
Discrete geometry optimization for quantum
dot devices

Author:
JULIAN SANDERS

Supervisors:
DR. ANTON AKHMEROV
DR. MATTHIAS MÖLLER

DR. KOSTAS VILKELIS
JUAN TORRES LUNA

May 7, 2025

To Mik,

whose beautiful brain did not take to math,
but took to injustice even less

who fought so extraordinarily hard,
for themself and for others

whose battle has come to an end,
and who is finally at peace,
somewhere in the cosmos,

between the sun and the moon,
scattered in the laws of nature

I’m proud of you.

CONTENTS CONTENTS

Contents

Abstract v

Readers guide vi

1. Introduction 1

2. Physics of semiconductor quantum dot devices 2

3. Numerical simulation of quantum dot devices 4
3.1 Modelling the electrostatic potential 5
3.2 Modelling the dot wavefunctions and effective Hamiltonian 9
3.3 Perturbations to the Hamiltonian 11
3.4 Tuning the gate voltages of a device 12
3.5 Modelling shape disorder to the gate geometries 14

4. The geometry optimization algorithm 18
4.1 Algorithm overview 18
4.2 Generation of new gate geometries 18
4.3 Evaluation of new geometries 19
4.4 Parallelization of the algorithm 20

5. Example applications of the algorithm 21
5.1 The characteristics of the ‘naive’ initial double dot device geometry 21
5.2 Geometry optimization results for double dot devices 22

5.2.1 Optimization for disorder sensitivity without connecting wires 22
5.2.2 Optimization for disorder sensitivity with connecting wires 24
5.2.3 Optimization for gate locality without disorder sensitivity 28
5.2.4 Optimization for combinations of disorder sensitivity, gate locality, and

level spacing 29
5.3 Geometry optimization results for triple dot arrays 30
5.4 Stability analysis of optimal solutions 32

6. Performance evaluation of the algorithm 35
6.1 Efficacy of Woodbury updates 35
6.2 Comparison of tuning methods 36
6.3 Speedup due to perturbative sampling of disorder 37
6.4 Overall computational efficiency gains 38

7. Discussion of the used techniques and recommendations for further reseach 39

8. Conclusion 41

References 42

Acknowledgements 45
8.1 Project acknowledgements 45
8.2 Personal acknowledgements 45

Appendices 47

A. Perturbation theory for maximally localized wavefunctions 47

iii

CONTENTS CONTENTS

i Relevance 47
ii Basics of the Wannier transformation matrix W 47
iii The perturbative Wannier operator for multiple projected position operators 47

iv

Abstract

While quantum devices have seen major advancements in recent years, there are still significant
challenges to scaling up their computational power. Geometry optimization techniques pose a
useful tool for tackling these challenges and improving the characteristics of quantum dot devices.

These devices consist of metal gate electrodes on a semiconductor heterostructure. Within the
semiconductor heterostructure, the electron wavefunctions used as the qubits are ‘trapped’ by the
potential induced by these metal gates.

In this work, we have modeled the potential induced by the gates by discretizing the cor-
responding Poisson equation using the finite-volume method. The discretized linear system is
solved with factorization-based solvers, of which we make repeated calls more efficient by ap-
plying the Woodbury identity. The potential is used to solve the Schrodinger equation, of which
the eigenstates are transformed to a maximally localized basis to obtain the dot wavefunctions.
The gate voltages of the device are tuned so the effective Hamiltonian of the dots approaches a
target Hamiltonian. We have modelled the disorder sensitivity of the devices by inducing changes
to the boundary of the gate electrodes, for which the model is evaluated efficiently by utilizing
perturbation theory.

Using this device model, we have implemented a discrete geometry optimization algorithm to
optimize for the gate electrode shapes. This algorithm generates a range of random changes to the
geometry shape and evaluates which one has the best characteristics.

We have demonstrated that this technique is effective for optimizing devices to be less sensitive
to gate shape disorder, to have higher level spacing, and to have more local gate-dot interactions.
We have applied it to double dot devices, triple dot devices, and double dot devices with wires.
The algorithm does not converge to the global minimum of the optimization problem, as different
initial conditions lead to marginally different results.

We have implemented several strategies for the sake of computational efficiency. The use of
the Woodbury identity, perturbation theory for loss function gradients, and linear corrections for
disordered geometries lead to an estimated speedup of more than 62 times.

Since the aim of this project was to be a proof-of-concept for geometry optimization techniques
for quantum devices, we simplified some of the dynamics for computational efficiency or coding
efficiency. We have not modelled the Coulomb repulsion between electrons in different dots,
nor the effects of strain on the system. Additionally, the square-grid discretization of the gate
electrodes has an impact on the resulting geometries.

Nonetheless, we have established that it is possible to apply discrete geometry optimization
techniques to improve the characteristics of modelled quantum dot devices. Moreover, we have
successfully introduced various strategies to improve the computational efficiency of the model.

Readers guide

As this thesis covers the work of a double-degree master’s thesis project in Applied Physics and
Applied mathematics, it incorporates components from both fields. There is significant overlap be-
tween these two aspects of the work: To motivate the mathematical techniques requires explaining
the physical processes, and to describe how the physics is modelled involves giving mathematical
details. It is more sensible to write about both aspects together than to separate them. However,
this report will be read by Mathematicians and Physicists with different backgrounds and research
interests. That is why we provide this reader’s guide to suggest which sections and subsections
will be especially relevant and interesting depending on the reader’s background and interest.

In case you, the reader, have a background in Mathematics, we assume that you will be inter-
ested in how the device is modelled, how the optimization algorithm works and what techniques
have been applied to make the algorithm more computationally efficient. Section 3 dives into the
numerical methods used to model the device. Section 4 explains the discrete geometry optimiza-
tion algorithm. Concerning the techniques applied for computational efficiency, they are explained
in subsections 3.1, 3.3, 3.4 and 4.4. Their efficacy is shown and discussed in section 6. If you are
interested in computational science, the explanation of how the algorithm is parallelized in sub-
section 4.4 could intrigue you. Subsection 5.4, which discusses the convergence of the algorithm
can also be of particular interest.

Several novel techniques have been introduced in this work. In subsection 3.1 it is explained
how we leveraged the Woodbury identity to compute solutions for the Poisson equation for vari-
ous boundary conditions more efficiently. Additionally, we applied perturbation theory to obtain
derivatives of the target function of a minimization procedure, see subsection 3.4. Similarly, per-
turbation theory is used to quickly calculate the effect of shape disorder to the boundary conditions
of the Poisson equation, see subsection 3.5. The application of perturbation theory in this instance
required a novel technique, namely the perturbation theory for Wannier transformations. This
technique is explained in 3.3, with supplementary information in Appendix A.

If you have a background in physics, we presume you will be more interested in what our
algorithm models and how effective it is. A description of the physics of the device is given
in section 2. A detailed description of how the device is modelled can be found in section 3.
The algorithm itself is explained in section 4. There are several possible target quantities that
the algorithm can optimize for. The most important, shape disorder is explained in subsection 3.5.
How the level spacing of the quantum dots and the gate-dot coupling is quantified is also explained
in subsection 3.5. The efficacy of the algorithm is demonstrated for various devices and targets in
section 5.

1 INTRODUCTION

1. Introduction

The field of quantum computing has seen major advancements in the last years, most notably
devices that can perform error correction below the threshold needed to scale up logical qubits
[1, 2]. However, significant challenges remain. In order to build quantum computers that can
outperform classical computers, more work is needed in two essential facets. Primarily, we need
to scale up the number of qubits on a device. Additionally, we need to improve the coherence
time of qubits and the fidelity of gate operations. With a sufficient number of good-quality qubits,
quantum algorithms become possible at scales on which they outperform classical algorithms
[3, 4].

Semiconductor spin qubits are a promising platform for implementing quantum computation
[5]. This is due to the advantages such as scalability [6], long coherence times, fast two-qubit
gates, fault-tolerant operation [7], and established R&D [8]. Moreover, it is possible to integrate
semiconducting qubits on chips containing classical transistor electronics [9]. These advantages
provide a promising outlook regarding the possible qubit numbers and quality of devices imple-
mented with this technology.

On the flip side, there are challenges in manufacturing large numbers of sufficient quality
semiconductor spin qubits. Although the established R&D of the semiconductor industry allows
for the manufacturing of devices with many qubits, the control of those qubits is more challenging
to scale up [10, 11]. Additionally, various sources of disorder cause qubit decoherence, and the
fidelity of the qubit gates is limited by the quality of the materials used [12, 13, 14].

Current lithography techniques offer a unique advantage for semiconductor quantum dot de-
vices; flexibility in the design of the shapes of the gate electrodes. However, state-of-the-art
quantum dot devices are fabricated using rectangular or polygonal gate regions [7].

This poses an interesting question: Could the flexibility in gate design be used to improve
the quality of quantum dot devices?

In this work, we demonstrate that it is worthwhile to implement a discrete shape optimization
algorithm for the gate electrodes of semiconductor quantum dot devices. Moreover, we have
shown numerically that the optimized gate geometries found by our algorithm have improved
characteristics.

1

2 PHYSICS OF SEMICONDUC-
TOR QUANTUM DOT DEVICES

2. Physics of semiconductor quantum dot devices

By fabricating a device with two differently doped layers of semiconductor, a two-dimensional
electron gas (2DEG) is created. On the top layer of this semiconductor stack, metal electrodes
are deposited. Examples of these metal electrodes on devices that have been fabricated by experi-
mentalists are shown in figures 1a, 1b and 1c. When a voltage is applied to these gate electrodes,
they induce an electrostatic potential in their surrounding space. By applying a proper set of gate
voltages to these electrodes, valleys in the electrostatic potential in the 2DEG are formed. These
valleys serve to trap electrons within certain regions, referred to as quantum dots. The spins of
these isolated particles are used to define qubits.

In order to perform quantum algorithms, we not only need to have qubits but also single-qubit
and two-qubit gate operations. In a semiconductor spin qubit device, single-qubit gate operations
are performed by applying microwave pulses to the gates. Two qubit gates are performed by
varying the potential well shapes. By changing the electrostatic potential so the wavefunctions
of two electrons overlap slightly, a two-qubit gate operation is implemented. Due to the Pauli
exclusion principle, the interaction between the two electrons will be different depending on their
spins.

(1a) A colored Scanning
Electron Microscope
(SEM) image of the gate
electrodes of a quadruple
dot device implemented
with a Ge/SiGe het-
erostructure [15].

(1b) A SEM image of a small-footprint
quandruple dot device with visible vari-
ations in gate structure. Implemented
on a 28Si/SiGe heterostructure [16].

(1c) An 8-dot array impmented on a
Ge/SiGe quantum well heterostruc-
ture. The aim of this device was to re-
search the shuttling of electrons and
holes between dots [17].

To get the right potential landscape to have isolated or interacting qubits, the voltages of the
gate electrodes of the device need to be tuned. The most simple approach to finding these tuning
points is to sweep a range of gate voltages and to measure the characteristics of the device. Once a
tuning point has been found that traps electrons, virtual gates are defined by measuring the effect
of changing gate electrode voltages.

When a device is fabricated, its gate electrode shapes will have small defects depending on
the result of the fabrication process. This can be seen to some degree in subfigures 1a and 1c, but
it is most clear in figure 1b. We refer to these defects as ‘shape disorder’ in this work. Due to
this shape disorder, the tuning point of the device will be slightly different from the one without
shape disorder. This deviation from the theoretical tuning point makes it more difficult to tune the
device. Therefore, it is advantageous to design devices to be less sensitive to this shape disorder.

With advances in material technology, other sources of disorder such as charge disorder and
lattice defects are having less and less of an impact on device performance. Shape disorder is more
difficult to remove, as the fabrication accuracy of lithography techniques is limited in resolution.
Given sufficient funds and the right materials, the highest resolution can be that of a 3 nm process
[18]. Regardless of what resolution a lab can achieve, an essential step to scaling up the number

2

2 PHYSICS OF SEMICONDUC-
TOR QUANTUM DOT DEVICES

of qubits is making the device pitch smaller. Hence, the smaller devices will still have a shape
disorder proportional to the total gate size.

Ideally, every gate electrode only controls its corresponding quantum dot. If that were the
case, every virtual gate would simply correspond to changing the voltage of one gate electrode.
However, this perfect gate locality is not possible to achieve, as changing the voltage of one gate
electrode also changes the potential landscape for the dots it is not supposed to target. While
perfect gate or lever arm locality is not achievable, it nonetheless is an interesting quantity to
consider.

To maximize the coherence times of the qubits defined on the device, it is essential to have a
large band gap to the energy levels not used as qubit states. The larger this level spacing is, the less
leakage there will be from the qubit states to higher energy levels. This level spacing corresponds
to the size of the potential well the electrons are trapped in. Narrower potential wells lead to larger
level spacings.

3

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

3. Numerical simulation of quantum dot devices

The ultimate aim of this project is to optimize the gate geometries of quantum dot devices. While
experiments are indispensable in determining the efficacy of device designs, it is not feasible to
use them for geometry optimization due to the time and resources it would take. Hence, we need
to numerically simulate the behaviour of the spin qubit device to evaluate various gate geometries
efficiently. We are interested in quantities such as the device’s sensitivity to shape disorder, the
level spacing of the dot energy levels, and how the gates are coupled to the dot parameters. Hence,
we require our numerical simulation to be able to calculate the values of these parameters.

As was explained in the previous section, the quantum dots are created by trapping electrons in
potential wells in a 2DEG. In order to model the device in a realistic setting, we combine electro-
static simulations with quantum mechanical simulations. Since the interaction between the qubits
is an important quantity, we model the interaction between the dots using their wavefunctions.

Considering our numerical model of the device will be used for geometry optimization, which
involves calling the model many times for different geometries, computational efficiency is impor-
tant. Therefore, we made several assumptions for the sake of better computational performance.

Foremost, we neglect the self-consistency of the electrostatic-Schrodinger equation. That is,
we assumed that the effect of the electrons in the 2DEG on the potential was negligible. To model
these effects we would need to couple the wavefunction and electrostatic models, as the solution
of the wavefunction would impact the shape of the potential and vice versa. Solving this coupled
electrostatic-Schrodinger equation would require more computational resources. Nonetheless, the
wavefunction solutions would not be much different, as we are operating in a regime where we
have few electrons trapped in the potential valleys of a device.

Secondly, we modelled the 2DEG as a two-dimensional plane. A marginally more accurate
technique would be to model it in three dimensions, where the electrons are confined in the third
dimension by the potential at the interface of the doped semiconductors. However, this would
increase the size of the wavefunction model significantly. An essential step of our device model is
tuning the device, as will be explained in section 3.4. This involves modelling the wavefunctions
for many sets of gate electrode voltages. While it is not infeasible to do this with a 3D model
of the 2DEG, the two-dimensional option is a better fit for the proof-of-concept character of this
research project. Moreover, for many materials, the wave function is separable in the z direction.
Therefore, the z-component does not need to be modelled along with the xy-plane component.

Using these assumptions, we define a model of the different semiconductor layers, the 2DEG
plane and the gates. In subfigure 2a and figure 2b the cross sections of this model are plotted. A
three dimensional view, without the depletion gate, is shown in figure 2c.

4

3.1 Modelling the electrostatic potential 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

−200 −100 0 100 200

x [nm]

−
10

0
0

10
0

z
[n

m
]

default D gate P1 gate

P2 gate T gate 2deg

GaAs1 AlGaAs

(2a) A side view of the heterostructure of the mod-
elled device. Note that no gate geometry is defined
yet, but that optimization regions are plotted instead.

−200 −100 0 100 200

x [nm]

−
1
00

0
10

0

y
[n

m
]

default P1 gate P2 gate

T gate

(2b) A top view of yhe initial gate geometries of a
double dot device. For the sake of model simplicity,
the connecting wires have been left out.

−300
−200

−100
0

100
200

300

x [nm] −150

−100

−50

0

50
100

150

y
[n

m
]

−80

−60

−40

−20

0

20

40

60

80

z
[n

m
]

(2c) A three dimentional view of the device heterostructure and gates, with
the depletion gate removed for the sake of visibility.

3.1. Modelling the electrostatic potential

To find the electric potential in the 2DEG, we solve Maxwell’s equation for the electrostatic po-
tential. As the potential will be constant for constant gate voltages, we use a time-independent
form of this equation. This leaves us with a Poisson equation;

∇2ϕ = ρ (3.1)

ϕ(r) = Vi for all r ∈ δΩi for i ∈ {1, ..., ngates} (3.2)

lim
r→∞

ϕ(r) = 0. (3.3)

5

3.1 Modelling the electrostatic potential 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

By substituting the charge density, ρ, we can solve for the electrostatic potential, ϕ. The bound-
ary conditions of this Poisson equation are imposed by the metal regions. The gate shapes are
described by the domains Ωi ⊂ R3 for i = 1, ..., ngates, with boundaries δΩi . The gate voltages
are V ∈ Rngates . There also is a final boundary condition; infinitely far away from the device, the
potential must vanish.

−200 −100 0 100 200

x [nm]

−
50

0
−

4
00

−
30

0
−

2
0
0
−

10
0

0
10

0
20

0
30

0
40

0
50

0

z
[n

m
]

Figure 3: A cross-section of the Voronoi mesh used
to discretize the simulation volume. Note that the
Vorenoi center grid grows more sparse further away
from the device.

The linear nature of this partial differ-
ential equation provides us with a conve-
nient technique: When one wants to solve
the equation for a certain set of gate volt-
ages V, one simply takes the linear super-
position of Green’s functions of the po-
tential of each gate;

ϕ =VDϕD + VP,1ϕP,1+

...+ VT,ndots−1ϕT,ndots−1 (3.4)

Here the ϕD, ϕP,1, ... and ϕT,ndots−1 terms
represent the Green’s potentials for the
different gate electrodes, denoted by the
indices (D), (P, 1), ..., (P, ndots), (T, 1),
... and (P, ndots − 1). The V terms rep-
resent the voltage of their respective elec-
trodes.

Thus, when the potentials for multi-
ple gate voltages need to be evaluated, one
does not need to solve the Poisson equa-
tion for each set of boundary conditions.
This is useful, as tuning the gate volt-
ages involves an optimization routine that
calls the potential solver for many differ-
ent gate voltages, and solving the poten-
tial once is one of the most computation-
ally intensive processes of our algorithm.

Our model uses the Finite Volume
Method to solve equation (3.1). We uti-
lize the Python module Pescado for this
end [19, 20]. While Finite Element and
Finite Boundary methods are more com-
mon for Electromagnetic Field simula-
tions, an advantage of the Finite Volume
Method is that it ensures flux and charge
conservation. The conservation of this
quantity is essential for the stability of the convergence of the self-consistent electrostatic-
Schrodinger equation solver implemented in Pescado. As we neglect the potential induced by
the electrons in the 2DEG, this would not be an issue in our case. Nonetheless, the use of the
Finite Volume Method makes it easier to extend the algorithm proposed in this work to use more
precise potential solvers.

The Finite Volume Method is a method to discretize partial differential equations that relies
on discretizing the domain using cells and using conservation laws derived from the differential
equation to define conservation laws for the cell boundaries. In this instance, we can apply it to
the strong form of the Poisson equation (3.1). When applying the divergence theorem to each cell

6

3.1 Modelling the electrostatic potential 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

individually, we see that∫
Ωi

∇ · (ϵ∇ψ)dV =

∫
Ωi

ρdV for all i (3.5)∑
j∈N(i)

∫
Si,j

ϵ∇ψ · ndS =

∫
Σi

ρdV for all i (3.6)

∑
j∈N(i)

Φi,j = Qi for all i. (3.7)

Here Ωi denotes the interior of cell i, which has surfaces Si,j to its neighboring cells with indices
j ∈ N(i). Qi and Φi,j are variables introduced to denote the total charge in a cell and the flux
through the surface between two cells, respectively.

Figure 4: An example diagram of
Voronoi cells. An example point
i is chosen and is denoted by a
green dot. The centers of the
neighboring cells are shown in red
[20].

To simplify the flux integral, we can approximate the
electrostatic permittivity ϵi,j at the boundary using ϵi,j =
ϵiϵj
ϵi+ϵj

. Moreover, we can approximate the directional deriva-
tive of the potential using the finite difference method; ∇ψ ·
n|i,j ≈ ψj−ψi

||rj−ri|| =
ψj−ψi

di,j
. Here we make use of the new

notation di,j = ||rj − ri||. Note that this aprroximation for
∇ψ ·n|i,j will introduce an error of order O(d2i,j). This leaves
us with a simplified expression for the cell boundary fluxes,

Φi,j ≈
ϵi,jSi,j
di,j

(ϕj − ϕi). (3.8)

We can use this, and the fact that
∑

j∈N(i)Φi,j = Qi for
all i to construct a linear system to solve for the unknown
potentials, ψi. This linear system,

∆ϕ = ρ, (3.9)

will have elements

∆i,j =


0 if j /∈ N(i) nor i ̸= j
ϵi,jSi,j

di,j
if j ∈ N(i)

−∑
j∈N(i)∆i,j if i = j

(3.10)

and
ρi = Qi. (3.11)

Since solving the Poisson equation numerically for an infinite domain would not be feasible,
we approximate the vanishing boundary conditions with a box of Dirichlet boundary conditions
that is much larger than the device itself. We then proceed to discretize the resulting simulation
space using a Voronoi mesh. We use rectangular grids to define the center points of the Voronoi
cells, see figure 3. The equidistant nature of the cell boundaries makes this meshing approach
well-suited to finite-volume methods.

Because we need the potential to be accurate near the 2DEG and the gate electrodes, we
chose a fine grid size within the semiconductor heterostructure and surrounding the gates. For
the sake of computational efficiency, we use larger rectangular grid spacing further away from the
device. Because this limits the number of Voronoi cells, the linear system that results from the
discretization of the Poisson Equation will be smaller. This greatly increases the computational
efficiency, while only slightly lowering the accuracy of the solution in the region of interest.

7

3.1 Modelling the electrostatic potential 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

−200 −100 0 100 200

−
1
20
−

60
0

60
1
20

y
[n

m
]

−
1
.6
−

1
.3
−

1.
0
−

0.
7

φ
[δ
/
e]

−200 −100 0 100 200

x [nm]

−
1
.6
−

0
.9

φ
[δ
/
e]

Figure 5: The electrostatic potential in the 2DEG for a
tuned double dot device with the initial gate geometries.
The lower subfigure is a cross-section of the above plot at
y = 0, which serves to illustrate the double well potential
shape even more clearly than the image plot.

By discretizing the Poisson equa-
tion using the Finite Volume method,
we obtain a linear system. The solu-
tion of this linear system corresponds
to the potentials at the Voronoi cen-
ters, which we can use to find the
electrostatic potential in the 2DEG,
see figure 5. To solve this linear
system, we chose to make use of a
multifrontal factorization algorithm
implemented in the MUMPS pack-
age [21, 22]. We chose this in-
stead of iterative solvers for two rea-
sons: Primarily, for the linear system
size of this proof-of-concept project
the decomposition-based solver is
faster than the iterative solver. This
speedup becomes even more pro-
nounced when considering the fact
that for each gate a Green’s function
potential needs to be calculated. The

MUMPS factorization can be re-used for each gate, but an iterative solver would have to be re-run
to obtain each gate Green’s potential. It is even possible to reuse the factorization of a base linear
system to solve the potential when the gate geometries are slightly different.

The aim of this project is to do a device optimization considering shape disorder. Both updat-
ing a device geometry in a geometry optimization iteration, as well as modeling shape disorder
involve changing the geometry of the gate electrodes slightly. Therefore, much is gained compu-
tationally by having a way to re-use the solver information from the base device potential for these
slightly changed geometries. We have devised a way to do this by making use of the Woodbury
identity [23].

When we change the gate geometries slightly, we change the shape of the boundary of the
Poisson equation. To avoid having to generate a new mesh over the new domain, our discretization
of the system discretizes both the interior space as well as the boundaries. This means that the
gates, which are boundary conditions, are included in the Voronoi mesh.

The Voronoi cells of the discretization (∆) can be separated into three categories: The interior
cells (I), the Neumann boundary sites (N), and the Dirichlet boundary sites (D). The potential
(ψ) is unknown at the interior and Neumann sites, but it is known at the Dirichlet boundary sites
by definition. The charge (ρ) is unknown in the Neumann sites but known in the rest of the
heterostructure. Considering this, we arrange the linear system such that the unknown quantities
are on the left-hand side, and the known quantities are on the right-hand side [20],∆I,I ∆I,N 0I,D

∆N,I ∆N,N 0N,D
∆D,I ∆D,N ID,D

ϕIϕN
ρD

 =

 II,I 0I,N ∆I,D

0N,I IN,N ∆N,D

0D,I 0D,N ∆D,D

 ρIρN
ϕD

 . (3.12)

When a cell is changed from an interior site to a gate electrode site, the column corresponding
to the cell index from the left-hand side matrix is swapped with the one from the right-hand side
matrix. Since this changes the linear system by just one column, we use the Woodbury identity to
update the factorization of the right-hand side matrix [23]. Naturally, this strategy also extends to
geometry changes of several Voronoi cells. However, it will get more computationally expensive
the more sites are changed relative to the geometry of the base factorization.

8

3.2 Modelling the dot wavefunctions and ef-
fective Hamiltonian

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

This Woodbury updating strategy is derived by applying the Woodbury identity to these col-
umn swaps;

A′−1 = (A+WV)−1 = A−1 −A−1W (I + V A−1W)−1V A−1. (3.13)

HereA′ andA denote the left-hand side of the linear system with and without the geometry change.
W ∈ Rn×k and V ∈ Rk×n compose the operations needed to change update A.

As one can see, finding the Green’s potentials of the new device now only involves applying
the base factorization, which takes just O(n2) FLOPS.

3.2. Modelling the dot wavefunctions and effective Hamiltonian

Using the potential in the 2DEG that our Poisson solver provides, we solve the Schrodinger equa-
tion,

− ℏ2

2m∗∇
2ψ(x, y) + ϕ(x, y)ψ(x, y) = Eψ(x, y). (3.14)

This yields wavefunctions, ψk, for certain energy levels Ek. To solve equation (3.14) numeri-
cally, we discretize this PDE using a finite difference scheme. The resulting tight binding model
yields a Hamiltonian of which the eigenvectors and eigenvalues correspond to the eigenstates and
energy levels of the quantum system. Numerically, the eigenvectors can be found quickly using
the Implicitly Restarted Lanczos Method implemented in the eigsh function in scipy [24, 25]. If
less than 1e-6 accuracy is acceptable, the Locally Optimal Block Preconditioned Conjugate Gradi-
ent Method implemented in the scipy function lobpcg can be more computationally efficient,
depending on the number of eigenvectors desired and the Hamiltonian size [25, 26].

Since the qubits in a quantum dot device are defined based on occupancies of single dots,
we need to take our eigenstates to a maximally localized basis. We rotate our eigenbasis to the
maximally localized basis using a Wannier operator, W , which is the result of a simultaneous
diagonalization of the x̂ and ŷ operators projected to the eigenbasis [27, 28]. A simultaneous
diagonalization is a solution to the minimization problem;

min
Wunitary

Tr
{
(W †PxW)2 + (W †PyW)2

}
. (3.15)

The solution to this minimization problem is obtained by solving[
W †PxW,D(W †PxW)

]
+
[
W †PyW,D(W †PyW)

]
= 0 (3.16)

for W , where W must be a unitary ndots × ndots matrix. Here Px = Ψ†
Ax̂ΨA and Px = Ψ†

AŷΨA

are the projected position operators in the subspace ΨA = [|ψ1⟩ , |ψ2⟩ , ..., |ψndots⟩]. The operator
D : Rndots×ndots → Rndots×ndots is an operator that refers to constructing a sparse output matrix with
just the values of the main diagonal of the input matrix.

When the dot centers are located in a line along the x-axis, as is the case for the simple double
dot and triple dot device layouts, the term [W †PyW,D(W †PyW)] in equation (3.16) is zero.
That is due to the shape of the eigenstates, which all have the same y-expectation value. Hence,
regardless of how the basis is rotated by operator W , D(W †PyW) will be a diagonal matrix
with the same value along its diagonal. It therefore commutes with W †PyW . As the equation
to find the Wannier operator is now reduced to [W †PxW,D(W †PxW)] = 0, a solution for W
is the orthonormalized eigenvectors of Px, as when Px = WΛW †, [W †PxW,D(W †PxW)] =
[Λ, D(Λ)] = [Λ,Λ] = 0. This diagonalization of Px is a less computationally complex procedure
than a simultaneous diagonalization of Px and Py, which is why we implemented it for the simple
double and triple dot cases where the dots are located along the x-axis.

9

3.2 Modelling the dot wavefunctions and ef-
fective Hamiltonian

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

−
1
0
0

0
1
0
0

y
[n

m
]

Re(|ψ1〉)

−200 0 200

x [nm]

−
10

0
0

10
0

y
[n

m
]

Re(|ψ2〉)

(6a) The first two eigenfunctions of the initial
double dot device

−
1
0
0

0
1
0
0

y
[n

m
]

Re(|ϕ1〉)

−200 0 200

x [nm]
−

10
0

0
10

0

y
[n

m
]

Re(|ϕ2〉)

(6b) The maximally localized wavefunctions of
the initial double dot device.

Figure 6: The eigenfunctions and maximally localized wavefunctions for the initial ge-
ometry (outlined shape plot) of a double dot device tuned to t = 0.005 delta and
µ1 = µ2 = −1.5 δ. The wavefunctions are shown as blue-red image plots overlaid
on the geometries, which are shown as outlined shape plots.

Using this Wannier operator W , we are able to transform our eigenstate basis to a maximally
localized basis; Φ = ΨW . An example for a simple double-dot device is provided in figure 6.

The effective Hamiltonian of the localized states gives us the chemical potential of their re-
spective dots (µ), as well as the hopping energies between the dots (t). This effective Hamiltonian
is calculated using the Wannier operator (W) and the eigenvalues;

Heff =W †diag{E1, E2, . . . , En}W =



µ1 t1,2 t1,3 · · · t1,n

t1,2 µ2 t2,3
...

t1,3 t2,3 µ3
. . .

...
. tn−1,n

t1,n · · · tn−2,n tn−1,n µn


. (3.17)

Throughout this work, we have used an energy scale of δ for energy and δ/e for voltage and
potential. This particular value was chosen such that the energy, voltage, and potential values can
easily be compared to the lattice hopping in the 2DEG, which is 1 in δ units. Shifting the energy
values to this scale has the added benefit that these values will not be very small, which could
pose issues considering truncation errors of their double datatype. The energy unit δ is defined
according to the smallest lattice spacing in the 2DEG, so

δ =
ℏ2

2meffa2
, (3.18)

where meff is the effective mass of the electrons in the 2DEG and a is the minimal lattice spacing.
As we used a lattice spacing of 10 nm, the energy unit δ = 0.00568654 eV = 9.11084 · 10−22J.

10

3.3 Perturbations to the Hamiltonian 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

This implies a voltage and potential unit of δ/e = 0.00568654V. The voltage unit is the energy
unit divided by the electron charge since the particles for which we are solving the Schrodinger
equation are electrons.

3.3. Perturbations to the Hamiltonian

In subsections 3.4 and 3.5 we will apply perturbations to the model to calculate effective Hamil-
tonian gradients and to approximate the outcome for slightly different potentials. An overview of
the mathematics behind this perturbation theory is provided here.

For simplicity, we will just consider one perturbation to the 2DEG potential, that is ϕ =
ϕ0 + ϵϕ1. Here ϕ is the perturbed potential in the 2DEG, ϕ0 is the unperturbed potential and ϕ1

is the perturbation to the potential with coefficient ϵ. The same concepts also work for different
perturbations to the potential, ϕ = ϕ0 + ϵaϕ1,a + ϵbϕ1,b + As the potential in the 2DEG is
perturbed, the discretization Hamiltonian, also needs to be perturbed;

H = H0 + ϵH1. (3.19)

Here H0 is the unperturbed Hamiltonian, and H1 is the perturbation to the Hamiltonian. As this
perturbation follows from a perturbation to the potential, H1 = diag{ϕ1}.

The lowest energy eigenvectors of H0 can be found using numerical methods. These are
represented by ΦA = [ϕ1, ..., ϕndots]. We proceed to use these as the subspace in which the per-
turbative series H is block diagonalized. That is, we find unitary rotations U ∈ Rn×n, such that
H̃ = U †HU yields a matrix in which the off-diagonal blocks are zero:

H̃ =

[
H̃AA ∅
∅ H̃BB

]
(3.20)

The algorithm implemented in the Pymablock block_diagonalize function in implicit mode
provides these matrices as series [29];

H̃ = H̃0 + ϵH̃1 + ϵ2H̃2 + ... and (3.21)

U = U0 + ϵU1 + ϵ2U2 + (3.22)

These series can be queried up to a desired order. However, the higher-order terms progressively
take more computational time.

The series for matrix H̃AA gives ‘corrections’ to the energies in the interaction matrix Ψ†
A(H0+

ϵH1)ΨA for different orders. However, we are interested in the corrections to the effective Hamil-
tonian, W †Ψ†

A(H0 + ϵH1)ΨAW . In section 3.2 it was outlined how the Wannier matrix W0 can
be found for an unperturbed Hamiltonian. To obtain a series of corrections to the effective Hamil-
tonian akin to H̃AA, we derived a mathematical way to get a series of corrections for W . For the
simple case where the dots are in a line along the x-axis, we drop the Py term in equation (3.16).
Accordingly, we set up our projected position operator in the x direction;

Px =

[
Ψ†
Ax̂ΨA Ψ†

Ax̂(I−ΨAΨ
†
A)

(I−ΨAΨ
†
A)

†x̂ΨA (I−ΨAΨ
†
A)

†x̂(I−ΨAΨ
†
A)

]
. (3.23)

We then rotate this operator to the perturbed eigenvector basis using U from the block diago-
nalization. This is done as we are interested in the projected position operator corrected for the
Hamiltonian perturbation. This yields the expansion;

P̃x = U †PxU = P̃x,0 + ϵP̃x,1 + ϵ2P̃x,2 + (3.24)

The procedure differs when the dots are not in a line, the mathematical steps for this are provided
in appendix A.

11

3.4 Tuning the gate voltages of a device 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

Once we have the expansion for the rotated projected position operator, we can use it to find
the series for the Wannier operator, W . As we are working in the ‘dots in a line’ regime, the
simultaneous diagonalization of equation (3.15) reduces to a diagonalization of the P̃x expansion.
Thus, we are looking for an expansion W =W0 + ϵW1 + ... that diagonalizes P̃x;

P̃AAx =WΛW †. (3.25)

Pymablock can also be used to this end. We first diagonalize matrix P̃AAx,0 to obtain the unitary
matrix W0. Thus, we solve P̃AAx,0 = W0Λ0W

†
0 using eigsh. This W0 is then used to define

series W †
0 P̃

AA
x W0 of which the first term is a diagonal matrix of size ndots. By chaining ndots − 1

block diagonalizations, this series can be fully diagonalized. That is, we have a series of diagonal
matrices Λ and a series of matrixes S such that;

W †
0 P̃

AA
x W0 = SΛS† . (3.26)

Using the series S = I + ϵS1 + ϵ2S2 + ... and matrix W0 the series for W is calculated;

W =W0S =W0 + ϵW1 + ϵ2W2 + (3.27)

The series for the effective Hamiltonian is obtained by multiplying the series for the Wannier
operator, W , and the series for the subspace energies, H̃AA;

H̃eff =W †H̃AAW = H̃eff,0 + ϵH̃eff,1 + ϵ2H̃eff,2 + (3.28)

From this series of the effective Hamiltonian series for µ1, ..., µndots and t1, ..., tndots−1 are obtained
by selecting the relevant element in the matrix.

Using this series for H̃eff we can obtain gradients with respect to the coefficient of the pertur-
bation;

∂H̃eff

∂ϵ
= H̃eff,1. (3.29)

Additionally, we can approximate the effective Hamiltonian for the potential with the perturbation,
H̃eff, up to a certain order of ϵ;

H̃eff = H̃eff,0 + ϵH̃eff,1 +O(ϵ2). (3.30)

These two tools will be applied in the next sections.

3.4. Tuning the gate voltages of a device

We need to be able to control the effective Hamiltonian of the trapped particles in the device to
perform two-qubit gate operations. Therefore, we need to use our model of how the wavefunc-
tions and their effective Hamiltonian relate to the gate voltages to tune the matrix elements of the
effective Hamiltonian independently.

Because we would like to tune the device’s effective Hamiltonian to a certain target, we need to
define a loss function in terms of the gate voltages that measure how close the device is to the target
effective Hamiltonian. In a typical device, the chemical potentials and hopping energy values are
of different orders of magnitude, and they respond differently to changes in gate voltages (linear
versus exponential). Therefore, it makes sense to treat them differently in the tuning loss function.
Thus, we define a tuning loss function consisting of two components;

Ltun(V) = CtLt(t(V)) + CµLµ(µ(V)), (3.31)

Lt(t; t0) =

n−1∑
i=1

ln
(ti
t0

+ ϵ
)2

, (3.32)

Lµ(µ;µ0) =
n∑
i=1

(µi − µ0)
2

t20
[30]. (3.33)

12

3.4 Tuning the gate voltages of a device 3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

Here t0 and µ0 are the target effective Hamiltonian values. ϵ = 10−8 is a term to limit the un-
boundedness of the ln function for values approaching zero. For simplicity, we defined equation
(3.32) for n dots in an array. So the only desired hoppings are those between neighboring dots, re-
ferred to as t1, t2, . . . , tndots−1. Naturally, the same concept of a logarithmic scale can be extended
to work for devices with more complex dot connectivity arrangements. Note that the loss function
components can be combined for different coefficients, which will impact the shape and convexity
of the loss landscape. In figure 7 the tuning loss of a double dot device with a fixed depletion gate
voltage (0 V) is shown using an image plot for Ct = 10000 and Cµ = 1.

−5.0 −4.5 −4.0 −3.5

Plunger gate voltages [δ/e]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

T
u

n
n

el
b

ar
ri

er
vo

lt
ag

e
[δ
/
e]

0 · 100

2 · 105

4 · 105

6 · 105

L
tu

n
in

g (V
P
,V
T

)

Figure 7: The ‘landscape’ of the tuning loss function de-
fined by equation (3.31)

As optimization problems with
fewer parameters are solved faster,
we have found a way to halve the
number of free variables in the tun-
ing problem. Primarily, since shift-
ing all gate voltages (in V) up or
down by the same amount will yield
the same eigenstates but with the
eigenenergies shifted by the same
amount (in eV), we can fix one gate
voltage. The natural choice for this is
the depletion gate, as this one would
be manipulated the least in an ex-
perimental setup. If we would not
do so, the optimum of the tuning
losses would become degenerate, as
we would have more free voltage
variables than tuning loss terms for

effective Hamiltonian values.
Moreover, we chose to constrain our geometries to be symmetric; meaning that the last plunger

gate is a mirror image of the first plunger gate, the first tunnel barrier is a mirror image of
the last tunnel barrier, and so on. When such a symmetric device is tuned to a target effective
Hamiltonian with symmetric dot µ1 = µndots , µ2 = µndots−1... and t1 = tndots−1, ..., we can
reduce the number of free variables in the optimization problem further by coupling the gate
voltages of gates and their symmetric counterpart. Accordingly, we reduce the 2ndots parameter
space V = (VD, VP,1, ..., VP,ndots , VT,1, ..., VT,ndots−1)

T to V = (C, VP,1, ..., VP,1, VT,1, ..., VT,1)
T ,

which only has ndots free variables. This does rely on the assumption that there are no asymmetric
imperfections, which would not be the case for disordered devices.

The gradients of the effective Hamiltonian values with respect to the gate voltages are found
using perturbation theory. Using the potential Green’s functions (ϕI), we can define a perturbation
to the Hamiltonian for each gate of the device;

H ′ = H0 + ϵDdiag{ϕD}+ ϵP,1diag{ϕP,1}+ ...+ ϵT,ndots−1diag{ϕT,ndots−1}. (3.34)

We are interested in how these perturbations affect the µ and t values, as these are the parameters
used in the tuning loss functions (3.31). To obtain series that correct the µ and t values for the
voltage perturbations, we make use of the theory described in section 3.3.

The Jacobian of the energy values (t, µ) is then obtained from their first-order terms of the
effective Hamiltonian series;

∂µ

∂V
= [D0(H

1,D
eff), D0(H

1,P,1
eff), ..., D0(H

1,T,ndots−1
eff)] (3.35)

∂t

∂V
= [D1(H

1,D
eff), D1(H

1,P,1
eff), ..., D1(H

1,T,ndots−1
eff)]. (3.36)

13

3.5 Modelling shape disorder to the gate
geometries

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

Here Dk : Rn×n → Rn−k is an operator that refers to constructing a vector from the elements
of the k-th diagonal of the matrix. As this process only involves diagonalizing the Hamiltonian
once, it is much faster than finding gradients using a finite difference approach. Proceedingly,
the gradient of the effective Hamiltonian values can be combined with the derivatives of the loss
functions (3.31), (3.32), and (3.33) to obtain a gradient for the total tuning loss function [31].

−5.0 −4.5 −4.0 −3.5

Plunger gate voltages [δ/e]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

T
u

n
n

el
b

ar
ri

er
vo

lt
a
g
e

[δ
/
e]

0 · 100

2 · 105

4 · 105

6 · 105

L
tu

n
in

g (V
P
,V
T

)

Figure 8: The steps of the Limited Memory BFGS opti-
mizer from the initial gate voltages to the tuning point.

Using the Jacobian of the tuning
loss function, we apply a gradient-
based optimizer to tune the gate volt-
ages of the device. An example
of how this optimizer steps towards
the tuning point can be seen in fig-
ure 8. In our testing, we found the
Limited Memory BFGS method to
be the fastest [32]. Most notably,
for double and triple dot devices
it outperforms the fastest gradient-
free method, Nelder-Mead [33], and
a Hessian-based method, Newton
Conjugate Gradient [34].

3.5. Modelling shape disorder
to the gate geometries

When a device is fabricated, there is
a certain manufacturing error that in-
troduces disorder in the shape of the gate electrodes. This disorder causes the device’s properties
to be slightly different from the undisordered device. For example, in figure 1b small defects in
the gate electrode shapes are visible.

−200 0 200

x [nm]

−
1
00

0
10

0

y
[n

m
]

−200 0 200

x [nm]

−200 0 200

x [nm]

Figure 9: The inside and outside boundaries of the gates where the disorder pixels are
added or subtracted. The first plot shows the inside boundary of all the gates, the second
plot the outside boundary of the plunger gates, and the third plot shows the outside
boundary of the tunnel barrier.

Since we aim to optimize the gate geometries so the device is least sensitive to this shape
disorder, we need a way to model it. As the gate electrodes are extrusions of two-dimensional
images, we describe their geometries using two-dimensional arrays of pixels. We now model
the disorder by adding or removing voxels from the boundaries of the gate geometries. These
boundary regions are plotted in figure 9 for the initial geometry. To obtain a measure of how
sensitive a certain device is to shape disorder, we loop over all the possible voxels at the gate
boundary that can be added or removed. This process is illustrated in figure 10.

14

3.5 Modelling shape disorder to the gate
geometries

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

Figure 10: A schematic view of how all one-pixel
geometries are generated from some trial device
geometry. The green arrows illustrate how the al-
gorithm iterates over all one-pixel changes to the
geometries. Note that we loop over all the pos-
sible one-pixel boundary modifications, as sug-
gested by the ellipsis.

The tuning points of all these gate geome-
tries with one disorder pixel added or removed
(si) are then compared to the tuning point of
the initial geometry (s0) using the following
formula;

L(s0) =

ndisorder∑
i=1

||V(si)−V(s0)||2. (3.37)

Here V(s) refers to the tuning point of a cer-
tain geometry (s). Note that there is no normal-
ization term (1

ndisorder
) in front of the sum since a

geometry with a larger boundary is more sub-
ject to disorder. We contrived this loss func-
tion ourselves, as we needed a metric that com-
bines the voltage deviation without normaliz-
ing them for the number of disorders. This
would be the case for something like the vari-
ance in the voltage deviations.

Because it would take a lot of computa-
tional resources to evaluate the whole device
model for each disordered geometry, we de-
vised a way to do it more efficiently. As men-
tioned in section 3.1, we use a Woodbury up-
dating strategy to find the potential Green’s
functions quickly by reusing the matrix factor-
ization of the non-disordered device.

Moreover, instead of returning the device
for each disorder voxel, we approximate the
tuning point of the new geometry by making

use of perturbation theory. To this end, we perturb the tight-binding Hamiltonian of the base de-
vice with the difference of the potential of the new device (ϕ∗

disorder) with respect to the old one at
the old tuning point (ϕbase). Additionally, we perturb it with the potential Green’s functions of the
new device;

H ′ =H0 + ϵpotentialdiag{ϕ∗
disorder − ϕbase}

+ ϵDdiag{ϕ∗
D}+ ϵP,1diag{ϕ∗

P,1}+ ...+ ϵT,ndots−1diag{ϕ∗
T,ndots−1}. (3.38)

In section 3.3 it is outlined how a series that corrects µ and t for these perturbations is obtained.
Here, we make use of both the approximation and the gradient finding ‘tricks’ that are possible
using these series. By summing over the disorder potential perturbation terms (ϵpotential and finding
the Jacobian using the Green’s function perturbations (ϵP,1, ..., ϵT,ndots−1) we obtain Jacobians of
the effective Hamiltonian values of the new device at the old tuning point. These Jacobians are
used to correct the gate voltages so the chemical potentials and hopping energies are once again
tuned to their target values;

∂t

∂V
(V −Vtuned) = t− t0

∂µ

∂V
(V −Vtuned) = µ− µ0.

(3.39)

In this system of equations ∂t
∂V and ∂µ

∂V refer to the Jacobians of the chemical potential (µ) and
hopping energy (t) values. These Jacobians are found most efficiently by defining perturbations to

15

3.5 Modelling shape disorder to the gate
geometries

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

the Hamiltonian using the potential Green’s functions, see section 3.1 and 3.3. Vtuned refers to the
tuned gate voltages of the non-disordered device. µ0 and t0 are the target effective Hamiltonian
values, while µ and t are the effective Hamiltonian values of the disordered device at the old tuning
point Vtuned. The system is solved for V, the updated tuning point of the disordered device. With
this perturbative correction approach to updating the tuning point, we do not need to tune the gate
voltages of each disordered geometry. This greatly improves computational efficiency, with only
a slight accuracy sacrifice. The difference in these tuning points for the initial geometry with three
possible one-pixel disorders can be found in figure 12. A more tuning point comparison for all
possible one-pixel disorders is provided in figure 11 in the form of two histograms.

−3.92 −3.90 −3.88 −3.86

Left plunger gate voltage [δ/e]

−
1.

5
4
−

1
.5

2
−

1
.5

0

T
u

n
n

el
b

a
rr

ie
r

vo
lt

a
g
e

[δ
/
e]

Example disorder
to left plunger gate

Undisordered

Sampled disorder

Tuned disorder

−3.92 −3.90 −3.88 −3.86

Left plunger gate voltage [δ/e]

Example disorder
to tunnel barrier

Undisordered

Sampled disorder

Tuned disorder

−3.92 −3.90 −3.88 −3.86

Left plunger gate voltage [δ/e]

Example disorder
to right plunger gate

Undisordered

Sampled disorder

Tuned disorder

0
20

0
4
0
0

60
0

L
tu

n
in

g
(V
P
,V
T

)

Figure 12: A comparison between the non-disordered tuning point, the perturbatively
corrected tuning point, and the re-tuned tuning point for three different one-pixel disor-
ders applied to the initial double dot device geometry

0.000 0.005 0.010 0.015 0.020 0.025 0.030

||V −Vtuned|| [δ/e]

0

5

10

15

20

25

30

fr
eq

u
en

cy

corrected, Ldisorder = 0.1269

re-tuned, Ldisorder = 0.1262

Figure 11: A comparison of the tuning points resulting
from perturbatively correcting the disordered device tun-
ing points and retuning the disordered devices. One can
see that for this geometry the initial geometry and the dis-
order sensitivity metrics are very similar. The similarity of
these two approaches justifies our use of the perturbative
corrections for the sake of computational efficiency.

Other relevant device quantities
include the gate locality and the level
spacing. Optimizing a device geom-
etry for a high gate locality leads to
a device for which the virtual gates
are much closer to single gate manip-
ulations. What makes this an inter-
esting quantity to optimize for is the
fact that the process of finding virtual
gates takes a lot of experimental time
and data, hence making the virtual
gates closer to single gate manipula-
tions, and therefore easier to find is
advantageous.

The level spacing is the energy
gap between the qubit energy levels
and the closest unused wavefunction,
ψn+1. When this gap is too small,
it enables decoherence of the qubit
states. Thus, it is advantageous to
design devices for which this gap is
large.

We formulated loss terms for

16

3.5 Modelling shape disorder to the gate
geometries

3 NUMERICAL SIMULATION
OF QUANTUM DOT DEVICES

these quantities;

L ∂µ
∂V

(V) =

ndots∑
j=1

∑ngates−1
i=1

∂µj
∂VT,i

2
+
∑ngates

i=1
∂µj
∂VP,i

2

∂µj
∂VP,j

2 (3.40)

L ∂t
∂V

(V) =

ndots−1∑
j=1

∑ngates
i=1

∂tj
∂VP,i

2
+
∑ngates−1

i=1
∂tj
∂VT,i

2

∂tj
∂VT,j

2 (3.41)

LdE(V) =
t0

Endots+1 − 1
ndots

∑ndots
i=1 Ei

. (3.42)

Here VD, VP , and VT refer to the depletion gate voltage, the plunger gate voltages, and the tunnel
barrier voltages respectively. In the locality loss terms, L ∂µ

∂V
(V) and L ∂t

∂V
(V, the interactions

between gates their corresponding parameter are in the denominator. The effects of all gates on
that parameter are summed in the numerator. In the ideal case where every parameter is only
affected by its corresponding plunger or tunnel gate, we would see that L ∂µ

∂V
(V) = ndots and

L ∂t
∂V

(V) = ndots − 1.

17

4 THE GEOMETRY OPTI-
MIZATION ALGORITHM

4. The geometry optimization algorithm

4.1. Algorithm overview

Generation of
trial geometries

Tuning of
gate voltages

Tuning point
corrections

Generation
of disorder

Selection of
best geometry

Best geometry

Initial
geometry

0.031

0.029

0.038

Geometry evaluation

Figure 13: A diagram showing the geometry generation and geometry evalution steps.
The substeps of the geometry evaluation for one device are shown. Note that for each
trial geometry the evaluation is repeated.

Our geometry optimization algorithm, which is largely based on greedy optimization, consists
of two essential parts: In the first place, new geometries need to be generated from the current
geometry. Proceedingly, these geometries need to be evaluated in order to find the ‘best’ one.
This ‘best’ geometry is then used as the initial geometry in the next iteration of the algorithm. An
overview of the steps of the algorithm is given in figure 13.

This generation-evaluation cycle is repeated until a certain number of iterations is reached.
Alternatively, one could implement a stopping criterion based on the evaluation loss value.

Our geometry optimization approach matches the experimental constraints. When one would
optimize a device design experimentally, one would first choose a device geometry to test. One
then manufactures it, and then one tunes the gate voltages to get the device to a certain operational
regime. Our algorithm is based on the same principles but can test many more geometries due to
the efficient nature of the device model.

4.2. Generation of new gate geometries

The first step of each iteration of the algorithm is to generate k connected gate geometries from
the initial geometry. We do this by identifying the inside and outside boundary of each gate (see
figure 9), and randomly selecting pixels in the outside boundary to become part of the gate, and in
the inside boundary to be part of the vacuum. This way, the new geometries will be similar to the
initial geometry, albeit with slight boundary changes. An example can be found in figure 14. An
important hyperparameter is the probability of this Bernoulli distribution, which can be set higher
or lower to generate new geometries that are less or more similar to the initial geometry.

This approach mimics a gradient descent algorithm, where one changes the target parameter in
the direction which provides the largest improvement. However, it would be too computationally
expensive to investigate all the possible changes that can be made to the geometry boundary.
Therefore, this space of boundary changes is sampled with the stochastic approach outlined above.
This still provides information on which ‘direction’ of geometry change improves the device.

18

4.3 Evaluation of new geometries 4 THE GEOMETRY OPTI-
MIZATION ALGORITHM

Figure 14: A schematic view of how multiple
trial geometries are generated from some initial
geometry. Note how pixels are added and re-
moved from the gate boundaries while keeping
the entire gate shape connected.

It is important to keep the gate electrodes
connected since the voltage of an unconnected
gate cannot be controlled. Therefore, we im-
plement an additional constraint in the gener-
ation of new geometries; after modifying the
boundary of each gate, a connectivity check is
done. If the geometry is not connected the gate
modification is discarded and reattempted. If
the gate is connected the next geometry will
be modified. While this reattempting strategy
is not the most efficient, the computation time
to generate new geometries is negligible com-
pared to the potential solving and voltage tun-
ing steps of the device model. Hence further
optimization is not strictly needed.

There is another option included in the al-
gorithm code; whether to have the gate connect
to a wire. As devices in the lab will need wires
connecting their gates to control electronics,
one can imagine that it is informative to be able
to know the optimal device layout including
wire connectivity constraints. To ensure wire
connectivity, we set one voxel on the edge of
the optimization region to permanently be part
of a certain gate. As long as the initial geome-
tries are connected to this boundary pixel, the
connectivity constraint will ensure that the ge-

ometries remain connected to their boundary wire voxel. Aside from defining pixels on the bound-
ary of the optimization region to be part of the wire, we add additional leads connecting to the
optimization region in the device model. An example of a simple device with such wires is plotted
in figure 15

4.3. Evaluation of new geometries

To tune the gate voltages of the device with a certain geometry, we use a gradient-based minimizer
on the gate voltages to get the device’s effective Hamiltonian close to target values. This full
procedure is outlined in subsection 3.4. The gate voltage tuning is done for all the geometries that
were generated from the initial geometry. The resulting tuned gate voltages are stored, as they will
be used in the disorder sensitivity and gate locality evaluation. Moreover, the gate voltages of the
‘best’ device will be used as the initial point for the voltage tuning procedure of all devices in the
next iteration of the algorithm.

Once we have tuned devices for each geometry, we iterate over all the possible one-pixel
disorders for each geometry, as outlined in subsection 3.5. The tuning points of every one-pixel
disorder are aggregated into a measure of disorder sensitivity using equation (3.37). This disorder
evaluation is done for each geometry generated in this iteration, so we can compare the disorder
sensitivity of different device geometries.

Aside from optimizing for disorder sensitivity, it is relevant to be able to maximize the level
spacing of a device and to maximize the gate locality. These quantities are calculated using the
tuning point of the non-disordered geometry. The gate locality and level spacing loss are then
calculated using (3.40), (3.41) and (3.42).

19

4.4 Parallelization of the algorithm 4 THE GEOMETRY OPTI-
MIZATION ALGORITHM

−
10

0
0

1
0
0

y
[n

m
]

Re(|ϕ1〉)

−200 0 200

x [nm]
−

1
00

0
1
00

y
[n

m
]

Re(|ϕ2〉)

Figure 15: Plots of the initial device when
the wire connectivity contraints are ap-
plied. The gate geometries are shown as the
oulined shape plots. The tuned wavefunc-
tions for µ1 = µ2 = −1.5 δ and t = 0.005
δ are shown as the blue image plots.

The disorder sensitivity loss and any other loss
terms for optimization targets are then summed.
Whichever geometry has the lowest total loss value
will be selected to be the initial geometry in the next
iteration of the algorithm.

4.4. Parallelization of the algorithm

The evaluation of the geometries is relatively the
most time-consuming step of the algorithm. That
is the case since the evaluation requires tuning and
disorder sampling k different geometries for each
iteration. Conveniently, these k different evaluation
processes lend themself well to being parallelized.

To enable the parallel evaluation of different ge-
ometries, each compute node used will need a fac-
torization of the matrix used to solve for the poten-
tial, see equation (3.12). This matrix will have to be
based on a certain base geometry but can be used
with Woodbury updates (equation (3.13)) to solve
for the potential of other geometries. Since this fac-
torization is a large object, it is not feasible to send it
to all the nodes. It is therefore calculated separately
on each compute node. It can either just be calcu-
lated in the initial iteration for the initial geometry,
or updated after some number of iterations to match
the current best geometry. We have found that reset-
ting the geometry after each iteration is the fastest,
as the Woodbury updates are more efficient when
the geometry they solve for does not differ much
from the geometry the factorization was based on.

The k different trial geometries are scattered to different computational nodes, ensuring an
even distribution of geometries per worker node. In our case, we chose to use k different cores of
the hpc05 cluster, giving each core one geometry to evaluate. The cores proceed to calculate the
potential, tune the device, and calculate the disorder sensitivity, as outlined in section 3. Afterward,
the resulting loss values are sent back to the main computational node to be compared, and the
best geometry is selected.

20

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

5. Example applications of the algorithm

5.1. The characteristics of the ‘naive’ initial double dot device geometry

For the geometry optimization, we use a ‘naive’ device geometry design as the initial geometry.
For the double dot device, this initial geometry consists of two rectangular gate electrodes for the
plunger gates, and a more narrow but taller rectangular tunnel barrier, as can be seen in figure
16. The idea behind this initial design is that this is akin to a simple double dot device used in
experimental settings.

−
10

0
0

10
0

y
[n

m
]

Re(|ϕ1〉)

−200 0 200

x [nm]

−
10

0
0

10
0

y
[n

m
]

Re(|ϕ2〉)

Figure 16: The geometry of the ‘naive’ gate
geometry design. When the gate voltages of
this device are tuned for t = 0.005 δ and
µ1 = µ2 = −1.5 δ, it has the above wave-
functions as its maximally localized basis.

We tuned the initial geometry to the effective
Hamiltonian values of t0 = 0.005 δ and µ1 = µ2 =
−1.5 δ. This corresponds to 28.4 µeV and −8.53
meV. The t0 value was chosen to be less than 1 δ
since a coupling of 1 times the energy scale would
correspond to the hopping between two neighboring
sites in the tight-binding model. Consequently, the
model would produce results that are only 1 lattice
spacing apart, at which point the model would not
be accurate. We found that for µ values that are too
small (0 > µ > 1) the device would simply tune
to produce a shallow potential well that does not
confine the dots. For very large µ values (µ << 1)
the dots become very small since the potential well
needs to be very sharp to house wavefunctions with
such low eigen energies. Hence we chose µ − 1.5
δ. The maximally localized wavefunctions of the
initial device tuned to t = 0.005 δ and µ1 = µ2 =
−1.5 δ are provided in figure 16.

When other chemical potential values are de-
sired, one can simply tune all the gates up or down
by the desired level. This includes changing the
voltage of the depletion gate, which was fixed at 0 V
for the sake of limiting the number of free variables
in the tuning minimization problem. For instance,
if one would like the same wavefunctions as seen in
figure 16 but for µ = 0 δ, one can simply increase
all gate voltages by 1.5 times the voltage scale de-
fined by the lattice spacing.

When tuned, the initial geometry produces a device with an effective Hamiltonian that matches
the target. More importantly, however, we can obtain its disorder sensitivity with the procedure
described in subsection 3.5. This allows us to see if our algorithm can produce device geometries
for which this characteristic is lower. The disorder sensitivity, along with the level spacing and
gate locality of this initial device is provided in table 1.

21

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

Table 1: The characteristic values of a device with the intial gate geometries, as seen in
figure 16. This device has been tuned to µ1 = µ2 = −1.5 δ and t = 0.005 δ.

Variable Value
t [δ] 0.0050
µ1, µ2 [δ] -1.5000
dE [δ] 0.0702
LdE 0.0713
Ldisorder 0.0307
∂t
∂V [e]

(
0.0044 0.0062 0.0062 −0.0168

)
∂µ
∂V [e]

(
0.3742 0.3274 0.0756 0.2227

0.3742 0.0756 0.3274 0.2227

)
V =

(
VD VP,1 VP,2 VT

)T
[δ/e]

(
0.000 −2.847 −2.847 −1.818

)T
5.2. Geometry optimization results for double dot devices

5.2.1. Optimization for disorder sensitivity without connecting wires

We have applied our algorithm to the double dot geometry for 100 iterations, using the weights
CdE = 1 and Cdisorder = 1. This yields the geometry with maximally localized wavefunctions as
seen in figure 17a. The convergence of the loss values per iteration is plotted in figure 17b.

−
10

0
0

10
0

y
[n

m
]

Re(|ϕ1〉)

−200 0 200

x [nm]

−
1
00

0
1
00

y
[n

m
]

Re(|ϕ2〉)

(17a) The resulting device geometry
after 100 iterations of the geometry op-
timization algorithm for k = 100.

0 20 40 60 80 100

Iteration

0.
02

0.
04

0.
06

0.
08

0.
10

L
os

s

CdisorderLdisorder

CdELdE

f(x) = 0.03e−x/5.66 + 0.069

(17b) The convergence of the loss components CdELdE and
CdisorderLdisorder during the optimization algorithm. The exact in-
tial and final values are provided in table 2.

In figure 17a one can observe that the plunger gates no longer assume square shapes, but
instead roughly resemble cardioids. Moreover, the final plunger gate geometries have become
larger than the initial plunger gates. The tunnel barrier in the middle of the final device has a shape
that is narrow in the middle and grows wider further from the center. It is larger compared to its
initial shape.

22

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

From the loss convergence data presented in figure 17b, it becomes evident that the disorder
loss decreases 3 fold during the 100 iterations of the algorithm. In the meantime, the level spacing
loss remains roughly constant. The largest improvement in disorder sensitivity happens in the
first iteration, suggesting that the pixels changed within that iteration have a large impact on the
disorder sensitivity. This first iteration geometry is plotted in figure 16. The exact loss values are
provided in table 2.

Table 2: The initial, first iteration and final loss component values of the geometry opti-
mization given in figure 17b. Note that the disorder sensitivity of the final geometry is
three times less than the intial geometry.

Initial Geometry First iteration Geometry Final Geometry
CdisorderLdisorder 0.0307 0.0224 0.0109
CdELdE 0.0713 0.0699 0.0575

As we aim to demonstrate that the disorder sensitivity has been improved by our geometry
optimization process, we compared the voltage deviations from the tuning point for the final device
to the initial device. This comparison is illustrated in the histogram in figure 18. The histogram
for the final geometry is closer to zero. This demonstrates the fact that the tuning point of the final
device is less sensitive to shape disorder.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

||V −Vtuned|| [δ/e]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

fr
eq

u
en

cy

initial geometry, Ldisorder = 0.0307

final geometry, Ldisorder = 0.0109

Figure 18: A comparison of how disorder affects the tuning point of the initial geometry
and the final geometry. The histogram shows that the spread of tuning point deviations
for the final geometry is smaller than that of the initial geometry.

In figure 19 and table 2 it is clear that the level spacing loss term (CdELdE) does not decrease
much compared to the disorder sensitivity. This fact matches our intuition; devices with a high
level spacing require small dots. Small dot wavefunctions require narrow potential wells. To gen-
erate a narrow potential well, one needs small gate electrodes. Unfortunately, small gate electrodes
are more sensitive to disorder. This is due to the fact that the change in tuning point caused by a
disordered pixel is more pronounced when the total gate area is smaller.

Hence, since we are optimizing for disorder sensitivity and level spacing simultaneously, the
algorithm approaches a balance between the two. From that point, it is unable to reduce the level
spacing loss term without sacrificing disorder sensitivity.

23

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

To demonstrate that our algorithm works for different target tradeoffs between disorder sensi-
tivity and level spacing, we have run the same model forCdisorder = 1, andCdE = 0.1, 1, 10, and 100.
The resulting geometries and their maximally localized wavefunctions are plotted in figure 19.

This plot illustrates the fact that when a higher weight is given to level spacing during the
optimization, the wavefunctions become smaller. The gates that induce the potential wells that
house these wavefunctions are therefore also smaller. In these results, it can also be seen that an
optimization without level spacing terms produces a geometry that fills nearly the entire region
allocated to have its pixels changed during the optimization process.

−100

0

100

y
[n

m
]

CdE = 0.1 CdE = 1

−200 0 200

x [nm]

−100

0

100

y
[n

m
]

CdE = 10

−200 0 200

x [nm]

CdE = 100

Figure 19: The results of 100 iterations of the geometry optimization algorithm for var-
ious CdE weights and Cdisorder = 1. The geometries (outlined shapes) and their maxi-
mally localized wavefunctions at their tuning point (red and blue image plots) are shown.
Note that assigning a larger weight to the level spacing causes the geometry optimization
to converge to devices with a smaller pitch.

5.2.2. Optimization for disorder sensitivity with connecting wires

As discussed in section 4.2, we are able to constrain our geometries to have connecting wires. This
will give more experimentally relevant results, as experimental devices need wires attached to the
gate electrodes to control the voltage levels. Hence, we ran our geometry optimization algorithm
with this constraint. This was repeated for tuning variables µ1 = µ2 = −1.5 δ, t = 0.005 δand for
loss component weights CdE = 1 and Cdisorder = 1. The resulting geometry after 100 iterations is
shown in figure 20a, and the loss convergence during the optimization is plotted in figure 20b.

24

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

−
10

0
0

10
0

y
[n

m
]

Re(|ϕ1〉)

−200 0 200

x [nm]

−
10

0
0

10
0

y
[n

m
]

Re(|ϕ2〉)

(20a) The resulting device geometry
after 100 iterations of the geometry op-
timization algorithm for k = 100 with
wire connectivity contraints. Notice
that the geometries have a similar size
and general shape to those without the
wire connectivity contrains, as seen in
figure 17a

0 20 40 60 80 100

Iteration

0.
0
2

0
.0

4
0
.0

6
0
.0

8
0
.1

0

L
o
ss

CdisorderLdisorder

CdELdE

f(x) = 0.022e−x/8.51 + 0.07

(20b) The convergence of the loss components CdELdE and
CdisorderLdisorder during the optimization algorithm with wire con-
nectivity constraints. Table 3 has the values of these loss terms for
the intial and final device, and compares them to the case without
the wire constraints.

From figure 20a and figure 17a it becomes clear that the resulting geometry with wires does
not differ much from the one without wires. This validates our intuition that running the algorithm
without the wires suffices when exploring geometry parameter spaces. Once a rough layout has
been found, a more detailed analysis with wire constraints can be performed.

When regarding figure 20b and figure 17b, one can notice that the convergence of the opti-
mization with wire constraints is slower than the one without. When fitting a function of the form
f(x) = ae−

x
τ + b to the loss convergence plots, we see that the optimization without the wire

constraints has a decay of τ = 5.663 iterations, versus a decay of τ = 8.512 iterations for the
optimization with wires. The time to convergence is more than 1.5 times slower. This is due to the
fact that adding the wires to the gates breaks the symmetry of the device in the y direction. Before
we were able to use the symmetry of the device without wires to reduce the parameter space of the
geometry optimization problem. Now we must allow for geometries that are not symmetric in the
y direction. Due to this, we must let all 672 pixels in the geometry parameter space vary freely,
instead of only varying the top 336 pixels and mirroring this shape to the bottom half. This larger
parameter space naturally causes the convergence to be slower.

25

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

||V −Vtuned|| [δ/e]

0

5

10

15

20

fr
eq

u
en

cy

initial geometry with wires, Ldisorder = 0.0264

final geometry with wires, Ldisorder = 0.0116

Figure 21: Histograms of the tuning point voltage deviations caused by disorder. These
show that the final device of the optimization with wire contraints is less than a third as
sensitive to gate shape disorder as the intial device.

In table 2 one can see that the device resulting from the optimization of a device with wires
is slightly more susceptible to disorder than the one without wires. The same goes for the level
spacing, which also has a slightly higher loss for the device with the wire attached. This makes
sense, given that the extra constraint of having an additional wire limits which solutions are possi-
ble. Thus, the minima of devices with wire constraints will be worse compared to those of devices
without wires.

Table 3: The loss component values of the intial and final devices for the geometry
optimization with and without wire contrains. The disorder sensitivity for the device
with wires is slightly higher than the one without these contraints.

Initial geometry
without wires

Initial geometry
with wires

Final geometry
without wires

Final geometry
with wires

CdisorderLdisorder 0.0307 0.0264 0.0109 0.0116
CdELdE 0.0713 0.0714 0.0575 0.0582

In table 2 it stands out that the initial geometry with wires is less sensitive to disorder than
the one without wires. This is remarkable since we would expect that the added wire makes
it even more sensitive to disorder, as it introduces more possible sites for disorder. A possible
explanation can be found by considering the gate voltage tuning points of these initial devices.
The development of the gate voltage tuning points is plotted in figure 22. Note that the initial
plunger gate voltage for the device with wires is more than 0.1 higher than for the one without.
We hypothesize that since the device with wires is already tuned to produce a dot even though
there is an appendage to the plunger gate, adding additional pixels to the plunger gate will not
affect the tuning point as much as when the plunger gate is a simple rectangle. The effect on the
tunnel barrier is less, as the added wire to the tunnel barrier gate is further away from the dot
wavefunctions.

26

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

−2.8

−2.7

−2.6
V
P
,1
,

V
P
,2

[δ
/e

]

Plunger gate tuning point

no wire

with wire

0 20 40 60 80 100

Iteration

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

V
T

[δ
/e

]

Tunnel barrier tuning point

no wire

with wire

Figure 22: Plots showing the evolution of the volage components of the tuning point as
the geometry optimization converges. The plunger gate voltages of the device with wire
contrains are intially much closer to the values they assume for the converged device.
This possibly explains why the inital device with wire contraints is less sensitive to
disorder, as seen in table 3

.

In figure 23 the geometries resulting from optimization with wire constraints for a range of
Cdisorder and CdE weights are plotted. The shapes and sizes of these geometries are similar to
those without the wire constraints, see figure 19. This validates our approach of neglecting the
wire constraints when the algorithm is used for more exploratory purposes, with the aim of finding
the rough shapes and separations of gates. However, when the aim is to apply the algorithm to
optimize finer details, a more accurate optimization with the wire constraint is needed. This is
illustrated by the fact that the finer details of the geometries do differ for the two cases. Namely,
in the wire case, the horizontal lines of the tunnel barriers seen in the first two geometries of figure
19 are not present. In the meantime, there are other details such as ’holes’ in the tunnel barrier
gate in the optimal geometries with wire constraints that are not present in the case without the
wires.

27

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

−100

0

100

y
[n

m
]

CdE = 0.1 CdE = 1

−200 0 200

x [nm]

−100

0

100

y
[n

m
]

CdE = 10

−200 0 200

x [nm]

CdE = 100

Figure 23: The converged geometries after 100 iterations of the geometry optimization
algorithm with wire contraints for different CdE weight settings and Cdisorder = 1. Sim-
ilar to the case without wire contraints, figure 23, for higher disorder sensitivity weights
the device gates end up smaller and closer together.

5.2.3. Optimization for gate locality without disorder sensitivity

As mentioned in subsection 3.5, we can choose a maximal gate locality as the optimization target.
This way the interaction between a gate and its corresponding dot will be maximized, while the
effects of the other gates on that dot will be minimized. There are two components to this; max-
imizing the plunger gate and chemical potential (µ) interaction, defined by equation (3.40), and
maximizing the tunnel barriers and the hopping energy (t) interaction, given in equation 3.41. A
different balance in the weights of these two terms will prioritize different aspects of the geome-
tries. Therefore, we have run the geometry optimization for a range of these weights, while setting
the weight of the disorder sensitivity and level spacing losses to zero; Cdisorder = 0, CdE = 0.

28

5.2 Geometry optimization results for double
dot devices

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

−100

0

100

y
[n

m
]

C ∂t
∂V

= 0 C ∂t
∂V

= 10 C ∂t
∂V

= 1000

−200 0 200

x [nm]

−100

0

100

y
[n

m
]

C ∂t
∂V

= 105

−200 0 200

x [nm]

C ∂t
∂V

= 107

−200 0 200

x [nm]

C ∂t
∂V

= 1010

Figure 24: The converged geometries for weights Cdisorder = 0, C ∂µ
∂V

= 1 and C ∂t
∂V

=

0, 10, 1000, 105, 107 and 1010. Notice the jagged, coral like shapes of the C ∂t
∂V

= 1000

and 105 geometries. We see this jagged nature reflected in the results because we have
set the disorder sensitivity weight to zero.

In figure 24 the resulting geometries for different balances in the weights of the two gate local-
ity loss functions are shown. The chosen weights are C ∂µ

∂V
= 1 and C ∂t

∂V
= 0, 10, 1000, 105, 107

and 1010. Note that on the left side of the figure, where the weight of the tunnel barrier gate lo-
cality is small, the tunnel barrier is as narrow as it can be while still being connected to its leads
on the top and bottom. Further to the right, the interaction of the tunnel barrier with the hopping
energy between the dots is prioritized compared to the interaction of the plunger gates and the
chemical potential. Consequently, the devices to the right have tunnel gates that are wider at the
top and bottom. The opposite is true for the plunger gates. The geometries that are optimized with
a higher weight for the plunger gate locality have larger plunger gates, which spread out towards
the edges, away from the dot that they should affect minimally.

From the jagged geometries in figure 24, it becomes clear that not including disorder sensitivity
as an optimization target (Cdisorder = 0) allows the algorithm to converge to devices that do not
have smooth boundaries. Naturally, these geometries are very sensitive to shape disorder. This
highlights the need for optimizing for shape disorder sensitivity when performing such a geometry
optimization.

5.2.4. Optimization for combinations of disorder sensitivity, gate locality, and level spacing

In previous paragraphs, we have shown the results of applying the algorithm to optimize disorder
sensitivity with level spacing and gate locality with level spacing. These targets can also be com-
bined. The results for various weights Cdisorder = 1, C ∂t

∂V
= 0, C ∂µ

∂V
= 0.0001, 0.001, 0.01, 0.1

and CdE = 0.1, 1, 10 are plotted in figure 25.
From these geometries, it becomes evident that increasing the level spacing weight in the

optimization makes for smaller devices, as was discussed in section 5.2.1. Something we see in
this comparison is that increasing the weight of the plunger gate locality (C ∂µ

∂V
) causes the optimal

plunger gates to be larger and more spread out near the left and right edges. Moreover, it decreases
the size of the tunnel barrier gate. This aligns with our expectations: A device with larger plunger

29

5.3 Geometry optimization results for triple
dot arrays

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

gates and a smaller tunnel barrier will have dots that are more affected by their plunger gates than
the tunnel barrier. As the gate locality loss assigns a cost to the effect of the left plunger gate to the
right dot and vice versa, the growth of the plunger gates will be mostly towards the edges. Away
from the other dots, which the plunger should not have a large effect on. Hence, we see that the
larger bulk of these plunger gates is located more to the left and right edges.

−100

0

100

y
[n

m
]

CdE = 0.1
C ∂µ
∂V

= 0.0001
CdE = 0.1
C ∂µ
∂V

= 0.001
CdE = 0.1
C ∂µ
∂V

= 0.01
CdE = 0.1
C ∂µ
∂V

= 0.1

−100

0

100

y
[n

m
]

CdE = 1
C ∂µ
∂V

= 0.0001
CdE = 1

C ∂µ
∂V

= 0.001
CdE = 1

C ∂µ
∂V

= 0.01
CdE = 1
C ∂µ
∂V

= 0.1

−250 0 250

x [nm]

−100

0

100

y
[n

m
]

CdE = 10
C ∂µ
∂V

= 0.0001

−250 0 250

x [nm]

CdE = 10
C ∂µ
∂V

= 0.001

−250 0 250

x [nm]

CdE = 10
C ∂µ
∂V

= 0.01

−250 0 250

x [nm]

CdE = 10
C ∂µ
∂V

= 0.1

Figure 25: The converged geometries for geometry optimizations for the weights
Cdisorder = 1, C ∂t

∂V
= 0, C ∂µ

∂V
= 0.0001, 0.001, 0.01, 0.1 and CdE = 0.1, 1, 10.

5.3. Geometry optimization results for triple dot arrays

The results of a geometry optimization for triple dot devices for disorder sensitivity with various
level spacing weights are plotted in figure 26. The convergence of their loss terms is plotted in
figure 27 Just like in the double dot case, we see that when we include no level spacing constraint
the geometries will fill the entire space provided. When we increase the level spacing weight,
the gates and wavefunctions will become smaller. Moreover, we see that the tunnel barriers and
plunger gates are moved closer to the center, meaning that the pitch of the device is smaller.

A pixel size of 20 nm was used to generate these results, for the sake of computational effi-
ciency. Note that this makes the disorder sensitivity higher by default, as the effect of an extra 20
nm pixel is more than a 10 nm pixel. While there will be fewer sites for disorder, as the boundary
consists of fewer pixels than it would for a 10 nm resolution, the fact that this device is larger, and
has 5 tunable gates instead of 3 makes the disorder sensitivity higher by default. Therefore, the
level spacing terms were also chosen to be higher. We see about the same size gates and disorder
loss component balance for CdE = 1000 in the three-dot case as we saw for CdE = 10 in the
two-dot case (compare figure 26 to figure 19).

30

5.3 Geometry optimization results for triple
dot arrays

5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

−100

0

100

y
[n

m
]

CdE = 0 CdE = 10 CdE = 100 CdE = 1000

−100

0

100

y
[n

m
]

−250 0 250

x [nm]

−100

0

100

y
[n

m
]

−250 0 250

x [nm]

−250 0 250

x [nm]

−250 0 250

x [nm]

Figure 26: A comparison of the converged geometries of a triple dot device for the level
spacing weights CdE = 0, 10, 100, 1000 and Cdisorder = 1. The resultion for the triple
dot device voxels was 20 nm. Once more the results confirm that higher level spacing
weights lead to devices with a smaller pitch and smaller dot wavefunctions.

1

2

3

4

5

6

L
os

s

CdE = 0

CdisorderLdisorder

2

4

6

8

CdE = 10

CdisorderLdisorder

CdELdE

0 20 40 60 80 100

Iteration

5

10

15

20

L
os

s

CdE = 100

CdisorderLdisorder

CdELdE

0 20 40 60 80 100

Iteration

20

40

60

80

100

120

CdE = 1000

CdisorderLdisorder

CdELdE

Figure 27: The convergence of the loss terms during the geometry optimization to the
triple dot devices shown in figure 26. The disorder sensitivity weights for all runs was
Cdisorder = 1, and the level spacing weight were CdE = 0, 10, 100 and 1000. These
different weights clearly have an impact on the compostion of the loss of the final device;
larger level spacing weights lead to larger weighted loss components.

31

5.4 Stability analysis of optimal solutions 5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

5.4. Stability analysis of optimal solutions

In previous sections, we have shown that our geometry optimization algorithm improves upon the
initial device geometry. However, we would like to know whether it finds local or global minima
to the optimization problem. Unfortunately, as this is a discrete optimization problem, and not
a continuous one we cannot take the gradient of the loss function to see if it is zero. Therefore,
we have come up with an ad hoc method to investigate this convergence stability. We generated
different initial geometry shapes and applied the geometry optimization algorithm to compare the
final geometries the algorithm converges to.

These random initial conditions were generated using Perlin noise. In our application of this
random generation, we ensured that the tunnel barrier has a higher probability of having pixels
in the center of the device. Moreover, we ensured that all gates were connected by removing the
smallest ‘islands’ from the shapes. Five of these random initial geometries are plotted in the top
row of figure 28.

The geometries in the second row of figure 28 are the results of performing 100 geometry
optimization iterations on the above initial geometries. This optimization was done using the same
settings as were used to generate the geometry in figure 17a; Cdisorder = 1, CdE = 1, µ0 = −1.5
δ and t = 0.005 δ

32

5.4 Stability analysis of optimal solutions 5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

−100

0

100

y
[n

m
]

Initial Geometries Converged Geometries

0.00

0.05

0.10

0.15

L
os

s

Convergence of loss components

CdisorderLdisorder

CdELdE

−100

0

100

y
[n

m
]

0.00

0.05

0.10

0.15

L
os

s

CdisorderLdisorder

CdELdE

−100

0

100

y
[n

m
]

0.00

0.05

0.10

0.15

L
o
ss

CdisorderLdisorder

CdELdE

−100

0

100

y
[n

m
]

0.00

0.05

0.10

0.15
L

o
ss

CdisorderLdisorder

CdELdE

−200 0 200

x [nm]

−100

0

100

y
[n

m
]

−200 0 200

x [nm]

0 50 100

Iteration

0.00

0.05

0.10

0.15

L
os

s

CdisorderLdisorder

CdELdE

Figure 28: The randomly generated intial geometry shapes and the corresponding ge-
ometries that the optimzation algorithm converges to. Notice the similarities between
the geometries near the center, while the outer edges do assume different shapes. On the
right, the loss convergence for each geometry optimization have been plotted. The exact
final loss values are given in table 4

From the optimized geometries in figure 28, it becomes clear that the algorithm converges
consistently towards some geometrical aspects, while others differ per initial condition. Especially
the ‘hourglass’ shape of the tunnel barrier is reproduced. In the center of each geometry, the
boundary between the plunger gates and the tunnel barrier is nearly the same for each geometry.
However, the left and right edges of the plunger gates are different. The reason for this is that
the dot properties are most dependent on the gate pixels closest to the wavefunction of the dot.
Therefore, the boundary between the tunnel barrier and the plunger gates in the center counts
more toward the total loss than the top and bottom edges of the tunnel barrier. It also counts more
than the left and right edges of the plunger gates. This explains why we see such a vast difference
in the geometries at these edge regions, as opposed to the observed similarity of the center regions.

From the fact that the geometry optimization algorithm does not converge to the same ge-

33

5.4 Stability analysis of optimal solutions 5 EXAMPLE APPLICA-
TIONS OF THE ALGORITHM

ometry for each initial condition, we can conclude that it does not find a global minimum of the
optimization problem after 100 iterations. This can either be due to the fact that there are many
local minima near the optimal geometry, or because the stochastic way we generate new trial ge-
ometries does not exhaust the space of possible changes enough. The first option would mean that
the geometries the optimizer finds are indeed optima, but that better geometries exist. For exam-
ple, the second geometry in figure 28 seems to have converged, judging by the flattening of its loss
convergence plot. However, its properties are worse compared to the first optimized geometry in
the figure, as can be seen in table 4.

Since we do not know if the geometry the algorithm converged to is optimal from the fact that
the convergence plot flattens alone, an alternative explanation could be that the geometry can be
improved through changing its boundary, but that by chance that particular change has not been
sampled.

Table 4: The weighted loss component values of the converged geometries for different
intial geometries, as shown in figure 28

Geometry 1 Geometry 2 Geometry 3 Geometry 4 Geometry 5
Ltotal 0.0687 0.0707 0.0695 0.0686 0.0693
CdisorderLdisorder 0.0111 0.0114 0.0116 0.0117 0.0110
CdELdE 0.0576 0.0593 0.0579 0.0569 0.0583

34

6 PERFORMANCE EVALU-
ATION OF THE ALGORITHM

6. Performance evaluation of the algorithm

In section 3 we introduced several strategies for better computational efficiency, the most impor-
tant of which are the Woodbury updating technique and the use of perturbation theory. In this
section, their efficacy is demonstrated. The subproblems in which their computational times are
compared are chosen to be similar to the full geometry optimization in section 5; using double
dot devices with the same Voronoi cell discretization, tuning parameters, and geometry permuta-
tion parameters. This allows us to estimate how much computational efficiency we have gained
in total without implementing computationally inefficient geometry optimization for the sake of
comparison.

6.1. Efficacy of Woodbury updates

0
.0

0
.2

0.
4

0.
6

0.
8

1.
0

1.
2

T
im

e
[s

]

Refactorization (double)
Woodbury Updates (double)
y = 0.555
y = 0.00236x

0 50 100 150 200 250 300 350 400

Pixels changed w.r.t base geometry

0
.0

0.
2

0
.4

0
.6

0
.8

T
im

e
[s

]

Refactorization (single)
Woodbury Updates (single)
y = 0.444
y = 0.00162x

(29a) A demonstration of how the execution time of the Wood-
bury update strategy scales with the number of pixels changes
w.r.t the geometry of the base factorization. Notice that after
275 ± 2 (single-point precision) or 235 ± 2 (double-point preci-
sion) factorizing the linear system for the new geometry becomes
more economical than the Woodbury updating strategy.

R
ef

ac
to

ri
za

ti
on

(d
ou

b
le

)

R
ef

ac
to

ri
za

ti
on

(s
in

gl
e)

W
o
o
d

b
u

ry
U

p
d

at
e

(d
ou

b
le

)

W
o
o
d

b
u

ry
U

p
d

at
e

(s
in

gl
e)

0
.0

0.
1

0.
2

0.
3

0.
4

0
.5

0
.6

0.
7

0.
8

T
im

e
[s

]

(29b) Box plots of the computational
times for solving for the potential of ge-
ometries. This is done either by refac-
toring the matrix of the linear system
(equation (3.12)), or by applying the
Woodbury Update strategy to re-use a
factorization of the linear system for a
base geometry (equation (3.13)). The
comparison was run in both single-point
and double-point precision. The mean
values are 0.55± 0.03 s and 0.45± 0.03
s for the refactorizations, and 0.12± 0.4
s and 0.08 ± 0.02 s for the Woodbury
updates.

As the Woodbury updating method relies on re-using a factorization of a base geometry to solve
for the potential of different geometries, it gets more computationally intensive depending on how
many pixels of the new geometry differ from the base geometry. We analyzed this for a double dot

35

6.2 Comparison of tuning methods 6 PERFORMANCE EVALU-
ATION OF THE ALGORITHM

device with the same system size as used in section 5. The results are plotted in figure 29a. Here a
further comparison between solving for the potential in single or double point precision is made.

From the intersection of the lines of best fit in figure 29a it becomes clear that when the
new geometry differs too much from the base geometry, it is no longer more efficient to use the
Woodbury updating strategy. This is the case for 261 ± 2 for single-point precision, and 223 ± 2
pixels for double-point precision.

Typically, new geometries during the first iteration of the geometry optimization differ about
33±10 pixels from the initial double dot geometry (see figure 16). While this number is dependent
on the shape of the base geometry and will be different for further iterations of the geometry op-
timization, the comparison of the execution times of both potential solvers for the first iteration is
still indicative of the overall efficiency gains. In figure 29b this first iteration comparison between
the compute times of refactorizing the discretization matrix and using Woodbury updates to re-use
the factorization of a base geometry is shown. Here, 100 different geometries were generated from
the initial geometry, and their potential was solved using a refactorization of the linear system or
a Woodbury update using the factorization of the linear system of the base geometry.

6.2. Comparison of tuning methods

F
D

gr
ad

ie
n
t

P
T

h
es

si
an

&
gr

ad
ie

n
t

P
T

gr
ad

ie
n
t

n
o

gr
ad

ie
n
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
[s

]

N
el

d
er

-M
ea

d

L
-B

F
G

S
-B

F
D

gr
ad

ie
n
t

L
-B

F
G

S
-B

P
T

gr
ad

ie
n
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 30: The right plot shows box plots of the function call times for the tuning loss
function, the tuning loss function with a gradient calculated using the midpoint finite
difference method (FD), and with a gradient obtained by applying Perturbation Theory
(PT). The left plot shows the computational time needed to tune a device using gradient-
free and gradient-based tuning methods. For the gradient-based tuning method, Limited
Memory Broyden – Fletcher – Goldfarb – Shanno (L-BFGS-B) with either a midpoint
finite difference gradient (FD) or a perturbation theory (PT) gradient was used. Even
though the loss function call time with a perturbative gradient is longer than a gradient-
free function call, the gradient-free optimization method Nelder-Mead performs almost
10 times worse than the gradient-based method using the perturbative gradient.

In subsections 3.4 and 3.5 we showed how we use perturbation theory to obtain gradients of
the tuning loss function. This is much faster than using a finite difference method to obtain the
gradients, as is shown in the left subfigure of figure 30. The average function call time for the loss
function and its perturbation theory gradient is only 1.8 times the function call time without the

36

6.3 Speedup due to perturbative sampling of
disorder

6 PERFORMANCE EVALU-
ATION OF THE ALGORITHM

gradient. If we were to use the midpoint method to obtain the gradient, this would take 4.7 times
the time of a single call of the tuning function.

The right subfigure of figure 30 shows that the gradient-based Limited Memory Broyden –
Fletcher – Goldfarb – Shanno algorithm (L-BFGS-B) is much faster than the gradient-free Nelder-
Mead method when applied to the tuning optimization problem. Using the Perturbation Theory
(PT) gradient, it only takes 0.26± 0.03 seconds, compared to the 0.5± 0.05 seconds it takes with
a midpoint finite difference (FD) gradient. The gradient-free Nelder-Mead algorithm tuned the
device in 3± 0.2 seconds.

The comparisons in figure 30 were made by generating 100 new devices from the initial double
dot geometry. There new geometries were tuned to their optimum using the initial geometry
tuning point as their starting voltages. The speed gain of using perturbation theory to obtain
gradients would be even more pronounced for devices with more than two dots. This adds more
free variables to the tuning function, which increases how many function calls are needed to tune
it. Moreover, the midpoint finite difference gradient calls the loss function twice for each free
variable. Due to these two effects, the performance gain of using perturbation theory gradients
would be even more significant for larger devices than it already is for this double dot device
example.

6.3. Speedup due to perturbative sampling of disorder

re
-t

u
n

in
g

P
T

co
rr

ec
ti

on
s

0

25

50

75

100

125

150

175

T
im

e
[s

]

Figure 31: A comparison of the computation
times associated with re-tuning to obtain the tun-
ing points of all the one-pixel disorders, or by
approximating these using first-order corrections
using the gradients obtained with Perturbation
Theory (PT corrections). Note that the execution
time of the perturbative corrections is 23±2 sec-
onds, more than 5 times faster than the 131 ± 7
seconds it takes to re-tune all the disordered ge-
ometries.

When investigating the shape disorder sensi-
tivity of a device, we need to find the tuning
points of many disordered variations of a base
device. The naive approach to this is to re-tune
the gate voltages for each disordered geome-
try. However, this tuning process is still in-
tensive, even with the performance gains from
using gradient-based optimization algorithms.
The computational efficiency of this step in the
algorithm has an especially large impact on the
total computation time since it is repeated for
each disordered geometry for each trial geom-
etry. Using the estimates from section 6.2,
when we run the algorithm for 100 trial ge-
ometries that each has about 33 possible dis-
order pixels, there will be about 3300 calls to
these tuning point corrections. Since it is es-
sential to speed up this process, we have im-
plemented the first-order correction approach
outlined in subsection 3.5. In this section, it is
demonstrated how effective this strategy is for
improving the computation time of sampling
the disorder sensitivity of double dot devices.

Figure 31 shows that there is a speedup of
more than 5 times when using the perturbative
corrections for the gate voltages instead of re-
tuning the gate voltages of the disordered ge-
ometries. The comparison was done for 100
trial geometries generated from the initial double dot geometry. For each trial geometry, all one-
pixel geometries were generated, and their tuning points were found using either first-order cor-
rections or re-tuning.

37

6.4 Overall computational efficiency gains 6 PERFORMANCE EVALU-
ATION OF THE ALGORITHM

6.4. Overall computational efficiency gains

In table 5 the findings from previous subsections are summarized. The comparison in the ta-
ble shows how the potentials solving steps are improved by the use of a single-point precision
Woodbury Update, as opposed to re-factorizing for each geometry in double-point precision. Fur-
thermore, the tuning of gate voltages is done more efficiently by using a gradient-based tuner and
by calculating the gradients using perturbation theory, as opposed to using a gradient-free tuner.
The disorder sensitivity is found by sampling the new tuning points of the roughly 33 disordered
geometries of each trial geometry. This is done efficiently by using linear corrections, leveraging
perturbation theory to obtain the gradients. The naive case would be to re-tune for every disordered
device. In figure 31 this was done using the gradient-based tuner, but the real naive case would
be to use a gradient-free tuner. Therefore, to estimate the computational time of this re-tuning for
disorders with a gradient-free tuner, we multiplied the results of this comparison by how much
slower gradient-free tuning is to get the value in the stared cell (*).

Using these comparisons for the algorithm substeps, we estimate that the total speedup of
the optimization algorithm is about 62 times the ’naive’ unoptimized version. As the mentioned
processes are the major time-consuming steps of each geometry optimization iteration, we are
able to combine them to obtain an estimate of the total iteration time. We did not run the full
unoptimized version of the algorithm, as it would take a lot of computational resources to reach
the same conclusion as we reached now; The optimization strategies are effective. Moreover,
these strategies will be even more effective the more dots and gates are simulated, as the potential
solving, device tuning, and disorder sampling gains all scale with the number of gates and the
system size.

Table 5: An overview of how the major steps of the geometry optimization algorithm
have been sped up. An estimate of the overall efficiency gains is provided in the bottom
row of the table. Note the overall speedup of 62 times, which highlights the need for such
computational strategies to perform geometry optimization within a reasonable time.
The starred cell (*) is a multiple of the timing results from the comparison in figure 31
with the speedup factor of perturbation gradient-based tuning. This was done to obtain
an estimate of the disorder sampling time without gradient-free tuning methods.

Calls per
iteration

Optimized
call time

Unoptimized
call time

Speedup
factor

Solving for the potential
of trial geometries

100 0.08± 0.02 0.55± 0.03 7

Solving for the potential
of disordered geometries

≈ 3300 0.04± 0.01 0.557± 0.003 14

Tuning of gate voltages 100 0.26± 0.03 3.0± 0.2 12
Finding the disorder
sensitivitiy

100 22± 2 1510± 80 * 66

Estimated iteration time 1 2470± 20 153200± 800 62

Other strategies for improving computational efficiency have been implied. We implemented
a ‘memory’ system so the eigenvector solver uses the last known eigenvectors as starting vectors
in the diagonalization algorithm. Moreover, we made use of the fact that the device is symmetric
to make use of the fact that a disordered pixel to the left plunger gate will have the same effect
as the mirror image of that pixel to the right plunger gate. As these optimizations are more trivial
than the ones we investigate in this section, we did not include them in the comparison. However,
if these would be included the total speedup would be several times higher than 62.

38

7 DISCUSSION OF THE USED
TECHNIQUES AND RECOMMEN-

DATIONS FOR FURTHER RESEACH

7. Discussion of the used techniques and recommendations for fur-
ther reseach

As the aim of this project was to demonstrate the utility of geometry optimization algorithms for
quantum dot devices, several simplifications have been made. These simplifications were included
because the alternatives would either be too computationally expensive for a proof of concept
project, or they would take too many hours of effort to implement. Further research could explore
geometry optimization algorithms that do include non-simplified models of the effects explained
in this section.

An important simplification of the numerical model of the device is that we did not include
electron-electron interactions. That is, the potential generated by the electrons in the 2DEG is not
included in the total potential. This means that the Coulomb repulsion between the electrons in
the different dots is not modeled, as well as the effect of the electrons in the dots on the charge
distribution in the gate electrodes. However, as we are modeling a device with a large depletion
gate covering the 2DEG, there will not be many electrons in the 2DEG. This would be different
for a device that has a basin of electrons next to the dots. Since there are few electrons, the effects
of their potential will not be pronounced compared to the potential induced by the gates.

In case one would like to include these effects in the model, the package we used for solving
for the potential, PESCADO, includes an option to solve for the coupled electrostatic-Schrodinger
equation [20]. However, when these effects are included, the total potential would no longer be a
linear superposition of the Green’s potentials of each gate. This concept, which was explained in
section 3.1, is essential to the computational efficiency of the tuning procedure of the device. In
order to tune a device without using this Green’s potential trick, the potential solver would have
to be run for every set of gate voltages in the tuning procedure. Moreover, the gradient of the
tuning point loss would not be able to be obtained using the same perturbation theory approach.
While this does not make tuning a device impossible, the fact that solving for the potential is a
computationally expensive procedure would make the tuning of a single device geometry take a
lot longer.

Another simplification of our model is that we did not model the effects of strain on the system.
As the gate electrodes are not made of the same material as the semiconductor below them, and
these devices are operated at temperatures below 4.3 K, the differences in the shrinking of the
materials cause strain. This induces an extra potential in the 2DEG, as the semiconductor lattice
is strained. Recent research has shown that the effects of strain are significant contributors to the
dynamics of a device [35]. While it would be interesting to model these effects, we did not include
them in this project.

While the use of direct solvers for the potential does not affect the accuracy of the model, it
limits how much the resolution of the model can be scaled up. The matrix factorization approach
we use to solve the linear system requires us to construct the matrix for the linear system in the
first place. Even though this matrix is sparse, its factorization will be dense. This factorized matrix
takes a lot of memory storage. If we would use iterative methods to solve the linear system, we
would not need to store a factorized matrix. We could even use a matrix-free approach in con-
junction with an iterative solver to solve for the potential. While this would free memory, making
higher resolution simulation possible, the Woodbury update technique 3.13 would no longer work,
as there is no factorization or other inverse stored. Thus, it would make larger simulations possible,
but these would also take significantly more computation time.

An interesting further extension of this research would be to see if there would be a way
to re-use the information generated by an iterative solver in a way akin to how we re-use the
factorization with the Woodbury update technique in this work. Perhaps a way can be found to
reuse the Hessenberg matrix generated by the GMRES method for one geometry to speed up the
GMRES iterations for a slightly different geometry.

39

7 DISCUSSION OF THE USED
TECHNIQUES AND RECOMMEN-

DATIONS FOR FURTHER RESEACH

For simplicity, we have not imposed a constraint that forces there to be at least a one-pixel
space between different gates. For experimental devices, this would be essential of course, as
touching gates form a closed circuit, which would mean that they cannot have different voltage
levels and essentially act as one big gate. Moreover, including a ‘spacing between gates’ con-
straint might lead to different results, as it would allow for more possible disorder pixel sites. We
would recommend looking into this in case one wishes to use the algorithm to aid in the design of
experimental devices.

The optimal geometries shown in this work are limited by the way we chose to discretize the
geometries with 10 nm or 20 nm pixels. Consider, for instance, a gate boundary that is 100 nm
long. If this boundary is aligned horizontally and discretized using 10 nm pixels, there will be
20 possible disorder pixels. However, if this same boundary were aligned at a 45-degree angle
with the discretization grid, it would have roughly 15 possible disorder pixels. This makes it
seem as if a gate that has boundaries that align with the discretization grid is more sensitive to
disorder than that same gate but with diagonal boundaries. A possible way to mitigate this effect
would be to use hexagonal pixels to discretize the 2DEG shape. Hexagonal pixels would allow
the discretization of a shape to follow nonhorizontal gate boundaries a bit more closely. Another
way to mitigate this issue would be to model the disorder differently than the ‘pixels at the gate
boundary’ approach used in this work. While this caveat does not invalidate our conclusion about
the potential of geometry optimization algorithms, it highlights the effect that the model choices
have on the ‘optimal’ geometry that will be produced by the algorithm.

In this work, we show that the implemented geometry optimization method is useful when
it comes to designing geometries optimized for certain characteristics. Nonetheless, we do not
compare it to other optimization methods. Future research could compare our Greedy optimization
approach to other discrete geometry optimization techniques, such as PSO or Genetic algorithms.
It could also be compared to optimization techniques that assign a density to each cell value. This
continuous parametrification of the geometry enables continuous and gradient-based techniques
to be applied to the geometry optimization problem.

40

8 CONCLUSION

8. Conclusion

In conclusion, we have implemented a discrete geometry optimization algorithm that successfully
improves the geometry of the gate electrodes of quantum dot devices based on various target char-
acteristics. While it does not find globally optimal solutions for the optimization problem, the
geometries it converges to have better characteristics than ‘naive’ geometry designs with rectan-
gular gates.

We have applied the algorithm to simultaneously minimize the disorder sensitivity while max-
imizing the level spacing of different devices. We have shown it converges to different geometries
for different balances of weights for disorder sensitivity and level spacing. Moreover, we have
demonstrated that the technique works for double dot devices and triple dot devices. For the dou-
ble dot devices, we have included wire connectivity constraints, which produce similar results to
the geometries without these constraints.

In addition to optimizing for disorder sensitivity and level spacing, we have also applied our
algorithm to optimize for gate locality. When the optimization is performed for solely gate locality
terms, the geometries become jagged. This highlights the need for including disorder sensitivity
in the optimization, as jagged devices are too sensitive to errors in the manufacturing process.
When we simply optimize for disorder sensitivity without any of the other terms, the device gates
fill nearly the entire optimization space and the dot wavefunctions become large. As this would
cause leaking to higher energy levels, smaller quantum dots are desired. This can be ensured by
including the level spacing in the optimization target function. Therefore, the ideal target function
consists of disorder sensitivity loss and level spacing loss, with optional gate locality terms. The
tradeoff between these weights should be chosen with the application of the device in mind.

The strategies we have implemented for the sake of computational efficiency have proven
effective. The use of the Woodbury identity, perturbation theory for loss function gradients, and
linear corrections for disordered geometries speed up their respective processes by 14, 12 and 66
times. This amounts to an overall reduction of 62 times the run time of the geometry optimization
algorithm.

As this project was proof-of-concept in nature, we simplified some of the physical dynamics
in our model of the device. While we recommend looking into including these dynamics in fu-
ture research, this does not diminish the conclusion that our geometry optimization algorithm is
effective in improving device characteristics.

All in all, we have demonstrated the potential of discrete geometry optimization algorithms
for improving the design of quantum dot devices. Furthermore, we have successfully introduced
the Woodbury Updating and Wannier Perturbation theory strategies to improve the computational
efficiency of our model.

41

REFERENCES REFERENCES

References

[1] R. Acharya, D. A. Abanin, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ansmann,
F. Arute, K. Arya, A. Asfaw, N. Astrakhantsev, J. Atalaya, R. Babbush et al., Quantum
error correction below the surface code threshold, Nature (2024), doi:10.1038/s41586-024-
08449-y.

[2] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider, D. J. Michalak, A. Bruno,
K. Bertels and L. DiCarlo, Scalable quantum circuit and control for a superconducting
surface code, Phys. Rev. Appl. 8, 034021 (2017), doi:10.1103/PhysRevApplied.8.034021.

[3] P. V. Klimov, A. Bengtsson, C. Quintana, A. Bourassa, S. Hong, A. Dunsworth, K. J.
Satzinger, W. P. Livingston, V. Sivak, M. Y. Niu, T. I. Andersen, Y. Zhang et al., Opti-
mizing quantum gates towards the scale of logical qubits, Nature Communications 15(1),
2442 (2024), doi:10.1038/s41467-024-46623-y.

[4] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings and M. Troyer, Gate-count estimates
for performing quantum chemistry on small quantum computers, Phys. Rev. A 90, 022305
(2014), doi:10.1103/PhysRevA.90.022305.

[5] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57,
120 (1998), doi:10.1103/PhysRevA.57.120.

[6] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner, N. K. Thomas,
Z. R. Yoscovits, K. J. Singh, S. Wehner, L. M. K. Vandersypen, J. S. Clarke et al.,
A crossbar network for silicon quantum dot qubits, Science Advances 4(7), eaar3960
(2018), doi:10.1126/sciadv.aar3960, https://www.science.org/doi/pdf/10.
1126/sciadv.aar3960.

[7] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon and F. Kuem-
meth, Semiconductor qubits in practice, Nature Reviews Physics 3(3), 157 (2021),
doi:10.1038/s42254-021-00283-9.

[8] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg,
G. Klimeck, S. Rogge, S. N. Coppersmith and M. A. Eriksson, Silicon quantum electronics,
Rev. Mod. Phys. 85, 961 (2013), doi:10.1103/RevModPhys.85.961.

[9] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviéville, L. Hutin,
S. Barraud, M. Vinet, M. Sanquer and S. De Franceschi, A cmos silicon spin qubit, Nature
Communications 7(1), 13575 (2016), doi:10.1038/ncomms13575.

[10] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R. Ishihara, A. Morello,
D. J. Reilly, L. R. Schreiber and M. Veldhorst, Interfacing spin qubits in quantum
dots and donors—hot, dense, and coherent, npj Quantum Information 3(1), 34 (2017),
doi:10.1038/s41534-017-0038-y.

[11] F. Borsoi, N. W. Hendrickx, V. John, M. Meyer, S. Motz, F. van Riggelen, A. Sammak, S. L.
de Snoo, G. Scappucci and M. Veldhorst, Shared control of a 16 semiconductor quantum dot
crossbar array, Nature Nanotechnology 19(1), 21 (2024), doi:10.1038/s41565-023-01491-3.

[12] N. Piot, B. Brun, V. Schmitt, S. Zihlmann, V. P. Michal, A. Apra, J. C. Abadillo-Uriel,
X. Jehl, B. Bertrand, H. Niebojewski, L. Hutin, M. Vinet et al., A single hole spin
with enhanced coherence in natural silicon, Nature Nanotechnology 17(10), 1072 (2022),
doi:10.1038/s41565-022-01196-z.

42

https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1038/s41467-024-46623-y
https://doi.org/10.1103/PhysRevA.90.022305
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1126/sciadv.aar3960
https://www.science.org/doi/pdf/10.1126/sciadv.aar3960
https://www.science.org/doi/pdf/10.1126/sciadv.aar3960
https://doi.org/10.1038/s42254-021-00283-9
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1038/ncomms13575
https://doi.org/10.1038/s41534-017-0038-y
https://doi.org/10.1038/s41565-023-01491-3
https://doi.org/10.1038/s41565-022-01196-z

REFERENCES REFERENCES

[13] V. Lordi and J. M. Nichol, Advances and opportunities in materials science for scalable
quantum computing, MRS Bulletin 46(7), 589 (2021), doi:10.1557/s43577-021-00133-0.

[14] N. P. de Leon, K. M. Itoh, D. Kim, K. K. Mehta, T. E. Northup, H. Paik, B. S.
Palmer, N. Samarth, S. Sangtawesin and D. W. Steuerman, Materials challenges and
opportunities for quantum computing hardware, Science 372(6539), eabb2823 (2021),
doi:10.1126/science.abb2823, https://www.science.org/doi/pdf/10.1126/
science.abb2823.

[15] N. W. Hendrickx, W. I. L. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo, R. N. Schouten,
A. Sammak, G. Scappucci and M. Veldhorst, A four-qubit germanium quantum processor,
Nature 591(7851), 580 (2021), doi:10.1038/s41586-021-03332-6.

[16] M. Meyer, C. Déprez, I. N. Meijer, F. K. Unseld, S. Karwal, A. Sammak, G. Scap-
pucci, L. M. K. Vandersypen and M. Veldhorst, Single-electron occupation in quan-
tum dot arrays at selectable plunger gate voltage, Nano Letters 23(24), 11593 (2023),
doi:10.1021/acs.nanolett.3c03349.

[17] T.-K. Hsiao, P. Cova Fariña, S. D. Oosterhout, D. Jirovec, X. Zhang, C. J. van Diepen,
W. I. L. Lawrie, C.-A. Wang, A. Sammak, G. Scappucci, M. Veldhorst, E. Demler et al.,
Exciton transport in a germanium quantum dot ladder, Phys. Rev. X 14, 011048 (2024),
doi:10.1103/PhysRevX.14.011048.

[18] G. O’Sullivan, B. Li, R. D’Arcy, P. Dunne, P. Hayden, D. Kilbane, T. McCormack,
H. Ohashi, F. O’Reilly, P. Sheridan, E. Sokell, C. Suzuki et al., Spectroscopy of highly
charged ions and its relevance to euv and soft x-ray source development, Journal of Physics
B: Atomic, Molecular and Optical Physics 48(14), 144025 (2015), doi:10.1088/0953-
4075/48/14/144025.

[19] P. Armagnat, A. Lacerda-Santos, B. Rossignol, C. Groth and X. Waintal, The self-consistent
quantum-electrostatic problem in strongly non-linear regime, SciPost Phys. 7, 031 (2019),
doi:10.21468/SciPostPhys.7.3.031.

[20] C. G. A. Lacerda-Santos and X. Waintal, Electrostatics in semiconducting devices III : The
PESCADO open source library (in preparation) (2026).

[21] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal
solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Appli-
cations 23(1), 15 (2001), doi:10.1137/S0895479899358194, https://doi.org/10.
1137/S0895479899358194.

[22] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid scheduling
for the parallel solution of linear systems, Parallel Computing 32(2), 136 (2006),
doi:https://doi.org/10.1016/j.parco.2005.07.004, Parallel Matrix Algorithms and Applica-
tions (PMAA’04).

[23] M. A. Woodbury, Inverting modified matrices, Princeton University, Princeton, NJ, Statisti-
cal Research Group, Memo. Rep. no. 42, (1950).

[24] D. Calvetti, L. Reichel and A. Sorensen, An implicitly restarted Lanczos method for large
symmetric eigenvalue problems, Electronic Trans. Numer. Anal. 2, 1 (1994).

[25] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., SciPy 1.0: fundamental algorithms
for scientific computing in Python, Nature methods 17(3), 261 (2020), doi:10.1038/s41592-
019-0686-2.

43

https://doi.org/10.1557/s43577-021-00133-0
https://doi.org/10.1126/science.abb2823
https://www.science.org/doi/pdf/10.1126/science.abb2823
https://www.science.org/doi/pdf/10.1126/science.abb2823
https://doi.org/10.1038/s41586-021-03332-6
https://doi.org/10.1021/acs.nanolett.3c03349
https://doi.org/10.1103/PhysRevX.14.011048
https://doi.org/10.1088/0953-4075/48/14/144025
https://doi.org/10.1088/0953-4075/48/14/144025
https://doi.org/10.21468/SciPostPhys.7.3.031
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

REFERENCES REFERENCES

[26] A. V. Knyazev, Convergence rate estimates for iterative methods for a mesh symmetric
eigenvalue problem (1987).

[27] N. Marzari, I. Souza and D. Vanderbilt, An introduction to maximally-localized Wannier
functions, Psi-K newsletter 57, 129 (2003).

[28] G. H. Wannier, The Structure of Electronic Excitation Levels in Insulating Crystals, Phys.
Rev. 52, 191 (1937), doi:10.1103/PhysRev.52.191.

[29] I. Araya Day, S. Miles, H. K. Kerstens, D. Varjas and A. R. Akhmerov,
Pymablock: an algorithm and a package for quasi-degenerate perturbation theory,
doi:10.48550/arXiv.2404.03728 (2024), 2404.03728.

[30] S. R. Kuppuswamy, H. Kerstens, C.-X. Liu, L. Wang and A. Akhmerov, Impact of disorder
on the distribution of gate coupling strengths in a spin qubit device (2022), 2208.02190.

[31] M. Skorski, Chain rules for hessian and higher derivatives made easy by tensor calculus
(preprint) (2019), doi:10.48550/arXiv.1911.13292.

[32] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Mathematical Programming 45(1), 503 (1989), doi:10.1007/BF01589116.

[33] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7, 308
(1965).

[34] T. A. Straeter, On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton
Minimization Methods to an Infinite Dimensional Hilbert Space with Applications to Optimal
Control Problems, Dissertation, North Carolina State University (1971).

[35] J. C. Abadillo-Uriel, E. A. Rodríguez-Mena, B. Martinez and Y.-M. Niquet, Hole-spin
driving by strain-induced spin-orbit interactions, Physical Review Letters 131(9) (2023),
doi:10.1103/physrevlett.131.097002.

44

https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.48550/arXiv.2404.03728
2404.03728
2208.02190
https://doi.org/10.48550/arXiv.1911.13292
https://doi.org/10.1007/BF01589116
https://doi.org/10.1103/physrevlett.131.097002

8.1 Project acknowledgements REFERENCES

Acknowledgements

8.1. Project acknowledgements

First and foremost, I am grateful for the support of my supervisors, Anton, Juan, and Matthias
during this project. I appreciate that they took the time out of their busy schedules for our meetings
and that they put in an effort to answer my questions. I am glad that they humored my own ideas,
as well as that they provided suggestions and feedback based on their experience.

During this project, it was useful to be able to rely on Anton and Juan’s input in the Mattermost
channel. Their engagement with the project exceeded my expectations of thesis supervision. More
specifically; I’d like to thank Juan for our discussions about modeling devices during the start of the
project. These discussions provided the context that shaped what the project would become. While
Kostas finished his PhD halfway through the project, it was nice to experience his contagious
enthusiasm while brainstorming ways to tackle the Woodbury Updates and Wannier Perturbation
Theory.

Matthias’ calm outlook on the project was helpful. I enjoyed updating him about the project
and discussing things more abstractly and top-down. Even though supervising joint thesis projects
is different from what they are used to, I am glad Matthias and Anton were mindful of the fact that
there were more project stakeholders than usual.

I want to thank all the members of the Quantum Tinkerer group for their input. It was a privi-
lege to be part of their research community for a while. In particular, I am grateful to Isodora for
taking the time to introduce me to Wannier transformation matrices. Moreover, Hugo’s templates
for matters such as the project notes webpage and the Gitlab CI were very useful. Moreover, while
I was too busy bouldering with other people for most of the time, it was fun to join the group
bouldering sessions on several occasions.

This project builds on some great packages, and I’d like to thank their developers for their
work. The most significant of which is PESCADO [20]. Antonio Lacerda and the rest of the
Grenoble team built a great package, and I hope to see it flourish in future research. The potential
solving was done using the MUMPS package, which Anton wrapped to make the python library
python-mumps [21]. It was a huge time save that he added support for single and double
datatypes instead of only complex128. It was also a great advantage to be able to use Pymablock
for the perturbation theory and to be able to ask questions to the developers directly [29].

Last but not least, I would like to thank the lecturers and teachers I had over the years. Thanks
to them, I had the information necessary to comprehend the concepts in this project.

8.2. Personal acknowledgements

On a more personal note, I am grateful for the support my parents have given me during this project
and the rest of my studies. It is great that they’ve supported my various interests since childhood.
I also appreciate my friends and other connections for helping me see the colors in life.

I am immensely grateful to all those who supported me in the months around Mik’s passing.
Especially Linde, who helped me make some good memories in a difficult time. As well as my
sister Andrea, who came to support me during the toughest day of my life. I am happy to know
Pien, who I can always call when something is up. I am grateful for Helma, whose calls made me
feel like my experience is understood. I would like to thank my mother, who made sure to check
in with me, and my father, who was always prepared to help me get things in order. I also enjoyed
the philosophical chats with Tom, and the chill calls with Alex. Moreover, sharing the grief over a
loved one with Liv, Brecht, Didi and Mik’s family made it a bit lighter.

I am also fortunate to be able to access therapists and other mental health professionals during
this time. I appreciate them for doing such complex work.

45

8.2 Personal acknowledgements REFERENCES

Thanks all!
- Julian

46

A PERTURBATION THEORY FOR MAX-
IMALLY LOCALIZED WAVEFUNCTIONS

Appendices

A. Perturbation theory for maximally localized wavefunctions

i. Relevance

This appendix serves as supplementary material for the section on perturbation theory, subsection
3.3. It explains how a perturbative series for the Wannier transformation matrix is obtained from
multiple projected position operators.

ii. Basics of the Wannier transformation matrix W

The purpose of the Wannier transformation matrix is to take a basis of wavefunctions to a maxi-
mally localized basis. The Wannier transformation matrix is the solution to a minimization prob-
lem, the problem corresponds to a simultaneous diagonalization of non-commuting matrixes. In
the event that there is only one projected position operator, the solution can be found by diago-
nalizing this operator. However, when there are projected position operators in multiple directions
one needs to diagonalize these non-commuting matrices simultaneously, which is a more complex
problem that will be explained below.

For multiple projected position operators, the solution of the minimization problem (3.15) can
be found by setting the gradient of the cost function to zero.

Given projected position operators Pi (for i = x, y, z for example) the transformation matrix
to a maximally localized wavefunction basis can be found by solving

G(W) =
∑
i

[
Ri, D(Ri)

]
= 0

Where Ri =W †PiW . Here W must be unitary, so subject to the constraint W †W =WW † = I .
The D operator takes the diagonal values of its input matrix and returns a diagonal matrix with
just these values.

iii. The perturbative Wannier operator for multiple projected position operators

The unperturbed Wannier operator is found from the simultaneous diagonalization. Proceeding,
the perturbative terms are found using the approach outlined below;

Introduction of Notation:
⟨A,B⟩ = [A,D(B)]

We wish to find unitary matrix W ∗ such that G∗(W ∗) = 0 Here G∗ is based on the projected
position operators:

P ∗
i = Pi,0 + ϵPi,1 + ϵ2Pi,2 + . . .

We can drop the i index for convenience, so:

P ∗ = P0 + ϵP1 + ϵ2P2 + . . .

We can expand our new solution, W ∗ as:

W ∗ =W0(I + ϵW1 + ϵ2W2 + . . .)

Where W0 is the unperturbed solution. So G(W0) = 0 We can define:

R∗ = (W ∗)†PW ∗

47

iii The perturbative Wannier operator for mul-
tiple projected position operators

A PERTURBATION THEORY FOR MAX-
IMALLY LOCALIZED WAVEFUNCTIONS

R∗ = (I + ϵW1 + ϵ2W2 + . . .)†W †
0 (P0 + ϵP1 + ϵ2P2 + . . .)W0(I + ϵW1 + ϵ2W2 + . . .)

R∗ = (I + ϵW1 + ϵ2W2 + . . .)†(R0 + ϵR1 + ϵ2R2 + . . .)(I + ϵW1 + ϵ2W2 + . . .)

R∗ = S0 + ϵS1 + ϵS2 + . . .

We can use this to expand G∗(W ∗):

G∗(W ∗) = ⟨R,R⟩

G∗(W ∗) = ⟨S0, S0⟩+ ϵ
(
⟨S1, S0⟩+ ⟨S0, S1⟩

)
+ ϵ2

(
⟨S2, S0⟩+ ⟨S1, S1⟩+ ⟨S0, S2⟩

)
+ . . .

From this, we can conclude that in order to solve the k-th order perturbation in G∗(W ∗) = 0 we
see that

k∑
l=0

⟨Sl, Sk−l⟩ = 0

When one is solving for the k-th order, all lower-order perturbations are already known. Therefore,
we can split the known from the unknown terms in the above equation:

⟨Sk, S0⟩+ ⟨S0, Sk⟩ = −
k−1∑
l=1

⟨Sl, Sk−l⟩

The same can be done for Sk:

Sk =

k∑
i=0

k−i∑
j=0

W †
i RjWk−i−j

W †
kR0W0 +W †

0R0Wk = Sk −
k∑
i=0

k−i∑
j=1

W †
i RjWk−i−j −

k−1∑
i=1

W †
i R0Wk−i

48

	Abstract
	Readers guide
	Introduction
	Physics of semiconductor quantum dot devices
	Numerical simulation of quantum dot devices
	Modelling the electrostatic potential
	Modelling the dot wavefunctions and effective Hamiltonian
	Perturbations to the Hamiltonian
	Tuning the gate voltages of a device
	Modelling shape disorder to the gate geometries

	The geometry optimization algorithm
	Algorithm overview
	Generation of new gate geometries
	Evaluation of new geometries
	Parallelization of the algorithm

	Example applications of the algorithm
	The characteristics of the `naive' initial double dot device geometry
	Geometry optimization results for double dot devices
	Optimization for disorder sensitivity without connecting wires
	Optimization for disorder sensitivity with connecting wires
	Optimization for gate locality without disorder sensitivity
	Optimization for combinations of disorder sensitivity, gate locality, and level spacing

	Geometry optimization results for triple dot arrays
	Stability analysis of optimal solutions

	Performance evaluation of the algorithm
	Efficacy of Woodbury updates
	Comparison of tuning methods
	Speedup due to perturbative sampling of disorder
	Overall computational efficiency gains

	Discussion of the used techniques and recommendations for further reseach
	Conclusion
	References
	Acknowledgements
	Project acknowledgements
	Personal acknowledgements

	Appendices

	Perturbation theory for maximally localized wavefunctions
	Relevance
	Basics of the Wannier transformation matrix W
	The perturbative Wannier operator for multiple projected position operators

