solutions can be used, because
the solution space is also of superpolynomial size9. This eliminates
a large class of search algorithms, and shows that any algorithm
that relies on finding all solutions will not run in polynomial time.

Instead of searching for the permutations that yield maximum
correlation, we can try constructing them such that they result in
optimal correlation.This is the approach used for computing RBOlow

and RBOhigh[3]. While those algorithms have not been proven opti-
mal, experimental results show that they likely are.Their approach
examines the items in the rankings depth-by-depth10 and greedily
tries to un-tie them such that overlap is maximised. While this step
by step (or depth-by-depth) construction could work for 𝜏 as well,
there is one significant issue that prevents us from pursuing this
approach directly: concordance does not depend on depth. As such,
there is no clear start for deriving an algorithm to maximise con-
cordance while examining the rankings depth-by-depth.

The final approach we considered is to represent the rankings
as graphs. This approach is favourable because concordance is ele-
gantly represented as a set intersection of the two graphs’ edge sets,
and the transitive property of rankings’ orders translates to acyclic-
ity in graphs. An initial approach was to reduce the problem to one
solvable in exponential time by the algorithms shown and formally
proven by Bodlaender et al. [1]. While a reduction from 𝑂(𝑛!2) to
𝑂(2𝑛) is a significant improvement, it is still prohibitively expen-
sive for real-world use on data such as the TREC rankings, where a
typical TREC run contains upwards of 1000 elements. Fortunately,
taking inspiration from the greedy algorithms for RBO, we will
now show how the graph representation allows us to derive an
algorithm for maximising concordance in just 𝑂(𝑛2).
9For the simplest case, consider two rankings with all elements tied. Pick any of 𝑛!
permutations for one ranking, and copy the order for the second ranking: those are 𝑛!
valid solutions for 𝜏𝑚𝑎𝑥 .
10Depth in RBO is the size of the prefix (of the full ranking) that we are currently
looking at. At depth 1, we only see the first element in each of the two rankings, at
depth 2 the first two elements, and so on.
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3.2 Representing ranks as graphs
Abstractly, a ranking is an ordered set of items (Definition 3)

𝑅 = ({𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, ⪯𝑅) (10)
A familiar representation of an ordered set is a list (in ascending
order):

𝑅 = < 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 > (11)
But we can equivalently represent it as a graph (Figure 1)

a b c d e

Figure 1: A graph representation of the ordered set 𝑅

In the above graph, a directed edge ⃖⃖ ⃖⃗𝑥𝑦 means that 𝑥 is immediately
before 𝑦 . A more useful representation would be to have edge ⃖⃖ ⃖⃗𝑥𝑦
mean that 𝑥 ≺𝑅 𝑦 , or that in a total ordering ≺𝑅, 𝑥 preceeds 𝑦 . In
that case, we draw one edge for every relation 𝑥 ≺𝑅 𝑦 as seen in
figure 2. Such a graph is a referred to as a tournament.

c

b
a

e

d

Figure 2: Graph representation of a total order

Definition 4 (Tournament). A tournament graph is a directed
graph 𝑇 = (𝑉 , 𝐸) with exactly one edge connecting every pair of
vertices. Furthermore, an acyclic tournament is a tournament with
no directed cycles in 𝐸, and a transitive tournament is a tournament
where:

∀𝑎, 𝑏, 𝑐 ∈ 𝑉 ∶ (⃖⃖ ⃗𝑎𝑏 ∈ 𝐸 ∧ ⃖⃖⃗𝑏𝑐 ∈ 𝐸) ⟹ ⃖⃖⃗𝑎𝑐 ∈ 𝐸.
The similarity between the ranking 𝑅 and the tournament graph

we constructed might lead us to suspect some stronger relation be-
tween the two concepts. We can actually show that this construc-
tion can be formalised through theorem 1.

Theorem 1. Transitive tournaments are equivalent to strict total
orders. See Appendix B for proof11.

Another observation is that there are no cycles in the constructed
graph. This is not a special propety of this example, but a property
of all transitive tournaments:

Theorem 2. Every acyclic tournament is a transitive tournament,
and every transitive tournament is acyclic. See Appendix B for
proof.

If we were to allow two edges between pairs of elements (break-
ing the definition of a tournament), we can allow the graph to rep-
resent ties: since two elements 𝑥 and 𝑦 being tied is equivalent to
(𝑥 ⪯𝑅 𝑦) ∧ (𝑦 ⪯𝑅 𝑥), we can represent it using a cycle. Suppose
our previous ranking 𝑅 had some tied elements:

𝑅 = < 𝑎, [𝑏, 𝑐, 𝑑], 𝑒 > (12)
in this example 𝑏, 𝑐 and 𝑑 are all tied with each other.The left graph
of Figure 3 shows the graph representation of 𝑅. We can see that ev-
ery tie in the ranking is represented by a unique cycle in the graph.
11Theorems 1 and 2 can be considered general knowledge, and are by no means a
novel contribution of this paper. Nevertheless, the proofs are ours, and we believe can
provide some useful intuition for the curious reader.

The goal of finding a way to break the ties is now represented as
breaking all cycles in the graph. But any arbitrary way to break
cycles will not do: for each of the two rankings, we need to pick
which edges to remove in such a way as to maximise (or minimise)
the 𝜏 correlation of the resulting rankings without ties.

3.3 Maximising concordance
At this point, assumptions are required to generalise to variants
of 𝜏 . Without additional constraints, maximising (or minimising)
∑{𝑖,𝑗} 𝑐(𝑖, 𝑗)𝑤(𝑖, 𝑗) is (a variation of) the Knapsack problem12, which
is known to not be solvable in polynomial time. Similarly to how
RBO maximises the final value bymaximising overlap, we canmax-
imise correlation by maximising concordance; which is the obvious
approach for the unweighted variant 𝜏 , or 𝜏𝑤 with 𝑤(𝑖, 𝑗) = 1. The
weighted variant is discussed more in section 4.5.

As seen in Kendall’s Rank Correlation Methods [8], the formula
of 𝜏 (equation 4) can be rearranged as the following equation:

𝜏 = 2𝐶
𝑛(𝑛 − 1)/2 − 1. (13)

The objective of minimising or maximising 𝜏 correlation is to min-
imise ormaximise concordance 𝐶 (the number of concordant pairs).
And here, 𝐶 is equal to the number of edges in the intersection of
the two graphs. To make this point more clear, suppose we have
a second ranking with ties 𝐵. The graphs of our two rankings are
shown in Figure 3.

𝑅 = < 𝑎, [𝑏, 𝑐, 𝑑], 𝑒 >
𝐵 = < 𝑐, [𝑑, 𝑎], 𝑒, 𝑏 >

c

b
a

e

d

c

b
a

e

d

Figure 3: Graph of rank 𝑅 (left), graph of rank 𝐵 (right).

If we look at the elements 𝑎 and 𝑏 for example, we see that in
both lists 𝑅 and 𝐵, 𝑎 appears before 𝑏: our definition of concor-
dance. In graph terms, 𝑎 being before 𝑏 means there must be an
edge from vertex 𝑎 to vertex 𝑏. If both graphs have this edge, then
the elements are concordant. In Figure 4 we have highlighted in
green and orange all the edges corresponding to concordant and
discordant pairs respectively.

Note that we never defined concordance between elements that
are in ties. This may seem like a problem, since we do have ties, but
in reality it does not matter, because what we really care about is
choosing the orders that will maximise or minimise concordance.

Let us further break down this problem: a pair 𝑥, 𝑦 can be neither
concordant nor discordant in two cases:

• one of the graphs has both ⃖⃖ ⃖⃗𝑥𝑦 and ⃖⃖ ⃖⃗𝑦𝑥 , while the other has
only ⃖⃖ ⃖⃗𝑥𝑦 (or ⃖⃖ ⃖⃗𝑦𝑥),

• or both graphs have both ⃖⃖ ⃖⃗𝑥𝑦 and ⃖⃖ ⃖⃗𝑦𝑥 .
In the first case, what if we look into the other graph to see whether
we should pick ⃖⃖ ⃖⃗𝑥𝑦 or ⃖⃖ ⃖⃗𝑦𝑥? And in the second case, is the decision
not arbitrary?

12https://en.wikipedia.org/wiki/Knapsack_problem
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Figure 4: Graph of rank 𝑅 (left), graph of rank 𝐵 (right),
each showing concordant pairs in green and discordant in or-
ange. Notice that there are pairs neither concordant nor dis-
cordant. Sometimes a choice between two edges is required
in one ranking, and sometimes in both. So the question is:
which order do we pick?

4 Construction from graph representation
From two rankings 𝑅 and 𝐵 containing ties, we want to break the
ties in such a way that we end up with two rankings without ties
𝑅′, 𝐵′, such that there is no other way to break the ties 𝑅″, 𝐵″
where 𝜏 (𝑅″, 𝐵″) < 𝜏(𝑅′, 𝐵′).

4.1 Starting point
Take the order representation of the two rankings,

𝑅 = (𝒮, ⪯𝑅), 𝐵 = (𝒮, ⪯𝐵) (14)

We first construct the graph representation of the partial orders
𝐺𝑅, 𝐺𝐵 , as described in Section 3.2. Algorithm 1 shows a pseudocode
for this procedure.

Algorithm 1 Constructing a graph of a partial total order
1: procedure PaRtialORdeRGRaph(ranking 𝑋 )
2: 𝐺 ← (ItemSet(𝑋), ∅)
3: for 𝑖 = 0 to Counttie-groups(𝑋) do
4: 𝑡𝑔1 ← 𝑖-th tie-group of 𝑋
5: for 𝑗 = 𝑖 to Counttie-groups(𝑋) do
6: 𝑡𝑔2 ← 𝑗-th tie-group of 𝑋
7: for (𝑥, 𝑦) ∈ 𝑡𝑔1 × 𝑡𝑔2 where 𝑥 ≠ 𝑦 do
8: 𝐺 ← (𝑉 , 𝐸 ∪ {⃖⃖ ⃖⃗𝑥𝑦})

4.2 What does the solution look like?
Weneed to remove enough edges from both graphs𝐺𝑅, 𝐺𝐵 to break
all cycles, but not so many that we lose the information about
which element is supposed to go where in 𝑅′, 𝐵′. The term for such
sets of edges is known as a feedback arc set:

Definition 5 (FeedbackArc Set). A feedback arc set of a graph𝐺 =
(𝑉 , 𝐸) is a set of edges 𝑆 ⊆ 𝐸 for which the graph 𝐺′ = (𝑉 , 𝐸 ∖ 𝑆)
is acyclic.

A minimum feedback arc set (MFAS) of graph 𝐺 = (𝑉 , 𝐸) is a
feedback arc set 𝐹 ⊂ 𝐸 such that for any feedback arc set 𝑆 of
graph 𝐺, |𝐹 | ≤ |𝑆| (𝐹 contains the fewest possible edges that break
all cycles).

There are two observations we can make here, that together let
us prove two more key theorems:

(1) We can make an observation about where these ties will be:
as we showed before, every tie is a cycle and every cycle is a
tie, so cycles are entirely contained within their tie-groups.
This means tie-groups are fully connected components of the
larger graph, and any edge in the feedback arc set will only
ever impact a single component.

(2) The edges we need to discard are a feedback arc set. We can
show that if and only if the resulting graph is a tournament,

then we picked the smallest possible number of edges to re-
move (and our FAS is a MFAS).

Now we will show that for each connected component, we need to
discard exactly half of the edges.

Theorem 3. Every minimum feedback arc set 𝐹 of a complete di-
rected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices will contain exactly
(𝑛2) = 𝑛(𝑛−1)

2 edges.

PRoof. In a fully connected graph 𝐺 there are ∑𝑛
𝑘=2(𝑘 − 1)!(𝑛𝑘)

cycles, but only 2(𝑛2) edges, so clearly (for 𝑛 > 2) we do not need to
spend an edge for every cycle–except for 2-cycles. No edge that is
part of a 2-cycle will be part of any other 2-cycle. Since a minimum
feedback arc set must break every cycle, we know that it will need
to contain at least one of the two edges of every 2-cycle, and hence
we have a lower bound:

|𝐹 | ≥ (𝑛2) (15)

We will now find an upper bound to |𝐹 |. Pick any strict total order
𝑟 of the vertices 𝑉 : if we call 𝐸𝑟 the set of edges that correspond to
the order 𝑟 , then:

∀𝑥, 𝑦 ∈ 𝑉 ∶ 𝑥 ≺𝑟 𝑦 ⟺ ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸𝑟 (16)

But what edges are in 𝐸𝑟 ? Since a strict total order does not support
reflexivity, 𝐸𝑟 will always contain exactly one edge for every pair
of elements, or (𝑛2) edges. This is exactly half of the edges in a com-
plete directed graph, so we are left with a set of edges 𝐸 ∖ 𝐸𝑟 = 𝐸 ̄𝑟 .
This set, we will call 𝐸 ̄𝑟 , has the interesting property that it is also
a strict total order (which we will aptly refer to as ̄𝑟 ):

∀𝑥, 𝑦 ∈ 𝑉 ∶ ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸 ̄𝑟 ⟺ ⃖⃖⃖⃗𝑦𝑥 ∈ 𝐸𝑟 (17)

≡ 𝑥 ≺ ̄𝑟 𝑦 ⟺ 𝑦 ≺𝑟 𝑥 (18)

What this means is that we can use either 𝐸𝑟 of 𝐸 ̄𝑟 as a feedback
arc set, because we know from Theorems 1 and 2 that a strict total
order is equivalent to an acyclic tournament. We have shown that
|𝐸𝑟 | = |𝐸 ̄𝑟 | = (𝑛2), so anyminimum feedback arc set can contain at

most (𝑛2) edges:

|𝐹 | ≤ (𝑛2) (19)

From Equation 15 and Equation 19 we get |𝐹 | = (𝑛2). ■

Theorem 4. For every minimum feedback arc set 𝐹 of a complete
directed graph (CDG) 𝐺 = (𝑉 , 𝐸), the graph 𝐺 = (𝑉 , 𝐸 ∖ 𝐹) repre-
sents a strict total order 𝑟 (meaning that for every edge ⃖⃖ ⃖⃗𝑥𝑦 between
𝑥, 𝑦 ∈ 𝑉 , ⃖⃖ ⃖⃗𝑥𝑦 ∈ (𝐸 ∖ 𝐹) ⟺ 𝑥 <𝑟 𝑦 )

PRoof. We saw in the proof of Theorem 3 that every feedback
arc set will need to remove one edge from every 2-cycle, leaving
exactly one edge between every pair of nodes. This makes the re-
sulting graph 𝑇 = (𝑉 , 𝐸 ∖ 𝐹) a tournament. More specifically, an
acyclic tournament, since the feedback arc set must break all cycles,
meaning the edges removed from the 2-cycles must also break all 3-
cycles (𝐴 → 𝐵 → 𝐶 → 𝐴), 4-cycles, etc. From Theorem 2 we know
that 𝑇 is transitive, and with Theorem 1 we show that 𝑇 represents
a strict total order.
Therefore, for any MFAS 𝐹 , a CDG with all the edges in 𝐹 removed
will represent a strict total order. ■

Because the final graph must be a tournament, the set of edges we
need to remove are a minimum feedback arc set.
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4.3 Construct final solution
It is both conceptually and computationally easier to think about
whether adding an edge to an already acyclic graphwill create a cy-
cle, than whether removing an edge will eventually make it acyclic.
Thus, we begin by constructing two empty graphs 𝐺′𝑅 = 𝐺′𝐵 =
(𝒮, ∅). Instead of directly finding feedback arc sets, we will solve
the equivalent problem of picking which edges to keep. But which
edges should we pick, in order to ensure maximum concordance?
In the following explanation, the maximisation case is shown, and
in Section 4.6 we explain how to invert the algorithm.

Theorem 5. Picking an edge that increases concordance without cre-
ating a cycle is always optimal. More precisely, when breaking some
tie [𝑥, 𝑦] in one ranking, if the other ranking graph contains edge
⃖⃖ ⃖⃗𝑥𝑦 then picking the order 𝑥 ≺𝑅 𝑦 for the first ranking will always
yield at least as good a solution as picking 𝑦 ≺𝑅 𝑥 (as long as the
solution containing ⃖⃖ ⃖⃗𝑥𝑦 is valid, i.e. an acyclic tournament).

We try to maximise |𝐸′𝑅 ∩ 𝐸′𝐵 | by adding as many edges from the
intersection |𝐸𝑅 ∩ 𝐸𝐵 |:

• for every 𝑒 ∈ 𝐸𝐵
– if we can add this edge to 𝐺′𝑅, meaning 𝑒 ∈ 𝐸𝑅, and that

adding this edge does not violate the acyclic property of
𝐺′𝑅, then we add it.

• repeat for the other graph, adding edges from 𝐸𝑅 to 𝐺′𝐵

4.4 Final step
Aswe proved inTheorem 2, the two acyclic tournaments𝐺′𝑅, 𝐺′𝐵 are
transitive, and by Theorem 1 we now have two strict total orders,
and that is our answer. In order to implement Theorem 1, any sort-
ing algorithm with a lambda for comparing based on the graphs
can be used, shown in the full pseudocode in Algorithm 2.

Algorithm 2 (Full) Graph algorithm for 𝜏𝑚𝑎𝑥 of rankings with ties
𝑅, 𝐵 with item set 𝒮
1: 𝐺𝑅 ∶ (𝒮, 𝐸𝑅) ← PaRtialORdeRGRaph(𝑅)
2: 𝐺′𝑅 ∶ (𝒮, 𝐸′𝑅) ← (𝒮, ∅)
3: 𝐺𝐵 ∶ (𝒮, 𝐸𝐵) ← PaRtialORdeRGRaph(𝐵)
4: 𝐺′𝐵 ∶ (𝒮, 𝐸′𝐵) ← (𝒮, ∅)
5: for edge ⃖⃖ ⃖⃗𝑥𝑦 ∈ Sorted(𝐸𝐵) do
6: if ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐺𝑅 and 𝐺 = (𝒮, 𝐸𝑅 ∪ {⃖⃖ ⃖⃗𝑥𝑦}) is acyclic then
7: 𝐺′𝑅 ← (𝒮, 𝐸′𝑅 ∪ {⃖⃖ ⃖⃗𝑥𝑦})
8: for edge ⃖⃖ ⃖⃗𝑥𝑦 ∈ Sorted(𝐸𝑅) do
9: if ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐺𝐵 and 𝐺 = (𝒮, 𝐸𝐵 ∪ {⃖⃖ ⃖⃗𝑥𝑦}) is acyclic then

10: 𝐺′𝐵 ← (𝒮, 𝐸′𝐵 ∪ {⃖⃖ ⃖⃗𝑥𝑦})
11: ▷ Construct the final rankings by converting the acyclic tour-

naments 𝐺′𝑅, 𝐺′𝐵 to strict total orders ◁
12: 𝑅′, 𝐵′ ← empty rankings of length 𝑙 = |𝒮|
13: InseRt(elements of 𝑅, 𝐵 not in tie-groups, 𝑅′, 𝐵′)
14: for tie-group 𝑡𝑔 in 𝑅 do
15: SoRt(𝑡𝑔) by 𝜆𝑥𝑦 ∶ 𝑥 < 𝑦 ⟺ ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸′𝑅
16: InseRt(𝑡𝑔sorted, 𝑅′)
17: for tie-group 𝑡𝑔 in 𝐵 do
18: SoRt(𝑡𝑔) by 𝜆𝑥𝑦 ∶ 𝑥 < 𝑦 ⟺ ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸′𝐵
19: InseRt(𝑡𝑔sorted, 𝐵′)
20: return 𝑅′, 𝐵′

4.5 Edge sorting
What happens if both 𝐺𝑅 and 𝐺𝐵 contain both ⃖⃖ ⃖⃗𝑥𝑦 and ⃖⃖ ⃖⃗𝑦𝑥? Either
one of the edges could be added, and as long as we make the same
choice in both rankings, the two items 𝑥 and 𝑦 will be concordant.
In the algorithm above, only one of the two will be added, because
when we try to add the second it will create a 2-cycle, and thus
be skipped. The choice of ⃖⃖ ⃖⃗𝑥𝑦 vs ⃖⃖ ⃖⃗𝑦𝑥 depends on which one we see
first. The call to Sort the edges (seen in Algorithm 2) serves exactly

this purpose: if we always see the edges in the same order, we will
always pick the same one from a pair {⃖⃖ ⃖⃗𝑥𝑦 , ⃖⃖ ⃖⃗𝑦𝑥}.

What sorting should we use? For (unweighted) Kendall’s 𝜏 it
does not matter, however for 𝜏𝑤 it does. Intuitively, 𝜏𝑤 gives dif-
ferent concordance weights to different pairs of items. We always
greedily try to make a pair concordant when we see it, so we can
sort the edges by descending weight.

An experimental validation of this idea showed that not all weight
functions allowAlgorithm 2 to yield optimal correlation. Concretely,
Algorithm 2 is optimal under the assumption that all solutions that
maximise 𝜏 alsomaximise concordance. Someweight functions abide
by this constraint, two notably useful examples are 𝑤(𝑖, 𝑗) = 1
(unweighted Kendall’s 𝜏 ), and 𝑤(𝑖, 𝑗) = 1/max(𝑅𝑖, 𝑅𝑗) (𝜏𝐴𝑃 by Yil-
maz et al.)13. Others violate this constraint, most notably 𝑤(𝑖, 𝑗) =
1/((𝑅𝑖 + 1)(𝑅𝑗 + 1)) (Vigna’s 𝜏ℎ).

This is a fundamental limitation of the assumption we used to
solve the problem in polynomial time: that maximising concor-
dance also maximises correlation. We do not reject the possibil-
ity that the optimisation problem is tractable even in the general
case, but we do not prove so in this paper. Nevertheless, even for
weights where reaching maximum correlation requires less than
maximum concordance, we can examine the error by using a brute-
force solver to find the optimal solution. Figure 5 shows a compar-
ison between the optimal solution and the one computed by Algo-
rithm 2. The results seem to suggest that even though maximum
(or minimum) correlation is not achieved by the permutation of
ties that maximise (or minimise) concordance, the two solutions
tend to be close.

Figure 5: Heat maps comparing the true 𝜏𝑚𝑖𝑛
ℎ and 𝜏𝑚𝑎𝑥

ℎ , as
computed by a brute-force solver, to the ones found by Al-
gorithm 2, on 50 000 ranking pairs from a synthetic dataset.

4.6 Minimisation case
Minimising concorance is equivalent to maximising discordance.
In our graphs, this means that for any edge ⃖⃖ ⃖⃗𝑥𝑦 in one graph, we
ideally want the edge ⃖⃖ ⃖⃗𝑦𝑥 in the other graph. Moreover, when the
choice between ⃖⃖ ⃖⃗𝑥𝑦 and ⃖⃖ ⃖⃗𝑦𝑥 is arbitrary, we should always pick dis-
cordant pairs. The construction of 𝐺′𝑅, 𝐺′𝐵 is shown in Algorithm 3.

Algorithm 3 Edge sorting for minimising concordance

5: for edge ⃖⃖ ⃖⃗𝑥𝑦 ∈ Sorted(𝐸𝐵) do
6: if ⃖⃖ ⃖⃗𝑦𝑥 ∈ 𝐺𝑅 and 𝐺 = (𝒮, 𝐸𝑅 ∪ {⃖⃖ ⃖⃗𝑦𝑥}) is acyclic then
7: 𝐺′𝑅 ← (𝒮, 𝐸′𝑅 ∪ {⃖⃖ ⃖⃗𝑦𝑥})
8: for edge ⃖⃖ ⃖⃗𝑥𝑦 ∈ Inverse(Sorted(𝐸𝑅)) do
9: if ⃖⃖ ⃖⃗𝑦𝑥 ∈ 𝐺𝐵 and 𝐺 = (𝒮, 𝐸𝐵 ∪ {⃖⃖ ⃖⃗𝑦𝑥}) is acyclic then

10: 𝐺′𝐵 ← (𝒮, 𝐸′𝐵 ∪ {⃖⃖ ⃖⃗𝑦𝑥})

13Since we have not formalised the restriction on 𝑤 , we compared the bounds found
by Algorithm 2 to the brute-force solver on a synthetic dataset of 250k ranking pairs,
with a number of permutations of at most 250 million. On 𝜏𝐴𝑃 , none of the test cases
showed any difference between the computed and reference solutions.
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4.7 Implementation
An implementation of this algorithm, generalised for 𝜏𝑤 , can be
found on https://github.com/andtsa/bsc_thesis.

4.8 Proof of optimality
We have proven the equivalence of the problem of finding the the
permutation of ties that minimises (or maximises) 𝜏 , and the prob-
lem ofminimising (ormaximising) the set intersection of two acyclic
tournament subgraphs of the partial-order-graph representations.
The only missing piece in the optimality of this algorithm is Theo-
rem 5: picking an edge that increases concordance without creating
a cycle is always optimal. This is fundamentaly a greedy algorithm,
and we will now prove that this greedy algorithm can produce a
solution at least as good as any optimal solution.

PRoof. We can prove this with an exchange argument. Start
with the two partial total order graphs

𝐺𝑅 = (𝒮, 𝐸𝑅), 𝐺𝐵 = (𝒮, 𝐸𝐵)
(from section 4.1) and the two acyclic graphs

𝐺′𝑅 = (𝒮, 𝐸′𝑅), 𝐺′𝐵 = (𝒮, 𝐸′𝐵)
(as explained in Section 4.3). Let 𝐺∗𝑅 = (𝒮, 𝐸∗) be any acyclic tour-
nament subgraph of 𝐺𝑅 such that

|𝐸∗ ∩ 𝐸𝐵 | = max |𝐸′ ∩ 𝐸𝐵 | over all acyclic 𝐸′ ⊆ 𝐸𝑅
Meaning 𝐺∗ is an optimal solution.

Suppose the greedy algorithm is considering an edge 𝑒 = ⃖⃖ ⃖⃗𝑥𝑦 ∈
𝐸𝐵 ∩ 𝐸𝑅, where adding 𝑒 to 𝐸′𝑅 does not create a cycle.
Case 1. 𝑒 ∈ 𝐸∗ Trivial, the optimal solution already contains 𝑒
Case 2. 𝑒 ∉ 𝐸∗ We will show that including ⃖⃖ ⃖⃗𝑥𝑦 in 𝐸′𝑅 yields a
solution no worse than 𝐸∗.

We know that 𝐺∗ is an acyclic and thus transitive tournament,
and since ⃖⃖ ⃖⃗𝑥𝑦 ∉ 𝐸∗, then ⃖⃖ ⃖⃗𝑦𝑥 ∈ 𝐸∗. Since ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸𝐵 , including ⃖⃖ ⃖⃗𝑥𝑦
in either solution 𝐸′𝑅 or 𝐸∗ will increase concordance by 1: either
because ⃖⃖ ⃖⃗𝑦𝑥 ∉ 𝐸𝐵 , which means in the final orders 𝑅′, 𝐵′, after
including ⃖⃖ ⃖⃗𝑥𝑦 , 𝑥 ≺𝑅′ 𝑦 and 𝑥 ≺𝐵′ 𝑦 . Otherwise, if both ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸𝐵 and
⃖⃖ ⃖⃗𝑦𝑥 ∈ 𝐸𝐵 , concordance will increase because the construction of 𝐺′𝐵
is guaranteed to make the same choice as the greedy algorithm is
making now (see Section 4.5 for explanation).

Now we need to prove that we can impose the greedy choice on
the optimal solution, without losing optimality or validity in the so-
lution. 𝐺∗ being a transitive tournament also means that reversing
⃖⃖ ⃖⃗𝑦𝑥 (into ⃖⃖ ⃖⃗𝑥𝑦 ) in 𝐸∗ cannot create a cycle, unless there was already
a directed path 𝑦 ⇝ 𝑥 . If (𝑦 ⇝ 𝑥) ∉ 𝐸∗ then we are finished,
since we have shown that a greedy solution is valid and at least as
good as an optimal one (an optimal solution can be converted to
the greedy solution without decreasing concordance). Suppose we
have the other case, where (𝑦 ⇝ 𝑥) ∈ 𝐸∗, and adding 𝑒 to 𝐸∗∖{⃖⃖ ⃖⃗𝑦𝑥}
closes a cycle. We call 𝐶 the directed cycle 𝑥 → 𝑦 → ... → 𝑥 . We
know that 𝐶 cannot lie entirely inside 𝐸′𝑅 (because we only add
edges to 𝐸′𝑅 if they do not create a cycle), so there is a non-empty
set of edges 𝐹 such that:

𝐹 ⊆ 𝐶, 𝐹 ⊆ (𝐸∗ ∖ {⃖⃖ ⃖⃗𝑦𝑥} ∪ {⃖⃖ ⃖⃗𝑥𝑦}), 𝐹 ∩ 𝐸′𝑅 = ∅
Because 𝐺∗ is a transitive tournament, 𝒮 has a unique topological
sort according to 𝐸∗. We can always pick an edge 𝑓 ∈ 𝐹 that con-
nects two topologically adjacent vertices, and reverse it, without
creating a cycle. If ⃖⃖ ⃖⃗𝑦𝑥 ∉ 𝐸𝐵 then we can flip 𝑓 , losing 1 concor-
dance, and maintaining an optimal solution, since we gained 1 by
adding ⃖⃖ ⃖⃗𝑥𝑦 . If ⃖⃖ ⃖⃗𝑦𝑥 ∈ 𝐸𝐵 , then either ⃖⃖ ⃖⃗𝑥𝑦 ∈ 𝐸′𝐵 or ⃖⃖ ⃖⃗𝑦𝑥 ∈ 𝐸′𝐵 . For the
second case to happen, during construction of 𝐸′𝐵 , adding ⃖⃖ ⃖⃗𝑥𝑦 would
have caused a cycle (since we know we tried ⃖⃖ ⃖⃗𝑥𝑦 before ⃖⃖ ⃖⃗𝑦𝑥). This is
impossible, since we used the same prefix of edges in constructing
𝐸′𝐵 as our initial construction of 𝐸′𝑅 used (the sorting is the same),
and we already know that ⃖⃖ ⃖⃗𝑥𝑦 does not close a cycle in 𝐸′𝑅.

Regardless, in any combination of the above cases, we have that
𝐸∗′ = 𝐸∗ ∖ {⃖⃖ ⃖⃗𝑦𝑥, 𝑓 } ∪ {⃖⃖ ⃖⃗𝑥𝑦 , ̄𝑓 } is a valid solution, with concordance

no lower than 𝐸∗. Since at every step of the greedy construction we
are able to get to a solution at least as good as an optimal solution,
the greedy algorithm for selecting edges is optimal.

■

5 Quantifying uncertainty
For rankings with ties, in addition to the 𝜏 or 𝜏𝑤 correlation (using
the 𝜏 𝑎 or 𝜏 𝑏 variants described by Kendall [9], or 𝜏𝑤 with ties from
Vigna [15]) we can now compute the highest and lowest possible
correlation values, in all scenarios where the ranking algorithms
made a decision. As we described in Section 2, these two values
together show the uncertainty that the correlation value does not
show on its own.

Our hypothesis, largely motivated by the similar study on RBO
[3], is that in many real-world rankings, ties contribute an uncer-
tainty large enough that it cannot be overlooked. Logically, the null
hypothesis is that for most real-world rankings, the uncertainty is
close enough to zero (meaning the bounds are tight around one of
the 𝜏 variants) that we can confidently assume it is negligible.

To support or contradict our hypothesis, we examined the com-
puted 𝜏 , 𝜏𝑚𝑎𝑥 , 𝜏𝑚𝑖𝑛 values, across two datasets of rankings: one
dataset we synthesised ourselves, and the dataset of TREC Web
ad-hoc systems, from years 2010 to 2014. The intention with the
first dataset is to examine rankings in the general case, without
any domain-specific features, while the latter dataset represents
real-world data that contains ties caused by uncertainty. The Text
REtrieval Conference (TREC) datasets can be retrieved from https:
//trec.nist.gov/data.html. In Section 5.1wewill explain howwe gen-
erated the synthetic data, and present the bounds calculations on
it. In Section 5.2 we will perform the same analysis on the TREC
datasets.

Figure 6: Heat maps comparing the values of 𝜏 variants 𝜏 𝑎 , 𝜏 𝑏
to the upper and lower bounds for the same rankings. Plots
were created by computing the correlation and bounds on
250 000 ranking pairs from the synthetic dataset.

5.1 Synthetic data
As already briefly stated, the goal of the synthetic data generation is
to create a diverse set of rankings, whose randomness is not bound
by any properties of the items they are ranking.This gives a basis to
claim that the findings will be applicable to rankings in any domain
of science.
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To generate the rankingswe used themethod described by Corsi
andUrbano [4] (see https://github.com/julian-urbano/sigir2024-rbo)
for simulating ranking pairs given a target 𝜏 value, lenghts, and the
fraction of items that should be in ties. 250 000 rankings were sim-
ulated along a uniform distribution for frac_ties ([0, 1]), with a
uniform distribution ([−1, 1]) for 𝜏 , and with lengths in [3, 150].

In Figure 6 a comparison of the 𝜏 𝑎 and 𝜏 𝑏 values against the 𝜏𝑚𝑖𝑛
and 𝜏𝑚𝑎𝑥 values for the same ranking pairs is shown. If ties where
to have little impact on the possible values for 𝜏 , we would expect
the bounds 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 to be centred around the main diagonal,
indicating that they differ little from the 𝜏 𝑎 or 𝜏 𝑏 approximations.
This is clearly not the case, which supports our hypothesis that
neither 𝜏 𝑎 nor 𝜏 𝑏 alone capture the uncertainty induces by ties.

Additionally, we can examine the cases most prevalent in IR Re-
search: those with 𝜏 ≥ 0.914. From the initial set of 250 000 cases,
the distributions for both 𝜏 𝑎 and 𝜏 𝑏 are visualised in Figure 7.While
the results of 𝜏 𝑎 seem to show that it gives more accurate estimates
than 𝜏 𝑏 , they are very unlikely to be seen in practice, since many
major statistical libraries (SciPy [11], (base) R [10], Pandas–which
delegates to SciPy) only implement the 𝜏 𝑏 variant for Kendall’s 𝜏 .
These results indicate that along the uniform sampling of rankings,
7242
9100 ≈ 81.5% of use cases of 𝜏 𝑏 yield potentially false positive re-
sults. Finally, we investigatedwhether therewas any unifying char-
acteristic among all the rankings with low uncertainty (𝜏𝑚𝑖𝑛 being
very close to 𝜏 𝑎 or 𝜏 𝑏). Other than not containing ties at all, we did
not identify any such characteristic, which we deem to be a strong
argument for the descriptive importance of 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 .

total 𝜏min < 0.9 𝜏min < 0.85 𝜏min < 0.8
𝜏 𝑎 ≥ 0.9 4413 2737 775 0
𝜏 𝑏 ≥ 0.9 9100 7424 5163 3238

Figure 7: Histogram of 𝜏min density, for synthetic data with
𝜏 𝑎 ≥ 0.9 or 𝜏 𝑏 ≥ 0.9 (top). Count of data points at various 𝜏min

thresholds (bottom). If using solely 𝜏 𝑏 to draw conclusions
about correlation, as much as 7424

9100 ≈ 81.5% of ranking paris
yield potentially false positive results.

5.2 TREC data
The comparison of document rankings is better suited to similarity
measures for non-conjoint rankings such as RBO [16]. In the Text
Retrieval Conference, after each system is evaluated on a certain
corpus of documents, the systems themselves are ranked based on
different metrics, and on their performance across different topics.
These rankings are conjoint, and as such constitute a real use case
for 𝜏 correlation. We put together a dataset with such rankings, ex-
tracted from the results of the 2010-2014 editions of the conference.
In Figure 8 we can see the same behaviour as in Figure 6, with the

140.9 being a common lower threshold of correlation, from which positive results can
be drawn.

spread away from the centre even more pronounced, since rank-
ings without (or with very few) ties did not occur in the data.

Figure 8: Heat maps comparing the values of 𝜏 variants 𝜏 𝑎 ,𝜏 𝑏
to the upper and lower bounds for the same rankings. Plots
were created by computing the correlation and bounds on
7361 ranking pairs from the TREC dataset.

6 Responsible research
As with any scientific work, it is paramount that the claims made
in this paper can be verified by the reader. We will now go over the
steps we took to ensure this is the case.

In addition to the analysis of the algorithm here, we have pub-
lished a git repository15 containing all the source code used for
this research. This includes implementations of the described al-
gorithms, as well as all the tooling and instructions necessary to
reproduce the findings. The TREC datasets were provided by the
thesis supervisor Julián Urbano, but can be requested from NIST
on their website, with access provided to anyone who intends to
use the datasets solely for research.

Since we have shown the statistical relevance of these bounds,
any future research that relies on Kendall’s 𝜏 (or variants such as
𝜏𝐴𝑃 by Yilmaz et al.) ought to take this research into consideration,
to ensure any decisions based on correlation values are made with
knowledge of the potential error due to ties.We argue that not only
does this research have no discernible ethical downsides, but that
including the calculations of 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 in any future work can
only aid in limiting the possibility of false positive results.

7 Future work
We suggest future work could explore the missing constraints on
the weight function 𝑤 , as well as an algorithm (or extension of the
algorithms shown here) that can always arrive at the optimal solu-
tion, for all 𝑤 of 𝜏𝑤 . Additionally, the proposed algorithm could be
adapted to produce a distribution of correlation values across the
permutation of ties, providing a more informative description of
the effect of ties. Finally, future work could explore the possibility
of introducing the algorithms proposed here to popular software
packages used for scientific computing. This would not only en-
courage the use of the 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 bounds, but also facilitate their
computation by the broader scientific community.
15https://github.com/andtsa/bsc_thesis
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8 Conclusion
In this research we examined the effect on ties on 𝜏𝑤 correlation, in
the case where ties represent an uncertainty in the ranking. Having
found that the uncertainty can often be high enough to influence
or even alter decisions made based on the raw correlation value,
given from one of the variants 𝜏 𝑎 or 𝜏 𝑏 , we introduced the uncer-
tainty variants 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 . We proposed an algorithm for com-
puting 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 in quadratic time, and presented a proof of
its correctness, under certain restrictions on the weight function.

By pairing each point estimate of Kendall’s 𝜏 with its correspond-
ing [𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 ] interval, researchers can gain a clearer understand-
ing of the true strength and reliability of rank correlations under
ties. Our empirical results, across both synthetic and TREC datasets,
demonstrate that these intervals are not merely theoretical arti-
facts, but practical tools that can enable more informed decisions.
We anticipate that embedding such uncertainty quantification di-
rectly into statistics software packages can encourage widespread
adoption, and more importantly, encourage researchers to ques-
tion how the tools and metrics they are using reflect the properties
of the rankings in their field.
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Appendices
A Variants of Kendall’s 𝜏
a) For the variant 𝜏 𝑎 , simply define 𝑠𝑔𝑛(0) = 0, and compute using

the same formula. This leads to the probabilistic interpretation
of taking the average correlation across all permutations. As soon
as two items are tied, the numerator of equation 4 can never
be equal to 𝑛(𝑛 − 1)/2, which means that if there are ties, 𝜏 𝑎
can never be equal to 1 or -1. 𝜏 𝑏 amends this by adjusting the
denominator based on the number of ties.

b) For the variant 𝜏 𝑏 , define 𝑠𝑔𝑛(0) = 0, and additionally change
the denominator of equation 4 to

√∑{𝑖,𝑗} |𝑠𝑔𝑛(𝑟𝑖 − 𝑟𝑗)| + |𝑠𝑔𝑛(𝑏𝑖 − 𝑏𝑗)|
2

c) For the variant 𝜏 𝑐 , let 𝑛0 = 𝑛(𝑛 − 1)/2, 𝑛𝑐 = #concordant pairs,
𝑛𝑑 = #discordant pairs, and let 𝑟 = #distinct 𝑟𝑖, 𝑐 = #distinct 𝑏𝑖,
𝑚 = min(𝑟 , 𝑐). Then Stuart–Kendall’s 𝜏 𝑐 is defined by

𝜏 𝑐 = 2 (𝑛𝑐 − 𝑛𝑑 )
𝑛2 𝑚−1

𝑚
= 𝜏 𝑎 × 𝑛 − 1

𝑛
𝑚

𝑚 − 1 , (20)

so that even when 𝑟 ≠ 𝑐 the range of 𝜏 𝑐 is still [−1, 1].
d) Vigna showed that we can compute 𝜏𝑤 in the presence of ties

[15] as:

𝜏𝑤 =
∑{𝑥,𝑦} 𝑐𝑅,𝐵(𝑥, 𝑦)𝑤(𝑥, 𝑦)

√∑{𝑥,𝑦} |𝑐𝑅,𝑅(𝑥, 𝑦)𝑤(𝑥, 𝑦)|√∑{𝑥,𝑦} |𝑐𝐵,𝐵(𝑥, 𝑦)𝑤(𝑥, 𝑦)|
(21)

B Remaining Proofs
Theorems 1 and 2 can be considered general knowledge, and are
by no means a novel contribution of this paper. Nevertheless, the
proofs are ours, and we believe can provide some useful intuition
for the curious reader. More related information can be found on
https://en.wikipedia.org/wiki/Tournament_(graph_theory) as well
as “Introduction to lattices and order” by Davey and Priestley [5].
Theorem 1. Transitive tournaments are equivalent to strict total
orders

PRoof. For a transitive tournament 𝑇 , we can fulfill all the prop-
erties of a strict total order (Definition 2) as follows:

(1) Irreflexive: ¬(𝑎 < 𝑎): no self-loops, follows from our defini-
tion of tournaments (Definition 4).

(2) Asymmetric: 𝑎 < 𝑏 ⟹ ¬(𝑏 < 𝑎): no 2-cycles, since 𝑇 is a
tournament, there can only be one edge connecting 𝑎 and 𝑏.

(3) Transitive: (𝑎 < 𝑏 ∧ 𝑏 < 𝑐) ⟹ 𝑎 < 𝑐: follows from the fact
that 𝑇 is a transitive tournament.

(4) Total: 𝑎 ≠ 𝑏 ⟹ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎): follows from definition
of tournament.

To prove equivalence, the opposite must also hold: a strict total
order must satisfy the definition of a transitive tournament. We
can prove this by construction: if we have a STO ≺𝑠 on set 𝒳, we
construct 𝑇 = (𝒳, 𝐸) where

𝐸 = {⃖⃖ ⃖⃗𝑥𝑦 |𝑥, 𝑦 ∈ 𝒳, 𝑥 <𝑠 𝑦}. (22)
Since ≺𝑠 is total, 𝐸 contains an edge between every pair of vertices,
which in turn implies:

(∀𝑎, 𝑏, 𝑐 ∈ 𝒳 ∶ 𝑎 ≺𝑠 𝑏 ∧ 𝑏 ≺𝑠 𝑐 ⟹ 𝑎 ≺𝑠 𝑐)
⟹ (∀𝑎, 𝑏, 𝑐 ∈ 𝒳 ∶ ⃖⃖ ⃗𝑎𝑏, ⃖⃖ ⃗𝑏𝑐 ∈ 𝐸 ⟹ ⃖⃖⃗𝑎𝑐 ∈ 𝐸)

And thus we have that (≺𝑠 ,𝒳) is a transitive tournament. ■

Theorem 2. Every acyclic tournament is a transitive tourna-
ment, and every transitive tournament is acyclic.

PRoof. We will prove both directions by contradiction. For the
first direction (an acyclic tournament is transitive), suppose we
have an acyclic tournament 𝑇 = (𝑉 , 𝐸), and that 𝑇 is not transi-
tive, meaning

∃𝑎, 𝑏, 𝑐 ∈ 𝑇 ∶ ⃖⃖ ⃗𝑎𝑏 ∈ 𝐸 ∧ ⃖⃖⃗𝑏𝑐 ∈ 𝐸 ∧ ⃖⃖⃗𝑎𝑐 ∉ 𝐸 (23)
From Definition 4 we know that there is always exactly one edge
(of the two possible) between every two vertices, Equation 23 states
that ⃖⃖ ⃗𝑎𝑐 ∉ 𝐸, which impliy that ⃖⃖ ⃗𝑐𝑎 ∈ 𝐸. This means we have a cycle
{⃖⃖ ⃗𝑎𝑏, ⃖⃖ ⃗𝑏𝑐, ⃖⃖ ⃗𝑐𝑎}, which is a contradiction.

The second case can be trivially proven in the same way as the
first, and is left as an exercise for the reader. ■
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