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Abstract

Osteoarthritis (OA) is a prevalent and progressive
joint disease whose diagnosis from radiographs of-
ten requires expert-labeled data, which is expensive
and time-consuming to obtain. Variational Autoen-
coders (VAEs) offer a way to learn compact, un-
supervised representations that may be reused for
downstream classification in low-label scenarios.
In this work, we assess whether a VAE can learn la-
tent features from hip radiographs that support OA
classification with minimal supervision. We evalu-
ate the model’s reconstruction quality, latent space
structure, and diagnostic utility under label scarcity
and label noise. Results show that VAE-derived
features outperform raw pixel and random base-
lines, suggesting the latent space captures disease-
relevant structure. These findings underscore the
potential of VAEs as scalable, label-efficient tools
for clinical imaging tasks like OA diagnosis.

1 Introduction

Osteoarthritis (OA) is a chronic joint disease that affects over
500 million people globally and is a major cause of disability
in older adults [1]. Hip OA, in particular, significantly im-
pairs mobility and often necessitates joint replacement in ad-
vanced stages [1]. Diagnosis is typically performed by radi-
ologists using standardized grading systems such as the Kell-
gren—Lawrence (KL) scale [2], which assesses disease sever-
ity based on structural features in X-ray images. However,
developing automated OA diagnostic systems remains chal-
lenging due to the high cost of obtaining large volumes of
expert-annotated radiographs. Deep learning methods gener-
ally require extensive labeled data to achieve strong perfor-
mance, limiting their utility in low-resource clinical settings
[3].

In addition to data scarcity, another practical challenge in
medical imaging is label noise - inaccuracies in expert anno-
tations. OA grading, for example, relies on subjective assess-
ment of radiographic features, which often leads to inter-rater
variability and occasional mislabeling [4, 5]. Such noise can
significantly impair the performance of supervised models,
which rely on clean labels to learn accurate decision bound-
aries. Models that remain stable in the presence of mislabeled
data are therefore crucial in real-world diagnostic pipelines.

Self-supervised learning (SSL) addresses these limitations
by enabling feature learning from unlabeled medical im-
ages [3, 6]. Within SSL, contrastive methods have shown
strong results by learning representations that distinguish be-
tween augmented views of images, while generative methods
learn to reconstruct images, thereby capturing the underly-
ing data distribution [6]. Variational Autoencoders (VAEs),
as a generative approach, are especially promising in medical
imaging because they produce latent spaces that may reflect
anatomical and pathological variation relevant to diagnosis
[7].

A Variational Autoencoder (VAE) learns a probabilistic la-
tent representation by reconstructing input data while con-

straining the latent space to follow a smooth prior distribu-
tion [8]. This makes VAEs well-suited for learning compact
representations from large amounts of unlabeled data. Unlike
supervised models, which often degrade with limited or noisy
labels, VAEs can exploit the full dataset and may thus offer
improved robustness [9, 10].

In this study, we evaluate whether a VAE trained on hip
radiographs can support robust OA classification in regimes
where supervised models struggle - specifically, when anno-
tations are scarce or affected by label noise. First, we as-
sess the structure of the learned representations by measur-
ing intra- and inter-class latent distances [11, 12]. Second,
we visualize the latent space with t-SNE, UMAP and PCA
to examine whether disease severity is implicitly reflected
[13, 14]. Third, we test the utility of VAE-derived features
for classification by comparing them to random and raw-pixel
baselines [11, 14]. Finally, we benchmark the VAE-based
model against a fully supervised convolutional neural net-
work (CNN) across a range of label availability and noise
levels, simulating real-world constraints [3, 6, 8, 10].

Our central question is: How effectively can a VAE’s la-
tent space reflect osteoarthritis severity and enable diagnostic
accuracy under label scarcity and label noise? By answer-
ing this, we aim to demonstrate the potential of generative
self-supervised learning as a more resilient alternative for au-
tomated medical diagnosis in low-resource settings.

The paper is organized as follows: Section 2 reviews re-
lated work; Section 3 describes the methodology; Section 4
details the experiments; Section 5 presents the results; Sec-
tion 6 discusses findings and future directions; Section 7 re-
flects on responsible research aspects; and Section 8 con-
cludes.

2 Related Work

By modeling the underlying data distribution, VAESs can learn
compact latent spaces that encode meaningful variation with-
out requiring manual labels. Prior studies, such as Chartsias
et al. [7], have demonstrated their utility in tasks like seg-
mentation, synthesis, and anomaly detection. However, these
works emphasize reconstruction performance or visual inter-
pretability, without evaluating how well the learned features
support diagnostic classification tasks - especially in clini-
cally realistic scenarios with limited or noisy annotations.

Anomaly detection is one of the most common applica-
tions of VAEs in this domain. For example, Uzunova et al.
[15] used a Conditional VAE (C-VAE) to detect abnormali-
ties in brain MRIs by comparing reconstructed and original
images. Although their method effectively distinguished nor-
mal from pathological scans, it relied on anatomical condi-
tioning variables during training, introducing a degree of su-
pervision. This limits generalizability to settings where such
metadata are unavailable.

In parallel, contrastive self-supervised learning (SSL) has
gained traction in medical imaging. These methods learn rep-
resentations by distinguishing between augmented views of
the same image and others in the batch. While contrastive
SSL has shown strong performance in classification tasks
with limited labels [6], it often requires large batch sizes,



carefully crafted augmentations, and lacks the generative in-
terpretability of VAEs. In contrast, VAEs explicitly model the
full image distribution, making them especially promising for
capturing subtle radiographic patterns such as those linked to
osteoarthritis.

In summary, while VAEs have demonstrated their capac-
ity to learn informative representations from medical images,
their diagnostic utility under real-world constraints remains
underexplored. Existing studies often rely on auxiliary super-
vision or focus on anomaly detection without assessing clas-
sification robustness. This research addresses these gaps by
evaluating a VAE-based classifier for binary hip osteoarthri-
tis diagnosis and benchmarking its performance against a su-
pervised CNN under varying levels of label availability and
noise.

3 Methodology

This section outlines the VAE framework used to learn un-
supervised representations of hip radiographs. We describe
the model architecture, latent space formulation, and ELBO
training objective.

3.1 Variational Autoencoder Framework

Let X = {x;}Y, denote a dataset of hip X-ray images. A
VAE models the underlying distribution of the data using a
latent variable z € R?, where d is the latent dimensionality.
The model consists of two probabilistic components:

* An encoder ¢4(z|z), which approximates the in-
tractable posterior distribution over latent variables
given input z. This distribution is modeled as a mul-
tivariate Gaussian with mean ,u(xd) € R? and diagonal
covariance defined by 02(x) € R9.

* A decoder py(x|z), which reconstructs the input image
from the latent code z, defining the likelihood of the data
given the latent representation.

The prior over latent variables is assumed to be a standard
normal distribution:

p(z) = N(0,1).

To allow for gradient-based optimization through the
stochastic sampling of z, the model employs the reparame-
terization trick. Instead of sampling z ~ A (u, o?) directly,
we reparameterize as:

z=pu+o0e¢ e~N(0,I),
where © denotes element-wise multiplication. This formu-

lation separates the deterministic transformation from the
stochasticity, making the sampling operation differentiable.
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Figure 1: Schematic of a Variational Autoencoder (VAE). The en-
coder network fs maps the input image = to the parameters of a
latent Gaussian distribution. The latent code z is sampled via the
reparameterization trick and decoded back to a reconstructed image
2’ via go.

3.2 Training Objective: Evidence Lower Bound
(ELBO)

The VAE is trained by maximizing the Evidence Lower
Bound (ELBO) on the marginal log-likelihood log py(x),
which decomposes as:

log pa () > Ey, (212 [log pe(x|2)] — Dxi(gg(2]7)[[p(2))-

The first term, By, (2x) [log po(x|2)], encourages accurate
reconstruction of the input from the latent code. It is approx-
imated in practice using the mean squared error:

REC(z, ) = [z — &[3.

The second term, Dxi(ge(2|2)|p(2)), is the Kull-
back-Leibler divergence, which regularizes the approximate
posterior to remain close to the prior p(z). This constraint en-
sures that the latent space is smooth, continuous, and aligned
with a known distribution.

To control the trade-off between reconstruction fidelity and
latent regularization, we introduce a scaling factor § > 0,
leading to the final training objective:

‘Ctotal = REC(I,JE) + ﬂ . DKL(q¢(Z|I)||N(07]))

The parameter 3 allows flexibility in balancing the infor-
mation content of the latent codes and the level of disentan-
glement in the learned representation [16]. A higher value
places more emphasis on regularization, which may improve
robustness but reduce reconstruction quality.

This formulation enables the VAE to learn compact and
generalizable image representations from unlabeled data,
which can later be evaluated for their clinical relevance in
downstream tasks.

4 Experiments

In this section, we detail the dataset used, preprocessing steps,
evaluation metrics and experimental setup for each experi-
ment used to assess the diagnostic utility of VAE-learned rep-
resentations.



4.1 Dataset and Preprocessing

The dataset used was the CHECK (Cohort Hip and Co-
hort Knee) - a Dutch longitudinal study focused on early
osteoarthritis in patients. This is a dataset of anterior-
posterior (AP) hip radiographs annotated with Kellgren-
Lawrence (KL) grades, which range from 0 (no OA) to 4
(severe OA). For binary classification, we binarize the la-
bels into no/mild OA (grades 0—1) and moderate/severe OA
(grades 2—4), consistent with prior work.

Preprocessing was carried out designed to standardize im-
age characteristics and reduce inter-patient variability. Ra-
diographs were first resampled to a uniform pixel spacing
of 0.4 mm to ensure spatial consistency. Each image was
then cropped around the femoral head based on anatomi-
cal landmarks, yielding a 224x224 pixel region of interest.
Percentile-based intensity normalization was applied to mit-
igate differences in brightness and contrast, and left hip im-
ages were horizontally flipped to align with the orientation of
right hips.

The resulting preprocessed images were stored alongside
their KL grade annotations and relevant metadata, ensuring
consistency and reproducibility in downstream analyses in-
volving both unsupervised and supervised tasks.

The dataset is split into training and test subsets using pre-
defined subject IDs from a text-based split file. The training
set includes both labeled and unlabeled images, while the test
set is used only for evaluation.

4.2 Evaluation Metrics

For unsupervised latent analysis, we compute latent dis-
tances between disease groups to quantify structural separa-
tion and employ dimensionality reduction for visualization.

For the classification experiments, we use two primary
metrics:

e Area Under the ROC Curve (AUC): Measures the
ability of the classifier to distinguish between classes,
especially important in imbalanced settings.

* Accuracy (ACC): The proportion of correct predictions.

4.3 Reconstruction Quality

Before evaluating the latent space and classification perfor-
mance, we inspect the VAE’s reconstructions of input radio-
graphs. Visual comparisons of original and reconstructed im-
ages help confirm that anatomical structures - such as femoral
head shape and joint space - are preserved. This supports the
claim that the VAE’s latent space captures clinically relevant
information.

4.4 Latent Space Structure

To assess whether the VAE’s latent space captures diagnostic
structure, we analyze how similar the latent representations
are within and across clinically defined groups. Specifically,
we compute average pairwise Euclidean distances among:

* Intra-OA: samples with osteoarthritis (KL grade > 2),

¢ Intra-no-OA: samples without osteoarthritis (KL grade
< 2)9

* Inter-group: pairs spanning the OA and no-OA groups.

Let Z = {2}, be the set of latent vectors obtained from
the VAE encoder. We define D as the index set of disease
cases and AV for non-disease cases. We compute:

2
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A well-structured latent space should exhibit higher inter-
group distances compared to intra-group distances, suggest-
ing that the VAE captures clinically relevant separation in an
unsupervised manner. This experiment evaluates the extent
to which latent representations reflect diagnostic groupings

without direct supervision.

4.5 Latent Space Visualization

To complement quantitative analysis, we visualize the latent
space using dimensionality reduction techniques such as t-
SNE, UMAP, and PCA. Latent vectors are projected to two
dimensions and color-coded by KL grade indicating OA and
KL grade indicating healthy images to reveal clustering pat-
terns. These plots offer visual evidence of the VAE’s capacity
to organize disease-relevant variation.

4.6 Comparison with Random and Raw Pixel
Feature Extraction

To contextualize the value of the learned VAE representa-
tions, we compare them against two alternative feature ex-
traction methods that do not involve meaningful learning:

* Random features: Latent vectors are sampled from a
standard Gaussian distribution A/(0,]) and treated as
feature inputs for classification. This baseline simu-
lates uninformative representations and serves as a lower
bound on performance. It tests whether the classifier can
succeed using purely random, structureless features.

* Raw pixels: FEach image is flattened into a one-
dimensional vector of raw pixel intensities and passed
directly into the classifier. This setup reflects a naive en-
coding of the image and helps assess how much signal
is present in the data without learned feature transforma-
tion.

For all three feature types (VAE, random, raw pixels), we
use the same downstream logistic regression classifier. This
classifier is trained on the same labeled training data and eval-
uated on the same test set using AUC as the primary metric,
ensuring a fair comparison.

In the case of the VAE, we isolate the encoder after un-
supervised training and use the mean latent vectors (i) as
fixed representations. The decoder is discarded, and no fur-
ther fine-tuning occurs. This design tests whether unsuper-
vised pretraining leads to useful feature representations for
classification, independent of reconstruction quality.



Superior performance by the VAE-based classifier would
indicate that the learned representations capture more dis-
criminative structure than those derived from unstructured
baselines.

4.7 Comparison Setup

Baseline Models
We compare two modeling approaches:

e Supervised CNN. A convolutional neural network
trained end-to-end on labeled X-ray images. The ar-
chitecture includes 4 convolutional layers with ReLU
activations, followed by a fully connected output layer
(256x14x14) and Sigmoid output for binary classifica-
tion. It is trained using binary cross-entropy loss to di-
rectly predict disease presence. This training process is
fully tailored to the diagnostic task.

¢ VAE + Classifier. The VAE comprises a convolutional
encoder and a mirrored decoder. The encoder includes
five convolutional layers (32-512 filters) followed by
two fully connected layers that output the mean and log-
variance of a 64-dimensional latent space. Latent sam-
pling is performed using the reparameterization trick to
allow backpropagation through stochastic nodes. The
decoder uses transposed convolutions to reconstruct the
original input.
The model is trained using the Evidence Lower Bound
(ELBO) objective, which combines a pixel-wise L2 re-
construction loss with a Kullback-Leibler (KL) diver-
gence term, weighted by 8 = 4.0 to encourage dis-
entangled and semantically meaningful representations.
Importantly, classification is not performed during VAE
training. Only the encoder is used post-training to ex-
tract mean latent vectors from the labeled subset. The
decoder is excluded from this stage, ensuring that evalu-
ation focuses solely on the learned feature space. These
latent vectors are then used to train a downstream logis-
tic regression classifier, enabling assessment of how well
the unsupervised latent space captures disease-relevant
structure.

Hyperparameters Setup

Table 1 summarizes the key hyperparameters used for train-
ing both the VAE and CNN models. These values were cho-
sen based on standard practice in medical image analysis and
validated via preliminary experiments on the validation set.

Parameter VAE / CNN Value
Image size both 224 x 224
Latent dimension VAE 64
Batch size both 32
Optimizer both Adam
Learning rate both 1x1073
Max epochs both 100
Train/Val/Test split both 80% / 20%

Table 1: Summary of key hyperparameters.

These hyperparameter choices were grounded in standard
practice and initial validation:

These hyperparameter choices were guided by conventions
in deep learning for medical imaging and validated through
preliminary experiments:

¢ Latent dimension (64): Chosen to ensure the latent space
is compact yet expressive. Prior work on VAEs in med-
ical imaging has used similar sizes to encode clinically
relevant features without overfitting [17, 18].

* Batch size (32) and learning rate (1 x 10~2): Default val-
ues commonly used in training both CNNs and VAEs,
shown to provide stable convergence in unsupervised
and supervised deep learning models [8].

* Optimizer (Adam): Selected for its adaptive learning
rate and robustness across deep learning applications,
especially effective in scenarios with noisy gradients.

e Max epochs (100): Sufficient to ensure convergence
based on early stopping checks during validation, with-
out risk of overfitting. This also aligns with typical train-
ing durations in similar applications [17].

 Train/Val/Test split (80% / 20%): Follows common
practice to ensure a robust estimate of generalization
while preserving enough data for training.

4.8 Classification Under Limited Labels

To simulate real-world scenarios of label scarcity, we vary the
proportion of labeled data used for training (5%, 10%, 25%,
50%, 100%). These fractions were selected to represent a
range from extreme label scarcity to full supervision. This
type of fractional supervision experiment is standard practice
in label-efficient and self-supervised learning literature, par-
ticularly for benchmarking model performance under realistic
annotation constraints. Prior studies in both medical imaging
and general vision have used similar setups, training or fine-
tuning with subsets ranging from 1% to 50% of labeled data
to reflect limited resource scenarios [19, 20].

In our setting, for each label fraction, both the VAE-based
and CNN-based models are trained and evaluated on the same
held-out test set. To account for variability and assess stabil-
ity, we repeat all experiments five times using different ran-
dom seeds. These seeds determine the random subsampling
of training data and initialization of model parameters.

To ensure a fair comparison, the same data splits and seeds
are used for both models in each run. This way, differences
in performance can be attributed to the modeling approach
rather than differences in data exposure or randomness. We
report the mean and standard deviation of Accuracy and AUC
across the five runs.

This experiment tests whether unsupervised VAE represen-
tations enable effective and stable classification under con-
ditions of limited supervision, compared to fully supervised
learning.

4.9 Robustness to Label Noise

We further evaluate model robustness by injecting 10%
symmetric label noise into the training labels — simulat-
ing imperfect annotations commonly encountered in clinical
datasets. Both the VAE-based classifier and the supervised



CNN are retrained on this corrupted data while the test set
remains clean.

As in the previous experiment, we perform five runs for
each label fraction using consistent seeds and splits between
models. By introducing controlled randomness and measur-
ing variability across repetitions, we assess both the average
performance and the sensitivity of each model to label corrup-
tion. Metrics are again reported as mean + standard deviation
of Accuracy and AUC.

This experiment reveals the resilience of each model type
to label noise and helps identify which approach maintains
stability and diagnostic reliability under realistic annotation
imperfections.

5 Results

This section reports the outcomes of our experiments de-
signed to evaluate the representational quality and diagnostic
utility of VAE-learned latent features. We organize the results
by type of assessment, beginning with qualitative reconstruc-
tion analysis, followed by structure in the latent space, visual
inspection, and finally, classification performance in multiple
experimental settings.

5.1 Reconstruction Quality

The VAE reconstructions are slightly blurry but successfully
preserve key anatomical structures of the hip, such as the
femoral head and joint space. This suggests that the model
has captured essential features necessary for image synthesis.
A linear interpolation between two latent codes (Figure 2)
shows a smooth and continuous transition, indicating that the
latent space encodes gradual anatomical variation in a coher-
ent manner.

Furthermore, samples generated from random latent vec-
tors (Figure 6) appear structurally plausible and diverse. This
implies that the decoder has learned a meaningful mapping
from the latent space back to the image domain, consistent
with a well-trained generative model.

Figure 6 presents randomly sampled images generated
from the prior distribution over the latent space. The sam-
ples appear realistic and diverse, indicating that the decoder
has learned a meaningful mapping from latent space to image
space.

5.2 Latent Space Structure

To quantify how well the VAE encodes disease-related struc-
ture, we computed average pairwise Euclidean distances be-
tween latent vectors:

Distance Type Mean Distance
Intra-OA group 6.50
Intra-no-OA group 6.52
Inter-group (OA vs. no-OA) 6.56

Table 2: Mean Euclidean distances between latent vectors of sam-
ples in the same or different diagnostic groups.

Inter-group distances slightly exceeded intra-group dis-
tances, indicating that the latent space captures some disease-
relevant separation without supervision.

5.3 Latent Space Visualizations

We apply three dimensionality reduction techniques—t-SNE,
UMAP, and PCA - to visualize the latent representations of
test samples. Figures 3, 7, 8 show no clearly separated clus-
ters. However, this may be due to the complexity of the under-
lying image data and the loss of information when reducing
from a 64-dimensional latent space to 2D.
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Figure 3: t-SNE projection of latent vectors.

5.4 Comparison with Random and Raw Pixel
Feature Extraction

The random baseline simulates uninformative latent features
drawn from a standard normal distribution, while the raw
pixel baseline reflects a non-learned, high-dimensional repre-
sentation. The VAE-derived representations yield the highest
classification performance (mean AUC = 0.78 £ 0.02), com-
pared to 0.64 £ 0.032 for raw pixels and 0.50 £ 0.014 for
random features. These results are averaged over 10 inde-
pendent runs to ensure robustness and account for variability.
Figure 4 shows the ROC curve comparison between the ran-
dom baseline and the VAE latents.
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Figure 2: Original images (top row) and VAE reconstructions generated by linear interpolation between two latent vectors (bottom row).
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Figure 4: ROC curve comparison of the classifier trained on VAE
latent features and random noise for a single run.

5.5 Classification Under Limited Labels

The VAE consistently outperformed the CNN across all data
fractions. At 5% labels, the VAE achieved an AUC of 0.63
+ 0.03 compared to the CNN’s 0.53 + 0.02. With full labels,
the VAE reached 0.71 + 0.01, while the CNN reached 0.65 +
0.04.

In contrast, the CNN achieved higher accuracy at every
level. At 5%, it reached 0.72 + 0.03 versus the VAE’s 0.63
+ 0.02. At 100%, the CNN reached 0.72 + 0.01 while the
VAE plateaued around 0.66 + 0.01.

5.6 Robustness to Label Noise

To assess robustness, we repeated the same experiment with
10% label noise added to the training labels.

The VAE maintained stable performance despite noise,
showing minimal degradation. For instance, at 100% labels,
AUC dropped marginally from 0.71 + 0.01 to 0.70 £ 0.01.
The CNN, in contrast, was more sensitive: its AUC dropped
from 0.65 + 0.04 to 0.56 + 0.07 under the same conditions.

Both models saw reduced accuracy under noisy labels,
but the VAE remained more stable. At 5% labels, the VAE
dropped from 0.63 £ 0.02 to 0.60 + 0.03, whereas the CNN
remained around 0.72 + 0.03, likely due to overfitting to noisy
labels.

AUC vs. Labeled Fraction (mean + std)
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Figure 5: Test AUC as a function of labeled data fraction, compar-
ing VAE-based classifiers and end-to-end CNNs under both clean

and noisy label conditions. Each point represents the mean of 5 in-
dependent runs.

6 Discussion

This section provides an interpretation of the experimental
results, discusses the limitations of the current framework,
and outlines directions for future research.

6.1 Interpretation of Results

The results indicate that the VAE is capable of learning mean-
ingful representations of hip radiographs in an unsupervised
setting. Reconstructions were slightly blurry but consistently
preserved key anatomical structures such as the femoral head
and joint space, suggesting that the model captures clinically
relevant structure even without supervision. Latent interpola-
tions between samples revealed smooth, gradual transitions in
appearance, indicating that the latent space encodes coherent
anatomical variation.

This behavior reflects a well-known trade-off in VAE mod-
els: enforcing a regularized and structured latent space often
compromises reconstruction fidelity. Our model uses a rel-
atively high value of 5 = 4.0, which increases the weight



of the KL divergence term in the ELBO objective. This en-
courages the encoder to produce compressed and disentan-
gled latent codes, which may reduce pixel-level accuracy but
enhance representation learning. In this context, blurrier re-
constructions are not a flaw but rather an artifact of stronger
latent structure - beneficial for downstream tasks like classi-
fication.

Regarding latent space structure, the inter-group distances
were slightly higher than intra-group distances, offering mod-
est support that the latent space aligns with OA severity.
However, the absolute differences were small, indicating
weak class separation. This is consistent with the absence
of clear clustering in dimensionality-reduced visualizations
(t-SNE, UMAP, PCA), likely due to projection loss and the
subtlety of disease signals.

An important factor may be the high anatomical similarity
across patients in the dataset. Many individuals - with OA or
not - share similar skeletal morphology, which the VAE may
model more strongly than subtle disease differences. More-
over, the dataset contains repeated scans from the same pa-
tient across time points. This encourages the model to pri-
oritize subject identity over diagnostic differences, reducing
class separability in both distance metrics and 2D projections.
Future work could mitigate this by incorporating metadata,
introducing constraints on class separation, or exploring con-
trastive training objectives.

The comparison between feature extractors provides fur-
ther insight. A classifier trained on VAE-derived features
significantly outperformed those trained on random or raw
pixel inputs. This confirms that unsupervised pretraining,
even without labels, produces more expressive and diagnos-
tic feature representations. Since all three classifiers use the
same architecture and are trained on the same data, this result
isolates the encoder as the key variable.

The results from the classification experiments offer sev-
eral insights into the behavior of unsupervised and supervised
models under varying label availability and noise conditions.
In low-label regimes (e.g., 5%—10% labeled data), the VAE-
based classifier consistently outperformed the CNN in terms
of AUC (fig.5). This suggests that the VAE’s unsupervised
pretraining allows it to learn meaningful features even when
supervision is scarce, leading to more robust generalization
from limited labeled examples.

As the fraction of labeled data increased, the accuracy of
the CNN gradually improved, eventually surpassing the VAE
at 100% label availability (fig. 9). This aligns with expecta-
tions: the CNN is directly optimized for the classification ob-
jective and can fully leverage large labeled datasets to learn
discriminative patterns. In contrast, the VAE is trained to
reconstruct input images and does not directly optimize for
class separation, limiting its ceiling performance when labels
are abundant.

Interestingly, the VAE also demonstrated greater resilience
to label noise. While both models saw a decline in AUC un-
der noisy conditions, the performance drop was consistently
smaller for the VAE (fig. 5, 9). This suggests that the en-
coder’s latent features, shaped by unsupervised learning, are
more stable and less sensitive to noise in the supervisory sig-
nal - an important property in real-world medical applications

where label noise is common.

Beyond this specific setting, several broader lessons
emerge. First, unsupervised learning methods like VAEs
can extract medically meaningful features from imaging data,
even without labeled supervision - highlighting their utility
in data-scarce domains. Second, evaluating latent represen-
tations via a frozen encoder + simple classifier setup offers a
reproducible and modular way to assess feature quality across
architectures and tasks. Third, this study illustrates the im-
portance of dataset structure: repeated scans of the same sub-
jects and inter-patient similarity can bias model learning and
impact downstream generalization.

These insights extend beyond hip OA classification. For
instance, similar techniques could be applied to other imaging
modalities (e.g., chest X-rays, MRI) or diseases where anno-
tation is costly or ambiguous. The methodology also provides
a blueprint for isolating and evaluating the utility of pretrain-
ing pipelines in larger clinical models.

Based on these findings, we hypothesize that augmenting
the VAE with contrastive learning objectives or supervised
regularization could further improve the disease-separability
of latent representations - an idea worth exploring in future
work.

6.2 Limitations and Future Work

While the results are promising, several limitations must be
acknowledged. First, the evaluation of latent space separa-
bility relied primarily on pairwise distances and 2D visual-
izations. While informative, these analyses are exploratory;
more rigorous metrics such as silhouette scores, clustering
accuracy, or supervised probing tasks could offer deeper in-
sights into latent geometry.

Second, the VAE was optimized for reconstruction rather
than classification. As a result, it cannot outperform super-
vised CNNs when large amounts of labeled data are avail-
able. Future work could explore hybrid training objectives
that combine generative and discriminative signals, such as
semi-supervised learning or contrastive losses tailored to clin-
ical class boundaries.

Third, the CHECK dataset is relatively small and homo-
geneous. Its single-cohort nature and inclusion of repeated
scans from the same patients limit generalizability. Extend-
ing the evaluation to multi-center datasets would improve ro-
bustness and clinical relevance.

Despite the promising results, this study has several lim-
itations. First, the CNN and VAE models were not exten-
sively tuned. Hyperparameters such as learning rate, number
of epochs, and architecture size were selected based on stan-
dard practice and held constant across experiments to ensure
comparability. While this setup avoids biasing the results to-
ward one model, it may not reflect each model’s best possible
performance.

Second, classification was conducted using a frozen VAE
encoder followed by a simple logistic regression model. This
isolates the learned representations from the generative com-
ponent, but may underutilize the potential of fine-tuning or
integrating the classifier into the VAE training loop.

Third, the comparison is limited to a single dataset and
binary classification task (OA vs. non-OA). Although the



findings provide useful insights, further evaluation on other
datasets and conditions (e.g., multi-class grading, external co-
horts) is needed to assess generalizability.

Finally, the number of training epochs (100) was fixed for
all models, which may favor some architectures over others
depending on their convergence dynamics. In future work,
more rigorous tuning and early stopping criteria could pro-
vide a better performance ceiling for each model.

More broadly, this study reinforces the promise and limi-
tations of unsupervised learning in healthcare. While not a
replacement for fully supervised approaches, VAEs and sim-
ilar models offer a scalable, label-efficient method to capture
structure in medical data. By combining them with targeted
supervision or clinically-informed objectives, future systems
could offer more robust and interpretable diagnostic support.

7 Responsible Research

This study addresses an important medical challenge - early
and accurate diagnosis of osteoarthritis - using methods that
reduce dependency on costly annotated datasets. However,
the use of generative models in healthcare also carries respon-
sibilities. While VAEs reduce reliance on expert labeling,
they risk encoding and amplifying biases present in training
data, such as demographic imbalances or imaging artifacts.
As such, careful auditing of latent representations is neces-
sary before clinical deployment.

Furthermore, although this study did not involve real-time
predictions or patient-facing applications, downstream mis-
use of the model (e.g., applying it outside validated popula-
tions) could lead to diagnostic errors. To mitigate this, trans-
parent reporting of training data composition and model lim-
itations is essential. Environmental impacts were minimal
given the modest scale of experiments, but future large-scale
training should consider energy efficiency and carbon foot-
print.

Overall, this work supports the responsible development of
Al tools in radiology by emphasizing data efficiency, model
transparency, and reproducibility.

8 Conclusion

This study demonstrates that VAEs can learn structured rep-
resentations of hip X-rays that support reliable osteoarthri-
tis classification, even when labeled data is scarce or noisy.
While latent space projections do not show clear visual KL
grade separation, the quantitative performance of VAE-based
classifiers - particularly their robustness to label noise - vali-
dates the diagnostic relevance of the learned features. While
this work focused on hip osteoarthritis, the same framework-
combining a VAE encoder with a lightweight classifier -
could be applied to other radiographic diagnosis tasks, such
as identifying fractures, tumors, or joint degeneration. By
learning anatomy-aware features without supervision, the
method offers a scalable approach to pretraining models
across diverse clinical domains.
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A Appendix

Generated Samples from Latent Space

generated from the VAE latent space.

Figure 6: Random samples



15

10

-10

=15

Latent Space (UMAP)

®
@ @ 0
o 1
o
@
@

®

¢

=5 5 10 15 20

Figure 7: UMAP projection of latent vectors.
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Figure 8: PCA projection of latent vectors.



Accuracy vs. Labeled Fraction (mean + std)
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Figure 9: Test accuracy as a function of labeled data fraction, comparing VAE-based classifiers and end-to-end CNNs under both clean and
noisy label conditions. Each point represents the mean of 5 independent runs.
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