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Abstract

This paper presents an intuitive explanation about why and how Rawlsian Theory of Justice (Rawls in A theory of justice,
Harvard University Press, Harvard, 1971) provides the foundations to a solution for algorithmic bias. The contribution of
the paper is to discuss and show why Rawlsian ideas in their original form (e.g. the veil of ignorance, original position, and
allowing inequalities that serve the worst-off) are relevant to operationalize fairness for algorithmic decision making. The
paper also explains how this leads to a specific MinMax fairness solution, which addresses the basic challenges of algorithmic
justice. We combine substantive elements of Rawlsian perspective with an intuitive explanation in order to provide acces-
sible and practical insights. The goal is to propose and motivate why and how the MinMax fairness solution derived from
Rawlsian principles overcomes some of the current challenges for algorithmic bias and highlight the benefits provided when
compared to other approaches. The paper presents and discusses the solution by building a bridge between the qualitative

theoretical aspects and the quantitative technical approach.

Keywords Algorithmic bias - Fairness - Rawlsian Justice - Ethics - Al systems

1 Introduction

The last decade has highlighted an accelerating use of
Machine Learning (ML) and Artificial Intelligence (AI)
in a wide range of domains, especially in finance, justice
and security as a tool to facilitate or even replace human-
based decision-making: this has revealed the intimate links
between politics, ethics, and computer science. Looking
at justice in society, the realization that Al may actually
generate or reinforce inequalities due to its potential to dis-
criminate individuals on the basis of sensitive characteristics
(such as ethnicity, race and gender) triggered the demand for
ethical use of Al (European Commission 2019; EBA 2020).
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Consequently, besides a multitude of guidelines and codes
of conduct, the European Commission has released key
supranational regulations related to the use of data (Euro-
pean Commission 2018) and Al systems, e.g. the draft Al
Act (European Commission 2021). We might expect that
in the near future the use of Al will be strictly regulated in
high-risky domains (for example, credit-provisioning and
security). Therefore, for an industrial user of Al systems
operating in such domains it is now necessary to define jus-
tice and fairness in tangible ways in order to design Al sys-
tems and applications accordingly. Thus, corporate actors
need to answer questions of ethical and ultimately philo-
sophical nature in order to leverage on the advancement of
technology.

With a focus on fairness and algorithmic decision mak-
ing, the typical first step in implementing a fairness solu-
tion is to select a specific fairness definition. This initial
decision is the most difficult one both from technical and
ethical points of view: there are many fairness definitions
(Dwork et al. 2012; Hardt et al. 2016; Joseph et al. 2016)
that can be operationalized through various technical
approaches; but any one of these definitions can easily
be contested with convincing arguments. Moreover, fair-
ness definitions do not help people that are vulnerable on
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the basis of attributes that might be not accessible or not
yet known: this is for example the case for disabilities
or peculiar mental characteristics. Therefore, any given
fairness definition would be arbitrary not only because it
can be objected by context-dependent substantive argu-
ments, but also due to its inability to address all potential
instances of unfairness. This issue and its impacts become
even more relevant when these attributes are considered
commonly on the basis of “group identities” derived from
pre-defined ‘known’ “protected” characteristics, such as
race or ethnicity. Thus, despite the technical sophistica-
tion of different engineering solutions, the fundamental
problem in algorithmic justice remains unanswered: any
given fairness definition can be seen as arbitrary or based
solely on convenience rather than any fundamental con-
cern or argument about justice. As a consequence, the field
of computer science seems to have reached an impasse
similar to the one emerged in political philosophy in the
mid-20th century: there are many definitions of fairness
(e.g. justice) without any compelling reason for choosing
any one of them in any given context. It was in response
to this impasse that John Rawls had produced his seminal
study Theory of Justice (Rawls 1971, 1999) and introduced
the idea of Justice as Fairness (Rawls 1985, 2001).

Rawls was addressing the basic problem related to the
fact that any notion of justice can be defended and objected
by equally convincing arguments; thus, it was necessary to
figure out a way to attain a universal definition that (1) would
be acceptable by all people regardless of their convictions
about justice, and (2) that would help all people regardless
of their individual characteristics. Rawlsian contribution
represents a key milestone for political philosophy. From
the perspective of consistency and systematic premise, it
provided a basis for what Rawls calls “intuitionist” theo-
ries of justice that had been invoked against various forms
of utilitarianism. Not surprisingly, literature contains many
sharp criticisms of Rawlsian theory, especially against his
idea of a single conceptualization of justice. However, even
for those who oppose his arguments, Rawls provides a clear
argument against which others can position themselves
(Freeman 2009).

Interestingly, the principles developed by Rawls in order
find a unique solution for justice are quite relevant for algo-
rithmic fairness nowadays. Indeed, recent literature on “fair-
ness without demographics” approach has already recog-
nized this connection (Lahoti et al. 2020; Hashimoto et al.
2018; Martinez et al. 1970). However, these studies explore
different technical solutions for fairness while a motivation
of the principles linked to Rawlsian ideas is not discussed in
detail, leaving open the question on how exactly their solu-
tions are derived from the principles of Rawlsian Theory
of Justice (Rawls 1971). Consequently, these contributions
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do not directly address the problem of explaining why their
solutions are fair.

In this context, the goal of this paper is to discuss the
main principles introduced by John Rawls and show why
they provide a solution for the current challenges of algo-
rithmic bias in the form of MinMax fairness and link them
to a specific formal definition. To achieve this, we com-
bine the substantive discussion of Rawlsian principles with
an intuitive formalization in order to provide accessible
insights. Accordingly, we propose a definition of fairness
on the basis of Rawls maxmin principle, aiming to maxi-
mize the minimum utility in its original form, and name it
MinMax fairness, with the goal of minimizing the maxi-
mum errors made by the model. Our definition reads as
follows: ‘A model is fair if it does not make more system-
atic errors for any sub-group in the dataset compared to
the others’; in this way, we translate MinMax fairness into
a concrete criteria to assess fairness in models, by focusing
on the errors made by the model (see Sect. 4, Definition
4.1) and introducing a weighting idea to ‘force’ the model
to correct them. The paper also explains why and how the
Rawlsian solution overcomes some of the key challenges
for algorithmic bias, highlighting the benefits it provides
when compared to other fairness approaches (i.e. parity-
based) in terms of technical engineering choices and ethi-
cal implications. In general, MinMax fairness is applicable
in different contexts (e.g. health, banking, welfare, etc.),
and does not have specific restrictions in terms of mod-
eling approaches or application domain. In this paper we
discuss the operationalization of MinMax fairness solution
as fairness intervention in the particular context of credit
decision modeling as illustrative case.

The paper is structured as follows: Section 2 introduces
Rawlsian Theory of Justice principles and discusses them
from both a societal and economic perspective by highlight-
ing the link between the original principles and their poten-
tial usefulness for algorithmic fairness. Section 3 hints how
the concrete implementation could be valuable to solve some
open questions on algorithmic fairness. Section 4 provides
an intuitive explanation of the mathematical solution linked
to MinMax fairness and its operationalization via an illustra-
tive example. Section 5 concludes.

2 Rawlsian Theory of Justice

This section introduces and discusses the main ideas behind
Rawlsian Theory of Justice (Rawls 1971) and the concept of
Justice as Fairness (Rawls 1971, 1985, 1999, 2001) relevant
to build the proposed MinMax fairness solution for algorith-
mic bias. We first introduce a conceptualization of the main
ideas related to democratic equality and equal opportunity
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principles and then discuss the concepts of original position
for citizens and veil of ignorance.

2.1 Democratic equality and equal opportunity

One of the basic premises of Rawls’ definition of justice is
democratic equality. In his seminal work, Rawls states that
people are all equal and deserve to lead their lives as free
and equal citizens based on what they consider being a ‘good
life’: in this respect, this goal should not be affected by arbi-
trary factors. The main Rawlsian argument is linked to the
concept of equal opportunity: inequalities observed in soci-
ety could be considered as “just” as far as people attain goals
that differentiate them from other people on the basis of
their own effort and personal free choices (Fleurbaey 1995;
Barry 2017). However, according to Rawls, the concept of
equal opportunity is a complex issue in society and suffers
from a serious setback. Rawls observes that people do not
commence their lives from identical circumstances. Many
factors, often beyond their control, could create serious
implications for the opportunities that they can encounter
or hope to encounter during their lives. Sensitive character-
istics such as race, ethnicity and gender are examples of fac-
tors that can deeply impact what people can achieve through
their own efforts. Rawls considers the life circumstances that
emerge due to advantages and disadvantages generated by
such socially constructed categories as ‘unfair’. And Rawls
goes beyond this, hinting that socially constructed catego-
ries are not the only factor generating unfairness. According
to Rawls, also natural talents may lead to unfair outcomes
as these talents are also arbitrarily distributed: often, peo-
ple cannot really choose to have a tendency or talent for a
particular trait, such as high intelligence. These traits too
are often distributed rather randomly by nature (Kymlicka
2002). These considerations related to potential “unfairness”
affect the way in which Rawls rectifies the equal opportu-
nity argument. Rawls argues that inequalities could still be
permitted but this should happen in such a way that they
should be beneficial for those who are mostly disadvantaged
in terms of the arbitrary factors that affect people’s opportu-
nities. This approach is expressed by the maxmin principle,
that could be explained as the idea of ‘maximizing the gains
(e.g. utility) for those people who are in the minimum, that
is, “worst-off” position’. It is important to notice that this
conceptualization does not imply a simple scheme of allo-
cating more resources for those with a disadvantage, but
rather requires to think of best possible ways of organizing
the resources in order to ensure the resulting arrangement
would help these people (Daniels 2003). For instance, offer-
ing higher remuneration to people who are skilled enough
to be a surgeon would help less fortunate people to be more
healthy if the access to health care is assured. Surgeons with
a higher remuneration would probably be able to perform

their duties better with more time to spend for improving
themselves in their trade and resting when necessary reduc-
ing potential negative consequences deriving from restless
habits and low remuneration. In this example, the resource
allocation would ensure that people in the “worst-off” posi-
tion—in terms of either talent or health conditions—would
benefit from the outcome. This is the essence of Rawlsian
conceptualization of justice for the society as group of free
and equal citizens.

2.2 Original position and veil of ignorance

What makes Rawls’ principles of justice particularly appeal-
ing for algorithmic fairness is the way in which he justifies
his approach. He states this by means of two instruments: the
original position and the veil of ignorance. In this context,
Rawls’ principles could be considered to create a direct con-
nection with some of the basic challenges related to algo-
rithmic fairness, both from a theoretical and practical per-
spective and build an elegant solution. It is useful to briefly
examine these two concepts and discuss how they help to
link Rawlsian notion of justice to a solution for algorithmic
fairness.

Rawls’ original position is based on a counterfactual envi-
ronment in which people are imagined to be in a condition
where there is no political authority to ensure social exist-
ence. The purpose of this device is to detach people from
the current organization of society and help them to think of
ideal conditions that they would have preferred if they had a
chance to organize political authority from scratch (Dwor-
kin 1973; Clark 1993). The idea is to discover the basic
principles that would be agreed upon independently by each
individual, rather than figuring out a specific account for the
entire political system. This counterfactual argument is built
on the underlying assumption that agents are rational at the
original position. Rawls argues that the original position
would not be sufficient to derive principles of fairness and
justice as people might take their own material, mental or
physical conditions as they determine the principles of jus-
tice that need to be adhered to. It stands to reason to imagine
that at least some people would endorse those principles that
would generate a favorable position for them in accordance
with their specific conditions. Obviously, the other people
cannot be expected to accept such principles due to poten-
tial disadvantages that this would ensue for themselves. The
concept of veil of ignorance allows Rawls to build a solu-
tion for this conundrum. This refers to an additional condi-
tion added to the original position ensuring that individuals
are completely “blind” about their own material, mental or
physical conditions in the political order (and thus society)
that would emerge after they determine the principles of
justice. According to Rawls, only after a veil of ignorance
is put in front of people, the question of what should be
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the principles of justice that need to be used to organize a
society makes sense (Roemer 2002). Rawls argues that, in
a society with rational agents, once a veil of ignorance is
combined with the original position, individuals would opt
for the maxmin principle. In practice, people would prefer
the available resources to be distributed in such a way that
the resulting inequalities would be most favorable for those
people that are disadvantaged due to arbitrary factors. The
intuition can be explained as follows: for each and every
individual the possibility of suffering from at least some
disadvantages would be identical, at least from their vantage
point blocked by the veil of ignorance; consequently, people
would like to avoid creating a society in which they could
potentially be in a disadvantaged position. In a way, the veil
of ignorance has the function of converting all other people
into a possible position in the society for a given individual
ensuring that s/he will take everybody into account (Kym-
licka 2002).

3 From Rawlsian Theory of Justice
to algorithmic bias

An important open challenge for algorithmic decision mak-
ing is preventing harm to group of individuals on the basis
of sensitive characteristics. The current approaches used
by practitioners and the scientific contributions are mainly
focusing on finding the proper fairness definition and the
best engineering choice to mitigate bias. In our view, the
field of computer science seems to be in an impasse similar
to the one in political philosophy in the mid-20th century.
As discussed in the introductory section, there are many
definitions of fairness (e.g. justice) without any compelling
reason for choosing any one of them in any given context.
In response to the impasse in political philosophy, Rawls
produced his seminal study Theory of Justice (Rawls 1971,
1999) that we consider the fundamental basis for a MinMax
fairness solution to algorithmic bias. Starting from the con-
ceptualization of Rawlsian principle of justice, this section
explains how to translate this conceptualization into a solu-
tion for algorithmic bias. This is done both at theoretical
level and from an implementation point of view via an illus-
trative example. The discussion also highlights the benefits
of this solution when compared to parity-based approaches.

3.1 Algorithmic decisions

Let us consider the case in which an algorithmic decision
making process produces a specific outcome affecting a deci-
sion about individuals in the context of a credit risk applica-
tion: as example, the algorithmic decision could be ‘whether
to grant or not a loan to a single individual’. Moreover, the
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algorithmic decision could be based on the outcome of a
simple modelling framework or a more advanced analytic
approach based on specific ML or AI techniques. Let us
consider a case with advanced analytic techniques to illus-
trate the problem.

The information about the information about the past
behavior of a large group of individuals is input for the pre-
dictive model and is stored in two distinct formats:

e Features values related to single individuals. These repre-
sent particular characteristics such as age, income, educa-
tion etc., each recorded in a quantitative or quantifiable
format. For each single individual, we could consider the
collection of these specific features values as represented
by a single data point in a multidimensional space (input
value).

e Target value observations coming from the past. In this
special case, the “default history”, e.g. whether or not the
person identified by a series of features has paid back the
loan or defaulted.

Based on this set of information, an Al algorithm discovers
the patterns in the multidimensional space generated by the
features values in the form of a probability score, namely
s € [0, 1], indicating which combinations of features are
likely to lead to higher default probability. In this illustrative
example, once all patterns are captured in the form of model
parameters, then the algorithm would be ready to be used
as a decision making device for any new loan application.
Let us now consider a loan application coming from an
individual who never applied before and see how this would
be treated. In this case, it is the first time the algorithm ‘sees’
this data point: based on the information contained in her/his
features values, the algorithm would generate a probability
score § € [0, 1] for the applicant (e.g. a value linked to her/
his default probability) by using the resemblance between
the new input values and the established patterns already
learnt (i.e. learnt from the data about the past behavior of
a large number of individuals and stored as parameters val-
ues). From an ethical perspective, the entry point of jus-
tice and fairness into this picture is the question of which
features (e.g. individual characteristics) should be used to
determine the default probability of each single individual.

3.2 Algorithmic bias

It is widely acknowledged that multiple sensitive charac-
teristics that are beyond the control of single individuals
(e.g. gender, ethnicity, disability, etc.) should not be used
as features and rather be ‘protected’; in some cases this
directly relates to specific legal requirements. This aims
to ensure that algorithms do not take the patterns linked
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to these sensitive characteristics into account and gener-
ate harm towards individuals on the basis of this informa-
tion. This practice is also referred to as ‘Fairness through
unawareness’ (see Sect. 3.3), because the goal is to con-
sider attaining fairness by being 'unaware' of the specific
sensitive characteristics.

However it is possible that the information about the pro-
tected attribute is conveyed partially or fully by some other
features that are included; and thus the protected attribute
information may still be used without being noticed. As a
consequence, bias may be rendered invisible rather than
being mitigated.

Empirical evidence shows that algorithms are capable
of learning and using the information about such sensitive
characteristics even when they are not explicitly used. This
might happen since the algorithm can implicitly ‘see’ such
attributes in particular combinations of other features due to
proxies and correlation effects (Pedreschi et al. 2008; Kusner
2017; Srivastava et al. 2019).

Let us imagine that the information associated with such
characteristics is implicitly discovered by the algorithm: at
this point, the usual logic underlying the outcome of the
decision would be as follows. If the majority of those indi-
viduals who defaulted in the past do have a particular sen-
sitive characteristic value (e.g. gender), then the majority
of those having the same particular sensitive characteristic
value would be classified as potentially defaulting on the
loan. Consequently, any combination of other features that
betrays this sensitive characteristic value would be used to
generate a bias against those people having a similar set
of sensitive characteristics but would not have defaulted.
A similar logic would also apply in a positive sense: if the
majority of those who did not default has a particular sensi-
tive characteristic value (e.g. gender), then the algorithm
would associate the majority of those who have this value
to ‘no default’; and in the process would grant loans to those
people who would actually default. In both cases, a false
generalisation would be made by the model with adverse
consequences for the individuals impacted by this.

Figure 1 illustrates this logic by showing how potential
harm can be generated for a given set of data points. Here
imagine we look at the training dataset of a model that evalu-
ates credit applications. The dashed sets indicate the model’s
predictions referring to the data points belonging to them.
These data points are associated, respectively, to: ‘prediction
of default’ or ‘prediction of no default’. The filled/empty
shape shows what had been in reality the outcome of the
loan repayment process for a single data point: an empty
shape refers to ‘default’, and a filled shape refers to ‘no
default’, e.g. the person has fully repaid the loan. The major-
ity of data points represented as triangles have not defaulted,
while the majority of data points represented as circles have
defaulted. However, there are three triangles—despite being
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Fig. 1 Model predictions, default rates and errors. Data points in the
training set. The shape of triangles or circles refers to a specific char-
acteristic/feature; the filled/empty shape refers to a ‘default’ or ‘no
default’ status. A filled shape refers to a data point associated with
‘no default’; an empty shape refers to a data point associated with
‘default’. Dashed sets identify the two alternative model’s predictions:
‘no default’ and ‘default’. Grey areas identify which data points are
suffering from errors. In this illustrative case, empty triangles and
filled circles are suffering from false generalisation resulting in spe-
cific errors made for these data points

triangles—who have defaulted, and there are three circles—
despite being circles- who have repaid. Looking at the pre-
dictions, the model ignores these intricacies and wrongly
predicts that three defaulting triangles would actually repay;
and again wrongly predicts that three repaying circles would
default. This happens because algorithms try to generalize
on the basis of the patterns observed for the majority of data
points in the training set, and attribute an outcome to a data
point on the basis of the outcomes of the data points that
mostly resemble to it. This is, in its essence, the source of
errors and at the same time the reason for bias. A discrimi-
nation problem arises here: on the basis of being triangles,
the three repaying triangles are discriminated negatively;
and the same happens to the three defaulted circles, which
in turn suffer from positive discrimination (they will suffer
because they will not be able to pay back the credit they
will get with adverse consequences). In this example these
six data points that suffer from bias would be associated to
systematic errors. In terms of magnitude, these errors will
be the highest ones.

The essence of the problem is that one individual should
not be held accountable based on the actions observed in
the past from those individuals who resemble him/her on
the basis of characteristics that are arbitrary and sensitive.
In other words, predicting one’s future ability to repay a
loan on the basis of what the majority of the others with the
same sensitive characteristic have done in the past is tan-
tamount to ignoring one’s free will and individuality. This
becomes even more relevant when considering that such
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characteristics are often sensitive and essentially ‘uncho-
sen’ by each individual. In practice, this might directly lead
algorithms to generate de-facto discrimination towards spe-
cific groups that is not desirable from an ethical perspec-
tive. Going back to the foundations defined by Rawls for
maxmin principle, we show how a technical solution to algo-
rithmic bias can be attained by means of similar arguments
applied to the context of algorithmic decision making (e.g.
bias/errors, sensitive attributes, fairness, etc.).

3.3 Attaining algorithmic fairness

We can classify the most common approaches to attain algo-
rithmic fairness into two main streams: Fairness through
unawareness and Fairness through intervention, described
below.

1. Fairness through unawareness. As discussed in
Sect. 3.2, this approach aims to attain algorithmic fair-
ness by excluding the features that provide sensitive
attribute information from being direct input for the
model (thus being deliberately ‘unaware’). However,
in practice, it has already been established that this is
not solving the bias problem (Dwork et al. 2012). Even
if sensitive attributes are not directly entering into the
model, it may happen that the information about the pro-
tected attributes is conveyed partly or entirely by some
other features that are included. As a result, the protected
attribute information may still be used without being
noticed, and thus bias may be rendered invisible rather
than being mitigated. For this reason, Fairness through
intervention is considered a more appropriate direction.

2. Fairness through intervention. This approach aims to
attain algorithmic fairness by directly introducing tech-
nical algorithmic interventions either during the model
development phase (i.e. in-processing') or afterwards
as an additional layer (i.e. post-processing?). Within a
model development pipeline, in order to detect and miti-
gate bias, alternative fairness interventions techniques
are available and used in practice. Most commonly, to
the best of our knowledge, fairness interventions are
implemented by means of a Parity-based approach, aim-
ing to achieve a form of parity of outcomes between dif-
ferent groups. Below we describe the main idea behind
this intervention and present what we consider a novel

! In-processing refers to all methods that incorporate a fairness def-
inition into the algorithm design and optimize it accordingly (as an
example, see (Bellamy et al. 2019)).

2 Post-processing methods refer to all techniques that intervene on
the predictions produced by a model (without interfering with the
algorithm) in order to attain unbiased outcomes (as an example, see
(Bird et al. 2020)).

@ Springer

direction for fairness intervention, namely Accuracy-
based approach, to overcome the current challenges.

Parity-based approach consists of well-defined steps, e.g.
assuming that the protected attribute information is avail-
able (e.g. ethnicity, gender), identifying privileged and
unprivileged groups based on protected attribute informa-
tion, selecting a particular fairness definition. The aim is to
attain a parity between privileged and unprivileged groups
on the basis of the chosen fairness definition (Verma and
Rubin 2018; Bellamy et al. 2019; Haas 2020; Dwork et al.
2012), which is context dependent, and potentially arbitrary.

Rather than focusing on parity, we propose to go for a
direction that we call Accuracy-based approach, whose main
goals are described below.

Accuracy-based approach aims to increase the perfor-
mance of the model for the protected groups on the basis
of the potential of the model to make systematic errors for
these groups. This focuses on improving the performance of
the model in specific regions of the model space where there
are clusters of data points that are most likely to represent
vulnerable people with protected characteristics suffering
from systematic errors. This is de-facto an operationalization
of the following fairness intuition: ‘A model is fair if it does
not make more systematic errors for any sub-group in the
dataset compared to the others’. We refer to Sect. 4 (Defini-
tion 4.1) for a dedicated technical discussion of MinMax
fairness definition and to Kim et al. (2019); Martinez et al.
(1970) for examples from literature.

The most commonly used solution to the problem of pre-
venting bias and discrimination considered by practitioners
is ensuring a concept of parity among groups in accordance
with a specific definition of fairness. This means that—on
average—those groups that are defined by a sensitive char-
acteristic do not receive privileged or unprivileged treatment
from the algorithm on the basis of a particular definition of
fairness. The on-going scientific debate is mainly focused
around how to identify the proper fairness definition and
how to address the fairness-performance trade-off. We can
identify multiple definitions of fairness (Hardt et al. 2016;
Joseph et al. 2016; Kearns et al. 2018), capturing a broad
range of different legal, philosophical and social perspec-
tives. As relevant issue, we might have cases in which, after
a specific fairness intervention, a model is considered ‘fair’
on the basis of a given fairness definition: this is achieved
at the cost of reduced model accuracy (Haas 2020; Dwork
et al. 2012). In Aler Tubella et al. (2022), we show that the
technical choice of a specific fairness intervention may have
relevant implications in terms of which data points will be
affected by the specific technical solution. The paper reveals
how assessing the engineering choices in terms of their ethi-
cal consequences can contribute to the design of fair mod-
els and the related societal discussions. In this spirit, we
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propose the following assessment of parity-based approach
and a MinMax fairness solution for algorithmic bias based
on Rawlsian conceptualization of justice, as example of
accuracy-based approach. Section 4 provides an intuitive
explanation of the technical and mathematical choices to
build MinMax fairness solution and provides an illustrative
example of implementation.

Parity-based approach to fairness suffers at least from
four deficiencies:

(1.P) There are multiple ways to define fairness and no
a-priory right fairness definition for each specific
case. It is not easy to justify any fairness definition as
the correct one for specific circumstances and always
possible to object the chosen definition. Thus, the
very first step of the process to build fair algorithms
appears rather arbitrary.

(2.P) Parity-based definitions depend on the identification
of groups on the basis of ‘known’ sensitive charac-
teristics (e.g. race, gender, ethnicity). There are cases
in which it is not possible to know—and often legally
not permitted to know—some sensitive characteristics
about individuals (Yang and Dobbie 2020; Andrus
et al. 2021). As a consequence, often times parity-
based fairness definitions are not implementable, even
when having the most suitable one for the specific
context. From a fairness implementation perspective,
parity-based approaches have a clear limitation: they
only allow, at best, to address existing bias appearing
on the basis of ‘known’ sources.

(3.P) The implementation of parity-based fairness requires
parity of outcomes between different groups; for the
sake of equality, this intervention aims to reduce the
difference between advantaged and disadvantaged
groups, for example in terms of number of wrong
predictions. Given how parity-based works, ensuring
parity of outcomes often implies decreasing the utility
of a model for a specific advantaged group, without
necessarily increasing the utility for the disadvantaged
groups. As a matter of fact, the information about the
privileged group reaching a ‘worst-off> position would
not change the absolute material conditions of the
unprivileged group. A parity-based approach, when
implementable, enables to increase fairness at the cost
of reducing accuracy.

(4.P) When parity-based is applicable and is used to ensure
fairness on the basis of a specific ‘known’ attribute,
it might happen that this generates (unintentionally)
unfairness on the basis of other attributes, due to
intersectionality issues (Ghosh et al. 2021; Foulds
et al. 2020). There might be an internal trade-off
between fairness on the basis of attribute X; and

fairness on the basis of attribute Xj that cannot be
removed or solved.

Building a MinMax fairness solution for algorithmic bias
based on Rawlsian conceptualization of justice overcomes
all these problems simultaneously, as we elaborate below.

(1.M) From Rawlsian Theory of Justice (Rawls 1971) we
can extrapolate a clear fairness definition based on the
maxmin principle, linked to the idea that ‘A model is
fair if it does not make more systematic errors for any
sub-group in the dataset compared to the others’ (see
Sect. 4, Definition 4.1 for MinMax fairness definition
and the technical discussion about it). Ensuring fair-
ness based on maxmin principle aims to increase the
utility of any given model for those individuals who
are mostly disadvantaged. Maximizing the minimum
utility is equivalent to minimizing the maximum error
within the context of predictive Al-algorithms, from
which the name MinMax fairness is derived. This is
possible via an elaborate but still simple justification
applicable in a general way to all contexts, since the
definition is linked to the errors made by the model.
None of the other definitions of fairness does have this
scope of applicability with such a clear justification
that emanates from a rigorous connection with justice
and equality of opportunities.

(2.M) MinMax fairness focuses on potential systematic
errors that any given model could make in order to
determine groups of disadvantaged people. In this
respect, Rawlsian approach does not need to acquire
the exact demographic information of individuals.
Research confirms that those data points that suffer
from systematic errors are most likely to represent
people with sensitive characteristics that generate
some form of disadvantage: see for example (Chow
1970; Varshney 2011; Kamiran et al. 2012) and the
illustrative case in Sect. 4.2 of the present paper. The
MinMax fairness solution introduced in this paper—
which links the definition of disadvantages to system-
atic errors—attains a robust and generic definition
that encompasses all combinations of potential known
disadvantages. Consequently, in order to ensure algo-
rithmic fairness towards disadvantaged people, a solu-
tion based on Rawlsian principles only depends on
the errors made by the model and does not need to
have the exact demographic characteristics of these
people, solving one of the fundamental problems of
algorithmic fairness (Andrus et al. 2021).

(3.M) Fairness based on maxmin principle aims to increase
the utility for specific groups rather than ensuring par-
ity: this does not create any abstract circumstance in
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which a decline in utility for a group is justified for
the sake of reducing the difference between all groups.
Rawlsian principles of fairness focuses on improv-
ing the absolute conditions of disadvantaged groups,
rather than making their circumstances relatively less
disadvantaged by pulling down the ones for the advan-
taged groups. An important aspect to consider when
dealing with fairness interventions is the link between
fairness and model accuracy. Indeed, alternative fair-
ness interventions could have different impacts on
the resulting model accuracy. As high-level intuition,
while parity-based approaches are usually based on
a trade-off between fairness and accuracy, the same
does not necessarily apply to the proposed MinMax
fairness solution, as this might result in improving
both fairness and model accuracy simultaneously.
Implementing this idea allows not only to help
improving the utility for those groups who are known
to be disadvantaged, but also to improve the utility for
people suffering from systematic errors, who became
disadvantaged within the context of a particular model
and specific data circumstances. This is a fundamen-
tal benefit that not all fairness definitions allow to
reach. It is important to stress the generality of such
benefit, given the unforeseeable nature of all possible
ways in which data patterns may single out hitherto
unknown combination of characteristics as a source
of disadvantage. At this stage, Rawlsian concept of
veil of ignorance comes again into play in order to
solve a problem usually under-stated for algorithmic
bias. Disadvantages might be generated for specific
groups as model-domain specific, and not necessarily
confined to categories that are ‘known’.

(4.M) Intersectionality (Ghosh et al. 2021) is an impor-
tant element to take into account: when considering
parity-based, it is possible that we ensure fairness on
the basis of a specific ‘known’ attribute, and at the
same time we make our model unfair w.r.t. another
attribute unintentionally. This is not the case with
MinMax fairness, as demographics are not needed to
define fairness. In a way, intersectionality issues are
‘not an issue’, as potential mistakes for all protected
groups are addressed simultaneously (including those
that are not known or not acknowledged).

4 MinMax fairness as solution to algorithmic
bias

This section proposes an explanation of the mathematical
conceptualization of MinMax fairness solution to algorith-
mic bias by considering Rawlsian principles derived from
his seminal contribution in the field of societal justice. We
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present and discuss why and how MinMax fairness provides
a solution to overcome the current open challenges and defi-
ciencies highlighted for parity-based approaches (Sect. 3.3),
by leveraging on a specific mathematical setting to achieve
fairness. Section 4.1 provides the definition of fairness
based on MinMax fairness idea and describes the concep-
tual framework for its implementation; Sect. 4.2 discusses
an illustrative example.

4.1 MinMax fairness

From a modelling perspective, one important open challenge
is defining a solution on how to prevent the case in which
the model might create potential discrimination towards
specific groups of individuals on the basis of sensitive char-
acteristics. Empirical evidence shows that Fairness through
unawareness does not solve the problem of building fair
models: often times, proxies for specific variables or indi-
rect effects due to correlation between features could bring
a certain level of bias into the modelling approach anyway
(Pedreschi et al. 2008; Kusner 2017; Srivastava et al. 2019).
Parity-based approach requires to specify a fairness defi-
nition, to identify specific sensitive attributes and to set a
parity threshold. After de-biasing, the model performance
often declines and unknown protected groups may suffer
from the intervention.

Typically models might make large and/or more frequent
systematic errors for vulnerable groups defined by various
combination of protected attributes. Implementing a Min-
Max fairness solution implies to ‘force’ models to pay more
attention to these type of errors, by introducing specific
weights® for these errors (and associated datapoints) that
can enable their identification. Intuitively, the weights have
the goal of ‘amplifying’ the effect, and thus let the model
directly pay more attention to these data points that suffer
from larger/systematic errors. In the end, this will enable to
help all vulnerable groups at the same time, by minimizing
the maximum errors detected. The idea is that the model
should ideally be equally well performing for all sub-groups,
not making larger or more frequent errors for specific sub-
groups. This conceptualization can be translated into the
following MinMax fairness definition.

Definition 4.1 (MinMax fairness) A model is fair if it does
not make more systematic errors for any sub-group in the
dataset compared to the others.

3 A discussion on the full detailed implementation of this technical
solution based on a specific weighting function is beyond the scope
of the present paper and is currently part of an on-going research pro-
ject.
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Table 1 Setting

1D Observable features Target value Latent features
Received an Having Ever traveled abroad  Living in a suburb Default history Ethnicity Disability
education loan ~ permanent contract
X, X, X, Xy Y M S,
X,,; € {0,1} X,; €{0,1} X5, € {0,1} X,; €1{0,1} Y, € {0, 1} S;; €{A,B} S,; €10, 1}
No,X1J=0 No,X21/=0 No,X3J-=0 NO,X4J=0 No,Yj=0 No,SzJ-:O
Yes,XlJ-=1 Yes,XzJ-:l Yes,X3J-=1 Yes,X4J=1 YeS,Yj=1 Yes,SzJ-=1

i No No Yes No No A No

ip Yes Yes Yes No No A No

i3 No Yes Yes No No A Yes

iy Yes No Yes No No A No

is No Yes Yes No No A No

ig Yes No No Yes No B Yes

iy No No No Yes Yes B No

ig No No No Yes Yes B No

iy No No No Yes Yes B Yes

i No No No Yes Yes B No

The table reports a snapshot of the setting representing the basis of our heuristic example. We assume to have n = 10 people in the dataset,

., 10 }; for each individual i;

reported in column ‘ID’ as {i;, i, .. i

we assume to have the information regarding four binary ‘Observable Features’

{X,X,, X5, X, }, two ‘Latent Features’ {,S,} and one binary ‘Target Value’ Y;

The concept of bias is linked to the errors made by the
model, which result from potential false generalization (as
discussed in Sect. 3.2, Figure 1). The operationalization of
MinMax fairness definition can be described as follows:

Bias is defined as function of the errors made by the
model.

Errors result from false generalizations, as for the data
points belonging to the grey areas depicted in Figure 1:
i) False generalizations may affect vulnerable groups
defined by protected attributes, e.g. false ‘bad’ ten-
dency; ii) False generalizations may affect privileged
groups defined by protected attributes, e.g. false ‘good’
tendency.

MinMax fairness solution attributes specific weights
to errors resulting from false generalisation and then
minimizes the maximum errors made by the model.
The underlying idea is to identify in the model space the
groups for which the model makes the largest errors and
then ‘force’ it to perform better for these groups, thus
reducing the errors.

Compared to other scientific contributions and practition-
ers’ approaches to fairness, this solution has the novelty of
being implementable without the need to know the sensitive
attributes, by leveraging on the Rawlsian veil of ignorance
principle. In its essence the idea is to “force” algorithms
to pay more attention to those data points that suffer more

from errors (both in terms of higher magnitude and being
non-random) since these data points represent vulnerable
groups of individuals. For a generic classification problem,
from a technical point of view, this is possible by defining
specific error and weight functions and optimize for the clas-
sifier in order to achieve the minimization of the maximum
error. As a result, the model performance will improve. In
line with Pareto optimality principles, this solution ena-
bles to achieve fairness by also reducing the disadvantage
deriving from errors for the groups identified in the sample.
From an implementation perspective, maxmin principle is
also the basic idea of post-processing fairness interventions
like (Kim et al. 2019) and blind Pareto fairness approaches
(Martinez et al. 1970). Providing full details on the math-
ematical formulation is beyond the scope of the present
paper, whose aim is to provide the high-level intuition for
the foundations and is left to a dedicated technical research
exploration which is currently on-going. However, to pro-
vide insights about the practical issues related to this solu-
tion, Sect. 4.2 discusses one illustrative example of MinMax
fairness implementation.

4.2 lllustrative example
In order to show how MinMax fairness provides a solution
to algorithmic bias, we introduce the following illustrative

example within the context of credit decision modeling (i.e.
loan applications). It is important to emphasize that this is
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meant to be a heuristic example serving the purpose of pro-
viding a setting to discuss different fairness interventions;
as such, we have developed it by deliberately avoiding or
simplifying technical aspects.

4.2.1 The dataset

Let us assume to have a dataset consisting of n = 10 peo-
ple, and assume they all received loans in the past. Table 1
reports a snapshot of the setting we have, including binary
‘Observable Features’ { X, X,, X3, X, }, binary ‘Target Value’
Y and ‘Latent Features’ {S,,S,}. For each individual i;, the
dataset contains:

¢ The information associated to four binary characteristics
given as ‘Observable Features’ {X|, X,, X5, X, }, namely
1) X, :whether they ever received a loan to finance their
education, ii) X, : whether they have a permanent con-
tract, iii) X5 : whether they have ever travelled abroad in
the past, and iv) X, : whether they live in a suburb. For
all these features we consider ‘no’ associated with 0 and
‘yes’ associated with 1.

e The information regarding the ‘Target Value’, meaning
the ‘default history’; for the 10 individuals we know
whether they ‘defaulted’ or paid back (‘no default’), i.e.
column with binary feature ‘default history’. We denote
with¥; € {0, 1} the value corresponding to ‘no’, meaning
‘no default’ (¥; = 0) or ‘yes’, meaning ‘default’ (¥; = 1).

e The information associated to two ‘Latent Features’
{S,,S,}, that are linked to sensitive characteristics, i.e.
ethnicity and disability. We assume that: i) we can access
the information about ethnicity but avoid using it in our
model deliberately; ii) we have no access to disability
information. Independently of the specific case, both
‘Latent Features’ are part of the reality.

In this respect, in general terms, the following holds:

1) We assume to have two alternative values for ‘ethnic-
ity’, namely A and B. In this dataset, all people with
ethnicity B live in suburban areas. We do not want to use
ethnicity as a factor in our decision making process; at
the same time, ethnicity information can enter into our
model unintentionally through the information provided
by residence (i.e. suburban dwelling) captured by X,.

2) In this dataset there are three persons with disability
(individuals ij, 4, i) and interestingly one of these
persons, individual i, is among the three people who
received a loan during education; at the same time, this
is also the only person in the dataset with this unique
combination (i.e. having disability and having had a loan
during education).
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Despite being a highly stylized example, this is a dataset
which we might use for developing an algorithm/model to
facilitate decision making regarding accepting or rejecting
loan applications. To build such a model, we need to use the
information provided by these 10 people on the ‘Observable
Features’ and on the ‘Target Value’ (whether they defaulted
or not). In this way we can predict whether the next person
that would apply for a loan would pay back or default. This
is a classical setting in which we may want to check if our
model is fair and correct it, in case it is not.

4.2.2 The model

Let us suppose to consider a simple linear probability
model*, in which each ‘Observable Feature’ {X;, X,, X3, X, }
is scaled by a coefficient {@,, a,, a3, @, } and the resulting
sum is an estimate of the default probability, that we denote
as PD. We formalize a generic model M as follows:

M: oa-Xi+a-X,+a3-X5+a,-Xy=PD, (1)

meaning that we aim to find how each of the ‘Observable
Features’ is contributing to the prediction of the default
probability. To train the model, we should consider all indi-
viduals in the dataset. As an example, for individual i; we
have:

a-0+a,-O+a3-1+a,-0, 2)

and the aim of training the model is to find the optimal set of
coefficients that minimize the errors made by the model. By
training the generic model in Eq.(1) on the dataset provided
in Table 1 we obtain the following coefficients:

-0.407 - X; — 0.068 - X, +0.203 - X; + 0.881 - X, = PD,
3
to estimate the model’s prediction on the PD. The results
of Eq.(3) are real values between 0 and 1, represent-
ing the default probability’ estimated for each individual
ij,j € {1,...,n} in the sample. From the real values predic-
tions PD;, we can go back to qualitative predictions by intro-
ducing a threshold®. Let us consider = 0.4 as threshold, and

4 We observe that Linear Probability Models (LPM) can sometimes
produce unrealistic predictions p <0 or p > 1; in such cases, one
should consider predictions p < 0 as 0 and predictions p > 1 as 1.
There are also more sophisticated solutions (Mood 2010, p.81). In
some circumstances, LPM can actually be more suitable than logis-
tic regression for probability modelling (see (Mood 2010, p.78) and
(Caudill 1988)). Here we use this model for its simplicity and due to
its suitability for the purpose of a heuristic example.

5 Depending on the type of model used, direct interventions might be
needed to keep values between 0 and 1. In this case, for Linear Prob-
ability Models (LPM), see also footnote 3.

% This is typically an expert-based parameter.
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Table 2 Training the model: results

ID  Target value Predicted probability Predicted Error
classification

Y;€{0,1} PD; €[0,1] PD; 204 ¢; €10,1]

No,Y; =0

Yes, Y/ =1
ii No 0.203 No 0.203
i No 0.000 No 0.000
iz No 0.136 No 0.136
i, No 0.000 No 0.000
is No 0.136 No 0.136
i No 0.475 Yes 0.475
iz Yes 0.881 Yes 0.119
ig  Yes 0.881 Yes 0.119
iy Yes 0.881 Yes 0.119
iip Yes 0.881 Yes 0.119

The table reports the results from the training phase on the model
given in Eq. (1). In particular, the table contains: the ‘Target Value’
(provided in Table 1), the predicted probability of default (PD; esti-
mated via Eq. (3)), the predicted classification depending on the
threshold # = 0.4 and the errors made by the model (computed based
on Eq. (4))

the following rule for the classification of creditworthiness:
any probability exceeding 0.4 (i.e. PD; > 0.4) is an indica-
tion of high risk of default and corresponds to the prediction
“individual i; would have defaulted”. Like all models, this
one too makes errors; what matters is that we aim to have a
model that gets close enough to 0 or 1 in terms of predicted
default probability in order to make the correct classifica-
tion. We estimate the error ¢; for each individual as the abso-
lute value of the difference between the estimated default
probability and the ‘Target Value’, namely

¢ = IPD; — Yjl, “

with ¥, being the ‘Target Value’ for individual i;. Table 2
shows the outcomes of the training phase and the errors
made by the model.

4.2.3 Fairness through intervention: parity-based vs
MinMax fairness

Looking at the outcomes of the model, we observe that,
apart from individuals i, and i,, all other individuals suffer
from errors. At the same time, we also observe that indi-
vidual iy is suffering from the largest error so that s/he is
actually classified wrongly. By ranking the errors, individual
i¢ 1s followed by individual i}, though this person—despite
the second biggest error—is not wrongly classified.

It is important to notice that although we do not use
ethnicity as a feature in our model, it still has a crucial

influence on the outcome of the model via X, as a proxy.
Thus, belonging to ethnicity B (captured by living in sub-
urban area through X,) increases the probability of default
due to its large positive coefficient 0.881). It is quite possible
not to be aware of such proxies and indirectly use sensitive
attributes in the model. This example also shows why Fair-
ness through unawareness is not a reliable way of address-
ing algorithmic bias. Thus, the focus below is on Fairness
through intervention in the form of parity-based and Min-
Max fairness.

Parity-based fairness. Let us now consider how fair-
ness enters into play, and how to make interventions, start-
ing from the parity-based approach. For this purpose, we
consider demographic parity (Feldman et al. 2015), as it is
one of the most commonly used parity-based fairness defi-
nitions. This approach requires to ensure that a proportion
of the desired predictions (such as getting the loan request
approved) is sufficiently similar across privileged and
unprivileged groups defined by a protected attribute. Here
the rule of thumb emanating from the inheritance coming
from the US Labor legislation’ is to attain 80% parity among
groups.

For illustrative purposes, let us assume that we have
access to ethnicity but we do not have access to disabil-
ity. Under these conditions, we may choose to proceed with
this knowledge and make sure that the proportion of desired
outcomes (e.g. ‘no default’) would be identical for individu-
als belonging to ‘group A’ (ethnicity A, i}, i, i3, i4,i5) and
‘group B’ (ethnicity B, i, i7, ig, iy, i;). From Table 2 one can
see that the model makes 5/5 desired outcomes for ‘group A’
while 0/5 for ‘group B’ (column ‘Predicted Classification’).
To ensure demographic parity, we would need to intervene
by changing the predictions for ‘group B’ in order to have
4/5 “no default” predictions. By doing this, what can happen
is that we would probably correct the wrong prediction for
individual i¢ but then predict that three persons—who would
actually have defaulted—would pay their loans. As a result,
this would create adverse conditions for new applicants
as it would increase the likelihood of the model to make
wrong predictions for those who would default by evaluat-
ing them as creditworthy, possibly creating dire financial
circumstances for them. In fact, if the goal is to ensure that
people would not be made vulnerable and discriminated by
the model (and due to the model), then demographic parity
would not serve this purpose: while possibly eliminating
the vulnerability of individual i, it would generate new vul-
nerabilities for other individuals by decreasing the model’s
accuracy (discussion point 2.P, Sect. 3.3).

7 The legal origin of the 80% rule is a particular US legislation (US
1964) but it has been explicitly articulated in another document (U.S.
Equal Employment Opportunity Commission (EEOC) 1978).
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Another important point: since we do not have access to
disability, the parity that we would attain based on ethnicity
would not necessarily ensure fairness based on disability;
this could only happen by chance: for the three persons with
disability (i.e. individuals is, i, iy from Table 1) the propor-
tion of desired outcomes is 1/3 while the corresponding pro-
portion for the remaining people without disability is 4/7.
We know now that imposing ethnicity-based fairness would
require giving “no default” predictions to four individuals
belonging to ‘group B’; if one of these people is, by chance,
disabled, then we can attain a parity of 85% between disabled
and not disabled people. There are five candidates (indi-
viduals i4, i7, ig, iy, ;o) and only two of them with disability
(individuals i, iy): thus, the probability of attaining parity on
the basis of disability while attaining parity on the basis of
ethnicity is just 0.40, meaning that there is only 40% chance
of accomplishing that (discussion point 3.P, Sect. 3.3). In
the remaining cases, parity-based intervention will create a
different form of unfairness, e.g. towards a different group
of people.

Obviously, looking at parity-based approaches, we could
also choose another parity-based fairness definition (for
instance parity in terms of proportion of wrong predictions):
in such a case, we would not only encounter the exact same
problems discussed for demographic-parity (creating new
vulnerabilities, leaving fairness on the basis of disability to
chance, reducing model’s accuracy), but we would also need
to justify our choice of fairness definition at least for those
people who argue that demographic-parity would be bet-
ter. Moreover, due to intersectionality issues (Ghosh et al.
2021; Foulds et al. 2020), it might be that ensuring fairness
on the basis of a specific attribute (e.g. ethnicity) generates
unintentionally discrimination on the basis of another one
(e.g. disability, see also discussion points 1.P, 4.P Sect. 3.3).

MinMax fairness. Let us now consider MinMax fairness.
Based on Definition 4.1, the premise is that fairness implies
to make sure that the model increases the utility associated
to disadvantaged individuals, and we measure the utility
of the model by looking at the errors it makes (discussion
points 1.M-2.M, Sect. 3.3). Utility decreases with the mag-
nitude of the errors, i.e. the smaller the error, the higher the
utility. From this perspective, it is clear that the only person
that suffers from bias is individual i, (discussion point 3.M,
Sect. 3.3): while s/he has not defaulted, the model makes a
very large error and puts the prediction above the threshold
and classifies this person as non creditworthy, i.e. ‘default’
(Table 3). The implication is that the resulting model will
make such wrong predictions systematically for new appli-
cants with similar characteristics.

It is useful to shortly reflect on why the model is making
this large mistake: in fact, this is due to a false generalisa-
tion. Individual i; resembles to four individuals (i5, ig, ig, i)
who have defaulted: like them, i, lives in a suburb, has
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Table 3 Training the model: results

ID  Target value Predicted probability Predicted Error
classification

Y, €{0,1} PD; €10,1] PD; 204 e; €10,1]

No,Y; =0

Yes, Y/ =1
ii No 0.267 No 0.267
i No 0.000 No 0.000
iz No 0.178 No 0.178
i, No 0.000 No 0.000
is No 0.178 No 0.178
i No 0.311 No 0.311
iz Yes 0.844 Yes 0.156
ig  Yes 0.844 Yes 0.156
iy Yes 0.844 Yes 0.156
iip Yes 0.844 Yes 0.156

The table reports the results from the training phase on the model
given in Eq. (1). In particular, the table contains: the ‘Target Value’
(provided in Table 1), the predicted probability of default (PD; esti-
mated via Eq. (3)), the predicted classification depending on the
threshold 7 = 0.4 and the errors made by the model (computed based
on Eq. (4))

no permanent contract, has never travelled abroad. How-
ever, there is one difference, related to ig having received a
loan during her/his education. Apparently, this is the only
‘observable’ difference. The reason might be hidden in the
‘Latent Features’: perhaps, because of her/his disability, s/
he needed extra means for education and developed an atti-
tude to acquire and repay loans. Obviously, one can think of
many other scenarios. The evidence which remains is that
there is one observable difference between individual i; and
four individuals who have defaulted: in this case, having
received a credit during education (X;). Based on how the
model works, it gives more attention to similarities, rather
than this difference and therefore makes a very large error,
generating a wrong predicted classification. In order to pre-
vent this, we need to ‘force’ the model to pay more atten-
tion to what makes i distinguishable. Technically, this can
be accomplished by re-weighting the dataset and assign a
higher weight to individual i; compared to the others. Let
us suppose to assign to individual i; a weight bigger than
the one assigned to all other individuals: conceptually, this
is equivalent to ‘forcing’ the model to put more attention to
this data point, similarly to use a magnifying glass so that
the model can ‘see’ it better.

When we estimate the model including the weights® we
obtain the following estimates:

8 The example considers a weight wy =2 for individual iz and a
weight equal to 1 for all the others.



Al & SOCIETY (2024) 39:961-974

973

-0.533 - X, - 0.089 - X, +0.267 - X5 + 0.844 - X, = PD.

&)
The estimates based on Eq.(5) produce the errors and predic-
tions given in Table 3. This new model also makes errors but
what matters is that none of these errors is large enough to
lead to a wrong creditworthiness prediction (column ‘Pre-
dicted Classification’). The error for individual i declined
from 0.475 to 0.311 and thanks to this intervention the clas-
sification is now correct: ‘no default’. With this set of coef-
ficients, if the model is used to make predictions, it would
help people who suffer from vulnerability exactly as it did
for individual i,

Overall, it is important to stress the advantages of this
approach: no arbitrary fairness definition; no sensitive attrib-
ute is needed to identify groups and impose fairness; the
method helped the vulnerable person in this dataset without
creating new vulnerabilities for this person and/or other peo-
ple, as this solution helps protected groups simultaneously;
the method has not reduced the model accuracy, and instead
increased it (discussion points 3.M-4.M, Sect. 3.3).

5 Conclusion

The aim of this paper is to show how Rawlsian Theory of
Justice (Rawls 1971) can help to solve some of the current
open challenges related to algorithmic fairness and to pro-
vide its epistemological motivation. The contribution of the
paper is to introduce Rawlsian principles in their original
form and substantiate why they can represent a solution to
some technical open questions for algorithmic fairness. To
illustrate this, the paper provides an overview of the main
Rawlsian ideas and principles, discusses their implementa-
tion and provides an intuition of the mathematical perspec-
tive for algorithmic bias, i.e. MinMax fairness. The paper
introduces a high-level formalization of the solution in the
context of modelling and algorithmic decision making and
discusses the main benefits in achieving algorithmic fairness
via MinMax when compared to other existing approaches.
This is done both at conceptual level and via an illustra-
tive example. In summary, when compared to parity-based
approaches, MinMax fairness as solution to algorithmic bias
shows at least four advantages: 1) there is no need to make
a context-dependent fairness definition subject to arbitrary
choices; 2) knowledge of the protected attribute information
to implement the fairness solution is not needed; 3) it does
not aim to ensure parity of outcomes between groups, and
rather to increase the utility for specific groups—this does
not happen at the cost of reducing utility for other groups; as
a result, the accuracy of the model for unprivileged groups
might improve without reducing the one for the privileged
groups, overcoming the fairness-accuracy trade-off; 4)

intersectionality issues (Ghosh et al. 2021) are ‘not an issue’,
as potential mistakes for all protected groups are addressed
simultaneously (including those that are not known or not
acknowledged). The discussion focuses not only on pure
engineering choices but also on the overall ethical perspec-
tive in the approach to models and their use for our society.
The present paper proposes MinMax fairness as solution for
algorithmic bias in the form of a fairness intervention; from
this perspective, implementing MinMax fairness enables to
go towards fairer and more accurate models, overcoming the
classical trade-off between increasing fairness and reducing
model performance faced when implementing parity-based
approaches. It is crucial to point out that structural prob-
lems of societies cannot be solved by changing the algo-
rithmic fairness approach. What parity-based and MinMax
fairness do not solve—and cannot solve—are the structural
and intrinsic justice problems of our society present in dif-
ferent domains (e.g. banking, health, welfare, etc.): no algo-
rithm alone or fairness intervention can solve societal issues
or ameliorate injustices that are structural. However, as we
show in this paper, MinMax fairness can at least prevent the
deepening and expanding of existing injustices that may be
historically and structurally part of our societies.
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