
 
 

Delft University of Technology

Modelling of kinematic higher pairs by lower pairs

Meijaard, J. P.

DOI
10.1016/j.mechmachtheory.2023.105515
Publication date
2024
Document Version
Final published version
Published in
Mechanism and Machine Theory

Citation (APA)
Meijaard, J. P. (2024). Modelling of kinematic higher pairs by lower pairs. Mechanism and Machine Theory,
191, Article 105515. https://doi.org/10.1016/j.mechmachtheory.2023.105515

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.mechmachtheory.2023.105515
https://doi.org/10.1016/j.mechmachtheory.2023.105515


Mechanism and Machine Theory 191 (2024) 105515

A
0
(

R

M
J
D
E

A

K
K
L
H
C
B
R

1

h
b
p
t
a
m
v

a
b
w
a
b
c
d

b
a

s

h
R

Contents lists available at ScienceDirect

Mechanism and Machine Theory

journal homepage: www.elsevier.com/locate/mechmt

esearch paper

odelling of kinematic higher pairs by lower pairs
.P. Meijaard
elft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems
ngineering, Mekelweg 2, NL-2628 CD Delft, The Netherlands

R T I C L E I N F O

eywords:
inematic joints
ower pairs
igher pairs
lassification
icycle
ailway wheelset

A B S T R A C T

Kinematic joints are classified in lower pairs and higher pairs. Most multibody modelling
techniques focus on lower pairs, because a complete classification in six types is available.
Higher pairs are more diverse. In this article, higher pairs that can be exactly modelled by
lower pairs are investigated. A complete classification of higher pairs that can be modelled by
a chain of five single-degree-of-freedom lower pairs with a central revolute joint at the contact
point is proposed. Two-dimensional cases and surfaces with discontinuities are also considered.
The equivalent chains can be used for exact and approximate modelling of higher pairs and as
design alternatives. Illustrative examples and applications to a bicycle on toroidal wheels and
a railway wheelset on a roller rig are shown.

. Introduction

In the classification of kinematic joints, Reuleaux [1] has introduced the distinction between lower pairs, in which two bodies
ave conformal contact over a surface, and higher pairs, in which two bodies have line or point contact. The lower-pair joints have
een completely classified into six types, namely the spherical joint, the planar joint, the cylindrical joint, the revolute joint, the
rismatic joint and the screw joint, as shown in Fig. 1. On the other hand, higher pairs display a wide variety. Powerful analytic
echniques for analysing mechanisms with only lower-pair joints have been developed [2–5] and the six lower-pair joints are
vailable as standard modelling elements in most programs that deal with multibody system dynamics [6]. Some programs can
odel special classes of higher-pair joints, in particular the tyre–road contact of road vehicles, the wheel–rail contact of railway

ehicles [7–9] and gears [10].
In general, it is not possible to model higher pairs with lower pairs except for some special cases. Planar cams with circular

nd tangent profiles actuating roller or flat-face followers have been modelled by lower pairs [11,12]. The modelling of the contact
etween two tori and its special cases has been presented [13]. In this article, the investigation into some classes of higher pairs
hose kinematics can be modelled by a chain of lower pairs is continued. The purpose is to have an exact equivalence of the pairs,
nd not an approximation [14,15]. This equivalence shows that from a kinematic point of view, no sharp distinction can be made
etween lower pairs and higher pairs. The equivalent chains can be used for any mechanism, so equivalent mechanisms for specific
ases will not be considered, which may serve a wider class of mechanisms with higher pairs, such as planar linkages with one
egree of freedom, where moving and fixed centrodes have a rolling contact that can be used to replace a link [14].

The main motivation of the present study is in modelling multibody systems containing higher pairs. However, the results may
e used to suggest alternative designs, as one may have more desirable properties than the other as to wear, friction or precision,
nd they may give a better understanding.

In the next section, a precise definition of the problem is formulated, restrictions are made and a classification is given. Then,
ome illustrative examples and applications to a bicycle and to a railway wheelset are presented.
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Fig. 1. Schematic drawing of the six types of lower-pair joints. The relative degrees of freedom are indicated by arrows for translations and double-headed
arrows for rotations. The translation of the screw joint is related to its rotation by the pitch 𝑝.

Fig. 2. Four kinds of planar higher pairs that can be modelled by lower pairs: (a) circle–circle, (b) circle–line, (c) circle–vertex and (d) line–vertex.

2. Classification of surfaces in contact that can be modelled by lower-pair joints

The kinds of higher pairs considered are two-dimensional pairs with line contact and spatial pairs with point contact. The two-
imensional pairs moving in a plane can consist of two smooth curves in contact or a smooth curve in contact with a vertex of
nother curve, which is a point with a discontinuity in the tangent. For the three-dimensional contact, the considered cases are the
ontact of two smooth surfaces, the contact of a smooth surface with a crest, the contact of a smooth surface with a vertex and
he contact of two crests. A crest, or knife-edge, is here a smooth curve on a surface along which the normal vector of a surface
as a jump discontinuity when the curve is transversally crossed and a vertex is a point with a discontinuous normal vector in all
irections.

.1. Two-dimensional contacts

A planar contact removes one in-plane degree of freedom, so the relative planar motion of the two contacting bodies has two
egrees of freedom. This relative motion will be modelled by a serial chain with two joints with one degree of freedom, each of
hich describes a curve; these curves are in mutual contact. The curves that can be generated by planar lower-pair joints are a

ircle by a revolute joint and a line by a prismatic joint; the circle may degenerate into a point. The four cases are shown in Fig. 2,
here it is seen that all basically consist of two circles in contact, where a circle may degenerate into a straight line, which is a

ircle with an infinite radius, or a vertex, which is a circle with a vanishing radius. The circles can have internal or external contact.
he first three types can be used to model the contact between a circular cam and roller, flat-face and knife-edge followers. Other
lanar higher pairs might be generated by more involved mechanisms, which will not be investigated here.

.2. Contact of two smooth surfaces

A class of higher pairs is considered in which two bodies with a smooth outer surface touch each other in a single point of
ontact. The contact condition reduces the dimension of the configuration space by one, and therefore the relative motion of the
2

odies can be described by five kinematic degrees of freedom. The kinematically equivalent mechanism with lower-pair joints is



Mechanism and Machine Theory 191 (2024) 105515J.P. Meijaard

w

Fig. 3. Schematic representation of two bodies in contact interconnected by six links and five joints with one degree of freedom each; Joint 1 and Joint 2
generate the surface of Body 1, Joint 5 and Joint 4 generate the surface of Body 2 and Joint 3 is a revolute joint representing the rotation about the common
normal at the contact point.

Fig. 4. Relative position of two screw joints in series with a representative point of a surface, S.

therefore chosen as a serial chain with five joints with a single degree of freedom each (Fig. 3). The two joints at either end of
the chain with the three connected links describe the surface of a contacting body, whereas the central joint is a revolute joint
with an axis of rotation through the contact point that is perpendicular to the common tangent plane of the contacting bodies, so
it can describe the relative rotation about the common normal of these planes. This way of describing the contact of two bodies is
comparable to the description of each surface by two parameters and imposing five constraints for the contact conditions as in the
central revolute joint [16]. There might be equivalent lower-pair models for higher pairs that fall beyond this description, whose
classification remains an open problem. The most general lower-pair joint with a single relative degree of freedom is the screw,
which has as special cases the prismatic joint if the pitch is infinite and the revolute joint if the pitch is zero. A cylindrical joint can
be seen as a prismatic joint and a revolute joint in series with a common axis.

Not all surfaces generated by arranging two lower-pair joints with one degree of freedom in series can be used to model higher
pairs. The restriction is that the axis of the central revolute joint has to remain perpendicular to the generated surface. All possible
combinations are being analysed next.

Firstly, the case of two general screws in series will be considered, where revolute joints appear as screws with a zero pitch. The
first screw is placed between the body in contact and the second screw, whereas the second screw is placed between the first screw
and the surface of the body (Fig. 4). Without loss of generality, the axis of the first screw can be placed along the global 𝑧-axis and
the axis of the second screw in the reference configuration crosses the plane 𝑧 = 0 at the point 𝑥 = 𝑎, 𝑦 = 0, where 𝑎 is the shortest
distance between the screw axes. The angle between the screw axes is denoted by 𝛼, which is the angle in the positive direction
about the 𝑥-axis from the direction of the first screw axis to the direction of the second screw axis. The point on the surface in the
reference configuration is assumed to be at the position

𝐱0 =
⎛

⎜

⎜

⎝

𝑎
𝑟 cos 𝛼 − 𝑠 sin 𝛼
𝑟 sin 𝛼 + 𝑠 cos 𝛼

⎞

⎟

⎟

⎠

, (1)

where 𝑟 is the distance of the contact point to the second screw axis and 𝑠 is the distance along the second screw axis form the plane
𝑧 = 0 to the plane through the contact point perpendicular to the second screw axis in the reference configuration. The distance
𝑟 must be positive in order to generate a surface. For a displaced configuration, the rotation angles of the screws are 𝜗1 and 𝜗2,

hereas the pitches, expressed as a displacement per radian of rotation, are 𝑝1 and 𝑝2.
A rotation by 𝜗1 about the first screw axis can be represented by the rotation matrix

𝐑s1 =
⎛

⎜

⎜

cos 𝜗1 − sin 𝜗1 0
sin 𝜗1 cos 𝜗1 0

⎞

⎟

⎟

. (2)
3

⎝ 0 0 1⎠
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The rotation from the first to the second screw axis by 𝛼 and the rotation by 𝜗2 about the second screw axis in a local frame can
be represented by the rotation matrices

𝐑𝛼 =
⎛

⎜

⎜

⎝

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎞

⎟

⎟

⎠

, 𝐑s2 =
⎛

⎜

⎜

⎝

cos 𝜗2 − sin 𝜗2 0
sin 𝜗2 cos 𝜗2 0
0 0 1

⎞

⎟

⎟

⎠

. (3)

The rotation matrix about the second screw axis expressed in the frame attached to the first screw is

𝐑𝛼𝐑s2𝐑T
𝛼 =

⎛

⎜

⎜

⎝

cos 𝜗2 −cos 𝛼 sin 𝜗2 − sin 𝛼 sin 𝜗2
cos 𝛼 sin 𝜗2 cos2 𝛼 cos 𝜗2 + sin2 𝛼 − sin 𝛼 cos 𝛼(1 − cos 𝜗2)
sin 𝛼 sin 𝜗2 − sin 𝛼 cos 𝛼(1 − cos 𝜗2) sin2 𝛼 cos 𝜗2 + cos2 𝛼

⎞

⎟

⎟

⎠

. (4)

For 𝜗1 = 0, the local frame follows from the global frame by a translation over a distance 𝑎 along the global 𝑥-axis and a rotation
over the angle 𝛼, and it moves with the first screw. The second screw motion displaces, in the local frame, the contact point from
(0, 𝑟, 𝑠)T to the point

𝐱′ = 𝐑s2

⎛

⎜

⎜

⎝

0
𝑟
𝑠

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

0
0

𝑝2𝜗2

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−𝑟 sin 𝜗2
𝑟 cos 𝜗2
𝑠 + 𝑝2𝜗2

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑥′

𝑦′

𝑧′

⎞

⎟

⎟

⎠

. (5)

In the frame rigidly attached to the first screw coinciding with the global frame for 𝜗1 = 0, the coordinates are

𝐱′′ = 𝐑𝛼𝐱′ +
⎛

⎜

⎜

⎝

𝑎
0
0

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑎 − 𝑟 sin 𝜗2
𝑟 cos 𝛼 cos 𝜗2 − (𝑠 + 𝑝2𝜗2) sin 𝛼
𝑟 sin 𝛼 cos 𝜗2 + (𝑠 + 𝑝2𝜗2) cos 𝛼

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑥′′

𝑦′′

𝑧′′

⎞

⎟

⎟

⎠

. (6)

The first screw motion gives a translation of 𝑝1𝜗1 in the direction of the 𝑧-axis and a rotation of 𝜗1 about the 𝑧-axis. The contact
point in a general configuration therefore becomes

𝐱 =
⎛

⎜

⎜

⎝

𝑥′′ cos 𝜗1 − 𝑦′′ sin 𝜗1
𝑥′′ sin 𝜗1 + 𝑦′′ cos 𝜗1

𝑝1𝜗1 + 𝑧′′

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

, (7)

where 𝑥′′, 𝑦′′ and 𝑧′′ have the values from Eq. (6). Tangent vectors to the surface of the body are now obtained as

𝜕𝐱
𝜕𝜗1

(𝜗1, 𝜗2) =
⎛

⎜

⎜

⎝

−𝑦
𝑥
𝑝1

⎞

⎟

⎟

⎠

= 𝐑s1

⎛

⎜

⎜

⎝

−𝑟 cos 𝛼 cos 𝜗2 + (𝑠 + 𝑝2𝜗2) sin 𝛼
𝑎 − 𝑟 sin 𝜗2

𝑝1

⎞

⎟

⎟

⎠

(8)

and

𝜕𝐱
𝜕𝜗2

(𝜗1, 𝜗2) = 𝐑s1

⎛

⎜

⎜

⎝

−𝑟 cos 𝜗2
−𝑟 cos 𝛼 sin 𝜗2 − 𝑝2 sin 𝛼
−𝑟 sin 𝛼 sin 𝜗2 + 𝑝2 cos 𝛼

⎞

⎟

⎟

⎠

= 𝐑s1𝐑𝛼𝐑s2

⎛

⎜

⎜

⎝

−𝑟
0
𝑝2

⎞

⎟

⎟

⎠

. (9)

normal vector can be found by taking the cross product of these two tangent vectors, except at singularities where the tangent
ectors have the same direction.

The condition for the possibility of representing the higher-pair contact by the chosen series of lower-pair joints is now that the
ormal vector in some initial configuration remains a normal vector after a general displacement. The first screw motion transforms
angent vectors into tangent vectors and rotates the normal vector in the same way as the tangent vectors, so it remains orthogonal
o the tangent vectors and the condition is fulfilled; therefore, only the case 𝜗1 = 0, 𝐑s1 is the identity matrix, need be considered.

The second screw motion rotates the tangent vector 𝜕𝐱∕𝜕𝜗2 and the normal vector in the same way, so these vectors remain
erpendicular in a general configuration. The tangent vectors are expressed in components in a local frame moving with the second
crew, so the expressions in Eqs. (8) and (9) are premultiplied by 𝐑T

s2𝐑
T
𝛼 , which yields

𝐠1 =
⎛

⎜

⎜

⎝

−𝑟 cos 𝛼 + (𝑝1 sin 𝛼 + 𝑎 cos 𝛼) sin 𝜗2 + (𝑠 + 𝑝2𝜗2) sin 𝛼 cos 𝜗2
(𝑝1 sin 𝛼 + 𝑎 cos 𝛼) cos 𝜗2 − (𝑠 + 𝑝2𝜗2) sin 𝛼 sin 𝜗2

𝑝1 cos 𝛼 − 𝑎 sin 𝛼 + 𝑟 sin 𝛼 sin 𝜗2

⎞

⎟

⎟

⎠

(10)

nd

𝐠2 =
⎛

⎜

⎜

−𝑟
0
⎞

⎟

⎟

, (11)
4

⎝𝑝2 ⎠
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where the tangent vectors in the local frame are denoted by 𝐠1 and 𝐠2. If the tangent vectors are not parallel, a normal vector
orresponding to these vectors is

𝐧 =
⎛

⎜

⎜

⎝

𝑝2(𝑝1 sin 𝛼 + 𝑎 cos 𝛼) cos 𝜗2
−(𝑝1 cos 𝛼 − 𝑎 sin 𝛼 − 𝑝2 cos 𝛼)𝑟 − (𝑟2 sin 𝛼 + 𝑝2(𝑝1 sin 𝛼 + 𝑎 cos 𝛼)) sin 𝜗2

𝑟(𝑝1 sin 𝛼 + 𝑎 cos 𝛼) cos 𝜗2

⎞

⎟

⎟

⎠

+ (𝑠 + 𝑝2𝜗2) sin 𝛼
⎛

⎜

⎜

⎝

−𝑝2 sin 𝜗2
−𝑝2 cos 𝜗2
−𝑟 sin 𝜗2

⎞

⎟

⎟

⎠

.

(12)

his normal vector must have a direction that is independent of the angle 𝜗2, that is, the cross product of 𝐧 evaluated for some
rbitrary value of 𝜗2 with 𝐧 evaluated at some other arbitrary value of this angle, 𝜗′2, must be the zero vector. Equivalently in the
resent case, the normal vector must be perpendicular to the tangent vector 𝐠1 for other arbitrary values, 𝜗′2. Because of the resulting
roducts of secular terms, 𝑝32𝜗2𝜗

′
2 sin(𝜗

′
2 − 𝜗2) sin

2 𝛼, this can only be the case if the secular terms disappear, that is, 𝑝2 sin 𝛼 = 0. The
ase 𝑝2 = 0, sin 𝛼 ≠ 0 leads to the conditions

𝑝2 = 0, 𝑝1 sin 𝛼 + 𝑎 cos 𝛼 = 0, 𝑠 = 0 (13)

r the conditions

𝑝2 = 0, 𝑝1 = 0, 𝑎 = 0. (14)

he case sin 𝛼 = 0 (choose 𝛼 = 0, cos 𝛼 = 1) leads to the conditions

sin 𝛼 = 0, 𝑎 = 0 (15)

r the conditions

sin 𝛼 = 0, 𝑝1 = 0, 𝑝2 = 0. (16)

Firstly, the case sin 𝛼 = 0 is considered, in which the screw axes are parallel. If the conditions (15) are fulfilled, the screw axes
oincide and the normal vector becomes

𝐧 =
⎛

⎜

⎜

⎝

0
−(𝑝1 − 𝑝2)𝑟

0

⎞

⎟

⎟

⎠

, (17)

hich is unequal to zero if the pitches are different. The resulting surface is a cylinder. Equal pitches do not yield a surface, but a
elix. Either the first screw or the second screw can have a zero pitch, so one screw joint becomes a revolute joint.

If the conditions (16) are fulfilled, both joints are revolute joints with parallel axes, the normal vector becomes

𝐧 =
⎛

⎜

⎜

⎝

0
0

𝑟𝑎 cos 𝜗2

⎞

⎟

⎟

⎠

. (18)

his case gives rise to a plane parallel to the 𝑥𝑦-plane. At the boundaries of the reachable part of the plane, cos 𝜗2 = 0 and the
ormal vector is not unique.

Next, the case in which the second screw joint becomes a revolute joint and the axes have different directions is considered,
2 = 0, sin 𝛼 ≠ 0. In the case of the conditions (13), 𝑝1 = −𝑎 cos 𝛼∕ sin 𝛼 and the normal vector becomes

𝐧 =
⎛

⎜

⎜

⎝

0
𝑟𝑎∕ sin 𝛼 − 𝑟2 sin 𝛼 sin 𝜗2

0

⎞

⎟

⎟

⎠

, (19)

hich may show singularities if 𝑎 ≤ 𝑟 sin2 𝛼. The condition 𝑠 = 0 means that the contact point is in a plane perpendicular to the
xis of the revolute joint through the point nearest to the first screw axis and the condition 𝑝1 sin 𝛼 + 𝑎 cos 𝛼 = 0 means that the
crew motion of the first joint moves this nearest point along a helix with the revolute joint axis tangent to this helix. The surface
enerated by this motion resembles the shape of a corkscrew with an open kernel if 𝑟 < 𝑎 or a spiral column (Solomonic column).
he parametric description of the surface is

𝐱(𝜗1, 𝜗2) =
⎛

⎜

⎜

⎝

(𝑎 − 𝑟 sin 𝜃2) cos 𝜗1 − 𝑟 cos 𝛼 cos 𝜗2 sin 𝜗1
(𝑎 − 𝑟 sin 𝜃2) sin 𝜗1 + 𝑟 cos 𝛼 cos 𝜗2 cos 𝜗1

𝑝1𝜗1 + 𝑟 sin 𝛼 cos 𝜗2

⎞

⎟

⎟

⎠

. (20)

f the first screw joint becomes a revolute joint too, we must have 𝑎 = 0, the case of the conditions (14), giving rise to a spherical
urface, or cos 𝛼 = 0 with perpendicular axes giving rise to a torus.

If the second joint is a prismatic joint, the angle 𝜗2 has a fixed value and the translation along the axis, 𝑠2 = 𝑠, is the new
oordinate. As the axis may be positioned at an arbitrary place, we can choose 𝑟 = 0. The tangent vectors are now

𝜕𝐱
𝜕𝜗1

(0, 𝑠2) =
⎛

⎜

⎜

𝑠2 sin 𝛼
𝑎

⎞

⎟

⎟

, 𝜕𝐱
𝜕𝑠2

(0, 𝑠2) =
⎛

⎜

⎜

0
− sin 𝛼

⎞

⎟

⎟

. (21)
5

⎝ 𝑝1 ⎠ ⎝ cos 𝛼 ⎠
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Table 1
Surfaces generated by two joints with one degree of freedom and a normal vector transformed into normal vectors.

First joint Second joint Surface Conditions

Prismatic Prismatic Plane Non-parallel axes

Prismatic Revolute Cylinder Parallel axes
Plane Perpendicular axes

Prismatic Screw Cylinder Parallel axes

Revolute Prismatic Cylinder Parallel axes
Plane Perpendicular axes
Cone Oblique intersecting axes

Revolute Revolute Plane Parallel axes
Sphere Intersecting axes
Torus Perpendicular axes

Revolute Screw Cylinder Coincident axes

Screw Prismatic Cylinder Parallel axes
Tangent surface Prismatic joint axis,

tangent to screw line

Screw Revolute Cylinder Coincident axes
Spiral column Revolute joint axis,

tangent to screw line

Screw Screw Cylinder Coincident axes,
unequal pitch

The normal vector in the reference configuration with 𝑠2 = 𝑠 is given by

𝐧 =
⎛

⎜

⎜

⎝

𝑝1 sin 𝛼 + 𝑎 cos 𝛼
−𝑠 sin 𝛼 cos 𝛼
−𝑠 sin2𝛼

⎞

⎟

⎟

⎠

. (22)

As this vector does not change due to a change in 𝑠2 and should remain perpendicular to the first tangent vector, either sin 𝛼 = 0
or 𝑝1 sin 𝛼 + 𝑎 cos 𝛼 = 0. In the former case, the translation has the same direction as the screw axis and the resulting surface is a
cylinder, which is independent of the pitch 𝑝1. In the latter case, the axis of the prismatic joint is tangent to the screw motion at
2 = 0. The parametric representation of the surface is

𝐱(𝜗1, 𝑠2) =
⎛

⎜

⎜

⎝

𝑎 cos 𝜗1 + 𝑠2 sin 𝛼 sin 𝜗1
𝑎 sin 𝜗1 − 𝑠2 sin 𝛼 cos 𝜗1

𝑝1𝜗1 + 𝑠2 cos 𝛼

⎞

⎟

⎟

⎠

. (23)

his surface is a tangent surface, a developable ruled surface, to the helix generated by the screw motion for 𝑠2 = 0. It has a cusp
t 𝑠2 = 0. If the surface is extended towards its self-intersection, it resembles a corkscrew with a closed kernel. In the case the first
crew becomes a revolute joint, 𝑝1 = 0, the axes of the joints are perpendicular and the surface becomes a plane and if additionally
= 0, the surface becomes a circular cone if the axes of the joints are neither parallel nor perpendicular.

Now we investigate the case in which the first screw becomes a prismatic joint. Its motion just adds a translation 𝑠1 to the
-coordinate. The corresponding tangent vector is always (0, 0, 1)T. The condition on the normal vector is that it should always be in

the 𝑥𝑦-plane. This means that the second screw axis must be parallel to the axis of the prismatic joint, or it must be a revolute joint
with an axis perpendicular to the axis of the prismatic joint, or it must be a prismatic joint. In the first case, the resulting surface
is a cylinder, independent of the pitch 𝑝2 and in the last two cases, the surface is a plane.

We can now make an overview of the different cases as shown in Table 1. Apparently, the surfaces that can be generated
are a plane, a cylinder, a cone, a torus, a sphere, a spiral column and a tangent surface to a helix. The plane can be generated
by two prismatic joints, a prismatic joint and a revolute joint with perpendicular axes, a revolute joint and a prismatic joint with
perpendicular axes and two revolute joints with parallel axes. The cylinder can be generated by a prismatic joint and a revolute joint,
or screw, with parallel axes, a revolute joint and a prismatic joint with parallel axes, a revolute joint and a screw with coinciding
axes, a screw and a prismatic joint with parallel axes and a screw with another screw or revolute joint with coinciding axes if
the pitches of the screws are different. A cone can be generated by a revolute joint and a prismatic joint with oblique intersecting
axes. A sphere can be generated by two revolute joints with intersecting axes. A torus can be generated by two revolute joints with
perpendicular non-intersecting axes. A screw and a prismatic joint can generate a tangent surface to a helix if the prismatic joint is
tangent to this helix. A screw and a revolute joint can generate a spiral column if the axis of the revolute joint is tangent to a helix
obtained from the screw motion.

Most pairs of the seven types of surface can be combined with the exceptions of a plane with another plane, which constitute a
planar joint, and a plane with a cylinder, cone or tangent surface to a helix, which give rise to line contact. Furthermore, singular
configurations or double contact may occur for finite relative motions, even if the initial configuration is non-singular with a single
point of contact.
6
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Fig. 5. Spiral column in contact with a cylinder with perpendicular axes.

For five types of surfaces, the equivalent chains are easy to find and mostly known. The cases of a spiral column and a tangent
surface to a helix are not trivial and appear to have been unknown. There are no more surface contacts that can be modelled by a
lower-pair kinematic chain with the proposed structure.

A displacement of the central joint parallel to its axis gives a chain with the same kinematics, which shows that each chain may
model a one-parameter family of higher pairs, which are all equivalent. For a cylinder, sphere, torus and spiral column, this changes
the radius or minor radius, whereas the plane, cone and tangent surface are displaced.

2.3. Special spatial cases

In the case that a surface is in contact with a crest, the surface can be modelled by any of the seven cases of the previous
subsection, whereas the curve of the crest can be generated by a screw, with as special cases a revolute joint and a prismatic joint.
The contact can be represented by two revolute joints with intersecting axes, where one axis is tangent to the curve and the other
is perpendicular to the surface. A plane in contact with a line gives a line contact and has to be excluded. An example is a circular
wheel with a knife-edge rim rolling on a plane.

In the case of a surface in contact with a vertex, the contact is modelled by a spherical joint and the surface can be any surface
generated by any pair of revolute joints, screw joints and prismatic joints. The class of surfaces is therefore larger than in the case
of contact between two smooth surfaces.

In the case of two crests in contact, any lines generated by a lower pair with one degree of freedom can be used. The contact is
modelled by a spherical joint.

2.4. Slip velocities

The relative slip velocity, 𝐬, at the contact point is determined by the joint velocities of the equivalent mechanism. It can be
found by the equation

𝐬 =
5
∑

𝑖=1

[

𝜗̇𝑖(𝐧𝑖 × 𝐫C𝑖 + 𝑝𝑖𝐧𝑖) + 𝑠̇𝑖𝐧𝑖
]

, (24)

where 𝜗̇𝑖 is the rotation rate of Joint 𝑖 if it is a screw or revolute joint, 𝑠̇𝑖 is the joint velocity if it is a prismatic joint; 𝑝𝑖 is the
pitch of a screw, 𝐧𝑖 is the unit vector along the joint axis and 𝐫C𝑖 is the vector from a point on the joint axis to the contact point.
oint 3 has no contribution to the slip velocity vector. The normal component of the slip velocity vector, 𝐬T𝐧3, is zero due to the

construction of the equivalent mechanism. The relative normal spin rate at the contact point, 𝜓 , is given by

𝜓 =
5
∑

𝑖=1
𝜗̇𝑖𝐧T𝑖 𝐧3. (25)

Conditions of a zero slip or normal spin, usually called non-holonomic constraints, can now be easily formulated with the equivalent
mechanisms.

3. Examples of applications

3.1. Elementary examples

The motion of a cylinder in contact with a spiral column is considered. The spiral column has its axis along the global 𝑥-axis,
with parameters normalized with the distance 𝑎, 𝑝1 = 1, 𝑎 = 1, 𝑟 = 0.5

√

2. The cylinder has its axis parallel to the global 𝑦-axis and
has a radius 𝑟 = 0.2

√

2. The spiral column has a prescribed motion along the 𝑥-axis, whereas the cylinder is free to translate along
7
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Fig. 6. Equivalent lower-pair chain (P: prismatic joint; H: screw joint; R: revolute joint); the prismatic joints P0 and P6 define the input and output motion, the
other five joints model the higher pair.

Fig. 7. Position of the contact point, (𝑥contact , 𝑦contact , 𝑧contact ), and the vertical position of the cylinder, 𝑧cylinder , for a spiral column in contact with a cylinder.

the global 𝑧-axis with a fixed value of 0.7 of the 𝑥-coordinate of its axis. In the initial configuration, shown in Fig. 5, the contact
point has the coordinates (0.5,−1.0, 0.5)T. Fig. 6 shows the equivalent model with a prismatic joint P0 for the input and a prismatic
joint P6 for the output motion. The joints H1 and R2 describe the surface of the spiral column and R4 and P5 describe the surface
of the cylinder. Fig. 7 shows the position of the contact point and the 𝑧-coordinate of the centre line of the cylinder as functions of
the 𝑥-displacement of the spiral column. At the lowest position of the cylinder at a column displacement of 3𝜋∕2+ 0.7 ≈ 5.4124, the
𝑥- and 𝑦-coordinates of the contact point moves very fast as is seen from the large value of the derivatives in the graph.

Next, the motion of a sphere in contact with a tangent surface of a helix is considered. The helix has its axis along the global
𝑧-axis and intersects the plane 𝑧 = 0 in 𝑥 = 𝑎, 𝑦 = 0. The parameters normalized with the distance 𝑎 are 𝑝1 = 1, 𝑎 = 1, and the radius
of the sphere 𝑟 = 0.5

√

2. Initially, the centre of the sphere is at (1, 1.5, 2.5)T, see Fig. 8. The equivalent kinematic model is shown
in Fig. 9. The tangent surface can turn about the 𝑧-axis, indicated by the revolute joint R0, and the sphere is constrained to move
either along the 𝑦-axis or along the 𝑧-axis, the latter case being shown by the prismatic joint P6 in the figure. The screw joint H1
and the prismatic joint P2 define the tangent surface and the revolute joints R4 and R5 define the sphere. If the sphere can move
only along the 𝑧-axis, its displacement is proportional to the rotation angle with a coefficient equal to −𝑝1. If the sphere can move
only in the 𝑦-direction, its displacement is proportional to the rotation angle with a coefficient equal to 𝑎.

3.2. Bicycle with toroidal wheels on plane surfaces

A basic bicycle model with wheels with toroidal tyres on plane surfaces is considered, as shown in Fig. 10 [17]. It consists of
four rigid bodies: a frame, a front-fork assembly including the handlebar, and two wheels. These bodies are interconnected by three
ideal revolute joints. The seven configuration coordinates are the coordinates of the rear wheel contact point in the plane surface,
𝑥r and 𝑦r , the yaw angle, 𝜓r , the lean angle of the rear wheel, 𝜑r , the rear wheel pitch angle relative to the frame, 𝜒rf , the steering
angle, 𝛽, and the pitch angle of the front wheel with respect to the front-fork assembly, 𝜒 .
8
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Fig. 8. Sphere in contact with a tangent surface to a helix with the part 0 ≤ 𝜗1 ≤ 𝜋∕2, 𝑠2 ≥ 0 shown.

Fig. 9. Equivalent lower-pair chain (P: prismatic joint; H: screw joint; R: revolute joint); the revolute joint R0 defines the input motion, the prismatic joint P6
defines the output motion and the other five joints model the higher pair.

The kinematic structure of the bicycle with the equivalent mechanisms for the higher-pair contacts is shown in Fig. 11, in which
misalignments of the joint axes of the wheel hubs and the steer are allowed for. Each of the two contacts is modelled by two
prismatic joints for the contact point on the plane surface and a revolute joint for the yaw, which are combined in a planar joint,
E1 for the rear wheel and E2 for the front wheel; the position and yaw angle at the front wheel contact point are described by the
dependent coordinates 𝑥f , 𝑦f and 𝜓f . The plane surface at the front wheel may differ from the surface at the rear wheel. The contact
point at the rear wheel toroidal surface is described by the revolute joints R1 and R2 with perpendicular axes. Their joint angles
are the roll angle 𝜑r and the wheel pitch angle 𝜒r . In the same way, the revolute joint R7 models the dependent roll angle of the
front wheel, 𝜑f , and the revolute joint R6 models the dependent pitch angle of the front wheel, 𝜒f . The revolute joints R3, R4 and
R5 model the joint angles of the bicycle.

The equivalent mechanism can be used to formulate the equations for the dependent pitch angle of the frame of the bicycle,
which can be shown to be reducible to a quartic. The procedure proposed by Hiller and Woernle [5] is used to derive this equation.
A pair of joints in the closed loop is chosen and the loop closure conditions if one follows the loop along the two kinematic chains
that connect the two chosen points are considered. In particular, conditions that are independent of the joint coordinates of the
chosen pair are formulated. In the considered case, the two joints are chosen as E2 and R6 and the two conditions express that the
𝑧-coordinates of the position of joint R6 if it is calculated from the two chains starting from E2 is the same and that the projection
of the joint axis of R6 on the 𝑧-axis is the same. Only the rear wheel pitch angle 𝜒r and the front wheel roll angle 𝜑f appear as
9

unknowns in these equations. These equations are linear in the sines and cosines of these unknown angles and can be written in
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Fig. 10. Bicycle model with coordinates and main dimensions for the symmetric case with toroidal tyres and centred wheel hubs.

Fig. 11. Kinematic structure of the basic bicycle model.

the form
𝑓 (𝜒r ) = 𝑐1 sin𝜒r + 𝑐2 cos𝜒r + 𝑐3 = sin𝜑f ,
𝑔(𝜒r ) = 𝑐4 sin𝜒r + 𝑐5 cos𝜒r + 𝑐6 = cos𝜑f ,

(26)

where 𝑐𝑖 (𝑖 = 1,… , 6) are coefficients depending on known quantities and the configuration coordinates. The roll angle of the front
wheel, 𝜑f , can be eliminated, yielding the equation 𝑓 2(𝜒r ) + 𝑔2(𝜒r ) = 1, together with the relation sin2 𝜒r + cos2 𝜒r = 1. These are
two quadratic equations in the sine and cosine of the rear wheel pitch angle. With the substitutions

sin𝜒r =
2𝑡

1 + 𝑡2
, cos𝜒r =

1 − 𝑡2

1 + 𝑡2
, (27)

where 𝑡 = tan(𝜒r∕2), the tangent of the half-angle, and multiplying out the denominators, a quartic in 𝑡 is obtained in the form

𝑎0𝑡
4 + 𝑎1𝑡3 + 𝑎2𝑡2 + 𝑎3𝑡 + 𝑎4 = 0, (28)

where 𝑎𝑖 (𝑖 = 0, 1, 2, 3, 4) are coefficients that can easily be expressed in terms of the coefficients 𝑐𝑖 in Eq. (26) as

𝑎0 = (𝑐3 − 𝑐2)2 + (𝑐6 − 𝑐5)2 − 1,
𝑎1 = 4𝑐1(𝑐3 − 𝑐2) + 4𝑐4(𝑐6 − 𝑐5),
𝑎2 = 4(𝑐21 + 𝑐

2
4 ) + 2(𝑐23 − 𝑐

2
2 + 𝑐

2
6 − 𝑐

2
5 − 1),

𝑎3 = 4𝑐1(𝑐2 + 𝑐3) + 4𝑐4(𝑐5 + 𝑐6),
𝑎4 = (𝑐2 + 𝑐3)2 + (𝑐5 + 𝑐6)2 − 1.

(29)

In a numerical solution of the quartic, the case 𝑎0 equal or close to zero, which yields a solution for 𝜒r close to 𝜋, needs special
attention. Using the cotangent instead of the tangent solves this singular case if 𝑎4 is not close to zero. Otherwise, an arbitrary shift
in the angle can be used.

Herewith it has been shown that the loop closure condition can be reduced to a quartic for the general case in which the wheels
have toroidal tyre profiles and the three hinges connecting the parts are in a general position. This result expands the work by
10

Psiaki [18] for a symmetric bicycle with knife-edge wheels and the work of Peterson and Hubbard [19] for a symmetric bicycle
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with toroidal wheels. Psiaki formulated the contact conditions as a double root for the intersection of the circle representing the rim
of the wheel and the ground plane. The quartic is not explicitly given, but can be easily derived from the given equation. Peterson
and Hubbard formulated the quartic in the sine of the pitch angle, which may introduce spurious roots.

The case of a symmetric bicycle is worked out, in which the wheel hubs are located at the geometric centres of the toroidal
heels and their axes are perpendicular to the meridional plane of the wheel and to the steering axis. In this case, the hinges R2

and R3 are at the same place with the same orientation. Therefore, their rotation angles appear in the equations as their sum. A
similar consideration is valid for the front wheel, where the hinges R5 and R6 are at the same place with the same orientation. The
road surfaces of the rear and front wheels are the same. In the reference configuration, 𝜒r +𝜒rf = 𝜒f +𝜒f f = 𝜆, the inclination angle
of the steering axis.

The geometric parameters that determine the kinematic problem are the radius of the rear wheel, 𝑟r , the transverse radius of the
toroidal tyre at the rear wheel, 𝜌r , the radius of the front wheel, 𝑟f , the transverse radius of the toroidal tyre at the front wheel, 𝜌r ,
the wheel base, 𝑤, the trail, 𝑐, and the inclination angle of the steering axis, 𝜆. Auxiliary geometric parameters are the perpendicular
distance of the rear-wheel axle to the steering axis, 𝑢r , the perpendicular distance of the front-wheel axle to the steering axis, positive
if the axle is in front of the steering axis, 𝑢f , and the distance between these two perpendiculars, 𝑑,

𝑢r = (𝑤 + 𝑐) cos 𝜆 − 𝑟r sin 𝜆,
𝑢f = 𝑟f sin 𝜆 − 𝑐 cos 𝜆,
𝑑 = (𝑟r − 𝑟f ) cos 𝜆 +𝑤 sin 𝜆.

(30)

It should be noted that for this case, the joint coordinates of the planar joint E1 and the rotation angles of the wheels do not appear
in the loop closure equations; only the roll angle 𝜑r and the steering angle 𝛽 appear. With the rotation matrices for roll, pitch and
steer,

𝐑𝜑 =
⎡

⎢

⎢

⎣

1 0 0
0 cos𝜑r − sin𝜑r
0 sin𝜑r cos𝜑r

⎤

⎥

⎥

⎦

,

𝐑𝜒 =
⎡

⎢

⎢

⎣

cos(𝜒r + 𝜒rf ) 0 sin(𝜒r + 𝜒rf )
0 1 0

− sin(𝜒r + 𝜒rf ) 0 cos(𝜒r + 𝜒rf )

⎤

⎥

⎥

⎦

,

𝐑𝛽 =
⎡

⎢

⎢

⎣

cos 𝛽 − sin 𝛽 0
sin 𝛽 cos 𝛽 0
0 0 1

⎤

⎥

⎥

⎦

,

(31)

the 𝑧-component of the unit vector in the direction of the hinge axis of the revolute joint R5 is the (3,2)-entry of the compound
rotation matrix 𝐑𝜑𝐑𝜒𝐑𝛽 ,

sin𝜑r cos 𝛽 + cos𝜑r sin(𝜒r + 𝜒rf ) sin 𝛽, (32)

which must be equal to sin𝜑f . With subscript indices denoting a specific entry of a rotation matrix, the 𝑧-coordinate of the centre
of the front wheel is

−𝜌r − (𝑟r − 𝜌r )(𝐑𝜑)33 + 𝑢r (𝐑𝜑𝐑𝜒 )31 + 𝑑(𝐑𝜑𝐑𝜒 )33 + 𝑢f (𝐑𝜑𝐑𝜒𝐑𝛽 )31
= −𝜌r − (𝑟r − 𝜌r ) cos𝜑r − 𝑢r cos𝜑r sin(𝜒r + 𝜒rf ) + 𝑑 cos𝜑r cos(𝜒r + 𝜒rf )

+𝑢f
(

sin𝜑r sin 𝛽 − cos𝜑r sin(𝜒r + 𝜒rf ) cos 𝛽
)

,
(33)

which must be equal to −𝜌f −(𝑟f −𝜌f ) cos𝜑f . With these expressions, the coefficients in the two loop closure equations as in Eq. (26)
with 𝜒r replaced by 𝜒r + 𝜒rf are found to be

𝑐1 = cos𝜑r sin 𝛽,
𝑐2 = 0,
𝑐3 = sin𝜑r cos 𝛽,
(𝑟f − 𝜌f )𝑐4 = 𝑢r cos𝜑r + 𝑢f cos𝜑r cos 𝛽,
(𝑟f − 𝜌f )𝑐5 = −𝑑 cos𝜑r ,
(𝑟f − 𝜌f )𝑐6 = −𝑢f sin𝜑r sin 𝛽 + 𝜌r − 𝜌f + (𝑟r − 𝜌r ) cos𝜑r .

(34)

The coefficients in the quartic can be calculated according to Eq. (29), which can be analytically or numerically solved.

3.3. Railway wheelset on a roller rig

A final example considers the motion of a railway wheelset on a drum representing a roller rig [20]. The wheelset consists of an
axle to which two wheels are rigidly connected so that it is rotationally and left–right symmetric, as shown in Fig. 12. The wheels
have tyres with a hollow toroidal shape with a radius of curvature 𝜌w; this radius becomes infinite for conical tyres. The drum has
two toroidal contacting rings attached to its surface and it can rotate about its axis of symmetry. The radius of curvature of the
rings is 𝜌r . The longitudinal motion of the centre of the wheelset is suppressed as a constraint. In the reference configuration, the
11

axes of the wheelset and the drum are parallel and the centre of the wheelset is right above the centre of the drum; furthermore,
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Fig. 12. Railway wheelset on a roller rig.

Fig. 13. Kinematic model of a railway wheelset with conical wheels on a roller rig with toroidal rings.

the contact points are located at a lateral distance 𝑏 from the centre, where the radius of the wheels is 𝑟0, the radius of the rings is
𝑅 and the tangent plane makes an angle 𝛼 with the axis of the wheelset.

A kinematic model for the case in which the wheels are conical is shown in Fig. 13. The prismatic joint 1 allows a vertical motion
of the centre of the wheelset and the prismatic joint 2 describes the lateral displacement 𝑦. The longitudinal displacement of the

entre of the wheelset is suppressed. The revolute joint 3 describes the roll angle 𝜑, the revolute joint 4 the yaw angle 𝜓 and the
evolute joint 5 the pitch angle 𝜒 . The contact point on the right-hand conical wheel is described by the revolute joint 6 and the
rismatic joint 7, whereas the contact point on the right-hand ring of the drum is described by the revolute joints 10 and 9 and the
elative normal rotation at the contact point by the revolute joint 8. The revolute joint 11 describes the rotation of the drum with
he rotation angle 𝜒r . In a similar manner as the joints 6–10, the joints 12–16 describe the contact at the left-hand wheel. There are
6 joints with one joint coordinate each and two closed loops restricting six coordinates each, so the dimension of the configuration
pace is four. The coordinates to describe the configuration are chosen as 𝑦, 𝜓 , 𝜒 and 𝜒r . The pitch angles leave the contact points
ixed in space, so the joint coordinates of the other joints depend on the lateral displacement 𝑦 and the yaw angle 𝜓 .

For the special case in which only a lateral displacement is present, 𝜓 = 0, the kinematics can be easily solved: the only
oordinates that change their values are 𝑦 = 𝑠2, 𝑧 = 𝑠1, 𝜑, 𝑠7, 𝜃9, 𝑠13 and 𝜃15 and the angles 𝜑, 𝜃9 and 𝜃15 have the same magnitude.
losed-form solutions for the dependent coordinates can be obtained for a tangent track [21]. If no-slip conditions at the contact
oints are fulfilled, three independent velocity-constraints are imposed and the system has a single dynamic degree of freedom.

. Conclusions

The problem of finding higher-pair joints that can be modelled by lower-pair joints has been investigated. For the case the
ower-pair joints form a chain of five single-degree-of-freedom joints in which the middle joint is a revolute joint at the contact
12



Mechanism and Machine Theory 191 (2024) 105515J.P. Meijaard

s
w
A
r

p

D

t

D

R

point modelling the relative rotation of the bodies around an axis normal to the contact surface, a classification of surfaces in
contact that can be modelled by this chain has been made. The seven kinds of surfaces that allow such a representation are a plane,
a cylinder, a cone, a torus, a sphere, a spiral column and a tangent surface to a helix. Two-dimensional higher pairs and contacts
between surfaces with discontinuities appear as special cases. The existence of other classes of higher pairs that can be modelled
by lower pair joints by different types of mechanisms remains a subject for further study.

The examples illustrate the usefulness of modelling higher pairs by kinematically equivalent lower pairs for obtaining analytic
olutions and for modelling the systems with standard multibody dynamics software. A kinematic model of a bicycle with toroidal
heels on a flat ground showed that the equation for the pitch angle can be reduced to a quartic for a general asymmetric case.
lso a railway vehicle with toroidal wheel profiles running on a straight track with cylindrical rails or on a roller rig with toroidal
ings could be modelled.

Although analysis has been stressed, the results can also be used to suggest alternative designs for mechanisms containing higher
airs, or to enhance the understanding of mechanisms with higher pairs.
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