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Single-electron charging and detection in a laterally coupled quantum-dot circuit
in the few-electron regime
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We provide a physical analysis of the charging and detection of the first few electrons in a laterally coupled
GaAs/AlGaAs quantum-dot~LCQD! circuit with integrated quantum point contact read-out. Our analysis is
based on the numerical solution of the Kohn-Sham equation incorporated into a three-dimensional self-
consistent scheme for simulating the quantum device. Electronic states and eigenenergy spectra reflecting the
particular LCQD confinement shape are obtained as a function of external gate voltages. We also derive the
stability diagram for the first few electrons in the device, and obtain excellent agreement with experimental
data.
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I. INTRODUCTION

Lateral GaAs/AlGaAs quantum dots~QD’s! are now rou-
tinely fabricated with planar technology.1 Three-dimensiona
~3D! quantum confinement is achieved, in part, by using
GaAs/AlGaAs semiconductor heterostructures to confine
conduction electrons into a two-dimensional electron
~2DEG! at the interface between the two materials. By pla
ing metal gates on top of such a structure, carrier confi
ment in other in-plane directions can be realized by ener
ing the gates that create lateral energy barriers to electron
the 2DEG. Design of these QD’s, which previously co
tained tens of electrons, has been improved to operate t
in a few-electron regime where the charging of the very fi
electrons can be observed experimentally.2 Two quantum
dots can be placed adjacent to each other to form a late
coupled device with both electrostatic and quantu
mechanical coupling between them.3,4 Fine variations of the
top gate biases change the confinement of each dot, w
precise coupling between them through the central g
leads to a fully tunable two-qubit quantum system, wh
can be used as a building block for quantum computing.5

Recently, it has been shown that laterally coupled qu
tum dots ~LCQD! containing a few conduction electron
could be coupled to single charge detectors to form an i
grated quantum circuit.4 The read-out of the charge state
the LCQD is realized by integrating monolithically quantu
point contacts~QPC’s! adjacent to each of the QD’s. Eac
QPC can be calibrated through electrostatic coupling w
the dots so that its conductivity changes abruptly onc
single-electron charging event occurs in one of the dot6,7

With this sensitive detector, it is then possible to obtain
‘‘stability diagram’’ that describes the stable charge regim
of the LCQD as a function of the tuning~plunger! gate
biases.8,9

This quantum-dot circuit has a two fold advantage: it
possible~i! to scale it to a quantum-dot array, and~ii ! to
0163-1829/2004/69~24!/245301~6!/$22.50 69 2453
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perform single-quantum sensitivity measurements, both
which are favorable features of a realizable quant
computer.10

In this paper, we study the properties of the above circ
via numerical simulation that involves the self-consistent
lution of coupled Poisson and Kohn-Sham equations d
cretized on a 3D mesh.11,13 In Sec. II we describe the LCQD
structure and in Sec. III we present the approach for solv
the Kohn-Sham equations in the device environment wit
the local spin-density approximation~LSDA! and express the
criterion used to determine the charging events as a func
of the applied gate biases. In Sec. IV we present our sim
lation results of the circuit, including both electrostatic a
quantum-mechanical features, the functionality of the QPC
and the stability diagram in the few-electron charging
gime. Finally, we summarize our work in Sec. V.

II. DOT STRUCTURES

Figure 1~a! shows the top view of the LCQD and QP
gates in thexy plane.4 Top L, R, T, and M gates are used t
define the coupled-dot region. Among them, the T and
gates can also control the coupling between the two d
The PL and PR gates, called the ‘‘plungers,’’ have sma
feature sizes than the other gates and are used for fine tu
the confinement of each dot. The QPC-L and QPC-R ga
are associated with the L and R gates~via the tips! to form
the QPC detectors. Charging paths into the dots~shown by
the ovals! from external reservoirs are shown by curved
rows, whereas the QPC currents are shown by straight
rows. Figure 1~b! shows a cross-sectional view of the lay
structure in thez direction. Our model involves four differen
layers of semiconductor materials~from top to bottom!: a 50
Å thick n-type (ND51.531018 cm23) GaAs layer, a 650 Å
thick n-type (ND50.3131018 cm23) Al0.27Ga0.73As layer, a
200 Å thick undoped Al0.27Ga0.73As layer, and a 1610 nm
thick p-type (NA51.031015 cm23) GaAs layer. The 2DEG
©2004 The American Physical Society01-1
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is formed at the interface between the undoped AlGaAs la
and the lightlyp-type doped GaAs layer~900 Å below the
top surface!.

III. NUMERICAL MODEL

The electron density in the LCQD region is obtained
describing the charge carriers within the density-functio
theory that incorporates many-body effects amo
particles.14,15 In order to take into account the spin depe
dence of the electron-electron interaction, the Kohn-Sh
equations16 for spin up (↑) and spin down (↓) are solved
simultaneously:

H↑c i
↑~r !5« i

↑c i
↑~r !, H↓c i

↓~r !5« i
↓c i

↓~r !. ~1!

Here, « i
↑(↓) and c i

↑(↓) are the corresponding eigenenerg
and eigenfunctions of the HamiltonianH↑(↓):

H↑(↓)52
\2

2
“F 1

m* ~r !
“G2qf~r !1DEc1fxc

↑(↓)~n!,

~2!

where m* (r ) is the position dependent effective mas
f(r )5fext1f ion1fH is the electrostatic potential whic
consists of three parts:fext is the potential due to externa
gate biases;f ion is the potential resulting from ionized do
nors and acceptors; andfH is the Hartree potential accoun
ing for repulsive electron-electron interactions.DEc is the
conduction-band offset between different materials, a
fxc

↑(↓)(r ) is the exchange-correlation potential energy for s
up (↑) and spin down (↓) computed within the LSDA ac-
cording to Perdew and Wang’s formulation.17 Hence our ap-
proach is spin unrestricted by allowing different orbitals w
different spins.

The electron densityn(r ) in the LCQD region is

n~r !5n↑~r !1n↓~r !5(
i 51

N↑
uc i

↑~r !u21(
i 51

N↓
uc i

↓~r !u2, ~3!

where N↑1N↓5N is the total number of electrons in th
dots.

FIG. 1. ~a! Layout of the top gates~light gray areas show the
gate pattern for the LCQD and the QPC’s; ovals show the d
curved arrows show the possible charging current paths;
straight arrows show the QPC currents!. ~b! Layers of the hetero-
structure~not to scale!, after Elzermanet al. ~Ref. 4!.
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The electrostatic potentialf(r ) is computed by solving
Poisson’s equation,

¹@e~r !“f~r !#52r~r !, ~4!

wheree(r ) is the position-dependent permittivity andr(r ) is
the total charge density given by

r~r !5q@ND
1~r !2NA

2~r !1p~r !2n~r !#. ~5!

Here,ND
1(r ) andNA

2(r ) are the ionized donor and accept
concentrations in the relevant device layers;p(r ) is the hole
concentration; andn(r ) is the total electron concentratio
given by Eq.~3! in the QD region, while outside this regio
the free electron charge is entirely determined by using
semiclassical Thomas-Fermi approximation.13

We solve 3D Kohn-Sham and Poisson equations s
consistently by the finite element method.11,13 Zero normal
electric field on lateral and bottom surfaces, and Schot
barrier values (2qfs52qfs

02qVG , wherefs
0520.8 V,

andVG is the applied gate bias! on the top surface under th
gates are imposed as boundary conditions for the solutio
Poisson’s equation. We use the same boundary conditions
with VG50 on the top exposed surfaces.12,13Since the quan-
tum dots are much smaller than the physical dimension
the device, the wave functions actually vanish long bef
reaching the device boundaries. This allows us to embe
local region in the global mesh for solving the Kohn-Sha
equations. This local region is chosen large enough to en
vanishing wave functions on its boundaries. A nonunifo
3D grid of 141, 52, and 71 mesh points in thex, y, and z
directions, respectively, is used for solving Poisson’s eq
tion, while 71345319 grid points are used to discretize th
local region where the Kohn-Sham wave functions are eva
ated.

Because the LCQD are weakly coupled to the exter
reservoirs, we assume that electrons in the dots are c
pletely localized in that region. At equilibrium, and for
given bias, an integer number of electronsN minimizes the
total energyET of the dots. In order to determineN, we use
the Slater formula:18

ET~N11!2ET~N!5E
0

1

«LUO~n!dn'«LUO~1/2!2EF ,

~6!

whereET(N11)@ET(N)# is the total energy forN11 (N)
electrons in the dots, and«LUO(1/2) is the eigenenergy o
‘‘the lowest unoccupied orbital’’ with half occupancy. Th
sign change of the right-hand side of Eq.~6!, as a function of
the tuning gate voltage, determines the electron occupa
in the LCQD. In our simulation, we use a variation of th
above rule where charging occurs when«LUO(1)2EF5EF
2«LUO(0), which was justified in Ref. 13.

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the conduction-band edge profiles in
xy plane at the 2DEG interface@contour plot, Fig. 2~a!# and
in the z direction @Fig. 2~b!# under the conditionVL5VR
5VQPC2L5VQPC2R5VM520.585 V, VT520.9 V, VPL

s;
d
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5VPR520.15 V ~these voltages correspond to pointA in
Fig. 7! and zero electrons in the dots. The Fermi level is
at zero throughout the device at the temperatureT54 K.
The LCQD region and the QPC region with low equipote
tial line density are clearly visible in Fig. 2~a!. The outer
energy barrier for the LCQD is;110 meV whereas the en
ergy barrier between the dots is;9 meV. A large negative T
gate bias is used to prevent the wave functions from leak
into the external reservoirs, which clearly defines the LCQ
region. Also, clearly visible are the QPC constrictions in t
potential at x;64900 Å and y;0 Å. The confinement
along thez direction is achieved by a quasitriangular shap
well shown in Fig. 2~b!, for which the relaxation of the po
tential to zero field is not shown at the far end~substrate! of
the device. Due to the strong confinement in the triangu
well, only the ground state along thez direction is occupied
@the shape of the ground-state wave function along thz
direction is shown in the inset in Fig. 2~b!#. Under the above
condition, the wave function contour plots in thexy plane at
the 2DEG interface are shown in ascending energies for
first eight spin-up (↑) eigenstates in Fig. 3. A similar set o
wave functions is obtained for the spin-down (↓) eigenstates
~not shown!. They are similar to orbitals observed in d
atomic molecules: the two columns represent the fami
bonding and antibonding state pairs. Notice that the shap
the wave functions reflects the shape of the confinement
in the local minima of the conduction-band edge in Fig. 2~a!.

In Fig. 4~a!, we show the variation of the first eigh
spin-up (↑) eigenenergies when the plunger gate bias c
figuration is changed from the valuesVPL5VPR520.15 V
to the new valuesVPL520.15 V, VPR520.06 V. On the
stability diagram~Fig. 7!, this transition is represented on th
vertical A to B line by the diamond indicating the chargin
point for the first electron. The first eight eigenenergies

FIG. 2. Conduction-band edge profile in the LCQD-QPC str
ture: ~a! contour plot in thexy plane at the 2DEG interface~the
dashed rectangle shows the location of the dots!, ~b! along thez
direction with the inset showing the shape of the ground-state w
function (VPL5VPR520.15 V, zero electrons in the LCQD!.
24530
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separated into two groups, one for the right dot~solid lines!
and one for the left dot~dashed lines!, which are lowered
simultaneously as the right plunger gate bias increases. H
ever, the eigenenergies of the right dot decrease more rap
than those of the left dot because of the proximity of t
former to the varying plunger. AtVPR520.074 V, the
charging of the first electron@spin up (↑)] occurs in the right
dot, which is indicated by a discontinuity of 8.231024 eV in
the variation of the ground-state energy level with respec
the right plunger gate bias. At the same gate bias, we
observe a jump of the conduction band edge in the cons
tion of the two QPC’s, i.e., 2.631026 eV for the left QPC
and 5.431026 eV for the right QPC@see Fig. 4~b!, where
the vertical axis is shifted up by 0.0201 eV for clarity#. The
upshift of the conduction-band edge in the QPC constrict
results from the Coulomb interaction between the electr
in the LCQD and electrons in the QPC’s, which reduces
total charge number in the conduction channel and leads
discontinuity in the QPC current observed in experimen4

Obviously, the right QPC is more sensitive to the sing
electron charging because of its proximity with the right d
From the discontinuity value in the conduction-band ed
we can estimate the variation of the QPC conductance du
the transition toward the first quantized plateauG052e2/h
to be dG/G51.7% for the right QPC with\vy;1 meV
obtained from the simulation~see the Appendix!, which is of

-

ve

FIG. 3. Contour plot of the first eight spin-up (↑) eigenstates in
ascending energies in thexy plane at the 2DEG interface with zer
electrons in the LCQD (VPL5VPR520.15 V). Thexy coordinates
are given for the lower left wave function, which is a zoom-
region corresponding to the dashed rectangular region in Fig. 2~a!.
All the other wave function contour plots in this paper are on
same scale.
1-3
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the same order of magnitude as found experimentally.4

From the eigenenergies variation versusVPR diagram
@Fig. 4~a!#, we also observe three ‘‘anticrossing’’ points b
tween the two different sets of eigenenergy levels, each a
ing from the distinct QD’s as mentioned above and indica
by arrows in Fig. 4~a!, i.e., (a) at VPR;20.09 V, between
the third and fourth excited states; (b) at VPR;20.07 V,
between the third and fourth excited states; and (g) at VPR
;20.11 V, between the fifth and sixth excited states. T
behavior of the system near the anticrossing points can
further illustrated by examining the evolution of the wa
functions for the anticrossing levels. ‘‘Interchange’’ of th
wave functions is clearly observed before and after th
points. In Fig. 5, contour plots of the wave functions in t
xy plane at the 2DEG interface are shown for the three
ticrossing points: the third and fourth excited states labe
a1 , a2 at VPR520.10 V anda18 , a28 at VPR520.08 V,
respectively; the third and fourth excited states labeledb1 ,
b2 at VPR520.074 V andb18 , b28 at VPR520.06 V; and
the fifth and sixth excited states labeledg1 , g2 at VPR

520.12 V andg18 , g28 at VPR520.10 V.
The detection of single-electron charging events can a

be carried out for theB to C transition in Fig. 7, in which the
right plunger gate biasVPR is fixed to be20.06 V while the

FIG. 4. ~a! Eigenenergy spectrum@spin-up (↑) states# as a func-
tion of the right plunger gate bias~solid lines: right dot; dashed
lines: left dot!. a, b andg are three anticrossing points.~b! Varia-
tion of the conduction-band edge in the constriction of the left a
right QPC’s as a function of the right plunger gate bias from po
A to B in Fig. 7 @VPL is fixed to20.15 V; the vertical axis of Fig.
4~b! is shifted up by 0.0201 eV].
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left plunger gate bias is changed fromVPL520.15 V to
VPL520.06 V. The variation of the spin-up (↑) eigenener-
gies with respect to the Fermi level and the conduction-b
edge in the constriction of the two QPC’s are shown in Fi
6~a! and 6~b!, respectively. In this case, the transition of th
charging state is from one electron in the right dot to tw
electrons, one in each dot occupying an individual 1S-like
orbital,19 and occurs when the left plunger gate biasVPL is at
20.097 V. The charging of the second electron into the s
tem is localized in the left dot and is indicated by the jump
the first excited state energy level. Note that in this case,
variation of eigenenergies in the left QD~dashed lines! is
larger than those in the right dot~solid lines!. In our LSDA
approach, the second electron has the same spin@spin up
(↑)] as the first one as they are uncorrelated by the heigh
the coupling barrier. The corresponding jump of t
conduction-band edge is 5.631026 eV for the left QPC and
2.831026 eV for the right one. The left QPC is more sens
tive to the second electron charging because it occurs in
left dot.

Following the same procedure as described above, we
find another charging path for the first electron charging, i

d
t

FIG. 5. Wave function@for spin-up (↑) states# interchanges at
the anticrossing points corresponding to~a! point a, ~b! point b,
and ~c! point g in Fig. 4~a!.
1-4
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from pointE to F in Fig. 7, and for the charging from one t
two electrons,F to G in Fig. 7, for distinct stable charg
regimes of electrons in the two dots. On the pathE to F (VPL
is fixed to 20.125 V, VPR is changed from20.125 V to
20.07 V), charging occurs for the first electron@spin up
(↑)] in the right dot atVPR520.082 V; on the pathF to G
(VPR is fixed to 20.07 V, VPL is changed from20.125 V
to 20.07 V), charging occurs for the second electron@spin
up (↑)] in the left dot atVPL520.092 V.

We can further interchange the plunger gate biases
obtain different transitions, i.e., fromA to D to C andE to H
to G, as shown in Fig. 7 to realize closed cycles of charg
and discharging paths. These two closed paths~dashed and
dotted lines! are shown in Fig. 7. Each corner of the tw
squares is in a different stable charge state with number
the parentheses showing the electron number in the left
right dots, respectively, e.g.,~0,1! means zero electrons in th
left dot and one in the right dot. On each path, we record
charging points~diamonds in Fig. 7! and make linear ex-
trapolations between the two charging points on each of
two parallel paths, which leads to four lines crossing at t
points ~circles in Fig. 7!.

The two crossing points are linked afterwards. Now, fi
segments~solid lines in Fig. 7! separate the diagram into fou
regions to define the stability diagram for the LCQD syst
in the few-electron charging regime. Each region, separa

FIG. 6. ~a! Eigenenergy spectrum@spin-up (↑) states# ~solid
lines: right dot; dashed lines: left dot! and ~b! variation of the
conduction-band edge in the constriction of the left and right QP
as a function of the left plunger gate bias from pointB to C in Fig.
7 @VPR is fixed to20.06 V; the vertical axis of Fig. 6~b! is shifted
up by 0.0201 eV].
24530
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by the solid lines, indicates a stable charge configurat
assumed by the LCQD under a particular range of plun
gate biases. More interesting are the two crossing po
~circles!, called the double-triple point,9 occurring atVPL
5VPR520.0924 V for the three charging states~0,0!, ~0,1!,
and~1,0! and atVPL5VPR520.0847 V for~0,1!, ~1,0!, and
~1,1! states. We then determine the voltage range of the r
plunger that spans the distance between the double-t
point to beDVPR57.7 mV, which is comparable to the ex
perimental result;7.4 mV.4

Finally, from the charging diagrams in the few-electro
regime we extract the addition energy for the second elec
charging in the right dot: we determine theVPR-voltage in-
terval on the stability diagram for the~0,1! configuration
@i.e., between the~0,0! configuration and the~0,2! configu-
ration in the singlet state# to be 0.1 V, which is in excellen
agreement with the experimental result;0.1 V.4 By linear
projection of thisVPR interval to the energy scale,13 we ob-
tain then the addition energy for charging the second e
tron, which is 2.5 meV. By comparing this value to the e
perimental result of 3.7 meV,4 we attribute the difference to
the fact that our simulation is performed on a coupled-
system, while the experimental result is obtained by grou
ing one of the dots where the confinement is stronger in
individual dot compared to our simulation case.

V. CONCLUSION

We performed numerical simulations of the electrosta
and quantum-mechanical characteristics of a later
coupled quantum-dot circuit with integrated quantum po
contact read-out. We were able to reproduce detailed sin
electron charging behavior of the elementary quantum cir
and estimate the quantum point contact conductance se
tivity to the single-electron charging. In particular, we o
tained excellent agreement with the experiment for the v
age range of the extension of the double-triple point at
~0,0! to ~1,1! transition and the addition energy for singl
electron charging in the dots, which validates our quant
device modeling approach for simulating efficiently nano
cale qubit circuits.

’s

FIG. 7. Stability diagram for the first two charging electro
characterizing the double-triple point~shown by circles!.
1-5
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APPENDIX

We follow Büttiker,20 and write the conductance throug
the QPC as

G5G0T, ~A1!

where G052e2/h, T51/(11e2pe0), and e05(2E2\vx

22Ec
0)/\vy . Here, Ec

0 is the potential energyEc at the
saddle point in the QPC constriction and the curvatures oEc
along thex and y directions are expressed in terms of t
k
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frequenciesvx and vy . In the linear response approxima
tion,

dG5G0

]T

]Ec
0
dEc

0, ~A2!

where

]T

]Ec
0

5
22p/\vy

~11e2pe0!2
e2pe0. ~A3!

We find

dG

G
52

p

\vy
dEc

0 ~A4!

at G5G0/2, i.e., e050, while noting thatdEc
0 is weakly

sensitive to thee0 variation.
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