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Single-electron charging and detection in a laterally coupled quantum-dot circuit
in the few-electron regime
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We provide a physical analysis of the charging and detection of the first few electrons in a laterally coupled
GaAs/AlGaAs quantum-dotLCQD) circuit with integrated quantum point contact read-out. Our analysis is
based on the numerical solution of the Kohn-Sham equation incorporated into a three-dimensional self-
consistent scheme for simulating the quantum device. Electronic states and eigenenergy spectra reflecting the
particular LCQD confinement shape are obtained as a function of external gate voltages. We also derive the
stability diagram for the first few electrons in the device, and obtain excellent agreement with experimental
data.
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[. INTRODUCTION perform single-quantum sensitivity measurements, both of
which are favorable features of a realizable quantum
Lateral GaAs/AlGaAs quantum dotD’s) are now rou- computer®
tinely fabricated with planar technologyl hree-dimensional In this paper, we study the properties of the above circuit
(3D) gquantum confinement is achieved, in part, by using thevia numerical simulation that involves the self-consistent so-
GaAs/AlGaAs semiconductor heterostructures to confine th&ution of coupled Poisson and Kohn-Sham equations dis-
conduction electrons into a two-dimensional electron gasretized on a 3D mesh:**In Sec. Il we describe the LCQD
(2DEG) at the interface between the two materials. By plac-structure and in Sec. Il we present the approach for solving
ing metal gates on top of such a structure, carrier confinethe Kohn-Sham equations in the device environment within
ment in other in-plane directions can be realized by energizthe local spin-density approximati¢hSDA) and express the
ing the gates that create lateral energy barriers to electrons iiterion used to determine the charging events as a function
the 2DEG. Design of these QD’s, which previously con-of the applied gate biases. In Sec. IV we present our simu-
tained tens of electrons, has been improved to operate thelation results of the circuit, including both electrostatic and
in a few-electron regime where the charging of the very firstqguantum-mechanical features, the functionality of the QPC’s,
electrons can be observed experimentalljwo quantum and the stability diagram in the few-electron charging re-
dots can be placed adjacent to each other to form a laterallgime. Finally, we summarize our work in Sec. V.
coupled device with both electrostatic and quantum-
mechanical coupling between the”_rﬁFine variations of the Il DOT STRUCTURES
top gate biases change the confinement of each dot, while
precise coupling between them through the central gates Figure Xa shows the top view of the LCQD and QPC
leads to a fully tunable two-qubit quantum system, whichgates in thexy plane? Top L, R, T, and M gates are used to
can be used as a building block for quantum computing. define the coupled-dot region. Among them, the T and M
Recently, it has been shown that laterally coupled quangates can also control the coupling between the two dots.
tum dots (LCQD) containing a few conduction electrons The PL and PR gates, called the “plungers,” have smaller
could be coupled to single charge detectors to form an intefeature sizes than the other gates and are used for fine tuning
grated quantum circuft The read-out of the charge state in the confinement of each dot. The QPC-L and QPC-R gates
the LCQD is realized by integrating monolithically quantum are associated with the L and R gates the tips to form
point contactsQPC’S adjacent to each of the QD’s. Each the QPC detectors. Charging paths into the dsk®wn by
QPC can be calibrated through electrostatic coupling witlthe oval$ from external reservoirs are shown by curved ar-
the dots so that its conductivity changes abruptly once #ows, whereas the QPC currents are shown by straight ar-
single-electron charging event occurs in one of the Bi6ts. rows. Figure 1b) shows a cross-sectional view of the layer
With this sensitive detector, it is then possible to obtain thestructure in thez direction. Our model involves four different
“stability diagram” that describes the stable charge regimedayers of semiconductor materigfsom top to bottom: a 50
of the LCQD as a function of the tunin¢plungey gate A thick n-type (Np=1.5x10'® cm %) GaAs layer, a 650 A
biase$® thick n-type (Np=0.31x10' cm™3) Al,,/Ga, 74As layer, a
This quantum-dot circuit has a two fold advantage: it is200 A thick undoped AJ,Ga,;4As layer, and a 1610 nm
possible(i) to scale it to a quantum-dot array, afit) to  thick p-type (No=1.0x 10" cm™®) GaAs layer. The 2DEG
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The electrostatic potentiab(r) is computed by solving
Poisson’s equation,

VIe(r)Ve(r)]=—p(r), 4
wheree(r) is the position-dependent permittivity apgr) is
the total charge density given by
(b) Gaas Np = 1.5x10!8 cm3 l

o p(N=0dN5(N=NA(D+p(M—-n(N]. (5
Aly27Gag 73As Np=0.31x10"° cm

z Here,NJ (r) andN, (r) are the ionized donor and acceptor
concentrations in the relevant device laygy§;) is the hole
concentration; andi(r) is the total electron concentration

o given by Eq.(3) in the QD region, while outside this region

FIG. 1. (a) Layout of the top gateglight gray areas show th . . . .
gate pattern for the LCQD and the QPC's; ovals show the dots',‘he free e!ectron charge is (_antlrely Qetermlned by using the
lassical Thomas-Fermi approximatidn.

curved arrows show the possible charging current paths; anﬁemiC ¢ .
straight arrows show the QPC current) Layers of the hetero- We solve 3D Kohn-Sham and PO'SSOQ equations self-
Structure(not to SC&IQ after Elzermaret al. (Ref 4) COHSIStenﬂy by the f|n|te element methH& ZerO nOI’ma|

electric field on lateral and bottom surfaces, and Schottky
is formed at the interface between the undoped AlGaAs layebarrier values { qés= —q¢3—qVg, where ¢pI=—0.8V,
and the lightlyp-type doped GaAs layef900 A below the andVg is the applied gate biasn the top surface under the
top surface gates are imposed as boundary conditions for the solution of

Poisson’s equation. We use the same boundary conditions but

IIl. NUMERICAL MODEL with V=0 on the top exposed surfac&sSince the quan-
tum dots are much smaller than the physical dimension of
The electron density in the LCQD region is obtained bythe device, the wave functions actually vanish long before

describing the charge carriers within the density-functionakeaching the device boundaries. This allows us to embed a
theory that incorporates many-body effects amondocal region in the global mesh for solving the Kohn-Sham
particles:*** In order to take into account the spin depen-equations. This local region is chosen large enough to ensure
dence of the electron-electron interaction, the Kohn-Shanyanishing wave functions on its boundaries. A nonuniform
equation®’ for spin up (/) and spin down [) are solved 3D grid of 141, 52, and 71 mesh points in tkey, andz

simultaneously: directions, respectively, is used for solving Poisson’s equa-
_— - Ll Lol tion, while 71X 45X 19 grid points are used to discretize the
Higi(n=eidi(r), Hgin)=eidi(r). (D Jocal region where the Kohn-Sham wave functions are evalu-

Here, /") and ¢/") are the corresponding eigenenergiesat€d-
and eigenfunctions of the Hamiltonia (1) Because the LCQD are weakly coupled to the external

reservoirs, we assume that electrons in the dots are com-

X pletely localized in that region. At equilibrium, and for a
HI=——vVv V|—qe(r)+AE+ ¢, (n), given bias, an integer number of electrddsninimizes the
2 |m*(r) total energyEt of the dots. In order to determiré, we use

(2 the Slater formuld®

where m*(r) is the position dependent effective mass. 1

()= Pyt diont ¢ IS the electrostatic potential which ET(N+1)_ET(N):f eLuo(Ndn~g yo(1/2) —Ef,
consists of three partsp.,; is the potential due to external 0

gate biasesp,,, is the potential resulting from ionized do- (6)
nors and acceptors; angl; is the Hartree potential account- ywhere E;(N+ 1)[Er(N)] is the total energy foN+1 (N)

ing for repulsive electron-electron interactionSE; is the  glectrons in the dots, ane ;o(1/2) is the eigenenergy of
conduction-band offset between different materials, andihe |owest unoccupied orbital” with half occupancy. The
¢x:(r) is the exchange-correlation potential energy for Spinsign change of the right-hand side of £), as a function of
up (T) and spin down [) computed within the LSDA ac- the tuning gate voltage, determines the electron occupation
cording to Perdew and Wang’s formulatibhHence our ap- in the LCQD. In our simulation, we use a variation of the
proach is spin unrestricted by allowing different orbitals with above rule where charging occurs when;o(1)—Er=Ef

different spins. —&Luo(0), which was justified in Ref. 13.
The electron density(r) in the LCQD region is
N, N, IV. RESULTS AND DISCUSSIONS
n(r)=nT(r)+ni(r)=i§1 |¢§(r)|2+;1 PG Figure 2 shows the conduction-band edge profiles in the

xy plane at the 2DEG interfadeontour plot, Fig. 2a)] and
where N;+N =N is the total number of electrons in the in the z direction [Fig. 2(b)] under the conditionvV, =Vg
dots. :VQPC7L:VQPC7R:VM: —0.585V, VT: -09YV, VPL
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FIG. 2. Conduction-band edge profile in the LCQD-QPC struc- <
ture: (a) contour plot in thexy plane at the 2DEG interfacghe ~
dashed rectangle shows the location of the Xldt® along thez >
direction with the inset showing the shape of the ground-state wave

function (Vp =Vpg=—0.15V, zero electrons in the LCQD "".2000 -1000 E°) 1000 2000
X (A

-500
-1000

=Vpr=—0.15 V (these voltages correspond to poitin FIG. 3. Contour plot of the first eight spin-up X eigenstates in
Fig. 7) and zero electrons in the dots. The Fermi level is Se'élscendlng energies in tixg plane at the 2DEG interface with zero
at zero throughout the device at the temperaflire4 K. glectrons in the LCQD\(p, = Vpg=—0.15 V). Thexy coordinates
The LCQD region and the QPC region with low equipoten-are given for the lower left wave function, which is a zoom-in
tial line density are clearly visible in Fig.(@. The outer region corresponding to the dashed rectangular region in Fajy. 2
energy barrier for the LCQD is-110 meV whereas the en- All the other wave function contour plots in this paper are on the
ergy barrier between the dots+is9 meV. Alarge negative T same scale.
gate bias is used to prevent the wave functions from leaking
into the external reservoirs, which clearly defines the LCQDseparated into two groups, one for the right ¢silid line9
region. Also, clearly visible are the QPC constrictions in theand one for the left dotdashed lines which are lowered
potential atx~=*=4900 A andy~0 A. The confinement simultaneously as the right plunger gate bias increases. How-
along thez direction is achieved by a quasitriangular shapedever, the eigenenergies of the right dot decrease more rapidly
well shown in Fig. 2Zb), for which the relaxation of the po- than those of the left dot because of the proximity of the
tential to zero field is not shown at the far efaibstrateof ~ former to the varying plunger. AVpr=—0.074V, the
the device. Due to the strong confinement in the triangulacharging of the first electrofspin up ()] occurs in the right
well, only the ground state along tlzedirection is occupied dot, which is indicated by a discontinuity of &2.0™4 eV in
[the shape of the ground-state wave function along zhe the variation of the ground-state energy level with respect to
direction is shown in the inset in Fig(l®]. Under the above the right plunger gate bias. At the same gate bias, we also
condition, the wave function contour plots in thg plane at  observe a jump of the conduction band edge in the constric-
the 2DEG interface are shown in ascending energies for théon of the two QPC’s, i.e., 2:610 ¢ eV for the left QPC
first eight spin-up () eigenstates in Fig. 3. A similar set of and 5.4<10 © eV for the right QPC[see Fig. 4b), where
wave functions is obtained for the spin-dow)) (eigenstates the vertical axis is shifted up by 0.0201 eV for clatitfhe
(not shown. They are similar to orbitals observed in di- upshift of the conduction-band edge in the QPC constriction
atomic molecules: the two columns represent the familiaresults from the Coulomb interaction between the electrons
bonding and antibonding state pairs. Notice that the shape af the LCQD and electrons in the QPC's, which reduces the
the wave functions reflects the shape of the confinement seeatal charge number in the conduction channel and leads to a
in the local minima of the conduction-band edge in Fi@2 discontinuity in the QPC current observed in experiménts.
In Fig. 4a), we show the variation of the first eight Obviously, the right QPC is more sensitive to the single-
spin-up (/) eigenenergies when the plunger gate bias conelectron charging because of its proximity with the right dot.
figuration is changed from the valuds, =Vpr=—0.15V  From the discontinuity value in the conduction-band edge,
to the new value¥/p  =—0.15 V, Vpg=—0.06 V. On the we can estimate the variation of the QPC conductance during
stability diagram(Fig. 7), this transition is represented on the the transition toward the first quantized plate@y=_2e* h
vertical A to B line by the diamond indicating the charging to be 6G/G=1.7% for the right QPC withi w,~1 meV
point for the first electron. The first eight eigenenergies arebtained from the simulatio(see the Appendijx which is of
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FIG. 4. (a) Eigenenergy spectrufispin-up () state$as a func-
tion of the right plunger gate biasolid lines: right dot; dashed
lines: left do}. a, B andy are three anticrossing poinid) Varia-
tion of the conduction-band edge in the constriction of the left and
right QPC'’s as a function of the right plunger gate bias from point
AtoBin Fig. 7[Vp_ is fixed to—0.15 V; the vertical axis of Fig.

4(b) is shifted up by 0.0201 eV]. FIG. 5. Wave functior{for spin-up (/) state$ interchanges at

the anticrossing points corresponding(&® point «, (b) point 3,

the same order of magnitude as found experimenrtally. and(c) point y in Fig. 4a).
From the eigenenergies variation versugg diagram
[Fig. 4@)], we also observe three “anticrossing” points be- |of plunger gate bias is changed frodp, =—0.15 V to
tween the two different sets of eigenenergy levels, each ariSqPL: —0.06 V. The variation of the spin-ug '] eigenener-
ing from the distinct QD's as mentioned above and indicatedies with respect to the Fermi level and the conduction-band
by arrows in Fig. 4a), i.e., (@) atVpr~—0.09 V, between gqqe in the constriction of the two QPC’s are shown in Figs.
the third and fourth excited states3X at Vpr~—0.07V,  g(4) and Gb), respectively. In this case, the transition of the
between the third and fourth excited states; apyl & Ver  charging state is from one electron in the right dot to two
~—0.11V, between the fifth and sixth excited states. Thes|ectrons, one in each dot occupying an individusHike
behavior of the system near the anticrossing points can b&rbital,lg and occurs when the left plunger gate bias is at
further illustrated by examining the evolution of the wave _q 997 v. The charging of the second electron into the sys-
functions for the anticrossing levels. “Interchange” of the (o is [ocalized in the left dot and is indicated by the jump of
wave functions is clearly observed before and after thesg,g first excited state energy level. Note that in this case, the
points. In Fig. 5, contour plots of the wave functions in the, 5iation of eigenenergies in the left Q@ashed linesis
xy plane at the 2DEG interface are shown for the three aNprger than those in the right désolid lines. In our LSDA
ticrossing points: the third and fourth excited states |abe‘|e‘$pproach, the second electron has the same [spim up
ai, a; atVpg=—0.10V ande;, a; at Ver=—0.08 V,  (1)] as the first one as they are uncorrelated by the height of
respectively; the third and fourth excited states labegded the coupling barrier. The corresponding jump of the
B2 at Vpr=—0.074 V andB;, B, atVer=—0.06 V; and  conduction-band edge is 5:6.0 ° eV for the left QPC and
the fifth and sixth excited states labeled, y, at Vpr  2.8x 10 © eV for the right one. The left QPC is more sensi-
=-0.12 V andy;, y5 atVpg=—0.10 V. tive to the second electron charging because it occurs in the
The detection of single-electron charging events can alsteft dot.

be carried out for th® to C transition in Fig. 7, in which the Following the same procedure as described above, we can
right plunger gate bia¥pp is fixed to be—0.06 V while the  find another charging path for the first electron charging, i.e.,
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s | T f;%hggzc FIG. 7. Stability diagram for the first two charging electrons
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2
(=]
8 by the solid lines, indicates a stable charge configuration
& assumed by the LCQD under a particular range of plunger
= gate biases. More interesting are the two crossing points
& (circles, called the double-triple poirt,occurring atVe,
g =Vpr=—0.0924 V for the three charging stat€s0), (0,1,
> and(1,0) and atVp, =Vpg=—0.0847 V for(0,1), (1,0), and
014 012 010 -0.08 -0.06 (1,1) states. We then determine the voltage range of the right
Ve (V) plunger that spans the distance between the double-triple

FIG. 6. () Eigenenergy spectrurfspin-up (1) stated (solid point to beAVpr=7.7 mV, which is comparable to the ex-

- 4
lines: right dot; dashed lines: left doand (b) variation of the perimental result-7.4 mV.

conduction-band edge in the constriction of the left and right QPC'’s '.:ma"y’ from the charg!ng diagrams in the few-electron
as a function of the left plunger gate bias from pdino C in Fig. ~ '€dime we extract the addition energy for the second electron

7 [Vpriis fixed to—0.06 V; the vertical axis of Fig.(6) is shifted ~ Charging in the right dot: we determine thip-voltage in-
up by 0.0201 eV]. terval on the stability diagram for th&,1) configuration
[i.e., between thé0,0) configuration and th€0,2) configu-
from pointE to F in Fig. 7, and for the charging from one to ration in the ;inglet sta]eto' be 0.1 V, which is4in expellent
two electrons,F to G in Fig. 7, for distinct stable charge agreement with the experimental rest0.1 V." By linear
regimes of electrons in the two dots. On the ptio F (Vp,  Projection of thisVeg interval to the energy scafé,we ob-
is fixed to —0.125 V, Vpg is changed from-0.125 V to tain ther) thg addition energy for chargmg the second elec-
—0.07 V), charging occurs for the first electrgspin up tron, which is 2.5 meV. By comparing this valge to the ex-
(1)] in the right dot atVpr= —0.082 V; on the patlf to G perimental result of 3.7 mefhvve attribute the difference to
(Vpg is fixed to —0.07 V, Vp, is changed from—0.125 V the fact thgt our S|mulqt|on is performed on a coupled-dot
to —0.07 V), charging occurs for the second electfspin system, while the experimental reSL_JIt is obta}lned by gro_und-
up (1)] in the left dot atVp, = —0.092 V. ing one of the dots where the cqnfmer_nent is stronger in an
We can further interchange the plunger gate biases anf§dividual dot compared to our simulation case.
obtain different transitions, i.e., frodto D to C andE to H
to G, as shown in Fig. 7 to realize closed cycles of charging
and discharging paths. These two closed patlashed and V- CONCLUSION
dotted line$ are shown in Fig. 7. Each corner of the two  We performed numerical simulations of the electrostatic
squares is in a different stable charge state with numbers iand quantum-mechanical characteristics of a laterally
the parentheses showing the electron number in the left antbupled quantum-dot circuit with integrated quantum point
right dots, respectively, e.d0,1) means zero electrons in the contact read-out. We were able to reproduce detailed single-
left dot and one in the right dot. On each path, we record thelectron charging behavior of the elementary quantum circuit
charging points(diamonds in Fig. Y and make linear ex- and estimate the quantum point contact conductance sensi-
trapolations between the two charging points on each of thévity to the single-electron charging. In particular, we ob-
two parallel paths, which leads to four lines crossing at twotained excellent agreement with the experiment for the volt-
points (circles in Fig. 7. age range of the extension of the double-triple point at the
The two crossing points are linked afterwards. Now, five(0,0) to (1,1) transition and the addition energy for single-
segmentsgsolid lines in Fig. 7 separate the diagram into four electron charging in the dots, which validates our quantum
regions to define the stability diagram for the LCQD systemdevice modeling approach for simulating efficiently nanos-
in the few-electron charging regime. Each region, separatedale qubit circuits.
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APPENDIX oT  —2mlhe
e 90 ) — =Y o774 (A3)
We follow Buttiker,” and write the conductance through JEC  (1+e ™0)?
the QPC as .
We find
G=G,T, Al
0 (A1) P
where Gy=2€?/h, T=1/(1+e "), and ey=(2E—fiw, G~ 7. %Ec (A4)
y

—2E))/hw,. Here, EY is the potential energf, at the
saddle point in the QPC constriction and the curvaturdg.of at G=Go/2, i.e., €,=0, while noting thatsE is weakly
along thex andy directions are expressed in terms of thesensitive to thes variation.
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