
 
 

Delft University of Technology

Spatio-Temporal Multi- Objective Optimization of Agricultural Best Management Practices

Uribe, N.

DOI
10.4233/uuid:7d0e8676-8323-448a-af4e-9fc6b01b775f
Publication date
2023
Document Version
Final published version
Citation (APA)
Uribe, N. (2023). Spatio-Temporal Multi- Objective Optimization of Agricultural Best Management Practices.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:7d0e8676-8323-448a-
af4e-9fc6b01b775f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:7d0e8676-8323-448a-af4e-9fc6b01b775f
https://doi.org/10.4233/uuid:7d0e8676-8323-448a-af4e-9fc6b01b775f
https://doi.org/10.4233/uuid:7d0e8676-8323-448a-af4e-9fc6b01b775f


Spatio-Temporal Multi-
Objective Optimization 
of Agricultural Best 
Management Practices

Natalia Uribe Rivera



 

  

SPATIO-TEMPORAL MULTI-OBJECTIVE 

OPTIMIZATION OF AGRICULTURAL BEST 

MANAGEMENT PRACTICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Natalia Uribe Rivera 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover design  

Marvin Stiefelhagen/ marvin@blish.design /BLISH 

mailto:marvin@blish.design


SPATIO-TEMPORAL MULTI-OBJECTIVE 

OPTIMIZATION OF AGRICULTURAL BEST 

MANAGEMENT PRACTICES 

 

 

 

 

 

DISSERTATION 

 

Submitted in fulfillment of the requirements of 

the Board for Doctorates of Delft University of Technology 

and  

of the Academic Board of the IHE Delft 

Institute for Water Education 

for  

the Degree of DOCTOR 

to be defended in public on 

Wednesday, 25 January 2023 at 17:30 hours 

in Delft, the Netherlands 

 

by 

 

Natalia URIBE RIVERA 

 

Master of Science in Environmental Science; Specialization 

Environmental science and Technology, 

IHE Delft Institute for Water Education, the Netherlands 

born in Medellín, Colombia  



This dissertation has been approved by the 

promotor: Prof.dr. D.P. Solomatine and 

copromotor: Dr. G.A. Corzo Perez 

 

Composition of the doctoral committee: 

Rector Magnificus TU Delft               Chairman 

Rector IHE Delft     Vice-Chairman 

Prof.dr. D.P. Solomatine    IHE Delft / TU Delft, promotor 

Dr. G.A. Corzo Perez    IHE Delft, copromotor 

 

Independent members: 

Prof.dr.ir. R. Uijlenhoet  TU Delft 

Prof.dr. J.G. Arnold                          Agricultural Research Service (ARS), USA 

Prof.dr.ir. N.C. van de Giesen   TU Delft 

Prof.dr. C.A. Jones    Texas A&M University, USA 

Prof.dr.ir. C. Zevenbergen   IHE Delft / TU Delft, reserve member 

 

This research was conducted under the auspices of the Graduate School for 

Socio-Economic and Natural Sciences of the Environment (SENSE) 

 

 

 

 

 

 

 

© 2023, Natalia Uribe Rivera 
  

Although all care is taken to ensure integrity and the quality of this publication and the 

information herein, no responsibility is assumed by the publishers, the author nor IHE 

Delft for any damage to the property or persons as a result of operation or use of this 

publication and/or the information contained herein. 

A pdf version of this work will be made available as Open Access via 

https://ihedelftrepository.contentdm.oclc.org/ This version is licensed under the 

Creative Commons Attribution-Non Commercial 4.0 International License, 

http://creativecommons.org/licenses/by-nc/4.0/ 

Published by IHE Delft Institute for Water Education 

www.un-ihe.org 

ISBN   978-90-73445-48-2 

 



 

 

To my loving family, 

To my beloved Jeffrey and Silvio  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

ACKNOWLEDGMENTS 

I want to express my especial gratitude to my promotor, professor Dimitri Solomatine, I 

thank you for guiding me in the world of optimization, for your critical assessment, for 

always questioning me (sometimes it was not easy), and for encouraging me during the 

difficult times of my PhD research journey. Equally important, I want to thank my 

supervisor Dr. Gerald Corzo for his constant support and advice during my research work, 

and specially for knowing how to orient my work in such a way that still allowed me to 

be creative.  

My external supervisor Dr. Marcela Quintero and Dr. Srinivasam played an important 

role in this dissertation and my professional experience. Dr. Marcela Quintero, from 

CIAT (International Center for Tropical Agriculture) who has been my mentor during my 

professional experience and encouraged and supporting me to take the challenge of 

getting enrolled in this hydroinformatics doctoral program. Her past contribution to my 

professional experience by preparing myself for multidisciplinary work has been 

indispensable for this work. Thank you, Marcela, for your constant support and for being 

a role model in my professional career. And, Dr. Srinivasan from Texas A&M university, 

you introduced me to the world of hydrological modeling and help me master this 

paradigm of modeling applied to the tropical mountain watersheds. Dr. Srini, you have 

always had the time within your busy schedule to answer my questions and publication 

issues. I appreciate your continued support. I thank you both for the advice and support 

throughout the research period. Equally important, I want to express my sincere gratitude 

to Dr. Ann van Griensven for her support and directed me in the right path. 

The PhD research was made possible by the financial support from the Dutch 

Organization for internationalization in Education - Nuffic; and Colciencias, Colombia 

scholarships. I would like to thank University of Antioquia for providing data on the case 

study and collaboration during the fieldwork and farmers interviews. 

I want to thank my new friends, who are part of this valuable and beautiful experience of 

studying abroad. You made this journey a life experience and not just an academic one: 

Neiler (parcero), Juanca, Andre (mi guapo), Saffa, Yared, Juli, Pato, Alida, Mauri, Jessica, 

Pin, Miguel, Vero. Furthemore, special thanks to an amazing designer Marvin 

Stiefelhagen, who is one of my best Dutch friend and unconditional support. 

To my friends “los feitos” in Colombia: Ori, Xime, Jeff, Salo, and Marthis. Feitos, thank 

you, your messages always made me smile, you can't imagine how important they were 

in those cold days with low energy. Despite the fact that we are in different places, our 

friendship always remains, and I hope that it always will. I love you so much! 

Also, to a great group of friends “Amigos” Berend, Mohaned, Fer, Peter, Angi and Can 

thank you for all the beautiful moments shared, for the advice, support, the super parties 



 

viii 

 

that helped to enjoy life, for the interesting talks, and trips made. I love you and may they 

be many more years of friendship. 

Angi and Fer, I have no words to thank you for all the support and love that you have 

given me at this stage of my life. You are two beautiful women and to be admired. 

Countless are the beautiful moments that we have lived and which I hope will continue 

to increase. Thank you for supporting me during my pregnancy and motherhood, without 

my family by my side, your love and support were crucial. I love you chicas. 

To my family, my especial gratitude for your love, encouragement, and support through 

all my life. A mis padres (Carmen Alicia y Jorge Ivan) quiero darles las gracias por todo 

el amor que me han brindado, por creer en mi y apoyarme en cada uno de mis proyectos 

de vida, los amo. My siblings (Enver and Hilda), I thank you for your love and 

unconditional support. Your presence in my life and even more being at a distance have 

been vital to achieve this achievement, los amo y admiro mucho mis hermanos. My Teo, 

my nephew whom I love, thank you for filling me with motivating energy every time I 

could have my days off. I am grateful to my in-laws, especially Chris, who reminds me 

that with dedication and the best attitude everything can be achieved. And my primis 

(Xiomy and Jenni), thanks my “feitas” for always accompanying me in the distance, for 

the love and support. I admire and love you very much. 

Jeffrey, my life partner. Always by my side, supporting me and motivating me to finish. 

Thank you for your advice, your unconditional love, for allowing me to know other 

cultures, for all the adventures, and for exploring the world together. And even more thank 

you because we have built our family with our beloved baby Silvio. This achievement is 

also yours. Te amo. 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

SUMMARY 

Farmers around the world are facing the need to improve crop yield due to substantial 

increase in food demand. However, in an effort to meet the global growing food demand, 

nutrient pollutants in runoff have also increased due to intensified agricultural practices. 

For this reason, stakeholders and decision-makers have tried to shift from conventional 

agricultural practices to other types of practices, commonly referred to as best 

management practices (BMPs). The emphasis of agricultural BMPs (Ag-BMPs) is on 

environmental protection, which in this research is extended to consider food production, 

as well as environmental, economic, and social factors as a part of Ag-BMPs.  

The selection and allocation of agricultural BMPs at a watershed scale, in practice, is 

very complex. It is currently acknowledged that in order to design optimal agricultural 

BMPs scenarios at watershed scale, the problem has to be formulated as a multi-objective 

optimization problem, which involves conflicting objectives and constraints (Memmah, 

Lescourret, Yao, & Lavigne, 2015). Despite the increase in the use of optimization to 

select and allocate agricultural BMPs, research in this area has limitations due to the high 

number of parameters and high uncertainty inherent to building large models. There are 

several important gaps related to this topic that have been identified: 1) upscaling process 

scale (small to large) implementation; 2) inclusion of temporal and dynamic spatial 

aspects; 3) inclusion of decision-makers’ and stakeholders’ knowledge to select which 

BMPs will be optimized. Therefore, there is still a great need to explore various 

optimization approaches for different types of agricultural optimization problems. The 

watersheds located in the mountains of the tropical Andes are characterized by shifting 

cultivation, intensive traditional agriculture, and weather seasonality, and this makes the 

problem of choosing optimal BMPs especially complex.  

The main objective of this dissertation is to develop a modeling framework and 

methodology to build a spatio-temporal multi-objective optimization model that provides 

new insights to improve the selection and allocation of agricultural BMPs in a watershed 

of the Tropical Andes Mountains. This research has the following objectives: 

O1. Analyze and determine the impacts on nutrient loss and crop yield from a single 

agricultural BMP (Ag-BMP) applied to a single crop at the field scale, and upscale 

its impact assessment to a watershed level. 

O2. Analyze variations of spatio-temporal impacts on nutrient loss and crop yield from 

multiple agricultural management practices (Ag-MP) and determine spatio-

temporal critical source areas (ST-CSAs) in the watershed. 

O3. Select and parameterize Ag-BMPs scenarios to be used in the optimization model 

framework that are feasible to implement by stakeholders (local farmers). 

O4. Develop a framework and methodology for a spatio-temporal multi-objective 

optimization model to select and allocate Ag-BMPs for multiple crops. 
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To achieve these objectives, a methodological approach based on gradually increasing 

the complexity of the system to be optimized was used. For the first objective (O1), we 

consider the conceptual modeling outline of Ag-BMPs applied in a single crop (potato 

crop) in the Fuquene watershed. A hydrological model to estimate runoff pollutants and 

crop yield was built. The model was calibrated with fieldwork data collected from runoff 

plots installed in the study watershed with current agricultural practices used by farmers. 

The results revealed that Ag-BMP impacts obtained at watershed level show 

important differences from those obtained at farm level. In the study region, it was 

found that the Conservation Tillage BMP (CT-BMP) in some areas (farm level) reduces 

a nitrate (NO3
--N) losses, however at the watershed level there is a total increase in NO3

—

N loss. Therefore, a detailed spatio-temporal nutrient loss analysis and the application of 

optimization techniques to determine optimal Ag-BMPs at both farm and watershed 

levels is suggested.  

For the second objective (O2), an analysis of the spatial and temporal dynamics of 

nutrients in runoff resulting from current multiple Ag-BMPs was done. A spatio-temporal 

critical sources area (ST-CSAs) index was proposed to select the spatial location where 

the highest pollutant loads occur within the watershed. The ST-CSAs is a new approach 

that we propose to select the search space for the optimization problem to achieve a 

more effective Ag-BMPs allocation, providing a visual representation of the recurrence 

and behavior in space and time of the CSAs for an entire simulated period. The results 

showed that ST-CSAs characteristics and pattern determination are highly relevant to 

define which and where Ag-BMPs should be implemented. 

For a feasible Ag-BMPs scenarios selection and parameterization in the case study 

region (O3), workshops and interviews with local farmers and stakeholders were held. 

For a realistic and feasible optimization process, farmer and local agricultural information 

is required. This work aimed at collecting data directly from field plots, whereby the BMP 

scenarios to be included in the optimization model were selected because they were 

agricultural practices that did not increase implementation costs, could be implemented 

by farmers with tools and financial resources they currently had, and were accepted and 

some proposed by the farmers themselves.  

Finally, the modeling framework was developed (O4). The optimization framework 

proposed provides a methodology that allows incorporating a greater number of crops 

and Ag-BMPs scenarios in the optimization model; as well as contemplating the space 

and time variations to allocate the optimized Ag-BMPs. The SWAT hydrological model 

was coupled with the multi-objective optimization algorithm (NSGA-II). Minimization 

of nitrate (NO3
-N) losses and maximization crop yields at field level were the objective 

functions. Pareto-front comparison results between average versus single site (field) 

values for each objective function were carried out to determine spatial analysis level 

results to select optimal Ag-BMPs. The main result is an easy-to-follow step-by-step 

methodology, which can be implemented in any watershed. Additionally, the 

methodological steps to spatially analyze of the optimization results were provided. The 
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spatial analysis allows the researcher to define a spatially distributed Pareto-front 

solution. This means having a Pareto-front solution for each of the different areas with 

similar spatial variability of the optimization results for each evaluated scenario. 

The proposed modeling framework and methodology, results and suggested optimal 

Ag-BMPs are available for farmers located in the mountains of the Colombian Andes 

(Latin America), but it is general enough to also be used worldwide after adaptation to 

local crop conditions. We expect the methodology framework to be accessible and 

affordable in poorer regions of the world, and it can be a complementary policy 

instrument for controlling non-point source water pollutants. The proposed framework 

and methodology can be further improved by contemplating climate change scenarios and 

analyzing implementation costs of the optimized Ag-BMPs. 
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SAMENVATTING 

Agrariërs wereldwijd staan door de substantiële toename in vraag naar voedsel voor de 

uitdaging om hun oogstopbrengst te verbeteren. Echter, met het verwezenlijken van dit 

doel is door de verhoogde agrarische activiteit ook de vervuiling van afvloeiing door 

voedingsstoffen toegenomen. Om die reden hebben stakeholders en beleidsmakers 

getracht om te veranderen van conventionele agrarische practices naar andere practices,  

ook wel bekend onder de term best management practices (BMP). The nadruk van 

agrarische BMP’s (Ag-BMPs) ligt op natuurbescherming; echter, dit onderzoek gaat ook 

verder en neemt voedselproductie, milieu en socio-economische factoren mee als 

onderdeel van de Ag-BMPs. 

The selectie en toewijzing van agrarische BMP’s op stroomgebiedniveau, in de 

praktijk, is erg complex. Het wordt tegenwoordig erkend dat het ontwerpen en alloceren 

van optimale agrarische  BMP’s  op stroomgebiedniveau vereist dat het probleem wordt 

omschreven als een multi-objective optimalisatieprobleem met conflicterende doelen en 

restricties (Memmah, Lescourret, Yao, & Lavigne, 2015). Ondanks de vooruitgang in 

benaderingen vanuit optimalisatie om Ag-BMPs te selecteren en te te wijzen, is 

onderzoek op dit gebied gelimiteerd door het grote aantal parameters en de hoge mate 

van onzekerheid die inherent is aan omvangrijke modellen. Meerdere significante kloven 

gerelateerd aan dit onderwerp zijn geïdentificeerd: 1) opschaling van processchalen, van 

kleinschalig tot grootschalige toepassingen; 2) de toevoeging van temporele en 

dynamisch-ruimtelijke aspecten; 3) het toevoegen van de kennis van beleidsmakers en 

stakeholders tijdens BMP-selectie voor optimalisatie. Om deze redenen bestaat er nog 

steeds de behoefte om verschillende optimalisatieaanpakken te verkennen voor 

verschillende soorten agrarische optimalisatieproblemen. Dit is voornamelijk het geval in  

stroomgebieden gelegen in het tropische Andesgebergte, waar verschuivende verbouwing, 

intensieve traditionele landbouw en de seizoensgebondenheid van het weer predominant 

zijn. 

Het hoofddoel van dit afstudeeronderzoek is het ontwikkelen van een modeleer-

raamwerk en methodiek om tijdruimtelijke multi-objective optimalisatiemodellen te 

ontwikkelen die nieuwe inzichten bieden om de selectie en toewijzing van Ag-BMPs te 

verbeteren in een stroomgebied van het tropische Andesgebergte. Dit onderzoek heeft de 

volgende doelen: 

O1. Analyse en vaststelling van de impact van een enkele Ag-BMP op 

voedingsstoffenverlies en oogstopbrengst en de opschaling van deze impact naar 

een stroomgebied. 

O2. Analyse van variaties van tijdruimtelijke invloeden in op voedingsstoffenverlies 

en oogstopbrengst van meervoudige agrarische management practices (Ag-MP), 
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en het vaststellen van tijdruimtelijke kritieke brongebieden (ST-CSAs) in een 

stroomgebied). 

O3. Selectie en parametrisering van Ag-BMP scenario’s voor gebruik in een 

optimalisatiemodelraamwerk, welke toegepast kunnen worden door lokale boeren.  

O4. Ontwikkeling van een raamwerk en methodologie voor een tijdruimtelijke multi-

objective optimalisatiemodel voor de selectie en toewijzing van Ag-BMPs for 

meerdere gewassen. 

Een methodologische aanpak gebaseerd op toenemende complexiteit van het te 

optimaliseren systeem is gebruikt voor deze doelen. Voor het eerste doel (O1) lichten we 

het conceptuele modeleer-overzicht van Ag-BMPs toegepast in een enkel gewas 

(aardappelgewas)  in het Fuquene stroomgebied. Een hydrologisch model is ontwikkeld 

om vervuiling van afvloeiing en oogstopbrengst in te schatten. Het model is gekalibreerd 

met veldwerkdata verzameld van afvloeiingsvelden in het stroomgebied en met de 

huidige agrarische practices die gebruikt worden door de landbouwers. De resultaten laten 

zien dat de Ag-BMP invloeden op stroomgebiedniveau essentieel verschillen van de 

invloed op boerderijniveau. In het onderzochte gebied is bevonden dat de Conservation 

Tillage BMP (CT-BMP) in sommige regio’s (op boerderijniveau) een nitraat (NO3--N) 

reductie oplevert; echter op stroomgebiedniveau is een totale toename van NO3--N 

geconstateerd. Om die reden zijn een gedetailleerde tijdruimtelijke analyse van de 

voedingsstoffenafname en de toepassing van optimalisatietechnieken vereist om de 

optimale Ag-BMPs op boerderij- en stroomgebiedniveau te bepalen. 

Voor het tweede onderzoeksdoel (O2) is een analyse gedaan naar de ruimtelijke en 

temporele dynamica van voedingsstoffen in afvloeiing ten gevolge de meerdere huidige 

Ag-BMPs. Een tijdruimtelijke kritieke brongebieden (STA-CSAs) index is voorgesteld 

om een ruimtelijke locatie te selecteren waar de hoogste vervuilingsniveaus binnen een 

stroomgebied aanwezig zijn. De ST-CSAs zijn een nieuwe benadering die wordt 

voorgesteld voor het zoekgebied van het optimalisatieprobleem om effectiever Ag-BMP 

toe te wijzen, en om een visuele representatie van de differentie en het gedrag in ruimte 

en tijd van de CSAs voor een gehele simulatieperiode te bieden. Het resultaat laat zien 

dat ST-CSAs karakteristieken en patroonbepaling relevant zijn om waar er welke Ag-

BMPs toegepast moeten worden. 

Voor een haalbare Ag-BMPs scenarioselectie en parametrisering in het 

onderzoeksgebied (O3), zijn workshops en interviews georganiseerd met lokale 

landbouwers en stakeholders. Voor een realistisch en haalbaar optimalisatieproces zijn 

landbouwers en lokale agrarische informatie benodigd. Het veldwerk had als doel om 

direct data van de landbouwvelden te verzamelen om de BMPs scenario’s te selecteren 

die niet resulteren in operationele kosten. Hiermee kunnen scenario’s haalbaar zijn met 

de huidige middelen van de landbouwers. 

Ten slotte is het modeleerraamwerk ontwikkeld (O4). Het voorgestelde 

optimalisatieraamwerk biedt een methodiek die een significant groter aantal gewassen en 

Ag-BMPs toestaat in het optimalisatiemodel, en die ruimte- en tijdsvariaties samenvoegt 
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om de geoptimaliseerde Ag-BMPs toe te wijzen. Een aantal basismodellen tussen het 

SWAT hydrologisch model en het metaheuristische algoritme NSGA-II zijn gebruikt als 

optimalisatiemotor. De doelfuncties minimaliseerden nitraat (NO3-N) en 

maximaliseerden oogstopbrengsten op veldniveau. Een Pareto-front vergelijking tussen 

de gemiddelde versus de enkele veldwaarden voor iedere doelfunctie zijn uitgevoerd om 

de ruimtelijke analyseniveaus te bepalen, waarmee de optimale Ag-BMPs geselecteerd 

kunnen worden. Het resultaat is een eenvoudig te volgen stappenplan methodiek, welke 

in ieder stroomgebied toegepast kan worden. 

Tevens zijn de methodologische stappen beschikbaar gesteld, waarmee de 

optimalisatieresultaten ruimtelijk geanalyseerd kunnen worden. Daarnaast bevelen de 

optimalisatieresultaten van de ruimtelijke analyse, uitgevoerd in het onderzoeksgebied, 

dat een Pareto-front oplossing gedefinieerd dient te worden op een verdeelde manier. Dit 

betekent dat een Pareto-front oplossing benodigd is, voor ieder van de verschillende 

gebieden met vergelijkbare ruimtelijke variabiliteit van de optimalisatieresultaten, voor 

ieder geëvalueerd scenario. 

Het voorgestelde modeleerraamwerk en methodologie, de resultaten, en de 

aanbevolen optimale Ag-BMPs zijn beschikbaar voor de landbouwers in de bergen van 

de Colombiaanse Andes (te Latijns- Amerika). Echter kunnen deze ook wereldwijd 

gebruikt worden na aanpassing aan condities van andere gewassen. We verwachten dat 

het methodologieraamwerk beschikbaar en bereikbaar is in armere gebieden van de 

wereld. Het kan dienen als complementair beleidsinstrument om non-point 

bronwatervervuiling te regelen. Echter wordt ook benadrukt dat het voorgestelde 

raamwerk verbeterd kan worden door klimaatveranderingsscenario’s te raadplegen en 

door de implementatiekosten van de geoptimaliseerde Ag-BMPs te analyseren. 
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1.1 MOTIVATION 

According to the IPCC 2016 report, an increase in heavy precipitation events could 

increase the frequency of storm run-off pollution due to changing climatic conditions. 

This phenomenon tends to be more significant in agricultural systems, considered 

significant sources of environmental pollution worldwide (Sarkar et al., 2006). Usually, 

the storm run-off pollution process is more significant in watersheds characterized by 

intensive traditional agriculture because of the large amounts of fertilizer applied to crops 

grown on steep slopes. Climate change along the latitudinal gradient can also result in 

environmental pollution and some loss of biodiversity. Some of the identified causes of 

this phenomenon include shallow soils with little vegetation, which are susceptible to 

large precipitation events (Sedano et al., 2013). Thus, there has been a significant increase 

in the development of watershed plans and actions to help mitigate the effects of 

agricultural activities on runoff pollution processes. One of the most recommended 

alternatives includes shifting from conventional agricultural practices to other types of 

practices, typically termed the agricultural Best Management Practices (BMPs) (Ritter 

and Shirmohammadi, 2001). Agricultural BMPs aim to meet the projected food demand, 

reduce environmental pollution, and preserve biodiversity. However, the selection and 

allocation of agricultural BMPs at a watershed scale is very complex. 

It is currently recognized that to design agricultural BMP scenarios for the adoption 

and promotion at the watershed scale is a multi-objective optimization problem, which 

involves multiple conflicting objectives and constraints (Memmah et al., 2015). However, 

agricultural BMP optimization is a very complicated task, involving decision-makers and 

stakeholders, multiple conflict objectives, temporal and dynamic spatial aspects, and 

constraints (Liu et al., 2013). Despite the increased use of the optimization approach to 

select and allocate agricultural BMPs, there are still many gaps in our understanding of 

this topic. Memmah, Lescourret, Yao, & Lavigne (2015) highlight the most common 

issues identified to date: (i) defining which optimization algorithm for which problem, (ii) 

adapting computational techniques that can handle an increasing number of decision 

variables and dynamics (e.g., hybridization), and (iii) integrating the knowledge of 

decision-makers and stakeholders into the optimization methods. Therefore, this research 

area needs to explore how to pose a mathematical optimization problem that is not always 

trivial due to every problem and case study's particular local features. Also, it is important 

to explore different optimization approaches for different types of agricultural 

optimization problems, especially in the watersheds where the complexity of shifting 

cultivation, intensive traditional agriculture, diverse crops and management practices in 

a landscape, and weather seasonality are predominant. 

 

 



Introduction 

3 

 

1.2 AGRICULTURAL BEST MANAGEMENT PRACTICES (AG-BMP) 

OPTIMIZATION APPROACHES 

1.2.1 Multi-objective optimization of agricultural best management 

practices  

The optimization approach is considered necessary for model-based agricultural BMP’s 

selection and allocation at the watershed level. In the following, we present some 

examples of studies dealing with agricultural BMPs optimization issues for water 

management purposes. These studies (described below) considered economic aspects, 

reducing non-point pollution sources, and some social elements. Table 1.1 presents a brief 

description of these. 

Maringanti, Chaubey, & Popp (2009) investigated an optimization methodology to 

select and place BMPs in the L’Anguille River watershed located in the Mississippi Delta 

region. They set 54 different combinations of BMPs for rice and soybean, which are the 

two crops that predominate in the watershed. This novel approach includes a BMP tool 

as the best way to link a hydrological model and spatial dynamics of BMPs to be evaluated 

in the optimization architecture. The model developed a genetic algorithm NSGA-II 

based multi-objective optimization tool to minimize pollutant (phosphorus, nitrogen, and 

Sediments) loading and reduce net costs. The results indicated that the optimized BMPs 

selected and allocated could decrease N, P, and sediments losses by 13%, 32%, and 33%, 

respectively, from the watershed. Additionally, the highlighted drawbacks in this research 

were mainly: (i) both objective functions were considered separately by the optimization 

algorithm, and (ii) the BMPs implementation costs were estimated with a fixed interest 

rate. 

Lehmann, Finger, Klein, Calanca, & Walter (2013) investigated the optimal field 

BMPs in winter wheat and grain maize crops in two watersheds in Switzerland (Payerne, 

located in the Western Uster, situated in the Northeast) for two climate change scenarios. 

The authors developed a bio-economic modeling system coupled with the CropSyst crop 

growth model and an economic decision model, generating a genetic algorithm to define 

the optimal field BMPs (schemes for irrigation strategy and nitrogen fertilization) that 

maximize the farmer’s profit margins. The authors argue that 'the computational load was 

considerable' and could be improved by relaxing the convergence criteria or modifying 

the Genetic Algorithm (GA) parameter settings.  

In order to decrease computing time, parallel computation techniques can be used, as 

was done in the study “Optimization of Agricultural BMPs Using a Parallel Computing 

Based Multi-Objective Optimization Algorithm” by Liu, Shen, Yang, & Yang (2013). 

This research coupled a SWAT model with the ε-NSGA-II multi-objective genetic 

algorithm to select optimal BMPs for reducing agricultural non-point source pollution. 

This research considered minimizing total phosphorus load and BMPs implementation 

costs in the Fairchild Creek watershed in Ontario, Canada. The computational time was 
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effectively reduced by using 30 processors. The authors mention that the performances 

are dependent on the number of processers, simulation period, spatial resolution, and 

several objective functions. On the other hand, this research assessed the uncertainties 

obtained from the optimization results and suggested that additional studies are needed to 

improve the spatio-temporal BMPs characterization and BMPs cost estimation to get 

more reliable optimization results. 

Studies focused on achieving better BMP characterization by modifying details on 

how each BMP is simulated in a SWAT model. One example of this research is the study 

of Panagopoulos, Makropoulos, & Mimikou (2013). This research integrated a decision 

support tool (DST) with a SWAT model and a multi-objective evolutionary algorithm to 

define the selection and locations of agricultural BMPs combinations that ensure good 

environmental and economic outcomes. The objective functions were formulated to 

minimize total phosphorus (TP) and nitrate N (NO3
-N) losses and minimize 

implementation costs (such as nutrients application, soil, and livestock management). The 

authors applied their approach in the Arachtos catchment in western Greece with 51 

potential agricultural BMPs for corn, alfalfa, and pastureland. The methodology proposed 

provided a fertilizer application scheme applied to other watersheds with similar 

agricultural land use at a field scale. 

Yet another study, by Babbar-Sebens, Mukhopadhyay, Singh, & Piemonti (2015), did 

not consider a detailed level of BMPs characterization. It provided only a summary of 

how the decision variables can be mapped into the model's inputs. Nevertheless, this 

research focused on incorporating the stakeholder’s participation in the simulation-

optimization of the BMPs in watersheds. A web-based software tool Watershed 

REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), was 

developed based on the Interactive Genetic Algorithm Mixed-Initiative Interaction 

(IGAMII) coupled with SWAT model. The authors emphasized the importance of 

IGAMII because this is a novel approach that learned about the problem from human 

expert feedback to adjust the optimization search process and provided alternative BMPs 

in the watershed. 

There are other examples of research in this field that address the selection and 

allocation of BMPs in a watershed to minimize the negative impacts of agriculture on 

reservoirs. A study conducted in the Aharchai river watershed of Iran developed an 

optimal model for selection and placement of BMPs at minimum cost by linking a 

coupled watershed-reservoir model (SWAT-SD) with a genetic algorithm at watershed 

scale (Karamouz et al., 2010). As its primary objective, the model sought to improve 

reservoir water quality (reduced phosphorous concentration) by applying structural BMPs 

for non-point sources, e.g., parallel terraces, grade stabilization structures, and permanent 

pools. The results obtained in this research show that terraces were the most cost-effective 

BMP option applied in the sub-basins of the watershed. However, they suggest using a 

probabilistic function to constrain the optimization problem defined for this case study, 

which could further consider the uncertainties in the solution selected. On the other hand, 
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other research has shown the importance of investigating the relations between farmers' 

land tenure security and agriculture production (Singirankabo et al., 2022) and how 

landowner tenure and attitudes of farming communities can modify the effectiveness of 

BMP alternatives (Piemonti et al., 2013). 

 

Table 1.1. Summary of the six representative examples of optimizing agricultural BMPs 

Reference Study objectives Criteria Method Level analysis 

Lehmann et 

al. (2013)  

 

Case study: 

Switzerland 

Optimal field 

management 

practices (schemes) 

for two climate 

change scenarios on 

wheat and maize 

production   

Maximize: 

1.Farmer’s profit 

margins 

2.Crop yield 

Coupled:  

CropSyst model and 

Evolutionary algorithm 

Decision variables:  

Fertilization (Nitrogen)  

Irrigation strategy 

-Field level 

(HRU) 

-Bioeconomic   

modeling 

 

Liu et al. 

(2013b)  

 

Case study: 

Canada 

Selection of BMPs 

for reducing 

agricultural non-

point source 

pollution  

Minimize: 

1. BMPs costs  

2.Total 

phosphorous 

Coupled:  

ε-NSGA-II (ε 

dominance archive) 

and SWAT model 

Decision variable: 

Management scheme 

Fertilization (N and P) 

-Field level 

(151 HRUs)  

-Slope less 5%  

-3 BMPs 

evaluated 

-Monthly 

analysis 

Panagopoulos 

et al. (2013)  

 

Case study: 

Grece 

Optimal selection 

and allocation of 

BMPs on pasture, 

corn, and alfalfa  

Minimize: 

1. Total 

phosphorus  

2. Nitrate 

3. Implementation 

cost 

Coupled:  

SWAT model and a 

DST 

Decision variables:  

-Fertilizer 

timing/reduction 

-Application scheme 

-Field level  

(259 HRUs)  

-51 BMPs 

evaluated 

-Annual analysis 

Rabotyagov 

et al. (2012)  

 

Case study:  

U.S.A. 

An approach for 

selecting basin 

configurations, 

achieving trade-off 

between costs of 

BMPs  

Minimize: 

1. Implementation 

cost 

2. Nutrient’s load  

   (N - P) 

Coupled: 

Strength Pareto 

Evolutionary 

Algorithm (SPEA2) 

and SWAT2005GA 

Decision variables:  

-Nutrient target 

reduction 

-Subbasin level 

-23 BMPs 

evaluated 

 

Babbar-

sebens et al. 

(2015)  

 

Case study:  

U.S.A. 

A web-based 

software tool for 

participatory 

optimization of CT   

Minimize: 

1. Cost-revenue  

2. Peak flow  

3. Sediments  

4. Nitrates  

Coupled: 

-Interactive Genetic 

Algorithm with Mixed 

Initiative Interaction 

(IGAMII) 

-SWAT model 

Subbasin level 
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1.2.2 Decision-making for agricultural BMPs optimization 

One of the objectives of defining optimal BMPs solutions is to be able to support the 

stakeholders and decision makers in making decisions on watershed management. 

‘Decision Support Systems’ (DSS) is the term used to denote the tools supporting such 

decisions. Commonly, these systems integrate optimization models, dynamic simulation 

models, databases and visualization interfaces (Price & Vojinovic, 2011; Pryke, 

Mostaghim, & Nazemi, 2007; Mendoza, G., Jeuken, A., Matthews, J. H., Stakhiv, E., 

Kucharski, J., & Gilroy, K., 2018) 

One of the recent examples of a DSS for agricultural BMPs at watershed scale is the 

web-based, interactive optimization tool WRESTORE (Babbar-Sebens et al., 2015). This 

tool provides stakeholders’ with a participatory environment to select the BMPs of their 

choice within the seven BMPs options available (No-till tillage practice, Strip Cropping, 

Cover crops, Crop Rotation, Grassed Waterways, Filter Strips, and Wetlands), which can 

be applied in their sub-basins and throughout the entire watershed. The tool uses the 

hydrological SWAT model to test the effectiveness of the BMPs, and a meta-heuristic 

optimization technique to define and allocate the most cost-effective BMP option from 

the BMPs selected by the users. However, the underlying code and architecture of 

WRESTORE can be adapted for any other simulation model and other variables.  

Nonetheless, most of the examples of decision-making methods for agricultural BMP 

definition and allocation found in the literature were used independently of the 

optimization process. Seppelt, Lautenbach, & Volk. (2013) argue that to offer valuable 

results for stakeholders at the watershed scale, scenario analyses across different scales 

combined with optimization algorithms, including Pareto-frontiers, will provide efficient 

and optimal options. This framework allows decision-makers to adjust the criteria weights 

for each optimization round and adjust these for the next round.  

Janssen, van Herwijnen, Stewart, & Aerts (2008) present a heuristic algorithm that 

allows decision-makers to participate in an interactive session, with the objective of 

obtaining feedback from decision makers to adjust and generate the land use planning 

program. Output maps and tables are used as the main interface between stakeholder and 

algorithm, which is considered an important part of the interactive validation process. 

Likewise, Xiao, Bennett, & Armstrong. (2007) present a review of the visual support 

system for multi-objective spatial decision-making. This review includes a unified 

conceptual framework which also offers some interactive visual support system 

alternatives for plotting the near-optimal solutions obtained with evolutionary algorithms. 

Decision makers can examine and select alternatives that they feel to be more appropriate, 

using visual tools such as: scatterplot matrix, maps of current and previously viewed 

alternatives, and parallel coordinate plots (Xiao et al., 2007). 
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Rabotyagov et al., (2012) developed a support tool which assists users to set the BMPs 

practices and their implementation costs. This tool integrates the SWAT model with the 

SPEA2 evolutionary algorithm, and according to the water quality goals to be achieved, 

it allows the user to define the watershed configuration. It also offers maps with the 

location of optimal BMPs at the sub-basin level, which is an interesting piece of 

information to be shared with the decision makers. 

The Agricultural Policy/Environmental eXtender (APEX; Williams and Izaurralde, 

2006) model helps the user configure BMPs to assess the impact on run-off and water 

quality in whole farm/small watershed management. Users can consider a group of 

various structural and non-structural BMPs applicable for heterogeneous farms. In 

addition, this model includes cost and income accounting and carbon cycling routines. 

Users can select among three model interfaces, WinAPEX, ArcApex, and iAPEX 

according to personal preferences. However, the model does not evaluate optimal 

solutions, and, as a consequence, the users have to define the best option according to the 

results obtained for each BMPs scenario simulated (Tuppad et al., 2010).  

1.3 RESEARCH GAPS IN AG-BMP OPTIMIZATION 

The Ag-BPMs optimization research literature review above (numeral 1.2), identified 

research gaps that this research addresses. These gaps can be divided into two main 

categories: i) level of the description system and ii) multi-objective optimization 

techniques. 

Regarding methodological studies for different types of agricultural optimization 

problems, some potentially useful ideas still need in-depth studies to produce a more 

realistic approach, especially for watersheds located in tropical mountainous regions, 

where shifting cultivation and intensive traditional agriculture predominate. Therefore, 

new studies in different areas can contribute to this end by defining characteristics of the 

problem, which could guide the choice of a suitable optimization approach for a given 

problem. Besides, adopting certain computational facilities to handle the spatial and 

temporal dynamics, as well as the large number of decision variables, must be improved.  

As discussed above (numeral 1.2.2), one of the main objectives of multi-objective 

optimization techniques for agricultural BMPs is to offer the stakeholders and decision-

makers one or more solutions to solve the problems that concern them. After exploring 

several decision support systems (DSS), I have concluded that no single methodology or 

tool that can help all these actors find the best trade-off. However, it is still necessary to 

consider the importance of including stakeholder participation when designing an 

optimization strategy. New DSS approaches based on stakeholders/decision-makers 

reference points and goals can be useful in exploring and improving research methods. 
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1.4 RESEARCH OBJECTIVES 

The general objective of this dissertation is to develop a modeling framework and 

methodology to build a spatio-temporal multi-objective optimization model that provides 

new insights to select and allocate agricultural BMPs in a watershed in the tropical Andes 

mountains. 

To realize this aim, we formulate the following specific objectives: 

O1. Analyze and determine the impacts on nutrient losses and crop yield from a single 

agricultural BMP (Ag-BMP) applied to a single crop at field and watershed level. 

O2. Analyze variations of spatio-temporal impacts on nutrient losses and crop yield 

from multiple agricultural management practices (Ag-MP) to determine spatio-

temporal critical source areas (ST-CSAs) in the watershed. 

O3. Select and parameterize Ag-BMPs scenarios to be used in the optimization model 

framework, which are feasible to implement by the local farmers. 

O4. Develop a framework and methodology for a spatio-temporal multi-objective 

optimization model to select and allocate Ag-BMPs for multiple crops. 

1.5 RESEARCH QUESTIONS 

Based on the research objectives, we formulate the following research questions: 

i. What is the impact on nutrient losses and crop yield of a single Ag-BMP applied to a 

single crop from the field level to the watershed level?  

ii. How can we incorporate the spatial and temporal dynamics of the nutrient losses in 

the runoff to select optimal Ag-BMPs? 

iii. How can the agricultural management practices information obtained from the 

farmers be translated into mathematical representation of modelling variables, 

constraints and objective functions? 

iv. How relevant is it to contemplate temporal and spatial variables in the Ag-BMPs 

optimization model? 

1.6 SCIENTIFIC CONTRIBUTION 

Methodology. This research contributes to agricultural BMPs optimization approach by 

providing a concrete application of a spatio-temporal multi-objective optimization 

framework for selecting and allocating agricultural BMPs feasible in a watershed of the 

Tropical Andes Mountains. This will be one of the first examples of an in-depth study 

which will cover the high level of complexity of shifting cultivation and intensive 

traditional agriculture presents in this type of watershed and will formulate and solve the 

corresponding mathematical optimization problem. 
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Decision-making. This research also contributes with a new approach to promote result 

based agricultural BMPs as a complementary policy instrument for control of non-point 

source water pollutants in Colombia. Likewise, it could be an assistance tool for the local 

communities (farmers), which can be used to adapt the agricultural practices to cope with 

unexpected changes that have occurred in recent years. 

1.7 OUTLINE 

Given the research motivation, questions, objectives, and research approach already 

presented, this dissertation has been structured in eight chapters (Figure 1.1). The next 

seven chapters are structured as follows:  

Chapter 2 presents the theoretical background of the research and the general 

methodology description. The chapter defines and explains the three main components of 

the coupled optimization modeling framework: agricultural BMPs (Ag-BMPs) types, 

hydrological modeling, and metaheuristic algorithms. Chapter 2, then, explains Ag-BMPs 

concepts and types of description. It also introduces what hydrological model we used to 

estimate the runoff nutrient losses and crop yields. And the chapter describes the 

metaheuristics for optimization problems; and the optimization algorithm description we 

use. Finally, A general description of the methodology used is presented. In this way the 

reader will be able to know from the beginning of the thesis the main methodological 

phases applied to fulfill the objectives of the research. 

Chapter 3 contains the description of the study areas. Fuquene and Riogrande II 

watersheds located in the Colombian Andes, were the two case studies selected for the 

development of the research. Chapter 3 describes the catchment, climate, land-use, soils, 

and socio-economic and environmental conditions. 

Chapter 4 investigates and analyzes a single Ag-BMP (conservation tillage - CT), and 

its effects on runoff nutrient losses and crop yield for a single crop (potato-based mixed 

crop system) at both field and watershed levels. It includes the fieldwork methodological 

design to collect data of the current agricultural practices (intensive tillage - IT) and 

experimental runoff plots in the potato crop. And it presents a step-by-step the 

methodology implemented for the hydrological modeling of the baseline and CT-BMP 

scenarios. 

Chapter 5 presents spatio-temporal analyses of multiple agricultural management 

practices impacts. Chapter 5 describes the ST-CSAs (spatio-temporal critical sources 

areas) index for selecting the search space for implementation of the optimization model. 

And the spatio-temporal runoff nutrient losses in the defined areas are analyzed. It 

includes the fieldwork methodological design to collect data on the current agricultural 

practices for the cultivation of potato, tree tomato and kikuyu grass. Finally, the search 

space to be used in the next general methodology phase corresponding to the 

implementation of the optimization model is presented. 
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Chapter 6 describes the proposed spatio-temporal multi-objective optimization modeling 

framework to select and allocate agricultural BMPs for multiple crops. It provides 

descriptions of the components of the framework and how they are connected. In this 

chapter, the selection and parametrization of the Ag-BMPs scenarios to be used in the 

optimization model are presented. The multi-objective mathematical optimization 

formulation and parametrization of the Ag-BMPs scenarios are described. It also 

discusses the insights gained into the Ag-BMP optimization approach by explicitly 

modeling the spatio-temporal interactions using ST-CSAs to define the optimization 

search space. Finally, Pareto-front comparison results between the average vs. single sites 

(HRUs) values for each objective function are presented to select the optimal BMPs. 

Finally, chapter 7 summarizes the results and conclusions of the preceding chapters. This 

chapter closes with the outlook of the research, recommendations about future research 

needs and limitations.  

 

 

 
 

Figure 1.1. Overview of dissertation structure and connections between the chapters. 
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2.1 INTRODUCTION 

The goal of this chapter is to present definitions, methods and modeling approaches that 

will be used in this research. This chapter first presents an overall definition of agricultural 

best management practices (Ag-BMPs) categories and a brief description of the Ag-

BMPs that we will be considering in this research. Second, we explain the two main 

components (hydrological model and metaheuristic optimization algorithms) of the 

optimization modeling approach to be used. Particularly, we describe the hydrological 

model to be used to estimate the pollutants in the runoff water from each of the Ag-BMPs 

scenarios; and the metaheuristics options (optimization algorithms), especially those that 

have been implemented for Ag-BMP optimization. Finally, a brief description of the 

general methodology used to develop the framework is presented. The methodological 

phases are described, which are developed and presented in the subsequent chapters of 

the dissertation. Overall, the purpose of this chapter is to provide a brief review of all the 

concepts mentioned above. 

2.2 AGRICULTURAL BEST MANAGEMENT PRACTICES (AG-BMPS) 

There is no universal definition available for agricultural BMPs. Today, the emphasis of 

agricultural BMPs is more focused on environmental protection. For example, Ritter & 

Shirmohammadi defined agricultural BMPs as a practice or combination of techniques 

used to minimize or prevent non-point source pollution resulting from agricultural 

activities (Ritter and Shirmohammadi, 2001). However, the overall philosophy is to 

identify management techniques to keep pollutants out of the water, be economically 

feasible to implement for farmers, and offer an optimum production scenario for a specific 

cropping system and location (Roberts, 2007). 

In this research, we felt it necessary to have our own BMPs definition, which 

considers environmental, economic, and social factors defined in the optimization model. 

Therefore, the word ‘agricultural BMPs’ is defined by us as a practice or combination of 

techniques used to protect water quality, prevent soil degradation, reduce soil erosion, 

and enhance the farm's productive level and the farmer's social well-being. 

There are two practice types of BMPs: (i) In-field management practices, which are 

designed to prevent contaminants from getting into the water in the first place, and (ii) 

structural BMPs, which include relatively permanent land-shaping or constructed 

practices. Logan (1990) presented a classification of the agricultural BMPs according to 

the type, environmental objective, pollutants, and medium impacted (Logan, 1993). Table 

2.1 presents the description and classification of the agricultural BMPs according to our 

research objectives. 

While a comprehensive list of agricultural BMPs may exist, what works in one 

geographic region may not work well in another because of variation in soil 
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characteristics, geology, topography, climate, and so forth. Nonetheless, we are going to 

consider only in-field management practices. The main reasons to focus only in this 

category are (i) Agricultural BMPs designed to be implemented by local farmers on their 

land, and (ii) not include construction costs of structural options. In this section, the 

general classification, and characteristics of in-field BMPs are described. And Figure 2.1 

graphically shows the Ag-BMPs implementation on a field.  

 

 Table 2.1. Description and classification of agricultural BMPs (modified Logan, 

1993). 

BMP 
POLLUTANT 

TREATED 1 

MEDIUM IMPACTED 2 

SURFACE 

WATER 

GROUND 

WATER 
SOIL 

Structural     

Buffer zones or filter strips S + + + 

Terraces, hillside ditches S, P + - + 

Grass waterways S, P +  + 

Subsurface (tile) drains S, P, N +/- + + 

Sediment and water retention 

basins 
S, P, N + - - 

Surface drains N - + + 

Irrigation tailwater recovery 

systems 
S, C +  + 

     

In-Field management     

Conservation tillage S, N, P + - + 

Cover crop and rotation S + + + 

Contour cropping S + - + 

Strip cropping S + - + 

Fertilizer management N, P + + + 

Irrigation management N, P + + + 

Animal waste management N, P + - + 
 

1 C, pesticide; S, sediment; P, phosphorus; N, nitrogen; M, heavy metals.  
2 (+), positive impact; and (-), no impact  

Source modified: (Logan, 1993) 

 

2.2.1 Conservation tillage 

Blevins, R. L., & Frye, W. W. (1993) define conservation tillage as a practice that leaves 

a percentage of the soil surface covered with green manure or crop residue to reduce run-

off and increase infiltration (Ritter and Shirmohammadi, 2001). Over time, the crop 

residue is degraded, increases soil organic matter, and improves the soil structure and soil 

biological properties. Therefore, this has a positive effect that allows reducing the run-

off, being more relevant during the critical rain periods (Carter and Sanderson, 2001). 
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The minimum tillage or minimum movement of the soil consists of intervening as 

little as possible in the soil at the time of cultivation, in such a way that it does not interfere 

in the natural processes that develop in it (FAO, 2000). Several implements are used in 

minimum tillage systems to avoid inverting the soil and causing excessive soil erosion 

(FAO, 2000a, 2015).  Minimum tillage involves the amount and distribution of crop/plant 

residue on the soil surface, limiting soil disturbance to only the amount necessary to 

incorporate the nutrients and plant the crops (Neitsch et al., 2011). Minimum tillage 

reduces soil erosion and protects soil moisture due to increased filtration, preserving the 

soil's structure, increase soil organic matter content, and reducing CO2 losses from the 

soil. Additionally, the practice allows savings in labor, fuel and heavy machinery costs. 

2.2.2 Cover crop and crop rotations 

Blevins, R. L., & Frye, W. W. (1993) define cover crops/rotation as a practice that leaves 

a percentage of the soil surface covered with green manure or crop residue to reduce run-

off and increase infiltration (Ritter and Shirmohammadi, 2001). Over time, the crop 

residue is degraded, increasing soil organic matter, and improving the soil structure and 

soil biological properties. Therefore, a system with crop rotations and cover crops 

improves soil productivity and crop yields and reduces run-off and, ideally, losses to 

insects and diseases (Carter and Sanderson, 2001).  

Both crop rotations and cover crops are usually combined in a primary crop cycle. 

Crop rotation is established sequentially and includes a cover crop in the primary crop 

cycle that will be used as green manure. Both practices provide potential benefits for 

organic matter increase due to the addition of green manure sources. Also, soil hydraulic 

properties can be improved, and there is increased soil protection from the impact of 

rainfall (Carter and Sanderson, 2001). And, if legumes are used, biological fixation of 

nitrogen to the soil increases. 

A wide range of plants can be used as green manure and/or permanent coverage. 

These should be plants of rapid initial growth that produce large amounts of biomass with 

minimum consumption of water, few pests. In addition, green manure and cover crops 

should not be invasive plants that hinde the growth of successive crops and rotation (FAO 

and MADS, 2018; Rubiano et al., 2006b; FAO, 2000). According to FAO and MADS 

(2018) in Colombia, the centeno (Secale cereale L.), barley (Hordeum sativum), oat 

(Avena sativa L.), nabo forrajero (Raphanus sativus L.), vicia (Vicia atropurpurea), 

higuerilla (Ricinus communis L.) and some varieties of beans, have been used as green 

manures in the high altitude tropical regions of the country. In particular, some studies 

have reported significant environmental and economic benefits of the use of oat as green 

manure in rotation with potato (oat-potato-potato) compared with the traditional system 

in the study watershed (Guerrero, 1998) and in other watersheds with similar 

characteristics (Uribe et al., 2018; Rasouli et al., 2014; Quintero and Comerford, 2013; 

García et al., 2000). 
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2.2.3 Contour cropping 

Contour farming is a practice that consists of planting along the contours of the terrain. 

This practice's main objective is to reduce soil erosion, rill erosion, and surface run-off 

(Tuppad et al., 2010). On the other hand, this practice serves as a barrier to retaining the 

nutrients in run-off from the crop upslope, providing extra nutrients to the crop and 

reducing the amount of fertilizer required by the crop.  

This practice is being adopted as an alternative to up-and-down-slope farming 

globally for soil erosion control. Contouring creates furrows perpendicular to the field 

slope, reducing the runoff velocity, reducing sediment transport, and enhancing the 

infiltration of the water (Blanco and Lal, 2008). On the other hand, this practice serves as 

a barrier to retaining the nutrients in a run-off that comes from the crop upstream. In this 

way, contour planting accompanied by other conservation practices can be added extra 

nutrients in the crop management, which is vital for crop yield. Contour planting is 

suggestedin all soils that have a slope. On steeper slopes, the contour lines are essential 

but not enough, so the combination with terraces, ditches, and live barriers are 

recommended to discharge runoff from the contour rows. It is an ideal BMP to be used 

in rolling topography. 

2.2.4 Buffer zones and Filter strips 

Buffer zones consists of planting with diverse vegetation bands, which act as filters and 

barriers to collect and remove pollutant nutrients, pesticides, and bacteria from surface 

run-off. These buffer zones have to be situated at the edge of a field to collect the more 

significant run-off water from the pollutant source areas (Ritter and Shirmohammadi, 

2001). And filter strips are vegetated areas that are situated between surface water bodies 

and cropland or grazing land. Diversity fencings/bands of vegetation that act as filters and 

barriers to collect and remove pollutant nutrients, pesticides, and bacteria from surface 

run-off are planted in these areas. Filter strips are also known as vegetation filter. They 

are generally situated at the edges of channel segments to protect them from animals that 

and collect run-off water from the pollutant source areas (Ritter and Shirmohammadi, 

2001). 

2.2.5 Fertilizer management 

Fertilizer management is a practice that fosters the optimization and of fertilizer 

applications. The International Plant Nutrition Institute (IPNI) summarizes the principles 

of fertilizer BMPs as the right product, right rate, right time, and the right place. As its 

primary objective, this approach encourages application of the required amounts of 

fertilizers needed by the plant at the right time and place. On the other hand, fertilizer loss 

to the environment and water body is minimized (Roberts, 2007). 
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The dairy systems in Colombia have a common standard practice of the excessive use 

of nitrogen fertilizers after each grazing (Rubiano et al., 2006b). This practice allows 

farmers to appreciate the rapid biomass increase visibly and, consequently, increase the 

animal load per hectare and graze the pasture more frequently (Correa et al., 2008). 

However, studies have proven that the excessive use of fertilizers, regarding quantity and 

frequency, causes changes in the nutritional quality of the pastures, which are not visible 

to producers (Rodriguez and Soto, 1999; Urbano, 1997; Van Horn et al., 1994)  And 

therefore, it causes adverse effects on productivity, economic and environmental 

(Hanigan, 2005; Lapierre et al., 2005). In the study area, Rodríguez (1999) showed the 

importance of adjusting the pastures fertilization schedules for dairy regarding frequency, 

quantity, and type of fertilizers used. The results showed no significant differences in 

kikuyu and ryegrass's nutritional components because of the reduction in amount (-10%) 

and frequency (four cuts every 30 days or two cuts every 60 days without applying N) 

fertilizer used. The main reason could be the presence of remaining nutrients in the soil 

(Uribe et al., 2018; Nielsen and Kristensen, 2005). 

2.2.6 Living fences 

Live fences are those in which a row of trees and shrubs are planting in short distances, 

and frequent pruning is used to replace conventional barriers. This multipurpose 

agroforestry practice originated in the need to delimit helps to control the movement of 

animals and humans, provide firewood or forage, serve as windbreaks, enrich the soil 

with nutrients, and allow trees or shrubs to be introduced to grazing areas (Blanco and 

Lal, 2008)(Zhai et al., 2006). At the same time, live fences provide a habitat for wildlife.  

For our study, we focused on live tree legume fences used in livestock systems, which 

have been used in agriculture since ancient times. In more recent times, legumes have 

become important as high-quality forages for livestock as other feed sources both in 

cultivated pastures (Broom et al., 2013; Mejia-Diaz et al., 2017). Tree legumes fences in 

the livestock systems of the high-altitude tropics have multiple environmental and 

production benefits, including the trees’ nutritional quality and nitrogen fixation, as well 

as counteracting the adverse effects of frost and drought, reducing pests that affect the 

development of grasses, lower production costs (replacing electric fences), and improving 

the reproductive performance of animals (Gutteridge and Shelton, 1994; Murgueitio, 

2005). In Colombia, options for live fences include hedges with Leucaena leucocephala, 

Tithonia diversifolia (commonly known as the “golden button” “botón de Oro”), or 

Sambucus peruviana (widely known as “Tilo”) in mountain areas.  

In Colombia, the Tithonia diversifolia is increasingly being studied and planted in 

association with improved grasses as one of the best alternatives for silvopastoral systems 

in the mountains of the high tropics (Mejía-Díaz et al., 2017). When used for forage, it 

can be harvested up to six times a year after four months of sowing. The plant should be 

cut before flowering, using leaves and stems two centimeters thick. Reported values of 
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the dry weight of biomass vary between 16% to 35% depending on planting density, soil 

type, and environmental conditions (González-castillo et al., 2014; Mejia-Diaz et al., 

2017). A study conducted in a farm located in the study area (Municipality of Don Matias) 

reported an improvement in milk production and quality when 35% of the concentrate in 

the animals' diet was replaced by Tithonia diversifolia forage (Mahecha et al., 2007). In 

small and medium dairy producers, it has been possible to reduce production costs 

between 10 and 15 percent due to less use of fertilizers in the grasslands and less 

concentrated feed (up to 25%) (Zuluaga and Rivera, 2013; Murgueitio et al., 2016). 

Additionally, after six months of planting the Tithonia, the nitrogen, phosphorus, 

potassium, and calcium content in the soil could be increased by 191, 8, 271, and 70 kg/ha, 

respectively (González-castillo et al., 2014). In summary, the association of legumes with 

grasses contributes to environmental, economic, and nutritional improvements in 

livestock systems, which depend on the established arrangement characteristics 

implemented in the field. 

 

Conservation Tillage Crop Rotation Contour Cropping 

Buffer Zones Fertilizer Management Living Fences 

 

 

Figure 2.1. Agricultural best management practices (Ag-BMPs) implementation on 

field. 
Source: (INSPIA, 2015) 

http://www.inspia-europe.eu/index.php/best-management-practices 

 

2.3 AG-BMP ALLOCATION FOR WATER MANAGEMENT PURPOSES 

Agricultural management practices vary widely in terms of scale, geographical location, 

and purpose. Farmers and decision makers of these real-world systems are faced with the 

need to select and allocated optimal agricultural-BMPs as alternative management 

options to reduce nonpoint pollution sources. Agricultural scientists are turning more 

towards simulation models to identify the optimal selection and location of BMPs. From 
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a modeling perspective, integrated models using a coupled-component modeling 

approach are the most widely used modeling type for Ag-BMP optimization problems. 

Previous studies have developed several optimization modeling studies of Ag-BMP 

localization at different scales (field, sub-watershed, and watershed). Among these, the 

Non-dominated Sorting Genetic Algorithm (NSGA-II) or Genetic Algorithm (GA) has 

been coupled with the Soil and Water Assessment Tool (SWAT) as optimization engines 

(Liu et al., 2019; Geng et al., 2019; Dai et al., 2018; Babbar-sebens and Minsker, 2012; 

Maringanti et al., 2011; Liu et al., 2013; Panagopoulos et al., 2013; García et al., 2000). 

The SWAT model is commonly used because provides different Ag-BMP types and it is 

closely connected to GIS (Geographic Information Systems). 

2.3.1 Hydrological and water quality modeling 

Hydrological models are tools used to represent a watershed’s response to climate and/or 

land use variability, with emphasis on modeling the flow hydrograph at the concentration 

point of the watershed. Hydrological models are also used as a basis for modeling other 

processes, such as water quality, erosion, real-time flood forecasting, etc. Hydrological 

models can be divided 1) according to the conceptualization of the basic processes; can 

be empirical (metric), conceptual (parametric) or process-based (mechanistic); 2) 

according to the nature of the basic algorithms, can be deterministic or stochastic; and 3) 

according to their spatial representation, they can be grouped, distributed or semi-

distributed (Solomatine and Wagener, 2011). 

The hydrological model used in this research was the Soil and Water Assessment Tool 

(SWAT) developed by the United States Department of Agriculture – Agricultural 

Research Service (USDA-ARS) (Arnold et al., 1998). The model is a continuous-time, 

semi-distributed, process-based river watershed-scale model designed to simulate water 

management decisions' long-term effects on the water quality and hydrologic response  

(Neitsch et al., 2011). The model is built on a daily time step at sub-basin and watershed 

scales. Sub-basins in a simulation are beneficial when different watersheds are dominated 

by land uses or soils that differ in their properties that may impact the hydrology. These 

are further subdivided into a series of Hydrological Response Units (HRU), common land 

areas within the sub-basin composed of unique land cover, soil, and agricultural 

management practices (Arnold et al., 2012b). The hydrological cycle simulated is based 

on the water balance equation, including daily precipitation, runoff, evapotranspiration, 

percolation, and returns flow components (Gassman et al., 2007). Spatial information 

such as the soil type and characteristics, land use, climate, and topography are necessary 

inputs. SWAT is a semi-distributed, continuous-time, and process-based watershed-scale 

model designed to simulate the effects of water management decisions on water quantity 

and quality (Neitsch et al., 2011). The model's processing units are Hydrological 

Response Units (HRUs) – small land areas with unique combinations of sub-basin, soil 
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type, land use, and agricultural management practices (Arnold et al., 1998). The 

hydrological cycle is based on the water balance equation.  

SWAT allows several different physical processes to be simulated in a watershed. A 

summary of the equations used in the runoff, Nitrate-N loads (NO3
-N) in runoff, crop 

yields estimation, and agricultural management practices implementation processes are 

described below. These equations have been taken from theoretical SWAT 

documentation version 2009 (The document can be downloading for obtaining detail 

information (http://swat.tamu.edu/documentation/). 

 

Surface runoff 

The Natural Resources Conservation Service Curve Number (CN) method (USDA-SCS, 

1972) was used to predict the surface runoff. The model estimates the runoff amounts 

under varying land use and soil types (Neitsch et al., 2011). The CN equation is shown 

below. 

 
𝑄𝑠𝑢𝑟𝑓 =

(𝑅𝑑𝑎𝑦 − 𝐼𝑎)2

(𝑅𝑑𝑎𝑦 − 𝐼𝑎 + 𝑆)
 

 

(2.1) 

where Qsurf is the accumulated runoff or rainfall excess (mm H2O); Rday is the rainfall 

depth for the day (mm H2O); and Ia is the initial abstractions (mm H2O) (surface storage 

as well interception and infiltration before runoff). The initial conception is commonly 

approximated to 0.2S, and S is the retention parameter (mm H2O). In this abstraction, S= 

25.4 * [(1000/CN) - 10], and CN is the curve number for the day (Neitsch et al., 2011). 

The CN is a function of the land use, soil permeability, and the soil, as mentioned above, 

water conditions. Two methods were used to calculate the retention parameter: (1) the 

soil moisture method, which allows the retention parameter to vary with the soil profile 

water content; and (2) the plant ET method, which allows the retention parameter to 

change with the accumulated plant evapotranspiration (Neitsch et al., 2011). 

A surface runoff storage feature to lag a portion of the surface runoff release to the 

main channel is incorporated in SWAT. When surface runoff is calculated using either 

the CN or the Green-Ampt method, the runoff released to the main channel is calculated 

with the following equation (Neitsch et al., 2011): 

 

 𝑄𝑠𝑢𝑟𝑓 = (𝑄𝑠𝑢𝑟𝑓
′ + 𝑄𝑠𝑡𝑜𝑟,𝑖−1) [1 − 𝑒𝑥𝑝 (

−𝑠𝑢𝑟𝑙𝑎𝑔

𝑡𝑐𝑜𝑛𝑐
)] (2.2) 

 

http://swat.tamu.edu/documentation/
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where, 𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff discharged to the main channel on the given 

day (mm H2O); 𝑄𝑠𝑡𝑜𝑟,𝑖−1 is the surface runoff stored from the previous day (mm H2O); 

𝑄𝑠𝑢𝑟𝑓
′  is the amount of surface runoff generated in the sub-basin on a given day (mm 

H2O); 𝑠𝑢𝑟𝑙𝑎𝑔  is the surface runoff lag coefficient, and the 𝑡𝑐𝑜𝑛𝑐  is the time of 

concentration for the sub-basin (hrs). When the concentration-time increases, 𝑠𝑢𝑟𝑙𝑎𝑔 

decreases in value, and more water is held in storage. 

 

Nutrient’s transport (Nitrate and Soluble phosphorus) 

Nitrate can be transported with surface runoff, percolation, and lateral flow. The nitrate-

N concentration in the mobile water must be calculated to determine the amount of 

nitrate-N moved by the water. The amount of mobile water refers to the amount of water 

lost by surface runoff (𝑄𝑠𝑢𝑟𝑓 ), lateral flow (𝑄𝑙𝑎𝑡,𝑙𝑦 ) and percolation (𝑤𝑝𝑒𝑟𝑐,𝑙𝑦 ). The 

following equation is applied: 

 

 
𝑐𝑜𝑛𝑐𝑁𝑂3,𝑚𝑜𝑏𝑖𝑙𝑒 =

𝑁𝑂3𝑙𝑦 [1 − 𝑒𝑥𝑝 (
−𝑤𝑚𝑜𝑏𝑖𝑙𝑒

(1 − 𝜃𝑒). 𝑆𝐴𝑇𝑙𝑦
)]

𝑤𝑚𝑜𝑏𝑖𝑙𝑒
 

(2.3) 

where 𝑐𝑜𝑛𝑐𝑁𝑂3,𝑚𝑜𝑏𝑖𝑙𝑒 is the concentration of nitrate-N in the mobile water for a given 

layer (kg N/mm H2O), 𝑁𝑂3𝑙𝑦  is the amount of nitrate in the layer (g N/ha), 𝜃𝑒  is the 

fraction of porosity, 𝑆𝐴𝑇𝑙𝑦 is the saturated water content of the soil layer (mm H2O), and 

the 𝑤𝑚𝑜𝑏𝑖𝑙𝑒 = 𝑄𝑠𝑢𝑟𝑓 + 𝑄𝑙𝑎𝑡,𝑙𝑦 + 𝑤𝑝𝑒𝑟𝑐,𝑙𝑦 is the amount of mobile water in the layer (mm 

H2O). The following equations calculate the nitrate-N removed in surface runoff, lateral 

flow, and percolation:  

Nitrate removed in surface runoff → 𝑁𝑂3𝑠𝑢𝑟𝑓 = 𝛽𝑁𝑂3. 𝑐𝑜𝑛𝑐𝑁𝑂3,𝑚𝑜𝑏𝑖𝑙𝑒 . 𝑄𝑠𝑢𝑟𝑓                   (2.4) 

Nitrate removed in lateral flow → 𝑁𝑂3𝑙𝑎𝑡,𝑙𝑦 = 𝛽𝑁𝑂3. 𝑐𝑜𝑛𝑐𝑁𝑂3,𝑚𝑜𝑏𝑖𝑙𝑒 . 𝑄𝑙𝑎𝑡,𝑙𝑦                  (2.5) 

Nitrate removed by percolation → 𝑁𝑂3𝑝𝑒𝑟𝑐,𝑙𝑦 = 𝑐𝑜𝑛𝑐𝑁𝑂3,𝑚𝑜𝑏𝑖𝑙𝑒 . 𝑤𝑝𝑒𝑟𝑐,𝑙𝑦                   (2.6) 

where, 𝛽𝑁𝑂3 is the nitrate-N percolation coefficient. 

The mobility of solution phosphorus is low. Therefore, in the swat model, the surface 

runoff only interacts partially with the solution P stored in the top 10 mm of soil. The 

amount of solution P transported in surface runoff is calculated with the following 

equation: 
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 𝑃𝑠𝑢𝑟𝑓 =
𝑃𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑢𝑟𝑓 . 𝑄𝑠𝑢𝑟𝑓

𝜌𝑏 . 𝑑𝑒𝑝𝑡ℎ𝑠𝑢𝑟𝑓 . 𝑘𝑑,𝑠𝑢𝑟𝑓
      (2.7) 

where 𝑃𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑢𝑟𝑓 is the amount of phosphorus in solution in the top 10 mm (kg P/ha), 

𝜌𝑏 is the bulk density of the top 10 mm (Mg/m3), 𝑑𝑒𝑝𝑡ℎ𝑠𝑢𝑟𝑓 is the depth of the surface 

layer (10 mm), and 𝑘𝑑,𝑠𝑢𝑟𝑓 is the phosphorus soil partitioning coefficient (m3/Mg). This 

refers to the ratio of the soluble phosphorus concentration in the top 10 mm of soil.  

 

Crop yield 

The potential crop yield calculated in SWAT is a function of the harvest index (HI) and 

the plant biomass (bio) when the day of harvest/kill operation is performed. The yield 

calculates will not be added to residue in the soil and are assumed to be lost from the 

system (i.e., the watershed).  

The harvest index (HI) is the fraction of the aboveground plant dry biomass removed 

as dry economic yield. The HI will be between 0.0 to 1.0. However, the HI may be greater 

than 1.0 for plants whose roots are harvested (i.e., potatoes, cassava). SWAT calculates 

the harvest index each day of the plant’s growing season using the relationship as: 

 

 𝐻𝐼 = 𝐻𝐼𝑜𝑝𝑡.
100. 𝑓𝑟𝑃𝐻𝑈

(100. 𝑓𝑟𝑃𝐻𝑈 + 𝑒𝑥𝑝[11.1 − 10. 𝑓𝑟𝑃𝐻𝑈])
      (2.8) 

 

where HI is the potential harvest index for a given day, HIopt is the potential harvest 

index for the plant at maturity given ideal growing conditions, and frPHU is the fraction of 

potential heat units accumulated for the plant on a given day in the growing season. Then, 

the potential crop yield is calculated as: 

 𝑦𝑙𝑑 = 𝑏𝑖𝑜𝑎𝑔 . 𝐻𝐼                       when HI ≤ 1.00      (2.9) 

 𝑦𝑙𝑑 = 𝑏𝑖𝑜. (1 −
1

(1+𝐻𝐼)
)             when HI > 1.00                 (2.10) 

where yld is the crop yield (kg ha-1), bioag is the aboveground biomass on the day of 

harvest (kg ha-1), HI is the harvest index on the day of harvest, and bio is the total plant 

biomass on the day of harvest (kg ha-1). The aboveground biomass is calculated: 

 𝑏𝑖𝑜𝑎𝑔 = (1 − 𝑓𝑟𝑟𝑜𝑜𝑡). 𝑏𝑖𝑜      (2.11) 
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where frroot is the fraction of total biomass in the roots the day of harvest, and bio is 

the total plant biomass on the day of harvest (kg ha-1). 

The actual crop yield is calculated in SWAT adjusting the harvest index predicted with 

the Eq. 2.8, which is affected by water deficit using the relationship: 

 

 𝐻𝐼𝑎𝑐𝑡 = (𝐻𝐼 − 𝐻𝐼𝑚𝑖𝑛).
𝛶𝑤𝑢

𝛶𝑤𝑢 + 𝑒𝑥𝑝[6.13 − 0.833 . 𝛶𝑤𝑢]
+ 𝐻𝐼𝑚𝑖𝑛      (2.12) 

 

where 𝑯𝑰𝒂𝒄𝒕 is the actual harvest index, HI is the potential harvest index on the day o 

harvest calculated with equation 2.8, HImin is the minimum harvest index allowed for the 

plant (the harvest index for the plant in drought conditions), and Υwu is the water 

deficiency factor. The water deficiency factor is calculated: 

 𝜰𝒘𝒖 = 𝟏𝟎𝟎.
∑ 𝑬𝒂

𝒎
𝒊=𝟏

∑ 𝑬𝒐
𝒎
𝒊=𝟏

      (2.13) 

where Ea is the actual evapotranspiration on a given day, Eo is the potential 

evapotranspiration on a given day, i is a day in the plant growing season, and m is the day 

of harvest if the plant is harvested before it reaches maturity or the last day of the growing 

season if the plant is harvested after it reaches maturity. 

 

Management practices 

Fertilizer application: In the fertilizer database, the weight fraction of different types of 

nutrients and bacteria are defined for each fertilizer/manure applied. The amounts of 

nutrients added as to the other pools in the soil are calculated as: 

 𝑁𝑂3𝑓𝑒𝑟𝑡 = 𝑓𝑒𝑟𝑡𝑚𝑖𝑛𝑁 ∗ (1 − 𝑓𝑒𝑟𝑡𝑁𝐻4) ∗ 𝑓𝑒𝑟𝑡_𝑘𝑔      (2.14) 

where NO3fert is the amount of nitrate (NO3
-N) added to the soil in the fertilizer (kg 

N/ha), fertminN is the fraction of mineral N in the fertilizer, fertNH4 is the fraction of mineral 

N in the fertilizer that is ammonium, fert_kg is the amount of fertilizer applied to the soil 

(kg/ha) on a specific day of the defined management schedule. 

 

Tillage: The tillage operation redistributes residue, nutrients, bacteria, and pesticides in 

the soil profile. The decision variables to represent the minimum tillage BMP option 

required are the operation's timing, which in our case won’t change, and the type of tillage 
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operation (till_id). The change in the redistribution of nitrate (NO3mixed) in the soil is 

calculated as: 

 𝑁𝑂3𝑚𝑖𝑥𝑒𝑑 = (𝑁𝑂3𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑥𝑒𝑑 ∗ 𝐷𝑒𝑝𝑡ℎ𝑙𝑎𝑦𝑒𝑟)/𝐷𝑒𝑝𝑡𝑖𝑙      (2.15) 

where,   

 𝑁𝑂3𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑥𝑒𝑑 = ∑ (𝑁𝑂3𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ 𝐸𝑓𝑓𝑖𝑚𝑖𝑥)

𝐷𝑒𝑝𝑡𝑖𝑙,max 𝑑𝑒𝑝𝑡ℎ

𝑖=𝑓𝑖𝑟𝑠𝑡 𝑠𝑜𝑖𝑙 𝑙𝑎𝑦𝑒𝑟

      (2.16) 

Depthlayer is the depth of each soil layer that is redistributed, Deptil depth of soil mixed 

by the implement, NO3initial is the initial content of nitrate of each soil layer in kg/ha, and 

Effimix is the mixing efficiency of the tillage implement in percentage (%). To calculate 

the final nitrate content, the NO3mixed is added to the unmixed nitrate for the layer. 

Grazing: The simulation of plant biomass removal and manure deposition over a specific 

period is carried out by the grazing operation in the SWAT model. The time during the 

year at which grazing begins, the amount of biomass removed daily, the amount of the 

manure deposited daily, the type of manure deposited, and the length of grazing period 

are the values required. A minimum plant biomass for grazing could be specified. When 

the plant biomass falls below the amount specified the model will not graze or apply 

manure in the HRU on that day. 

2.3.2 Metaheuristics for agricultural land use optimization 

Optimization techniques are considered to be very useful for model-based support-

systems designed to define alternatives for a sustainable agriculture sector. Most 

problems considered in this study do not allow for an analytical representation of the 

objective function (it is calculated by software), and/or its derivative, efficient gradient-

based methods cannot be used. Moreover, the problems considered typically have 

multiple optima. What is left is the class of optimization techniques that are referred to as 

“direct methods”, “global optimization”, or “metaheuristics”. In essence, these are 

methods using randomized search. Metaheuristics optimization approaches are 

considered the most suitable strategies to solve this type of problems (Ólafsson, 2006). 

Metaheuristics has been described as “an algorithm designed to solve approximately a 

wide range of hard optimization problems without deeply adapting to each problem” 

(Boussaïd et al., 2013). 

There are several metaheuristics options available in the literature. However, it is 

essential to select the most appropriate for the optimization problem to be solved. Groote 

et al. (2007) propose classification/categories of the study areas in which metaheuristics 

are applied (Figure 2.2). One of these categories is water resources management, 

including problems related to agricultural BMP selection and allocation. The criteria 
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considered in these types of studies are mainly focused on reducing nonpoint pollution 

sources from farms. However, this approach usually also contemplates environmental, 

social, and economic aspects as decision variables for the cropping systems evaluated 

(Figure 2.3). In this way, a better representation of the systems’ complexity can be 

achieved, which lets us offer better solutions for integrated watershed management. 

 

 

 

Figure 2.2. Areas of study in which metaheuristic optimization methods have been used. 

 

 

 

Figure 2.3. Global framework for water resource management of agricultural BMP 

optimization. 

Nature conservation 

in landscapes

Ecological quality such as: 

❖ Species habitat 
connectivity

❖ Spatial compactness

Water resources 

management

❖ Farmer’s income

❖ Nutrient loss

❖ Fertilizers leaching

❖ Sediment and pollutant 
agrochemical 
concentration levels

Water management 

and Best management 

practices (BMPs) to 

reduce pollutions

Economic crop 

planning

❑ Farmer’s income

❑ Type/amount of 
employment

❑ Soil erosion

❑ Labor productivity

Agro and 

socioeconomic 

aspects of production

Distribution of species, 

improve habitat quality, 

and restoration

M
a
in

 
C

o
n

tr
ib

u
ti

o
n

C
ri

te
ri

a
 t
o

b
e

o
p

ti
m

iz
e

d

ENVIRONMENTAL

SOCIALECONOMIC

Source Rate

PlaceTime

Resource use

efficiencies

Soil

erosion

Nutrient

balance

Yield net 

profit

Nutrient loss

Water quality

Accessible

food

Ecosystem

services

Farm 

income

Return on 

investment

Working

conditions

CROPPING SYSTEM



 Theoretical Background and Methodology 

25 

 

The metaheuristic algorithms can be mainly classified into two categories: i) single 

solution-based metaheuristics, also called trajectory methods, and ii) population-based 

metaheuristic (Boussaïd et al., 2013). However, we only highlight and give a global 

overview of the population-based metaheuristics which have been used in agricultural 

land-use optimization. The population-based metaheuristics approach is focused on 

obtaining a set of solutions that seek to identify the preferable regions within a defined 

research space (Boussaïd et al., 2013; Memmah et al., 2015).  Evolutionary Algorithms 

(EAs) and Swarm Intelligence (SI) are the two most used methods for this research field. 

EAs are based on Darwin’s theory about the evolution of populations as they adapt to the 

environment. Several optimization algorithms like Genetic Algorithm (GA) and 

Differential Evolution (DE) are included in this category. A generic form sketch of EAs 

and SI are shown in Table 2.2. 

Several evolutionary algorithms have been developed to solve multi-objective 

optimization problems. The strength Pareto evolutionary algorithm 2 (SPEA 2) (Zitzler 

and Thiele, 1999), niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), and non-

dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) are some examples. 

However, the NSGA-II has been widely applied in BMP optimization problems for 

watershed management and planning studies in recent years (Liu et al., 2019; Geng et al., 

2019; Dai et al., 2018; Babbar-Sebens and Minsker, 2012; Maringanti et al., 2011; Liu et 

al., 2013; Panagopoulos et al., 2013; García et al., 2000).  

The NSGA-II improves the nondominated sorting algorithm and reduces the 

computational complexity of NSGA (Yijie and Gongzhang, 2008). In order to improve 

diversity, the NSGA-II introduces the crowded-comparison operator and sorts the 

combination of parents and children’s populations. The diversity in solutions is preserved 

using non-dominated sorting and elitism; therefore, NSGA-II provides a neat spread of 

solutions, supporting finding the entire Pareto-optimal front (Deb et al., 2002). In 

summary, the main step-by-step procedure of NSGA-II algorithm is simple. First, a 

combined population of 2N dimension (Rt) is formed. The offspring population Qt is first 

created by using the parent population (Pt) and these two populations are combined 

forming (Rt). Then, a nondominated sorting is used to sort the population Rt. This 

classification is made using a ranking (fitness) function to identify several fronts (F1, 

F2...Fn). The new population is more significant than N and just the best ranked 

individuals remain; the elitism is ensured. Finally, individuals are not deleted arbitrarily 

when they have the same ranking (belong to the same front). Instead, they reside in the 

least crowded region using the crowding-comparation operator (rank and crowded 

distance) to choose the best solutions needed to fill all population slots, which ensures 

diversity (Deb et al., 2002). Psedocode of NSGA-II is shown in Table 2.3. 
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Table 2.2. Evolutionary algorithm (a) and Swarm intelligence (b) form sketch. 

a) EAS  b)  b) Particle swarm 

1 Initial population  1 
Initial swarm population: velocities and 

positions 

2 Evaluated each individual  2 While termination condition is not reached, do 

3 Repeat  3  For each particle, do 

4    Select parents  4   Adapt velocity 

5    Recombine pairs of parents  5  Update the position 

6    Mutate resulting offspring  6  Evaluated the fitness 

7    Evaluate new individuals  7  Conditions 

8 Select next-gen. individuals  8  End 

9 Until the condition is satisfied  9 The end condition is satisfied 

 

Table 2.3. Non-dominated sorting genetic algorithm II (NSGA-II) form sketch. 

NSGA-II 

1 Initialize a randomly distributed population 

2 Evaluate Objective values of individuals 

3 Assign rank (level) to individuals based on nondomination 

4 Generate Child population (offspring) 

5           Binary tournament selection 

6           Crossover and Mutation 

7 For i= 1 to g (generations to solve) do 

8        For each Parent and Child in population do  

9               Merge the populations o parents and offspring 

10               Assign rank (level) to individuals based on nondominated sorting 

11               Create sets o nondominated Pareto fronts 

12               Calculate Crowding distance between points on each front 

13               Select new parents based on ranks and crowding distance 

14         End 

15         Select points on the lower front with high crowding distance 

16         Create next generation 

17              Binary tournament selection 

18             Crossover and Mutation 

19 End 
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2.4 GENERAL METHODOLOGY FRAMEWORK 

Based on the research gaps identified in agricultural BMPs modeling optimization, in this 

dissertation we present a comprehensive modeling framework for optimal selection and 

allocation of agricultural BMPs at watershed scale. The methodology has been designed 

to be developed in five main phases, which are strongly connected to approach the 

complexity of the problem and to cover the proposed objectives (Figure 2.4). 

 

Figure 2.4. Workflow of the general methodology  



 Theoretical Background and Methodology 

28 

 

i. Problem identification and collection of data in the field: corresponds to 

understanding the current situation, the needs and gaps for the objectives, and the case 

studies. In this phase we identified the data needs as well as field data collection. This 

dissertation uses data collected in the field during a field campaign to know in detail 

the current agricultural management practices used by farmers in the study watersheds. 

ii. Analysis of a single agricultural BMP impact for a single crop at field and 

watershed level: corresponds to the understanding the impact and effectiveness of 

implementing one agricultural BMP (Conservation Tillage-CT) to reduce runoff 

nutrient losses at field and watershed levels. In this phase we explain the conceptual 

modeling outline of agricultural best management practices applied in a single crop 

(potato crop) in the Fuquene watershed. In our research we used data collected during 

a field campaign and complemented with experimental plot data from previous 

research. The hydrological SWAT model was used to model the hydrology and water 

quality of the Fuquene watershed. 

iii. Spatio-temporal analysis of the multiple agricultural management practice 

impacts: consists of analyzing the spatial and temporal dynamics of nutrients in 

runoff resulting from current multiple agricultural practices. In this phase we 

identified the spatio-temporal critical source areas (ST-CSAs) in order to select the 

areas that contribute with the greates pollutant loads within the watershed. The ST-

CSAs is a new approach that we propose to select the search space for the optimization 

problem for a more effective agricultural BMPs placement. This approach allowed us 

to identify the temporal and spatial dynamics of the runoff nutrient losses to guide 

feasible agricultural BMP scenario selection, and for selecting the search spacer for 

the optimization problem. 

In our research we used data collected during a field research on agricultural 

management practices for potato, tree tomato, and kikuyu grass (dairy farming) in the 

Riogrande II watershed. The Nitrate-N (NO3
-N) and soluble P in runoff and crop yield 

values for potato, tree tomato, and kikuyu grass at Hydrological Response Units 

(HRUs) were estimated using the SWAT model. The model was calibrated using 

observed monthly discharge, nitrate-N (NO3
-N) and soluble P loads in runoff, and 

crop yields.  

iv. Selection and parametrization of the BMPs scenarios to be used in the 

optimization model: selection and parametrization of the BMPs scenarios simulated 

by the SWAT hydrological model to estimate the Nitrate-N (NO3
-N) loads in runoff, 

and crop yield values for potato, tree tomato, and kikuyu grass at Hydrological 

Response Units (HRUs) in Riogrande II watershed. In this dissertation fieldwork and 

interviews with local farmers were taken into account to select feasible BMPs for the 

watershed studied. The agricultural BMPs were selected because these BMPs do not 

increase implementation costs, and they can be implemented by farmers with the tools 
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and wages they currently have, and they were accepted (some were proposed by the 

farmers themselves). 

v. Spatio-temporal multi-objective optimization framework to select and allocate 

agricultural BMPs for multiple crops: The optimization framework proposed is an 

approach focusing on the minimization of Nitrate (NO3
-N) losses and maximization 

crop yields at the field level to select and allocate optimal agricultural BMPs. The 

objective is to improve water quality without reducing agricultural productivity. The 

SWAT hydrological model was coupled with the metaheuristic algorithm NSGA-II 

to create the optimization engine. Pareto-front comparisons of the average vs. single 

sites (HRUs) values for each objective function were done to determine the spatial 

analysis level results needed to select the optimal BMPs.  

2.5 CONCLUSION 

The general objective of this dissertation is to develop a modeling and optimization 

framework to select and allocate agricultural BMPs (Ag-BMPs). Therefore, we consider 

it necessary in this chapter to contextualize the reader regarding: i) definition, concept 

and examples of Ag-BMP; ii) description of the hydrological and water quality model 

used to estimate the nutrient losses in runoff and crop yields (objective functions of the 

optimization model); iii) definition and description of the metaheuristics (algorithms) for 

agricultural land use optimization; and iv) a brief description of the general methodology 

used in subsequent chapters. In fact, we only focus on the main concepts; we do not 

consider this to be a literature review needed for a critical analysis. 

The optimization framework, to be covered in chapter 6, is mainly based on the results 

and analysis found in previous chapters 4 and 5. Our methodological approach is based 

on gradually increasing the level of complexity. This implies increasing the number of 

crops and BMP scenarios to be optimized, adding the variables of space and time in the 

analyses, and developing the model-based optimization engine. 
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3 DESCRIPTION OF THE CASE 

STUDIES 

 

“La naturaleza sin su biodiversidad es solo un paisaje” 
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3.1 INTRODUCTION 

The methods developed in Chapters 4 to Chapter 6 of this dissertation are applied in two 

selected case studies with common characteristics. This chapter describes each watershed. 

The case studies are the Fuquene watershed (Cundinamarca, Colombia) and the 

Riogrande II watershed (Antioquia, Colombia). These two study areas are of great 

importance as they are water supply basins for the Fúquene reservoir and the Riogrande 

II reservoir, which are important sources of drinking water and power generation. 

Additionally, the upper part of both basins includes the paramo ecosystem, which is the 

most important source of water and biodiversity in the Andes. Nevertheless, decline in 

the water quality in the watersheds is a serious environmental problem, especially in the 

Fuquene reservoir and Riogrande II reservoir, where accelerated eutrophication has been 

observed. The predominance of livestock and crop production in the middle part, 

generally with inadequate and low-technology practices, is one of the main causes of 

deterioration in water quality. Nitrogen and phosphorus runoff from fertilized crops and 

forage grass operations are assumed to be causing the increase of nutrients in the 

waterbodies, which, in turn, have increased algae blooms. 

Although the research uses the Fuquene and Riogrande II watersheds in Colombia as 

the main case studies, the goal is to develop general methodologies that are applicable to 

similar watersheds, with the aim of supporting farmers and public and private entities to 

implement efficient measures to protect natural resources. 

3.2 CASE 1 – FUQUENE WATERSHED 

3.2.1 Catchment description 

The Fúquene reservoir watershed is located in the northern part of Bogota city (Colombia) 

(5°28′00″N, 73°45′00″W). The watershed has an area of approximately 784 km2 

(Figure 3.1). The Ubaté River is the main tributary of the Fúquene reservoir with a 

drainage area of 624.91 km2. The river is born in the municipality of Carmen de Carupa, 

by the confluence of the Hato and Playa rivers and its main tributaries are the Suta and 

Lenguazaque rivers. The Fúquene reservoir has an approximate surface area of 30 km2. 

The total drainage area of the lake is 991.6 km2. The study area is characterized by large, 

rocky outcrops and mixed topography (flat areas, semi-flat, and streams), which varies 

between 2,520 and 3,786 meters above sea level (m.a.s.l). The lake's water is used and 

distributed by the municipal water supply companies for human consumption in 

settlements located downstream of the lake. The water is supplied to more than 500,000 

inhabitants of the region (IGAC, 2000).  

 

 

http://tools.wmflabs.org/geohack/geohack.php?language=es&pagename=Laguna_de_F%C3%BAquene&params=5.46667_N_-73.75_E_type:waterbody
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Figure 3.1.  Location of the Fuquene watershed in Colombia, stream gauging and 

weather stations in the watershed, runoff plot’s location, and sub-basin delineation are 

defined in SWAT modeling. 

3.2.2 Climate 

The weather input data of 46 stations located in the watershed were obtained from public 

and private institutions and provided by the Regional Environmental Authority of 

Cundinamarca (CAR). The recorded data were relative humidity, precipitation, 

temperature (maximum, minimum and average), solar radiation, wind speed and flow 

gauging. Of these, 18 stations were selected because they had a common period of daily 

records (2004 to 2013). The lists of stations selected are presented in Table 3.1.  

The annual mean precipitation is 777.9 mm with a bimodal behavior in the watershed. 

The maximum monthly precipitation occurs in April and October with 15% and 16% of 

the annual total, respectively (Figure 3.2). The minimum precipitation occurs in January 

(2.3%) and February (3.6%.) (Figure 3.2). During the period December to March the 

average precipitation is 19% of the annual average. And the rains are distributed 

throughout the year in 142 days on average. The spatial behavior of rainfall within the 

basin was obtained from the annual mean isohyets map, obtained from the existing 

recording stations in the basin (Figure 3.2). In general, the flat area of the watershed 
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presents low rainfall with annual averages below 100 mm. In the western mountainous 

area, annual rainfall exceeds 1000 mm. In the rest of the terrain, the values fluctuate 

between 800 mm to 1200 mm (north of the Fúquene reservoir). Finally, the Saboya sector 

receives rainfall averaging 2,400 mm per year. 

Mean annual temperatures are between 12 °C and 18 °C, without significant variation 

throughout the year (IDEAM, 2004). And the mean monthly temperature ranges between 

12.0 - 13.2°C. Based on the existing records of the monthly temperature values, it is 

inferred that the temperature varies during the day, reaching maximum temperatures of 

21 ° C in the midday hours and minimum temperatures of up to –4 ° C in the early morning. 

During the first quarter of the year, July, and December frosts often occur in the early 

morning. In general terms, a bimodal temperature behavior is observed. Towards the 

eastern part of the basin the lowest values are registered and in the southern part the 

highest values occur (Figure 3.2). 

 

 Table 3.1. Hydro-metereological stations at Fuquene watershed 

Name Latitude  

(m) 

Longitude  

(m) 

Elevation 

(m) 

Precipitation Temperature 

Encanto el 1064300 1020600 3150 X  

Alto de aire 1065500 1028300 2900 X  

Ladera gran 1063400 1022500 2950 X  

Fortuna la 1076000 1054400 2880 X  

Barrancas 1062200 1025740 2720 X X 

Carupa hospi 1083120 1019840 2960 X  

Pino el 1073640 1025580 2575 X  

Hatillo el 1062470 1031590 2885 X  

Espino el 1081440 1038110 2550 X  

Puente el 1084730 1045230 2810 X  

Triangulo el 1078310 1051230 2800 X  

Tres esquina 1087270 1025000 3130 X  

Hato no 1 el 1077060 1017125 2985 X  

Boyera la 1077900 1025200 2610 X  

Carrizal 1067328 1034304 2880 X X 

Novilleros 1080650 1032380 2550 X X 

Sutatausa 1071880 1025020 2700 X X 

Represa el hato 1076689 1019172 2900 X X 
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Figure 3.2.  Annual average maps (top) and monthly average graphs (below) of 

precipitation (left) and temperature (right) at Fúquene watershed. 

 

3.2.3 Vegetation cover and soils 

The development of agricultural activities in this watershed has become the main 

economic driver for its inhabitants. Due to the climate and soils of this watershed, 

monocultures are predominant. The potato crop is considered the most important crop in 

the watershed. It is worth mentioning that the potato crop has been included in the Food 

and Nutrition National Plan (PAN) as one of the main crops for the daily diet of millions 

of consumers, especially in low-income sectors (CAR, 2006). The potato-cultivated area 

in the Fúquene watershed has an annual average production of 280,000 tons. The 

distribution by land use in the basin is 15,416 ha of natural pastures, which is equivalent 

to 19.7%; pastures 10,716 ha (14%); improved pastures with crops 10,520 ha (13.4%); 

paramo vegetation (4.5%); planted forest 2,938 ha (3.7%); potato 1.3%, among others 

(Table. 3.2) (Figure 3.3). 

The soils that predominate in the basin are mostly entisol sand inceptisols and others 

in a smaller area such as mollisols, histosols, andisols and alfisols. The soils of the upper 
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part of the basin are found in the MLVd2 cartographic unit, a nomenclature obtained from 

the legend of the general study of soils of Cundinamarca (IGAC, 2000). These soils have 

a type of relief in crestones, with altitudes between 2200 and 3000 meters above sea level, 

annual temperatures between 12 and 18 ° C, and a humid climate (700 to 1100 mm/year). 

The taxonomic unit is an association of soils classified as Humic Lithic Eutrudepts, Typic 

Placudands, Dystric Eutrudepts (IGAC, 2000). On the other hand, the soils of the lower 

part of the basin are soils Inceptisols, which are found in the cartographic unit MMVe3. 

These soils have a relief in ridges and altitudes between 1800 and 2600 meters above sea 

level, with a cold climate (annual temperatures between 12 to 18 ° C) and dry (500 - 

1000mm / year). The soil taxonomic units are Typic Haplustepts and Lithic Ustorthents 

(IGAC, 2000). For both soils, in the upper and lower part of the basin, the parent material 

is mainly sandy clastic rocks, clayey and carbonate silt, and volcanic ash deposits of 

variable thickness. 

 

Table 3.2. Fúquene watershed land cover areas 

 

Land Cover 
Area  

(Ha) 

Area 

(%) 
Land Cover 

Area 

(Ha) 

Area 

(%) 

Grass 15,416.7 19.7 Weedy  2,169.7 2.8 

Pastures 10,761.5 13.7 
Pastures on the eroded 

soil 
2,074.0 2.6 

Pastures and cool weather 

crops 
10,520.0 13.4 Degraded lands 1,448.4 1.8 

Potato and other crops 6,685.3 8.5 Savannah herbaceous 1,387.8 1.8 

Shrub land 5,847.9 7.5 Reforested eroded lands 1,375.6 1.8 

Paramo vegetation 3,539.1 4.5 Secondary forest 1,303.2 1.7 

Planted forest 2,938.5 3.7 Potato 1,019.5 1.3 

Mosaic of planted forest 2,435.0 3.1 Stubble 932.5 1.2 

Pasture crops with natural 

spaces 
2,360.5 3.0 

   

Watershed total area = 78400 ha 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

 

 

 

 

Figure 3.3   Land cover photographic record (a) planted forest, (b) native pasture, (c) 

pasture and other crops, (d) managed pastures associated with cattle ranching, and (e) 

potato at Fúquene watershed. 

3.2.4 Socio-economic characterization 

The total population of the study area is approximately 167,476 inhabitants, according to 

DANE 1993. Of which 63,262 (37%) are urban residents and 104,214 inhabitants (63%) 

live in rural areas. Around 66.1% of the population has inadequate housing, and only 
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28.9% have energy, clean drinking water, and sewerage services. In general, the vast 

majority of homes, especially in rural areas, are in poor condition (Salazar, 2016). 

The agricultural activity development of this watershed has become the main 

economic alternative of its inhabitants. One of the most typical crops in the basin is the 

potato, which is a staple in the diet of Colombians. This tuber is included in the Food and 

Nutrition National Plan (PAN) because it contributes to the daily diet of millions of 

consumers, especially in low-income sectors (EOT 2000). The potato-cultivated area in 

the Fúquene watershed is around 16,933 ha, with an annual production of 280,000 tons. 

Other temporary or semi-annual crops such as wheat, barley, and corn, which are of great 

economic importance in the watershed, have been disappearing and are being replaced by 

potato crop. Therefore, potato is first in ranking for the agricultural economy of the region. 

In recent years crop production has given way to livestock activities, both with regard 

to area and intensity of development. Livestock farms produce pigs, poultry, and sheep; 

however, the trend of agricultural exploitation is towards dairy farming, which is located 

primarily in the flat or valley area of the lower basin. Dairy production in the area has 

increased due to the trend to improve the dairy herd with specialized breeds, genetic 

improvement, and animal feed supplements. The average production is 732,029 liters / 

day (equivalent to 267 million liters per year) and is increasing about 2.5% annually. 

On the other hand, mining activity is of great economic importance in the basin. There 

are about 268 mines, of which about 98% are coal and only 2% are gravel, according to 

the INGEOMINAS inventory for 2005. In general, the technological level of coal mining 

in the basin it is very low, since many operations are manual. The figures for the number 

of mines and their specific location date back many years. However, export figures are 

presented, which allows us to infer a link to the foreign market. Mining activity is an 

important source of employment, although its quality is low, with low remuneration for 

families. In addition, most of the mines lack safety plans for their workers, being very 

vulnerable to accidents. 

3.2.5 Environmental characterization 

This watershed has great environmental and social potential. Water sources and large 

landscapes make up strategic ecosystems with structural and functional characteristics 

providing direct benefits for the inhabitants of the region. In the watershed there is a 

predominance of semi-humid cold climate, which favors the availability of water by 

interception of air masses. This phenomenon is influenced by vegetation, which serves as 

an interception trap. For example, within the watershed páramo is a strategic ecosystem 

due to its high hydrogeological productivity (the Páramo de Rabanal). It is an ecosystem 

that is also very important for providing protection for wildlife and floristic corridors. 

However, the search for productive organic soil motivates the destruction of forest 

cover in the upper part of the basin. For example, potato cultivation causes strong 

environmental impacts (high levels of toxicity and nutrient depletion in runoff), and 
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potato production is moving toward the paramo area. Similarly, the area of improved 

pasture has grown due to the expansion of dairy activity in the basin. This activity 

includes the use of agrochemicals to improve pasture production and the use of forage 

species that are not always compatible with the natural environment, harming the region’s 

soils, water resources, and especially its fauna and flora. 

On the other hand, the soils present in the basin are superficial to very superficial and 

favor the loss of nutrients in runoff. In the rainy season, when the sediment load in the 

bodies of water increases and they take on a particular color, the negative environmental 

impacts of this process are more evident. Additionally, the basin has a low water 

production, which together with the other characteristics mentioned above can cause 

serious supply problems and even loss of water bodies.  

Finally, most of the municipalities in the basin lack wastewater treatment systems. 

Therefore, the discharges of sewage and the disposal of solid waste in rivers and streams 

are largely uncontrolled, causing an increase in pollutants in the bodies of water. For 

example, there are some home-grown potato processing industries that strongly affect 

water resources due to potato washing because the starch residues in the effluents cause 

fermentation and the production of abundant foam in thewater. 

 

3.3 CASE 2- RIOGRANDE II WATERSHED 

3.3.1 Catchment description 

The Riogrande II watershed is located northwest of the city of Medellin (Colombia). The 

watershed area is 1,034 km2 and lies between longitudes 75 32’ 30’’ and 75 26’ 10’’W, 

and between latitudes 06 33’ 50’’and 06 28’ 07’’ N (Figure 3.4a). The topography varies 

between 2,229 and 3,314 meters above sea level. Three main tributaries (the Grande and 

Chico rivers and Las Animas stream) drain into the Riogrande II reservoir. The water 

from the reservoir is used for electricity generation at the Tasajera hydroelectric power 

station, and it supplies drinking water via the Manantiales drinking water plant, which 

currently provides between 30 and 45% of the drinking water to the Valley of Aburrá 

(Corantioquia and Universidad Nacional de Colombia, 2015). 
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Figure 3.4. Map of the modeled area showing the (a) location of weather stations and 

survey points, (b) land cover types, (c) soil types, and (d) slopes of the Riogrande 

watershed 

3.3.2 Climate 

In general terms, the climate in this area is defined by inter- and intra-annual variations. 

Intra-annual variation is a phenomenon that is directly related to the particular conditions 

of the site. In the study area, convective-type precipitation occurs due to the mountain 

valley effect. Orographic precipitation also takes place due to the mountainous barriers 

and the variable topography of the area surrounding the plateau. 

To characterize the precipitation and temperature of the hydrographic basin, data from 

16 weather stations located within the watershed (Figure 3.4b) obtained from Medellin's 

Public Service Company (EPM) and Institute of Hydrology, Meteorology and 

Environmental Studies (IDEAM) (Table 3.3) were used. The annual average rainfall is 

2,150 mm, with a bimodal regime (Poveda et al., 2014). There are two precipitation peaks 

throughout the year, the first in April and May with an average of 273 mm and the second 

in September and October with an average of 255 mm. The minimum of precipitation 

occurs in January (112 mm). The two dry periods are between December and February, 

and from mid-June to August (Figure 3.5). The spatial distribution of the mean annual 

precipitation was estimated from the isohyets at a scale of 1: 25,000, obtained from 
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Corantioquia. It is highlighted that 41.8% of the territory (53,772.9 ha) receives mean 

annual rainfall between 1,750 to 2,000 mm, this occurs in the lower middle part of the 

watershed. In the upper middle part of the watershed an area of 32.4% (41,693.7ha) has 

mean annual rainfall between 2,000 to 2,250 mm. And a smaller area of the upper part 

receives mean annual rainfall between 2,250 to 2,500 mm. In general, 74.2% of the 

territory of the Riogrande II watershed receives between 2,250 mm per year and 1,750 

mm. 

The mean monthly temperature varies between 9°C and 20°C and the mean annual 

temperature is around 15.6°C for the study area (Figure 3.5). The paramo area has a mean 

monthly temperature of 10°CThe upper middle part of the watershed has around 12°C, 

and the mean monthly temperature in the low area, near the reservoir, is between 14 to 

16°C. On the other hand, the mean monthly potential evapotranspiration fluctuates 

between 70 and 79 mm, with a monthly mean of 76.1mm and an annual mean of 913.2mm. 

In the highest parts of the basin the mean monthly radiation of 71W/m2 and in the lowest 

parts it can reach up to 100 W/m2. 

 

 Table 3.3. Hydro-metereological stations at Riogrande II watershed 

 

Name Latitude Longitude Elevation Precipitation Temperature 

Aragon 6.783 -75.561 2630 X X 

El Chaquiro 6.755 -75.490 2750 X  

El Gomez 6.739 -75.652 2675 X  

Medina 6.423 -75.532 2620 X  

Belmira 6.605 -75.667 2520 X  

Entrerrios 6.566 -75.521 2285 X  

San Bernardo 6.854 -75.574 2740 X  

Presa Riogrande II 6.506 -75.449 2280 X  

Alto de la sierra 6.565 -75.597 2750 X  

El Tururo 6.594 -75.575 2450 X  

Los Atajos 6.697 -75.519 2575 X  

SanPedro10 LaYe 6.497 -75.571 2340 X X 

Cucurucho 6.664 -75.519 2580 X X 

Rg-7 El Boton 6.666 -75.565 2470 X  

Rg-6 Puente Belmira 6.652 -75.538 2446   

Alto San Andres 6.434 -75.441 2240 X  
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Figure 3.5.  Annual average maps (top) and monthly average graphs (below) of 

precipitation (left) and temperature (right) at Riogrande II watershed. 

3.3.3 Vegetation cover and soils 

The native vegetation of the basin has been significantly reduced due to human 

intervention, mainly for grazing. Between 2005 and 2015, the area of natural forest 

decreased by 7% (CORANTIOQUIA and UNAL, 2015). Some native forests and the 

moorland (alpine tundra ecosystem or páramo) of Belmira (16% of the basin area) remain 

undisturbed, mainly in the higher areas. The páramo vegetation is located in the 

municipality of Belmira, in the páramo that bears the same name. It is short 

vegetationcomposed of grasslands in association with the frailejón (the dominating 

species of the paramo) located in hilly and flat areas. There are natural intervening forests 

and oak groves in patches of medium to small areas, located around the Páramo de 

Belmira. Grazing lands grew by approximately 27% between 2005 and 2015 

(Corantioquia and Universidad Nacional de Colombia, 2015). Currently, agriculture and 

livestock occupy 80% of the total watershed area. Pastures associated with dairy farming, 

tree tomato (Solanum betaceum, also known as tamarillo) and potatoes (Solanum 

tuberosum) are the most prevalent agricultural activities (Table 3.4), followed by coffee 

and avocado cultivation (Ramírez, 2014) (Figure 3.6).  
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The soils in the watershed belong to the Andic Dystrudepts, Fluventic Dystrudepts, and 

Typic Dystrudepts subgroups, which are developed from igneous rock and volcanic ash. 

These soils are generally characterized by being deficient in nutrients (nitrogen, 

phosphate, and calcium), low fertility, medium to extreme acidity (pH from 4.5 to 5.6), 

and medium to high organic matter content. The mineralization is not very significant due 

to low temperatures. Crops on these soils respond well to organic and chemical 

fertilization (Corantioquia and Universidad Nacional de Colombia, 2015). In some areas 

with steep slopes there are soils that are classified as unsuitable soils for agriculture, 

mainlybecause they are steep and have soils with light to medium textures, including 

sandy loams, clay loams, and loam. 

 

Table 3.4. Land cover areas at Riogrande II watershed 

 
Land Cover Area (%)  Land Cover Area (%) 

Annual Ryegrass 1.97  Pasture 0.01 

Avocado 0.08  Potato 0.85 

Conifer Planting 4.36  Residential and roads 1.05 

Forest-Mixed 16.38  Stubble 6.25 

Industrial areas 0.00  Tree Tomato 0.34 

Managed grasses 58.31  Water bodies 1.33 

Transitional crops 0.37  Weedy grasses 5.84 

Páramo 2.86    

Watershed total area = 103434.77 ha 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.6.  Land cover photographic record (a) potato, (b) coffee, (c) tree tomato, and 

(d) managed pastures associated with cattle ranching at Riogrande II watershed. 

3.3.4 Socio-economic characterization 

The total population of the Rio Grande watershed is approximately 68,066 inhabitants. 

The most farms have between 0 and 10 hectares. However, in municipalities such as Santa 

Rosa de Osos, plots of 10 to 50 hectares predominate. The municipalities with the highest 

percentage of properties larger than 50 hectares are Belmira and Santa Rosa de Osos. 

Most of the land in the basin is used for dairy farming, pig farming and other agricultural 

activities, which are consolidated as the most important economic activities. However, 

some past analyses suggest that the preferred use for the basin would be commercial 

forestry for a large part of the territory (Corantioquia and Universidad Nacional de 

Colombia, 2015). 

Dairy is the main economic activity within the basin, mainly focused on breeds 

suitable for milk production. The predominant breed is Holstein, pastured on kikuyu grass 



 Case Studies 

45 

 

(Pennisetum clandestinum) and ryegrass (Lolium sp.) and supplemented with 

concentrated feed. A large part of the farms use this type of production system to produce 

high volumes of milk, with some cows reaching a peak production of 56 l day-1, for an 

approximate average of 20 l cow-1 day-1. Most farms have between 10 to 60 milk cows. 

The milk produced is generally sold to the Cooperativa Lechera de Antioquia (Colanta). 

The two most economically important cropping activities in the watershed are potato 

and tree tomato cultivation. The potato (Solanum tuberosum ssp. Andigena.) is currently 

planted at any time of the year, which causes constant changes in the supply and demand 

of the product and therefore fluctuations in prices. The five municipalities with the highest 

percentage of area in the basin represent 68.1% of the total production of the North 

Subregion of the department, wherethe municipalities of Santa Rosa de Osos and San 

Pedro de los Milagros represent 59% of the total production. On the other hand, the tree 

tomato crop (Cyphomandra betacea Cav. Sendt) is one of the most productive crops 

developed in the watershed. Production has grown for the past 25 years, and tree tomatoes 

are planted and harvested throughout the year, and tree tomato crops occupy almost 60% 

of the cultivated land in the watershed.  

In the basin there are other smaller-scale economic activities such as fish farming and 

tourism. Tourism has been considered a dynamic factor for the generation of employment, 

the improvement of road and urban infrastructure, and support for agricultural production. 

In the basin, it is worth highlighting the tourist developments related to rdairy farming, 

with the purpose of educating and promoting this activity in urban areas. The production 

of rainbow trout is another economic alternative. However, the development of this 

activity is limited by the absence of economic resources to support producers and the lack 

of clear policies for the sector. The trout are commercialized directly with warehouses in 

Medellín and neighboring municipalities, and a small part is destined for self-

consumption. This activity occurs mainly in the municipalities of Belmira and Entrerríos. 

Traditional land use activities in the watershed were home gardens with aromatic 

plants, vegetables, and grain crops, but they have been mostly replaced by pastures for 

used for cattle and pig production. Only small plots of products such as beans, corn, 

vegetables, and fruit remain primarily for self-consumption. This transformation in the 

economic sphere has generated food dependency in peasant families in Antioquia, who 

now must buy much of their food in urban centers. 

3.3.5 Environmental characterization 

Critical parts of the water supply basins, the oak forests, and the Belmira páramo are 

considered protected areas within the watershed. In the Belmira páramo there are many 

sources of drinking water that satisfy the basic needs of the human and animal populations 

in the watershed. However, the páramo system (considered to be above 3000 meters 

above sea level and covering 9,085 hectares) is threatened, due to expansion of the 

agricultural frontier towards the páramo area. Even though forest cover has decreased 



Case Studies 

46 

 

only slightly (less than 10%), fragmentation throughout the watershed is strong to extreme. 

Deforestation and inappropriate soil management for agricultural and livestock activities 

contributes to increased erosion, landslides, and loss of biodiversity in the basin. Mass 

soil movement has also increased due to the opening of roads for the transport of 

agricultural products (crops, cattle, pigs, milk) without prior technical studies or drainage 

infrastructure.  

In general, the quality of the water is classified as fair in the middle and lower parts 

of the watershed. The main causes of water contamination are productive activities in 

soils low in nutrients where producers use large amounts of chemical inputs, especially 

in potato crops, tree tomatoes and livestock in general. Also, the bodies of water directly 

receive discharges of domestic wastewater, agrochemicals, and fertilizers such as 

porquinaza (manure from pork production). However, in the municipalities located in the 

upper part of the basin, water quality is often classified as good, and the water is used for 

domestic supply with minimal purification. 

In terms of quantity of water, the water consumption rate in the watershed is high. In 

many sectors of the watershed the total flow of the streams is being used and therefore 

deteriorating the water ecosystem. For example, all the water provided by a wetland 

located 10 meters upstream from the intake is captured in the Santa Bárbara local 

aqueduct intake. And in the sub-basins directly contributing to the Riogrande II reservoir, 

the minimum flow of the rives where less than the demand during a period of 2 years. 



 

 

 

4 
4 ANALYSIS OF A SINGLE 

AGRICULTURAL BMP IMPACT FOR 

A SINGLE CROP AT FIELD AND 

WATERSHED LEVELS 

 

“Conocer la realidad para proponer” 

 

 

 

 

 

 

 

 

 

This chapter is based on Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, 

D., 2018. Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato 

crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209, 62-72 
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4.1  ABSTRACT 

Intensive tillage (IT) in potato crops is considered one of the primary non-point sources 

(NPS) of local water eutrophication in the Fuquene Lake of Colombia. Therefore, the 

local government has invested in several programs aiming to increase adoption in the 

watershed of conservation tillage (CT), a recognized agricultural best management 

practice (BMP). The complexity of hydrological and geological heterogeneity in the 

watershed makes the benefit of implementing CT uncertain. In this study, the Soil and 

Water Assessment Tool (SWAT) was used to assess the impacts of changing IT to CT on 

nitrogen (N) and phosphorus (P) losses in surface water runoff from the potato crop in 

the Fuquene watershed. This is done at field and watershed levels. A two-year study 

quantified the changes in N and P in surface water runoff for three potato crop cycles 

under the traditional ITand three CT practices, reduced tillage, green manure, and 

permanent soil cover, in twelve runoff plots installed in the Fuquene watershed (Quintero 

and Comerford, 2013). This information was used to build, calibrate and validate the 

SWAT model. The results suggest that CT for the Fuquene watershed can reduce 

sediment yield by 26% and surface runoff by 11% compared with IT. The main CT effect 

on nutrient losses in runoff is an increase in the total losses of N and P (2% to 18% 

respectively) compared to IT. However, the results at the watershed level showed 

different patterns from those obtained at the field level. Despite the model uncertainties, 

the results show a possibility of using hydrological models to assess the effectiveness of 

various field management practices in agriculture. 

4.2 INTRODUCTION 

The decline in the water quality in the Fuquene watershed (Colombia) is a severe 

environmental problem, especially in Lake Fuquene, where an accelerated eutrophication 

process has been observed (Japan International Cooperation Agency—JICA, 2000). 

Nitrogen and phosphorus runoff from potato crop fertilization are estimated to be causing 

the increase of nutrients in the lake, which has, in turn, increased the frequency of algae 

blooms (Rubiano et al., 2006b). As a result, the biodiversity in the lake is threatened, as 

well that the drinking water for the local communities. An additional problem has been 

leakage of a toxic chemical in the treatment process (Hanifzadeh et al., 2017), and also 

water for agriculture, fisheries and, particularly, for livestock (Quintero and Otero, 2006; 

Rubiano et al., 2006b). Therefore, the environmental authorities aim to address this 

problem due to the importance of this water source for the communities, agriculture, and 

livestock (Rubiano et al., 2006a).  

Intensive tillage (IT) is the conventional management practice used by potato farmers 

in the Fuquene watershed. This practice is characterized by a lack of plant coverage and 

low crop residue levels in the potato cycle. Because of this, the soil is vulnerable to 

erosion and nutrient losses in the runoff (Zhang et al., 2014; Carter et al., 2009). Therefore, 
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research nowadays focuses on agricultural BMPs, which endeavor to use nutrients 

efficiently, conserve the soil structure and reduce runoff (Quintero and Comerford, 2013; 

Logan, 1993). In this context, agricultural BMPs that focus on no-tillage and reduced 

tillage are increasingly being adopted by farmers because they have the potential to reduce 

water pollution and to develop environmentally-friendly agricultural systems, which at 

the same time will offer better income to local farmers (Liu et al., 2013; Sedano et al., 

2013; Panagopoulos et al., 2011; Soane, 1990). Studies indicated that use of BMPs in 

potato crops could reduce the loss of nutrients without any adverse effect on the potato 

yield and quality. However, there may be some influence on potato maturation and the 

harvest date (Carter and Sanderson, 2001). A study done in 14 potato field trials at various 

locations across Idaho and Oregon, USA over four years demonstrated that potato farmers 

following BMPs received a similar yield with less financial investment than when 

following a maximum yield approach (Hopkins et al., 2007). Also, Zebarth and Rosen 

(2007) clarified that even when BMPs are developed to optimize tuber yield and reduce 

losses of nutrients, it is necessary to select the appropriate rate and timing for applying 

nitrogen-based fertilizers. In this way, it is possible to control potato growth according to 

the soil properties, water management, climatic conditions, and terrain slope.  

In Colombia, the regional environmental authority (Corporacion Autonoma Regional 

– CAR) in the Fuquene watershed has been investing in adopting conservation tillage (CT) 

since 1999 for the potato crop production system. In this chapter, CT is defined as any 

practice of soil cultivation that reduces runoff and increases infiltration by leaving the 

previous crop residues on the field (Derpsch, 2003). This also increases the soil organic 

matter near the soil surface, improving the soil structure and biological properties in the 

potato crop (Carter et al., 2009). Experience has shown that CT provides potential benefits 

by increasing soil organic matter, improving soil hydraulic properties, and protecting the 

soil protection from the impact of rainfall (Carter and Sanderson, 2001). Nevertheless, 

some management effects on soil biological properties' are not measurable in the short 

term (i.e., less than five years) (Carter, 1992).  

The International Center for Tropical Agriculture (CIAT) has been researching the 

impact of CT on nutrient and soil losses in this crop since 2010 in the Fuquene watershed. 

Experimental runoff plots were installed, and the IT and CT practices were applied. The 

specific CT practices adopted in the pilot project included reduced tillage, green manure, 

and a permanent cover crop before potato sowing. Sediment yield and loss of nitrogen (N) 

as NH4
+ and NO3

—N and phosphorus (P) as PO4
3- in runoff were measured. The results 

helped to understand the effect of CT at the field level. For example, Quintero and 

Comerford (2013) investigated CT's impact on soil organic carbon in the potato cropping 

system in the Fuquene watershed The results indicated that reduced tillage in potato-based 

crop rotations increased the soil carbon concentration and average C content in the full 

profile by 50% and 33%, respectively, compared to conventional farming practices. Thus, 

CT helps to bring these soils back to their original characteristics (high organic matter 

soils) (Quintero and Comerford, 2013).  
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Several studies report the effects of CT on pollutant losses by applying hydrological 

modeling tools. Many of these studies describe the accuracy of pollutant prediction 

obtained for each case study. However, the results are found to vary significantly and 

provide essential insights only for particular agricultural watersheds (Park et al., 2014; 

Amon-Armah et al., 2013; Liu et al., 2013; Bosch et al., 2013; Betrie et al., 2011; Lam et 

al., 2011). Despite the increased use of modeling tools to assess CT's impact as an 

agricultural BMP on pollutant losses, there are still knowledge gaps in this topic. One of 

the most common issues identified to date is evaluating the effectiveness of BMPs at 

controlling nonpoint source pollution to obtain the necessary information that would help 

decision-makers develop environmental regulations and manage the agricultural sector. 

Therefore, the objective of this research is to assess the impact of CT on sediments, 

nitrogen (N), and phosphorus (P) losses in the runoff for potatoes at field and watershed 

levels by applying the Soil Water Assessment Tool (SWAT). This chapter will contribute 

by answering the questions: How do the management practices in a potato-based mixed 

crop system influencing the runoff and soil nutrients (N and P) losses at the field and 

watershed levels? What would be the effect of applying CT in current potato systems 

throughout all the watershed? 

4.3 METHODOLOGY 

Parameters related to the crop database, soil, and agricultural management practices in 

the SWAT model were set to represent local cropping systems. Calibration was carried 

out using data regarding the impact of management practices on soil and nutrient losses 

and runoff (measured in the field) and streamflow data from gauging stations. Usually, 

the hydrological model calibration process is challenging forColombian watersheds, 

where the complexity of shifting cultivation, intensive traditional agriculture, diverse 

crops and management practices, and weather seasonality must be considered. Also, CT 

management practices for the potato crop were extrapolated to the whole basin to assess 

their likely effects at the watershed scale. Additionally, the IT and CT effectiveness at the 

field and watershed level were evaluated to provide guidelines for the decision-makers 

and stakeholders who aim to use these agricultural management practices for the potato 

crop.  

4.3.1 Hydrological and water quality model 

The watershed model used in this study was the Soil and Water Assessment Tool (SWAT) 

developed by the United States Department of Agriculture – Agricultural Research 

Service (USDA-ARS) (Arnold et al., 1998). The input data required for this study were 

compiled from different sources. These include the Agustin Codazzi Geographic Institute 

(IGAC), the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM), 

the Regional Environmental Authority of Cundinamarca (CAR), and the public service 



 Analysis of a Single Agricultural BMP Impact 

51 

 

companies (water and electricity supply). The resolution, scale, and sources are shown in 

Table 4.1.  

The weather input data from 46 stations located in the basin were collected by public 

and private institutions and were provided by CAR (Fig. 3.1 - Chapter 3). The historic 

recorded daily data included: relative humidity, precipitation, temperature (maximum, 

minimum, and average), solar radiation, and wind speed. Monthly flow measurements at 

the Boyera, El Pino, Puente Balsa, and Puente Colorado stations were used to represent 

the flow in different stream segments. The Puente Colorado station is located near the end 

of the basin and represents the entire watershed outlet just before the main river reaches 

the lake (Fig. 3.1 - Chapter 3). The Puente Balsa station has three months of missing 

records in 2008 and one month in 2013. Likewise, the Puente Colorado station did not 

record values for 2006, 2008, and 2009. Therefore, these dates were not used to calculate 

errors in the calibration and validation processes.  

 

 Table 4.1. Spatial input data description 

Data type Resolution Source 

Topographic map 30m CAR 

Land use map 1:25.000 IGAC 

Soil map 1:100.000 IGAC 

Weather No. of stations: 21 CAR-IDEAM 

 

For this study, the SWAT model was built on a daily time step from 2006 to 2013. 

The watershed was delineated into 30 sub-basins (Fig. 3.1 - Chapter 3). In the generation 

of HRUs, the slope classes were always set out in five ranges (0–5%; 5–15%; 15–25%; 

25–45%; and >45%). The potential evapotranspiration (PET) was simulated using the 

Hargreaves method (Hargreaves and Samani, 1985), and the actual evapotranspiration 

(AET) was calculated based on the methodology developed by Ritchie (1972). The 

Natural Resources Conservation Service Curve Number (CN) method (USDA-SCS 1972) 

was used to predict the surface runoff. CN values were determined based on a previous 

study, where the Colombian Land Cover map categories were associated with SWAT 

land cover codes (IDEAM et al., 2008).  

4.3.2 Agricultural management practices characterization 

Agricultural management practices are inputs to the model defined in the management 

files. The representation of the traditional and conservation agricultural management 

practices for potato were simulated as scenarios. “IT” is used to represent the baseline 

(traditional management) scenario, and “CT” represents the conservation practice 
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scenario considered. 1. Seven HRUs were defined and correspond spatially to the plots 

installed in the field. These are characterized by being located in sub-basin 12 with a mean 

slope of 15% to 45%, and soil units MMVe3 and MMVg3, which are Inceptisols  

classified by IGAC as Typic Haplustepts (IGAC, 2000). 

Based on previous results from the experimental runoff plots installed in 2011 by 

CIAT in the municipality of Ubate, which is located in the watershed, the SWAT 

parameter values related to management practices were defined (Quintero and Comerford, 

2013; Quintero, 2014). The pilot Fuquene project established twelve experimental runoff 

plots - each with an area of 2,500 m2 - for assessing two potato-based systems: 

conventional agriculture with intensive tillage (IT) and conservation agriculture with oat 

cover crop residues (green manure - GM), and conservation tillage (CT). A total of three 

crop cycles were planted in September 2011, March 2012, and October 2012. 

Conventional agriculture with IT is traditionally a rotation between potato (Solanum 

tuberosum) and pasture (Lolium perenne) with grazing (Quintero, 2014). The IT 

operation is carried out by conventional plowing followed by rotovator passes to invert 

the soil (Figure 4.1). 

On the other hand, the CT adopted in the pilot Fuquene project included different 

management practices such as reduced tillage, green manure, and permanent soil cover. 

The CT rotation (oats-potato-oats-potato-pasture) involved potatoes with an oat cover 

crop used as green manure prior to potato planting, and pastures at the end of the rotation 

cycle (Quintero, 2014) (Figure 4.2). The management practices parameter values 

obtained from the runoff plots are shown in Table 4.2. The physicochemical 

characteristics of the soil measured in the field plots were defined in the soil database for 

the HRUs which correspond to the location of the runoff plots (Table 4.3).  

 

 

Figure 4.1. Conceptual outline of conventional (IT) potato crop management practices. 
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Figure 4.2. Conceptual outline of conservational (CT) potato crop management 

practices. 

 

Table 4.2. Parameter values defined related management practices per scenario. 

Variable  

name 
Definition 

Value 

IT CT 

Planting Pota Pasture Pota Oat Pasture 

PLANTID Plant/land cover code from crop.dat POTA RYEG POTA OATS RYEG 

HEAT UNITS PHU: Total heat units required for plant maturity 800 700 800 400 700 

BIO_INIT Initial dry weight biomass (kg/ha) 200  200 18  

CN2 Initial SCS runoff curve number (min 35- max 98) 62 40 62 53 40 

Grazing 
     

MANUREID Manure code from fert.dat  Beef-Fresh   Urea 

GRZ_DAYS Number of days of grazing  200   200 

BIO_EAT Dry weight plant biomass consumed daily (kg/ha)  30   30 

BIO TRMP Dry weight of biomass trampled daily ((kg/ha)/day)  14   14 

MANUREKG Amount of manure applied -dry weight (kg/ha)  6   6 

BIO_MIN Minimum plant biomass for grazing to occur (kg/ha)  500   500 

Tillage 
     

TILLAGEID  Tillage implementation  
Bedder 

shaper 

Rotovator-

bedder 

Chisel Plow 

-vertical 

Bedder 

shaper 

EFFMIX Mixing efficiency of tillage operation (fraction) 0.55 0.8 0.3 0.55 

DEPTIL Depth of mixing by tillage operation (mm) 150 100 150 150 

BIOMIX Biological mixing efficiency (fraction) 0.2 0.2 0.2 0.2 0.2 

Fertilizer 
     

FERT_ID Type of fertilizer/manure applied  13-26-06  13-26-06 Urea  

FRT_KG Amount of fertilizer/manure applied (kg/ha) 1400(2*700) 1000(2*500) 300  

FRTSURFACE The fraction of fertilizer applied to the top 10mm 1  1 1  

Ti l lage (bedder shaper)

M A M J J A S O N D J F M A M J J A S O N D J F M

Ferti l i zer

Ti l lage 
(Chisel Plow Gt2ft - vertical)

Ti l lage 

(Chisel Plow Gt2ft - vertical)

Ti l lage 

(Chisel Plow Gt2ft - vertical)

Grazing

Harvest Fertilizer Fertilizer

H
ar

ve
st

 

Harvest 

Potato Ryegrass

1, 2 and 3 Years Rotation 4 and 5 Years Rotation

Oat

mailto:BIO_MIN@
mailto:BIOMIX@
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Table 4.3. Physico-chemical soil parameters are measured in the field plots defined in 

the selected HRUs. 

Type 
Depth 

(cm) 

Bulk 

density 

(g/cm3) 

Soil 

available 

water  

content 

(mm/mm) 

Hydraulic 

conductivity 

(mm/h) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Organic 

matter 

(%) 

Carbon 

(%) 

IT 
0 - 40 1.39 0.140 109.16 32 52 16 3.02 3.05 

40 - 60 1.58 0.160 76.30 33 50 17 1.16 0.57 

CT 
0 - 20 1.29 0.270 203.14 6 66 28 8.50 3.74 

20 - 40 1.29 0.420 101.07 25 38 37 5.89 2.59 

 

4.3.3 Model calibration and validation 

Traditional statistical indicators measuring the proximity of the predictions to the 

observed values were used to evaluate the performance of SWAT: Nash–Sutcliffe 

efficiency index (NSE) (Eq. (4.1)), the index of agreement d (Eq. (4.2)), the root mean 

square error (RMSE) (Eq. (4.3)), and the mean absolute error (MAE) (Eq. (4.4)).  

 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑂𝑖
𝑡 − 𝑃𝑖

𝑡)2𝑇
𝑡=1

∑ (𝑂𝑖
𝑡 − 𝑂̅)2𝑇

𝑡=1

 

 

(4.1) 

 
𝑑 = 1 −

∑ (𝑂𝑖 − 𝑃𝑖)2𝑁
𝑖=1

∑ (|𝑃𝑖 − 𝑂̅| + |𝑂𝑖 − 𝑂̅|)2𝑁
𝑖=1

 

 

(4.2) 

 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑂𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

 

 

(4.3) 

 
𝑀𝐴𝐸 =

1

𝑁
∑|𝑂𝑖 − 𝑃𝑖|

𝑁

𝑖=1

 

 

(4.4) 
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where: 𝑂𝑖  = measured (observed) data, 𝑃𝑖  = modeled data, 𝑂̅ = mean of measured 

data, and N is the number of observations during the simulation period. NSE ranges 

between -∞ and 1.0, with NSE=1 being the optimal value, and values ≤0. 0 indicates that 

the mean observed value is a better predictor than the simulated values, showing the 

unacceptable performance (Nash and Sutcliffe, 1970). A computed d value of 1 indicates 

a perfect agreement between the measured and predicted values, and 0 indicates no 

agreement at all. RMSE and MAE values of 0 indicate a perfect fit. 

Global sensitivity analysis was carried out to assess the most sensitive parameters for 

setting up the model in this watershed. The built-in Latin hypercube one-at-a-time (LH-

OAT) technique (Green and van Griensven, 2008; Morris, 1991) was used to determine 

the model sensitive parameters. The results obtained were used for flow calibration. 

Manual monthly calibration and validation were conducted using the data from the four-

stream gauging stations: Boyera, El Pino, Puente Balsa, and Puente Colorado, compared 

with the outflows of sub-basins 12, 7, and 2, respectively (Fig. 1). All these comparisons 

were based on the Nash–Sutcliffe efficiency index (NSE) (Eq. 1).  The index of agreement 

d, the root means square error (RMSE), and the mean absolute error (MAE), given by 

Equations (2) to (4), were used for each gauging station as a reference.  

The second step of the calibration process was for losses of sediments and nutrients. 

The model was calibrated manually using the monthly data from September 2011 to 

March 2013 for sediments, surface runoff, and concentration of soluble P, and NO3
−-N in 

the runoff. The mean absolute error (MAE) was used to evaluate the model performance 

for total accumulated sediment yield and nutrient losses, collected from each runoff plot 

during the mentioned period. Validation was conducted at the field level with the results 

obtained in the HRUs where IT and CT practices were applied. . Tables 4.4 and 4.5 

provide an overview of the parameters modified in the model calibration and their final 

calibration values.  

4.4 RESULTS AND DISCUSSION 

4.4.1 Streamflow model calibration 

Sensitivity analysis was performed for streamflow to determine the most influential 

parameters on the model output. Table 4.4 presents the eleven most sensitive parameters 

related to streamflow of the 20 evaluated. The parameters were ranked according to the 

P-value (significance of the sensitivity) from the highest to the lowest, where the highest 

are the most sensitive parameters (Abbaspour et al., 2015). In general, Revapmn.gw 

(threshold water depth in the shallow aquifer for return flow by capillary and soil 

evaporation process), Gwqmn.gw (threshold water depth in the shallow aquifer required 

for return flow to occur), and Sol_k.sol (saturated hydraulic conductivity into the soil) 

were the most sensitive. The sensitivity analysis results were included in the streamflow 

model calibration. Table 4.5 presents the adjusted parameters to improve the efficiency 
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of the model in the studied watershed for predicting the streamflow, which correspond 

mainly to runoff and groundwater flow processes. 

The simulation period was divided into two without including the first year, which 

was used as the period to “warm up” the model. The streamflow calibration process was 

performed for the first period (2006–2010), and the second period (2011–2013) was used 

for the validation process. The calibration and validation results are summarized in Table 

4.6. According to guidelines developed by Moriasi et al. (2007), the monthly streamflow 

calibration values at the four gauging stations were considered 'good' for the calibration 

period (NSE values greater than 0.65 and index of agreement (d) values were close to 1), 

except the Puente Balsa station (NSE = 0.5). The validation model predicted monthly 

flows at the four stations with NSE= 0.54, 0.32, 0.58, and 0.61, respectively. Only those 

values obtained at the El Pino station were considered unsatisfactory in the validation 

period (NSE=0.32). Figure 4.3 shows the hydrographs for the calibration and validation 

results (the two periods separated by a red line) for each streamflow gauging station. 

 

Table 4.4. Sensitivity analysis ranks results for streamflow model output. 

Rank Parametera t-valueb p-valuec  

1 r_Cn2.mgt -0.014 0.989  

 

2 r_Sol_awc( ).sol 0.040 0.968 

3 v_Gw_revap.gw -0.391 0.737 

4 v_Gw_delay.gw 1.009 0.313 

5 v_Shallst.gw -1.134 0.210 

6 v_Rchrg_dp.gw 1.617 0.183 

7 v_Gw_spyld.gw 1.877 0.107 

8 v_Alpha_bf.gw -4.381 0.099 

9 r_Sol_K( ).sol -4.348 0.016 

10 v_Gwqmn.gw 11.254 0.005 

11 v_Revapmn.gw -11.051 0.000 

a v: parameter value is replaced by a value from the given range; r: parameter value is multiplied by (1 + a 

given value) (Abbaspour et al., 2007). 
b t-value shows a measure of sensitivity: the larger the t-value, are more sensitive. 
c p-value shows the significance of the sensitivity: the smaller the p-value, the less chance of a parameter 

being by chance assigned as sensitive 



  

 

Table 4.5. Streamflow, sediment and nutrients parameters, allowable ranges, and final calibration values. 

Parameter Description in SWAT Range Model default value Final value 

Streamflow     

ALPHA_BF Baseflow alpha factor [days]. 0 – 1 0.048 0.02 

GW_DELAY Groundwater delay [days]. 0 – 500 31 25 

GW_REVAP Groundwater revap coefficient. 0 – 1 0.02 0.02 

RCHRG_DP Deep aquifer percolation fraction. 0 – 1 0.05 0.1 

REVAPMN Threshold water depth in the shallow aquifer for revap [mm]. 0 – 500 1 100 

GWQMN Threshold water depth in shallow aquifer for flow [mm]. 0 - 5000 0 100 

SHALLST Initial depth of water in the shallow aquifer [mm]. 0 - 1000 0.5 100 

GW_SPYLD Specific yield of the shallow aquifer [m3/m3]. 0 - 0.4 0.003 0.2 

GWHT Initial groundwater height [m]. 0 – 40** 1 25 

CN2 Initial SCS CN II value. 35 – 98 Specific to HRU 

SOL_K Saturated hydraulic conductivity [mm/h]. 0 - 2000 
Specific to soil survey unit 

SOL_AWC Available water capacity [mm H20/mm soil]. 0 – 1 

 

 

 

 

 



 

 

Table 4.5. Streamflow, sediment and nutrients parameters, allowable ranges, and final calibration values. 

Parameter Description in SWAT Range Model default value Final value 

Sediment      

CN2 SCS runoff curve number for moisture condition II. 35 – 98 Specific to land use 0.1*CN2default 

USLE_P USLE equation support practices. 0 – 1 1 0.5 

Crop growth      

T_OPT Optimal temp for plant growth. Nov-38 22 17 

T_BASE Min temp plant growth. 0 – 18 7 5 

HEATUNITS  Total heat units for cover/plant to reach maturity. 0 - 3500 1800 800* 

Nutrients     

PHOSKD Phosphorus soil partitioning coefficient. 100 - 300** 175 200 

NPERCO Nitrogen percolation coefficient. 0 – 1 0.2 1 

RSDCO Residue decomposition coefficient. 0.02 - 0.1 0.05 0.1 

SOL_LABP Initial soluble P concentration in surface soil layer [mg/kg]. 0 – 100 0 44 

SOL_NO3 Initial NO3 concentration in soil layer [mg/kg]. 0 – 100 0 12 

SOL_ORGN Initial organic N concentration in soil layer [mg/kg]. 0 – 100 0 10 

SOL_ORGP Initial organic P concentration in surface soil layer [mg/kg]. 0 – 100 0 10 

PPERCO_SUB Phosphorus percolation coefficient. 10 -17.5 10 17 

BIO_TARG Biomass (dry weight) target [metric ton/ha]. 4 – 100 0 30 

FRT_SURFACE        Fraction of fertilizer applied to top 10mm of soil. 0 – 1 0 1 

**The maximum was adjusted for the case study. 
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Table 4.6. Calibration and validation flow performances at the watershed level. 

Station 

CALIBRATIO VALIDATION 

Flow rate (m3/s) 
NSE RMSE MAE 

Flow rate (m3/s) 
NSE RMSE MAE 

Simulated Observed Simulated Observed 

La Boyera 1.5 1.41 0.78 0.6 0.45 1.6 1.32 0.54 0.59 0.41 

El Pino 0.52 0.43 0.61 0.28 0.21 0.42 0.32 0.32 0.2 0.15 

Pte. La Balsa 1.58 1.38 0.50 0.79 0.62 2.03 1.45 0.58 0.78 0.66 

Pte. Colorado 3.58 3.85 0.68 1.68 1.3 4.6 3.87 0.61 2.26 1.79 

 

a 

 

b      

 

c  

 

d 

 

Figure 4.3. Monthly calibration and validation results for flow (a) La Boyera, (b) El 

Pino (c) Pte. Balsa, and (d) Pte. Colorado. 

 

Overall, the monthly streamflow predictions were considered acceptable for this project. 

The baseflow was generally well represented by the model when compared to the 

observations. However, the peaks for certain times of the simulated period were slightly 

overpredicted. This is expected, considering that the watershed is under intensive 

agriculture, and only the potato crop management was considered. Additionally, the 

calibration and validation were affected by the lack of information on the “El Hato” 
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reservoir (located upstream) and the dams upstream constructed for irrigation. Similar 

findings have shown the overprediction of peak flows (Arnold et al., 2012; Harmel et al., 

2014; Daggupati et al., 2015; Francesconi et al., 2016), which confirms that there is more 

significant uncertainty in the calibration process, particularly for scenarios and case 

studies in which  information on upstream water management is not available. 

4.4.2 Water quality model calibration 

Calibration of nutrient losses in the runoff and sediments was performed for the available 

experimental period (September 2011 to March 2013) on the runoff plots related to the 

HRUs selected. Table 4.5 presents the adjusted parameters to improve the efficiency of 

the model in the studied watershed for the prediction of sediments and nutrients. In 

general, the calibration of the water quality for the IT management practices (baseline) 

was done by decreasing the sediment yield, increasing the content of NO3
−-N, and 

decreasing soluble and organic P yields. Some important parameters are the CN2 defined 

for potato, which is the model database was increased by 10%, and the USLE_P (ratio of 

soil loss with a specific support practice) changed from 1 to 0.5 to reduce the sediment 

yield due to greater aggregate stability of these Inceptisols. In the case of the nutrients in 

the soil layer, the initial concentrations of NO3
−-N, soluble P, organic N, and P (Sol_no3, 

Sol_labp, Sol_orgn, and Sol_orgp) were defined according to measurements obtained in 

the runoff plots. 

The measured and simulated total (accumulated) values were compared for (i) the 

surface runoff, (ii) NO3
−-N, (iii) the soluble P, and (iv) sediment losses at field level (HRU 

analyzed). The calibration for sediments and nutrients was considered to be acceptable 

(Moriasi et al., 2007). The results (Table 4.7) showed that the highest absolute errors were 

calculated for surface runoff, with values of 1.5 and 2.3 l/m2 for the IT and CT scenarios, 

respectively. However, the absolute error (Table 4.7) for the other variables was less than 

zero for each measurement unit. Despite the errors reported, a similar trend was observed 

for the IT and CT values simulated compared with the field observations (runoff plots 

measurements). In both cases total runoff and soil losses are reduced in the CT scenario. 

In contrast, the nitrogen and phosphorus concentrations in the runoff from the CT 

plots were higher than the intensive tillage (IT). However, the calibration can probably 

be further improved if continuous records of water quality parameters were available. 

Also, several calibration techniques have been developed for a physically-based model 

like SWAT (Smarzyńska and Miatkowski, 2016; Me et al., 2015; Akhavan et al., 2010; 

Harmel et al., 2014; Arnold et al., 2012), and these could be suitable depending on the 

final goal of the modeling.  
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Table 4.7. Sediment and nutrient losses performance. 

Variable** 
Measured  Simulated  Ɛ* 

IT CT 
 

IT CT 
 

IT CT 

Runoff water 
  

 

  

 

  

Surface runoff (l/m2) 27.45 26.05  28.97 24.03  1.53 -2.01 

NO3
- in surface runoff (kg N/ha) 0.68 0.72  0.39 0.47  -0.29 -0.25 

Soluble P yield (kg P/ha) 0.18 0.20  0.21 0.29  0.03 0.08 

Sediments         

Sediment yield (T/ha) 0.62 0.07  0.58 0.31  -0.04 0.25 

* Ɛ: Absolute error. ** Accumulated total values from September 2011 to March 2013. 

 

4.4.3 The effectiveness of CT-BMP at field level 

The effectiveness of CT was first evaluated at the field level with SWAT. The period 

from September 2011 to February 2012 was selected to simulate the CT and baseline (IT) 

scenarios. This period was chosen because it corresponds with the potato cultivation 

phase in both practices. In addition, CT spatial extrapolation was done for the whole 

potato crop area to estimate the water quality impacts if BMPs were applied by all farmers. 

Table 4.8 shows the results of IT and CT's direct effects on the average monthly runoff, 

sediment, and nutrients in the runoff at the field vs. watershed scales. 

The CT practice results showed a reduction of sediment yield of 46% and of surface 

runoff of 27% at the field level (Table 4.8). The simulated sediment loads tended to 

decrease when surface runoff decreased, and the same trend was found for soil loss, but 

not as great as for the sediment loads (Figure 4.4). Furthermore, soil loss reduction was 

almost twice the reduction of runoff during the rainy season. It is noteworthy that the 

percentage of runoff reduction (27%) is similar to the increase in infiltration obtained for 

CT, which varies from 429 mm H2O to 553 mm H2O (representing a 29% increase). 

Therefore, when the runoff is minimum and infiltration is maximum, there is a high 

possibility of water moving through the root zone (Stewart and Lal, 1994). Our study 

found that the soil–water content increased (approximately 3%), a result similar to 

previous studies carried out in the same watershed (Quintero, 2009; Quintero and 

Comerford, 2013: Quintero, 2014). The trend of high infiltration as a consequence of CT 

practices has been reported by other studies (Deubel et al., 2011; Ram et al., 2018; 

Villamil and Nafziger, 2015); however, those results varied widely depending on the soil 

type, cropping system, and management. 

Additionally, the mass balances of nitrogen and phosphorus were analyzed to 

understand the differences between the effects of CT and IT practices on nutrient losses. 

The mass balances showed that N and P's total losses in the runoff from CT practices 
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were 17% and 29% greater, respectively, than from IT practices. The total N and total P 

yields in the runoff at the field level are shown in Figure 4.5. The field-level results agree 

with the results from the data measured in the runoff plots reported by CIAT (Quintero et 

al., 2013; Quintero, 2014). The main reason that total N and P losses were greater for CT 

than IT scenarios is that organic N and soluble P were 50% and 38% greater, respectively, 

in the CT treatment than in the IT treatment (Table 4.8). This might be attributed to the 

greater residual cover crop (oat as green manure) in the potato–pasture rotation in the CT 

scenario.  

The average concentration of nitrate N in the runoff was 20% greater (Table 4.8) in 

the CT practice than in the IT practice. Furthermore, this result was more evident in 

specific events. The transformation of fresh organic N to mineral N suggests an increase 

of up to 162 kg N ha-1 in the CT practice, compared with 47 kg N ha-1 in the IT practice. 

Mineralization of active nitrogen was up to 248% greater in the CT, compared to IT. The 

mineralization of nitrogen from fresh plant residue to nitrate N, is about 80%, while active 

organic nitrogen is 20%. This means that mineralization generates a net increase in the 

nitrate N due to the N compounds' oxidation, allowing nutrients to be released (Hart et 

al., 1994). The results for NO3- leachate from the soil profile suggest an increase of 15%. 

However, even though there is a high NO3-N content in the soil, the model shows that it 

leaches, which prevents its accumulation in the soil profile. Consequently, there is a 

decrease by 10% of nitrogen uptake in the plants. 

Despite the increase of the bulk density of the first soil layer (Table 4.3) and the 

decrease in surface runoff, soluble phosphorus losses were greater in the field-scale CT 

scenario than in the IT scenario (Table 4.8). The main reason for the soluble P increment 

may be that the amount of phosphorus in solution in the top 10 mm of soil increased by 

26.88 kg P ha-1, compared to 8.59 kg P ha-1 for the IT scenario. The results suggested that 

the increase of net P in the solution can be attributed mainly to the mineralization of 

phosphorus from the fresh residue pool and from the active organic pool to the labile pool 

(P in solution), which increased by up to 178% in the CT, compared to IT. Deubel et al. 

(2011) reported an increase of soluble P by 24% under conservation tillage in long-term 

research, along with a trend of high P concentrations in deeper soil layers. In contrast, the 

implementation of CT can reduce by approximately 33% the organic phosphorus 

transported with the sediments into the reach (Table 4.8). The transformation of 

phosphorus between the mineral pool (P in solution) and the "active" mineral pool (P 

absorbed to the surface of soil particles) decreased by 69.85% in the CT scenario. 

Additionally, the decrease of the sediment yield (metric tons) for the CT scenario (Table 

4.8) has a direct influence on the phosphorus load transported with sediments to the main 

channel in the surface runoff (Neitsch et al., 2011). Equally important, despite the 

increased availability of total P and soluble P in this research, the uptake of P by plants 

was almost the same or even tended to be less for the CT scenario (38.63 and 36.86 kg P 

ha-1 for the IT and CT scenarios, respectively). 
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a) 

 

b) 

 

Figure 4.4. Sediment losses (a) and runoff (b) at field level - right vertical axes. 

 

 

a) 

 

b) 

 

 

c) 

 

 

d) 

 

Figure 4.5. Monthly total N (a), total P (b), NO3−-N (c), and soluble P (d) in surface 

runoff at field level. 
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4.4.4 The effectiveness of CT-BMP at the watershed level 

The CT management practice's extrapolation was performed for the entire potato crop 

cultivated in the watershed, under different biophysical conditions (HRUs) from those 

evaluated at the field level. The results suggest that CT at the watershed level reduces the 

surface runoff and sediment yield by 11% and 26%, respectively. The reduction obtained 

for the two parameters represents approximately half of the reduction obtained at the field 

level. Furthermore, the most significant CT decrease compared with IT occurred during 

the rainy season, when farmers normally perform fertilization tasks to take advantage of 

the wet soil conditions. 

Surface runoff loss could be influenced by the tillage type and the rotation system 

(e.g., incorporating green manure). However, the SCS runoff curve numbers (CN2) 

defined per soil type, land use, and management practices in the model inputs were not 

affected directly by the CT operation. Therefore, the surface runoff increments cannot be 

attributed mainly to the CT scenario (Maharjan et al., 2018). This is mostly because the 

precipitation, slope, and soil moisture vary for the other potato crop areas (HRUs) along 

the watershed. The tillage practices affect the sediment yields. In the model, the PUSLE 

support practice factor (USLE_P) defined in the modified universal soil loss equation 

(Williams, 1995) is the only parameter related to CT practices that affect the sediment 

yields. However, soil erosion in the SWAT model is also directly affected by the surface 

runoff volume, topographic factors, and soil erodibility factors defined in the soil 

properties. 

Total nitrogen loss increased by 2% in the CT scenario at the watershed level (Table 

4.8). The losses of nitrate N was significantly higher in CT than IT, with an increase of 

17% (Table 4.8). The increment in NO3
−-N was directly affected by the nitrification 

process, which oxidized the ammonia or ammonium from the inorganic fertilizer applied 

(0.26 and 4.42 kg N ha-1 in the IT and CT scenarios, respectively). Furthermore, no 

significant differences were shown for organic N losses (Table 4.8). This form of nitrogen 

is associated with sediment loading, and consequently, organic N losses decrease when 

the sediment loads are reduced. The amount of organic N transported to the main channel 

in surface runoff calculated by the model can be adjusted using the nitrogen enrichment 

ratio (ERORGN) parameter (Neitsch et al., 2011). In our study, the model's default value 

was used, which is calculated by a logarithmic equation related to sediment concentration 

developed by Menzel (1980). Therefore, future studies are required to calibrate this 

parameter for the different types of soils in the watershed and to be able to calibrate the 

sediment loads for HRUs that are different from those used in the analysis at the field 

level. 

In contrast, total phosphorus losses decreased by 18% in the CT scenario (Table 4.8). 

This effect is mainly due to the 38% decrease in soluble P loss in the CT scenario's surface 

runoff compared to the IT scenario (Table 4.8). When each component of the phosphorus 

mass balance was analyzed, it was interesting to note that the amount of phosphorus that 
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moved into the "labile" mineral pool (P in solution) from the "active" mineral pool (P 

sorbed to the surface of soil particles) was -4.97 kg P ha-1 in the CT, compared to 3.87 kg 

P ha-1 in the IT scenario. A negative value denotes a net gain in soluble P due to movement 

to the labile pool from the active pool (Neitsch et al., 2011). However, the amount of 

soluble P transported in surface runoff also depends on the bulk density of the first soil 

layer and the phosphorus soil partitioning coefficient (PHOSKD), which is the ratio of 

the soluble P concentration in the surface soil to the soluble P concentration in surface 

runoff (Neitsch et al., 2011). For instance, even though the PHOSKD parameter was 

calibrated (Table 4.5) and the bulk density was measured (Table 4.3) at the field level, 

the spatial transfer of the CT to a different type of soil affects directly the value calculated 

for the soluble P (Deubel et al., 2011) at the watershed level. 

Furthermore, the principal effect of the CT on loss of organic P was a decrease of 8% 

compared to the IT scenario (Table 4.8). Unlike organic N loss, the organic P loss showed 

a direct correlation with the sediment loss. Nevertheless, to verify this impact's 

consistency over the watershed, the phosphorus enrichment ratio parameter (ERORGGP) 

calculated as a default by the model needs to be adjusted. 

This study indicates that using integrated watershed modeling to assess the impact of 

CT on nutrient properties requires further spatial calibration to improve confidence in the 

model. Farm-scale soil physical and chemical data under CT management is necessary to 

parameterize the inputs. For example, the soil bulk density in SWAT is an input defined 

manually by the user. The temporal variation of the soil layer's bulk density is not affected 

by the tillage operation (Arnold et al., 2012a; Maharjan et al., 2018). Although the impact 

of CT on the soil properties has been studied widely for the management of different 

crops over short- and long-term durations (Carter and Sanderson, 2001; Deubel et al., 

2011; Ram et al., 2018; Quintero and Comerford, 2013; Villamil and Nafziger, 2015; 

Wang et al., 2015), many gaps still need to be addressed, such as the simulation approach 

to soil tillage, and especially to the spatial and temporal changes of the soil’s physical and 

microbial activity. However, we realize that some processes are difficult to characterize 

accurately in large watersheds due to insufficient data or understanding of the techniques 

themselves. Furthermore, depending on the research scope, the modeling approach may 

or may not be a viable alternative. 
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Table 4.8. IT and CT's direct effects on average monthly runoff, sediment, and nutrients 

in surface runoff. 

Variable 
Field-level Watershed-level 

IT CT Difference (%) IT CT Difference (%) 

Surface runoff (l m2) 32.84 24.03 -26.83 15.91 14.13 -11.19 

Sediment yield (ton ha-1) 0.58 0.31 -46.55 1.89 1.40 -25.93 

Nitrogen losses (kg ha-1)  
  

  
 

Total N loss 221.15 258.05 16.69 21.33 21.71 1.78 

Organic N 0.08 0.12 50.00 3.36 3.38 0.59 

Nitrate surface runoff 0.39 0.47 20.51 0.53 0.62 16.98 

Nitrate leached 166.65 191.16 14.71 9.22 9.43 2.28 

Nitrate lateral flow 4.00 4.85 21.25 6.03 6.11 1.33 

Nitrate groundwater yield 50.03 61.46 22.85 2.17 2.20 1.38 

Phosphorus losses (kg ha-1)  
  

  
 

Total P loss 0.24 0.31 29.17 0.77 0.63 -18.18 

Organic P 0.03 0.02 -33.33 0.49 0.45 -8.16 

Soluble P  0.21 0.29 38.10 0.29 0.18 -37.93 

4.5 CONCLUSIONS 

The objective of this part of the study was to assess the impacts of CT on the runoff 

quality, as well as soil, nitrogen (N), and phosphorus (P) losses in a potato crop in the 

Fuquene watershed (Colombia) by applying the SWAT model. The model performance 

was calibrated and validated at field level for site-specific conditions, and then CT 

practices were extrapolated to the whole potato crop area in the basin. Despite the 

modeling uncertainties, the results provide evidence that the model-based approach 

presented is useful and practical. It can be used to facilitate the development of land-use 

plans by local decision makers to reduce water pollution in the Fuquene watershed. 

The results suggest that CT at the watershed level reduces the sediment yield by 26% 

and surface runoff by 11% compared with IT, which means an overall reduction of 

sediment load. The most significant decrease in sediment load due to CT occurs, 

especially in the rainy season. The main CT effect on nutrient losses in the runoff is that 

an increase occurs in the total N and P (2% to 18% respectively) compared to the baseline. 

In addition, the CT simulation results suggest that the loss of NO3
−-N in surface runoff 

could be increased by 17%. This might be attributed to the nitrification process, which 

oxidized the ammonia or ammonium from the inorganic fertilizer. However, the results 

at the watershed level showed different patterns from those obtained at the field level. In 

fact, the major limitation identified in this study arises from the process of the CT 

extrapolation practice for all the potato crop areas within the watershed because the model 

was calibrated for a minimal area (field level), and the initial and calibrated parameter 

values were the same for other soil types and slopes in the watershed.  
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This chapter provides important information about the effects of potato management 

practices on the runoff water quality in an Andean watershed. It thereby provides a 

potential model for future Andean watershed studies, providing guidelines to decision-

makers and stakeholders aiming to use these agricultural management practices for the 

potato crop. Given the loss of nutrients obtained for the CT practice, the authors suggest 

that it may be possible to reduce the amounts applied, considering the contribution of the 

green manure nutrients involved. Adjusting the amounts of fertilizer could help increase 

conservation agriculture competitiveness in potato crops, compared to conventional 

management practices. However, it is necessary to assess reduced fertilizer dose trials 

and their impacts on productivity, erosion, and runoff. Besides, more detailed spatio-

temporal models and the application of optimization techniques would help identify and 

allocate CT-BMP options to reduce the impact of agricultural practices on water pollution. 

Moreover, using this type of model and methods, it could be possible to simulate several 

crops in the same watershed, consider climate change scenarios, and define suitable 

parameters for the different areas in the watershed. Overall, future research that 

contemplates these points will help mitigate the uncertainty in assessing the 

implementation of BMPs at the watershed level. 
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5.1 ABSTRACT 

Lake Riogrande II, located in the Colombian Andes' central region, has eutrophication due 

to a progressive increase of runoff pollution from upstream intensive dairy cattle and 

agricultural activities in the watershed. Public and private entities have invested in adopting 

the best agricultural management practices (BMP). BMP is a general formulation of 

recommended criteria and, therefore, does not universally fit all problems. For example, the 

corrective measures taken so far demonstrate difficulties in selecting and allocating BMPs 

appropriate for the space-time hydrological variability within the watershed. This research 

analyses the spatio-temporal dynamics of BMP pollution patterns. The study is built on 

critical source areas of runoff pollution from agricultural practices in the Colombia Andes. 

Fieldwork was conducted with farmers' participation to collect spatial data of the current 

management operations for potato (Solanum tuberosum), tree tomato (Solanum betaceum), 

and dairy agriculture. The Soil and Water Assessment Tool (SWAT) model is used to 

simulate agricultural and hydrological processes. The model was calibrated using observed 

discharge, nitrate-N (NO3
-N), and soluble phosphorus (P) concentrations monthly. The 

origin of pollution at the catchment scale was used applying the critical source areas (CSAs) 

method. This chapter proposes for this analysis a new spatio-temporal CSA index (ST-CSA) 

to represent the behavior of the CSAs simultaneously in space and time. For this, several 

aggregated CSAs were analyzed using monthly and annual time steps. Results indicate that 

the location of CSAs changes significantly with time using ST-CSA. As expected, the 

greatest number of CSAs occurs during the rainy months. However, these CSAs are located 

in the region with the lowest precipitation levels in the agricultural areas within the 

watershed dominated by potato, tree tomato, and dairy agriculture. These areas vary 

significantly, from 24.07% of the entire basin area (1034.348 km2) to a maximum of 61.78%. 

Despite the model uncertainties, the results highlight the importance of identifying spatio-

temporal CSAs to select BMPs with the highest potential for nitrogen and phosphorus losses 

reduction (such as the adaptation of fertilization schedules) applicable to the study 

watershed. 

5.2 INTRODUCTION 

Nowadays, soil resources are under increasing pressure due to its intensification for 

agriculture, grazing, forestry, and urbanization. It is estimated that by 2050 the demand of a 

growing population will increase the stress on soils 60% by 2050 (Organización de las 

Naciones Unidas para la Alimentación y la Agricultura (FAO) and Ministerio de Ambiente 

y Desarrollo Sostenible (MADS), 2018). These pressures, combined with unsustainable 

agricultural management practices (soils without vegetation, large amounts of fertilizer 

applied, and intensive tillage), as well as extreme weather events, are expected to cause 

significant land degradation (Sedano et al., 2013; Sarkar et al., 2006). The associated 

external impacts of these practices can lead to degradation of surface water quality, 

eutrophication of reservoirs, and increased risk of flooding (Giri and Qiu, 2016; Fiener et 
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al., 2011). Therefore, a detailed understanding of contamination of runoff from agricultural 

basins to aquatic environments is crucial to designing practices to limit this degradation. 

One of the most recommended alternatives to reduce runoff water pollutants within an 

agricultural watershed is implementing Best Management Practices (BMPs) (Jeon et al., 

2018; Ritter and Shirmohammadi, 2001). Nevertheless, the selection and allocation of 

agricultural BMPs at a watershed scale is very complex in practice. Several studies have 

shown the importance of focusing on the identification of nutrient losses in Critical Source 

Areas (CSAs) at a watershed scale to allocate BMPs (Gariz and Talebi, 2016); Giri and Qiu, 

2016; Dechmi and Skhiri, 2013; Ghebremichael et al., 2013; Giri et al., 2012; Winchell et 

al., 2011; Chaubey et al., 2010; Ghebremichael et al., 2010;  Tuppad and Srinivasan, 2008). 

Most of these studies identify and quantify CSAs to evaluate the effectiveness of BMPs that 

have been previously selected, using models such as the Soil and Water Assessment Tool 

(SWAT), Water Erosion Prediction (WEPP), and Annualized Agricultural Nonpoint Source 

(AnnAGNPS). However, research nowadays recognizes that to allocate BMPs at the 

watershed scale, a detailed understanding of spatio-temporal dynamics of the surface 

pollutants in runoff is crucial (Uribe et al., 2018; Gao et al., 2017; Giri and Qiu, 2016; 

Ghebremichael et al., 2013; Fiener et al., 2011). 

In various hydrology areas, there is a significant trend to understand the dynamics of 

each spatial event in time, aiming to analyze spatiotemporal dynamics (Diaz et al., 2019; 

Laverde-Barajas et al., 2019). These methodologies derive from pattern recognition 

techniques and are being applied to different fields, providing new alternatives to the 

generalization of spatial changes on an average time step (Corzo Perez et al., 2011; Li et al., 

2013; Cristiano et al., 2017; Amaranto et al., 2019; Laverde-Barajas et al., 2019). 

Spatiotemporal approaches that do not analyze the dynamics of runoff contaminants at the 

watershed scale can be found in the literature. For instance, Shen et al. (2015) document 

changes across space and time in the relationship between water quality and buffer zone-

BMPs. The results reveal that the design of a buffer zone-BMPs does not depend only on 

the land use type, but it also depends on the implementation scale. His conclusion did not 

take into account the variation of CSA by season or month. Giri et al. (2014) presented an 

analysis of BMP implementation's spatio-temporal variability based on four targeting 

methods at the sub-basin level. Temporal and spatial comparisons of ten BMPs’ 

effectiveness with the baseline (without BMPs) were performed for sediment, total nitrogen, 

and total phosphorus. The results showed significant temporal variability in the defining 

factors of CSAs, related to the implementation years defined for each of the scenarios 

evaluated for each BMP. Fiener et al. (2011) studied how spatio-temporal land-use patterns 

affect surface runoff response. The study focused on the linear landscape structures 

associated with the spatial organization of fields, and it was found that surface runoff can be 

reduced by decreasing field size. Therefore, the higher the spatio-temporal variability in 

hydraulic properties and management intensity, the more significant the impact of field size 

on surface runoff. These studies focus on the identification of CSAs to evaluate the 

effectiveness of previously selected BMPs, and in analyzing the results in space and time. 
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However, there was no direct connection between hydrological events and individual CSA 

variations.  In contrast, in this study, we propose the use of an ST-CSA index for the spatio-

temporal dynamics of CSA and its identification. These results will allow us to explore in 

the future the selection of BMPs that are more aligned with the hydrological spatio-temporal 

variability in the basin. Hence, the main objectives of this study were to identify spatio-

temporal patterns of nitrate-N and soluble P in runoff from the current agricultural practices 

in the Colombia Andes.  

We considered it necessary to define our own CSAs, taking into account space (location) 

and temporal (time) variability throughout the modeling period. Therefore, the word 

"spatiotemporal CSAs" is defined in this chapter as dynamic areas in time and space within 

the watershed. This study will help decision-makers select BMPs that are more in line with 

local needs and have a higher probability of achieving sustainable agricultural development 

goals. We apply this approach to watersheds located in the mountains of the tropical Andes, 

where there are still gaps in addressing this issue. It is the first in-depth study that covers the 

high level of complexity of shifting cultivation and intensive traditional agriculture, which 

is currently practiced in this type of watershed. In addition, this work is an essential step 

towards developing a multi-objective optimization method to select and allocate BMPs at 

the watershed level. Furthermore, the results provide crucial information about simulation 

of the spatio-temporal dynamics of the runoff pollutants and further optimization of BMPs. 

5.3 METHODOLOGY 

5.3.1 Hydrological and water quality model 

SWAT model development and input data 

The Soil and Water Assessment Tool (SWAT), developed by the United States Department 

of Agriculture – Agricultural Research Service, was used in this study (Arnold et al., 1998). 

SWAT is a semi-distributed, continuous-time, and process-based watershed-scale model 

designed to simulate the effects of water management decisions on water quantity and 

quality (Neitsch et al., 2011). The model's processing units are Hydrological Response Units 

(HRUs) – small land areas with unique combinations of sub-basin, soil type, land use, and 

agricultural management practices (Arnold et al., 1998). The hydrological cycle is based on 

the water balance equation. A summary of the SWAT equations is presented in the 

supplementary material online. 

The model input data consist of land use/cover type, soil type and properties, topography, 

weather/climate data, and land management practices (management schedules). A land-use 

cover map (scale of 1:10,000) was obtained from the regional environmental authority of 

Antioquia (Corantioquia). A soil map (1:50,000 scale) and physicochemical studies 

conducted from October 2015 to March 2016 were obtained from the Temporary Union of 

Environmental Risk Management (UT-GRA). A detailed description of the soil's physical 
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characteristics defined as model inputs is provided in the appendix A.2. Topography data in 

a 30-meter resolution Digital Elevation Model (DEM) were obtained from the National 

University of Antioquia and Corantioquia. The weather data from 16 stations located within 

the watershed (Figure 3.4-Chapter 3) were obtained from Medellin's Public Service 

Company (EPM). The historical record daily data included precipitation, temperature 

(maximum, minimum, and average), relative humidity, solar radiation, and wind speed. 

Annual and monthly average rainfall and temperature maps are provided in chapter 3 (Figure 

3.5-Chapter 3).  

Monthly streamflow measurements at the San Pedro Rg-10 La Ye, Rg-6 Puente Belmira, 

and Presa Riogrande II (located at the outlet of the watershed) stations were used to calibrate 

and validate the flow in different locations in the watershed (Figure 3.4-Chapter 3). Daily 

observations of Nitrate-N (NO3
-N), Total Nitrogen (TN), and soluble phosphorus in the 

Chico river outlet from 2014 to 2015 were obtained from the Medellin's Public Service 

Company (EPM). The concentrations were collected during a water quality monitoring 

campaign (a single measurement per day) performed as part of the project "El estudio de la 

problemática ambiental de los embalses La Fe, Riogrande II y Porce II, para la gestión 

integral y adecuada del recurso hídrico” (in Spanish). 

For this study, the SWAT model was built on a daily time step from 1996 to 2015. All 

spatial information was projected to the MAGNA Colombia Bogota Project Reference 

System (origin Bogotá, False Coordinates N: 1,000,000 m and E: 1,000,000 m, Datum 

MAGNA (Ellipsoid WGS 84)). The watershed was defined with an area of 103,434.77 ha 

and delineated into 20 sub-basins representing the main tributaries. The slope classes were 

defined in five ranges (0-5%; 5-15%; 15-40%; 25-60%; and >60%) and 3060 HRUs were 

delineated. The actual evapotranspiration (AET) was calculated based on the methodology 

developed by Ritchie (1972), and the potential evapotranspiration (PET) was simulated 

using the Hargreaves method (Hargreaves and Samani, 1985). The CN method (USDA-SCS, 

1972) was used to predict the surface runoff using the method that varies with soil profile 

water content to calculate the retention parameter (Eq. 2.1-Chapter 2). The CN values were 

determined based on Colombian Land Cover Map categories associated with SWAT land 

cover codes (IDEAM et al., 2008). The CN values defined in the land cover database are 

presented in the Appendix A.1. 

 Table 5.1. Spatial input data description 

Data type Resolution Source 

Topographic map 30m CAR 

Land use map 1:25.000 IGAC 

Soil map 1:100.000 IGAC 

Weather No. of stations: 21 CAR-IDEAM 
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Current management practices and characterization 

The current agricultural management practices for potato, tree tomato, and kikuyu grass 

(Pennisetum clandestinum) (dairy farming) were defined in the HRU management file (.mgt) 

and incorporated into the model. Input data for planting, harvesting, fertilizer applications 

(nutrients), tillage operations, grazing, crop rotation, and scheduled management operations 

were collected through field surveys and secondary sources. The fieldwork was conducted 

in January 2016 in partnership with Antioquia University at the Riogrande watershed (Figure 

5.1). Since farmers do not use the same schedules, some assumptions were made to unify 

the current management practices database. These assumptions include that: 1) the planting 

date in the schedule is the same for each crop, 2) kikuyu grass was selected due to its 

predominance for dairy farming, 3) transitory crops which may occur in pastures and in 

addition to potato crop were not considered, and 4) fertilizer application dates and rates are 

the same for every crop. In general, small-scale farmers apply fertilizers based on estimated 

quantities needed, and this occurs during the rainy season. The type of fertilizer used changes 

according to the market price, and the technology for applying the fertilizer also varies 

(horses, ditches, and spray by sprinklers) within the watershed.  

The current agricultural management practice for potatoes is to rotate between potato 

and pasture. Two potato cycles of six months are carried out, and then kikuyu grass is planted 

for soil recovery. Tillage operations are carried out by conventional plowing, followed by 

passes of a bedder shaper to invert the soil. The chemical fertilizer N-P-K (15-15-15 type) 

is applied simultaneously with the tillage to incorporate it into the soil (Figure 5.2). The 

kikuyu grass is used for dairy cattle feeding (Holstein cattle). This grass is characterized by 

its high adaptability, rusticity, load capacity, and excellent ease of handling and response to 

fertilization. Typically, the animals for grazing are rotated between small sub-areas defined 

on the farm every 40 days. This way, the grazing is controlled evenly throughout the whole 

property. The animal load is three per ha day-1 of grazing. The dry weight of biomass 

consumed per animal load is defined as 51 kg ha-1 day-1, and the dry weight of manure 

deposited by 3 animals is ten kg ha-1 day-1. The quantities of Potreros mixed fertilizer, urea, 

and cattle manure applied to grass fields are split into nine applications per year after each 

grazing (see Figure 5.3). Tree tomato is a semi-permanent crop generally harvested all year 

(for four to five years after planting). For this study, the harvest operation was defined every 

five months for five years, which allowed ten harvests per tree. Commonly, urea plus 

chemical fertilizer N-P-K (13-13-13 type) is applied monthly after the planting date (Figure 

5.4). The production of this fruit has been on the rise for the last ten years, and the Riogrande 

watershed area produces 90% of the total production of the Antioquia region. This tree is 

also quite demanding in terms of nutritional elements and has a high susceptibility to pests, 

diseases, and climatic adversity.  

The current agricultural management practices for these crop systems were simulated in 

the model as a baseline. Detailed descriptions of the scheduled operations (planting, grazing, 

tillage, fertilizer applications, and harvest) are provided in the Appendix A.3. The final 

values of the management operations' parameters were defined in the HRU management file 
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(Table 5.2). Moreover, the fertilizer database (.frt) was modified according to the farmers' 

fertilizer use in our case study (Table 5.3).  

 

 

Figure 5.1. Survey points and areas associated with the current potato, tree tomato, and 

kikuyu grass agricultural management practices. 
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Figure 5.2. Conceptual outline of potato crop management practices. 

 

 

Figure 5.3. Conceptual outline of kikuyu management practices. 

 

 

Figure 5.4. Conceptual outline of tree tomato crop management practices. 
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Table 5.2. The variable name, description, and values defined of the management 

operations for potato, tree tomato, and kikuyu grass entered in the management file. 

Variable Name Definition 

Value defined 

Potato 
Tree 

Tomato 
kikuyu 

Planting    

PLANT_ID Plant/land cover code from crop.dat POTA TOMA PASM 

HEAT UNITS Total heat units required for plant maturity 800 1500 1000 

CN2 Initial SCS runoff curve number [35- 98] 62 60 62 

Grazing 
   

GRZ_DAYS Number days of grazing take place in the HRU   1 

BIO_EAT Dry weight of biomass consumed (kg ha-1 day-1)   51 

BIO_TRMP Dry weight of biomass trampled (kg ha-1 day-1)   650 

MANURE_KG Dry weight of manure deposited (kg ha-1 day-1)   10 

Tillage 
   

TILLAGE_ID Tillage implementation 
Bedder 

shaper 

Bedder  

Disk 

Bedder  

Disk 

Fertilizer    

FERT_ID Type of fertilizer/manure applied  15-15-15 
Urea+ 

13-13-13 

Urea+ 

Potreros 

FRT_KG Amount of fertilizer/manure applied (Kg ha-1) 
700 

(2/cycle) 

530 

(7 per year) 

90 

(8 per year) 

FRT_ 

SURFACE 
Fraction of fertilizer applied to top 10 mm 0.2 0.9 0.9 

 

Table 5.3. Fertilizers selected into the database (.frt file) 

Composition (%) 
Name 

15-15-15 13-13-13 Nitromag Potreros Urea 

Total nitrogen N 15 13 21 31 46 

Ammonium nitrate 8.89 6.87 10.3 1.5  

Nitric nitrogen 6.11 3.13 10.7 29.5  

Total phosphorus P2O5 15 13  8  

Total potassium KO2 15 13  8  

Calcium Ca   11   

Magnesium   7.5 3  
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5.3.2 Model calibration and validation 

The number of parameters included in the calibration process can be reduced by identifying 

the most sensitive parameters. A global sensitivity analysis was carried out only for flow 

since it is the only variable with continuously observed records for the simulation period. 

The built-in Latin hypercube one-at-a-time technique (Green and van Griensven, 2008; 

Morris, 1991) was used for this purpose. Thirteen parameters were found to influence the 

streamflow and were thus included in this analysis. The results were used for flow 

calibration.  

Manual flow calibration was performed for the period from 1995 to 2015 using data 

from the San Pedro Rg-10 La Ye, the Rg-6 Puente Belmira, and the Presa Riogrande II 

gauging stations, compared with the outflows of sub-basins 17, 9, and 16 (Figure 3.4-

Chapter 3). Nash–Sutcliffe modeling efficiency (NSE), root mean square error (RMSE), and 

time series plots were used to evaluate the model predictions during the calibration and 

validation periods (Moriasi et al., 2015;  Nayeb Yazdi et al., 2019). Second, for potato, tree 

tomato, and kikuyu grass crops, the harvest yield (ton ha-1) as dry weight was calibrated, 

comparing the average values simulated with the reference values (measured). An average 

harvested yield for potato, tree tomato, and kikuyu of 8, 10, and 0.2 to 4 (ton ha-1 harvest-1), 

respectively, were reported by the UT-GRA research program (Fedegan and Sena, 2013). 

The large range of yields for kikuyo is due to the yields varying within between sites. The 

annual reference values defined to compare the simulated harvest yields during the 

calibration process were 16, 20, and 1.6 to 32-ton ha-1 year-1 per crop, respectively. These 

values were calculated according to the number of harvests per year defined in each 

operation schedule (2, 2, and 8 times harvested year-1, respectively).  

Finally, monthly average manual calibrations for nitrate-N (NO3
−-N mg l-1), total 

nitrogen (TN mg l-1), and soluble phosphorus (PO4 mg l-1) were performed. Discontinuous 

sampling daily data collected in a monitoring campaign from 2014 to 2015 by the University 

of Antioquia, the National University, and EPM (Medellin's Public Service Company) were 

used. The water samples to estimate nutrient values were extracted with a 5-deep Schindler 

5-liter bottle (sub-surface, 10% I0; 1% I0; half of the water column; and one meter at the 

bottom of the aphotic zone ) (Ramírez-Restrepo et al., 2015). The NSE, RMSE performance 

indicators, and time series plots were used to evaluate the model predictions for the period 

when the concentration data of nitrate-N (NO3
−-N mg l-1), total nitrogen (TN mg l-1), and 

soluble phosphorus (PO4 mg l-1) were available. 

5.3.3 Identification/characterization of spatio-temporal critical source 

areas 

The targeting technique Load per Unit Area Index (LPUAI) (Tuppad and Srinivasan, 2008; 

Giri et al., 2012) was computed to identify the CSAs of nitrate-N (NO3
−-N) and soluble P 

(PO4) in runoff at the HRU level. Determining runoff CSAs is essential because nutrient loss 

predictions in the model are positively related to surface runoff (Eq. 2.3 to 2.7- Chapter 2). 
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SWAT-predicted monthly values were used to apply the LPUAI. The CSAs are based on 

the monthly average runoff and pollutant load per unit area, which normalizes each HRU 

for comparison in terms of kg ha-1. 

Individual HRUs within the watershed are analyzed in detail to compare their spatial 

distribution of the pollutants (Tuppad and Srinivasan, 2008). The proposed methodology 

using the ST-CSA index follows three main steps: 1. Temporal analysis is carried out first, 

followed by spatial analysis to identify the spatio-temporal CSAs. The threshold values of 

runoff, NO3
−-N, and PO4 losses were defined to identify HRUs with higher monthly rates. 

These values were determined by analyzing the monthly historical records and calculating 

the 90th percentile of NO3
−-N, and PO4 losses. 2. A graph per variable was developed to 

show the defined thresholds and the HURs above these levels. 3. The HRUs above these 

thresholds were counted for each month and classified for the total simulation period (1995-

2015). 4. Subsequently, a spatio-temporal CSA index (ST-CSA) was calculated to define 

the spatio-temporal CSAs for the region for each variable studied. A value equal to 1 

indicates that the HRU examined was above the threshold. And 5. An analysis of how the 

regions’ nutrient losses change based on their index ST-CSA was plotted per monthly time 

step.  

The characterization of the ST-CSAs for NO3
−-N and soluble P was determined by 

analyzing variance (ANOVA) tests using the R package. A multivariate exploration data 

analysis was conducted to determine the significance (expressed in probability levels: 1% 

(P<0.01), 5% (P<0.05), 10% (P<0.1) of surface runoff, vegetation cover, slope, area, 

precipitation, soil water content, CN, and nitrogen and phosphorus to both NO3
−-N and 

soluble P losses. These analyses were done separately for the NO3
−-N and soluble P spatio-

temporal CSAs identified and the differences were considered significant at P<0.01, P<0.05, 

and P<0.10. The further post-hoc test was done separately for NO3
−-N and soluble P for each 

type of soil and sub-basin to identify sub-basins and soil types in groups by having CSAs 

with the same average of NO3
−-N (kg ha-1) losses and soluble P (kg ha-1) in the watershed. 

 

5.4 RESULTS AND DISCUSSION 

5.4.1 Calibration and validation of hydrological model 

Streamflow model 

The streamflow model sensitivity analysis identified the 13 most influential parameters from 

the 15 evaluated (Table 5.4). The base flow alpha-factor [1 days-1] (alpha-bf), the initial 

groundwater height [m] (gwht), the soil evaporation compensation factor (esco), the deep 

aquifer percolation fraction (rchrg_dp), and the USLE soil erodibility factor (usle_k) were 

found to be the most sensitive parameters affecting groundwater and surface runoff 

processes. The parameters were ranked according to the significance of the sensitivity (p-
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value), with the most sensitive parameter ranked first in the list (Abbaspour et al., 2015). 

Similar findings in previous studies indicate the direct relationship between the surface 

runoff and both groundwater and aquifer parameters (Uribe et al., 2018; Haghnegahdar and 

Razavi, 2017; Khorashadi Zadeh et al., 2017; Cho et al., 2017; Romagnoli et al., 2017; 

Arnold et al., 2012a). In this case study, the input values for the parameters which control 

the aquifer processes were defined for each sub-basin. For example, the groundwater 

parameters Gw-delay (groundwater delay time) and alpha-bf (base flow alpha-factor) were 

calculated using the modified base flow filter program (Arnold and Allen, 1999) developed 

by Arnold et al. (1995). These values at the three streamflow gauging stations were 

calculated and applied to the sub-basins upstream. The other necessary parameters to 

characterize the aquifers of the watershed were defined according to expert knowledge 

because Guse et al. (2016) highlight the importance of estimating aquifer input values as 

precisely as possible before the calibration process. If the sensitivity analysis allows a better 

understanding of model parameters, these can be used for model calibration. 

 

Table 5.4. Ranking, t-value, and p-value of parameters related to streamflow calculations 

considered for sensitivity analysis. The first letter before the parameters name indicates 

the adjusted method in the Sequential Uncertainty Fitting – SUFI-2 algorithm (the letter v 

represents replacing the current parameter value; r is multiplying (1 + a given value) to 

the current parameter value. t-value shows a measure of sensitivity, and p-value indicates 

the significance of the sensitivity. 

Rank Parametera t-valueb p-valuec  

1 v_Alpha_bf.gw -5.46 0.00 

 

 

2 v_Gwht( ).gw -1.06 0.29 

3 v_Esco( ).bsn 1.05 0.30 

4 v_Rchrg_dp.gw -0.75 0.45 

5 r_Usle_K( ).sol 0.55 0.59 

6 v_Gw_revap.gw 0.48 0.63 

7 v_Gw_delay.gw -0.38 0.71 

8 v_Gw_spyld.gw 0.22 0.83 

9 v_Shallst.gw 0.11 0.91 

10 v_Deepst.gw -0.11 0.91 

11 r_Cn2.mgt 0.08 0.94 

12 v_Revapmn.gw 0.04 0.97 

13 v_Gwqmn.gw -0.01 0.99 
 

 

In addition, a manual streamflow calibration using monthly data was performed from 

1996 to 2006, and validation from 2007 to 2015. The parameters calibrated to improve the 
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model's streamflow performance in the Riogrande watershed correspond mainly to 

groundwater and runoff processes (Table 5.5). The hydrographs and descriptive statistics for 

the calibration and validation results are shown in Figure 5.5. The NSE values obtained for 

the three gauging stations were 0.88, 0.85, and 0.93 for the calibration period and 0.86, 0.85, 

and 0.77 for the validation period. According to the performance rating guidelines developed 

by Moriasi et al., 2015, the monthly streamflow calibration and validation are considered as 

‘very good’ at the three gauging stations (NSE values>0.75). In particular, the lowest NSE 

value obtained corresponds to the validation period at Presa station, which is located at the 

watershed outlet. It is as expected because of missing streamflow observations for this 

particular station between 2011 and 2015. The graphical results for monthly streamflow 

predictions matched very well with the observed values at the three available gauging 

stations of Pte. Belmira, San Pedro, and Presa (Figure 5.5). Linear regression between 

measured and simulated streamflow was plotted, obtaining an R2>0.87 for the three gauging 

stations (Figure 5.5). 

Overall, the streamflow acquired by manual calibration at the three gauging stations was 

satisfactory for this study's objective. Compared to the observed data, the baseflow is well 

represented by the model, mainly due to the calibration of the majority of inputs required 

for the groundwater simulation. However, the model slightly underestimated average 

monthly peak flows at certain times of the simulation period. Closer inspection revealed that 

this error mainly occurred from May to June and from September to October, which 

corresponds to the rainy seasons. Notably, the Belmira station, which records the flow values 

from the upper part of the basin with average rainfall more significant than 2000 mm/year, 

presents the highest error in the peak flow estimation. Similar studies confirm the uncertainty 

in the peak flow calibration process (Daggupati et al., 2015; Francesconi et al., 2016; Cho 

et al., 2017; Romagnoli et al., 2017; Uribe et al., 2018), particularly in watersheds under 

intensive agriculture with high rainfall and steep slopes. 

 

 



 

 

Table 5.5. Range, default value, and fitted values of calibrated parameters for streamflow, potato, tree tomato, kikuyu. 

Parameter Description in SWAT Range Default value Final value 

Streamflow 
    

SHALLST Initial depth of water in the shallow aquifer [mm]. 0 - 5000 1000 100 

DEEPST Initial depth of water in the deep aquifer [mm]. 0 - 10000 1000 2000 

GW_DELAY Groundwater delay [days]. 0 – 500 31 2 

ALPHA_BF Baseflow alpha factor [days]. 0 – 1 0.048 0.01 

GWQMN Threshold water depth in the shallow aquifer for flow [mm]. 0 - 5000 0 5 

REVAPMN Threshold water depth in the shallow aquifer for revap [mm]. 0 – 1000 750 100 

RCHRG_DP Deep aquifer percolation fraction. 0 – 1 0.05 0.1 

GWHT Initial groundwater height [m]. 0 – 40 1 25 

GW_SPYLD Specific yield of the shallow aquifer [m3/m3]. 0 - 0.4 0.003 0.3 

ESCO Plant evaporation compensation factor. 0 – 1 0.95 1 

CN2 Initial SCS CN II value. 35 – 98 Specific to HRU 0.1*CN2default 

USLE_K USLE equation soil erodibility (K) factor. 0 – 0.65 Specific to soil  0.1*USLE_Kdefault 

 
 

   

 

 

 



 

 

Table 5.5. Range, default value, and fitted values of calibrated parameters for streamflow, potato, tree tomato, kikuyu. 

Parameter Description in SWAT Range Default value 

Crop growth   
Values for potato, tree tomato, and 

kikuyu grass, respectively. 

T_OPT Optimal temp for plant growth. 11 - 38 22, 22, 18 18, 18, 18 

T_BASE Min temp plant growth. 0 – 18 7, 10, 0 3, 4, 3 

BIO_E Biomass/Energy Ratio. 10 – 90 25, 30, 30 40, 45, 30 

HVSTI Harvest index [(kg ha-1) (kg ha-1)-1]. 0.01 – 1.25 0.95, 0.33, 0.9 1.25, 1.25, 0.9 

HEATUNITS  Total heat units for cover/plant to reach maturity. 0 - 3500 1800 1400,700,1800 

Nutrients 
 

  
 

CDN Denitrification exponential rate coefficient. 0 - 1 1.4 0.5 

SDNCO Denitrification threshold water content. 0 - 1 1.1 0.5 

PHOSKD Phosphorus soil partitioning coefficient. 100 - 200 175 200 

NPERCO Nitrogen percolation coefficient. 0 – 1 0.2 1 

RSDCO Residue decomposition coefficient 0.02 - 0.1 0.05 0.1 
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Figure 5.5. Comparison of observed and simulated flow rates (m3 s-1) at the (a) Pte. 

Belmira, (b) San Pedro, and (c) Presa stations for the calibration and validation period.  

Scatter plots of observed and simulated flow rates (m3 s-1) for the overall period along 

the dashed line at the (d) Pte. Belmira, (e) San Pedro, and (f) Presa stations. 

Table 5.6. Descriptive statistic of monthly Flow average 

Coefficient 
Pte. Belmira San Pedro Presa 

Calibration Validation Calibration Validation Calibration Validation 

NSE 0.88 0.86 0.85 0.85 0.93 0.77 

d 0.96 0.95 0.96 0.96 0.98 0.93 

RSME 2.08 2.68 0.78 0.89 3.02 3.88 

MAE 1.63 2.11 0.61 0.72 2.36 1.89 
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Crop yield 

Crop yield calibration was performed monthly, specifically during the months where 

harvest operation was implemented in each of the potato, tree tomato, and kikuyu defined 

grass management operation schedules. A total of five parameters associated with the 

crop growth cycle were calibrated to improve the crop yield performance of the model in 

the Riogrande watershed (Table 5.5). Parameters such as optimal and minimum 

temperature for plant growth (T_opt and T_base, respectively) were adjusted for each 

crop studied according to the crop's biophysical requirements in the study area. The 

biomass/energy ratio (Bio_E) and the harvest index ratio with above-ground biomass 

removed during harvest (Hvsti) were modified based on the authors’ experience. The heat 

unit values required for plant maturity were calculated using the potential heat unit (Phu) 

program (http://swat.tamu.edu/software/potential-heat-unit-program/). The heatunit 

value was calculated according to the long-term maximum and minimum temperature 

data and the average number of days that the plant needs to reach maturity (Neitsch et al., 

2011). However, it is essential to mention that this parameter's manual calibration was 

also done for each crop. Some studies have also found that these parameters are the most 

sensitive in crop calibration for a physically-based model like SWAT (Nair et al., 2011; 

Sinnathamby et al., 2017; Feng et al., 2017; Uribe et al., 2018). The HRU yields of each 

harvested crop cycle in each sub-basin were plotted for the simulation period (Figure 5.6). 

These plots show the simulated values compared to the reference values previously 

mentioned (8,10 and 0.2 to 4-ton ha-1 cycle-1, respectively) and the spatial variability 

obtained.  

Potato's annual harvested yields at the HRU level are between 10 to 26-ton ha year-1, with 

an annual average yield of 16-ton ha year-1. In terms of spatial distribution, two regions 

with similar potato harvested yield ranges were identified (Figure 5.6). The HRUs located 

in sub-basins 2 to 9 (Region 1) presented the highest yield values than the HRUs located 

in sub-basins 11 to 20 (Region 2). It can be attributed mainly to the spatial distribution of 

the climatic conditions of the watershed. Region 1 is located at the upper part of the 

watershed, characterized by having annual average precipitation higher than 2000 mm 

year-1 and an annual average temperature less than 12°C. The tree tomato's annual average 

harvested yield is 20-ton ha-1 year-1 with values ranging between 8 to 34-ton ha-1 year-1. 

As previously mentioned, tree tomato is present in sub-basins 11 to 20, which corresponds 

to Region 2. Harvested yield values show less spatial variability in sub-basins 11 and 15 

(Figure 5.6). Nevertheless, this is mainly because, for these two sub-basins, the crop area 

is less than one hectare (corresponding to one HRU) of 356 hectares planted in the 

watershed. The kikuyu grass is present throughout the watershed except in Sub-basin 8. 

The planted area corresponds to 58.31% of the total watershed area. The harvested yield 

values at the HRU level vary between 0.8- and 72-ton ha-1 year-1(range of yields vary 

between sites), with an annual average yield of 16-ton ha-1 year-1. Furthermore, the 

harvested yields’ spatial distribution value is generally constant, except for a few high 

values obtained in 2014 (Figure 5.6).  

http://swat.tamu.edu/software/potential-heat-unit-program/
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Overall, crop yield predictions acquired by manual calibration were satisfactory for 

the objective of this study. The variability in space and time of the simulated harvest yield 

was defined per crop in each sub-basin at the HRU level. However, the calibration can be 

further improved by collecting more field harvest yield values and including them in the 

model to support the validation. A good description of the agricultural management 

practices was obtained during fieldwork, but very little information was found on yields. 

In general, farmers do not regularly record the yield values or do not like to provide this 

type of information. Furthermore, research on measured harvest yield rates is needed to 

properly evaluate the model simulation (Sinnathamby et al., 2017). 

 

 

Figure 5.6. Monthly model simulation results for harvested yields (ton ha-1 cycle-1) per 

sub-basin at the hydrological response unity (HRU) level for (a) kikuyu grass, (b) 

potato, and (c) tree tomato. The reference harvest yield values are shown along the 

horizontal red line. Error bars represent the standard error of the mean. 
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Water quality model (nitrogen and phosphorus pollutants) 

Model calibration of nutrient losses in the runoff was performed for monthly nitrate N 

(NO3
−-N), total nitrogen (TN), and mineral phosphorus (PO4). Sampling quality 

parameters for the years 2014 and 2015 of the Chico River at the reservoir's entrance were 

compared with the results obtained in Sub-basin 17. Hydrograph representations of the 

NO3
−-N (kg month-1), TN (kg month-1), and PO4 (kg month-1) simulated versus the 

monthly average discontinuous samples were performed (Figure 5.7). Five parameters 

were calibrated to improve nutrient loss prediction efficiency in the watershed (Table 5.5). 

In general, the calibration was done by increasing the coefficients of nitrogen percolation 

(nperco) and phosphorus soil partitioning (phoskd) to decrease the nitrate N removed in 

surface runoff and the amount of soluble P transported in surface runoff. Besides, 

increasing the rate of the coefficient for denitrification (cdn) and the threshold value of 

nutrient cycling water factor for denitrification to occur (sdnco) caused the amount of 

nitrate available to decrease in the runoff. For NO3
−-N, TN, and PO4, monthly NSE values 

were 0.48, 0.32, and 0.33, respectively, which indicates that the results are not satisfactory 

in terms of extreme values (Moriasi et al., 2007). However, the trends were adjusted 

appropriately with R2 values of 0.81, 0.82, and 0.59, respectively. The leading causes of 

uncertainty in this process could be the following: (1) management operation schedules 

per crop were defined equally in spatial terms (e.g., same planting and fertilization 

application dates), (2) uncertainties exist in the observed data (as mentioned earlier, it was 

only possible to calibrate water quality parameters with grab samples taken 

discontinuously for two years), and (3) dependence of nutrient yields on hydrologic 

simulation. Nutrient simulation yields are directly linked to the runoff simulation; 

Therefore, uncertainties in the runoff estimates are transferred to nutrient load prediction. 

Overall, visual inspection of the results shows a relatively good temporal match 

between simulated and observed values. The most significant uncertainties occur at the 

extreme event during March 2014 and August 2015 for nitrogen components (Figure 5.7a 

and 5.7b), and in April and May 2014 for mineral phosphorus (Figure 5.7c). The study 

carried out by Suescún et al. (2017) allowed us to confirm the direct link between nutrient 

yields and the precipitation-runoff seasonality at the Riogrande watershed. However, it is 

worth mentioning that priority was given to represent the nutrient loads simulated with 

the available information. Consequently, it was possible to adjust the management 

operation schedule dates so that they were consistent with the reality identified during the 

nutrient’s calibration process. Therefore, we emphasize the need for continuous 

measurements of water quality parameters for non-point sources in Colombian 

watersheds. It will help to facilitate a proper calibration of the water quality models. 
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Figure 5.7. Monthly water quality calibration results for (a) NO3
--N (b) TN, and (c) 

mineral P load for the period 01/2014 – 12/2015. The gray shaded area is the 

precipitation (mm). The observed data is represented by the blue dots and the simulated 

data by the black dots. NO3
−N: nitrate-nitrogen, Total N: total nitrogen, Mineral P: 

mineral phosphorus. 

 

5.4.2 Identification of spatio-temporal critical source areas (ST-CSAs) 

This section aims to identify the spatio-temporal CSAs at the field (HRU) level in the 

Riogrande watershed. The LPUAI targeting method was generated for each month of the 

21-simulated years, based on pollutant loads of NO3
−-N and soluble P per area, which 

normalizes each HRU for comparison. Based on a temporal trend analysis of NO3
−-N and 

soluble P modeling results, the yields varied from 0.0 to 57.0 kg N ha-1 and 0.0 to 5.2 kg 

P ha-1. However, the highest frequency of NO3
−-N in surface runoff and soluble P yield 

occurred in the range of 0.0 to 10.0 kg N ha-1 and 0.0 to 1.0 kg P ha-1. The results indicate 

that a low percentage of the HRUs contribute to the highest pollutant loads, and these 

high yields occurred only in specific months of the 1995-2015 simulated period. 

Threshold values of 1.71 kg N ha-1 and 0.18 kg P ha-1 for NO3
−-N and PO4, respectively, 

were defined as the limits to identify the 10% of the HRUs that generated the most 

significant monthly load contributions. 

 

Temporal analysis 

The monthly temporal analysis of the CSAs for NO3
−-N and soluble P of the entire 

simulated period shows that the CSAs occur more frequently in 1996, 1999, 2002, 2005, 

2008, 2011, 2014 (Figure 5.8). Since the start of the simulated period, a three-year cycle 

occurs, showing more presence of CSAs.  It can be explained by the fact that the rotation 

between the second harvest cycle of the potato and kikuyu grass occurs every three years, 

according to the defined management schedules for the crops studied. Additionally, these 
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years correspond to extreme events of precipitation level related to the La Nina 

phenomenon. The years 1999 and 2011 have been reported as the heaviest years of 

precipitation ever recorded in Colombia (Suescún et al., 2017). 

On the other hand, the months from April to June and September to October present 

the highest number of CSAs in most simulated years (Figure 5.8), corresponding to the 

two periods of rainfall in the study basin. These months also register the highest amount 

of fertilizer applied for the cultivation of potato and tree tomato. Kikuyu grass is also 

fertilized in these months, but the cattle rotation allows a more homogeneous distribution 

of fertilization during the year. The months in which the fertilization of the three crops 

coincided were also the months with the highest number of CSAs associated with the 

NO3
−-N and soluble P (e.g., May in Figure 5.8). In contrast, when fertilization occurs only 

for kikuyu grass, the CSAs decrease (e.g., March in Figure 5.8). Notably, in some months 

(e.g., January and February), no CSAs were identified since it is the beginning of crop 

sowing. In conclusion, the temporal variability of CSAs for nutrients in the runoff is 

associated with rainfall regimes in the study basin. At the same time, it matches the date 

of the fertilization operations. 

 

 i.  

Less  high 
 

Figure 5.8. Illustration of the CSAs monthly temporal variation over 19 years of 

simulations (1996-2015) for (a) NO3
- and (b) soluble P. The grayscale represents the 

total number of CSAs in each month. NO3
−N: nitrate-nitrogen, Soluble P: soluble 

phosphorus. 

 

Spatial analysis 

The spatial analysis was performed on an annual and monthly basis. Results showed that 

the spatial distribution of NO3
−-N and soluble P losses per year was greater in two specific 

regions of the watershed (Figure 5.9). Fewer CSAs were found in sub-basins 1 to 11 

(Region 1) than in sub-basins 12 to 20 (Region 2). Thus, the watershed area with the 

highest precipitation presents the lowest number of CSAs and vice versa. This result can 

be attributed to the spatial distribution of rainfall in the study area (Figure 3.5 – Chapter 

3). Region 1 is characterized by higher annual average rainfall than Region 2. However, 
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the results also show a higher variability of CSAs in each sub-basin per year in Region 2, 

which can be explained by the temporal variability. For instance, Sub-basin 12 has the 

highest number of CSAs, followed by sub-basins 16 and 17 for nitrate-N and soluble P.  

Additionally, some years in the total simulation period were selected for graphical 

representation of the monthly spatial variability of the CSAs for NO3
−-N and soluble P 

losses. These years were chosen according to the annual average rainfall (Figure 5.9).). 

The spatial analysis results monthly show that the trend of the highest recurrence of CSAs 

per month occurred in sub-basins 4, 5, 7, and 9 (within Region 1), and 12, 15, 17, 19, and 

20 (within Region 2) for NO3
−-N and soluble P (Figure 5.9).), which are sub-basins where 

the three crops grow (POTA, PASM, and TOMA). In contrast, for sub-basins 1, 8, and 

10, very few or almost no CSAs were identified for the months analyzed. The area of 

these sub-basins is dominated by stubble (MESQ), seeded grasses (RYEG), and annual 

ryegrass (RYEE) crops. In summary, the spatial pattern of the CSAs is related to the 

spatial variability of precipitation and the crop area's location, which has been previously 

defined by the different agricultural management operations (e.g., rotation of crops and 

fertilization). Fewer CSAs were identified in the areas with less crop area. 

 

a) 

 

b) 

 

Figure 5.9. Illustration of the CSAs monthly temporal variation over six years of the 

simulation period for (a)NO3
- and (b)soluble P. The years presented are selected based 

on annual average precipitation: 1999 and 2011 (high), 2004 and 2013 (middle), and 

1997 and 2015 (low). NO3
−: nitrate-nitrogen, Soluble P: soluble phosphorus. 
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Spatio-temporal (ST-CSA) analysis 

The CSA temporal analysis showed a recurrence pattern associated with the rainy 

conditions in the area and the scheduling and quantity of fertilizers applied. For the spatial 

component, it was possible to identify areas of greater numbers of CSAs, where there is 

low precipitation, and most of the crops include agricultural management. However, to 

represent the behavior of the CSAs simultaneously in space and time, the spatio-temporal 

CSA index (ST-CSA) was applied. A value equal to 1 indicates that the HRU examined 

in space (location) and time (month-to-month) was always identified as a CSA during the 

simulated period. The ST-CSA index allows visual analysis of the recurrence and 

behavior in space and time of the CSAs for the entire simulated period. The ST-CSA 

index for NO3
−-N and soluble P obtained in the Riogrande watershed is shown in Figure 

5.10a and 5.10b. The results allowed us to identify sub-basins with high and medium 

degrees of CSAs recurrence, which were not detected in the spatial analysis previously 

performed. For example, Sub-basin 15 has CSAs with the ST-CSA index equal to 1, and 

sub-basins 3 and 5 have CSAs with values between 0.4 to 0.6 for NO3
−-N (Figure 5.10a). 

Some areas in the basin, such as sub-basins 1, 5, and 10, do not present any CSAs for 

soluble P (Figure 5.10b). For both nutrients, sub-basins 4, 12, and 20 obtained an ST-

CSA equal to one, which indicates that they were always identified as a CSA during the 

simulated period. A high percentage of the CSAs identified for NO3
−-N also contains the 

CSAs for soluble P, but not always. We believe that the ST-CSA index is the most 

relevant indicator to understand the spatio-temporal dynamics of nutrient loss via runoff 

at the watershed scale. It is a significant result since, for the first time, we can affirm that 

an identifiable "large-watershed-scale" exists for CSAs, which can be visually 

represented in terms of the recurrence in space and time of CSAs within the watershed. 

This result needs to be extended to the case where the runoff generation method includes 

topographic effects for slopes greater than 5%, for example, using the methodology 

proposed by Tessema et al. (2014). 
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a) 

 

b) 

 

Figure 5.10. Illustration of the spatio-temporal CSA index (ST-CSA) over the 19 years 

of simulations (1996-2015) for (a) NO3
- and (b) soluble P. The blue-red color scale 

represents the recurrence in space and time of the CSAs. A value equal to 1 indicates 

that the HRU was always identified as a CSA for the entire simulated period. 

 

5.4.3 Spatio-temporal critical source areas characterization 

The spatio-temporal CSAs identified were analyzed to describe the general characteristics 

and common patterns among them. The minimum, maximum, and average monthly 

values of the area, slope, precipitation, runoff, total N and P applied, and total NO3
−-N 

and soluble P were analyzed (Table 5.7). The results show that on an annual average, the 

CSAs correspond to 24.07% of the entire area of the basin (1034.348 km2), and the 

maximum and minimum area corresponds to 61.78% and 4.39% in 2005 and 1997, 

respectively. In terms of monthly averages, the losses of NO3
−-N and soluble P in the 

runoff of the CSAs varied from 1.17 to 57.75 kg N ha-1 and 0.18 to 7.18 kg P ha-1. 

However, the average production of NO3
−-N was 4.56 kg ha-1 and 0.25 kg ha-1 for soluble 

P. The average area of the CSAs was 28 ha, but they ranged from 4,179 ha to 0.02 ha. 

The range of precipitation varied from 28.50 mm to 508.80 mm, with an average value 

of 206.68 mm, which generated an average runoff of 28.45 mm. CSAs had an average 

slope of 25%. 

Notably, all the soil types used in the model were defined in the CSAs, which 

correspond mostly to the Andisol soil type. However, the Cor and Ab soils were not 
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identified in the CSAs with soluble P. As expected, kikuyu grass (PASM), potato (POTA), 

and tree tomato (TOMA) provide the highest NO3
−-N and soluble P losses, which are 

mainly associated with the fertilization operations defined in agricultural calendars for 

the simulation period. Also, transitional crops (CANT), annual ryegrass (RYEG), weeded 

grass (RYEE) and managed stubble (MESQ) were associated by providing NO3
−-N in the 

runoff. The monthly average nitrogen and phosphorus applied (fertilizer + grazing) in the 

CSAs are 35.0 kg ha-1 and 4.8 kg ha-1, respectively. The average amount of NO3
−-N and 

soluble P generated in runoff is 4.56 kg ha-1 and 0.25 kg ha-1, respectively. However, in 

different CSAs and months, the maximum values of NO3
−-N and soluble P can reach 

57.75 kg ha-1 and 7.18 kg ha-1, respectively. 

 

 Table 5.7. The minimum, maximum, and average values of the area, slope, 

precipitation, runoff, total N and P applied, and total NO3
−-N and soluble P loads in the 

spatio-temporal CSAs identified. 

Value 
Area  

(ha) 

Average 

slope  

(mm-1) 

Precipitation 

(mm) 

Runoff  

(mm) 

N applied 

(kg N ha-1) 

P applied  

(kg P ha-1) 

NO3
- 

(kg ha-1) 

Soluble 

P 

 (kg ha-1) 

          Fertilization     

Min 0.02 0.20 28.50 0.32 0.00 0.00 1.71 0.18 

Max 4179.2 87.26 508.80 180.92 166.25 46.20 57.75 7.18 

Average 28.09 25.03 206.68 28.45 34.13 4.65 4.56 0.25 

          Grazing     

          

0.00 

1.90 

0.87 

0.00 

0.40 

0.18 

    

Landuse CANT MESQ PASM* POTA* RYEE RYEG TOMA*  

Soil 
Cor Ab Cv1* Es* F* L* Lm* Lome* 

mo* V* Vco*          

*For both, NO3
−-N and soluble P. **Average slope steepness (m m-1) 

 

Statistical analysis 

The ANOVA results obtained from the statistical analysis (Appendix A.4) indicate that 

the soil water content for Lm and F soil types is significantly correlated with NO3
—N loss 

at a significance level of >0.90 (i.e., p < 0.10). The surface runoff and Cor soil type are 

also correlated with the NO3
−-N loss at a significance of p<0.01. In contrast, a negative 

correlation occurs between the Mo soil type and NO3
−-N loss at a significance of p<0.10. 

Also, precipitation (p<0.05), CN value, slope, and HRU area (p<0.01) are negatively 

correlated to NO3
—N loss. On the other hand, the ANOVA results for soluble P (Appendix 

A.5) indicate that the runoff, precipitation, and soil water content have the highest 

correlation, with a significance of p <0.01. Likewise, the slope, HRU area, and CN value 

have an negative impact on soluble P loss (p <0.01). 
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A positive correlation between soil content and surface runoff was expected. The 

amount of NO3
−-N and soluble P losses in surface runoff calculated in the SWAT model 

is directly related to (1) the nitrate and phosphorus in the available water for the top 10 

mm of soil, (2) saturated soil water content (only for nitrate), (3) soil bulk density (only 

soluble P), and (4) the surface runoff generated on a given day (Eq. 2.4 and 2.7- Chapter 

2). The main reason for CN values to have a negative correlation with NO3
−-N and soluble 

P losses is that the amount of surface runoff is directly proportional to the retention 

parameter defined according to the CN value, which is based on the type of soil, land use, 

management, slope, and changes in soil water content. In other words, having a higher 

CN value increase surface runoff, causing the NO3
−-N also to increase. Also, the 

precipitation is directly proportional to the amount of mobile water in the soil layer. If 

rainfall increases, the concentration of nitrate and soluble P in the mobile water decreases 

since mobile water in this layer increases (Eq. 2.3 and 2.7- Chapter 2). A higher dilution 

occurs (Yazdi et al., 2019). In particular, the soluble P results suggest that all types of 

soils presented a negative correlation with a degree of significance of p <0.01. The main 

reason for this is that the bulk density of the first layer of the soil is inversely proportional 

to the amount of soluble phosphorus. In our case study, the bulk density of the first soil 

layer for the different Andisol soils does not vary significantly (Appendix A.5). Therefore, 

the difference in the correlation of soil type with the soluble P is minor. 

Moreover, the results suggest a negative correlation between NO3
−-N and soluble P 

losses, and slope since changes in slope could slightly change the nitrate and soluble P 

removed in the surface runoff. For example, if the slope increases by 1%, the reduction 

could be 0.008 kg ha-1 and 0.003 kg ha-1 for NO3
−-N and soluble P, respectively 

(Appendix A.4 and A.5). However, this result was inconsistent with another study's 

conclusions (Yu et al., 2015), which indicated that the slope has a significant correlation 

with water quality variables for agricultural lands due to surface runoff variation. The CN 

method used to calculate surface runoff does not directly consider the slope, and therefore 

it was necessary to adjust the CN values for soils with a slope higher than 5%. Notably, 

this is a limitation since the slope average is 25% in the Riogrande watershed. Likewise, 

the influence of the area of each CSA is inversely proportional to both NO3
−-N and 

soluble P losses, as expected. The NO3
−-N and soluble P in surface runoff were calculated 

for each CSA in kg of N or P per hectare. Thus, the results suggest that if the HRU area 

increases by one ha, the NO3
−-N and soluble P losses decrease by 0.137 kg N ha-1 and 

0.056 kg P ha-1. There is some indication that by decreasing field sizes, the surface runoff 

decreases (Fiener et al., 2011; Lam et al., 2011), although in other studies, the opposite 

has been found (Gao et al., 2017; Zhou et al., 2016). Therefore, the spatial scale used in 

this modeling approach to identify the spatio-temporal CSAs at the HRU level is the best 

possible way to represent the characteristics of small farms in the study area spatially.  

Finally, the post-hoc test results allowed us to determine the hierarchical importance 

of the sub-basins' influence and soils on NO3
−-N and soluble P. The CSAs located in sub-

basins 9, 13, 19, 6, and 16 with soils Cor, Lome, F, L, and Cv1 have a higher influence 
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in the generation of NO3
−-N runoff. For soluble P, sub-basins 19, 7, 13, 9, and 2 with soils 

Vco, L, mo, Cv1, and Lm were the major influencers. Therefore, the CSAs located in 

these sub-basins were prioritized based on the type of soil and the type of crop (potato, 

tree tomato, and kikuyu grass for the cattle system) to implement BMPs. Also, depending 

on the intervention area, other CSAs located in different sub-basins can be selected 

according to their importance level. The post-hoc test results for sub-basins and soils are 

presented in Appendix A.6 and A.7. 

5.4.4 Importance of the spatio-temporal CSAs to defining BMPs 

In general, in practice, identifying non-point source pollution effects on water quality 

using modeling tools is complex. As shown above, many factors and mechanisms have 

been identified as triggers of nutrient loss. The spatial and temporal scales (Zhou et al., 

2016), agricultural management practices, slope (Yu et al., 2015), and precipitation-

runoff conditions (Huang et al., 2015; Gao et al., 2017) influence simulated nutrient losses. 

In addition, limitations of the hydrological models used to represent these processes 

introduce uncertainties in simulated results. However, in this study, we focused on 

understanding and characterizing the spatio-temporal CSAs of non-point source pollution 

on water quality at a watershed scale. Our methodology provides a visual representation 

of the recurrence and behavior in space and time of the CSAs through the ST-CSA index, 

which offers relevant information for decision makers and stakeholders. In this way, areas 

can be identified for focused intervention. Our analysis clearly shows a strong association 

between both precipitation seasonality and agricultural management schedules (crops and 

pastures system) and the spatio-temporal dynamics of the CSAs. Thus, there is evidence, 

based on the identified spatio-temporal CSAs, of the need to improve fertilizer practices 

to minimize applications in the rainy months. 

Additionally, our results provide insight for land managers in tropical mountain areas, 

where the implementation of BMPs for the agricultural sector is increasingly promoted. 

In the case of Colombia, the guide of "Buenas Prácticas para la Gestión y Uso Sostenible 

de los suelos de Colombia” (in Spanish) (Organización de las Naciones Unidas para la 

Alimentación y la Agricultura (FAO) and Ministerio de Ambiente y Desarrollo Sostenible 

(MADS), 2018) recommends the identification of priority areas to implement BMPs. The 

guide offers around 15 BMPs that farmers can use, considering methods of application, 

economic viability of the products, and social and cultural conditions of the area. 

However, there is still a clear need to incorporate the temporal and dynamic spatial 

aspects existing in the agricultural land management-water quality system. Therefore, for 

selecting appropriate BMPs viable in the future, the spatio-temporal CSAs should be 

identified to determine the best areas for intervention. 

Equally important, as mentioned before, we are currently investigating the 

agricultural BMPs selection and allocation at the watershed scale using a detailed spatio-

temporal multi-objective optimization approach. The results obtained will be used to 
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describe the spatio-temporal dynamics of the modeled system, which will, in turn, be used 

as the baseline for the optimization problem. They will also be used to select BMPs 

incorporated into the optimization problem, which will be more in line with local needs 

and have a higher probability of being implemented to achieve sustainable agricultural 

development goals. In this way, we will contribute valuable information that allows the 

incorporation of the temporal and dynamic spatial aspects into optimization approaches 

for different types of agricultural optimization problems and the improvement of the 

integration of relevant models into the optimization process. The results of these ongoing 

investigations are reported in the next chapter. 

5.5 CONCLUSIONS 

The highest number of spatio-temporal CSAs were observed during the rainy months, 

particularly in managed agricultural and pasture systems. However, the most significant 

actual number of CSAs occurs in the region with the lowest rainfall in the Riogrande 

watershed. The spatio-temporal CSAs correspond to an average area that is 24.07% of 

the total watershed (1034.348 km2). However, in some years, the area reached a maximum 

value of 61.78%. Also, the NO3
--N average loss for the CSAs is 4.56 kg ha-1 in the surface 

runoff, while it is 0.25 kg ha-1 for soluble P in the surface runoff. The soil water content 

and runoff significantly influenced both NO3
--N and soluble P losses, which are variables 

directly correlated to the amount of NO3
--N and soluble P loss in surface runoff (kg ha-1) 

calculated in the model. It is particularly critical in managed agricultural systems where 

increased runoff nutrient losses are combined with unsustainable fertilizer management 

practices. In contrast, a negative correlation occurs between precipitation, curve number 

value, slope, and HRU area with both NO3
--N and soluble P. Therefore, future research 

that addresses these points will help mitigate the uncertainty in allocating BMPs at the 

watershed level. 

This approach, which uses modeling tools to identify spatio-temporal CSAs, provides 

a clear and organized way to define successful agricultural BMPs and develop spatio-

temporal multi-objective optimization modes (to be carried out as the next step in this 

research). It is also important to focus on exploring other methods for calculating runoff 

at the watershed scale, including approaches that directly consider the influence of steep 

slopes. 
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6.1 ABSTRACT 

Optimization techniques to select and allocate agricultural BMPs for watershed 

management require understanding complex space-time hydrological variability within 

the watershed. Based on chapters 4 and 5, it was possible to assess the difference in the 

effects of BMPs with and without spatio-temporal analysis. The spatio-temporal analysis 

for allocating agricultural BMPs (Ag-BMPs), especially in the watersheds where the issue 

of shifting cultivation, intensive traditional agriculture, diverse crops, and weather 

seasonality are predominant factors, is quite complex. This chapter proposes a spatio-

temporal multi-objective BMP optimization framework, which can be used for selecting 

and allocating the Ag-BMPs for run-off pollution control at a field scale. The optimization 

framework is based on spatio-temporal critical sources areas (ST-CSAs) for potential Ag-

BMPs spatial location, which represent the behavior of the pollutants simultaneously in 

space and time within the watershed (Uribe et al., 2020). In the proposed approach, the 

multi-objective optimization NSGA-II algorithm was integrated with the Soil and Water 

assessment Tool (SWAT) model. A case study was conducted in the Riogrande II 

watershed in the Colombian-Andes, which suffers severely from runoff nutrient loss due 

to the intensive dairy cattle and crop production activities. Five Ag-BMPs selected from 

previous studies (fertilizer management, minimum tillage, contour planting, filter strips, 

and living fences) were used in the proposed approach, considering the multiple 

optimization objectives, which included minimizing Nitrate (NO3-N) load and 

maximizing crop yields of kikuyu grass (Pennisetum clandestinum), potato and tree 

tomato. An analysis of all degrees of freedom of the optimization problem is used to 

assess its complexity, and to later narrow down the dimensionality of the problem based 

on physical spatial and temporal homogeneities. After this, a simplified HRU concept of 

the hydrological representation is used to find the ST_CSA that can be optimized and the 

rime frames that are logical for such optimization. Then an NGSA-II algorithm ran over 

the model and a comparison between the Pareto-optimal front solutions is aggregated. 

The distribution of solutions was analysed in multiple aggregated (clustered position). 

The results show that different types of analysis applied (aggregated vs distributed) with 

different Ag-BMPs scenarios led to significant differences in resulting Pareto-optimal 

front solutions, optimizing efficiency, and spatial distribution of Ag-BMP scenarios.  

Overall, using the HRUs-clusters position units as Ag-BMPs optimization result with 

the ST-CSAs strategy, had the best Ag-BMP scenarios. Therefore, the Pareto-front 

solutions must be defined in a distributed way, which means having a Pareto-front 

solutions for each of the different areas (HRUs grouped in clusters) with similar spatial 

characteristics for watershed BMP scenarios optimization model. 
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6.2 INTRODUCTION 

Increased water resources pollution around the world has generated pressure on 

agricultural practices. And, the great increase in food demand, projected by 2050, 

suggests an increase in intensive agriculture (Alexandratos and Bruinsma, 2012). 

Agricultural BMPs aim to protect water quality, prevent soil degradation, reduce soil 

erosion, and enhance farm production and farmers’ social well-being (Ritter and 

Shirmohammadi, 2001). However, the selection and allocation of agricultural BMPs is a 

very complicated task, involving decision-makers and stakeholders, multiple conflict 

objectives, temporal and dynamic spatial aspects, and constraints (Liu et al., 2013). 

Therefore, it is currently recognized that to design agricultural BMP scenarios for the 

adoption and promotion at the watershed scale; the problem has to be formulated as a 

multi-objective optimization problem (Memmah et al., 2015).  

Many optimization models have been built and implemented in many regions around 

the world for assessing BMPs effects in protect water quality resources. Despite its well-

defined framework the practices are not unique and not all apply to all situations. Previous 

studies have developed several optimization engines that can be employed for the spatial 

BMP localization at different scales (field, sub-watershed, and watershed), aiming to 

achieve the most cost-effectiveness scenario. Among these, the Non-dominated Sorting 

Genetic Algorithm (NSGA-II) or Genetic Algorithm (GA) has been coupled with the Soil 

and Water Assessment Tool (SWAT) as optimization engines (Liu et al., 2019; Geng et 

al., 2019; Dai et al., 2018; Babbar-sebens and Minsker, 2012; Maringanti et al., 2011; Liu 

et al., 2013; Panagopoulos et al., 2013; García et al., 2000). The SWAT model is 

commonly used because it can simulate different BMP types, and it is closely connected 

to GIS (Geographic Information Systems). Other BMP optimization studies have used 

others metaheuristics search algorithms, such as, Strength Pareto Evolutionary Algorithm 

(SPEA2) (Rabotyagov et al., 2012) coupled with other NPS pollution models, e.g., 

WQM-TMDL-N, HSPF, and AGNPS (Barton, 2009; Doody et al., 2012) However, 

because of the spatio-temporal resolution of these NSP pollution models, they are more 

frequently used for aggregated but sparse BMP types (e.g., vegetated buffers and 

constructed wetlands). Those research effort provide a potential base for developing a 

multi-objective optimization framework for placement of BMPs. Nevertheless, despite 

the increase of using optimization frameworks to select and allocate agricultural BMPs, 

research in this area has limitations due to the high number of optimization parameters 

and the large uncertainty in building large models. Aside from these problems is the high 

computational demand. There are important gaps related to this topic that have been 

identified: 1) the inclusion of temporal and dynamic spatial aspects, and 2) the inclusion 

of the knowledge of decision-makers and stakeholders to select the BMPs to be optimized 

(Babbar-sebens and Minsker, 2010). Previous research has focused on the spatial scale 

only and has ignored the temporal scale. In addition, the units used to allocate the BMP 

options do not always contribute to the most pollution concentration and consequently 

may not be the best place for their implementation. Thus, there is still a clear need to 
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explore the impact of different optimization approaches for different types of agricultural 

optimization problems. This is usually the case of watersheds located in tropical' 

mountainous regions, where shifting cultivation, intensive traditional agriculture, and 

weather seasonality are common.  

Recent studies proposed different approaches to demonstrate the impact of spatial 

scale changes on the allocation and effectiveness of BMPs (Geng and Sharpley, 2019; 

Zhu et al., 2019; Qin et al., 2018). Most of the studies found in the literature focus on one 

or a few spatial allocation components, like: 1. BMP selection, 2. location determination, 

and 3. design and sizing. For example, Geng and Sharpley (2019) evaluated different 

spatial scales (field and watershed) using the number of sub-watersheds and the average 

sub-watershed size for BMP placement as key indices. They used the critical source areas 

(CSAs) approach to identify in advance the prioritized location for BMP, which only 

considered the mean annual TN and TP loads. Yet another focus study is, for instance, 

the work done by Zhu et al. (2019) considering only topographic characteristics to 

determine the BMP configuration units as the best way for the location determination. 

But, the locations identified are optimal only for BMPs focusing to mitigate soil erosion 

based on the conservation practice factor of the USLE (i.e., USLE_P). Thus, we consider 

that the three spatial allocation components must be involved in the spatial BMP 

allocation optimization. Equally important, it is necessary to incorporate into the 

agricultural BMP optimization problems the temporal scale (e.g. hourly or monthly), and 

other objective functions as well, such us improving productivity of the crops that may 

bring economic benefits to the farmers and enhancing the BMP implementation 

acceptance. 

In contrast, in this study, we propose to include the temporal and dynamic spatial 

aspects, contemplating the three spatial allocation components (BMP selection, location 

determination, and design-sizing), for selecting and allocating agricultural BMPs feasible 

in a watershed of the Tropical Colombia-Andes Mountains, as well as measures to 

improve water quality without offsetting agricultural productivity, and decision-makers' 

and stakeholders' knowledge into the agricultural BMP optimization model. Hence, the 

main objectives of this study were to develop a spatio-temporal multi-objective 

agricultural BMP optimization framework, to select and allocate the optimal BMPs for 

run-off pollution and agricultural productivity control at a field level. Which, uses the 

new approach of the spatio-temporal critical sources areas (ST-CSAs) (Uribe et al., 2020) 

for a more effective agricultural BMPs identification and allocation. The expected results 

will provide a concrete application of a spatio-temporal multi-objective optimization 

framework for selecting and allocating feasible agricultural BMPs in a watershed where 

shifting cultivation, intensive traditional agriculture, and weather seasonality have been 

typically applied. Also, this study presents a complementary policy instrument for 

controlling non-point source water pollutants and is an assistance tool for the local 

communities (farmers), which can be used to adapt the agricultural practices in order to 

cope with unexpected changes identified in recent years. 
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This chapter has five sections. Section 6.2 describes the modeling components and 

integration, including the BMPs description and representation, the multi-objective 

optimization formulation (decision variables and objective functions), the NSGA-II 

algorithm overall process, setup and implementation, and the sensitivity analysis of the 

NSGA-II parameters, as well as the feasible optimal BMP selection method. Section 6.3 

presents the results of the modeling-optimization tool. These results include a test of the 

coupled optimization script/running, the pareto-optimal front solutions derived from the 

average and single objective site values among the different BMP scenarios, and the 

comparison between them. Section 6.4 presents the discussion, and the conclusions are 

drawn in the last section. 

6.3 METHODOLOGY 

6.3.1 Modelling framework 

The spatio-temporal multi-objective optimization framework proposed is an approach 

focusing on the minimization of nitrate (pollution) and maximization of crop yields at the 

field level to select and allocate optimal agricultural BMPs (Figure 6.1). It provides 

multicriteria options for decision makers to improve water quality without offsetting 

agricultural productivity. In our approach, the optimal BMP placement contemplates the 

following five main components (Figure 6.1). 

1. Estimation of spatial and temporal dynamics of nutrients in runoff resulting from 

current agricultural practices. A Nitrate-N loads (NO3
-N) in runoff and crop yields 

estimation model was used. 

2. Location determination for effective BMPs implementation. Spatio-temporal 

critical sources areas (ST-CSAs) for potential BMPs spatial location were defined 

(Chapter 5). 

3. Stakeholders’ knowledge to select Ag-BMPs scenarios. Interviews and workshops 

with farmers were carried out to select the BMPs scenarios, and the parameterization 

of these to be incorporated in the hydrological model was done (Chapter 4 and 5). 

4. Determination of the optimal BMPs solutions that minimized nutrient in runoff and 

increased crop yields, based on current state of the catchment. An optimization model 

that used the metaheuristic algorithm (NSGA-II) coupled with the Soil and Water 

Assessment Tool (SWAT) as an optimization engine was built. 

5. Determination of the spatial analysis level results to select the optimal BMP. Pareto-

front results are compared between the average and single sites (HRUs) values, for 

each objective function. 

The first two components of the proposed multi-objective optimization framework 

were fully developed in our earlier study (Uribe et al., 2020) and described in chapter 5. 

The hydrological SWAT model (Soil Water Assessment Tool) was used to model the 

hydrology, water quality, and crop yields of the Riogrande II watershed (See Uribe et al., 
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2020 and Chapter 5 for the case study description). The modeled period was from 1995 

to 2015. The watershed was defined with an area of 103,434.77 ha and delineated into 

20 sub-basins representing the main tributaries. The slope classes were defined in five 

ranges (0–5%; 5–15%; 15–40%; 25–60%; and>60%) and 3060 HRUs were delineated. 

The current agricultural management practices, based on field data collection and 

presented in chapter 5, for potato, tree tomato, and kikuyu grass (dairy farming), were 

setup. The model was calibrated in two phases as described in chapter five, one using 

observed discharge, and two using nitrate-N (NO3
-N) losses and crop yields at a monthly 

scale (Uribe et al., 2020). The Nitrate-N loads (NO3
-N) in runoff and crop yield values 

for potato, tree tomato, and kikuyu grass at Hydrological Response Units (HRUs) were 

estimated in chapter 5.  

On the other hand, the spatio-temporal critical source areas (ST-CSAs) were 

identified in order to select the areas that simultaneously contribute in space and time 

with the highest pollutant loads within the watershed (Uribe et al., 2020), and a such 

narrow the space of possible solutions. And, for a more effective agricultural BMPs 

placement, the ST-CSAs was used as BMP sample (configuration) units which are used 

as the search space for the optimization problem. This approach allowed us to 

contemplate the temporal and spatial dynamics of the nutrients in runoff to guide the 

feasible agricultural BMP scenario selection and the location determination. The 

following subsections present the detailed description of the other three main components. 
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Figure 6.1. Spatio-temporal multi-objective agricultural BMPs coupled-model 

optimization framework 

6.3.2 Human considereations in selection and parametritation of 

BMP scenarios 

A total of five agricultural BMPs types appropriate to the Riogrande II watershed were 

selected to improve the water quality in runoff and crop yields (Table 6.2), a detailed 

description of the BPMs is presented in Chapter 2.  

Fieldwork and interviews with local farmers were considered to select the feasible 

BMPs for the watershed studied. A total of 2017 surveys carried out in 123 

representatives’ farms (48 specialized farms in milk, 40 potato, and 35 tree tomato) 

were applied and studied. The detailed data are reported in our previous study (Osorio et 

al., 2019), which was produced in collaboration with the University of Antioquia. These 

BMPs were selected because they are agricultural practices that do not increase 

implementation costs, they can be implemented by farmers with the tools and financial 

resources they currently have, and they were acceptable to farmers (some were proposed 

by the farmers themselves). The five BMPs selected are fertilizer management, 

BM Ps 

Selection/ allocation

Pareto-opt imal 
front  

Farm characterizat ion/  

current  agricult ural 
management  pract ices 

Land use

Soils/ propriet ies
Wheatear/ pcp-t emp

DEM/ Slope

Baseline - W atershed 

hydrological model

Run SWAT 

model

Databases

Paramet rizat ion

Calibrat ion /  

Validat ion

Yes Nit rat es (NO3)

Crop yield (CY)

Output data

I nput data

No

CSAs 

ident ificat ion

Spat io-t emporal 

CSAs pat t erns

Stat ist ical 

analysis

Stat ist ical comput ing (RStudio)

Spat io-t emporal 

CSAs select ion
(ST -CSAs)

BMPs

alt ernat ives

Analysis result s
(Average Vs single 
object ive funct ion 

sit es values)

Farm characterizat ion 

(current  agricult ural 
management  pract ices) 

Land use/ cover

Soils/ propriet ies
Precipit at ion, t emperature

DEM/ Slope

W atershed hydrological model

Run SWAT 

model
Paramet rizat ion

Calibrat ion/ Validat ion

1. Discharge
2. Nut rient s

3. Crop yields

Yes Nit rat es (NO3)

Crop yield (CY)

Output data

Baseline

I nput data

No

CSAs 

ident ificat ion

Spat io-t emporal 

CSAs pat t erns

Stat ist ical 

analysis

Stat ist ical comput ing (RStudio)

Spat io-t emporal 

CSAs select ion
(ST -CSAs)

BMPs

alt ernat ives

Storage

Database

BM Ps Scenarios - W atershed 

hydrological model

Modify parameters for HRUs 
corresponding t o t he ST-CSAs

Run SWAT 

model

Satisfied 

with results?

N SG A-I I  algorithm

Transform new 

populat ion int o 
SWAT 

parameters

I nput data

BM P scenarios
Decision variables 
(SWAT parameters)

Nit rates (NO3)

Crop yield (CY)

Objective function

Minimize Nit rates
Maximize Crop Yield

Yes

Const raint sNew populat ion

N SG A-I I  algorithm

No

Output data

Scenarios

1

2

3

4

5



 Spatio-temporal Agricultural BMP Optimization 

104 

 

minimum tillage, contour planting, filter strips, and living fences. A brief description 

of the selected BMPs and their implementation in the SWAT model is presented below, 

and Table 6.2 summarized the parametrization of the selected agricultural BMPs to be 

evaluated in the modeling-optimization framework.  

BMP1) Fertilizer management: This practice has as primary objective to apply the 

required amount of fertilizers needed by the plant at the right time and place. The BMP1 

was simulated in the SWAT model by reducing the amount of fertilizer applied (Fert_kg) 

in each of the three crops selected. For this the decision range of reduction between 0 and 

5% is set, however, here is good to add that to avoid an unfeasible solution, related to the 

the information provided by the users, the analysis of the objective function will consider 

always a baseline formulation related to the reduction in relation to the current. 

BMP2) Minimum Tillage: The minimum tillage or minimum movement of the soil 

consists of intervening as little as possible into the soil structure at the time of cultivation 

operation (FAO, 2000; Herrera, 2008). The tillage database (till.dat) in SWAT model was 

used. The database contains the depth of mixing (Deptil) and the mixing efficiency 

(Effmix) values. For this case study, we selected the Generic Conservation Tillage, 

Chisel Plow (vertical tillage), Rotary Hoe (animal and human-powered implements), 

and Generic No-Till Mixing (Table 6.1). The tillage implement code from the tillage 

database (TILL_ID) is changed to implement the BMP2 in the SWAT model. 

 

 Table 6.1. Tillage implements selected from SWAT tillage database (till.dat) to 
be used in the optimization problem. 

Implement 
Tillage 

Name 

Till_Id 

Tillage 

code 

Effmix 

Mixing 

efficiency 

Deptil 

Mixing 

depth (mm) 

Random 

roughness 

(mm) 

Current baseline      

Bedder Shaper (disk) BedderS 83 0.55 150 30 

      

Scenarios      

Generic Conservation Tillage Constill 3 0.25 100 40 

Chisel Plow Gt21ft Chplgt21 2 0.5 125 50 

Rotary Hoe Rothoe 5 0.15 100 15 

Generic No-till Mixing Zerotill 4 0.05 25 10 

 

BMP3) Filter strips: Filter strips are vegetated areas situated between surface water 

bodies and cropland to collect and remove pollutant nutrients, pesticides, and bacteria 

from surface run-off that are planted in these areas (Ritter and Shirmohammadi, 2001). 

This practice is modeled with a FILTER_RATIO parameter, which represents the ratio 
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of the field area of the filter strip along a stream. Filter strips are simulated in SWAT by 

modifying/adding an optional schedule Management Operations (.ops) file for each HRU. 

BMP4) Contour planting: Contour farming is a practice that consists of planting along 

the contours of the terrains to reduce soil erosion and surface run-off (Tuppad et al., 2010). 

The BMP4 is simulated by adding a modified CN number which considers the countour 

effect. In SWAT, contouring is represented in the optional scheduled management 

operations file (.ops) for each HRU. The BMP4 is modeled with the initial SCS curve 

number II value (CONT_CN). 

BMP5) Living fences: Live fences are those in which a row of trees (edge rows) and 

shrubs are planted in short distances, replacing the traditional fences to be used as 

grazing areas (Blanco and Lal, 2008, Zhai et al., 2006). This practice in our study is 

modeled only for kikuyu grass by decreasing the dry weight of biomass daily 

consumed per each animal (BIO_EAT). The decrease was defined in the range between 

0% to -30% (kg ha-1), which is the maximum percentage of forage provided by the 

Tithonia diversifoliade specie  (Restrepo et al., 2016). 

 

Table 6.2. Parametrization of the selected agricultural best management practices 

(BMPs) to be evaluated in the modeling-optimization framework. Kikuyu grass (PASM), 

potato (POTA), and tree tomato (TOMA) land-covers. 

BMP 

alternative 

Parameter in 

SWAT 
Description 

Land 

cover* 

Current 

value 

How implemented in 

SWAT 

BMP1  

Fertilizer 

management 

FERT_KG  
Amount of fertilizer 

applied to HRU (kg/ha) 

PASM 30 

5% reduction [-0.5 – 0.0] POTA 350 

TOMA 725 

BMP2 

Minimum 

tillage 

TILL_ID 

Tillage implements 

code from tillage 

database 

POTA 49 

Changed between [2 - 5] PASM 

TOMA 
83 

BMP3 

Filter strips 
FILTER_RATIO 

The ratio of field area 

to filter strip area 
PASM 40 Changed between [30 – 60] 

BMP4 

Contour 

cropping 

CONT_CN 
SCS curve number II 

value 
POTA 

TOMA 
60 10% reduction [-0.1 - 0.0] 

BMP5 

Living 

fences 

BIO_EAT 
Dry weight of biomass 

consumed daily (kg/ha) 
PASM 51  30% reduction [-0.3 – 0.0] 

 

*PASM: Kikuyu grass; POTA: Potato; TOMA: tree tomato 
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The selected BMPs are spatially matched with the land-cover fields having 4 BMPs 

(BMP1, BMP2, BMP3, BMP5) associated to the kikuyu grass, and 3 BMPs (BMP1, BMP2, 

BMP4) to the potato and tree tomato (Table 6.2). Those are assigned to their respective 

HRU distributed in a total of 454, 194, and 97 HRUs for kikuyu grass (PASM), potato 

(POTA), and tree tomato (TOMA), respectively. In this study, we assume that a BMPs 

can be placed individually for the same land-cover type. Therefore, the number of BMP 

scenarios tested for kikuyu grass are 4 and 3 for potato and tree tomato land-covers (Table 

6.3). 

 

Table 6.3. List of the best management practices (BMP) scenarios to be optimized for 

kikuyu grass (PASM), potato (POTA), and tree tomato (TOMA) at the Riogrande 

watershed. 

Scenario 

number 
BMP Land cover 

Scenario 

number 
BMP Land cover 

1 BMP1 PASM 6 BMP2 POTA 

2 BMP2 PASM 7 BMP4 POTA 

3 BMP3 PASM 8 BMP1 TOMA 

4 BMP5 PASM 9 BMP2 TOMA 

5 BMP1 POTA 10 BMP4 TOMA 

 

6.3.3 Multi-objective optimization formulation 

Objective functions  

Government and experts in the region have already promoted BMPs, and in chapter 5 we 

have seen important issues in the variation of CSA in time. With this, some 

implementation is expected to take place, but to have an increase in implementation, we 

need to find the proper approach. Here we follow the optimization approach proposed by 

Babbar-Sebens et al., 2015, where the base line and the optimal obtained with different 

Ag-BMPs are maximized. Here we propose a step further, where these results are 

expected to be used to classify regions where dynamics of the hydrologic responses are 

captured and at the same time match the Ag-BMP implementation, not withstanding the 

fact that real life implementation requires decision makers to apply AG-BMPs gradually. 

Therefore, in the region, two objectives are defined: 

1) The maximization of Nitrates loss reduction (NR) in the runoff, for each HRU 

(hydrological responds unit) selected for Ag-BMP implememtation. This done in each 

HRU by estimating the differences between the baseline calibrated model results 

(simulation results with the current agricultural management practices) and the different 

optimized Ag-BMP scenarios results. This concept aims at achieving a plausible 
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reduction of pollutants in the region, as well as allowing for an easier interpretation of 

implementation plans.   

2) The minimization of the differences from the maximum potential crop yield (DMCY), 

crop's productivity obtained in the BMP scenario reaches the maximum crop yield 

baseline calibrate model results (potential crop yield values obtained from the 

simulation results with the current agricultural management practices).  

The modeling system used here provides spatial location (explicit-HRUs), and nitrate 

(NO3
--N) losses and crop yields on a daily basis; however, as mentioned in chapter 5, 

calibration and overall parametrization of the BMP scenarios and their objective functions 

are defined for monthly results. This corresponds to 36 months between January 2013 

to December 2015 of the total simulation period (1995-2015). This fact and the use of 

the ST-CSA method, allow us to define an objective function that will target only in 

certain spatial and temporal areas of pollution (718 HRUs of the total number of 3640 

HRUs set in the SWAT model). Hence, the number of times a decision variable is 

applied corresponds to the number of times defined in the baseline management calendars 

(Uribe et al., 2020) for each of the 718 HRU chosen associated with a land-cover 𝐿 in the 

month 𝑡. Thereby, an HRU with the land-cover 𝐿 at time 𝑡 is defined as 𝐻𝑅𝑈𝐿(𝑖,𝑡)
, where  

𝐿 ∈ {𝑃𝐴𝑆𝑀, 𝑃𝑂𝑇𝐴, 𝑇𝑂𝑀𝐴},  𝑖 = 1, … , 𝑁𝐿 and 𝑁𝐿 is the number of 𝐻𝑅𝑈𝑠 with the same 

land-cover NL ∈ {454,167,97} . Thus, the NO3
--N loads due to a BMP scenario 

implementation (Table 6.3) in a 𝐻𝑅𝑈𝐿(𝑖,𝑡)
 can be defined as  𝑁𝑂3𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)

. In the 

same way, the differences from the maximum crop yields of a BMP implemented scenario 

in a 𝐻𝑅𝑈𝐿(𝑖,𝑡)
 associated with a land-cover 𝐿  in the month 𝑡  is represented as 

𝐶𝑌𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
. 

Therefore, we can define the relative change in the Nitrate-N loads as the difference 

between the nitrates obtained for a simulated BMP scenario 𝑁𝑂3𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
 and the 

baseline 𝐵𝑁𝑂3𝐿(𝑖,𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 in a 𝐻𝑅𝑈𝐿𝑖

 for a specific time 𝑡 , as an indicator of 

environmental benefits. Similarly, we can define the differences from maximum crop 

yield between the BMP scenario 𝐶𝑌𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
 and the maximum crop yield 

𝑀𝐶𝑌𝐿(𝑖,𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
, where the maximum crop yield corresponds to the potential yield value 

of the current agricultural management. Thus, the function that covers all HRUs for a 

given land-coverage and time is expressed mathematically as (Eq. (6.1) and (6.2)): 

 

 
𝑵𝑹𝑳,𝒊 = min [−max ∑ [𝑁𝑂3𝐿(𝑖,𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

− 𝑁𝑂3𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
]

𝑡𝑓=36

𝑡𝑖=1

] 

 

(6.1) 
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 𝑫𝑴𝑪𝒀𝑳 = min [ ∑ [𝑀𝐶𝑌𝐿(𝑖,𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
− 𝐶𝑌𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)

]

𝑡𝑓=36

𝑡𝑖=1

] 
                        

(6.2) 

were 𝑡𝑖 is the initial time in months in the simulation period, 𝑡𝑓 is the final time in 

months in the simulation period,  𝑖 is the number of the HRU, 𝑁𝐿 is the number of 𝐻𝑅𝑈𝑠 

with the same land-cover at time t, 𝐿 the land-cover,  𝑁𝑂3𝐿(𝑖,𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 is  the nitrates load 

of the HRU for the baseline (simulation results with the current agricultural management 

practices), 𝑁𝑂3𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
 is the nitrates load of the HRU for a simulated Ag-BMP 

scenario, 𝑀𝐶𝑌𝐿(𝑖,𝑡,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 is the maximum (potential) crop yield in ton ha-1 for the 

baseline scenario (simulation results with the current agricultural management practices), 

𝐶𝑌𝐿(𝑖,𝑡,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
 is the crop yield for a simulated Ag-BMP scenario. Note that these 

functions are subject to the 𝑁𝑂3𝐿(𝑖,𝑡)
 and 𝐶𝑌𝐿(𝑖,𝑡)

 functions (detailed description of the 

equations are presented in Chapter 2, which are outputs of the SWAT model and depend 

on the implementation of a Ag-BMP type or a combination of Ag-BPMs is applied (Table 

6.3). 

Decision variables and constraints 

From the analysis of CSA per BMP, we have divided the problem into 3 regions of 

possible crop cultivation. In general, 718 HRUs in total, were 454 kikuyu grass (PASM), 

167 potato (POTA), and the remaining 97 in tree tomato (TOMA). With this, we divided 

the optimization problem into three optimization sub-problems for each type of land-

cover (Figure 6.2). Hence, the optimization sub-problem for kikuyu grass has a total of 4 

decision variables applied to 454 HRUs, not including BMP4 in this land-cover (Table 

6.4). Similarly, BMP5 does not apply to the potato and tree tomato land-cover, whereby 

there is a total of three decision variables for potato and tree tomato (Table 6.4). The total 

number of decision variables is 2608. This is composed of: 

 

𝑲𝒊𝒌𝒖𝒚𝒐 𝒈𝒓𝒂𝒔𝒔 → 454 𝐻𝑅𝑈𝑠 ∗ 4 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑋1, 𝑋2, 𝑋3, 𝑋5) = 𝟏𝟖𝟏𝟔 

𝑷𝒐𝒕𝒂𝒕𝒐                → 167 𝐻𝑅𝑈𝑠 ∗ 3 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑋1, 𝑋2, 𝑋4)        =    𝟓𝟎𝟏 

𝑻𝒓𝒆𝒆 𝒕𝒐𝒎𝒂𝒕𝒐    →  97 𝐻𝑅𝑈𝑠 ∗ 3 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑋1, 𝑋2, 𝑋4)         =    𝟐𝟗𝟏 

𝑻𝒐𝒕𝒂𝒍        =    𝟐𝟔𝟎𝟖 

 

where, 𝑋1 – amount of fertilizer applied of kgha-1 (BMP1), 𝑋2 – tillage implemented 

code (BMP2), 𝑋3 – ratio of field area to filter strip area (BMP3), 𝑋4 – initial SCS curve 

number value (BMP4), and 𝑋5  – dry weight of biomass consumed daily in Kg ha-1 

(BMP5). 
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Figure 6.2. The schematic representation of the decision variables for potato (POTA), 

tree tomato (TOMA), and kikuyu grass (PASM) land-cover types. 

 

Table 6.4. Description of the decision variables, their ranges and constrains. 

Land 

cover 

Total 

HRUs 

Number of 

modified 

values* 

Scenario 

Decision 

variable 

code 

Parameter 

name 
Method 

Optimizati

on range 

PASM 454 

454*10=4540 BMP1 X1 FRT_KG 
Relative 

-0.5 -0.0 

454*1=454 BMP2 X2 TILL_ID 
Replace 

2 -5 

454*1=454 BMP3 X3 FILTER_RATIO 30 - 60 

454*8=3632 BMP5 X6 BIO_EAT 
Relative 

-0.3 – 0.0 

POTA 167 

167*4=668 BMP1 X1 FRT_KG Relative -0.5 – 0.0 

167*6=1002 BMP2 X2 TILL_ID 
Replace 

Relative 

2 -5 

167*1=167 BMP4 X4 CONT_CN -0.1 – 0.0 

TOMA 97 

97*20=1940 BMP1 X1 FRT_KG Relative -0.5 – 0.0 

97*1=97 BMP2 X2 TILL_ID 
Replace 

Relative 

2 -5 

97*1=97 BMP4 X4 CONT_CN -0.1 – 0.0 

 

* Number of modified values = Total HRUs * total number of applications defined in the management calendars during 

the simulated period. 
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Optimization engine setup 

The Nondominated Sorting Genetic Algorithm (NSGA-II) developed by Deb et al., 2002 

was used as the multi-objective optimization algorithm to allocate the five BMPs types 

selected for the case study watershed. The NSGA-II optimization algorithm in recent 

years has been widely applied to optimize BMPs placement for pollution reduction in 

watersheds (Geng et al., 2019; Yang and Best, 2015; Qin et al., 2018; Jeon et al., 2018; 

Babbar-Sebens et al., 2015; Panagopoulos et al., 2013). The open-source software library1 

for multi-objective calibration of the SWAT model using NSGA-II developed by Ercan 

and Goodall, 2016, was modified to be used as a optimization engine in our specific 

spatio-temporal multi-objective BMP optimization modeling-framework.  

The NSGA-II/SWAT coupled optimization engine follows the seven main steps.  

1. Latin Hypercube technique is used to generate the N vectors of decision variables 

(parameters sets). (N is the population size.)  

2. A module that creates the input file using the parameters generated by the Latin 

Hypercube is run (step 1). The developed scripts filter the input such that only the 

HRUs corresponding to the CSAs for each of the three crops to work (kikuyu 

grass, potato, and tree tomato) are used. 

3. A cycle starts with the initial parameters as input to the SWAT model. Total 

number of iterations (generations) is G.  

4. The objective functions are calculated and the results are placed into a file. 

5. The NSGA-II algorithm uses the input file and generates N sets of parameters. 

These parameters and the ranges of each parameter in the model are defined in the 

NSGA metainformation file (Figure 6.5). 

6. A generation of the dominant and nondominant sets of parameters is sorted and 

used as reference for rejecting parameters of the population. In this step the 

selected or dominant sets are scaled with distances metrics.  

7. With the dominant sets of parameters, a selection crossovers (combination) and 

mutation (random change) of best samples is done to generate new samples. These 

parameters are used as input and steps 3 to 7 are executed again. The cycle will 

last until the number of generations defined in the meta information file of the 

NSGA-II.  

The first four steps result in generating the input data for the NSGA-II algorithm. 

Therefore, these steps were modified to match our goals and approach, by 

adding/replacing scripts developed to extract, process, and execute the SWAT model at 

 

1  Software availability: The software is available free and open source on Github: 

https://github.com/mehmetbercan/NSGA-II Python for SWAT model. 
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the HRU unit of analysis level. The developed scripts allow for selecting the HRUs 

corresponding to the CSAs for each of the three crops to work (kikuyu grass, potato, and 

tree tomato), defining the objective functions and constraints, and generating/storing the 

results in the formats of our interest. For further detail on the other three steps corresponds 

to the NSGA-II algorithm itself, readers are referred to Ercan and Goodall, 2016. 

NSGA-II algorithm has several important control parameters that have to be set by 

the user. To identify the most appropriate values for them, a number of experiments were 

conducted. The experiment analysis consists of changing the value of the population size 

(10, 50, 80, 100), crossover probability (0.2, 0.6, 0.8) and the number of generations (5, 

10, 50, 80, 100) one-at-a-time. The changes of the Pareto-optimal front obtained for each 

configuration setup from the ε-NSGA-II optimization with the two objective functions 

NR (differences from the nitrates load (NO3
--N) between the baseline model results and 

the BMP scenarios) and DMCY (differences from the maximum crop yield and the BMP 

scenarios), were compared. For the particular optimization problem in the Riogrande II 

watershed, these data were arranged as three individual sub-problems, one for each type 

of the three land-cover under study (Table 6.4). The detailed description of the NSGA-

II/SWAT optimization library is described in the Appendix B.  

 

6.3.4 Comparison between Pareto-optimal front solutions from 

average vs. single sites values 

In this study, the Pareto-optimal solutions for each crop and each BMP scenarios were 

analyzed at two different levels: 1) Pareto-optimal front solutions from the average sites-

HRUs values (per crop). This corresponds to calculating the Pareto-optimal front with the 

average of the values obtained from the total HRUs used, for each of the objective 

functions. 2) Pareto-optimal front solution from the single sites-HRUs values (results 

obtained for each individual HRU), for each of the objective functions. A cluster analysis 

was used to show the optimization results for each HRUs in a compiled form. The cluster 

analysis makes it possible to identify HRUs with similar objective function results 

evaluated among the total HRUs. Additionally, a map of the location of the different 

clusters in the study watershed is presented. 

Furthermore, to determine the main differences between the two levels of result 

analysis a comparison between the range (minimum and maximum) of the results 

obtained for each objective function among the different BMP scenarios, was performed. 

Finally, the most feasible BMP scenarios in the study watershed are presented by the 

cluster numbers obtained in each of the three studied crops, accompanied by a short 

description of the spatial characteristics such as the sub-basins, slope, soil, and HRUs 

area, of the BMP optimized results. 
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6.4 RESULTS AND DISCUSSION 

6.4.1 Benchamark analysis of optimization preliminar results 

The optimization algorithm was first run for 10 generations as a benchmark. An analysis 

of the Pareto-optimal front solutions per each 10 BMP scenarios (Table 6.3) was assessed 

to know the optimization performance. This analysis was done on each BMP scenario 

before executing the experimental setup used for the optimization process. In Figure 6.4, 

results of the HRU benchmark per each land cover was randomly selected.   

The benchmark analysis results showed that the Pareto-optimal front solutions for 

various solutions are quite linear and for the same solution but in another location a 

nonlinear Pateto is found for objectives DMYC and NR. For example, BMP1 (Fertilizer 

management) applied to PASM in the HRU38, a clear non-linear relationship between 

variables (Figure 6.4a), however, applying the same BMP1 in a region where there is 

POTA or where there is TOMA, shows an inverse linear relationship (6.4b 6.4c). The 

inverse value between DMCY and NR objective functions, for the three crops studied. 

This shows that a number of formulations could be evaluated to simplify the optimization 

process, however, more analysis was done. 

And the range of possible optimal solutions for the decision variable X1 (FRT_KG - 

the amount of fertilizer applied to HRU) is different for each crop studied (kikuyu grass, 

potato, and tree tomato) (Figure 6.4a, 6.4b 6.4c). The Pareto-optimal front for scenarios 

2, 6, and 9 that corresponds to apply the BMP2 (Minimum tillage) for kikuyu grass, potato, 

and tree tomato, respectively, has only four values (Figure 6.4d, 6.4e, and 6.4f). Those 

four result values correspond to each of the four-tillage type could be selected for the 

decision variable X2 (TILL-ID) in the optimization configuration (Table 6.3). Therefore, 

it may be concluded that the optimal solutions may be the one or the two values closer to 

the origin to select the adequate tillage type. Scenario 3 corresponding to the BMP3 (filter 

strips) type was applied only to the kikuyu land-cover. As expected, the Pareto-optimal 

front solutions for the decision variable X3 (FILTER-RATIO - the ratio of field area to 

filter strip area) did not change or moved towards the origin for the objective function 

Differences from Maximum Crop Yield (DMCY). However, it is very significant for the 

objective function differences in nitrate loads (NR) by approaching the origin (Figure 

6.4g). On the other hand, when the decision variable X4 (CONT_CN – SCS - curve 

number II value) is applied, scenarios 7 and 10 for potato and tree tomato land-cover, 

respectively; the results obtained indicate a linear regression, for both land-covers (Figure 

6.4h, 6.4i). For the BMP5 (living fences) represented by the decision variable X5 

(BIO_EAT - Dry weight of biomass consumed daily) and applied only to kikuyu land-

cover, the results show a Pareto-optimal front solutions clearer (Figure 6.4j).  

Based on the results of the Pareto-optimal front preliminary brenchmark analysis for 

each BMP scenario, the final setting parameter values for the NSGA-II algorithm that we 

defined to get the Pareto-optimal front closer to the origin - the better the spread of Pareto-
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optimal front solutions for NR and DMCY were: 1) population size of 100; 2) the 

maximum number of generations of 100; and 3) crossover rate of 0.8 with a uniform 

crossover-type. Since our parameters do not have a wide range, we used 6 bits for binary 

crossover and mutations for each variable (parameters), and the mutation probability and 

the seed for the random number generation were set to 0.5 (Figure 6.5).  
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Figure 6.3. Optimization running benchmark analysis of the Pareto-optimal front solutions derived from 10th generation in the NSGA-

II/SWAT coupled model: a) PASM-BMP1, b) POTA-BMP1, c) TOMA-BMP1, d) PASM-BMP2, e) POTA-BMP2, f) TOMA-BMP2, g) PASM-

BMP3, h) POTA-BMP4, and i) TOMA-BMP4, and j) PASM-BMP5. DMCY: differences from the maximum crop yield, NR: differences from 

the nitrate. 
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//definition file for nasga2 program  
1 PopSize 100 //Population size (an even number) 

2 GenNumber 100 //Number of generations (different from 1) 

3 CrossPrb 0.8 //Crossover probability (between 0-1) 

4 CrossTyp 2 //Crossover type (1=Simple,2=Uniform X-over) 

5 Bits 6 //No. of bits assigned to each variable(parameters) 

6 MutPrb 0.5 //Mutation prblty proportion range (between 0-1) 

7 seed 0.5 //Give seed (between 0-1) for random number generation 

8 ObjFunc 6 //1=E; 2=R^2; 3=E, log(E); 4=E, log(E), R^2; 5=E, PB; 6=Nitrate|Yield 

9 ObjFuncOpt 0 //0=Do not average; 1=Average OF sites; 2=Average OF 

10 ReadMFrmOut 0 //0=normal start; 1= Read last population from output.out  

Figure 6.4. Final settings parameter for the NSGA-II algorithm used to run the NSGA-

II/SWAT library for the Riogrande II watershed BMP optimization model. 

 

6.4.2 Average of the Pareto-optimal front solutions derived from 

each HRUs optimization results among different BMP 

scenarios 

An average of the Pareto-optimal front solutions from each HRUs optimization results of 

the 100th generation for the 10 BMP scenarios. The results are described below for each 

of the three types studied. The average of the Pareto-optimal front solutions obtained for 

the four BMP scenarios optimized for kikuyu grass (PASM), they are totally different 

between them (Figure 6.7). The scenario 4 (BMP5) produced the most non-dominated 

solutions at almost the entire solution space (Figure. 6.6d). Finally, the average Pareto-

optimal front solutions for scenario 1 showed a changing trend (an inversely linear 

representation between objective functions NR and DMCY) in the solution space with 

the best optimization efficiency (Figure 6.6a). On the other hand, scenarios 2 and 3 show 

the least variability in the average Pareto-optimal front solutions space. The values 

obtained in the average Pareto-optimal front solutions space for scenario 2 (BMP2) 

corresponds to each of the four values that the decision variable X2-Tillage type [2-5] can 

be changed (Figure 6.6b). The decision variable X2 influences each of the objectives 

function sites-HRUS in the same proportion, indicating no difference in space and time 

between the sites-HRUs in the watershed. Similarly, the average Pareto-optimal front 

solutions for the scenario 3 (BMP3) gets only one value for the objective function DMCY 

of 2.4 t ha-1 (Figure 6.6c), which is mainly because the decision variable X3-Filter ratio 

influences only the objective function RN when simulating collection and removing of 

pollutant nutrients from surface run-off, and it doesn’t alter the crop yield results. 

Figure 6.7 shows the average Pareto-optimal front solutions for the 194 HRUs of the 

potato crop (POTA) derived from all 100th generations of the three BMPs scenarios. From 

the visual interpretation, the better convergence and similar diversity in the average 

Pareto-optimal front were obtained in scenarios 5 and 7. These correspond to the BMP1 

(X1-Fertilizer amount) that obtained an inverse regression performance between the two 

objective functions (Figure 6.7a). And the BMP4 when the decision variable X4 (SCS - 
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curve number II value) is optimized the average Pareto-optimal front solutions correspond 

to a convex function between the two objective functions (Fiure 6.7c). On the other hand, 

scenario 6 (BMP2) shows the least variability in the average Pareto-optimal front solution 

space (Figure 6.7b), the same result as the kikuyu land-cover.  

Finally, the comparison of the average Pareto-optimal front solution derived from the 

97 HRUs results among the four BMPs scenarios applied to the tree tomato land-cover 

(TOMA), shows that the best performances are obtained in scenarios 8 and 10, which 

correspond to the decision variables X1 and X4, respectively (Figure 6.8a, 6.8c). The 

average of the Pareto-optimal front solutions for scenario 10 showed a changing trend (an 

linear representation between objective functions NR and DMCY) in the solution space 

with the best optimization efficiency (Figure 6.7c). And, the same as the results obtained 

for the scenarios 2 and 6 (BMP2) applied to PASM and POTA, respectively, the values 

obtained in the average of the Pareto-optimal front solutions space for scenario 9 (BMP2) 

corresponds to each of the four values that the decision variable X2-Tillage type [2-5] can 

be changed (Figure 6.8b). 

 

D
M

C
Y

 

a) PASM-BMP1 

 

D
M

C
Y

 

b) PASM-BMP2 

 

 

NR  NR 

D
M

C
Y

 

c) PASM-BMP3 

 

D
M

C
Y

 

d) PASM-BMP5 

 

 NR  NR 

Figure 6.5. Average of the Pareto-optimal front solutions derived from the 454 HRUs of 

the 100th generation among four BMPs configuration scenarios applied to the kikuyu 

grass (PASM) land-cover. a) BMP1, b) BMP2, c) BMP3, and d) BMP5. DMCY: 

differences from the maximum crop yield, NR: differences from the nitrate. 
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Figure 6.6. Average of the Pareto-optimal front solutions derived from the 194 HRUs of 

the 100th generation among four BMPs configuration scenarios applied to the potato 

(POTA) land-cover. a) BMP1, b) BMP2, and c) BMP4. DMCY: differences from the 

maximum crop yield, NR: nitrate reduction. 
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Figure 6.7. Average of the Pareto-optimal front solutions derived from the 97 HRU of 

the 100th generation among four BMPs configuration scenarios applied to the tree 

tomato (TOMA) land-cover. a) BMP1, b) BMP2, and c) BMP4. DMCY: differences from 

the maximum crop yield, NR: nitrate reduction. 
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6.4.3 Pareto-optimal front solutions derived from the single from the 

each HRUs optimization results among different BMP scenarios 

To identify the single sites-HRUs values among the different BMP scenarios that have a 

similar optimization result, a cluster analysis (unsupervised classification) was performed 

for each of the three analyzed crops. For the BMPs scenarios applied to each crop (Table 

6.3), the geographical location of the HRUs grouped in clusters is showed in Figure 6.9. 

Their spatial characteristics, such as sub-basins, area, and total number of HRUs 

conforming up the cluster, are described below.  

Visually it can be observed that the HRUs corresponding to the kikuyu grass coverage 

(PASM) distributed in four clusters for each of the five applied BMP scenarios, are 

located in almost the entire basin except for sub-basin 8 (Figure 6.9a). The HRUs that 

determine cluster 3 are mainly found in the sub-basins located in the north-east region of 

the watershed, except for scenario 2 (BMP2) in which the HRUS that determine cluster 1 

predominate in this region (Figure 6.9a). The cluster that groups the largest number of 

HRUs out of the total HRUs for the kikuyu grass land-cover is cluster 2, and these HRUs 

are located in most of the watershed area in the four optimized BMP scenarios (Figure 

6.9a). The number of HRUs that determine cluster 2 in each BMP scenario corresponds 

to 68, 67, 63, 63% for scenarios 1 to 4, respectively, with respect to the total HRUs of the 

kikuyu grass land-cover (454 HRUs). And the area covered by the HRUs grouped in 

cluster 2 with respect to the total area of the kikuyu grass land-cover (60314.84 ha) in the 

four BMP scenarios corresponds to approximately 37%. Next is cluster 3 with an average 

percentage of 33% of the total area in grass, which is the cluster made up only on average 

by 10% of the 454 total HRUs for kikuyu grass (approximately 45 HRUs in each of the 

five scenario BMP). And cluster 1 with an average percentage of 22%. 

For potato crop, it can be seen visually that the HRUs grouped in the clusters are 

located mainly in the sub-basins located at the lower part of the watershed and some sub-

basins located in the north-east area (sub-basins 2, 4, 5, 6 and 7) (Figure 6.9b). In figure 

6.9b, it can be seen that scenarios 5 and 6 that correspond to the BMP1 and BMP2 have a 

similar spatial distribution of the clusters, and the HRUs grouped in cluster 1 are those 

with a higher percentage of representation area around 50% with respect to the total area 

planted in potato (cluster 1 has 39% of the 167 total HRUs for potato land-cover). And 

cluster 2 has 35% of the total HRUs for this land-cover, that corresponds to approximately 

30% of the total area of the potato land-cover (874.98 ha). On the other hand, FOR 

scenario 7 (BMP4) clusters 3 and 4 present the highest number of HRUs (44% and 25% 

of the total of 167 HRUs, respectively) and the percentage of coverage covered (55% and 

16% of the total area of the potato crop, respectively). 

For the tree tomato, the clusters are located in only 8 sub-basins of the total of 20 sub-

basins located in the lower part of the watershed (sub-basins 12 to 19) (Figure 6.9c). It 

can be seen in Figure 6.9c that cluster 3 is the one that contains the highest amount of 

HRUs (39% of the 97 HRUs for this crop) in the four evaluated scenarios (scenario 8 to 
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10, Table 6.3), and it represents 59% of the tree tomato land-cover total area. Next, is 

cluster 2, which is made up of 28 HRUs of the 97 HRUs of the tree tomato land-cover, 

for the four scenarios. It is highlighted that cluster 1 for scenario 10 (BMP4) cannot be 

seen visually in Figure 6.9c because it is made up of only 4 HRUs that represent 0.6% of 

the area planted in tree tomato in the watershed. 

From our previous study (Uribe et al., 2020) the results showed that the spatial 

distribution of NO3
−-N losses was predominant in two specific regions throughout time 

within the watershed, the Region 1 conformed by the sub-basins between 1 to 11, and the 

Region 2 by the sub-basins between 12 to 20. Which are directly attributed to the spatial 

distribution of precipitation in the study area, where Region 1 is characterized by higher 

annual average rainfall than Region 2. Therefore, the results of the grouping of the 

objective sites-HRUs among the different BMP scenarios that have similar optimization 

results in clusters showed that: 

1) for the cultivation of kikuyu grass, the HRUs grouped in cluster 3 predominate in 

Region 1. And the HRUs grouped in cluster 2 for scenarios 1 to 5 predominate in in 

Region 2. With the exception of scenario 2, in which the HRUs corresponding to cluster 

1 predominate in Region 1. 

2) for potato cultivation, most of the HRUs grouped by the four clusters are located in 

Region 2. Few HRUs from cluster 1 (for scenarios 5 and 6 that correspond to BMP1 and 

BMP2) and cluster 4 for scenario 8 (BMP4) is located in Region 1. 

3) for the tree tomato, all the HRUs grouped in the four clusters are located in Region 2. 
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Figure 6.8. Clusters spatial distribution among the BMP scenarios per each land-cover 

type. a) kikuyu grass (PASM), b) potato (POTA), and tree tomato (TOMA). 
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One HRU was randomly selected from each of the identified clusters to plot the Pareto-

optimal front solutions obtained in each HRU, in this way the differences between the 

Pareto-optimal front solutions of each cluster can be visually analyzed. The results 

presented show a higher spatial variability of the objective sites-HRUs (ST-CSAs) 

optimization results among the different BMP scenarios per each studied crop, which is 

explained by the Pareto-optimal front solutions of the 100th generation among the BMPs 

scenarios per each land-cover (Fig. 6.10, 6.11, and 6.12). From de visual interpretation, 

the convergence and similar diversity in the Pareto-optimal front varies for each of the 

four clusters of each scenario evaluated and land-cover type, except for the BMP3 scenario 

applied to kikuyu grass (X3-the ratio of field area to filter strip area) (Fig. 6.10). As we 

mentioned, the BMP3 scenario did not change or moved towards the origin for the 

objective function Differences of the Maximum Crop Yield (DMCY). Furthermore, the 

convergence and similar diversity in the Pareto-optimal front solutions for the land-cover 

tree tomato do not change much between clusters. A significant change is only seen for 

the BMP1 scenario where cluster 2 shows a different Pareto-optimal front solution from 

the others (Fig. 6.12). 

However, the range of values in which the Pareto-optimal front is located does vary 

greatly between the clusters for each scenario and type of land-cover evaluated. In 

common for the kikuyu grass land-cover, cluster 3 groups the sites-HRUs that have the 

highest range of values for the objective function NR, with the exception of the BMP2 

scenario in which it is cluster 1 that contains only 5% of the total HRUs of this crop. And, 

cluster 4 presents the largest range of values for the objective function DMCY which 

corresponds to only 7% of the total HRUs of this crop (Fig. 6.10). For the potato crop, it 

is cluster 2 that groups the sites-HRUs that have the highest range of values for the 

objective function (NR), except for the BMP2 scenario in which it is cluster 1. And for 

the function objective DMCY cluster 1 groups the sites-HRUs that have the highest range 

of values, except for the BMP2 scenario, which corresponds to cluster 3 with 9% of the 

total HRUs for this land-cover (Fig. 6.11). Finally, for the tree tomato land-cover cluster 

1 groups the sites-HRUs (approximately 11% of the total HRUs for this crop) that has the 

highest value range for NR and cluster 3 for the objective function DMCY with the 39 % 

of the total HRUs that make up this culture (Fig. 6.12). 

These results show the high spatial variability of the optimization results for the 

evaluated objective functions. Therefore, our approach suggested that it is effective to 

determine a Pareto-optimal front for the clustered sites-HRUs than to define a single 

Pareto-optimal front from the average of the each HRU optimization results. Because the 

optimization results obtained for the average values of the sites-HRUs will not always be 

the best or ideal solution for certain areas (HRUs). 
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Figure 6.9. Comparing the Pareto-optimal front solutions (100th generations) of one 

HRU example from each cluster among the BMPs scenarios applied to the kikuyu grass 

(PASM) land-cover. a) BMP1, b) BMP2, c) BMP3, and d) BMP5. DMCY: differences 

from the maximum crop yield, NR: differences from the nitrate reduction. 
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Figure 6.10. Comparing the Pareto-optimal front solutions (100th generations) of one 

HRU example from each cluster among the BMPs scenarios applied to the potato 

(POTA) land-cover. a) BMP1, b) BMP2, and c) BMP4. DMCY: differences from the 

maximum crop yield, NR: differences from the nitrate reduction. 
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Figure 6.11. Comparing the Pareto-optimal front solutions (100th generations) of one 

HRU example from each cluster among the BMPs scenarios applied to the tree tomato 

(TOMA) land-cover. a) BMP1, b) BMP2, and c) BMP4. DMCY: differences from the 

maximum crop yield, NR: differences from the nitrate reduction. 

 

6.4.4 Comparison between the Pareto-optimal front solutions from 

average vs. single sites-HRUs values 

The comparison between the ranges values results from the optimized solution space for 

the two objective functions evaluated (NR and DMCY) obtained of the average of the 

Paretos-optimal front solution of each HRUs (called from now on as Av-HRUs) and the 

individual objective sites-HRUs grouped by clusters (called from now on as Sin-HRUs) 

for each scenario are presented per each land-cover type below (Fig. 6.13, 6.14 and 6.15 

and Table 6.5, 6.6 and 6.7).  

In common, for the four scenarios applied to kikuyu grass, the Av-HRUs range values 

obtained for the objective function NR optimized corresponds only to 7% percent of the 

454 total HRUs optimized, which corresponds to the HRUs grouped in the Cluster 4. 

Therefore, the NR optimized range values obtained for Av-HRUs does not include the 

highest values obtained for specific HRUs (Cluster 3 and Cluster 1 only for the BMP2 

scenario), which are characterized by having the lowest number of grouped HRUs. It also 

does not cover the results obtained from the HRUs with the lowest NR optimized values 

grouped in Cluster 2 (65% of the 454 total HRUs) (Fig. 6.13, Table 6.5). For example, 

the Av-HRUs range values obtained in the BMP1 is 0.05 to 0.07 compared with the 0.02 
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to 0.03 range values obtained for the HRUs grouped in Cluster 2 (Table 6.5). Therefore, 

the results indicated that using only the range optimized values obtained from the Av-

HRUs (similar to the HRUs grouped in Cluster 4) to select the optimal BMP (scenario) 

to minimized the nitrate rates would not be effective for most HRUs of this crop (Cluster 

2). 

On the other hand, the comparison results between Av-HRUs and Sin-HRUs for the 

objective function DMCY show that the optimized range values obtained for Av-HRUs 

is representative for almost all the HRUs of this crop. Except for the HRUs grouped in 

cluster 4, which correspond on average to 7% of the total HRUs of the total HRUs, for 

the four scenarios evaluated (Figure 6.13). The HRUs grouped in Cluster 4 are 

characterized by being located in Region 1, where there is a lower average temperature 

in the watershed area (Fig. 6.9). These results indicate that the optimization of the 

objective function DMCY does not present a high spatial variability compared to the 

objective function NR. And therefore, to select the Pareto-optimal front and therefore the 

optimal BMP, the results obtained from Av-HRUs could be used. 

For the potato land-cover, the optimized NR range values comparison results between 

the Av-HRUs and the Sin-HRUs showed a similarity with the results obtained and 

previously explained for the kikuyu grass land-cover (Fig.6.14). Certainly, the range 

values obtained in both, Av-HRUs and Sin_HRUs, for each of the simulated scenarios 

are different and correspond only to the potato land-cover (Table 6.5). On the other hand, 

the optimized DMCY range values comparison results obtained from the Av-HRUs and 

Sin-HRUs do not vary significantly for the scenario 7 (BMP4). Although, for the scenarios 

5 and 6 (BMP1 and BMP2, respectively) the Av-HRUs range results do not include the 

resulting values of the HRUs grouped in Cluster 4 and Cluster 3, respectively. For 

example, the optimized DMCY range results for the cluster 4 in the scenario 5 has higher 

range values than the Av-HRUs results obtained. To emphasize, The HRUs conformed 

in Cluster 4 corresponds to 2% of the total HRUs of the potato crop. 

For the tree tomato crop, the optimized NR range values comparison results between 

the Av-HRUs and the Sin-HRUs shows that Av-HRUs results generally represent the 

majority of the HRUs of this land-cover, except for the HRUs grouped in cluster 1 (11% 

of the total HRUs of this land-cover). The range of values obtained for Cluster 1 is higher 

than that obtained for Av-HRUs in all the four evaluated scenarios (Fig.6.15, Table 6.6). 

And the results obtained for the the optimized DMCY range values comparison results 

between the Av-HRUs and the Sin-HRUs presents that the Av-HRUs range values 

represent the total HRUs of this land-cover more precise (Fig.6.15). In general, the 

optimazed NR range values comparison results between the Av-HRUs and the Sin-HRUs 

present less difference between them compared to the results obtained from the two land-

covers already described (Fig.6.15). This result can be explained by the fact that the tree 

tomato land-cover is conformed of fewer amounts of HRUs (97), grouped in specific 

areas of the watershed, compared to kikuyu grass land-cover that has a higher amount of 

HRUs (454) and are distributed throughout the watershed.  
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Notably, it can be seen in common for the three land-covers that the NR and DMCY 

range values obtained per cluster show a pattern in all the evaluated scenarios. This 

pattern may indicate that the optimization range values results do not depend only on the 

type of BMP applied. This depends on spatial and temporal variables associated with the 

hydrological dynamics in each one of the HRUs in the watershed. For example, the HRUs 

grouped in Cluster 2 obtained the minimum NR range values in all the BMP scenarios 

applied. Those HRUs are located in the watershed in Region 2 that is characterized by 

lower annual average rainfall (Figure 6.10) and higher average slopes. Therefore, our 

approach suggests that for the selection of BMPs at the watershed level, it is necessary to 

perform the respective optimization and analysis to select the Pareto-optimal front at 

HRU level and not only work with the average values of the HRU results. We suggest 

grouping HRUs with similar optimization results in clusters to define the optimal-pareto 

front for each of the defined groups
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Scenario BMP 
 Average Cluster 1 Cluster 2 Cluster 3 Cluster 4 

 NR DMCY NR DMCY NR DMCY NR DMCY NR DMCY 

1 
BMP1 

Min 

Max 

0.05 

0.07 

2.2 

5.5 

0.09 

0.14 

1.9 

4.6 

0.02 

0.03 

1.3 

4.6 

0.23 

0.35 

2.9 

7.1 

0.07 

0.09 

7.4 

15.4 

 Total HRUs 454 99 301 17 37 

2 
BMP2 

Min 

Max 

0.07 

0.08 

1.79 

2.75 

0.33 

0.34 

1.34 

2.18 

0.03 

0.03 

1.37 

2.36 

0.13 

0.14 

1.21 

1.89 

0.11 

0.12 

8.54 

10.44 

 Total HRUs 454 21 303 102 28 

3 
BMP3 

Min 

Max 

0.05 

0.06 
2.41 

0.07 

0.08 
3.17 

0.02 

0.02 
1.36 

0.23 

0.24 
2.7 

0.06 

0.06 
11.3 

 Total HRUs 454 111 284 36 23 

4 
BMP5 

Min 

Max 

0.06 

0.07 

2.4 

3.7 

0.11 

0.12 

1.9 

2.1 

0.03 1.54 

2.76 

0.27 

0.28 

2.57 

5.03 

0.08 

0.09 

7.54 

12.4 

 Total HRUs 454 97 288 27 42 

Figure 6.12 and Table 6.5. Comparison of the average Pareto-front of each HRU (Av-HRUs) and the individual objective sites-HRUs (Sin-

HRUs) ranges values optimized results grouped by clusters for the two objective functions evaluated a) NR and b) DMCY among each 

scenario applied to kikuyu grass land cover. 
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Scenario BMP 
 Average Cluster 1 Cluster 2 Cluster 3 Cluster 4 

 NR DMCY NR DMCY NR DMCY NR DMCY NR DMCY 

5 
BMP1 

Min 

Max 

0.75 

0.89 

1.92 

4.74 

0.74 

0.88 

1.95 

5.06 

0.25 

0.29 

1.77 

4.10 

1.60 

1.88 

2.06 

5.06 

0.81 

0.82 

1.87 

1.87 

 Total HRUs 167 82 52 32 1 

6 
BMP2 

Min 

Max 

12.6 

13.1 

26.6 

27.2 

19.5 

20.4 

26.8 

27.3 

12.0 

12.3 

25.6 

26.2 

14.0 

14.3 

38.5 

38.7 

4.5 

4.8 

23.5 

24.0 

 Total HRUs 167 48 66  15  38 

7 
BMP4 

Min 

Max 

0.87 

2.62 

1.88 

1.99 

0.64 

2.06 

2.88 

3.21 

1.91 

4.83 

2.07 

2.22 

0.90 

2.88 

1.72 

1.84 

0.28 

1.10 

1.54 

1.61 

 Total HRUs 167 21 27 75 44 

 

Figure 6.13 and Table 6.6. Comparison of the average Pareto-front of each HRU (Av-HRUs) and the individual objective sites-HRUs (Sin-

HRUs) ranges values optimized results grouped by clusters for the two objective functions evaluated a) NR and b) DMCY among each 

scenario applied to potato land cover. 
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Scenario BMP 
 Average Cluster 1 Cluster 2 Cluster 3 Cluster 4 

 NR DMCY NR DMCY NR DMCY NR DMCY NR DMCY 

8 
BMP1 

Min 

Max 

0.42 

0.42 

6.53 

9.94 

1.30 

1.31 

6.63 

10.04 

0.33 

0.33 

6.08 

9.19 

0.46 

0.47 

7.31 

11.21 

0.02 

0.02 

5.22 

7.84 

 Total HRUs 97 9 24 45 19 

9 
BMP2 

Min 

Max 

0.42 

0.56 

6.53 

6.54 

1.10 

1.48 

6.98 

6.98 

0.36 

0.51 

6.05 

6.06 

0.40 

0.51 

7.32 

7.33 

0.01 

0.01 

5.25 

5.26 

 Total HRUs 97 15 25 38 18 

10 
BMP4 

Min 

Max 

0.42 

0.63 

6.53 

6.54 

1.64 

2.30 

6.47 

6.48 

0.12 

0.21 

5.57 

5.58 

0.32 

0.50 

7.31 

7.32 

0.78 

1.13 

6.87 

6.88 

 Total HRUs 97 4 35 33 25 

  

Figure 6.14 and Table 6.7. Comparison of the average Pareto-front of each HRU (Av-HRUs) and the individual objective sites-HRUs (Sin-

HRUs) ranges values optimized results grouped by clusters for the two objective functions evaluated a) NR and b) DMCY among each 

scenario applied to potato land cover. 
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6.5 CONCLUSIONS 

Understanding and emphasizing the importance of the spatio-temporal allocation of 

agricultural BMPs has become increasingly important in recent years  (Zhu et al., 2019; 

Geng and Sharpley, 2019; Qin et al., 2018; Yang and Best, 2015; Lescot et al., 2013). 

This is particularly relevant in tropical Andes mountain agricultural ecosystems, where 

shifting cultivation, intensive traditional agriculture, and intense precipitation events are 

predominant. Overall, our research considered all different spatial and temporal allocation 

components of optimization agricultural BMPs into the optimization framework 

developed: 1) Ag-BMP type selection, 2) design and sizing of Ag-BMP individual 

practices, and 3) location determination. 

1. Our results highlight the importance of decision-makers' and stakeholders' 

knowledge to select the BMP type considering willingness from the socio-economic 

perspective. Mainly, farmers want to improve water quality without reducing 

agricultural productivity. For example, filter strips is one of the most widely used 

BMPs used to collect and remove pollutant nutrients from surface run-off (Ritter 

and Shirmohammadi, 2001). However, this BMP was not accepted by farmers who 

have less than one hectare cultivated (potato and tree tomato crops). On the contrary, 

farmers who have the largest area (kikuyu grass for dairy farming) see the 

implementation of this BMP to be feasible. 

2. During the spatial optimization, the NSGA-II model for the Riogrande II watershed 

was executed to evaluate 10 BMP scenarios for the proposed approach (HRUs 

located in the ST-CSAs identified). And, the total runtimes was 402 hours (17 days) 

per each scenario evaluated. Authors like (Qin et al., 2018) found that the 

computational efficiency can be significantly improving by reducing the simulation 

time due to the reduction of optimal solutions' search space, instead of using a 

random approach. 

3. The comparison between the average (aggregate) vs. single (distributed) 

optimization results showed that different analysis results applied with among 

different BMPs scenarios produced significant differences in Pareto-optimal front 

solutions, optimizing efficiency, and spatial distribution of BMP scenarios. 

Generally, the more distributed level analysis was considered, the better the high 

spatial variability of the optimization results for the evaluated objective functions 

are shown. Therefore, our approach suggests that the Pareto-front solution must be 

defined in a distributed way, which means having a Pareto-front solution for each 

of the different areas (HRUs grouped n clusters) with similar spatial characteristics 

for the watershed BMP scenarios optimization model. Overall, using the HRUs-

clusters position units as Ag-BMP optimization result analysis with the ST-CSAs 

strategy, the best comprehensive results of Ag-BMP scenarios optimization were 

obtained. 
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Also, this study provides a key methodological modeling framework to support the 

sustainable agriculture plans in Colombia, which aims to propose BMPs to cope with 

unexpected changes identified in recent years and benefit the farmers. Besides, future 

research should also focus on exploring the incorporation of BMPs implementation costs 

as an objective function in the optimization model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 
7 CONCLUSIONS AND 

RECOMMENDATIONS 

 

7.1 SUMMARY 

The previous chapter offered insights into the spatio-temporal multi-objective 

optimization model framework to select and allocate Ag-BMPs for multiple crops and the 

associated modelling methodology. This concluding chapter summarizes the outcomes of 

the research questions presented in Chapter 1. Following these research outcomes, the 

chapter present recommendations on the research process that leads to this dissertation. 

These are personal reflections of the researcher regarding topics such as model 

development, how the proposed framework can be indeed incorporated into management 

practices, and decision makers in sustainable agriculture. And the chapter ends by 

presenting some limitations to keep in mind for future developments. 

7.2 RESEARCH OUTCOMES 

The dissertation started by posing four research questions. Below, we discuss how the 

research outputs address the questions. The research outcomes are formulated with 

respect to the objectives posed. 

The first question was: What are the differences between implementing an Ag-BMP 

for a crop at farm level versus basin level? And what are the main factors causing these 

differences? Thus, we proposed our first research objective. 

Analyze and determine the impacts on nutrient loss and crop yield from a single 

agricultural BMP (Ag-BMP) applied to a single crop at field level and watershed level 

(Objective 1). 
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A hydrological model (SWAT) was used to assess the impacts of changing IT for CT on 

nitrogen (N) and phosphorus (P) losses in surface water runoff from the potato crop in 

the Fuquene watershed. This was done at the field and watershed levels. A two-year study 

quantified the changes in surface water runoff pollutants for three potato crop cycles 

under traditional IT practice and CT practice—which included reducing tillage, green 

manure, and permanent soil cover—at twelve runoff plots installed in the Fuquene 

watershed (Chapter 4). 

The Conservation Tillage BMP’s (CT-BMP) objective was the reduction of soil and 

nutrient loss in runoff. However, CT simulation results at watershed level suggest that 

total N and P increased (2% and 18% respectively). Also, the concentration of nitrate 

(NO3-N) in surface runoff increased by 17% compared to IT. Results at the watershed 

level showed patterns different from those obtained at field level. These results revealed 

that CT in some areas (farm level) produces a reduction in nitrate (NO3
--N) losses 

reduction. In fact, the greatest limitation identified in this study stems from the process 

of the CT extrapolation practice for all potato crop areas within the watershed, because 

the calibrated model was made for a minimal area (field level), and initial and calibrated 

parameter values are the same for other soil types and average slopes.  

The result of the Fuquene watershed modelling show the importance of conducting 

analyses at farm level (HRUs) and not at watershed level if a lower margin of error is 

desired when predicting the minimization of impact on water quality. We also concluded 

that it is necessary to contemplate a detailed spatio-temporal nutrient loss analysis and 

apply optimization techniques to identify and allocate Ag-BMP options. This approach 

would help mitigate the uncertainty in assessing the implementation of BMPs at the 

watershed level. Moreover, by using this type of model and methods, it could be possible 

to include several crops in the same watershed and define suitable parameters for the 

different areas in the watershed. 

Once we answered the question on the Ag-BMP implementation impact at field level 

versus watershed levels, we moved on to the second question: How can we determine the 

spatial and temporal dynamics of nutrient loss in runoff? The second objective has been 

formulated as follows: 

 

Analyze variations of spatio-temporal impacts on nutrient loss and crop yield from 

multiple agricultural management practices (Ag-MP) to determine spatio-temporal 

critical source areas (ST-CSAs) in the watershed (Objective 2). 

In Chapter 5, the methodology to develop the new spatio-temporal critical source areas 

(ST-CSAs) index allows visual representation of the recurrence and behavior in space 

and time of CSAs. The results show ST-CSAs characteristics and patterns determination 

is relevant to define which and where Ag-BMPs should be implemented.  
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The results indicate that there is an essential difference in the aggregation of CSAs in 

time, and pollution location changes significantly using ST-CSA. As expected, the 

highest number of spatio-temporal CSAs were observed during rainy months, in the 

agricultural areas dominated by potato, tree tomato, and dairy agriculture located within 

the watershed. However, the most significant real number of ST-CSAs occurs in the 

region with the lowest rainfall in the watershed. Our analysis clearly shows a strong 

association between both precipitation seasonality and agricultural management 

schedules (crops and pastures system), and also between spatio-temporal dynamics of 

CSAs. On the other hand, the ST-CSAs correspond to an average area that is 24.07% of 

the total watershed (1,034.348 km2). However, in some years, the area reached a 

maximum value of 61.78%. The soil water content and runoff significantly influenced 

both NO3
--N and soluble P losses, which are variables directly correlated with the amount 

of NO3
--N and soluble P loss in surface runoff (kg ha-1) calculated in the model.  

Despite the model uncertainties, the results highlight the importance of identifying 

spatio-temporal CSAs to select BMPs with the highest potential of N and P loss reduction. 

Additionally, the proposed approach—which uses modeling tools to identify spatio-

temporal CSAs—provides a visual representation recommending the identification of 

priority areas to implement Ag-BMPs (areas for intervention), which is relevant 

information for decision-makers and stakeholders. And the analysis of the characteristics 

and spatial and temporal patterns of the ST-CSAs are relevant for the definition of viable 

BMPs for specific regions identified with similar patterns and nutrient losses in runoff. 

Besides, it is a clear and organized way to define successful agricultural BMPs and 

develop spatio-temporal multi-objective optimization models. 

Having identified the ST-CSAs for various crops in the watershed, the Ag-BMPs that 

would be adequate to implement in the study watershed—from all possible types—were 

determined. And they should be transferred to the model in a manner that they can be 

represented in the best possible way. Consequently, the third objective was proposed: 

 

Select and parameterize Ag-BMPs scenarios to be used in the optimization model 

framework that are feasible to implement by local farmers (Objective 3). 

In the case of Colombia, the “Best Practices for the Management and Sustainable Use of 

Colombia’s Soils” guide (Buenas Prácticas para la Gestión y Uso Sostenible de los suelos 

de Colombia in Spanish) (Organización de las Naciones Unidas para la Alimentación y 

la Agricultura (FAO) and Ministerio de Ambiente y Desarrollo Sostenible (MADS), 2018) 

recommends around 15 BMPs that can be used by farmers, according to the benefit and 

application methods, the economic viability of the products, and the social and cultural 

conditions of the area. However, the identification of priority areas to implement BMPs 

is not provided. 
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Our methodological approach for developing this objective was based on the belief 

that—to achieve levels of sustainability in the watershed in accordance with the economic 

and cultural needs of the farmers—their opinion must be considered. Therefore, the 

results of this research highlight the importance of selecting appropriate BMPs that are 

viable in the future by: 1. identifying the spatio-temporal CSAs to determine the best 

areas for intervention; and 2. using the decision-makers’ and stakeholders’ 

knowledge to select the feasible BMP type from the socio-economic perspective. 

Fieldwork and interviews with local farmers (123 farms’ representatives) were considered 

in the selection of feasible BMPs for the studied watershed. These BMPs were selected 

because they are agricultural practices that do not increase implementation costs, they can 

be implemented by farmers with the tools and financial resources they currently have, 

and they were accepted (and some were proposed) by the farmers themselves. For 

example, the filter strip is one of the most widely used BMPs to collect and remove 

pollutant nutrients from surface runoff (Ritter and Shirmohammadi, 2001). However, this 

BMP was not accepted by farmers who have less than one hectare cultivated (potato and 

tree tomato crops); on the contrary, farmers who have the largest area (kikuyu grass for 

dairy farming) view the implementation of this BMP as feasible. 

The conclusion lead to the following question: How can we incorporate the spatial 

and temporal dynamics of nutrient losses in runoff to select optimal Ag-BMPs, thereby 

allowing for integration of all data and knowledge acquired? Model-based optimization 

framework would be an answer; therefore, the following objective was formulated:  

 

Develop a framework and methodology for a spatio-temporal multi-objective 

optimization model to select and allocate Ag-BMPs for multiple crops (Objective 4). 

For the third outcome, the modeling framework and methodology were developed. The 

complexity of the problem was taken into account and the number of crops and Ag-BMPs 

were increased. The application of the modelling framework showed the importance of 

defining the optimization search space using ST-CSAs instead of a random approach. It 

was especially noticeable when it is required to perform the optimization model for 

several Ag-BMPs and multiple crops at farm level. This approach allows improved 

computational efficiency by reducing the simulation time due to the reduction of optimal 

solutions’ search space (ST-CSAs).  

The methodological steps to analyze the optimization results spatially showed that 

with inclusion of more spatial data the spatial variability of the optimization results is 

higher. Therefore, our approach recommends that the optimization procedure should take 

this into account, and this means having a Pareto-front solution for each of the different 

areas with similar spatial variability of the optimization results for each of the evaluated 

scenarios.  
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This research provides a key methodological modeling framework to support the 

sustainable agriculture plans in Colombia, which aims to propose Ag-BMPs to cope with 

unexpected changes identified in recent years and benefit farmers. It would be 

recommended to consider incorporating it into the Colombian agricultural management 

practices at various levels.  

It can be recommended to explore incorporation of BMPs implementation costs as an 

objective function in the optimization model. Also, it would be beneficial to develop an 

assistance tool (e.g., mobile application) for local communities (farmers), which can be 

used to adapt the agricultural practices to cope with unexpected changes identified in 

recent years. 

7.3 RECOMENDATIONS 

Research communities 

During the last decades, the connection between research communities developing 

optimization approaches and land use communities has been increasing with the 

development of algorithms that tackle the increase of complexity in agriculture 

optimization problems. The complexity is caused by the type of agricultural management 

practices, weather variability, and decision-makers' points of view and their competing 

criteria. However, the more advanced algorithms are not developed specifically for 

optimization problems in agriculture. Therefore, there are barriers to their wider adoption, 

and the development of an algorithmic framework that provides a set of guidelines to 

develop optimization algorithms for agriculture problems would be beneficial. 

To help to move in this direction, the present thesis highlights the importance of 

obtaining knowledge about the following: 1) agricultural practices that farmers currently 

or traditionally use in their crops, 2) knowing the spatial and temporal dynamics of the 

objectives of interest (e.g., loss of nutrients in runoff, crop yields, costs), 3) geographical 

resolution, and 3) know the possibilities and interests of farmers to accept and adopt 

agricultural BMP (Ag-BMPs) alternatives. This knowledge allows for adequate definition 

of the optimization problem based on the structure of the issue to be resolved, and 

adequately constraining its search space. To achieve that, a closer collaboration between 

modelers, land use researchers, stakeholders, and farmers are needed. This will allow the 

development/improvement of agriculture optimization algorithms that consider and 

include the complexity of the selection and allocation of agricultural best management 

practices. Instead of using a metaheuristic because it is historically and widely used by a 

research area and its popularity outside the modelling and optimization research 

community, the choice should be determined by the characteristics of the problems to be 

solved.   
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How to handle a large number of decision variables and dynamics? 

One of the largest and most important issues to face in agricultural optimization problems 

involving selection and allocation of Ag-BMPs on a large scale – with more and more 

emphasis on the local level – is the large number of decision variables involved. The 

explosion of the number of decision variables depends on the number of crops, the 

geographic scale, simulation period, units where allocation would take place, and the 

spatio-temporal and dynamic aspects; and it seems unavoidable. The impact of such large 

numbers of variables on computation time is severe, and adequate computational facilities 

to handle a large number of decision variables and dynamics may not be easily found. For 

example, parallel computing techniques to speed up the evaluation of solutions involving 

population-based metaheuristics (evolutionary algorithms) is a necessity. However, when 

temporal and dynamic aspects, local scale, various crops, several Ag-BMPs, as well the 

optimization goals are contemplated in the optimization problem, computational time 

demand may still be prohibitively high, even using parallel evolutionary algorithms (Porta 

et al. 2013; Liu et al. 2013b). 

In this dissertation, in order to reduce computing time, the initial search space for the 

optimization problem (total area of the hydrographic watershed studied) was reduced to 

the spatio-temporal critical sources area (ST-CSAs), which corresponds to the spatial 

location where the highest pollutant loads within the watershed are present. For this new 

search space the optimization problem was divided into three optimization sub-problems 

for each type of land-cover, which were solved in parallel. The total runtimes were 402 

hours (17 days) per each of the 10 scenario evaluated, and the computational time was 

considerably reduced by using 5 processors. (Qin et al., 2018) found that the 

computational efficiency can be significantly improved by reducing the simulation time 

due to the reduction of optimal solutions' search space. Formulation of such constriants 

is only possible thorough a close collaboration between researchers using land 

use/agricultural simulation models and the experts in optimization. 

How this framework can be incorporated into agricultural management practice? 

The goal of agricultural BMPs (Ag-BMPs) optimization is to support decisionmakers and 

including them in the whole allocation process is crucial. The generated sets of Pareto-

optimal solutions represented by spatial configurations and/or Ag-BMPs allocations are 

to be further analysed by decision makers for selecting the solutions for their actual 

implementation. Indeed, stakeholders and decisionmakers, who sometimes have 

competing interests, require tools to help them find trade-offs between their points of 

views and interests. In the context of Ag-BMPs allocation, the multi-criteria decision-

making methods have complemented the optimization process, due to the fact that many 

competing actors (farmers, governmental institutions, environmental agencies, and 

economists) are involved, and optimization methods need to consider their priorities and 

goals. 
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In relation to that, using, for example, a multi-criteria analysis technique following 

the approach proposed in the Collaborative Risk Informed Decision Analysis (CRIDA) 

could be appropriate. Whereby, stakeholders and decision-makers could select one or 

more BMPs solutions from all the possible options generated by the multi-objective 

optimization algorithm (Pareto frontier). These could then be considered as new 

approaches in local watershed management strategies for a specific case study. Likewise, 

the development and use of a visual assistance tool could be used to adapt agricultural 

practices to cope with unexpected changes that have emerged in recent years. For example, 

conversations with the Colombian government are taking place regarding the development of 

a mobile application as an important and needed assistance tool for local communities 

(farmers) to analyze the Ag-BMP optimized solutions obtained in the case study of this 

research. 

7.4 LIMITATIONS AND FUTURE DIRECTIONS  

There are multiple limitations of the spatio-temporal Ag-BMP optimization framework 

proposed, which could be addressed when future developments are working on those and 

released to the community. 

As was mentioned before, one of the biggest and most important issues to face in 

agricultural optimization problems to select and allocate BMPs in a waterhed scale is the 

large number of decision variables involved, specilly when more and more emphasis on 

the local level is requiered. One of the main limitations is a challenge to represent in 

detail the current agricultural management practices used by farmers, including the 

associated spatial and temporal variability. This is especially important for the 

agricultural dynamics in the tropical Andes (case study of this dissertation) with a variety 

of crops and livestock activities, which are in many cases combined resulting in mixed 

crop-livestock systems. In addition, it is possible to find short-cycle crop rotations. All 

this, associated also with rain seasonality, results in high variation in water pollution and 

crop yields within a single year. 

The approach proposed in this research requires the development of a hydrology 

model that allows estimating nitrates in runoff and crop productivity at the watershed 

level, considering the current agricultural practices carried out by farmers. Fieldwork was 

conducted to collect key information directly from farmers; due to budget limitations a 

representative sample of the farmers was visited, but not all of them, and some 

assumptions were made in order to build the current management practices database. 

Therefore, since farmers do not use exactly the same agricultural management schedules, 

future research should explore the possibility of incorporating the dynamics of: a) 

planting date in the agricultural management schedule of each farmer studied, b) 

incorporate transitory crops which occur mainly in pastures, c) fertilization application 

dates and rates used by each farmer, and d) technology for applying the fertilizer (horses, 

ditches, and spray by sprinklers) within the watershed. 
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Another constraint of the current Ag-BMP optimization is that the evaluation of a 

practice’s cost-effectiveness, considering that the economic effects of the Ag-BMPs 

can change the probability of adoption for an optimized Ag-BMPs alternative. Therefore, 

implementation cost, land tenure type (owner or rented), and market prices are variables 

to be considered. However, in some cases, such as in the present investigation, this 

information could not be collected. The farmers often are not eager to provide the 

economic information for security reasons. In real life, economic variables such as 

implementation cost and land tenure change per farmer almost every year, which 

generates more complexity for the agricultural optimization problem of selecting and 

allocating BMPs in a watershed. This dissertation proposes that spatially varying 

economic and sociological data need to be collected and incorporated into the design of 

Ag-BMPs alternatives. Further investigation is needed to model motivation of adoption 

by integrating real stakeholder agents into the optimization process. 

In addition, changes in runoff, crop yields, as well as the economic consequences, are 

a few of the potential effects of climatic change on agriculture. Therefore, the 

effectiveness of Ag-BMPs could be beneficial in some areas while other areas may suffer 

under climate change conditions, indicating the importance of allocating Ag-BMP in 

specific areas within the watershed under different climate change scenarios. Several 

studies have focused on understanding the influence of climate change on Ag-BMP 

performance, and it would be useful to concentrate future research on incorporating 

climate change-related factors into the proposed optimization framework. 

 



 

 

8 APPENDIX A 

A.1 SWAT CROP INPUT PARAMETERS DEFINED IN THE LAND COVER 

DATABASE 

 

 

 

CPNM RYEG AVOC PINA FRST PASM CANT FESC PAST POTA MESQ TOMA WATR RYEE

CROPNAME
Annual 

Ryegrass
Avocado

Conifer 

Planting

Forest-

Mixed

Managed 

grasses

Transitional 

crops
Páramo Pasture Potato Stubble

Tree 

Tomato

Water 

bodies

Weeded 

grasses

BIO_E 30 20 25 25 55 30 30 35 45 20 55 0 30

HVSTI 0.9 0.1 0.76 0.76 1.25 0.5 0.9 0.9 1.25 0.05 1.25 0 0.9

BLAI 3 3 6.5 3.14 4 3 4 4 4 2.45 4 0 3

FRGRW1 0.2 0.1 0.15 0.05 0.2 0.15 0.15 0.05 0.15 0.05 0.15 0 0.2

LAIMX1 0.32 0.15 0.7 0.05 0.32 0.05 0.01 0.05 0.01 0.05 0.05 0 0.32

FRGRW2 0.45 0.5 0.25 0.4 0.45 0.5 0.5 0.49 0.5 0.4 0.5 0 0.45

LAIMX2 0.95 0.75 0.99 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0 0.95

DLAI 0.5 0.99 0.99 0.99 0.5 0.6 0.8 0.99 0.6 0.99 0.95 0 0.5

CHTMX 6 15 16.1 20 10 0.5 1.5 0.5 0.6 20 5 0 10

RDMX 1.3 1.5 3.5 3.5 1.3 1.2 2 2 0.6 3.5 2 0 1.3

T_OPT 18 15 15 15 14 18 15 18 14 18 18 0 18

T_BASE 2 7 2 2 1 2 2 7 1 7 4 0 2

CNYLD 0.022 0.0019 0.0015 0.0015 0.022 0.0138 0.0234 0.0234 0.0246 0.0015 0.0235 0 0.022

CPYLD 0.0028 0.0004 0.0003 0.0003 0.0028 0.0017 0.0033 0.0033 0.0023 0.0003 0.0048 0 0.0028

BN1 0.066 0.006 0.006 0.006 0.066 0.0663 0.056 0.06 0.055 0.02 0.0663 0 0.066

BN2 0.0254 0.002 0.002 0.002 0.0254 0.0255 0.021 0.0231 0.02 0.01 0.03 0 0.0254

BN3 0.0147 0.0015 0.0015 0.0015 0.0147 0.0148 0.012 0.0134 0.012 0.008 0.025 0 0.0147

BP1 0.0105 0.0007 0.0007 0.0007 0.0105 0.0053 0.0099 0.0084 0.006 0.0007 0.0053 0 0.0105

BP2 0.004 0.0004 0.0004 0.0004 0.004 0.002 0.0022 0.0032 0.0025 0.0004 0.0035 0 0.004

BP3 0.0024 0.0003 0.0003 0.0003 0.0024 0.0012 0.0019 0.0019 0.0019 0.0003 0.0025 0 0.0024

WSYF 0.9 0.05 0.6 0.01 0.9 0.25 0.9 0.9 0.95 0.01 0.15 0 0.9

USLE_C 0.03 0.001 0.19 0.2 0.15 0.03 0.003 0.5 0.2 0.25 0.03 0 0.15

GSI 0.005 0.007 0.002 0.002 0.005 0.006 0.005 0.005 0.005 0.004 0.008 0 0.005

VPDFR 4 4 4 4 4 4 4 4 4 4 4 0 4

FRGMAX 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0 0.75

WAVP 6 3 8 8 6 3 8 10 14.8 8 8 0 6

CO2HI 660 660 660 660 660 660 660 660 660 660 660 0 660

BIOEHI 39 20 16 16 39 39 39 36 30 18 39 0 39

RSDCO_PL 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0.05

OV_N 0.14 0.1 0.1 0.1 0.15 0.1 0.1 0.14 0.1 0.1 0.14 0.01 0.15

CN2A 25 25 25 25 25 66 31 25 67 30 50 92 25

CN2B 50 48 45 40 48 77 59 55 77 46 60 92 48

CN2C 74 68 70 65 72 83 72 70 83 63 73 92 72

CN2D 81 74 77 72 79 87 79 77 87 66 87 92 79

FERTFIELD 0 0 0 0 0 1 0 0 1 0 1 0 0

ALAI_MIN 0 0.75 0.75 0.75 0 0 0 0 0 0.75 0 0 0

BIO_LEAF 0 0.3 0.3 0.3 0 0 0 0 0 0.3 0 0 0

MAT_YRS 0 10 50 50 0 0 0 0 0 10 1 0 0

BMX_TREES 0 500 1000 1000 0 0 0 0 0 50 500 0 0

EXT_COEF 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.61 0.65 0 0.65

BM_DIEOFF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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A.2 PHYSICAL CHARACTERISTICS OF THE SOIL TYPES PRESENT IN THE 

RIOGRANDE II WATERSHED. 

 

 

SNAM PERFIL
SOL_Z 

(mm)

SOL_BD 

(g/cm3)

SOL_AWC 

(mm/mm)

SOL_K 

(mm/hr)

SOL_CBN 

(%)

CLAY 

(%)

SILT 

(%)

SAND 

(%)
USLE_K

220 0.55 0.41 48.56 3.92 45 48 7 0.20

340 0.87 0.30 8.07 6.29 60 20 20 0.10

580 1.33 0.21 8.07 1.14 45 7 48 0.10

1100 1.48 0.15 8.07 0.39 5 5 90 0.08

300 0.25 0.81 66.20 13.09 5 90 5 0.34

470 0.52 0.43 35.07 9.07 5 90 5 0.34

570 0.62 0.37 35.07 5.60 5 90 5 0.34

750 1.17 0.21 35.07 2.56 60 20 20 0.10

1100 1.15 0.22 35.07 0.97 60 20 20 0.13

400 0.50 0.52 17.23 3.52 45 48 7 0.20

1100 0.75 0.31 10.32 0.01 13 26 61 0.18

300 0.51 0.51 109.60 13.53 15 68 17 0.19

610 0.42 0.52 25.68 11.40 5 90 5 0.34

930 0.89 0.32 25.68 3.35 5 90 5 0.34

1200 0.90 0.32 25.68 3.16 5 90 5 0.34

230 0.67 0.46 22.30 11.67 18 42 40 0.14

460 0.80 0.45 22.69 5.52 15 68 17 0.19

800 1.15 0.22 22.69 1.17 60 20 20 0.12

1200 1.35 0.21 22.69 0.33 45 7 48 0.11

210 0.42 0.57 51.23 11.69 15 68 17 0.19

440 0.48 0.57 7.74 6.59 60 20 20 0.10

640 1.17 0.21 7.74 2.75 60 20 20 0.10

870 1.15 0.22 7.74 0.83 60 20 20 0.13

1200 1.14 0.23 7.74 0.13 60 20 20 0.14

210 0.44 0.50 37.13 10.87 18 42 40 0.14

410 0.81 0.37 16.26 9.26 45 7 48 0.08

1000 1.17 0.24 16.26 2.08 45 48 7 0.20

250 0.23 0.86 57.46 20.25 15 68 17 0.19

570 0.54 0.59 3.69 5.93 10 25 75 0.12

670 0.96 0.25 3.69 8.77 45 48 7 0.20

200 0.38 0.54 35.30 19.55 15 68 17 0.19

300 0.83 0.44 1.33 14.45 15 68 17 0.19

800 1.15 0.22 1.33 0.91 60 20 20 0.13

1100 1.20 0.24 1.33 0.18 45 48 7 0.26

280 0.36 0.63 44.47 17.81 5 90 5 0.34

380 0.45 0.56 2.86 9.35 5 90 5 0.34

900 1.09 0.24 2.86 2.28 45 48 7 0.20

1200 1.36 0.21 2.86 0.04 45 7 48 0.11

300 0.78 0.44 117.36 2.31 5 5 90 0.06

720 0.91 0.22 22.45 2.17 5 5 90 0.06

1080 1.20 0.20 22.45 2.00 10 25 75 0.12

1800 1.31 0.15 22.45 1.06 5 5 90 0.07

140 1.15 0.22 60.35 15.57 25 16 59 0.11

200 1.13 0.22 72.04 9.59 28 26 46 0.12

350 1.24 0.20 65.05 3.47 28 32 40 0.12

E Agua 25 1.72 0.00 260.00 0.00 0 0 0 0.00

Andisol, 

Typ.Hapludands

V
Inceptisol, 

Typ.Dystrudepts

Andisol, Lithic 

Haplundand

Andisol, 

Typ.Hapludands

Cv1
Andisol, 

And.Udifluvents

L
Andisol, 

Typ.Hapludands

P

Es

Ab

Andisol,

Typ.Melanudadns

F
Andisol, Andic 

Humudepts 

Cor
Andisol, 

Typ.Placudands 

Lm

Andisol, Andic 

Kanhaplohumults 

Lome
Andisol, Ultic 

Hapludands 

Vco
Andisol, 

And.Dystrudepts

mo
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A.3 POTATO, KIKUYU GRASS, AND TREE TOMATO OPERATION SCHEDULES 

Crop Operation Date  Crop Operation Date  Crop Operation Date 

  Tillage 5-Mar   Tillage  5-Jan 
 

Tillage 15-Apr 

Potato Plant 15-Mar   Fertilizer  7-Jan  Fertilizer 15-Apr 

 Fertilizer 5-Apr   Fertilizer  8-Jan Tree 

tomato 

Plant  15-May 

 Tillage 5-Apr Grass 

(kikuyu) 

Plant 10-Jan Fertilizer 15-Jun 

 Fertilizer 25-Apr Grazing  25-Feb  Fertilizer 15-Jun 

 Tillage 25-Apr   Fertilizer  4-Mar  Fertilizer 15-Aug 

 Harvest /Kill 15-Aug   Fertilizer  5-Mar  Harvest 15-Oct 

 Tillage 5-Sep   Grazing  5-Apr  Fertilizer 15-Nov 

Potato Plant 15-Sep   Fertilizer 13-Apr 
 

Fertilizer 15-Nov 

 Fertilizer 5-Oct   Fertilizer 14-Apr 
 

Fertilizer 15-Feb 

 
Tillage 5-Oct   Grazing 15-May 

 
Harvest 15-Apr 

 
Fertilizer 25-Oct   Fertilizer 23-May 

 
Fertilizer 15-May 

 Tillage 25-Oct   Fertilizer 24-May 
 

Fertilizer 15-May 

 Harvest /Kill 15-Feb   Fertilizer 3-Jun 
 

Fertilizer 15-Jul 

Grass 

(kikuyu) 

Plant 15-Apr   Fertilizer 4-Jun 
 

Harvest 15-Aug 

Grazing 15-May   Grazing 25-Jun 
 

Fertilizer 15-Sep 

 Fertilizer 23-May   Fertilizer 3-Jul 
 

Fertilizer 15-Sep 

 Fertilizer 24-May   Fertilizer 4-Jul 
 

Fertilizer 15-Nov 

 Fertilizer 3-Jun   Grazing 5-Aug 
 

Harvest 15-Feb 

 Fertilizer 4-Jun   Fertilizer 13-Aug 
 

Fertilizer 15-Mar 

 Grazing 25-Jun   Fertilizer 14-Aug 
 

Fertilizer 15-Mar 

 Fertilizer 3-Jul   Grazing 15-Sep 
 

Fertilizer 15-May 

 Fertilizer 4-Jul   Fertilizer 23-Sep 
 

Harvest 15-Jul 

 Grazing 5-Aug   Fertilizer 24-Sep 
 

Fertilizer 15-Aug 

 Fertilizer 13-Aug   Grazing 25-Oct 
 

Fertilizer 15-Aug 

 Fertilizer 14-Aug   Fertilizer 27-Oct 
 

Fertilizer 15-Oct 

 Grazing 15-Sep   Fertilizer 28-Oct 
 

Harvest 15-Dec 

 Fertilizer 23-Sep   Grazing 5-Dec 
 

Fertilizer 15-Jan 

 Fertilizer 24-Sep   Fertilizer 13-Dec 
 

Fertilizer 15-Jan 

 Grazing 25-Oct   Fertilizer 14-Dec 
 

Fertilizer 15-Mar 

 Fertilizer 27-Oct   
 

  
 

Harvest 15-May 

 Fertilizer 28-Oct   
 

  
 

Fertilizer 15-Jun 

 Grazing 5-Dec   
 

  
 

Fertilizer 15-Jun 

 Fertilizer 13-Dec       Fertilizer 15-Aug 
 Fertilizer 14-Dec       Harvest 15-Oct 
 Harvest /Kill 30-Dec       Fertilizer 15-Nov 
 

         Fertilizer 15-Nov 
 

         Fertilizer 15-Jan 
 

         Harvest 15-Apr 
 

         Fertilizer 15-May 
 

        Fertilizer 15-Jul 
             Harvest/Kill 15-Aug 
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A.4 ANALYSIS OF VARIANCE OF NO3−N LOSSES 

Variable Estimate Std. Error t value p-value Sig 

(Intercept) 2.646 1.360 1.946 0.052 . 

Runoff (mm) 0.051 0.002 21.616 0.000 *** 

Slope (%) -0.008 0.001 -5.714 0.000 *** 

Area (km2) -0.137 0.020 -6.874 0.000 *** 

Precipitation (mm) -0.002 0.001 -3.122 0.002 ** 

Soil water content (mm) 0.011 0.004 -2.544 0.011 * 

Daily CN -0.059 0.008 7.492 0.000 *** 

Subbasin 2 -1.245 0.308 -4.038 0.000 *** 

Subbasin 3 -0.493 0.290 -1.703 0.089 . 

Subbasin 4 -0.210 0.287 -0.731 0.465   

Subbasin 5 -1.119 0.308 -3.637 0.000 *** 

Subbasin 6 -0.421 0.293 -1.439 0.150   

Subbasin 7 -0.828 0.310 -2.675 0.007 ** 

Subbasin 8 0.405 0.589 0.688 0.492   

Subbasin 9 2.107 0.276 7.641 0.000 *** 

Subbasin 10 -0.119 0.399 -0.299 0.765   

Subbasin 11 -0.121 0.282 -0.430 0.667   

Subbasin 12 -0.404 0.265 -1.521 0.128   

Subbasin 13 1.212 0.314 3.855 0.000 *** 

Subbasin 14 -0.838 0.282 -2.972 0.003 ** 

Subbasin 15 -0.359 0.276 -1.305 0.192   

Subbasin 16 -0.072 0.268 -0.268 0.789   

Subbasin 17 -0.892 0.276 -3.228 0.001 ** 

Subbasin 18 -0.567 0.270 -2.098 0.036 * 

Subbasin 19 -0.304 0.272 -1.115 0.265   

Subbasin 20 -0.570 0.278 -2.054 0.040 * 

Soil_Cor 4.682 0.623 7.518 0.000 *** 

Soil_Cv1 -0.013 0.441 -0.030 0.976   

Soil_Es 1.009 0.646 1.562 0.118   

Soil_F 1.043 0.470 2.219 0.027 * 

Soil_L 0.424 0.427 0.992 0.321   

Soil_Lm 2.212 0.863 2.562 0.010 * 

Soil_Lome 0.399 0.416 0.958 0.338   

Soil_V 0.681 0.595 1.143 0.253   

Soil_Vco 1.060 0.610 1.739 0.082 . 

Soil_mo -1.346 0.543 -2.480 0.013 * 

* means the level of significance p < 0.10 

** means the level of significance p < 0.05 

*** means the level of significance p < 0.01 
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A.5 ANALYSIS OF VARIANCE OF SOLUBLE P 

Variable Estimate Std. Error t value 
p-

value 
Sig 

(Intercept) 0.094 0.143 0.655 0.513   

Runoff (mm) 0.008 0.000 35.916 0.000 *** 

Slope (%) -0.003 0.000 -16.669 0.000 *** 

Area (km2) -0.056 0.007 -8.279 0.000 *** 

Precipitation (mm) 0.001 0.000 12.275 0.000 *** 

Soil water content (mm) 0.003 0.000 6.913 0.000 *** 

Daily CN -0.021 0.001 -26.841 0.000 *** 

Subbasin 2 0.768 0.071 10.802 0.000 *** 

Subbasin 3 0.631 0.073 8.617 0.000 *** 

Subbasin 4 0.751 0.072 10.364 0.000 *** 

Subbasin 5 0.650 0.072 8.968 0.000 *** 

Subbasin 6 0.650 0.074 8.814 0.000 *** 

Subbasin 7 0.825 0.071 11.621 0.000 *** 

Subbasin 9 0.845 0.073 11.605 0.000 *** 

Subbasin 11 0.754 0.071 10.688 0.000 *** 

Subbasin 12 0.754 0.069 10.856 0.000 *** 

Subbasin 13 0.796 0.071 11.236 0.000 *** 

Subbasin 14 0.731 0.070 10.499 0.000 *** 

Subbasin 15 0.734 0.070 10.472 0.000 *** 

Subbasin 16 0.739 0.070 10.617 0.000 *** 

Subbasin 17 0.814 0.070 11.656 0.000 *** 

Subbasin 18 0.743 0.070 10.694 0.000 *** 

Subbasin 19 0.778 0.069 11.223 0.000 *** 

Subbasin 20 0.743 0.070 10.588 0.000 *** 

Soil_Es -0.530 0.070 -7.549 0.000 *** 

Soil_F -0.249 0.038 -6.602 0.000 *** 

Soil_L -0.129 0.023 -5.538 0.000 *** 

Soil_Lm -0.685 0.100 -6.883 0.000 *** 

Soil_Lome -0.124 0.019 -6.617 0.000 *** 

Soil_V -0.433 0.058 -7.424 0.000 *** 

Soil_Vco -0.424 0.064 -6.650 0.000 *** 

Soil_mo -0.133 0.045 2.990 0.003 *** 

* means the level of significance p < 0.10 

** means the level of significance p < 0.05 

*** means the level of significance p < 0.01 
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A.6 ANALYSIS OF VARIANCE POSTANOVA OF NO3−N LOSSES 

Sub-basin 
Runoff 

(kg/ha) 
Groups Soil 

Runoff 

(kg/ha) 
Groups 

9 7.127 a Cor 8.926 a 

13 5.759 b Lome 4.783 b 

19 4.842 c F 4.654 bc 

6 4.786 c L 4.477 cd 

16 4.747 c Cv1 4.470 cd 

12 4.604 cd Lm 4.457 d 

11 4.577 cde Vco 4.194 e 

20 4.431 def Es 3.415 f 

4 4.365 def mo 3.388 f 

15 4.361 ef V 3.161 f 

18 4.313 ef Ab 2.753 f 

7 4.165 fg    

14 4.126 fg       

2 3.834 gh       

3 3.812 gh       

5 3.810 gh       

17 3.794 gh       

1 3.663 gh       

8 3.596 gh       

10 3.311 h       

 

A.7 ANALYSIS OF VARIANCE POSTANOVA OF SOLUBLE P LOSSES 

Sub-basin 
Soluble P 

(kg_ha) 
Groups Soil 

Soluble P 

(kg_ha) 
Groups 

19 0.550 a Vco 0.516 a 

7 0.540 ab L 0.497 a 

13 0.515 bc mo 0.492 ab 

9 0.507 bcd Cv1 0.459 bc 

2 0.499 bcd Lm 0.457 bc 

12 0.497 cd Lome 0.448 bcd 

4 0.479 cde F 0.431 bde 

17 0.475 de Es 0.389 cde 

14 0.457 e V 0.388 e 

20 0.449 e       

18 0.445 e       

15 0.418 f       

11 0.415 fg       

5 0.396 fgh       

16 0.391 gh       

6 0.372 ghi       

3 0.363 hi       

1 0.254 i       



 

 

9 APPENDIX B 
 

B.1 DESCRIPTION OF THE NSGA-II/SWAT OPTIMIZATION LIBRARY 

The NSGA-II/SWAT library design includes three classes: 1) NSGA2 main class that 

includes the NSGA-II operations, creating parent population and child., 2) 

NSGA2utilities utility class for lower-level NSGA-II to complete methods required 

when creating child population and parent population. For example, the Crossover() or 

Unicross() and NonDominatedSorting() and CrowdingDistance() methods, and  3) 

SWATutilities class used for SWAT operations including 

CalculateObjectiveFunctions()(Figure B.1a). Some several scripts and files must be 

executed (Figure B.1b). First, the batch file Start_run.bat is initialized to call the script 

ExampleTest.py that reads the path where the SWATtxtinoutDirectory of the SWAT 

project is saved and imported the classes NSGA2, NSGA2utilities, and SWATutilities. 

The NSGA2 class reads in the inputs from the SWATtxtinoutDirectory folder, such as 

PopulationSize, GenerationNumber, and Observations. The initial combined 

population is created, and the generation loop creates the parent population from the 

combined population. Second, in the file, a Model is created to store the genes (SWAT 

model parameter values related to the decision variables – see Table 6.4), transformed 

into a binary format using a decoding process named decode(). Thus, the gene values 

can be edited, and the child population is used for the SWATutilities class method to 

calculate the objective functions, using the CalculateObjectiveFunctions(). 

Subsequently, the following scripts and batch files are directly related to the SWAT 

model, and these are structured and named in the same way as in the SWAT-CUP 

program (Figure B.1b). The batch file nsga2_mid.cmd is used for editing our parameters, 

extracting the two Python scripts SWAT_ParameterEdit.py and Extract_hru.py, and 

runs the swat.exe model engine to create the model.out file. The 

SWAT_ParameterEdit.py script changes the SWAT files based on the parameter values 

previously defined in the model.in file. The swat.exe model engine is executed to run 

the SWAT model now with the new parameter values. The Extract_hru.py script runs 

to extract the SWAT model outputs into the model.out file. Finally, the parent and child 

populations are used to create the new combined population for the next generation. Then 

the ExampleTest.py script runs again using the model.out file to execute the 

CalculateObjectiveFunctions() method to calculate the objective function values. 

This process is repeated (loop) until the conditions previously defined in the NSGA2 class. 

 



Appendix 

146 

 

a) ii. b) 

 

 

Figura B.1. a) The NSGA-II library classes design and b) Scripts and files connections 

process flow 

The parameters selected to represent the decision variables associated with the BMPs in 

this study and their acceptable ranges and replacement operations must be defined in the 

nsga2_par.def file. For our study, we have three nsga2_par.def files that each 

corresponds to the optimization problem for each of the land-cover under study (kikuyu 

grass-PASM, potato-POTA, and tree tomato-TOMA) (Figure B.2). This file's structure 

must contain as a first letter before the parameter name indicates the adjusted method to 

use for changing the value of the parameter. The letter v represents replacing the current 

parameter value and r are multiplying (1 + a given value) to the current parameter value. 

The parameter constraints, the file extension, and the minimum and maximum value in 

which the parameter can change must be defined. The settings parameters for the NSGA-

II algorithm must set in the nsga2_par.def file. The SURF2 research cloud service was 

used to build our virtual research environment.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 SURF is the collaborative organization for ICT in Dutch education and research. https://www.surf.nl/en. 
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Method  Name  Constraint       File    Land-cover   Range 
r___FRT_KG{[],3,FERT_ID=55}.mgt_______PASM    -0.5   0 
v___TILL_ID{[],1,6}.mgt_______________PASM       2   5 
v___FILTER_RATIO{[],[],[],4}.ops______PASM      30   60 
r___BIO_EAT{[],9}.mgt_________________PASM    -0.3   0 

 
Method  Name  Constraint       File    Land-cover   Range 

r___FRT_KG{1,3,FERT_ID=21}.mgt________POTA    -0.5   0 
v___TILL_ID{[],1,6}.mgt_______________POTA       2   5 
v___CONT_P{[],[],[],3}.ops____________POTA     0.6   0.9 
r___CONT_CN{[],[],[],3}.ops___________POTA    -0.1   0 

 
Method  Name  Constraint       File    Land-cover   Range 

r___FRT_KG{1,3,FERT_ID=23}.mgt________TOMA    -0.5   0 
v___TILL_ID{[],1,6}.mgt_______________TOMA       2   5 
v___CONT_P{[],[],[],3}.ops____________TOMA     0.6   0.9 
r___CONT_CN{[],[],[],3}.ops___________TOMA    -0.1   0 

Figure B.2. Structure of the optimization parameters (decision variable) to be edited 

and changed using the NSGA-II/SWAT library for the test case SWAT model.
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