J Electron Test (2010) 26:453-464
DOI 10.1007/s10836-010-5163-x

Bandwidth Analysis of Functional Interconnects

Used as Test Access Mechanism

Ardy van den Berg - Pengwei Ren -
Erik Jan Marinissen - Georgi Gaydadjiev -
Kees Goossens

Received: 1 December 2008 / Accepted: 14 June 2010 / Published online: 10 July 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Test data travels through a System on Chip
(SOC) from the chip pins to the Core-Under-Test
(CUT) and vice versa via a Test Access Mechanism
(TAM). Conventionally, a TAM is implemented using
dedicated communication infrastructure. However,
also existing functional interconnect, such as a bus or
Network on Chip (NOC), can be reused as TAM;
this will reduce the overall design effort and associ-
ated silicon area. For a given core, its test set, and
maximal bandwidth that the functional interconnect
can offer between test equipment and core-under-test,
our approach instantiates a test wrapper for the core-
under-test such that the test length is minimized. Un-
fortunately, it is unavoidable that along with the test
data also unused (idle) bits are transported. This paper
presents a holistic TAM bandwidth under-utilization
analysis when functional interconnect is considered for

Responsible Editor: C. Metra

This paper is an extended version of a paper published at the
IEEE European Test Symposium (ETS), May 25-29, 2008
in Verbania, Italy [28].

A.van den Berg - P. Ren - G. Gaydadjiev - K. Goossens
Department of Computer Engineering,

Delft University of Technology,

Mekelweg 4, 2628CD Dellft,

The Netherlands

G. Gaydadjiev
e-mail: g.n.gaydadjiev@ewi.tudelft.nl

E. J. Marinissen - K. Goossens
Corporate Innovation & Technology,
NXP Semiconductors,

High Tech Campus 37,

5656 AE Eindhoven,

The Netherlands

test data transportation. We classify the idle bits into
four types that refer to the root-cause of bandwidth
under-utilization and pinpoint design improvement
opportunities. Experimental results show an average
bandwidth utilization of 80%, while the remaining 20%
is consumed by the idle bits.

Keywords System on Chip - Test Access Mechanism -
Functional interconnect « Bus - Network on Chip -
Bandwidth

1 Introduction

Rapid improvements in the semiconductor industry
allow the design and manufacturing of increasingly
complex chips, often referred to as Systems on Chip

Present Address:

A.van den Berg

Essent, Arnhem, The Netherlands
e-mail: ardy@mailberg.nl

Present Address:

P. Ren

ASML, Veldhoven, The Netherlands
e-mail: pengwei.ren@asml.nl

Present Address:

E. J. Marinissen ()

IMEC, Leuven, Belgium

e-mail: erik.jan.marinissen@imec.be

Present Address:

K. Goossens

Department of Electrical Engineering,

Eindhoven University of Technology, Potentiaal/PT g.34,
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
e-mail: k.g.w.goossens@tue.nl

@ Springer

454

J Electron Test (2010) 26:453-464

(SOC). SOCs are composed of multiple, often hetero-
geneous cores. Each core is tested individually using
on-chip isolation hardware called a wrapper. Stimuli
and responses travel through the chip to and from
the embedded core using a Test Access Mechanism
(TAM) [29]. Conventionally, dedicated wires are used
to implement the TAM.

Recently, it has been proposed to reuse existing
functional interconnects, such as a bus or a NOC [8, 12],
as TAM [1-3, 5, 6, 9, 14-16, 18, 19, 23]. The main
advantage of this approach is the fact that it makes a
dedicated TAM superfluous, leading to a reduction in
design complexity and silicon area. The approach re-
quires modifications to the conventional test wrapper,
which now no longer transports test data via dedicated
TAM ports, such as the WPI and WPO ports of IEEE
Std. 1500 [7], but via reused functional ports instead.

The length of an SOC test dictates the required
vector storage (in bits) on the automatic test equipment
(ATE) and the time (in seconds) each SOC spends
on the ATE. A reduction of the test length directly
translates into savings in the test cost. In this paper
we present an analysis of bandwidth utilization of
functional interconnect serving as TAM. We identify
four types of idle bits that cause under-utilization of
the available bandwidth between ATE and core under
test, and hence contribute to a longer-than-strictly-
necessary test length. Some of these idle bits are un-
avoidable for a given TAM and core design, but can be
eliminated or reduced by (small) design modifications,
which are pinpointed by our method.

The remainder of this paper is organized as follows.
Section 2 gives an overview of related prior work.
Section 3 discusses various aspects and choices we made
when reusing functional busses and NOCs as TAM.
Section 4 describes our wrapper design approach that
enables reusing functional interconnect as TAM. We
define four types of idle bits that help us to explain
bandwidth under-utilization in Section 5, and describe
how to reduce the amount of idle bits in Section 6.
Experimental results are provided and discussed in
Section 7, while Section 8 concludes this paper.

2 Prior Work

Examples of previous work that propose to handle
on-chip transport of test data via a reused functional
bus are [3, 5, 9, 14, 15, 18, 19]. Most of these ap-
proaches are based on functional tests, of which the
detection qualities are hard to assess, guarantee, and
improve, and for which failure diagnosis is nearly im-
possible. Feige et al. [9] does apply structural scan-

@ Springer

based tests via the ARM bus, but in a rather cum-
bersome way. Nahvi and Ivanov [23] were the first to
propose to transport test data via a packet-switching
network; they do not quantify the associated silicon
area costs, but as they propose a dedicated test net-
work, these costs must be high. Cota et al. [6] were the
first to propose to reuse a functional NOC as TAM.
Their approach requires knowledge of many NOC
implementation details, such as the network topology,
number of routers, etc. Amory et al. [2] propose a
wrapper design which enables any existing functional
interconnect, including bus and NOC, to be reused
as TAM, provided the interconnect offers guaranteed
throughput and constant latency [12, 24]. They describe
how the streaming nature of scan testing (i.e., once
started, it should complete uninterrupted) is matched
to the possibly bursty or packetized traffic over bus
or NOC. Next to the main benefit, viz. the reuse of
an existing communication infrastructure, there is a
side benefit, as their wrapper design proposal slightly
reduces the test length compared to a conventional
dedicated TAM.

Analysis of TAM bandwidth utilization for modular
SOC testing was first published by Goel and Marinissen
[10, 20]. For dedicated TAMs, they classify under-
utilized bandwidth into three types of idle bits. Their
first type of idle bits is caused by different completion
times of the various TAMs in an SOC. If a TAM
is not of Pareto-Optimal width for a particular core
that is assigned to it, this causes the second type of
idle bits. The third type of idle bits is due to imbal-
anced wrapper chain lengths per core. Hussin et al. [16]
identified another, fourth type of idle bits, specific to
test wrappers that reuse functional interconnect. Their
paper also proposes a modification to the wrapper
design of [2], that eliminates these idle bits, but adds
significant (but in the paper unquantified) area costs.
As a continuation of that work in [17] two heuristically
devised wrapper designs (under maximum bandwidth
and test application time constraints) were presented
that slightly reduce the test time by 7.8%.

This paper presents a holistic test bandwidth analysis
for systems where existing functional interconnect, such
as a bus or NOC, is reused as TAM. First we start
by analyzing the streaming-data requirements from
scan tests and test equipment, and how they can be
mapped onto existing functional interconnect. Subse-
quently, we present a precisely quantified analysis of
the idle bits that occur in such systems, and that cause
under-utilization of the available bandwidth between
ATE and core under test, hence contributing to a long-
than-strictly-necessary test length. Our study is based
on an optimized version of the test wrapper design

J Electron Test (2010) 26:453-464

455

dedicated TAM test wrapper

scan chain J
scan chain

CuT

functional interconnect

ATE

interconnect
network

SOC

(a)

test wrapper

*t scan chain J

CuUT

functional interconnect)

ATE

interconnect
network

SOC

(b)

Fig. 1 Test set-ups in which (a) a conventional dedicated TAM is used, and (b) the existing functional interconnect is reused as TAM

proposed in [2]; without loss of generality we focus on
testing a single core in isolation. Our paper demon-
strates that test length reductions can be achieved
through design modifications that are suggested by our
analysis.

3 Functional Interconnect as TAM

In conventional modular SOC test approaches, dedi-
cated TAMs are used to transport test data from the
ATE to the core-under-test and vice versa. Reusing
existing functional interconnect as TAM avoids dedi-
cated TAMs and their associated design and area costs.
Figure 1 shows, at a conceptual level, the difference be-
tween the two approaches. The new approach requires
a customized wrapper design modified in comparison to
conventional wrappers [2]: it lacks the dedicated-TAM
input and output of conventional wrappers, but instead
is equipped with ports that “speak” the communication
protocol of the overall system functional interconnect
and convert periodically-arriving functional data into
streaming scan data and vice versa.

Although different in the details of exact signal
names and semantics, functional port protocols as AXI
[4] and DTL [25] typically have a similar structure,
which consists of three signal groups: command, write,
and read. We distinguish between initiator and target
ports. An initiator port sends out the command and
hence initiates the communication; a target port re-
ceives the command. A write port communicates data
in the same direction as the command (i.e., from initia-
tor to target), while a read port communicates data in
the opposite direction; read-write ports can communi-
cate data in both directions.

Figure 2 illustrates the above for DTL’s Memory-
Mapped Block-Data (MMBD) profile which is the
most complex profile of the DTL protocol [25]. The
signal names indicate the partitioning of the port sig-

nals into three groups; command, write, and read. All
three signal groups have their own dedicated valid and
accept signals that regulate the handshake process for
data transfer. In addition, the command group has
three more signals, that indicate address, read/write
direction, and block size.

To transport test data over the functional intercon-
nect to a core, that core needs to have at least one port
that can serve as a test stimulus input and at least one
port that can serve as a test response output. The test
stimulus input role can be enacted by an initiator read
or read-write port, or a target write or read-write port.
Similary, a test response output role can be performed
by an initiator write or read-write port, or by a target
read or read-write port.

In our approach, we have selected to restrict our-
selves to work with two disjoint ports per core, one
serving as test stimulus input port and the other one
serving as test response output port. In principle, it
would be possible to unite these two functions in a sin-
gle bi-directional (read-write) port. We have avoided
this, in order to allow simultaneous operation of scan-
in and scan-out operations during test. Also, in general,

protocol
communication

Core 1

dtl_cmd_valid

Core 2

dtl_cmd_valid

dtl_cmd_accept

command dtl_cmd_addr(32] ——]p t1_cmd_addr [32] command
group group

dtl_cmd_read

dtl_cmd_accept

dtl_cmd_read

dtl_cmd_blocksize [6] dtl_cmd_blocksize[6]

dtl_wr_valid dtl_wr_valid
dtl_wr_accept } write

write
group

dtl_wr_accept

group

—

dtl_wr_data[32] “ dtl_wr_data([32]
dtl_rd_valid dtl_rd_valid
read dtl_rd_accept dtl_rd_accept read
group group
dtl_rd_data[32] < dtl_rd_datal[32]
DTL.MMBD.I.RW DTL.MMBD.T.RW

Fig. 2 DTL Memory-Mapped Block-Data (MMBD) functional
port protocol

@ Springer

456

J Electron Test (2010) 26:453-464

Fig. 3 NOC, network
interface shells (NIS) and
kernels (NIK)

protocol

transactions streaming data

it would be possible to use multiple input or output
ports for test purposes in cases such ports are available;
this would possibly increase the available accumula-
tive bandwidth for test data transport. Again, we have
decided not to do this, in order to perform our study
in isolation from issues related to the scheduling and
synchronization of multiple simultaneous test streams
through the functional interconnect.

It is conceivable that test data would not only
be transported through the normal data lines (in
Fig. 2: dtl_wr_data[32] and dtl_rd data[32]),
but also via wires of the command group (e.g.,
dt1l_cmd_addr(32]). We have decided not to do so,
and restrict ourselves to test data transport via the
normal data words only, in order to use the functional
interconnect in its normal mode of operation only.

Note that our choices imply a significant restriction
in bandwidth available for test data transport purposes.
The example DTL MMBD ports in Fig. 2 consist of
109 wires each, of which only 32 are effectively used
for (test) data transport. This was done to present a
fair comparison of our proposal instead of reporting the
maximal improvements possible.

When the functional interconnect is implemented as
a bus or a crossbar, the protocol used between the
interconnect and the core is also used within the inter-
connect. As a result, the bandwidth reserved between
the cores is equal to the bandwidth used inside the
interconnect. When NOCs are used, this is no longer
the case. Figure 3 shows that for an NOC, transactions
between cores and interconnect are transported over
the network as packets [26]. Network interfaces (NI)
packetize and depacketize transactions. NIs are often
split in a NI Shell (NIS) and a NI Kernel (NIK). NI
shells convert the multiple signal groups that make
up a transaction to a single signal group (streaming
data), which is a serialized transaction. A transaction
is made up of a request message (command and write-
data signal groups) and a response message (read-
data signal group). The links inside the NOC are

@ Springer

network wrapper
messages / network network messages / protocol
packets packets streaming data transactions

likely to be of different width, and run at a higher
speed than those between cores and NOC. NI shells
also perform this conversion. The NI kernels take
care of (de)packetization, i.e., the conversion between
messages and packets. Figure 4 illustrates the message
and packet formats of the Athereal NOC [12] used
here. Although most cores communicate through dis-
tributed shared memory and use MMBD, some use
streaming-data communication and are connected di-
rectly to the NI kernel. In the latter case, messages are
not used but the raw data of the core is packetized
directly.

In our approach, we aim at decoupling the design
and test generation flows. To the NOC, it makes no
difference whether it is used in mission mode transport-
ing regular data between cores, or in test mode acting
as TAM transporting test stimuli and responses. In both
cases, the NOC is in its normal operation mode and
configured to transport data between a set of cores,
as specified in the application use cases (a) and (b),
respectively, of Fig. 5. Similarly, core-level tests are
generated independently from the question how they
will be transported to the ATE: directly through chip
pins, via a conventional TAM, via a reused functional
bus, or via a reused functional NOC.

rd, block_size, ... header

address payload
write data payload
write data payload

write data

payload

empty
(a) (b)

Fig. 4 Examples of Athereal NOC (a) write message and (b)
packet

J Electron Test (2010) 26:453-464 457
(a) application WI r
core port (b) test appe
interfaces use cases test schedule
| e |
scanchain1
- - terminals Module terminals
RTL synthesis RTL synthesis
ATPG ATPG
test insertion test insertion
—— TAM TAM
terminals |] terminals
4 L

wrapper
generation

compilation

simulation

Fig. 5 NOC and core-wrapper design flow

In order to transparently reuse a NOC as TAM, we
want to abstract from the NOC data transportation and
implementation details, and instead be able to use a
NOC as a set of “virtual wires” between two ports. This
requires a guaranteed bandwidth and latency between
cores. In our case, this is achieved through time-division
multiplexing (TDM) in the NI kernel [12, 13]. The NOC
hardware (RTL of the topology of routers and NIs, etc.)
and NOC software (the C program to configure the
NOC at run time) are generated by a dedicated NOC
design flow, as shown in Fig. 5 [11]. The hardware and
software together can be co-simulated; additionally the
performance can be verified analytically. The RTL of
the NOC is entered in a conventional synthesis and test
flow. Cores are synthesized, have scan chains inserted,
and are connected to the functional interconnect which
acts as a TAM, in conjunction with the wrapper de-
scribed in the next section. More information on the
above topic is available in [27].

4 Test Wrapper

Figure 6 shows a simplified example of a wrapper
which allows the reuse of the functional interconnect
as TAM [2]. As in conventional test wrappers, all core
terminals are equipped with a wrapper cell, and wrap-
per chains are formed by concatenating wrapper cells
and core-internal scan chains. However, ports to con-
nect to dedicated TAM wires, common in conventional
wrappers, are absent. The functional core terminals are

Fig. 6 Simplified example wrapper

partitioned into the protocol ports that are selected as
TAM terminals, and all other non-TAM terminals. Test
stimuli periodically arrive over the functional intercon-
nect that serves as TAM; in our simplified example
in Fig. 6 with word width wi, = 4. The four bits are
divided over wc = 2 wrapper chains, and hence each
wrapper chain receives two bits every period of py, = 2
clock cycles. The test stimuli are shifted into the core-
under-test through the wrapper chains. The last word
that arrives over the TAM terminals does not need to
be shifted in, but can be applied directly to the core-
under-test. After the actual testing launch and capture
takes place, test responses are transported away from
the core in a similar fashion.

Figure 7a shows the typical ordering of elements in a
wrapper chain for a conventional wrapper, which uses a
dedicated TAM. As defined in [21], input wrapper cells
are followed by internal scan chains, which are followed
by output wrapper cells. Such a wrapper chain receives
one stimulus bit every clock cycle; subsequently it takes
sin scan cycles to fill the wrapper chain with stimuli.
Similarly, it takes soy scan cycles to offload the re-
sponses from the wrapper chain. Figure 7b shows the
typical wrapper chain ordering for our new wrapper
design. Also here the ordering is: input wrapper cells,
followed by internal scan chains, followed by output
wrapper cells. However, at the extreme input side,
those input wrapper cells are positioned, which period-
ically every piy clock cycles receive a new parallel word
with stimulus bits. Similarly, at the extreme output side,
the output wrapper cells are positioned, which period-
ically every pou clock cycles send out a new parallel
word with response bits.

Let Bj, be the bandwidth over the functional inter-
connect from ATE to core-under-test, and let By, be
the bandwidth in the reverse direction. The maximum
number of wrapper chains wc that can be supplied
through the functional interconnect with streaming

@ Springer

458

J Electron Test (2010) 26:453-464

Fig. 7 Typical wrapper chain
for (a) a wrapper with a

dedicated TAM, and (b) a
wrapper which reuses
functional interconnect

as TAM (a)

~N

G~

n | F(responses)
7

scan test data (i.e., one bit per clock cycle per wrapper
chain) is given by wec = LMJ, where fis the test
frequency of the core-under-test. Stimulus bits arrive
periodically in words of wi, bits and are divided over
the wc wrapper chains. This process is repeated every
Pin cycles, with pi, = | %2 |. The responses are handled

wce

likewise, with poy = | 2o |.

wce

5 Idle Bits Classification

Ideally, every clock cycle every wire of the TAM trans-
ports either a test stimulus bit or a test response bit.
However, it is often unavoidable that some non-useful
bits are transported together with the useful test data.
These non-useful bits are referred to as idle bits. They
may increase the test data volume to be stored on the
ATE and consume part of the available bandwidth for
test data transport. Idle bits occur in (1) traditional
monolithic scan testing, (2) conventional modular SOC
testing with dedicated TAMSs, as well as in (3) a modu-
lar SOC test approach that reuses functional intercon-
nect as TAM. This section describes and classifies four
types of idle bits that arise in the latter case.

e Type-1: different scan chain lengths within a core
[10, 20];

e Type-2: scan-in (scan-out) length is not an exact
multiple of the input (output) period;

e Type-3: maximum scan-in and scan-out lengths are
different;

e Type-4: the word width of the functional intercon-
nect is not an exact multiple of the number of
wrapper chains [2, 16].

In the sections below we discuss each type in more
detail.

@ Springer

S
out

5.1 Type-1 Idle Bits

Shifting bits into the wrapper chains completes when
the wrapper chain i with the longest scan-in length
sin,; 1s filled with test stimuli. Other, shorter wrapper
chains require less time to shift in valid stimuli and
receive therefore dummy bits before their valid test
stimulus bits are sent. A similar situation exists at the
test response side. These dummy bits are Type-1 idle
bits. (Note: Type-1 idle bits were introduced in [10] as
Type-3idle bits.) The bigger the difference between the
average scan-in (-out) length and the maximum scan-
in (-out) length, the more Type-1 idle bits there are.
Figure 8 shows two wrapper chains of unequal length
and the corresponding Type-1 idle bits for this example.
There are one or more tests for a core, where for each
test i, pat; patterns exist to test the core. Type-1 idle bits,
if present, occur in every pattern of every test. Hence:

tests wc

ibly =YY ((Sin = sinj) - par;) (5.1)
i=1 j=1
tests wc

ib cl)ut = Z Z ((Sout — Sout,) 'Pall-) (5.2)

i=1 j=1

where Siy, = max|<y<yc(Sin.x) and

Sout = maXlngwc(sout,x)-

responses

Type-1

Fig. 8 The cause of Type-1 idle bits: multiple wrapper chains
with unequal scan-in and/or scan-out length

J Electron Test (2010) 26:453-464

459

2

2

Fig. 9 Type-2 idle bits at the input side, caused by the period at
which stimuli arrive

5.2 Type-2 Idle Bits

Stimuli are loaded into the wrapper periodically, in
order to keep the chain shifting continuously. The shift-
in length of the longest wrapper chain Si, divided by the
period pji, determines the number of words needed to
fill the wrapper chain with stimuli. If the shift-in length
is not a multiple of the period, one or more idle bits
are shifted in; they are referred to as Type-2 idle bits.
For example: S, = 5 and pi, = 2 results in one idle bit
of Type-2. This example is visualized in Fig. 9. These
type of idle bits occur at the output side for responses
as well.

Type-2 idle bits, if present, occur in every pattern of
every test for all wrapper chains.

tests

Z (Sin — Sin) - pat; - we

i=1

ib?%, (5.3)

tests

72 /
lbout_Z(out —

i=1

Sout) - pat; - we (5.4)

v M ’ S.
where S| = [p—i‘;—l -pinand S, = (ﬁ—l * Pout

Fig. 10 Example of Type-3

5.3 Type-3 Idle Bits

In scan testing, it is common practice to overlap the
shift-out of the responses of test pattern n with the shift-
in of the stimuli for the next pattern n + 1. This process
repeats for all patterns of the test set; only when the
responses of the last test pattern are shifted out, no new
stimuli are shifted in again. We also use this so-called
pipelined scan in our approach, as it can save up to 50%
of the test application time.

In conventional scan testing, scan-in and scan-out
lengths are equal, i.e., i = S, . This is not necessarily
true for wrapper-based modular testing, in which §;
can be different from S, due to different numbers of
input wrapper cells and output wrapper cells. For ex-
ample, if S, < i, shifting out responses takes fewer
clock cycles than shifting in stimuli; the idle bits shifted
out after the valid responses are referred to as Type-
3idle bits. If S < S, Type-3 idle bits are shifted in
before the valid stimuli.

Figure 10 shows for a small example with only two
test patterns the idle bits of Type-1, -2, and -3. 5} = 12,
while S, =8, and hence S, < §; . Four Type-3 idle
bits are injected at the response side for each wrapper
chain and for each test pattern except the last pattern.

Type-3 idle bits are quantified as follows:

tests

ibj, =Y max (0, Sy, — Si,) - (pat; — 1) -we (5.5)
i=1

tests

ibl =Y max (0, S}, — Sy, - (pat; — 1) - we
izl

out =

(5.6)

5.4 Type-4 1dle Bits

The number of wrapper chains wc should be as large
as possible, to make maximum use of the available

Pattern applied

idle bits: shifting in stimuli - Scanin
does not take the same time A — -
as shifting out responses —
5 ! | [2]2]2]1]1] ~
E | 8| [2]2]2 Sin=9 |5
2B g [2]2]2]1] Pin=4 N
n
] = [1[1[1[1]2][2][3][3][3]3] [&]
o © Sout=6 2|2[3|3[3|3]| |3 |
Q = = =
@ ©Pout=4 [1]1]2]2[3][3]3]3] [& |
' NS ~ A v J
Scan out Type-3

@ Springer

460

J Electron Test (2010) 26:453-464

TAM bandwidth and hence reduce the corresponding
test application time: wc = {MJ With period

Pin = | %2 | a parallel word of wi, bits arrives, which is
divided over the wc wrapper chains. Due to rounding
differences, for every pattern in each such parallel word
except for the last one, (wi, mod wc) bits are wasted;
we refer to them as Type-4 idle bits. A similar situation
occurs at the test response side.

Note that these Type-4 idle bits arrive in dedicated
wrapper cells, which in [2] were referred to as RSDI
and RSDO cells. In [2, 16], these RSDI and RSDO
wrapper cells are placed in the middle of the wrapper
chains. In contrast, we put them at the extremes of
the wrapper chains, such that they do not unnecessarily
contribute to the scan lengths, and hence we obtain a
(minor) test length improvement over [2, 16].

An example of Type-4 idle bits is shown in Fig. 11.
An existing functional input port that serves as TAM
has functional word width w;, = 32. Given the band-

~
'
&
=
TAM M Module
Port ™
32-bit ™
—J ——
L
u —
L
LT
-
-
)
Type-4
] yp!
«

Fig. 11 Type-4 idle bits: data going to or coming from selected
data cells which are not in a wrapper chain (dark cells)

@ Springer

widths, in this example we could afford to make
wc = 10 wrapper chains, and hence words are delivered
with a period of pi, = 3 clock cycles. The 32 input bits
are divided over 10 wrapper chains and hence we have
(win mod wc) = 2 RSDI wrapper cells; in Fig. 11 these
wrapper cells are shaded dark. For all TAM words,
except for the last word of each pattern, these cells
carry Type-4 idle bits.

Type-4 idle bits are present for all patterns of all
tests. They occur for every word delivered, apart for the
last word of each pattern on the stimulus side and the
first word of each pattern on the response side.

tests
S, S
ib;‘n = Z ([w—‘ —1) - pat; - (win mod wc)
i=1

Pin
(5.7)
tests
S8
ib?)llt = Z <’7w—‘ — l) .pal‘l . (wOLII mod wc)
i=1 Pout
(5.8)
6 Idle Bit Reduction

Idle bits increase the test length and the number of
bits stored on the ATE. To increase the bandwidth
utilization, we need to reduce the number of idle bits.
For each type of idle bits, we discuss how to reduce
them.

Type-1 idle bits are minimal for wrapper chains
with balanced scan-in/out lengths. We employ the Com-
BINE algorithm [21] for this purpose. Obviously, cores
with hard scan chains limit the possibilities to balance
the scan-in/out lengths; typically, better results can be
achieved if the scan chains in a core are soft, such that
they can be re-designed and adapted to wrapper and
TAM design.

There are no Type-2 idle bits if (S;; mod piy) =0
and (Sout mod poyr) = 0. pin and poye are determined
by the number of wrapper chains, the available band-
width, and the test frequency. Si, and Sy are prefer-
ably as low as possible to reduce the test length. No
solution is available yet to reduce Type-2 idle bits.

Type-3 idle bits are caused by a difference in §; and
S.ut- These idle bits can be reduced by creating wrapper
chains with either multiple inputs or multiple outputs,
in order to reduce the largest of the two variables. In
regular scan testing this does not pay off; however,
we postulate that this can pay off for wrapper-based
modular SOC testing.

‘When a functional interconnect is reused as a TAM,
it may introduce Type-4 idle bits, depending on the

J Electron Test (2010) 26:453-464 461

fTabzlg 1 Baﬂ‘}fwlildt?;g?(};/ﬁs SOC Core Total idle T1 T2 T3 T4 Bandwidth
oo e e 22] bits (bit) (%) (%) (%) (%) __efficiency (%)
21023 1 24260 1 2 7 0 90
1023 2 15540 11 0 0 11 78
21023 3 8721 19 2 0 6 73
21023 4 34304 9 3 0 3 84
21023 10 9222 9 6 0 19 66
1023 11 1168 4 8 8 0 80
1023 12 784 5 9 0 0 86
21023 14 204640 8 0 31 0 61
p93791 1 312067 5 0 0 0 95
p93791 5 330858 5 12 0 5 79
p93791 6 409186 1 0 0 2 96
p93791 10 194260 4 3 25 0 67
p93791 11 91256 5 0 0 21 74
p93791 13 195552 5 0 0 0 95
p93791 14 195552 5 0 0 0 95
p93791 17 284472 3 0 0 6 91
p93791 19 700350 2 0 0 25 74
p93791 23 221364 6 0 0 0 94
p93791 29 795500 26 0 0 0 74
p93791 2 511816 4 3 25 0 68
a586710 1 35937835 7 0 0 18 74
as586710 2 297445750 7 0 12 2 78
a586710 3 1284242480 5 4 16 3 72
a586710 4 19200840 4 10 0 3 83
a586710 5 1584410 1 0 0 0 99
a586710 7 329282348 3 7 29 0 62
Average - 75855174 6 3 6 5 80

functional data width. They can be prevented by 7 Experimental Results

buffering all stimuli and responses. Hussin et al. [16]

propose a solution in which load and shift registers =~ We have automated the wrapper design to generate
are used to buffer. This solution requires a significant, =~ wrappers for cores using the approach of Amory et al.
but in their paper unquantified, amount of extra silicon [2] and calculated the bandwidth under-utilization for
area. each core due to idle bits. The wrapper generator uses

Fig. 12 Bandwidth 100
under-utilization due %

to idle bits : :
80 P BT (%) OT12(%) BT13 (%) BT4(%)

70 ' '

60

50

40

30

?Z!"ihﬂl !I..ll I!"!U

2 3 4101 12141 5 6 1011131417192329321 23 457
91023 | p93971 1 a586710

Bandwidth Utilization (%)

o

Module name

@ Springer

462

J Electron Test (2010) 26:453-464

as many ports as possible and tries to generate a wrap-
per design with minimal test length.

As input we use the SOCs gl1023, p93791, and
a586710 of the ITC’02 SOC Test Benchmark Set [22].
For each core we assume for every 100 inputs and 100
outputs one input and one output port with a word
width w = 32 using the AXI protocol [4]; cores with a
big amount of i/o-terminals will therefore have a bigger
bandwidth compared to cores with a small amount of
i/o-terminals. The test frequency fiess = 100 MHz. To-
day’s functional interconnects can work at a frequency
of 500 MHz [12]. A 32-bit port delivers 32-bit per
cycle minus overhead, which is assumed to be 20%.
The ITC02 benchmarks are five years old, and,
scaling with Moore’s Law, we assume their func-
tional interconnects were working at 1/8 of today’s
bandwidth. These assumptions result in b = 32 - 500 -
0.8 - 3 = 1,600 Mbit/s per port.

For 26 cores of the ITC02 benchmarks, we have
calculated the bandwidth under-utilization due to idle
bits. Table 1 lists the results. For each core, the absolute
number of idle bits has been calculated, as well as
the relative percentages of Type-1, -2, -3, and -4 idle
bits. The last column of Table 1 lists the bandwidth
efficiency, which is reduced due to the idle bits. For
example, Core 1 of SOC p93791 requires 312067 idle
bits to transport all stimuli and responses to and from
the core. These idle bits reduce the useful bandwidth
from 100% to 95%. The 5% reduction was due to Type-
1 idle bits. Average results over all 26 cores are given in
the bottom row of the table.

Figure 12 shows a graphical representation of the
results of Table 1. On average 80% of the available
bandwidth is used for actual stimuli and responses. 20%
is idle bits and causes under-utilization of bandwidth.
The idle bits are more or less equally spread over all
four categories.

8 Conclusion

Reusing the existing functional interconnect as a TAM
cancels the need for a dedicated TAM. In this paper
we analyzed the bandwidth utilization for wrappers
which reuse the existing functional interconnect as a
TAM. We defined four types of idle bits to explain the
under-utilization of the available bandwidth between
the ATE and core under test. Since reduction of idle
bits improves the bandwidth utilization and minimizes
the required ATE vector storage, several solutions to
reduce idle bits were discussed.

We automatically generated wrappers for 26 cores of
the ITC’02 SOC Test Benchmarks and calculated the

@ Springer

bandwidth utilization by useful test data and idle bits.
Idle bits can use up to 39% of the available bandwidth,
with an average of 20%. All four types of idle bits were
found to contribute to the bandwidth under-utilization.
Using the proposed bandwidth under-utilization
analysis, wrappers which reuse the existing functional
interconnect can be efficiently modified to reduce the
overall test length of cores. This, along with the silicon
area savings obtained by omitting the conventional
dedicated TAM infrastructure, make the proposed
method suitable for a wide range of modern SOCs.

Acknowledgments We thank NXP colleagues Martijn Coenen
and Andreas Hansson for help with ZAthereal NOC architec-
ture and design flow, and NXP colleagues Jo Gunnes, Mario
Konijnenburg, and Ronald de Leeuw van Weenen for help with
CAT test tools and flow. The work in this project was partly
supported by the MEDEA+ 2A702 project NanoTest.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Amory AM, Cota E, Lubaszewski M, Moraes FG (2004)
Reducing test time with processor reuse in Network-on-Chip
based systems. In: Proceedings Brazilian symposium on in-
tegrated circuits and system design (SBCCI). Pernambuco,
Brazil, pp 111-116
2. Amory AM, Goossens K, Marinissen EJ, Lubaszewski M,
Moraes FG (2007) Wrapper design for the reuse of a bus,
Network-on-Chip, or other functional interconnect as Test
Access Mechanism. IET Comput Dig Tech 1(3):197-206
3. Amory AM, Oliveira LA, Moraes FG (2003) Software-based
test for non-programmable cores in bus-based system-on-
chip architectures. In: Proceedings IFIP international confer-
ence on very large scale integration (VLSI-SOC). Darmstadt,
Germany, pp 174-179

. ARM (2003) AMBA AXI protocol specification

. Cota E, Carro L, Lubaszewski M (2004) Reusing an on-chip
network for the test of core-based systems. ACM Transact
Des Automat Electron Syst 9(4):471-499

6. Cota E, Kreutz M, Zeferino CA, Carro L, Lubaszewski M,
Susin A (2003) The impact of NoC reuse on the testing of
core-based systems. In: Proceedings IEEE VLSI test sympo-
sium (VTS). Napa, CA, USA, pp 128-133

7. DaSilva F (ed) (2005) IEEE Std 1500™-2005. IEEE stan-
dard testability method for embedded core-based integrated
circuits. IEEE, New York

8. De Micheli G, Benini L (eds) (2006) Networks on chips: tech-
nology and tools. The Morgan Kaufmann series in systems on
silicon. Morgan Kaufmann

9. Feige C, ten Pierick J, Wouters C, Tangelder R, Kerkhoff HG
(1999) Integration of the scan-test method into an architec-
ture specific core-test approach. J Electron Test: Theory and
Applications 14(1-2):125-131

W A

J Electron Test (2010) 26:453-464

463

10. Goel SK, Marinissen EJ (2003) SOC test architecture design
for efficient utilization of test bandwidth. ACM Transact Des
Automat Electron Syst 8(4):399-429

11. Goossens K, Dielissen J, Gangwal OP, Pestana SG,
Radulescu A, Rijpkema E (2005) A design flow for
application-specific networks on chip with guaranteed per-
formance to accelerate SOC design and verification. In: Pro-
ceedings design, automation, and test in Europe (DATE),
Munich, Germany, pp 1182-1187

12. Goossens K, Dielissen J, Radulescu A (2005) The ZAthereal
network on chip: concepts, architectures, and implementa-
tions. IEEE Des Test Comput 22(5):414-421

13. Hansson A, Goossens K, Radulescu A (2007) A unified ap-
proach to mapping and routing on a network on chip for both
best-effort and guaranteed service traffic. VLSI Des 2007:
Atrticle ID 68432. Hindawi Publishing Corporation, 16 pp

14. Harrod P (1999) Testing reusable IP—a case study. In: Pro-
ceedings IEEE international test conference (ITC). Atlantic
City, NJ, USA, pp 493-498

15. Huang J-R, Iyer MK, Cheng K-T (2001) A self-test method-
ology for IP cores in bus-based programmable SOCs. In: Pro-
ceedings IEEE VLSI test symposium (VTS). Marina del Rey,
CA, USA, pp 198-203

16. Hussin FA, Yoneda T, Fujiwara H (2007) Optimization of
NoC wrapper design under bandwidth and test time con-
straints. In: Proceedings IEEE European test symposium
(ETS). Freiburg, Germany, pp 35-42

17. Hussin FA, Yoneda T, Fujiwara H (2008) NoC-compatible
wrapper design and optimization under channel-bandwidth
and test-time constraints. IEICE Trans Inf Syst E91-D(7):
2008-2017

18. Hwang S, Abraham JA (2001) Reuse of addressable sys-
tem bus for SOC testing. In: Proceedings IEEE interna-
tional ASIC/SOC conference, Arlington, VA, USA, pp 215-
219

19. Liu C, Link Z, Pradhan DK (2006) Reuse-based test ac-
cess and integrated test scheduling for Network-on-Chip.
In: Proceedings IEEE European test symposium (ETS),
Southampton, UK, pp 303-308

20. Marinissen EJ, Goel SK (2002) Analysis of test band-
width utilization in test bus and TestRail architectures for
SOCs. In: Proceedings IEEE design and diagnostics of elec-
tronic circuits and systems workshop (DDECS). Brno, Czech
Republic, pp 52-60

21. Marinissen EJ, Goel SK, Lousberg M (2000) Wrapper design
for embedded core test. In: Proceedings IEEE international
test conference (ITC). Atlantic City, NJ, USA, pp 911-920

22. Marinissen EJ, Iyengar V, Chakrabarty K (2002) A set of
benchmarks for modular testing of SOCs. In: Proceedings
IEEE international test conference (ITC). Baltimore, MD,
USA, pp 519-528

23. Nahvi M, Ivanov A (2001) A packet switching
communication-based Test Access Mechanism for system
chips. In: Digest of papers of IEEE European test workshop
(ETW). Saltsjobaden, Sweden, pp 195-200

24. Nolen JM, Mahapatra RN (2008) Time-division-multiplexed
test delivery for NoC systems. IEEE Des Test Comput
25(1):44-51

25. Philips Semiconductors (2002) Device transaction level
(DTL) protocol specification. Version 2.2

26. Réadulescu A, Dielissen J, Pestana SG, Gangwal OP,
Rijpkema E, Wielage P, Goossens K (2005) An efficient on-
chip network interface offering guaranteed services, shared-
memory abstraction, and flexible network programming.
IEEE Trans Comput-Aided Des Integr Circuits Syst 24(1):
4-17

27. van den Berg A (2007) Automation of wrapper design for
the reuse of a bus, Network-on-Chip, or other functional
interconnect as Test Access Mechanism in a chip. MSc Thesis,
Delft University of Technology, The Netherlands

28. van den Berg A, Ren P, Marinissen EJ, Goossens K,
Gaydadjiev G (2008) Bandwidth analysis for reusing func-
tional interconnect as Test Access Mechanism. In: Proceed-
ings IEEE European test symposium (ETS). Lago Maggiore,
Italy, pp 21-26

29. Zorian Y, Marinissen EJ, Dey S (1998) Testing embedded-
core based system chips. In: Proceedings IEEE international
test conference (ITC). Washington, DC, USA, pp 130-143

Ardy van den Berg received a BSc degree in Electrical Engi-
neering and an MSc degree in Computer Engineering from Delft
University of Technology, The Netherlands. He carried out his
MSc graduation project at NXP Semiconductors in Eindhoven,
The Netherlands. Currently he follows a traineeship at Essent, a
power company in Arnhem, The Netherlands.

Pengwei Ren received a BSc degree in Mechanics from
Chongqing University, China (2000), and a second BSc degree in
Information Technology (2004) as well as an MSc degree in Com-
puter Engineering (2006) from Delft University of Technology,
The Netherlands. He carried out his MSc graduation project at
NXP Semiconductors in Eindhoven, The Netherlands. Currently,
he works at ASML in Veldhoven, The Netherlands.

Erik Jan Marinissen is Principal Scientist at IMEC vzw in
Leuven, Belgium. Previously, he worked at NXP Semiconduc-
tors and Philips Research, both in Eindhoven, The Netherlands.
Marinissen holds an MSc degree in Computing Science (1990)
and a PDEng degree in Software Technology (1992), both from
Eindhoven University of Technology. Marinissen’s research in-
terests include all topics in the domain of test and debug of micro-
electronics. He is co-author of over 125 journal and conference
papers and co-inventor on nine granted US and EP patent fam-
ilies. Marinissen is recipient of the ITC 2008 Most Significant
Paper Award and Best Paper Awards at the Chrysler-Delco-
Ford Automotive Electronics Reliability Workshop 1995 and the
IEEE International Board Test Workshop 2002. He served as
Editor-in-Chief of IEEE Std. 1500. He is a founder of workshops
on ‘Diagnostic Services in Network-on-Chips’ (DSNOC), 3D
Integration’, and ‘3D-Test’. He serves on numerous conference
committees, including ATS, ETS, DATE, ITC, and VTS, and
on the editorial boards of IEEE Design & Test of Computers,
IET Computers and Digital Techniques, and Springer’s Jour-
nal of Electronic Testing: Theory and Applications (JETTA).
Marinissen is Senior Member of IEEE and Golden Core Member
of Computer Society.

Georgi Gaydadjiev is currently a faculty member at the Com-
puter Engineering Laboratory, Microelectronics and Computer
Engineering Department of Delft University of Technology, The
Netherlands. His research and development experience includes
more than 20 years in hardware and software design. Before
joining TU Delft he worked with System Engineering Ltd. in
Pravetz, Bulgaria and Pijnenburg Microelectronics and Software
B.V. in Vught, The Netherlands. His research interests include
embedded systems design, advanced computer architectures, re-
configurable computing, hardware/software co-design, VLSI de-
sign, and computer systems testing. He is a member of the IEEE

@ Springer

464

J Electron Test (2010) 26:453-464

Computer Society and ACM. Georgi Gaydadjiev served as a
program chair of SAMOS 2006, ICCD 2008, and Computing
Frontiers 2009. He is the coordinator of the European Union
funded integrated project SARC and a member of the HIPEAC
(FP6 and FP7) European network of excellence Steering
Committee.

Kees Goossens received his BSc in Computer Science from the
University of Wales in 1988, and obtained his PhD from the
University of Edinburgh in 1993. In his thesis he investigated
the formal verification of hardware, in particular by using semi-
automated proof systems in conjunction with formal semantics
of hardware description languages such as ELLA and VHDL.

@ Springer

He continued this work at several other universities before
joining Philips Research in the Netherlands in 1995. At Philips,
he worked on behavioral synthesis for high-throughput video
processing, then on on-chip communication protocols and mem-
ory management. Until 2010, at Philips/NXP Semiconductors
Research he led the team that defined the Aethereal network-
on-chip for consumer electronics, where real-time performance
and low cost are major constraints. He was also part-time full
professor at the Delft University of Technology from 2007 to
2010, and is currently full professor at the Eindhoven University
of Technology, where his research focuses on composable (vir-
tualized), predictable (real-time), low-power embedded systems,
and the systematic debugging of those systems.

	Bandwidth Analysis of Functional Interconnects Used as Test Access Mechanism
	Abstract
	Introduction
	Prior Work
	Functional Interconnect as TAM
	Test Wrapper
	Idle Bits Classification
	Type-1 Idle Bits
	Type-2 Idle Bits
	Type-3 Idle Bits
	Type-4 Idle Bits

	Idle Bit Reduction
	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

