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The latent heat of the first order magnetic transition in MnFe(Si-P)
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The latent heat of a magneto-elastic phase transition is used as a measure of the magnetocaloric
effect since it is directly proportional to the entropy change. Taking MnFeSi0.33P0.66 as a model
magnetocaloric material, density functional theory (DFT) calculations in addition to the phonon
calculations based on the density functional perturbation theory (DFPT) were performed in order to
calculate the latent heat of the magneto-elastic phase transition. The Curie temperature (TC) was
determined by taking into account the quasi harmonic approximation (QHA) and the configurational
entropy. The material exhibits a first order magnetic transition accompanied by a large latent heat
(19.97 kJ/kg) near room temperature operation.

PACS numbers: 75.30.Sg, 75.30.Kz, 71.15.Mb

I. INTRODUCTION

In recent years, magnetic refrigeration has become one
of the most explored fields of research in magnetic ma-
terials.1 The technique is widely accepted to have the
potential of replacing the current cooling technology for
several reasons. The absence of greenhouse gas refrig-
erants, the high efficiency, the low noise level and in
case of transition metal based refrigerants, the expec-
tation of reasonable costs makes it very attractive for
applications. Magnetic refrigeration relies on the magne-
tocaloric effect (MCE) discovered by Weiss and Piccard2

in 1917, which is defined as the reversible change of the
magnetic entropy or temperature by the application or
removal of an external magnetic field. Until recently,
the MCE was only used to achieve sub-Kelvin tempera-
tures3,4 in an laboratory environment and for space ap-
plications. The discovery of giant-MCE in Gd5Si2Ge2 by
Pecharsky and Gschneidner5 initiated extensive search
for materials suitable for near room temperature ap-
plications. Since this discovery, several classes of ma-
terials including MnFe(P1−xAsx)6, La(Fe,Si)13

7,8 and
their hydrides9, Mn(As,Sb), FeRh10, Heusler alloys11

and Mn2Sb12 have been proposed as promising candi-
dates for magnetic refrigerants. Some of the materials
exhibiting giant magnetocaloric effect, viz. La(Fe,Si)13
and MnFe(P1−xTx) [with T = Si, Ge and As] can be
tuned for minimal hysteresis loss around the phase tran-
sition, which is necessary for its cyclic operation. The
lower hysteresis is in particular important when aim-
ing at operation in low magnetic fields below 1T mak-
ing La(Fe,Si)13 and MnFe(P1−xTx) based materials most
promising for real life applications.13,14 The large MCE
in cubic LaFeSi13 based materials is associated with the
temperature and field-induced metamagnetic transition,
which comes along with a 1.5% volume change. Whereas,
the hexagonal MnFe(P1−xTx) based material display a
temperature and field-induced metamagnetic transition
that is accompanied by a significant change in c/a ratio

but hardly any changes in the volume.

For such magneto-elastic transitions, the changes in
entropies from both magnetic and elastic transforma-
tion at the Curie temperature (TC) add up and give
rise to a larger entropy change. The underlying mech-
anism was explained recently for MnFeSi0.5P0.5 using
density functional theory calculations.15,16 The coexis-
tence of strongly magnetic atoms and weakly magnetic
atoms in the same material (mixed magnetism), gives
the characteristic of room temperature TC as well as an
enhanced isothermal entropy change in this materials.
Similar moment instability has recently been reported
for La(Fe,Si)13.17 During the last decade, detailed ex-
perimental investigations were carried out on Fe2P-based
magnetocaloric materials in order to obtain highly effi-
cient devices.18–21 The magnitude of MCE in these mate-
rials is generally measured by the adiabatic temperature
change or the isothermal entropy change at the Curie
temperature. Since the system under discussion under-
goes a first order isothermal phase transition, the latent
heat (L) is directly proportional to the above two quanti-
ties. Hence the evaluation of L is essential for determinig
the usefulness of magnetocaloric materials for practical
application.22 The latent heat is related to the magneto-
elastic transition at TC which, depends upon the mag-
netic entropy change as well as the energy change due
to the discontinuous elastic transition, originating from
changes in electronic structure and phonon spectrum. An
accurate determination of free energies for both phases
- below and above the transition is essential to find L
as well as TC . A complete set of ab-initio calculations
taking finite temperature effects into account, can show
simultaneously the driving mechanism for the magneto-
elastic transition by means of electronic redistribution
near the phase transition15,16 as well as the quantitative
value of the parameters (latent heat, entropy change etc.)
obtained. In this article, we report the phase transition
temperature for MnFeSi0.33P0.66 determined by accurate
phonon calculations, and the latent heat of the metam-
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agnetic translation. These calculated results are in good
agreement with the experimental findings.

II. COMPUTATIONAL DETAILS

We used the Viena Ab-initio Simulation Package
(VASP)23, employing the projector augmented wave
(PAW) method. Exchange interactions were taken into
account using the generalized gradient approximation
(GGA) by Perdew, Burke and Ernzerhof (PBE).24 For
all the calculations, PAW data sets were used with 1s,
2s, 2p and 3s core states frozen for Mn. In Fe atoms, an
additional 3p semi-core state was kept frozen, since it lies
deeper in energy. For Si and P 1s, 2s and 2p core state
were kept frozen. The Brillouin zone integration was per-
formed on a Γ-centered k-point mesh of 6 × 6 × 12 points
in the irreducible part of the Brillouin zone. The kinetic
energy cut-off of the plane-wave function was taken as
350 eV, and a Gaussian function was used for smearing.

The MnFeSixP1−x-series of materials (for 0.3≤x≤0.7)
crystallize in the Fe2P-type layered hexagonal structure
with space group 189/P6̄2m. For this study we have cho-
sen the MnFeSi0.33P0.66 composition in order to reserve
each crystallographic site for different chemical species
within a minimal unit cell, without introducing partial
occupancy or large supercells. The Fe atoms prefer to
occupy the 3f tetrahedron positions and Mn the square
pyramidal 3g positions21 and comprise different alter-
native layers. The partial occupancy15,16 at the non-
magnetic sites are avoided since it demands larger super-
cells. We expect minimal effects of positional disorder on
the magneto-crystalline transition and utilize the crystal-
lographically ordered model25 with Si and P atoms posi-
tioned at 1b and 2c sites, respectively.20 Our primary aim
was to study the phase transition at TC , so two different
magnetic configurations were set up. The ferromagnetic
ordering has a single unit cell containing 9 atoms, where
the paramagnetic state was modeled using antiferromag-
netic arrangements within the XY -plane with 36 atoms
in the supercell. The lattice parameters and atomic posi-
tions were both optimized using a criterion for force con-
vergence of 1 meV/Å, and the energies and eigenvalues
were converged to 0.01 meV. The final lattice parameters
obtained are given in TABLE I.

TABLE I. Optimized lattice parameters: a and c, atomic po-
sitions 3f -Fe (x1, 0, 0); 3g-Mn (x2, 0, 1/2) and volume (V)
of MnFeSi0.33P0.66. The experimental parameters19 were also
given for temperature below and above TC

a (Å) c (Å) V (Å3) x1 x2

Ferromagnetic
GGA-PBE 6.128 3.273 106.375 0.265 0.598
Exp (5 K) 6.166 3.290 109.254 0.254 0.588
Antiferromagnetic

GGA-PBE 5.941 3.421 104.579 0.262 0.583
Exp (400 K) 6.018 3.482 108.346 0.258 0.594

After obtaining the equilibrium lattice constants, the
structures were further relaxed for phonon calculations
untill 0.01 meV/Å for force and 0.01 µeV for en-
ergy/eigenvalue convergence. The phonon calculations
were done using the finite difference method as well as
Density Functional Perturbation Theory (DFPT)26 as
implemented in VASP. In the finite difference method,
one atom was displaced from its equilibrium position,
and the corresponding forces on all other atoms were
calculated. A full set of such forces corresponding to
all displacements utilizing symmetry gave a force con-
stant matrix. In DFPT, a small perturbation potential
was added and then the standard DFT formalism was
carried out to obtain the force constant matrix. The
force constant matrices were finally used to obtain the
phonon vibrational frequencies. Comparing results from
finite difference and DFPT methods we observe very sim-
ilar force constant matrices. However, we employed the
DFPT method throughout all the calculations as it is
computationally cheaper. The inputs for the phonon
calculations were obtained using the Phonopy utility.27

For computing the Gibbs free energy (G) we used the
Quasi Harmonic Approximation (QHA)28 and obtained
phonon vibrational frequencies for different volumes. The
phonon calculations usually require bigger unit cells, so a
2×2×2 supercell was adopted. Finally, as the paramag-
netic state is disordered, a configurational-entropy term
has to be taken into account.29

III. RESULTS AND DISCUSSIONS

MnFeSixP1−x (for 0.3≤x≤0.7) exhibits a first order
magneto-elastic transition between the ferromagnetic
and paramagnetic phase at TC . The lattice parameter a
decreases and c increases.19–22 The paramagnetic phase
is modeled using an antiferromagnetic alignment. For
obtaining the lowest energy configuration, different ar-
rangements of magnetic moments were considered. The
first one we chose is a 1× 1× 2 supercell with an antifer-
romagnetic order along the c-direction. We also consider
2×2×1, 2×2×2 and 2×2×4 supercells with an antiparal-
lel magnetic alignment between the neighboring unit cells
within the ab-plane. Accurate energy calculations iden-
tify the 2×2×1 supercell to have the lowest energy. The
local moments for the Fe atoms in those configurations
decrease from bigger unit cells to smaller unit cells (1.1
µB , 0.9 µB , 0.6 µB and 0.5 µB). Experimentally, the
local moment for Fe decreases with the increasing tem-
perature above TC .18,30 This suggests that just above the
transition temperature, the paramagnetic state carries a
short-range magnetic order, which disappears at higher
temperature. Hence, the bigger unit cell corresponds to
the state just above TC and the smaller unit cell repre-
sents the magnetic state for higher temperatures.

The latent heat of the first order magneto-elastic phase
transition is an important quantity to determine the size
of the MCE and hence the effectiveness of the magne-
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tocaloric materials. The amount of heat absorbed dur-
ing the transition effectively cools down the refrigerator.
Theoretically the latent heat (L) can be calculated from
the total entropy change at TC . Since the states were
modeled at 0 Kelvin using the DFT formalism; a finite
temperature approach is required to obtain the transi-
tion temperature (TC) and hence L. The Helmholtz free
energy (F) is expressed as the summation of the inter-
nal energy (U) in addition to the temperature dependent
term: F = U − TS. To evaluate the temperature depen-
dent term, phonon calculations are necessary. For the
lattice vibrational properties of the stable phase, dynam-
ical matrices were created using the DFPT formulation.26

The eigen-values and eigen-vectors were computed for
the dynamical matrices and the phonon vibrational fre-
quencies were obtained using the interatomic force con-
stants. No imaginary phonon frequency was obtained
[see, Figure-2], showing vibrational stability of the sys-
tem for both magnetic phases. The internal energy term
consists of the VASP total energy output and the zeroth-
order phonon vibrational term. So the Helmholtz free
energy F (V, T,m) as a function of volume (V ), tempera-
ture (T ) and magnetization (m) takes the following form:

F (V, T,m) = U0(V,m) +
1

ΩBZ
·
∑
j

∫
BZ

~ωj(q, V )

2
+

kBT · ln

(
1 − exp

[
~ωj(q, V )

kBT

])
dq

(1)

here ~, ωj(q, V ) and kB are the Planck constant, fre-
quency of the j-th phonon mode at wave vector q and the
Boltzmann constant respectively. The phonon density of
states and the corresponding band structures for the two
magnetic states are shown in Figure-1 and Figure-2, re-
spectively.

In the density of states as shown in Figure-1a and 1b,
the low frequency linear parts from 0 to 2.2 THz are
similar and represent the acoustic phonons. The opti-
cal modes are reasonably different for both of the states
above 2.2 THz, especially from 8 to 14 THz. As shown in
equation- (1), the third term determines the temperature
profile of F(V,T,m) which includes the phonon frequen-
cies of the normal modes shown by the phonon DOS. The
differences in DOS-es for FM and AFM states are respon-
sible for the thermal evolution of the free energies that
lead to different slopes for the free energy curves. The
low frequency optical phonon vibrations have a greater
contribution to the temperature dependent third term of
equation-(1) rather than the high frequency vibrational
terms. So, the differences in phonon DOS-es just above
2.2 THz primarily determine the difference in slopes of
the F versus T curves as shown in Figure-3.

The FM state represents the ground state at 0 Kelvin
but F decreases gradually for both FM and AFM states
with increasing temperature. Despite that the curves
have different slopes, they do not intersect even at higher
temperature (≈1000 K), which excludes the possibility

FIG. 1. Phonon density of states of MnFeSi0.33P0.66 in (a)
AFM and (b) FM states as a function of frequency

of any phase transition. This is in direct contradiction
with the experimental observation of an magneto-elastic
transition at TC . However in the above calculation, we
did not consider the volume expansion with temperature.
Therefore, to remove this discrepancy in Figure-3, we in-
troduce the correction for the effect of lattice expansion
by incorporating QHA, which includes the volume de-
pendence of the phonon frequencies as a part of the an-
harmonic effect.28,31 So, instead of Helmholtz free energy
F (V, T,m) for constant volume, we used the Gibbs free
energy (G) at constant pressure (P ),32 which is defined
as:

G(P, T,m) = min
V

[F (V, T,m) + P (V, T ) · V ] (2)

Following the procedure mentioned by Togo et. al. (Fig.2
of Ref.33), F(V,T,m) were evaluated with different vol-
umes for both the FM and the AFM states. Then, fitting
F (V, T,m) in the Birch-Murnaghan equation of state, we
finally obtain P (V, T )34. From P (V, T ) and F (V, T,m),
we calculated G(P, T,m) by minimizing the parameters
inside the square bracket with respect to the volume
[equation-(2)].35 Note, since QHA neglects the temper-
ature dependence of the phonon frequencies, it becomes
invalid at very high temperature (well above 1000 K).

Additionally, this model does not include the fact that
in reality the material in a paramagnetic phase can be
assumed to be an assembly of multiple magnetic or-
ders. So in order to include the disorderliness of the
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FIG. 2. Phonon band structure of MnFeSi0.33P0.66 in (a)
AFM and (b) FM states

FIG. 3. Helmholtz free energy (F ) as a function of tempera-
ture

system, a configurational entropy [Sconf = kBlnW ] term
was added.29 Here W is the number of all possible mag-
netic configurations. Since a complete magnetically dis-
ordered system leads to the Boltzmann limit for the en-
tropy, it is a reasonably good approximation to model a
system at high temperature in the paramagnetic phase.
Finally adding all the contributions, the total free energy
[Ftot = G(P, T,m) − T · Sconf ] was obtained and plotted
in Figure-4.

Experimentally, the Curie temperature lies around 300
K for MnFeSi0.33P0.66.19 In Figure-4, the total free en-
ergy plots intersect at a temperature around 410 K, which
depicts the magneto-elastic phase transition and shows
good agreement with the experiments. The dissimilarity

FIG. 4. Total free energy (Ftot) and entropy (S) evolution
with temperature.

may arise from other factors contributing to the entropy,
like magnons or phonon-phonon interactions. The dif-
ference in F between FM and AFM state at 410 K in
Figure-3 is 19.19 kJ/mol. With the anharmonic correc-
tion using equation-(2), the difference reduces by 6.41
kJ/mol and decreases further by 12.78 kJ/mol when in-
cluding the configurational entropy. The specific heat at
constant pressure can also be calculated by deriving the
second derivatives of the Gibbs free energy using the re-
lation: CP = -T[δ2G(P, T,m)/δT 2]P. The specific heat
undergoes a discontinuous transition near TC as shown
in Figure-5, which is the characteristic of a first order
phase transition. The entropy as function of the tem-

FIG. 5. Calculated CP as a function of temperature

perature and the entropy jump at the phase transition
(∆Str) is shown in Figure-4. We derive a value of 48.7
J/K/kg, which is comparable to the experimental find-
ing: 58.6 J/K/kg.36 The latent heat of the phase tran-
sition is defined as: L = TC × ∆Str. So the value ob-
tained from this calculation is 19.97 kJ/kg, which is also
in good agreement with experimental findings consider-
ing the somewhat overestimated value of the Curie tem-
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perature.22,36,37 The latent heat is the difference between
the slope of Ftot in FM and AFM state with respect to
temperature at TC . Comparing the latent heat as cal-
culated from the temperature derivative of the total free
energy and the Helmholtz free energy at the Curie tem-
perature strongly suggests that the latent heat in this
system mainly originates from the change in the elec-
tronic density of states (Grüner et. al.)17

IV. CONCLUSION

Compounds of the type MnFeSixP1−x belong to the
MCE materials with the highest magnitude of the MCE
(as measured by ∆Str and ∆Tad).14 Our calculation re-
sults lead to the following picture. The electronic re-
distribution that creates covalent bonding among the
atoms15,16 is responsible for both the electronic part of
the entropy change and the change in thermal vibra-
tions of the atoms that contributes to the lattice en-
tropy change. In addition to the regular magnetic part
of the magnetic field induced entropy change at TC , this
magneto-elastic transition contributes dominantly to the
electronic and much less to the lattice part of entropy
change. The electronic redistribution initiates the lattice
change and both of these contributions add up to a bigger
entropy change and a large latent heat with unexpectedly
low thermal hysteresis38. The latent heat of this system
is primarily considered as being of electronic rather than
lattice origin, which should also be true for La(Fe,Si)13
materials, in contrast to the findings of Grüner et al.17

In this study, we use the stereotypical compound
MnFeSi0.33P0.66 with Mn:Fe=1:1 stoichiometry. To take

thermal effects into account we utilize a 2 × 2 × 2 super-
cell. The need of such larger supercell sizes, restricts
the method for low symmetric structures, because of
high computational costs at the moment. In addition
to this, non-magnetic Si and P atoms were inserted at
crystallographically distinct 1b and 2c sites, respectively,
in order to avoid computational cost related to again
larger supercells to account for positional disorder. DFT
optimized rather than experimentaly determined struc-
tures were used for both high and low magnetic states in
MnFeSi0.33P0.66. The temperature evolution of the free
energy (F ) in these states were evaluated using the effi-
cient DFPT mechanism. Further corrections to the free
energy were included in the form of QHA and configu-
rational entropy. We calculate the phase transition tem-
perature, ∆Str and the latent heat of the system within
reasonable accuracy.22,36,37 The observed dominance of
the electronic part of the latent heat is a new finding
and awaiting experimental verification. This method can
be used to calculate latent heat or related quantities of
other magnetic systems and characterize them based on
the size and nature of the MCE for the search of better
magnetocaloric materials in near future.
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