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Abstract
This paper presents an intuitive explanation about why and how Rawlsian Theory of Justice (Rawls in A theory of justice, 
Harvard University Press, Harvard, 1971) provides the foundations to a solution for algorithmic bias. The contribution of 
the paper is to discuss and show why Rawlsian ideas in their original form (e.g. the veil of ignorance, original position, and 
allowing inequalities that serve the worst-off) are relevant to operationalize fairness for algorithmic decision making. The 
paper also explains how this leads to a specific MinMax fairness solution, which addresses the basic challenges of algorithmic 
justice. We combine substantive elements of Rawlsian perspective with an intuitive explanation in order to provide acces-
sible and practical insights. The goal is to propose and motivate why and how the MinMax fairness solution derived from 
Rawlsian principles overcomes some of the current challenges for algorithmic bias and highlight the benefits provided when 
compared to other approaches. The paper presents and discusses the solution by building a bridge between the qualitative 
theoretical aspects and the quantitative technical approach.

Keywords  Algorithmic bias · Fairness · Rawlsian Justice · Ethics · AI systems

1  Introduction

The last decade has highlighted an accelerating use of 
Machine Learning (ML) and Artificial Intelligence (AI) 
in a wide range of domains, especially in finance, justice 
and security as a tool to facilitate or even replace human-
based decision-making: this has revealed the intimate links 
between politics, ethics, and computer science. Looking 
at justice in society, the realization that AI may actually 
generate or reinforce inequalities due to its potential to dis-
criminate individuals on the basis of sensitive characteristics 
(such as ethnicity, race and gender) triggered the demand for 
ethical use of AI (European Commission 2019; EBA 2020). 

Consequently, besides a multitude of guidelines and codes 
of conduct, the European Commission has released key 
supranational regulations related to the use of data (Euro-
pean Commission 2018) and AI systems, e.g. the draft AI 
Act (European Commission 2021). We might expect that 
in the near future the use of AI will be strictly regulated in 
high-risky domains (for example, credit-provisioning and 
security). Therefore, for an industrial user of AI systems 
operating in such domains it is now necessary to define jus-
tice and fairness in tangible ways in order to design AI sys-
tems and applications accordingly. Thus, corporate actors 
need to answer questions of ethical and ultimately philo-
sophical nature in order to leverage on the advancement of 
technology.

With a focus on fairness and algorithmic decision mak-
ing, the typical first step in implementing a fairness solu-
tion is to select a specific fairness definition. This initial 
decision is the most difficult one both from technical and 
ethical points of view: there are many fairness definitions 
(Dwork et al. 2012; Hardt et al. 2016; Joseph et al. 2016) 
that can be operationalized through various technical 
approaches; but any one of these definitions can easily 
be contested with convincing arguments. Moreover, fair-
ness definitions do not help people that are vulnerable on 
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the basis of attributes that might be not accessible or not 
yet known: this is for example the case for disabilities 
or peculiar mental characteristics. Therefore, any given 
fairness definition would be arbitrary not only because it 
can be objected by context-dependent substantive argu-
ments, but also due to its inability to address all potential 
instances of unfairness. This issue and its impacts become 
even more relevant when these attributes are considered 
commonly on the basis of “group identities” derived from 
pre-defined ‘known’ “protected” characteristics, such as 
race or ethnicity. Thus, despite the technical sophistica-
tion of different engineering solutions, the fundamental 
problem in algorithmic justice remains unanswered: any 
given fairness definition can be seen as arbitrary or based 
solely on convenience rather than any fundamental con-
cern or argument about justice. As a consequence, the field 
of computer science seems to have reached an impasse 
similar to the one emerged in political philosophy in the 
mid-20th century: there are many definitions of fairness 
(e.g. justice) without any compelling reason for choosing 
any one of them in any given context. It was in response 
to this impasse that John Rawls had produced his seminal 
study Theory of Justice (Rawls 1971, 1999) and introduced 
the idea of Justice as Fairness (Rawls 1985, 2001).

Rawls was addressing the basic problem related to the 
fact that any notion of justice can be defended and objected 
by equally convincing arguments; thus, it was necessary to 
figure out a way to attain a universal definition that (1) would 
be acceptable by all people regardless of their convictions 
about justice, and (2) that would help all people regardless 
of their individual characteristics. Rawlsian contribution 
represents a key milestone for political philosophy. From 
the perspective of consistency and systematic premise, it 
provided a basis for what Rawls calls “intuitionist” theo-
ries of justice that had been invoked against various forms 
of utilitarianism. Not surprisingly, literature contains many 
sharp criticisms of Rawlsian theory, especially against his 
idea of a single conceptualization of justice. However, even 
for those who oppose his arguments, Rawls provides a clear 
argument against which others can position themselves 
(Freeman 2009).

Interestingly, the principles developed by Rawls in order 
find a unique solution for justice are quite relevant for algo-
rithmic fairness nowadays. Indeed, recent literature on “fair-
ness without demographics” approach has already recog-
nized this connection (Lahoti et al. 2020; Hashimoto et al. 
2018; Martinez et al. 1970). However, these studies explore 
different technical solutions for fairness while a motivation 
of the principles linked to Rawlsian ideas is not discussed in 
detail, leaving open the question on how exactly their solu-
tions are derived from the principles of Rawlsian Theory 
of Justice (Rawls 1971). Consequently, these contributions 

do not directly address the problem of explaining why their 
solutions are fair.

In this context, the goal of this paper is to discuss the 
main principles introduced by John Rawls and show why 
they provide a solution for the current challenges of algo-
rithmic bias in the form of MinMax fairness and link them 
to a specific formal definition. To achieve this, we com-
bine the substantive discussion of Rawlsian principles with 
an intuitive formalization in order to provide accessible 
insights. Accordingly, we propose a definition of fairness 
on the basis of Rawls maxmin principle, aiming to maxi-
mize the minimum utility in its original form, and name it 
MinMax fairness, with the goal of minimizing the maxi-
mum errors made by the model. Our definition reads as 
follows: ‘A model is fair if it does not make more system-
atic errors for any sub-group in the dataset compared to 
the others’; in this way, we translate MinMax fairness into 
a concrete criteria to assess fairness in models, by focusing 
on the errors made by the model (see Sect. 4, Definition 
4.1) and introducing a weighting idea to ‘force’ the model 
to correct them. The paper also explains why and how the 
Rawlsian solution overcomes some of the key challenges 
for algorithmic bias, highlighting the benefits it provides 
when compared to other fairness approaches (i.e. parity-
based) in terms of technical engineering choices and ethi-
cal implications. In general, MinMax fairness is applicable 
in different contexts (e.g. health, banking, welfare, etc.), 
and does not have specific restrictions in terms of mod-
eling approaches or application domain. In this paper we 
discuss the operationalization of MinMax fairness solution 
as fairness intervention in the particular context of credit 
decision modeling as illustrative case.

The paper is structured as follows: Section 2 introduces 
Rawlsian Theory of Justice principles and discusses them 
from both a societal and economic perspective by highlight-
ing the link between the original principles and their poten-
tial usefulness for algorithmic fairness. Section 3 hints how 
the concrete implementation could be valuable to solve some 
open questions on algorithmic fairness. Section 4 provides 
an intuitive explanation of the mathematical solution linked 
to MinMax fairness and its operationalization via an illustra-
tive example. Section 5 concludes.

2 � Rawlsian Theory of Justice

This section introduces and discusses the main ideas behind 
Rawlsian Theory of Justice (Rawls 1971) and the concept of 
Justice as Fairness (Rawls 1971, 1985, 1999, 2001) relevant 
to build the proposed MinMax fairness solution for algorith-
mic bias. We first introduce a conceptualization of the main 
ideas related to democratic equality and equal opportunity 
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principles and then discuss the concepts of original position 
for citizens and veil of ignorance.

2.1 � Democratic equality and equal opportunity

One of the basic premises of Rawls’ definition of justice is 
democratic equality. In his seminal work, Rawls states that 
people are all equal and deserve to lead their lives as free 
and equal citizens based on what they consider being a ‘good 
life’: in this respect, this goal should not be affected by arbi-
trary factors. The main Rawlsian argument is linked to the 
concept of equal opportunity: inequalities observed in soci-
ety could be considered as “just” as far as people attain goals 
that differentiate them from other people on the basis of 
their own effort and personal free choices (Fleurbaey 1995; 
Barry 2017). However, according to Rawls, the concept of 
equal opportunity is a complex issue in society and suffers 
from a serious setback. Rawls observes that people do not 
commence their lives from identical circumstances. Many 
factors, often beyond their control, could create serious 
implications for the opportunities that they can encounter 
or hope to encounter during their lives. Sensitive character-
istics such as race, ethnicity and gender are examples of fac-
tors that can deeply impact what people can achieve through 
their own efforts. Rawls considers the life circumstances that 
emerge due to advantages and disadvantages generated by 
such socially constructed categories as ‘unfair’. And Rawls 
goes beyond this, hinting that socially constructed catego-
ries are not the only factor generating unfairness. According 
to Rawls, also natural talents may lead to unfair outcomes 
as these talents are also arbitrarily distributed: often, peo-
ple cannot really choose to have a tendency or talent for a 
particular trait, such as high intelligence. These traits too 
are often distributed rather randomly by nature (Kymlicka 
2002). These considerations related to potential “unfairness” 
affect the way in which Rawls rectifies the equal opportu-
nity argument. Rawls argues that inequalities could still be 
permitted but this should happen in such a way that they 
should be beneficial for those who are mostly disadvantaged 
in terms of the arbitrary factors that affect people’s opportu-
nities. This approach is expressed by the maxmin principle, 
that could be explained as the idea of ‘maximizing the gains 
(e.g. utility) for those people who are in the minimum, that 
is, “worst-off” position’. It is important to notice that this 
conceptualization does not imply a simple scheme of allo-
cating more resources for those with a disadvantage, but 
rather requires to think of best possible ways of organizing 
the resources in order to ensure the resulting arrangement 
would help these people (Daniels 2003). For instance, offer-
ing higher remuneration to people who are skilled enough 
to be a surgeon would help less fortunate people to be more 
healthy if the access to health care is assured. Surgeons with 
a higher remuneration would probably be able to perform 

their duties better with more time to spend for improving 
themselves in their trade and resting when necessary reduc-
ing potential negative consequences deriving from restless 
habits and low remuneration. In this example, the resource 
allocation would ensure that people in the “worst-off” posi-
tion—in terms of either talent or health conditions—would 
benefit from the outcome. This is the essence of Rawlsian 
conceptualization of justice for the society as group of free 
and equal citizens.

2.2 � Original position and veil of ignorance

What makes Rawls’ principles of justice particularly appeal-
ing for algorithmic fairness is the way in which he justifies 
his approach. He states this by means of two instruments: the 
original position and the veil of ignorance. In this context, 
Rawls’ principles could be considered to create a direct con-
nection with some of the basic challenges related to algo-
rithmic fairness, both from a theoretical and practical per-
spective and build an elegant solution. It is useful to briefly 
examine these two concepts and discuss how they help to 
link Rawlsian notion of justice to a solution for algorithmic 
fairness.

Rawls’ original position is based on a counterfactual envi-
ronment in which people are imagined to be in a condition 
where there is no political authority to ensure social exist-
ence. The purpose of this device is to detach people from 
the current organization of society and help them to think of 
ideal conditions that they would have preferred if they had a 
chance to organize political authority from scratch (Dwor-
kin 1973; Clark 1993). The idea is to discover the basic 
principles that would be agreed upon independently by each 
individual, rather than figuring out a specific account for the 
entire political system. This counterfactual argument is built 
on the underlying assumption that agents are rational at the 
original position. Rawls argues that the original position 
would not be sufficient to derive principles of fairness and 
justice as people might take their own material, mental or 
physical conditions as they determine the principles of jus-
tice that need to be adhered to. It stands to reason to imagine 
that at least some people would endorse those principles that 
would generate a favorable position for them in accordance 
with their specific conditions. Obviously, the other people 
cannot be expected to accept such principles due to poten-
tial disadvantages that this would ensue for themselves. The 
concept of veil of ignorance allows Rawls to build a solu-
tion for this conundrum. This refers to an additional condi-
tion added to the original position ensuring that individuals 
are completely “blind” about their own material, mental or 
physical conditions in the political order (and thus society) 
that would emerge after they determine the principles of 
justice. According to Rawls, only after a veil of ignorance 
is put in front of people, the question of what should be 
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the principles of justice that need to be used to organize a 
society makes sense (Roemer 2002). Rawls argues that, in 
a society with rational agents, once a veil of ignorance is 
combined with the original position, individuals would opt 
for the maxmin principle. In practice, people would prefer 
the available resources to be distributed in such a way that 
the resulting inequalities would be most favorable for those 
people that are disadvantaged due to arbitrary factors. The 
intuition can be explained as follows: for each and every 
individual the possibility of suffering from at least some 
disadvantages would be identical, at least from their vantage 
point blocked by the veil of ignorance; consequently, people 
would like to avoid creating a society in which they could 
potentially be in a disadvantaged position. In a way, the veil 
of ignorance has the function of converting all other people 
into a possible position in the society for a given individual 
ensuring that s/he will take everybody into account (Kym-
licka 2002).

3 � From Rawlsian Theory of Justice 
to algorithmic bias

An important open challenge for algorithmic decision mak-
ing is preventing harm to group of individuals on the basis 
of sensitive characteristics. The current approaches used 
by practitioners and the scientific contributions are mainly 
focusing on finding the proper fairness definition and the 
best engineering choice to mitigate bias. In our view, the 
field of computer science seems to be in an impasse similar 
to the one in political philosophy in the mid-20th century. 
As discussed in the introductory section, there are many 
definitions of fairness (e.g. justice) without any compelling 
reason for choosing any one of them in any given context. 
In response to the impasse in political philosophy, Rawls 
produced his seminal study Theory of Justice (Rawls 1971, 
1999) that we consider the fundamental basis for a MinMax 
fairness solution to algorithmic bias. Starting from the con-
ceptualization of Rawlsian principle of justice, this section 
explains how to translate this conceptualization into a solu-
tion for algorithmic bias. This is done both at theoretical 
level and from an implementation point of view via an illus-
trative example. The discussion also highlights the benefits 
of this solution when compared to parity-based approaches.

3.1 � Algorithmic decisions

Let us consider the case in which an algorithmic decision 
making process produces a specific outcome affecting a deci-
sion about individuals in the context of a credit risk applica-
tion: as example, the algorithmic decision could be ‘whether 
to grant or not a loan to a single individual’. Moreover, the 

algorithmic decision could be based on the outcome of a 
simple modelling framework or a more advanced analytic 
approach based on specific ML or AI techniques. Let us 
consider a case with advanced analytic techniques to illus-
trate the problem.

The information about the information about the past 
behavior of a large group of individuals is input for the pre-
dictive model and is stored in two distinct formats:

•	 Features values related to single individuals. These repre-
sent particular characteristics such as age, income, educa-
tion etc., each recorded in a quantitative or quantifiable 
format. For each single individual, we could consider the 
collection of these specific features values as represented 
by a single data point in a multidimensional space (input 
value).

•	 Target value observations coming from the past. In this 
special case, the “default history”, e.g. whether or not the 
person identified by a series of features has paid back the 
loan or defaulted.

Based on this set of information, an AI algorithm discovers 
the patterns in the multidimensional space generated by the 
features values in the form of a probability score, namely 
s ∈ [0, 1] , indicating which combinations of features are 
likely to lead to higher default probability. In this illustrative 
example, once all patterns are captured in the form of model 
parameters, then the algorithm would be ready to be used 
as a decision making device for any new loan application.

Let us now consider a loan application coming from an 
individual who never applied before and see how this would 
be treated. In this case, it is the first time the algorithm ‘sees’ 
this data point: based on the information contained in her/his 
features values, the algorithm would generate a probability 
score ŝ ∈ [0, 1] for the applicant (e.g. a value linked to her/
his default probability) by using the resemblance between 
the new input values and the established patterns already 
learnt (i.e. learnt from the data about the past behavior of 
a large number of individuals and stored as parameters val-
ues). From an ethical perspective, the entry point of jus-
tice and fairness into this picture is the question of which 
features (e.g. individual characteristics) should be used to 
determine the default probability of each single individual.

3.2 � Algorithmic bias

It is widely acknowledged that multiple sensitive charac-
teristics that are beyond the control of single individuals 
(e.g. gender, ethnicity, disability, etc.) should not be used 
as features and rather be ‘protected’; in some cases this 
directly relates to specific legal requirements. This aims 
to ensure that algorithms do not take the patterns linked 
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to these sensitive characteristics into account and gener-
ate harm towards individuals on the basis of this informa-
tion. This practice is also referred to as ‘Fairness through 
unawareness’ (see Sect. 3.3), because the goal is  to con-
sider attaining fairness by being 'unaware' of the specific 
sensitive characteristics.

However it is possible that the information about the pro-
tected attribute is conveyed partially or fully by some other 
features that are included; and thus the protected attribute 
information may still be used without being noticed. As a 
consequence, bias may be rendered invisible rather than 
being mitigated.

Empirical evidence shows that algorithms are capable 
of learning and using the information about such sensitive 
characteristics even when they are not explicitly used. This 
might happen since the algorithm can implicitly ‘see’ such 
attributes in particular combinations of other features due to 
proxies and correlation effects (Pedreschi et al. 2008; Kusner 
2017; Srivastava et al. 2019).

Let us imagine that the information associated with such 
characteristics is implicitly discovered by the algorithm: at 
this point, the usual logic underlying the outcome of the 
decision would be as follows. If the majority of those indi-
viduals who defaulted in the past do have a particular sen-
sitive characteristic value (e.g. gender), then the majority 
of those having the same particular sensitive characteristic 
value would be classified as potentially defaulting on the 
loan. Consequently, any combination of other features that 
betrays this sensitive characteristic value would be used to 
generate a bias against those people having a similar set 
of sensitive characteristics but would not have defaulted. 
A similar logic would also apply in a positive sense: if the 
majority of those who did not default has a particular sensi-
tive characteristic value (e.g. gender), then the algorithm 
would associate the majority of those who have this value 
to ‘no default’; and in the process would grant loans to those 
people who would actually default. In both cases, a false 
generalisation would be made by the model with adverse 
consequences for the individuals impacted by this.

Figure 1 illustrates this logic by showing how potential 
harm can be generated for a given set of data points. Here 
imagine we look at the training dataset of a model that evalu-
ates credit applications. The dashed sets indicate the model’s 
predictions referring to the data points belonging to them. 
These data points are associated, respectively, to: ‘prediction 
of default’ or ‘prediction of no default’. The filled/empty 
shape  shows what had been in reality the outcome of the 
loan repayment process for a single data point: an empty 
shape refers to  ‘default’, and a filled shape refers to ‘no 
default’, e.g. the person has fully repaid the loan. The major-
ity of data points represented as triangles have not defaulted, 
while the majority of data points represented as circles have 
defaulted. However, there are three triangles—despite being 

triangles—who have defaulted, and there are three circles—
despite being circles- who have repaid. Looking at the pre-
dictions, the model ignores these intricacies and wrongly 
predicts that three defaulting triangles would actually repay; 
and again wrongly predicts that three repaying circles would 
default. This happens because algorithms try to generalize 
on the basis of the patterns observed for the majority of data 
points in the training set, and attribute an outcome to a data 
point on the basis of the outcomes of the data points that 
mostly resemble to it. This is, in its essence, the source of 
errors and at the same time the reason for bias. A discrimi-
nation problem arises here: on the basis of being triangles, 
the three repaying triangles are discriminated negatively; 
and the same happens to the three defaulted circles, which 
in turn suffer from positive discrimination (they will suffer 
because they will not be able to pay back the credit they 
will get with adverse consequences). In this example these 
six data points that suffer from bias would be associated to 
systematic errors. In terms of magnitude, these errors will 
be the highest ones.

The essence of the problem is that one individual should 
not be held accountable based on the actions observed in 
the past from those individuals who resemble him/her on 
the basis of characteristics that are arbitrary and sensitive. 
In other words, predicting one’s future ability to repay a 
loan on the basis of what the majority of the others with the 
same sensitive characteristic have done in the past is tan-
tamount to ignoring one’s free will and individuality. This 
becomes even more relevant when considering that such 

Fig. 1   Model predictions, default rates and errors. Data points in the 
training set. The shape of triangles or circles refers to a specific char-
acteristic/feature; the filled/empty shape  refers to a ‘default’ or ‘no 
default’ status. A filled shape   refers to a data point associated with 
‘no default’; an empty shape   refers to a  data point associated with 
‘default’. Dashed sets identify the two alternative model’s predictions: 
‘no default’ and ‘default’. Grey areas identify which data points are 
suffering from errors. In this illustrative case, empty  triangles and 
filled circles are suffering from false generalisation resulting in spe-
cific errors made for these data points
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characteristics are often sensitive and essentially ‘uncho-
sen’ by each individual. In practice, this might directly lead 
algorithms to generate de-facto discrimination towards spe-
cific groups that is not desirable from an ethical perspec-
tive. Going back to the foundations defined by Rawls for 
maxmin principle, we show how a technical solution to algo-
rithmic bias can be attained by means of similar arguments 
applied to the context of algorithmic decision making (e.g. 
bias/errors, sensitive attributes, fairness, etc.).

3.3 � Attaining algorithmic fairness

We can classify the most common approaches to attain algo-
rithmic fairness into two main streams: Fairness through 
unawareness and Fairness through intervention, described 
below. 

1.	 Fairness through unawareness. As discussed in 
Sect. 3.2, this approach aims to attain algorithmic fair-
ness by excluding the features that provide sensitive 
attribute information from being direct input for the 
model (thus being deliberately ‘unaware’). However, 
in practice, it has already been established that this is 
not solving the bias problem (Dwork et al. 2012). Even 
if sensitive attributes are not directly entering into the 
model, it may happen that the information about the pro-
tected attributes is conveyed partly or entirely by some 
other features that are included. As a result, the protected 
attribute information may still be used without being 
noticed, and thus bias may be rendered invisible rather 
than being mitigated. For this reason, Fairness through 
intervention is considered a more appropriate direction.

2.	 Fairness through intervention. This approach aims to 
attain algorithmic fairness by directly introducing tech-
nical algorithmic interventions either during the model 
development phase (i.e. in-processing1) or afterwards 
as an additional layer (i.e. post-processing2). Within a 
model development pipeline, in order to detect and miti-
gate bias, alternative fairness interventions techniques 
are available and used in practice. Most commonly, to 
the best of our knowledge, fairness interventions are 
implemented by means of a Parity-based approach, aim-
ing to achieve a form of parity of outcomes between dif-
ferent groups. Below we describe the main idea behind 
this intervention and present what we consider a novel 

direction for fairness intervention, namely Accuracy-
based approach, to overcome the current challenges.

Parity-based approach consists of well-defined steps, e.g. 
assuming that the protected attribute information is avail-
able (e.g. ethnicity, gender), identifying privileged and 
unprivileged groups based on protected attribute informa-
tion, selecting a particular fairness definition. The aim is to 
attain a parity between privileged and unprivileged groups 
on the basis of the chosen fairness definition (Verma and 
Rubin 2018; Bellamy et al. 2019; Haas 2020; Dwork et al. 
2012), which is context dependent, and potentially arbitrary.

Rather than focusing on parity, we propose to go for a 
direction that we call Accuracy-based approach, whose main 
goals are described below.

Accuracy-based approach aims to increase the perfor-
mance of the model for the protected groups on the basis 
of the potential of the model to make systematic errors for 
these groups. This focuses on improving the performance of 
the model in specific regions of the model space where there 
are clusters of data points that are most likely to represent 
vulnerable people with protected characteristics suffering 
from systematic errors. This is de-facto an operationalization 
of the following fairness intuition: ‘A model is fair if it does 
not make more systematic errors for any sub-group in the 
dataset compared to the others’. We refer to Sect. 4 (Defini-
tion 4.1) for a dedicated technical discussion of MinMax 
fairness definition and to Kim et al. (2019); Martinez et al. 
(1970) for examples from literature.

The most commonly used solution to the problem of pre-
venting bias and discrimination considered by practitioners 
is ensuring a concept of parity among groups in accordance 
with a specific definition of fairness. This means that—on 
average—those groups that are defined by a sensitive char-
acteristic do not receive privileged or unprivileged treatment 
from the algorithm on the basis of a particular definition of 
fairness. The on-going scientific debate is mainly focused 
around how to identify the proper fairness definition and 
how to address the fairness-performance trade-off. We can 
identify multiple definitions of fairness (Hardt et al. 2016; 
Joseph et al. 2016; Kearns et al. 2018), capturing a broad 
range of different legal, philosophical and social perspec-
tives. As relevant issue, we might have cases in which, after 
a specific fairness intervention, a model is considered ‘fair’ 
on the basis of a given fairness definition: this is achieved 
at the cost of reduced model accuracy (Haas 2020; Dwork 
et al. 2012). In Aler Tubella et al. (2022), we show that the 
technical choice of a specific fairness intervention may have 
relevant implications in terms of which data points will be 
affected by the specific technical solution. The paper reveals 
how assessing the engineering choices in terms of their ethi-
cal consequences can contribute to the design of fair mod-
els and the related societal discussions. In this spirit, we 

1  In-processing refers to all methods that incorporate a fairness def-
inition into the algorithm design and optimize it accordingly (as an 
example, see (Bellamy et al. 2019)).
2  Post-processing methods refer to all techniques that intervene on 
the predictions produced by a model (without interfering with the 
algorithm) in order to attain unbiased outcomes (as an example, see 
(Bird et al. 2020)).
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propose the following assessment of parity-based approach 
and a MinMax fairness solution for algorithmic bias based 
on Rawlsian conceptualization of justice, as example of 
accuracy-based approach. Section 4 provides an intuitive 
explanation of the technical and mathematical choices to 
build MinMax fairness solution and provides an illustrative 
example of implementation.

Parity-based approach to fairness suffers at least from 
four deficiencies: 

	(1.P)	 There are multiple ways to define fairness and no 
a-priory right fairness definition for each specific 
case. It is not easy to justify any fairness definition as 
the correct one for specific circumstances and always 
possible to object the chosen definition. Thus, the 
very first step of the process to build fair algorithms 
appears rather arbitrary.

	(2.P)	 Parity-based definitions depend on the identification 
of groups on the basis of ‘known’ sensitive charac-
teristics (e.g. race, gender, ethnicity). There are cases 
in which it is not possible to know—and often legally 
not permitted to know—some sensitive characteristics 
about individuals (Yang and Dobbie 2020; Andrus 
et al. 2021). As a consequence, often times parity-
based fairness definitions are not implementable, even 
when having the most suitable one for the specific 
context. From a fairness implementation perspective, 
parity-based approaches have a clear limitation: they 
only allow, at best, to address existing bias appearing 
on the basis of ‘known’ sources.

	(3.P)	 The implementation of parity-based fairness requires 
parity of outcomes between different groups; for the 
sake of equality, this intervention aims to reduce the 
difference between advantaged and disadvantaged 
groups, for example in terms of number of wrong 
predictions. Given how parity-based works, ensuring 
parity of outcomes often implies decreasing the utility 
of a model for a specific advantaged group, without 
necessarily increasing the utility for the disadvantaged 
groups. As a matter of fact, the information about the 
privileged group reaching a ‘worst-off’ position would 
not change the absolute material conditions of the 
unprivileged group. A parity-based approach, when 
implementable, enables to increase fairness at the cost 
of reducing accuracy.

	(4.P)	 When parity-based is applicable and is used to ensure 
fairness on the basis of a specific ‘known’ attribute, 
it might happen that this generates (unintentionally) 
unfairness on the basis of other attributes, due to 
intersectionality issues (Ghosh et al. 2021; Foulds 
et al. 2020). There might be an internal trade-off 
between fairness on the basis of attribute Xi and 

fairness on the basis of attribute Xj that cannot be 
removed or solved.

Building a MinMax fairness solution for algorithmic bias 
based on Rawlsian conceptualization of justice overcomes 
all these problems simultaneously, as we elaborate below. 

	(1.M)	From Rawlsian Theory of Justice (Rawls 1971) we 
can extrapolate a clear fairness definition based on the 
maxmin principle, linked to the idea that ‘A model is 
fair if it does not make more systematic errors for any 
sub-group in the dataset compared to the others’ (see 
Sect. 4, Definition 4.1 for MinMax fairness definition 
and the technical discussion about it). Ensuring fair-
ness based on maxmin principle aims to increase the 
utility of any given model for those individuals who 
are mostly disadvantaged. Maximizing the minimum 
utility is equivalent to minimizing the maximum error 
within the context of predictive AI-algorithms, from 
which the name MinMax fairness is derived. This is 
possible via an elaborate but still simple justification 
applicable in a general way to all contexts, since the 
definition is linked to the errors made by the model. 
None of the other definitions of fairness does have this 
scope of applicability with such a clear justification 
that emanates from a rigorous connection with justice 
and equality of opportunities.

	(2.M)	MinMax fairness focuses on potential systematic 
errors that any given model could make in order to 
determine groups of disadvantaged people. In this 
respect, Rawlsian approach does not need to acquire 
the exact demographic information of individuals. 
Research confirms that those data points that suffer 
from systematic errors are most likely to represent 
people with sensitive characteristics that generate 
some form of disadvantage: see for example (Chow 
1970; Varshney 2011; Kamiran et al. 2012) and the 
illustrative case in Sect. 4.2 of the present paper. The 
MinMax fairness solution introduced in this paper—
which links the definition of disadvantages to system-
atic errors—attains a robust and generic definition 
that encompasses all combinations of potential known 
disadvantages. Consequently, in order to ensure algo-
rithmic fairness towards disadvantaged people, a solu-
tion based on Rawlsian principles only depends on 
the errors made by the model and does not need to 
have the exact demographic characteristics of these 
people, solving one of the fundamental problems of 
algorithmic fairness (Andrus et al. 2021).

	(3.M)	Fairness based on maxmin principle aims to increase 
the utility for specific groups rather than ensuring par-
ity: this does not create any abstract circumstance in 
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which a decline in utility for a group is justified for 
the sake of reducing the difference between all groups. 
Rawlsian principles of fairness focuses on improv-
ing the absolute conditions of disadvantaged groups, 
rather than making their circumstances relatively less 
disadvantaged by pulling down the ones for the advan-
taged groups. An important aspect to consider when 
dealing with fairness interventions is the link between 
fairness and model accuracy. Indeed, alternative fair-
ness interventions could have different impacts on 
the resulting model accuracy. As high-level intuition, 
while parity-based approaches are usually based on 
a trade-off between fairness and accuracy, the same 
does not necessarily apply to the proposed MinMax 
fairness solution, as this might result in improving 
both fairness and model accuracy simultaneously. 
Implementing this idea allows not only to help 
improving the utility for those groups who are known 
to be disadvantaged, but also to improve the utility for 
people suffering from systematic errors, who became 
disadvantaged within the context of a particular model 
and specific data circumstances. This is a fundamen-
tal benefit that not all fairness definitions allow to 
reach. It is important to stress the generality of such 
benefit, given the unforeseeable nature of all possible 
ways in which data patterns may single out hitherto 
unknown combination of characteristics as a source 
of disadvantage. At this stage, Rawlsian concept of 
veil of ignorance comes again into play in order to 
solve a problem usually under-stated for algorithmic 
bias. Disadvantages might be generated for specific 
groups as model-domain specific, and not necessarily 
confined to categories that are ‘known’.

	(4.M)	Intersectionality (Ghosh et al. 2021) is an impor-
tant element to take into account: when considering 
parity-based, it is possible that we ensure fairness on 
the basis of a specific ‘known’ attribute, and at the 
same time we make our model unfair w.r.t. another 
attribute unintentionally. This is not the case with 
MinMax fairness, as demographics are not needed to 
define fairness. In a way, intersectionality issues are 
‘not an issue’, as potential mistakes for all protected 
groups are addressed simultaneously (including those 
that are not known or not acknowledged).

4 � MinMax fairness as solution to algorithmic 
bias

This section proposes an explanation of the mathematical 
conceptualization of MinMax fairness solution to algorith-
mic bias by considering Rawlsian principles derived from 
his seminal contribution in the field of societal justice. We 

present and discuss why and how MinMax fairness provides 
a solution to overcome the current open challenges and defi-
ciencies highlighted for parity-based approaches (Sect. 3.3), 
by leveraging on a specific mathematical setting to achieve 
fairness. Section 4.1 provides the definition of fairness 
based on MinMax fairness idea and describes the concep-
tual framework for its implementation; Sect. 4.2 discusses 
an illustrative example.

4.1 � MinMax fairness

From a modelling perspective, one important open challenge 
is defining a solution on how to prevent the case in which 
the model might create potential discrimination towards 
specific groups of individuals on the basis of sensitive char-
acteristics. Empirical evidence shows that Fairness through 
unawareness does not solve the problem of building fair 
models: often times, proxies for specific variables or indi-
rect effects due to correlation between features could bring 
a certain level of bias into the modelling approach anyway 
(Pedreschi et al. 2008; Kusner 2017; Srivastava et al. 2019). 
Parity-based approach requires to specify a fairness defi-
nition, to identify specific sensitive attributes and to set a 
parity threshold. After de-biasing, the model performance 
often declines and unknown protected groups may suffer 
from the intervention.

Typically models might make large and/or more frequent 
systematic errors for vulnerable groups defined by various 
combination of protected attributes. Implementing a Min-
Max fairness solution implies to ‘force’ models to pay more 
attention to these type of errors, by introducing specific 
weights3 for these errors (and associated datapoints) that 
can enable their identification. Intuitively, the weights have 
the goal of ‘amplifying’ the effect, and thus let the model 
directly pay more attention to these data points that suffer 
from larger/systematic errors. In the end, this will enable to 
help all vulnerable groups at the same time, by minimizing 
the maximum errors detected. The idea is that the model 
should ideally be equally well performing for all sub-groups, 
not making larger or more frequent errors for specific sub-
groups. This conceptualization can be translated into the 
following MinMax fairness definition.

Definition 4.1  (MinMax fairness) A model is fair if it does 
not make more systematic errors for any sub-group in the 
dataset compared to the others.

3  A discussion on the full detailed implementation of this technical 
solution based on a specific weighting function is beyond the scope 
of the present paper and is currently part of an on-going research pro-
ject.
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The concept of bias is linked to the errors made by the 
model, which result from potential false generalization (as 
discussed in Sect. 3.2, Figure 1). The operationalization of 
MinMax fairness definition can be described as follows:

•	 Bias is defined as function of the errors made by the 
model.

•	 Errors result from false generalizations, as for the data 
points belonging to the grey areas depicted in Figure 1: 
i) False generalizations may affect vulnerable groups 
defined by protected attributes, e.g. false ‘bad’ ten-
dency; ii) False generalizations may affect privileged 
groups defined by protected attributes, e.g. false ‘good’ 
tendency.

•	 MinMax fairness solution attributes specific weights 
to errors resulting from false generalisation and then 
minimizes the maximum errors made by the model. 
The underlying idea is to identify in the model space the 
groups for which the model makes the largest errors and 
then ‘force’ it to perform better for these groups, thus 
reducing the errors.

Compared to other scientific contributions and practition-
ers’ approaches to fairness, this solution has the novelty of 
being implementable without the need to know the sensitive 
attributes, by leveraging on the Rawlsian veil of ignorance 
principle. In its essence the idea is to “force” algorithms 
to pay more attention to those data points that suffer more 

from errors (both in terms of higher magnitude and being 
non-random) since these data points represent vulnerable 
groups of individuals. For a generic classification problem, 
from a technical point of view, this is possible by defining 
specific error and weight functions and optimize for the clas-
sifier in order to achieve the minimization of the maximum 
error. As a result, the model performance will improve. In 
line with Pareto optimality principles, this solution ena-
bles to achieve fairness by also reducing the disadvantage 
deriving from errors for the groups identified in the sample. 
From an implementation perspective, maxmin principle is 
also the basic idea of post-processing fairness interventions 
like (Kim et al. 2019) and blind Pareto fairness approaches 
(Martinez et al. 1970). Providing full details on the math-
ematical formulation is beyond the scope of the present 
paper, whose aim is to provide the high-level intuition for 
the foundations and is left to a dedicated technical research 
exploration which is currently on-going. However, to pro-
vide insights about the practical issues related to this solu-
tion, Sect. 4.2 discusses one illustrative example of MinMax 
fairness implementation.

4.2 � Illustrative example

In order to show how MinMax fairness provides a solution 
to algorithmic bias, we introduce the following illustrative 
example within the context of credit decision modeling (i.e. 
loan applications). It is important to emphasize that this is 

Table 1   Setting

The  table reports a snapshot of the setting representing the basis of our heuristic example. We assume to have n = 10 people in the dataset, 
reported in column ‘ID’ as {i1, i1,… , i10} ; for each individual ij we assume to have the information regarding four binary ‘Observable Features’ 
{X1,X2,X3,X4} , two ‘Latent Features’ {S1, S2} and one binary ‘Target Value’ Yj

ID Observable features Target value Latent features

Received an 
education loan

Having  
permanent contract

Ever traveled abroad Living in a suburb Default history Ethnicity Disability

X1 X2 X3 X4 Y S1 S2

X1,j ∈ {0, 1} X2,j ∈ {0, 1} X3,j ∈ {0, 1} X4,j ∈ {0, 1} Y
j
∈ {0, 1} S1,j ∈ {A,B} S2,j ∈ {0, 1}

No, X1,j = 0 No, X2,j = 0 No, X3,j = 0 No, X4,j = 0 No, Y
j
= 0 No, S2,j = 0

Yes, X1,j = 1 Yes, X2,j = 1 Yes, X3,j = 1 Yes, X4,j = 1 Yes, Y
j
= 1 Yes, S2,j = 1

i1 No No Yes No No A No
i2 Yes Yes Yes No No A No
i3 No Yes Yes No No A Yes
i4 Yes No Yes No No A No
i5 No Yes Yes No No A No
i6 Yes No No Yes No B Yes
i7 No No No Yes Yes B No
i8 No No No Yes Yes B No
i9 No No No Yes Yes B Yes
i10 No No No Yes Yes B No
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meant to be a heuristic example serving the purpose of pro-
viding a setting to discuss different fairness interventions; 
as such, we have developed it by deliberately avoiding or 
simplifying technical aspects.

4.2.1 � The dataset

Let us assume to have a dataset consisting of n = 10 peo-
ple, and assume they all received loans in the past. Table 1 
reports a snapshot of the setting we have, including binary 
‘Observable Features’ {X1,X2,X3,X4} , binary ‘Target Value’ 
Y and ‘Latent Features’ {S1, S2} . For each individual ij , the 
dataset contains:

•	 The information associated to four binary characteristics 
given as ‘Observable Features’ {X1,X2,X3,X4} , namely 
i) X1 ∶ whether they ever received a loan to finance their 
education, ii) X2 ∶ whether they have a permanent con-
tract, iii) X3 ∶ whether they have ever travelled abroad in 
the past, and iv) X4 ∶ whether they live in a suburb. For 
all these features we consider ‘no’ associated with 0 and 
‘yes’ associated with 1.

•	 The information regarding the ‘Target Value’, meaning 
the ‘default history’; for the 10 individuals we know 
whether they ‘defaulted’ or paid back (‘no default’), i.e. 
column with binary feature ‘default history’. We denote 
with Yj ∈ {0, 1} the value corresponding to ‘no’, meaning 
‘no default’ ( Yj = 0 ) or ‘yes’, meaning ‘default’ ( Yj = 1).

•	 The information associated to two ‘Latent Features’ 
{S1, S2} , that are linked to sensitive characteristics, i.e. 
ethnicity and disability. We assume that: i) we can access 
the information about ethnicity but avoid using it in our 
model deliberately; ii) we have no access to disability 
information. Independently of the specific case, both 
‘Latent Features’ are part of the reality.

In this respect, in general terms, the following holds: 

1)	 We assume to have two alternative values for ‘ethnic-
ity’, namely A and B. In this dataset, all people with 
ethnicity B live in suburban areas. We do not want to use 
ethnicity as a factor in our decision making process; at 
the same time, ethnicity information can enter into our 
model unintentionally through the information provided 
by residence (i.e. suburban dwelling) captured by X4.

2)	 In this dataset there are three persons with disability 
(individuals i3, i6, i9 ) and interestingly one of these 
persons, individual i6 , is among the three people who 
received a loan during education; at the same time, this 
is also the only person in the dataset with this unique 
combination (i.e. having disability and having had a loan 
during education).

Despite being a highly stylized example, this is a dataset 
which we might use for developing an algorithm/model to 
facilitate decision making regarding accepting or rejecting 
loan applications. To build such a model, we need to use the 
information provided by these 10 people on the ‘Observable 
Features’ and on the ‘Target Value’ (whether they defaulted 
or not). In this way we can predict whether the next person 
that would apply for a loan would pay back or default. This 
is a classical setting in which we may want to check if our 
model is fair and correct it, in case it is not.

4.2.2 � The model

Let us suppose to consider a simple linear probability 
model4, in which each ‘Observable Feature’ {X1,X2,X3,X4} 
is scaled by a coefficient {�1, �2, �3, �4} and the resulting 
sum is an estimate of the default probability, that we denote 
as PD. We formalize a generic model M as follows:

meaning that we aim to find how each of the ‘Observable 
Features’ is contributing to the prediction of the default 
probability. To train the model, we should consider all indi-
viduals in the dataset. As an example, for individual i1 we 
have:

and the aim of training the model is to find the optimal set of 
coefficients that minimize the errors made by the model. By 
training the generic model in Eq.(1) on the dataset provided 
in Table 1 we obtain the following coefficients:

to estimate the model’s prediction on the PD. The results 
of Eq.(3) are real values between 0 and 1, represent-
ing the default probability5 estimated for each individual 
ij, j ∈ {1,… , n} in the sample. From the real values predic-
tions PDj , we can go back to qualitative predictions by intro-
ducing a threshold6. Let us consider t = 0.4 as threshold, and 

(1)M ∶ �1 ⋅ X1 + �2 ⋅ X2 + �3 ⋅ X3 + �4 ⋅ X4 = PD,

(2)�1 ⋅ 0 + �2 ⋅ 0 + �3 ⋅ 1 + �4 ⋅ 0,

(3)
−0.407 ⋅ X1 − 0.068 ⋅ X2 + 0.203 ⋅ X3 + 0.881 ⋅ X4 = PD,

4  We observe that Linear Probability Models (LPM) can sometimes 
produce unrealistic predictions p < 0 or p > 1 ; in such cases, one 
should consider predictions p < 0 as 0 and predictions p > 1 as 1. 
There are also more sophisticated solutions (Mood 2010,  p.81). In 
some circumstances, LPM can actually be more suitable than logis-
tic regression for probability modelling (see (Mood 2010, p.78) and 
(Caudill 1988)). Here we use this model for its simplicity and due to 
its suitability for the purpose of a heuristic example.
5  Depending on the type of model used, direct interventions might be 
needed to keep values between 0 and 1. In this case, for Linear Prob-
ability Models (LPM), see also footnote 3.
6  This is typically an expert-based parameter.
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the following rule for the classification of creditworthiness: 
any probability exceeding 0.4 (i.e. PDj ≥ 0.4 ) is an indica-
tion of high risk of default and corresponds to the prediction 
“individual ij would have defaulted”. Like all models, this 
one too makes errors; what matters is that we aim to have a 
model that gets close enough to 0 or 1 in terms of predicted 
default probability in order to make the correct classifica-
tion. We estimate the error ej for each individual as the abso-
lute value of the difference between the estimated default 
probability and the ‘Target Value’, namely

with Yj being the ‘Target Value’ for individual ij . Table 2 
shows the outcomes of the training phase and the errors 
made by the model. 

4.2.3 � Fairness through intervention: parity‑based vs 
MinMax fairness

Looking at the outcomes of the model, we observe that, 
apart from individuals i2 and i4 , all other individuals suffer 
from errors. At the same time, we also observe that indi-
vidual i6 is suffering from the largest error so that s/he is 
actually classified wrongly. By ranking the errors, individual 
i6 is followed by individual i1 , though this person—despite 
the second biggest error—is not wrongly classified.

It is important to notice that although we do not use 
ethnicity as a feature in our model, it still has a crucial 

(4)ej = |PDj − Yj|,

influence on the outcome of the model via X4 as a proxy. 
Thus, belonging to ethnicity B (captured by living in sub-
urban area through X4 ) increases the probability of default 
due to its large positive coefficient 0.881). It is quite possible 
not to be aware of such proxies and indirectly use sensitive 
attributes in the model. This example also shows why Fair-
ness through unawareness is not a reliable way of address-
ing algorithmic bias. Thus, the focus below is on Fairness 
through intervention in the form of parity-based and Min-
Max fairness.

Parity-based fairness. Let us now consider how fair-
ness enters into play, and how to make interventions, start-
ing from the parity-based approach. For this purpose, we 
consider demographic parity (Feldman et al. 2015), as it is 
one of the most commonly used parity-based fairness defi-
nitions. This approach requires to ensure that a proportion 
of the desired predictions (such as getting the loan request 
approved) is sufficiently similar across privileged and 
unprivileged groups defined by a protected attribute. Here 
the rule of thumb emanating from the inheritance coming 
from the US Labor legislation7 is to attain 80% parity among 
groups.

For illustrative purposes, let us assume that we have 
access to ethnicity but we do not have access to disabil-
ity. Under these conditions, we may choose to proceed with 
this knowledge and make sure that the proportion of desired 
outcomes (e.g. ‘no default’) would be identical for individu-
als belonging to ‘group A’ (ethnicity A, i1, i2, i3, i4, i5 ) and 
‘group B’ (ethnicity B, i6, i7, i8, i9, i10 ). From Table 2 one can 
see that the model makes 5/5 desired outcomes for ‘group A’ 
while 0/5 for ‘group B’ (column ‘Predicted Classification’). 
To ensure demographic parity, we would need to intervene 
by changing the predictions for ‘group B’ in order to have 
4/5 “no default” predictions. By doing this, what can happen 
is that we would probably correct the wrong prediction for 
individual i6 but then predict that three persons—who would 
actually have defaulted—would pay their loans. As a result, 
this would create adverse conditions for new applicants 
as it would increase the likelihood of the model to make 
wrong predictions for those who would default by evaluat-
ing them as creditworthy, possibly creating dire financial 
circumstances for them. In fact, if the goal is to ensure that 
people would not be made vulnerable and discriminated by 
the model (and due to the model), then demographic parity 
would not serve this purpose: while possibly eliminating 
the vulnerability of individual i6 , it would generate new vul-
nerabilities for other individuals by decreasing the model’s 
accuracy (discussion point 2.P, Sect. 3.3).

Table 2   Training the model: results

The  table reports the results from the training phase on the model 
given in Eq. (1). In particular, the table contains: the ‘Target Value’ 
(provided in Table 1), the predicted probability of default ( PDj esti-
mated via Eq. (3)), the predicted classification depending on the 
threshold t = 0.4 and the errors made by the model (computed based 
on Eq. (4))

ID Target value Predicted probability Predicted 
classification

Error

Y
j
∈ {0, 1} PD

j
∈ [0, 1] PD

j
≥ 0.4 e

j
∈ [0, 1]

No, Y
j
= 0

Yes, Y
j
= 1

i1 No 0.203 No 0.203
i2 No 0.000 No 0.000
i3 No 0.136 No 0.136
i4 No 0.000 No 0.000
i5 No 0.136 No 0.136
i6 No 0.475 Yes 0.475
i7 Yes 0.881 Yes 0.119
i8 Yes 0.881 Yes 0.119
i9 Yes 0.881 Yes 0.119
i10 Yes 0.881 Yes 0.119

7  The legal origin of the 80% rule is a particular US legislation (US 
1964) but it has been explicitly articulated in another document (U.S. 
Equal Employment Opportunity Commission (EEOC) 1978).
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Another important point: since we do not have access to 
disability, the parity that we would attain based on ethnicity 
would not necessarily ensure fairness based on disability; 
this could only happen by chance: for the three persons with 
disability (i.e. individuals i3, i6, i9 from Table 1) the propor-
tion of desired outcomes is 1/3 while the corresponding pro-
portion for the remaining people without disability is 4/7. 
We know now that imposing ethnicity-based fairness would 
require giving “no default” predictions to four individuals 
belonging to ‘group B’; if one of these people is, by chance, 
disabled, then we can attain a parity of 85% between disabled 
and not disabled people. There are five candidates (indi-
viduals i6, i7, i8, i9, i10 ) and only two of them with disability 
(individuals i6, i9 ): thus, the probability of attaining parity on 
the basis of disability while attaining parity on the basis of 
ethnicity is just 0.40, meaning that there is only 40% chance 
of accomplishing that (discussion point 3.P, Sect. 3.3). In 
the remaining cases, parity-based intervention will create a 
different form of unfairness, e.g. towards a different group 
of people.

Obviously, looking at parity-based approaches, we could 
also choose another parity-based fairness definition (for 
instance parity in terms of proportion of wrong predictions): 
in such a case, we would not only encounter the exact same 
problems discussed for demographic-parity (creating new 
vulnerabilities, leaving fairness on the basis of disability to 
chance, reducing model’s accuracy), but we would also need 
to justify our choice of fairness definition at least for those 
people who argue that demographic-parity would be bet-
ter. Moreover, due to intersectionality issues (Ghosh et al. 
2021; Foulds et al. 2020), it might be that ensuring fairness 
on the basis of a specific attribute (e.g. ethnicity) generates 
unintentionally discrimination on the basis of another one 
(e.g. disability, see also discussion points 1.P, 4.P Sect. 3.3).

MinMax fairness. Let us now consider MinMax fairness. 
Based on Definition 4.1, the premise is that fairness implies 
to make sure that the model increases the utility associated 
to disadvantaged individuals, and we measure the utility 
of the model by looking at the errors it makes (discussion 
points 1.M-2.M, Sect. 3.3). Utility decreases with the mag-
nitude of the errors, i.e. the smaller the error, the higher the 
utility. From this perspective, it is clear that the only person 
that suffers from bias is individual i6 (discussion point 3.M, 
Sect. 3.3): while s/he has not defaulted, the model makes a 
very large error and puts the prediction above the threshold 
and classifies this person as non creditworthy, i.e. ‘default’ 
(Table 3). The implication is that the resulting model will 
make such wrong predictions systematically for new appli-
cants with similar characteristics.

It is useful to shortly reflect on why the model is making 
this large mistake: in fact, this is due to a false generalisa-
tion. Individual i6 resembles to four individuals ( i7, i8, i9, i10 ) 
who have defaulted: like them, i6 lives in a suburb, has 

no permanent contract, has never travelled abroad. How-
ever, there is one difference, related to i6 having received a 
loan during her/his education. Apparently, this is the only 
‘observable’ difference. The reason might be hidden in the 
‘Latent Features’: perhaps, because of her/his disability, s/
he needed extra means for education and developed an atti-
tude to acquire and repay loans. Obviously, one can think of 
many other scenarios. The evidence which remains is that 
there is one observable difference between individual i6 and 
four individuals who have defaulted: in this case, having 
received a credit during education ( X1 ). Based on how the 
model works, it gives more attention to similarities, rather 
than this difference and therefore makes a very large error, 
generating a wrong predicted classification. In order to pre-
vent this, we need to ‘force’ the model to pay more atten-
tion to what makes i6 distinguishable. Technically, this can 
be accomplished by re-weighting the dataset and assign a 
higher weight to individual i6 compared to the others. Let 
us suppose to assign to individual i6 a weight bigger than 
the one assigned to all other individuals: conceptually, this 
is equivalent to ‘forcing’ the model to put more attention to 
this data point, similarly to use a magnifying glass so that 
the model can ‘see’ it better.

When we estimate the model including the weights8 we 
obtain the following estimates:

Table 3   Training the model: results

The  table reports the results from the training phase on the model 
given in Eq. (1). In particular, the table contains: the ‘Target Value’ 
(provided in Table 1), the predicted probability of default ( PDj esti-
mated via Eq. (3)), the predicted classification depending on the 
threshold t = 0.4 and the errors made by the model (computed based 
on Eq. (4))

ID Target value Predicted probability Predicted 
classification

Error

Y
j
∈ {0, 1} PD

j
∈ [0, 1] PD

j
≥ 0.4 e

j
∈ [0, 1]

No, Y
j
= 0

Yes, Y
j
= 1

i1 No 0.267 No 0.267
i2 No 0.000 No 0.000
i3 No 0.178 No 0.178
i4 No 0.000 No 0.000
i5 No 0.178 No 0.178
i6 No 0.311 No 0.311
i7 Yes 0.844 Yes 0.156
i8 Yes 0.844 Yes 0.156
i9 Yes 0.844 Yes 0.156
i10 Yes 0.844 Yes 0.156

8  The example considers a weight w6 = 2 for individual i6 and a 
weight equal to 1 for all the others.
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The estimates based on Eq.(5) produce the errors and predic-
tions given in Table 3. This new model also makes errors but 
what matters is that none of these errors is large enough to 
lead to a wrong creditworthiness prediction (column ‘Pre-
dicted Classification’). The error for individual i6 declined 
from 0.475 to 0.311 and thanks to this intervention the clas-
sification is now correct: ‘no default’. With this set of coef-
ficients, if the model is used to make predictions, it would 
help people who suffer from vulnerability exactly as it did 
for individual i6.

Overall, it is important to stress the advantages of this 
approach: no arbitrary fairness definition; no sensitive attrib-
ute is needed to identify groups and impose fairness; the 
method helped the vulnerable person in this dataset without 
creating new vulnerabilities for this person and/or other peo-
ple, as this solution helps protected groups simultaneously; 
the method has not reduced the model accuracy, and instead 
increased it (discussion points 3.M-4.M, Sect. 3.3).

5 � Conclusion

The aim of this paper is to show how Rawlsian Theory of 
Justice (Rawls 1971) can help to solve some of the current 
open challenges related to algorithmic fairness and to pro-
vide its epistemological motivation. The contribution of the 
paper is to introduce Rawlsian principles in their original 
form and substantiate why they can represent a solution to 
some technical open questions for algorithmic fairness. To 
illustrate this, the paper provides an overview of the main 
Rawlsian ideas and principles, discusses their implementa-
tion and provides an intuition of the mathematical perspec-
tive for algorithmic bias, i.e. MinMax fairness. The paper 
introduces a high-level formalization of the solution in the 
context of modelling and algorithmic decision making and 
discusses the main benefits in achieving algorithmic fairness 
via MinMax when compared to other existing approaches. 
This is done both at conceptual level and via an illustra-
tive example. In summary, when compared to parity-based 
approaches, MinMax fairness as solution to algorithmic bias 
shows at least four advantages: 1) there is no need to make 
a context-dependent fairness definition subject to arbitrary 
choices; 2) knowledge of the protected attribute information 
to implement the fairness solution is not needed; 3) it does 
not aim to ensure parity of outcomes between groups, and 
rather to increase the utility for specific groups—this does 
not happen at the cost of reducing utility for other groups; as 
a result, the accuracy of the model for unprivileged groups 
might improve without reducing the one for the privileged 
groups, overcoming the fairness-accuracy trade-off; 4) 

(5)
−0.533 ⋅ X1 − 0.089 ⋅ X2 + 0.267 ⋅ X3 + 0.844 ⋅ X4 = PD. intersectionality issues (Ghosh et al. 2021) are ‘not an issue’, 

as potential mistakes for all protected groups are addressed 
simultaneously (including those that are not known or not 
acknowledged). The discussion focuses not only on pure 
engineering choices but also on the overall ethical perspec-
tive in the approach to models and their use for our society. 
The present paper proposes MinMax fairness as solution for 
algorithmic bias in the form of a fairness intervention; from 
this perspective, implementing MinMax fairness enables to 
go towards fairer and more accurate models, overcoming the 
classical trade-off between increasing fairness and reducing 
model performance faced when implementing parity-based 
approaches. It is crucial to point out that structural prob-
lems of societies cannot be solved by changing the algo-
rithmic fairness approach. What parity-based and MinMax 
fairness do not solve—and cannot solve—are the structural 
and intrinsic justice problems of our society present in dif-
ferent domains (e.g. banking, health, welfare, etc.): no algo-
rithm alone or fairness intervention can solve societal issues 
or ameliorate injustices that are structural. However, as we 
show in this paper, MinMax fairness can at least prevent the 
deepening and expanding of existing injustices that may be 
historically and structurally part of our societies.
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