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Abstract

This thesis concerns the optimal design of wind turbine blades for bend twist coupling effects.
Bend-twist coupling effects can prove to be an effective way of reducing fatigue damage and
root bending moments for a wind turbine blade. However, how can bend-twist coupling be in-
corporated into a wind turbine blade considering the many structural requirements? This thesis
investigates the optimal design for bend-twist coupling in wind turbine blades. Gradient based
numerical optimization algorithms are applied to obtain composite material layups favorable
for bend twist coupling. The thesis work builds a framework that allows for the selection of
fiber angles at several sections along the blade, while considering structural constraints. This
involves the use of a cross section analysis software and a finite element beam formulation for
the evaluation of responses, while an aeroelastic software is used for load mitigation validation.
The structural constraints include tip twists and deflection, eigenfrequencies and material fail-
ure criteria of which the analytic sensitivities are calculated, implemented in the framework and
validated against central finite difference gradient values. A simple cantilever sandwich beam is
considered first as a trial for the framework and four problem formulations are defined to test
both the framework and the considered optimization algorithms. A full scale wind turbine blade
for a 10MW wind turbine is then subject for the optimization. A converged design for the full
scale blade is obtained and subject to aeroelastic simulations in a steady state and turbulent
inflow. From this, the load mitigation effects are observed and discussed. With the work done
in this thesis project, a step closer to an effective framework for aeroelastic tailoring is achieved.
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CHAPTER 1

Introduction

This thesis work investigates the optimal structural design of wind turbine blades for bend twist
coupling effects. To this measure, a framework for structural optimizing of wind turbine blades
(WTB) has been established. The philosophy is to obtain the design that fulfills the constraints
in the best possible way considering minimization of a parameter belonging to the WTB. The
study deals with the DTU 10MW reference WTB and the aim is to design it for bend-twist
coupling (BTC) effects while maintaining its structural integrity. The following sections in this
chapter presents the introduction, research aims, motivation and why the outcome of this thesis
is interesting for the wind energy sector, introduction to the phenomenon BTC, and an overview
of the report.

1.1 Wind turbine rotor blades

Wind turbines have seen a significant increase in size from commercial models in the 2000s
of 2MW[11] to present 8MW (SWT-8.0-154 - Siemens[58]) and even 9.5MW (V164-9.5 MW
Vestas[46]) full scale certified turbines. The innovation in the wind energy industry have
pushed wind turbine blade sizes and lengths to a current world record of 88.4m. It was build by
LM Wind Power for the company Adwen and intended a 8MW turbine. Considering that the
blade mass increases with an almost cubed law as function of blade length[48] (see figure 1.1),
further scaling highly increases the structural requirements of the blade and other components
such as bearings, pitch actuators and tower. Another issue with increasing blade lengths is the
flexibility of the blade, which can result in catastrophic failure if the blade becomes too flexible
and hits the tower. The solution is new and innovative materials that offer higher stiffness at low
cost of mass and improved design tools to better utilize these new materials and investigate new
compositions and aeroelastic tailoring. With an ever increasing portfolio of candidate materials
to use in WTB’s a fast, accurate, and robust structural optimization scheme is needed in order
to utilize and obtain the optimal design accounting for structural and stability constraints.
Furthermore, with the optimization scheme, new designs utilizing the response of the WTB
when subjected to aerodynamic loads in a beneficial way can quickly be obtained and researched.

Large WTBs are composed of several parts bonded together with adhesives, see figure 1.2.
The main parts are shells, spar caps and webs which together secures the desired aerodynamic
profile and structural properties while minimizing the weight. Each part consists of composite
materials which provides high stiffness at low mass. The materials used are usually glass or
carbon fibers, core materials such as foam or balsa wood and finally resin that binds it all
together. This sort of composite, with a mixture of fibers and epoxy, is usually denoted fiber
reinforced plastic (FRP). The composition of these materials, and by controlling the fiber
angles, allow designs with anisotropic properties, beneficial for the blade while considering
the structural requirements. Practice in industry requires the blade design to be validated in
both FE- and aeroelastic software for numerous load cases which limits the number of design
iterations due to the high computational costs. Traditionally, pure scaling[17] of WTB’s offer
a quick way to dimension longer blades for larger turbines, however, evaluating the best design
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Figure 1.1: Development of wind turbine blade lengths versus weight, taken from [11].

from a database of materials is too time consuming and even with an automated process the
computational costs is significant. Furthermore, leaps in technology frequently occurs such as
prebended and swept blades, where the geometrical similarity assumption of pure scaling is
invalid.

Loads, experienced by the WTB, consists of aerodynamic loads from the wind and self weight
loads due to gravity. The blade response to these steady, cyclic and transient loads is illustrated
in figure 1.2 and are flapwise deflection, edgewise deflection and torsional twist while the exci-
tation from the same loads can cause vibrations that lead to resonance and instabilities. All of
these contribute to the fatigue damage history of the blade and thus must be taken into account
if the blade is to withstand 20+ years of operation.

Torsion

Flapwise

Edgewise Shell Suction Side

Shell Pressure Side

Shear Webs

Leading Edge Trailing Edge

Capsy

z x

y

x
z

Figure 1.2: (Left) Sketch of WTB with bending deflection, torsion twist Right WTB cross section
(airfoil) and blade constituent parts.

The torsional twist is of special interest, since this can be coupled with the flapwise deflection
by either sweeping the blade (geometrical coupling) or having the fiber orientations off diagonal
to the blade neutral axis (material coupling). Depending on the coupling, the blade will either
twist towards stall or towards feather and doing so change the angle of attack which is the angle
between the relative wind speed observed by the blade and the airfoil chord line. Figure 1.3
illustrates the torsional deflections. Increasing angle of attack results in greater lifting force of
the blade until a point of flow separation known as stall. Decreasing the angle of attack will
lower the generated lift as the chord line aligns with the relative wind direction and having
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the chord line coinciding with the wind direction is called feathered position. For a sketch of a
WTB airfoil and its relative angles and force vectors see figure A.1 in the appendix page 75.
It should be noted here that besides the torsional twist, which is an elastic response to loads,
the entire blade is twisted actively by the turbine control system and may contain a pre-twist
(usual for stall regulated turbines). The active pitch action is denoted as pitching the blade
and the pitch angle is the angle between chord line and plane of rotation.

(a) Twist towards stall (b) Twist towards feather

Figure 1.3: BTC wind turbine blade response to a bending load, from [27]

1.2 Research aim

This thesis work attempts to design the 10MW DTU reference WTB (without prebend) such
that bend-twist coupling is incorporated in the blade response to a flapwise loading. This is
also known as aeroelastic tailoring where the response to loads on the blade is beneficial in
one or more measures. The optimum WTB design must meet structural constraints such as
eigenfrequencies, maximum flapwise tip deflections and stress constraints. To obtain the design,
numerical gradient based algorithms, SQP (using fmincon) and IPOPT, are used together
with a material optimization framework with continuous design variables. The aerodynamic
profile and outer and inner dimensions of the blade are fixed, and it is up to the algorithm to
orient the composite material such that the objective is minimized. With the geometry fixed,
only fiber angles are considered in this study. It is believed that the framework can serve as a
tool in aeroelastic tailoring which can prove advantageous in WTB design. It is desired that
the framework does not pose significant computational costs, which influences the choice of
software and modeling in this study. The following hypothesis is stated:

• Material bend-twist coupling effects can effectively work as a passive load alleviation
method for wind turbine blades without degrading the structural integrity specific to flap-
wise bending stiffness, eigenfrequencies and material stress limits.

The following research objective can thus be defined as:

• to design a framework that maximizes the rotational response in wind turbine blades un-
dergoing flapwise bending by analyzing and designing the optimal structural properties
or layup for bend twist coupling considering structural constraints using state of the art
optimization algorithm(s).

This allows for the optimum design of a wind turbine blade for bend-twist coupling effects consid-
ering careful chosen constraints. To obtain such a design, knowledge of bend-twist couplings in
composite beams and wind turbine blades are sought through literature and parametric studies
prior to a full blade optimization formulation. To defend the hypothesis, aeroelastic simulations

3



Figure 1.4: Ways to incorporate BTC and stretch/twist coupling effects in WTB as suggested by
Karaolis et al.[35]. Illustration taken from[42].

using the software HAWC2 is proposed to validate the load mitigation effects. Validation of
the deflective and rotational response with Abaqus was also considered at the beginning of the
thesis work, however, had to be abandoned due to shortness of project time.

1.3 Motivation

The motivation for longer blades, and thus a larger swept area, is simply to be able to extract
more energy from the wind with one turbine. Doing so, the cost of energy (CoE) is reduced
making wind energy more competitive with other sources of energy [71]. With larger blade
lengths comes increased aerodynamic loads and self weight which threatens the structural in-
tegrity of the blade and the wind turbine itself. Furthermore, long slender blades pose less
bending stiffness such that when exposed to high loads the tip deflection is more significant.
Incorporating BTC can reduce the total deflection of the blade since the blade will pitch to
feather when deflecting flapwise. Furthermore, blades with BTC towards feather have shown
to reduce the fatigue damage thus prolonging the life of the blade[10].

1.3.1 Bend-twist coupling

Generally two types of couplings have been considered for WTBs: extensional-bending and
twist-bending couplings. Extensional-bending coupling is usually seen as a method for stall
regulated turbines as an emergency brake mechanism such that if the rotational speed is too
high the blade will twist due to the centrifugal forces[47]. There is therefore no load alleviation
by using this coupling and it is not considered for this study. BTC produce a twist when the
blade undergoes flapwise bending. If the twist occurs such that the blade turns up into the
wind, the loads from the wind reduces and therefore this BTC is chosen for this study.
To incorporate BTC effects in a WTB, Karaolis et al.[35] suggested using biased layups in the
shells. The fiber angles in the pressure and suction side shells are mirrored as illustrated in
figure 1.4. A practical example of incorporating BTC effects on a WTB can e.g. be found in
[5]. Research regarding the benefits and possibilities of coupled WTBs are numerous, however,
a small recap of the most important findings is presented here.

Early researchs’ initial motivation for BTC in WTB’s was increased energy capture, aeroelastic
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stability and load mitigation[42]. The increased energy capture is realized by having BTC
effects towards stall, meaning when the blade undergoes flapwise bending, the blade also twists
to higher angle of attacks thus increasing lift force. Research by Lobitz et al.[41] revealed BTCs
towards stall could lead to divergence where the change in angle is self-enforcing leading to even
higher twist angles until the structural limits of the blade are surpassed and catastrophic failure
occurs. This phenomenon is known as divergence. Furthermore, the findings in the paper also
showed increased risk of stall flutter, which is an excited torsional mode due to the de- and
reattachment of the flow leading to increased amplitude in the oscillations. These findings has
latest been fortified by Stäblein and Hansen [60] who investigated the aeroelastic properties of
a simplified BTC blade section with an unsteady aerodynamic model in a linearised state-space
formulation.
The desired coupling twists the blade towards feather as it undergoes flapwise bending and
doing so reduces the angles of attack and the loads. The load mitigation by BTC is denoted
as a passive load alleviation, meaning no actuators are needed to change the angle of attack.
Today modern turbines are of the category variable-speed and -pitch, meaning the blade both
operates at various rotational speeds and pitch angles, controlled by the wind turbine control
system. The variable pitch allows for the blade to operate continuously at near maximum
efficiency for lower wind speeds. As the wind speeds increase, the blades will be pitched out
towards feather by the pitch mechanism. Just prior to reaching rated wind speed, which is
the minimum wind speed where the wind turbine can produce its maximum power output, the
wind turbine will experience its largest loads since the turbine control have not yet pitched the
blades. The pitching of the blades are both to reduce the loads at higher wind speeds than
rated wind speed and to maintain the rotational speed of generator below a set maximum.

So why consider BTC for load alleviation if the pitch system already does it? The pitch
system reacts only when the generator rotational speed becomes larger than a certain threshold
provided by the control strategy or emergency shut downs. It is too slow to react to sudden
gusts and measuring the load on the blade or deflection in real-time is, to the authors knowledge,
not feasible. The passive load alleviation is, however, instantaneous since the twisting occurs
simultaneously with the flapwise deflection thus reducing loads and tip deflection. The effects
of the load mitigation can be observed in the fatigue damage of the blades. Lobitz et al.[42]
simulated wind turbines in turbulent and transient environments and compared the fatigue
damage between rotors with BTC and without. The results showed significant reduction in
fatigue damage up to 80% for stall controlled rotors, however, only for blades with very high
couplings, which might not be feasible in production perspective considering fiber angles are
discrete and material strains and stresses change when introducing BTC. The mitigation effects
was reported less for pitch controlled turbines with 10% reductions which is still significant
considering WTB’s are designed for two decades of operation.
The BTC comes with a cost. When the blade twists towards feather, the lift force, which
provides the torque for the generator, is reduced. Thus, a loss of power production is present.
It has been suggested by Zahle et al. [71] to increase the rotor diameter to cope with the
loss of power, allthough their passive load mitigation was obtained by optimizaing the internal
structure of WTB. The effects can also be mitigated by pre-twist of the blade[42][1]. Another
aspect is the lower bending stiffness which follows naturally when rotating fiber angles off axis.
In this thesis study, structural constraints to ensure structural integrity and sufficient bending
stiffness to prevent WTB collision with the wind turbine tower is ensured.
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1.4 Layout of thesis
This section presents the layout of the remaining pages of this thesis and a small introduction
to each point of what to expect from the different sections.

• Chapter 2: Methodology and theory
Literature findings on composite beams are presented and an analytic theory is utilized
to gain insight in BTC effects. The cross section analysis tool used in this project is
introduced as well as the theory behind it. The loads considered for this study and cross
section meshes are discussed in the end of this chapter.

• Chapter 3: Formulation of optimization problem:
A general discussion on optimization and the solvers considered for this thesis work is
presented as well as the analytic sensitivities.

• Chapter 4: Validation of framework
The framework is validated with a simple study considering a cantilever sandwich beam
of which the aim also is to obtain proper problem formulations and gain insight in the
optimization algorithm performance.

• Chapter 5: Full blade optimization
The DTU10MW reference WTB is subject to the optimization scheme and a converged
result is obtained.

• Chapter 6: HAWC2 results
The optimized blade design for BTC effects is subject to aeroelastic simulations to validate
the load mitigation effects.

• Chapter 7: Future work
The work not completed in this thesis and suggestions to future work is presented.

• Chapter 8: Conclusion

6



CHAPTER 2

Methodology and Theory

This chapter serves as an introduction to early analytic and experimental research regarding
BTC in composite beams. Relevant literature findings and analytic methods are presented and
used in a discussion of BTC effects. An introduction to the cross section analysis tool BECAS,
used in this study, is later presented as well as the theory behind it. A discussion on the
methodology used regarding 2D-meshing and the static load case is then provided in the end of
this chapter.

2.1 Composite beam theories

There is no easy analytic method to estimate a WTB’s blade response to loads. The varying
cross section geometry and composite material properties oriented in different directions, all
along the blade span, cannot be simplified to suitable hand calculations without losing too
much information such that the results will be far from the WTB’s real response. Nevertheless,
in order to understand the BTC phenomenon better, analytic solutions to composite beams,
capable of estimating the beam twist response due to BTC effects, has been sought and found
in great numbers. Citing Volovoi et al.[68]:

"There is no lack of composite beam theories. Quite the contrary, there might be too many of
them."

Common for the beam theories are the basis in Euler-Bernoulli beam formulation that allows
for simple static analysis of long, slender, beam-like structures. Extension to include shear
deformation, by dropping the assumption that a cross section plane remains perpendicular to the
beam bending axis after deformation, is then performed, and a Timoshenko beam formulation
is obtianed[65]. A further extension can be made by including the St. Venant’s torsion which
assumes out-of-plane warping is unrestrained and therefore does not cause axial stress in the
section. Stäblein reviews the importance of warping for closed section composite beams in the
book MARE-WINT [45] and finds that general warping and shear deformation is influential
whereas restrained warping is of less importance.
Numerical results from Chorténez and Piovan [19], using their own derived beam formulation,
suggests that shear deformations are important for composite beam frequencies. The experi-
mental investigation into thin walled composite beams with BTC effects by Chandra et al. [15]
supports that both transverse shear and warping effects indeed are important. In a subsequent
study, Chandra and Chopra[14] further investigated the importance of shear deformation and
warping effects for open and closed beam sections with up to a remarkable 630% increase in
torsional stiffness for a composite I-beam when warping was constrained.

The limited findings above are far from extensive, however, they give an insight into the vast
area of research concerning thin-walled composite beams which is the basis of WTB’s and one
specific from Chandra et al.[15] will be used to compare numerical results in section 2.4.
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2.2 The BTC parameter
This section serves as an introduction to the theoretical analysis developed by Lobitz and
Veers[43] to investigate the BTC effects, and more interestingly, its limits. With the basis in
beam stress-strain relationship developed by Karaolis et al. [35], a 2-by-2 sub-matrix system,
coupling the bending and twisting response with off-diagonal terms in the cross-sectional
stiffness matrix, is derived by Lobitz and Veers.

Using classical laminate theory (CLT), Karaolis et al. presented a method that describes the
amount of coupling present in a structure. The theory has later been treated, corrected and
validated by Kooijman[37] and Ong and Tsai [50]. Based on the theory, Lobitz and Veers [41]
proposed a coupling parameter, α, as a measure of BTC. The theory leading to this parameter
is shortly presented here.

The anisotropic constitutive relation in CLT for a laminate is given as a 6-by-6 matrix that
relates the global strains and stresses, see eq. (2.1) (taken Jones’s book on mechanics of
materials[34]). 

Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16
A21 A22 A26 B21 B22 B26
A61 A62 A66 B61 B62 B66
B11 B12 B16 D11 D12 D16
B21 B22 B26 D21 D22 D26
B61 B62 B66 D61 D62 D66





εx
εy
γxy
κx
κy
κxy


(2.1)

In short it is written as [N; M] = [AlBl; BlDl][ε]. The submatrices are named as: Al is the
extensional stiffness matrix, Bl is the bending-extension coupling stiffness matrix and Dl is the
bending stiffness matrix and the inverse of the constitutive matrix in eq. (2.1) is [ab; bd]. The
elements in Al, Bl and Dl are calculated by:

Aij =
n∑
k=1

(
Q̄ij

)
k

(zk − zk−1), Bij =
n∑
k=1

1
2
(
Q̄ij

)
k

(z2
k − z2

k−1), Dij =
n∑
k=1

1
3
(
Q̄ij

)
k

(z3
k − z3

k−1)

(2.2)
where (Q̄ij)k is the rotated local lamina stiffness matrix for the kth layer in the laminate and
zk is the thickness coordinate. The entries in (Qij)k are shown in eq. (2.3) for assumed plane
stress.

Qk = 1
1− ν12ν21

 E11 ν21E22 0
ν21E2 E22 0

0 0 G12 (1− ν12ν21)

 (2.3)

When rotated with standard rotation matrix T, the matrix is fully populated: Q̄k = TQkTT .
It is possible to estimate the local material stresses for the kth- lamina by Hook’s Law σl = Qkεl
where the subscript l denotes rotated strains and stresses. In order to derive a simplified theory
from this, Karaolis et al. made the following assumptions:

• The structure analyzed is a thin-walled beam with wall thickness much smaller than width
(t << c). As a result the in-plane skin bending and coupling are negligible compared to
the entire beam performance[37].

• Only linear elastic deformation is considered.
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• Stress concentrations due to warping incompatibility or shear lag are ignored.

The following derivation follows that given by Ong and Tsai [50] but builds on the work of
Lobitz et al. [41]. The full matrix, Q̄k is reduced to a 2-by-2 matrix by assuming the in-plane
normal stress, σ22 is zero. This gives:.σ11

σ22
τ12

 =

Q11 Q12 Q16
Q21 Q22 Q26
Q61 Q62 Q66


ε11
ε22
γ12

→ [
σ11
τ12

]
=
[
Q̄11 Q̄16
Q̄61 Q̄66

] [
ε11
γ12

]
(2.4)

with

Q̄11 = Q11 −
Q12Q21
Q22

, Q̄16 = Q16 −
Q12Q26
Q22

, Q̄61 = Q61 −
Q62Q21
Q22

, Q̄66 = Q66 −
Q62Q26
Q22
(2.5)

This reduces eq. (2.1) and by assuming a symmetric layup, B = 0, a relation between bending-
and torsion moment and the respective curvature and twist is obtained:

Nx

Nxy

Mx

Mxy

 =


Ā11 Ā16 B̄11 B̄16
Ā61 Ā66 B̄61 B̄66
B̄11 B̄16 D̄11 D̄16
B̄61 B̄66 D̄61 D̄66



εx
γ12
κx
κxy

 B=0→
[
My

Mxy

]
=
[
D̄11 D̄16
D̄61 D̄66

] [
κx
κxy

]
(2.6)

Here κx is the bending curvature and κxy is the twist curvature. Ong and Tsai [50] relates D̄ij

to Lobitz and Veers’ [41] stiffness terms by:

∂θ

∂x
= κx,

∂ϕ

∂x
= κxy, D̄11 = EI

b
, D̄66 = GJ

b
, D̄16 = D̄61 = −g

b
(2.7)

where b is the width of the laminate and g is the BTC term. Rewriting eq. (2.6) and leaving
out 1/b for abbreviation: [

Mx

Mxy

]
=
[
EI −g
−g GJ

] [
κx
κxy

]
(2.8)

If the structural coupling term, g is zero, there exists no coupling. In order for the 2-by-2 matrix
to be positive definitive the following must hold: |g| =

√
EI ·GJ . To investigate intermediate

values of the coupling term the following relation is defined [41]:

α = g√
EI ·GJ

, −1 ≤ α ≤ 1 (2.9)

The above limits are theoretical and it has been shown by Ong and Tsai [50] that in practice
the limits are ±0.6. To illustrate how the parameter changes with angles, figure 2.1 has been
produced using standard material properties presented in table 2.1. The subject is a sandwich
beam with the top and bottom face having the same fiber orientation using either glass fiber
reinforced plastics (GFRP) or carbon fiber reinforced plastics (CFRP). CLT is then used to
determine the stiffness terms needed to calculate the coupling parameter in eq. (2.9).

2.2.1 Discussion on coupling contributors

Controlling the fiber angles has a direct effect on the stiffness terms values which control the
amount of coupling. As observed in figure 2.1, choice of material also affects the amount of cou-
pling possible where CFRP outperforms GFRP. This is also supported by findings in literature
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Figure 2.1: Coupling parameter as function of an-
gles in a sandwich beam with symmetric layup.

GFRP CFRP Core
E11[GPa] 35.7 160 0.075
E22[GPa] 10.6 6.9 0.075
G12[GPa] 2.81 6.21 0.020
ν12[-] 0.324 0.28 0.1

Table 2.1: FRP properties from [40] and core
materials from [22] as Divinycell H60

e.g. [40], [50]. Further observing the results in figure 2.1, the optimum angle for highest/lowest
coupling parameter, α, for this sandwich beam is approximately 25-30°, depending on material.
This also stems well with literature findings: Chandra et al.[15] concluded that symmetric layups
indeed results in BTC and that the coupling is greater with larger angles. Ong and Tsai[50]
performed experiments on composite D-spars and concluded that the three main contributors
for BTC effects are the material, ply orientation and proportional volume of anisotropy layers in
the laminate. Fedorov and Berggreen[26] performed experiments on composite beams and small
sections of WTB’s. They concluded that a loss of 30-35% in bending stiffness is present when
unidirectional (UD) glass fibers in the spar cap are oriented 20-25° off axis. Furthermore, using
the simple Euler Bernoulli beam formulation developed by Lobitz and Veers[41], they could
express the BTC parameter for these WTB sections. Their findings indicate a maximum of 0.2
BTC parameter for glass UD fibers and 0.4 for carbon fibers. These are important findings and
could aid when considering constraints for the optimization scheme.
The above findings lay out a reasonable picture of what to aim for for the full blade optimiza-
tion in this study. More examples of research concerning BTC effects in WTB’s could easily
be found, however, to limit the extend of this study the above chosen are the most important.
Furthermore, geometrical parameters, such as the placement of shear webs and load application
point can also affect the blade response when deflecting in a bend-twist coupled way, but will
not be treated in this study, since the geometry is fixed.

2.3 Structural model

Given the high complexity BTC’s introduce (in the form of warping and coupled response to
loads), a robust and accurate framework is needed for the optimization. The accuracy can be
obtained using FE discretization which is well suited for complex structures and responses and
commercial software such as Ansys, Abaqus, or COMSOL exist, which are capable of handling
composites. The aim is to perform structural optimization on the DTU10MW reference WTB
which is no small problem and requires a lot of iterative evaluations of the structure response to
small changes in material orientations. Although providing great detail, the mentioned software
requires a detailed mesh i.e. a high number of elements and, to the authors knowledge, they
do not provide sufficient model simplifications to reduce the computational costs significantly.
A WTB is a long, slender, structure that can be represented by a FE beam model and do-
ing so, avoid the need of a shell-element mesh representation of the entire blade surface and
internal structure. The difficulty lies in obtaining the cross section stiffness matrices for each
section/beam element of the blade. To this matter, BECAS will be used.
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2.3.1 Introduction to BECAS

The BEam Cross sectional Analysis Software (BECAS v3.3) was developed by José Blasques[6]
and builds on the theory of Giavotto et al.[29]. The input to the software is a 2D mesh of
any arbitrary geometry with any anisostropic and oriented material properties. BECAS then
assembles a 6-by-6 stiffness matrix while accounting for all geometrical and material induced
couplings. In the introduction to this chapter, a small number of highlighted literature find-
ings showed that warping effects and shear deformation should be accounted for. This is the
case for the BECAS software and therefore a suitable choice for this study. The cross section
stiffness matrix can be used with 3D beam FE’s to present any beam like structure such as a
WTB. BECAS is very conveniently free for academic purposes and is written in MATLAB. It
is currently maintained at the Department of Wind Energy DTU.

Figure 2.2: Typical workflow of WTB design using BECAS from[24]

As observed in figure 2.2, not all tasks are handled by BECAS. Pre- and post processing as
well as load application and response calculations must be performed by different software. For
example, the cross section mesh must be provided along with the material properties of each
element in the mesh. As a minimum, BECAS requires 5 input files for the computational work
intended in this thesis work:

• N2D.in: (nn-by-3) array with nodal positions where each row is [node label, x-coordinate,
y-coordinate].

• E2D.in: (ne-by-nnpe) array with element connectivity where each row is [element label,
node 1, ..., node nnpe) where nnpe depends on element type.

• EMAT.in: (ne-by-4) array with element material properties where each row is [element
label, material number, fiber angle, fiber plane angle].

• MATPROPS.in: (nmat-by-10) array with the material properties where each row is in the
form [E11, E22, E33, G12, G13, G23, ν12, ν13, ν13, ρ]. Each row correspond to a unique
material referred to by second column from EMAT.in.

• FAILMAT.in: (nmat-by-19) array with the failure criterion selection flag (1-4) in the first
column and the material characteristics in the remaining 18 columns. Note that in this
study fatigue damage is not estimated, so the last three columns in FAILMAT.in are left
empty. To see the order and nomenclature of the material strength parameters, see e.g.
table 4.3.

With BECAS the cross section stiffness matrices can be evaluated, however, response to loads
must be evaluated by alternative software. This is done with the software FRANS which
accompanies BECAS, see below.

2.3.2 Introduction to FRANS

The aerodynamic loads from the wind and the gravitational loads due to the self-weight cannot
be evaluated by BECAS. However, with known loads (e.g. a load case from the DTU10MW
report[3]) on the WTB, BECAS can via the FRame ANalysis Software (FRANSv0.2) evaluate
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the response i.e. displacement, eigenfrequencies, strains, and stresses in each cross section finite
element. FRANS creates a 3D beam finite element representation of the WTB using the cross
section stiffness matrices from BECAS. The process is visualized in figure 2.3. In this study,
only composite beams or WTB’s are considered which share similar boundary conditions, that
is, clamped at one end (root) and free at the other (tip). The method to construct and build
the beam FE representation of the WTB can be read in detail in e.g. [6], but is for convenience
presented here.

Figure 2.3: Schematic of the creation of the FE beam discretized model of a WTB as done by
FRANS, taken from [6]

The global beam stiffness matrix Kg is defined as:

Kg =
nb∑
b=1

Kb =
nb∑
b=1

∫ Lb

0
BT
b KsBbdz (2.10)

where nb is the number of beam elements and Lb is the length of element b. The summation
refers to typical FE assembly and Bb is the strain-displacement matrix and Ks is the cross
section stiffness matrix for the cross section associated with the beam element b, provided by
BECAS. A global FE mass matrix for the FE beam representation can be obtained in a similar
fashion by:

Mg =
nb∑
b=1

Mb =
nb∑
b=1

∫ Lb

0
NT
b MsNbdz (2.11)

where Nb is a shape function matrix and Ms is the cross section mass matrix also provided
by BECAS. The size of Kg depends on the number of beam elements and element type. A
2-node FE beam model with nb number of beam elements will have a stiffness matrix, Kg,
of (nb + 1)-by-(nb + 1) whereas a 4-node FE beam model with nb number of beam elements
will result in a (3nb + 1)-by-(3nb + 1) stiffness matrix. Using elements with higher number
nodes generally increase the accuracy of the FE method, especially for nonlinear problems.
The software FRANS uses 4-node beam FE as standard and for each node, 6 dof’s are present
(3 displacement and 3 rotations in the order [ux, uy, uz, ϕx, ϕy, ϕz], see figure 2.4 for
coordinate system). A choice must be made regarding at which node to evaluate displacement,
rotation and stresses. Choosing nodes closest to the clamped end will provide the highest
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stresses whereas choosing nodes farthest away from clamped end provides highest accumulated
displacement and rotations. The stiffness is assumed constant along the length of a beam
element which contravene with actual stiffness distribution. The effects of this can be mitigated
by increasing number of elements and a method was discovered in one of the templates files
accompanied BECAS to do this in an efficient way. A total of nb sections are made along a beam
structure and BECAS is used to calculate the cross section stiffness matrix for each section.
Linear interpolation of the stiffness is then performed between adjacent sections to obtain even
more unique stiffness matrices destined for more beam elements. This way, the resolution is
increased at a low computational cost. The increased discretized beam is used to evaluate the
nodal displacement field and eigenvalues. The nodal displacement and rotations, u, can be
approximated by solving the following equilibrium eq.:

Kgu = p (2.12)

where p is the static forces and moments applied to the nodes and Kg is defined in eq. (2.10).
Throughout this study when performing structural optimization, it is assumed the loads are
independent of the design variables (fiber orientation) i.e. they remain the same even though
the actual aerodynamic loads, of which they have their basis, are dependent on the blade
response. It is a two way interaction. The wind exert a force on the blade so the blade deflects.
The deflection changes the inflow angles to the blade which changes the loads from the wind
and so forth. Including this "aero"-"elastic" phenomenon in the structural optimization would
definitely give a more realistic response, however, also severely complicate the optimization
framework. A feedback loop to an aeroelastic tool would be necessary.

FRANS needs four input files defined for it to build the global beam element stiffness matrix,
mass matrix and load vector.

• N1D.in: (nbn-by-2) array with nodal positions in a 1D space where each row is [node label,
coordinate].

• E1D.in: (nb-by-5) array with beam element connectivity where each row is [element label,
node 1 ...., node 4].

• F1D.in: (lc x nb-by-5) array with load case number, load type, beam node for application,
on which d.o.f. the load acts, and load magnitude. Each row is [load case, load type(1-3),
beam element node, d.o.f., magnitude].

• B1D.in: (bc-by-3) array with boundary condition where each row is [boundary condition
number, d.o.f., boundary condition magnitude].

2.3.3 The theory behind BECAS

This section makes an effort to briefly present the theory behind BECAS. Although numerous
papers can be referenced for an outline of the theory, it was deemed necessary to present
it in this study, due to its significance by allowing to define a simple 6-by-6 cross sectional
stiffness matrix from any cross section geometry and any number of anisotropic materials in
that cross section. Furthermore, references to some of the equations in this section is made in
the sensitivity analysis in section 3.3.
The method developed by Giavotto et al. [29] takes in a 2D discretized cross section geometry
and sets up equilibrium equations using the virtual work principle. The solution to the
equilibrium equations is a set of second order linear differential equations with two solutions
as the extremity solution and the central solution, using the nomenclatour from Giavotto et al.
The following introduces the theory.
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Considering an arbitrary slice of an arbitrary beam cross section, as shown in figure 2.4, with
the defined cartesian coordinate system xyz. The internal forces and moments, acting at a
reference point, O, in the cross section are shear forces in the x- and y-directions (Tx and Ty
respectively), an axial tension force in the z-direction (Tz), bending moments around x- and
y-axis (Mx and My respectively) and a torsional moment around the z-axis (Mz). All internal
forces and moments are described with the 6-by-1 vector θ where the elements are the forces
and moments in the order presented above. Likewise, a strain-curvature vector is defined as
ψ containing the elements of the shear strains (τx, τy), the tension strain (τz), the bending
curvatures (κx, κy), and the twist rate (κz).

(a) Forces and moments (b) Strains and curvatures

σyy

y

z
xσzz

σxx

σyx

σyz

σzy

σzx

σxy

σxz

dz
dx

dy

(c) Infinitesimal block of cross
section

Figure 2.4: Beam cross section coordinate system. (a) forces and moments (b) strains and curvatures,
taken from [6]. (c) sign convention of dx-dy-dz infinitesimal block.

When the beam is loaded, the stresses and strains at any point in the cross section can be
described with the vectors:

σ = [σxx σyy σxy σxz σyz σzz]T (2.13)

ε = [εxx εyy 2εxy 2εxz 2εyz εzz]T (2.14)

Following normal convention, the first subscript in eq. (2.13) and (2.14) denotes the plane
and the second the direction of which it is acting. The stresses and strains are related with
the constitutive matrix, Q, through Hook’s Law; σ = Qε. Observing figure 2.5a, the internal
forces and moments are related to the stresses by:

t =
∫
A

psdA, m =
∫
A

ZTpsdA (2.15)

where ps = [σxz σyz σzz]T , t = [Tx Ty Tz]T , m = [Mx My Mz]T and:

Zxyz =

 0 −z y
z 0 −x
−y x 0

 (2.16)

combining this gives the vector of section forces:

θ = [t m]T =
∫
A

ZTxyzpsdA (2.17)

where the matrix Z = [I3 ZTxyz]. The strains and curvatures in ϕ are related to the section
internal forces and moments through the constitutive relation ϕ = Fsθ where Fs is the 6-by-6
cross section compliance matrix. The stiffness matrix is Ks = F−1

s such that θ = Ksϕ.
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(a) Cross section resultant
forces.

(b) Rigid body translation and rotation and in-plane and out-
of-plane contributions.

Figure 2.5: (a) the cross section resultant forces for a slice dz of the beam (b) contributions to total
deformation of the beam cross section, both taken from [8]

Kinematics

At an arbitrary point in the cross section, the displacement is defined as s = v + g where
v = [vx vy vz]T is the vector of displacements associated with rigid body translation and
rotation and gw = [gx gy gz]T is the vector of warping displacements, see figure 2.5b. The rigid
body displacements can be represented by the translations and rotations of the cross section
reference point such that v = Zr, where r =

[
χT (z) ϕT (z)

]T
= [χx χy χz ϕx ϕy ϕz]T . The

warping displacements can be interpolated as g(x, y, z) = Ni(x, y)u(xi, yi, z) where N is the
typical finite element shape functions and u is the nodal warping displacements. The total
displacement of a point on the cross section is thus:

s = Zr + Nu (2.18)

Strain-displacement relation

Assuming small displacements, the strain-displacement relation with tensor notation is:

εij = 1
2 (ui,j + uj,i) , (i, j = x, y, z) (2.19)

Inserting eq. (2.18) results in the expression

ε = SZψ + BNu + SN∂u
∂z

(2.20)

The strain-displacement matrices B and S are defined as:

B =



∂/∂x 0 0
0∂/∂y 0
∂/∂y ∂/∂x 0

0 0 ∂/∂x
0 0 ∂/∂y
0 0 0


, S =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


(2.21)

where the derivatives ∂/∂z have been left out and unsolved. The vector of strains and curvatures
is a function of the rigid body motions:
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ψ = Trr + ∂r
∂z
, Tr =



0 −1 0
03 1 0 0

0 0 0

03 03


(2.22)

Equilibrium equations

The principle of virtual displacements states that at equilibrium the total external virtual work
per unit length has to be equal to the total internal virtual work per unit length[6]. The work
done by the section stresses, ps, through the virtual displacement δs is the only contribution to
the total external virtual work per unit length (see eq. (2.15)):

δ
∂Wext

∂z
=
∫
A

∂δsTp
∂z

dA (2.23)

with δ as the virtual operator. The total internal virtual work per unit length corresponds to
the elastic strain energy of the cross section and consists of the stresses, σ along the virtual
strains δε:

δ
∂Wint

∂z
=
∫
A
δεTσdA (2.24)

The set of second order linear differential equations is obtained when equalizing δ∂Wext/∂z =
δ∂Wint/∂z and inserting the expressions for the displacement, stresses and strains in eq. (2.23)
and (2.24):

M∂2u
∂z2 +

(
C−CT

) ∂u
∂z

+ L∂ψ
∂z
−Eu−Rψ = 0 (2.25a)

LT ∂u
∂z

+ RTu + Aψ = θ (2.25b)
∂θ

∂z
= TT

r θ (2.25c)

Each of the cross section material property matrices in eq. (2.25a) and (2.25b) are a product of
the element connectivity in the 2D mesh and the material properties associated to each finite
element. The sizes of the matrices are likewise controlled by the number of 2D FE’s in the grid.
The matrices are defined as (here presented along their derivatives w.r.t. element material
constitutive matrix which will be used for the sensitivity analysis, section 3.3):

A
(6×6)

=
ne∑
e=1

∫
A

ZTe STe QeSeZedA,
∂A
∂xi

=
ne∑
e=1

∫
A

ZTe STe
∂Qe

∂xi
SeZedA (2.26a)

C
(nd×nd)

=
ne∑
e=1

∫
A

NT
e BT

e QeSeNedA,
∂C
∂xi

=
ne∑
e=1

∫
A

NT
e BT

e

∂Qe

∂xi
SeNedA (2.26b)

R
(nd×6)

=
ne∑
e=1

∫
A

NT
e BT

e QeSeZedA,
∂R
∂xi

=
ne∑
e=1

∫
A

NT
e BT

e

∂Qe

∂xi
SeZedA (2.26c)

M
(nd×nd)

=
ne∑
e=1

∫
A

NT
e STe QeSeNedA,

∂M
∂xi

=
ne∑
e=1

∫
A

NT
e STe

∂Qe

∂xi
SeNedA (2.26d)
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L
(6×nd)

=
ne∑
e=1

∫
A

ZTe STe QeSeNedA,
∂L
∂xi

=
ne∑
e=1

∫
A

ZTe STe
∂Qe

∂xi
SeNedA (2.26e)

E
(nd×nd)

=
ne∑
e=1

∫
A

NT
e BT

e QeBeNedA,
∂E
∂xi

=
ne∑
e=1

∫
A

NT
e BT

e

∂Qe

∂xi
BeNedA (2.26f)

Here, ne is the total number of FE in the cross section, the summation refers to typical assembly
procedure used in FEA, subscript e denotes a specific element and nd is the total number of
degrees of freedom (d.o.f.) in the system calculated as nd = 3× nn where the number of nodes
nn is multiplied with three nodal displacements (ux, uy, uz).
The displacements, u, are able to replicate the six rigid body motions and eq. (2.18) is therefore
6 times redundant. To ensure that the warping displacements do not contribute to the rigid-
body displacements of the cross section the following constraints are included

[
DT 0
0 DT

] [
u
∂u
∂z

]
=
[
0
0

]
, D =

[
I3 ... I3

Zxyz1 ... Zxyznn

]T
(2.27)

where Zxyz1 , ...,Zxyznn are obtianed by inserting the coordinates of the node into eq. (2.16).
The second order linear differential equations (2.25a) to (2.25c) present two types of solutions
named extremity- and central-solutions by Giavotto et al.[29]. For discussions on the solutions
the reader is referred to [6], [29] and [8]. The central-solution is stated in [8] as:


E∂u
∂z

+ R∂ϕ

∂z
= 0

RT ∂u
∂z

+ A∂ϕ

∂z
= ∂θ

∂z

(2.28a)


Eu + Rψ =

(
C−CT

) ∂θ
∂z

+ L∂ψ
∂z

RTu + Aψ = −LT ∂u
∂z

+ θ
(2.28b)

The stiffness matrix is obtained by putting θ = I6 and solving the system of equations. The
system presented, with some manipulation and in matrix form, becomes:

 E R D
RT A 0
DT 0 0


X

Y
Λ2

 =


(
C−CT

)
L

−LT 0
0 0

[∂X
∂z
∂Y
∂z

]
+

0
I6
0

 (2.29a)

 E R D
RT A 0
DT 0 0


∂X
∂z
∂Y
∂z
Λ1

 =

 0
TT
r

0

 (2.29b)

with Lagrange multipliers Λ1−2 corresponding to constraints. In short it can be written as:

KW = F⇔
[
K11 K12
0 K11

] [
W1
W2

]
=
[
F1
F2

]
(2.30)

where
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K11 =

 E R D
RT A 0
DT 0 0

 , K12 =


(
C−CT

)
−L 0

LT 0 0
0 0 0

 (2.31)

W1 =

X
Y
Λ1

 , W2 =

∂X
∂z
∂Y
∂z
Λ2

 , F1 =

0
I6
0

 , F2 =

 0
Tr

0

 (2.32)

The central solutions are linear and homogeneous such that

u = Xθ, ∂u
∂z

= ∂X
∂z
θ ϕ = Yθ, ∂ϕ

∂z
= ∂Y

∂z
θ (2.33)

Inserting (2.33) into the central solution (2.28a) and (2.28b) and restating it in matrix form
gives eq. (2.34) and (2.35):

Kw = f ⇔
[
K11 K12
0 K11

] [
w1
w2

]
=
[
f1
f2

]
(2.34)

where:

w1 =

 u
ψ
λ1

 , w2 =


∂u
∂z
∂ψ
∂z
λ2

 , f1 =

0
θ
0

 , f2 =

 0(
TT
r θ
)

0

 (2.35)

The matrices X, Y, ∂X/∂z, and ∂Y/∂z have six columns each from each load vector. The
relation between these two sets of equations are:

w1 = W1θ, w2 = W2θ (2.36)
The external and internal equilibrium from eq. (2.24) and (2.23) is restated with the external
work in its complementary form:

δθTFsθ =
∫
A
δεTσdA (2.37)

The cross section compliance matrix can be defined as:

δθTFs ∴= δθT
[
W1
W2

]T [
G11 G12
GT

12 G22

]
θ = δθTWTGWθ (2.38)

where

G11 =

 E R 0
RT A 0
0 0 0

 , G12 =

C 0 0
L 0 0
0 0 0

 , G22 =

M 0 0
0 0 0
0 0 0

 (2.39)

The final expression for the compliance matrix is:

Fs = WTGW (2.40)
and the cross section stiffness matrix is:

Ks = F−1
s (2.41)
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2.4 Comparison to experimental results

To gain experience with BECAS and validate that the desired BTC effects can be captured by
FRANS, a comparison is made with findings in literature which is presented below.

A very common cited article for validating composite beam formulations is the one of Chandra et
al. [15]. In this study, the authors experimentally showed BTC effects in thin walled composite
beams and compared them to their own analytic predictions and a newly formulated FEM by
Stemple and Lee [62]. The beams investigated had a symmetric layup [θ]6 in the flanges and
symmetric cross-ply layup [θ/ − θ]3 in the webs. The annotation [θ] is common practice and
simply specifies the laminae angles such that a laminate with 3 plies with 0, 15, and 30 degrees
for their fiber orientation respectively will have the annotation [0/15/30]. The subscript in the
annotation is how many times the layup is repeated. In the study, each ply had a thickness
of 0.127mm i.e. faces and webs thickness’ are 0.76mm. The outer cross section dimensions
are 24.2mm for the width and 13.6mm for the height. The length of the beam is 762mm and
the material is AS4/3501-6 Unidirectional Graphite/Epoxy with properties E11 = 142GPa,
E22 = E33 = 9.81GPa, G12 = G13 = 6GPa, G23 = 3.77GPa, ν12 = ν13 = 0.3, and ν23 = 0.42
taken from Stäblein et al.[59] since the material properties in Chandra et al.[14] are insufficient.
Unfortunately, the stiffness matrix presented by Stäblein et al. cannot be reproduced exactly as
stated in the article, although the same program is used to obtain it (BECAS). It is suspected
that material properties, number of FE, and conversion between the coordinate system used
in the paper and by BECAS plays a role. Discrepancies of the material properties have been
found in the PhD thesis of Couturier[20] where shear modulus and Poisson’s ratio differ from
the ones presented by Stäblein et al. The present obtained cross section stiffness matrix and
the one presented in Stäblein et al.’s article are compared in the appendix page 76.
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-0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Figure 2.6: Comparing numeric and analytic results with reported measurements from Chandra et al.
[14] and numeric values from Stäblein et al.[59].

Using GMSH[28] (shortly introduced in section 2.5.1), the thin walled composite beam cross
section is discretized into 8737 Q4 elements (linear rectangular four node plane element) and
a self-defined routine, imports the 2D grid into BECAS. Applying a tip load of 4.448N, the
bending slope and twist rate is determined and compared with digitized results reported in [59]
and digitized measurements and an analytic method from [14] in figure 2.6 for a beam layup of
[45°]6 in the flanges and [±45°]3 in the webs.
In the comparison, in figure 2.6, a good correlation is observed. The analytic data was made
using the method presented by Chandra et al. [15] and Hong and Chopra [32] and the theory
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is reproduced in the appendix, page 75. The numeric results are coherent with the results
and conclusion made by Chandra et al.[15]: that is, the analytic methods underpredict the
actual composite beam twist response, whereas numerical methods show better agreement with
measurements. This being the importance of including transverse shear which is not captured
by the analytic solution. The numeric results of the bending slope is up to 15% off, which
contribute to production errors since in practice ensuring correct fibers angles is quite difficult.
The bending slope results coincide with those of Stäblein et al.’s and is accepted as is.

2.5 2D meshing

Any 2D-structure can be discretized into small 2D elements that together are called a grid or
a mesh due to the visual appearance, see e.g. 2.7b. The FE-method is an approximation of
the physical state of a material and can converge to the true state as FE’s decrease in size and
thus increase in numbers. A high number of elements in the cross section mesh will improve
accuracy but will increase the computational costs since the system of equations representing
the equilibrium (eq. (2.12)) will increase. This dispute can only be solved with a compromise,
usually determined by a convergence study which is the most important and usually also the
most omitted step associated with any FE-analysis. A successful convergence study will result
in a 2D discretisation that contains the best ratio of accuracy and computational cost. It
is obtained by gradually increasing the number of elements in the mesh until the response
(deflection, stresses, frequencies, etc.) reach a steady value e.g. below 1% change. The following
two sections presents the 2D discretisations of a simple cantilever sandwich beam, used in
the parametric study, and the 10MW DTU reference WTB, used for the full blade optimization.

2.5.1 Simple beam

BECAS allows for 2D quadratic elements with 4 or 8 nodes (Q4 and Q8 respectively) and for
triangular elements with 6 nodes (T6). The higher number of nodes allows for higher order
shape functions. The parametric study is designed to test the framework of the optimization
and computational costs are valued higher than accuracy in this case for faster function
evaluations i.e. Q4 elements are selected. Furthermore, the composite beam exhibits a fairly
simple cross section and no extraordinary deformations are expected which require higher order
elements.
A sandwich cantilever beam presents a uniform cross section all along its span, thus only a
single mesh is needed that can be extrapolated to the remaining length. The beam dimensions
is presented in chapter 4 as well as the load case. The mesh is made with the software
GMSH[28] (pronounced g-mesh), which is an open-source 3D FE grid generator, however, in
this case only used to create 2D meshes. The mesh is defined in an input file, and GMSH draws
and mesh the geometry based on the points, lines, and connections specified in the file. The
input file for a cross section 2D mesh used for the parametric study of a cantilever sandwich
beam is attached in the appendix, page 78.

To exclude mesh dependency, a convergence study is performed, that considers the tip end beam
deflection as response. By gradually increasing the number of elements used to discretize the
cross section, the converged result should show a horizontal line with a max of 0.5% difference
between response values. The result of the convergence study is plotted in figure 2.7a and
presents a converged result with 728 elements. The number of beam elements used for the
convergence study was 10 and no BTC was introduced in the beam.
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Figure 2.7: Mesh convergence of beam end node displacement with 10 beam elements and fiber angles
in the faces set to null. The beam dimensions and load case are presented in chapter 4

A beam element convergence study was also performed, which showed no change in response
value (using 728 cross section Q4 elements) going from 3 to 20 beam elements. The plot has
been omitted of this report since it is trivial to show a horizontal line.
Lastly, a note on the choice of mesh type. Typically, a choice is made between unstructured
and structured meshes, where the latter is presented in figure 2.7b. Besides being visibly more
appealing, the structured mesh poses no benefits over an unstructured one for this type of cross
section, whereas an unstructured mesh is more appropriate when discretizing circular shapes
and sharp corners.

2.5.2 Wind turbine blade

The cross section geometry of an airfoil is significant more complex than that of a simple sand-
wich cantilever beam. The thin laminates pose a risk of FE’s with high aspect ratios as they are
pushed flat and a known problem with these kind of elements is shear locking. The DTU10MW
reference WTB is used in this thesis study, and very conveniently, 27 cross section meshes can
be created using the Abaqus model[21] and a python program called shellexpander.py, which is
distributed along with BECAS. A limitation of using shellexpander is the loss of control of the
mesh, since only the discretization through thickness, i.e. number of layers, is adjustable for
the user. Shellexpander reads the input files for Abaqus of the DTU10MW reference WTB, and
expands a FE layered shell model by building layers from outer FE shell boundary (as for airfoil
geometry) or from mid-thickness line (as for webs). The program will create a 2D mesh of any
specified number of cross sections and provide it in correct format for BECAS along material
numbers and orientation.
A few of the meshes are presented in figure 2.8. The presented cross section meshes has ap-
proximately 500 Q8 elements each for a chosen through thickness number of layers of nlse = 8.
Shellexpander.py has a lower limit of nlse which is the minimum number of different layers in
a part of the blade e.g. caps. If the cap is build by three different layers/composite materials,
the lowest vaue of nlse = 3 to be able to discritize the elements. No upper limit exit, however,
one has to take into account the increased computational burden.
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Figure 2.8: Selected cross section FE mesh of the DTU10MW reference WTB.
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2.5.3 Element patches

Element patches are a grouping of FE in the cross section grid that exhibit the same material
and fiber angle and is affected by the same design variable. This is an effective way of reducing
the computational cost and can also give a more realistic image of how the laminate layup is
in a WTB. Practically, the patches can either be for a single ply in the laminate, multiple plies
in the laminate or entire sub-parts of the WTB cross section e.g. the pressure side cap or the
leading edge web, thus both a material and geometric dependence. It can also be expanded
to embrace spanwise distributions. In this study, to keep the computational costs down, the
elements in the WTB cross section are patched together based on the location such that caps,
webs, shells, etc. are well defined in the cross section grid. This results in remarkably fewer
design variables and allows for analysis where only fiber angles in e.g. the cap is allowed to
change, and the modified subpart resulting in highest BTC effects can be identified.

2.6 Loads

The loads applied to the DTU10MW reference WTB are taken from the DTU10MW refer-
ence wind turbine report [3] and consist of 14 load cases, computed with the aeroelastic code
HAWC2[38] in accordance with the IEC-61400 standard. Each load case presents the extreme
of a internal force or moment related to the elastic center at 27 sections along the blade span,
collected from simulations in time domain under various conditions. The load case selected for
this study contains the maximum absolute flapwise bending moments including a respective
partial safety factor of 1.35, which were present for the Design Load Basis (DLC) 1.3 that
denotes an Extreme Turbulence Model (ETM). The ETM express a more turbulent wind field
with larger variance in direction and magnitude of the wind. Large gusts are therefore more
frequent, and give rise to large blade deflections. Since the pitch controller system is unable to
react fast enough to alleviate deflection and loads caused by gusts, the BTC mitigation effects
should be clear during this extreme environment. The choice of this load case is motivated by
the optimization problem definition: to obtain maximum coupling in the blade while consider-
ing a maximum tip deflection constraint and structural integrity in the form of eigenfrequency-
and material failure criteria constraints. Choosing the highest loads may hinder the amount of
coupling possible in the blade due to the different constraints, however, the optimal design will
be conservative. Figures 2.9 and 2.10 presents the internal forces and moments of the load case
with maximum absolute flapwise moments. Of the six internal forces presented for load case 9,
only the momentsMx andMy will be used to calculate distributed external forces and provided
to FRANS. The main loads on a WTB is the flapwise bending moment, from the wind, and the
edgewise bending moment, from the gravitational pull and lift force (see airfoil sketch in the
appendix page 75). Shear forces, axial force and torsion is relevant, however, significantly lower
than the flapwise bending moment, see Mx at figure 2.10. Furthermore, including torsion loads
will influence the BTC coupling effects, and to keep it simple it is excluded. Using edgewise
bending moments may introduce edgewise BTC effects, however, it is believed that this can be
handled by appropriate selection of element patches. Another argument for including edgewise
bending moments, is that the WTB should present the BTC effects even with edgewise loading,
otherwise, the desired response might be reduced or be dependent on the azimuth position of
the blade.
Unfortunately, FRANS does not support applied internal forces but can only handle external
forces, thus, the loads must be approximated using beam equations. The method used here is
taken from [13] and the equations can be found in e.g. [63]. The following beam equations are
used:
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Figure 2.9: Internal forces along blade span for load case 9 from [3]

Figure 2.10: Internal moments along blade span for load case 9 from [3].

Tx = −dMy

dz , Ty = dMx

dz , qx = −dTx
dz , qy = −dTy

dz (2.42)

The moments Mx and My in eq. (2.42) are table values from the DTU10MW reference wind
turbine report [3], see table 2.2. The table shows the extreme internal forces at a section
z=24.2 m, collected from various time domain simulations. The values used are thus the highest
absolute values from a range of simulations although highly unlikely that the turbine blade will
experience all the extreme bending moments simultaneously. This makes for a conservative load
case and thus a conservative optimal design.
Using the values for the extreme bending moments around x− and y−axis for load case , the
shear forces, Tx and Ty in the WTB are approximated with eq. (2.42) by taking the derivative
of the a 3rd order polynomial fit to bending moments. The distributed load, that can be applied
to the FE beam model by FRANS, is then obtained by taking the derivative of the shear forces.
Figure 2.11 shows the work flow for load case 9.
One could question whether a polynomial fit to the shear forces listed in the DTU10MW
reference wind turbine report could have been sufficient such that the first step is skipped and
a better fit is obtained. Nevertheless, this method is suitable and shows good consistency with
deflection values e.g. the maximum tip deflection is reported by [3] to be 12.4m for the DLC
1.3 case, and using the extreme values for flapwise bending moment in load case 9 and the
method outlined above, the tip displacement is calculated to be 13.51m with no modifications
to the original blade design and thus comparable to the original reported maximum. The
difference can be rooted in the not so perfect fit seen in figure 2.11 and the difference in between
software used to obtain the tip displacement. The reported maximum tip displacement in the
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Table 2.2: Extreme internal loads collected from various simulations in time domain according to IEC-
61400 standard at section number 11 z = 24.2 m, takes from [3]. The extreme resultant force and
moments have been left out, thus the missing case number 7.

Load γF Fx Fy Fz Mx My Mz

case DLC [-] [MN] [MN] [MN] [MNm] [MNm] [ MNm]
1 Fx max dlc1.3 1.35 0.6201 0.5670 1.3796 -6.3263 11.7007 0.2098
2 min dlc1.3 1.35 -0.5978 -0.0194 1.3335 2.0900 -14.4587 -0.6439
3 Fy max dlc1.3 1.35 0.4443 1.4147 1.0644 -33.2051 7.3193 0.2831
4 min dlc6.2 1.1 0.1081 -1.0553 0.0802 25.7233 3.3898 0.6537
5 Fz max dlc2.1 1.35 -0.2329 0.4912 2.1765 -15.2363 -6.0230 -0.1670
6 min dlc6.2 1.1 -0.0725 -0.7945 -0.5227 18.5518 -0.1156 0.3236
8 Mx max dlc1.3 1.35 0.0195 -0.7359 1.7650 26.5539 1.6363 -0.0493
9 min dlc1.3 1.35 0.1795 1.3249 0.9077 -40.5149 4.9810 0.4500
10 My max dlc2.1 1.35 0.5768 -0.1117 1.3012 11.3194 16.3736 0.5579
11 min dlc1.3 1.35 -0.5956 -0.0447 1.3338 2.9221 -14.5158 -0.6619
12 Mz max dlc6.2 1.1 0.1860 -0.9590 -0.3510 26.1955 6.1252 0.9005
13 min dlc1.3 1.35 -0.4174 -0.0746 1.5220 6.9106 -13.2988 -0.9337
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Figure 2.11: Extreme internal moment loads from table values fitted with polynomials and converted to
external distributed loads.

DTU10MW reference wind turbine report[3] was obtained with HAWC2 while the presently
presented was obtained with BECAS via FRANS.
The extreme internal loads can be used directly with BECAS to evaluate the cross section
element strains, stresses and failure indexes based on appropriate failure criteria which will be
treated in section 3.2.2. However, FRANS contains a module to extract the internal forces and
moments based on the FE beam deflection and rotations, see eq. (2.43). The vector, θ, contains
the internal forces and moments w.r.t. beam element b as the subscript denotes. Furthermore,
the forces and moments can be transformed to another point e.g. shear center, and rotated
to fit the elastic axis, also provided in FRANS routines. A comparison is made, using the
internal forces and moments from above with the ones recovered using the FRANS module
which is presented in figure 2.12. In the figure, it is observed that the internal forces retrieved
with FRANS does not correspond and in fact presents errors up to approximately 100% for
the flapwise moments which for this study is the most important one. Transforming them
w.r.t. shear center and rotating to elastic axis provides little to no change. In this study, the
forces and moments recovered from FRANS will be used when evaluating the strains and stresses
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θ = Kbub (2.43)

Figure 2.12: Comparison of internal forces. Circles are table values from [3] while solid lines are
internal forces retrieved from FRANS for original blade design.

Designing WTB’s in the industry, all DLC’s must be taken into account i.e. a lot more load
cases for the optimizing algorithm to handle, however, since this is a proof-of-concept study
it is not needed here. Including all DLC’s would increase the computational costs greatly and
might also hinder convergence to optimum design.
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CHAPTER 3

Formulation of optimization problem

It is the aim of any structural optimization to minimize (or maximize) an objective function,
dependent on design variables, and subject to constraints. The optimal solution to the problem
is the values of the design variables when no change in them can benefit the objective function.
This chapter presents the problem formulations investigated for the use in this study, discus-
sions on the considered objective functions and constraints, discussions on the optimization
algorithms considered, the sensitivity analysis, and presentation of some of the changes and
implementations made to BECAS.

3.1 General problem formulation

The standard negative null form of an optimization problem can be observed in eq. (3.1).
It presents an objective function f(x), dependent on the design variables x. The objective
function must be minimized while complying with the in-equality constraints g(x) and equality
constraints h(x). The direction of the inequality sign for g(x) and the zero on the r.h.s. is what
makes it a negative null problem (see appendix page 80 for other forms). Defining the right
problem formulation is essential for the quality of the optimum final result, thus if objective
and constraints are not carefully selected, either convergence to local minimum may occur or
not convergence at all. The optimal design of a WTB for BTC effects is sought, meaning
that the twist response to flapwise loading is desired as large as possible while considering
structural integrity constraints. Since the desired blade response is a twist in the negative
rotational direction around the z-axis of the blade, a minimization will push the design to
a greater twist response. It should be stated that for non-convex problems, global optimum
cannot be guaranteed. The objective function can be a combination of several objectives, which
are weighted and summed according to the desired influence on the final design: ∑ fiwi. The
design variables are bound by the upper and lower limit xmax and xmin respectively. The
sets of functions in f , g and h can be linear or nonlinear, however, they should preferably be
twice differentiable and as a minimum one time differentiable in order to use gradient based
optimization algorithms.

min
x∈R

f(x)
s.t. g(x) ≤ 0

h(x) = 0
xmin ≤ xi ≤ xmax ∀i = 1, ..., ndv

(3.1)

An important discipline within optimization is the scaling of parameters. Large differences in
parameters may lead to badly condition and singular matrices and a volatile design domain.
Many optimization algorithms make use of line search, which is a method to chose a new design
point, which can overshoot significantly if the design domain is badly scaled. The parametric
study (chapter 4) and the full blade optimization (chapter 5), have been observed to give slightly
better performance (less function evaluations needed for convergence) and robustness depending
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on scaling of design variables and objective and constraint values. Scaling of variables is of less
importance if the values already lie close to unity.

3.2 Objective and constraint functions
The objectives and constraints considered for this thesis work are governed by the ambitions
in the wind energy industry: to build longer WTB’s while ensuring the structural integrity. In
this study the below listed parameters in table 3.1 has been considered and implemented as
objective and/or constraints:

Table 3.1: Considered parameters for objectives and constraints for the optimization problem formu-
lation. N is number of cross sections, nλ is number of eigenfrequencies considered in the study, xdv
is a vector with the design variables directly associated with a particular cross section, np is number of
patches

Parameter Obj. Constr. Constr. notation
Compliance

√

Tip displacement
√ √

utipy (x)−
(
utipy

)max
≤ 0

Tip twist
√ √

utipϕ (x)−
(
utipϕ

)max
≤ 0

BTC factor
√ √

αn(x)− αmaxn ≤ 0, ∀n = 1, ..., N ∨ xi ∈ xdv
Eigenfrequencies

√
fminj ≤ fj(x) ≤ fmaxj , ∀j = 1, ..., nλ

Failure criteria
√

FIminp ≤ FIp(x) ≤ FImaxp , ∀p = 1, ..., np ∨ xi ∈ xdv

Other possible options for objectives could be to minimize the stresses in the structure,
minimize root bending moments, minimize mass, or maximizing lowest eigenfrequencies. Due
to the minimization formulation, the optimization algorithms will minimize the objective and
therefore one should choose objective where the minimum is sought. Maximization, when
mentioned in this thesis paper, is therefore meant as maximizing the blade twist response and
not maximizing the numerical value of the objective function.
The constraints considered for this thesis work are purely in-equality constraints. Equal-
ity constraints certainly have their place, especially if a certain response is sought e.g.
end twist of -5°. However, to limit the already vast possible problem formulations with the
considered objective and constraints, it was determined to leave equality out of this thesis study.

The above constraints are all deemed relevant for a WTB’s structural integrity and covers
many of the aspects that must be controlled for the blade to be approved by e.g. interna-
tional standards, certification bodies and authorities. The list is far from exhausted as many
other constraint to WTB’s exist: fatigue damage, buckling, logistic constraint, manufacturing
constraint, etc.

Compliance

Usual topology optimization use the static compliance to minimize the volume e.g. mass and
obtaining a stiff structure. The compliance is defined as the external work done on the structure
by external static loads and is calculated as:

C = pTu = uTKgu (3.2)

where u and p is the beam nodal displacements in each d.o.f. and loads respectively and Kg

is the global FE beam stiffness matrix. The compliance is not considered as a constraint since
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knowledge of compliance values prior to optimization is needed to set the bounds.

Tip displacement

The tip displacement as an objective function will be minimized by increasing the stiffness of
the WTB. Here the tip displacement is in the flapwise direction i.e. positive y-axis direction
(see e.g. figure 1.2). By only considering deflection in a single direction for the tip of the
blade, a single objective value is obtained and no summation over weighted values is needed.
By minimizing the flapwise tip deflections, the design must present a high stiffness, which is
desirable in a WTB due the clearance between the blade tip and the tower of the wind turbine.
With increasingly longer blades, the higher stiffness is required to keep the blade tip clear of
the tower. To obtain high stiffness, the fiber angles must align with the WTB spanwise axis
and thus oppose e.g. constraints on the minimum twist desired for the blade.
Tip displacement as a constraint is argued to be a crucial one. Without limitations to the
tip displacements, the blade is in severe risk of hitting the tower during high loads and gusts.
Furthermore, logistic issues such as demolding and transportation is impossible with too low
flapwise bending stiffness in the blade. The tip displacement as a constraint is determined the
same way as described for the tip displacement as objective function. The flapwise displacement
in the positive y-direction of the tip of the blade can be extracted from the global FE beam
equilibrium equation, established by FRANS, by solving for the beam element displacement
field. The full displacement field is calculated by solving the equilibrium equations (2.12) such
that:

u = K−1
g p (3.3)

The tip displacement is the second d.o.f. of the end node in the beam FE displacement field u.
To elaborate, an all null vector, e, with the length equal to the length of u is defined. On the
kth entry, the element in the vector is ek = 1 corresponding to the d.o.f. one wish to extract.
The kth d.o.f. is obtained by the dot product:

utipy = eT · u (3.4)

where utipy is the beam tip deflection in the y-direction.

Tip twist

To observe the amount of twist towards feather possible for the WTB, the end twist is considered
as an objective. The optimization algorithm will then find the fiber angles resulting in the
maximum obtainable twist, if no active constraints are present. If constraint are applied they
might limit the amount of twist obtainable depending on the constraint values.
The tip twist as an in-equality constraint is used to limit the twist response of the WTB and
thus the orientation of the fibers. Defining an upper and/or lower bound will allow for the tip
twist to obtain a value in the desired range.
The tip twist is found, as with the tip displacement, from the solution to eq. (3.3) and then
extracting the correct d.o.f. (last one) from the displacement field vector u:

utipϕ = eT · u (3.5)

where utipϕ is the beam tip twist around the z-axis.

29



BTC factor

The BTC factor, as defined in eq. (2.9), is a possibility as an objective for maximizing the twist
response. For a prismatic cantilever beam with uniform cross sections along its span, only a
single BTC factor is considered since the cross section is uniform. However, with various and
multiple cross sections, the objective function will be a weighted function with elements for
each unique cross section. In relation to the coordinate system BECAS uses, the BTC factor is
defined as:

α(n)(xdv) = K
(n)
46 (xdv)√

K
(n)
44 (xdv)K(n)

66 (xdv)
, n = 1, ..., N (3.6)

where superscript n denotes a specific cross section of the structure. The BTC factor is only
dependent on the design variables directly associated with the current considered cross section
n, and thus the design variables x are presented with a subscript dv to denote this dependency
i.e. xdv is a vector containing the relevant design variables. The diagonal stiffness terms
K44 and K66 from the cross section stiffness matrix is for the flapwise bending stiffness and
torsional stiffness respectively. The off-diagonal stiffness term K46 is the flapwise bending-
torsion coupling. For the full stiffness matrix and nomenclature see appendix page 83. The sign
of K46 denotes which direction the structure will twist i.e. negative value will result in negative
rotation direction around beam axis. Maximization of the twist response is thus equivalent to
minimizing the BTC factor for each considered section (recall that a negative twist will result
in the blade twisting towards feather). To combine the several values into a single objective
value a weighted summation can be used:

α(x) =
N∑
n=1

w(n)α(n)(xdv) (3.7)

where the weighting parameters, w(n), are selected to control the influence of the different BTC
factors and could for example take values in the range w(n) ∈ [0; 1]∀n. The weighting parameters
are not a function of the design variables. Combining the different coupling factors for each
section into a single one, makes the factor a function of all design variables.
For a WTB with large difference in cross section properties, it will be time consuming to tune
all the weighting factors. A benefit from this, however, is control of the location of high BTC
effects along the blade. For example, at the root end, where the effects of the off-axis fiber
angles contribute less to the end twist due to its circular shape but presents highly reductions
in bending stiffness i.e. increasing tip deflection , it is undesirable to introduce BTC[10]. For
the full blade optimization, a spanwise section from root to a z-coordinate out towards the tip,
will not be considered for BTC. When considering BTC factor of multiple unique sections, it
has been chosen to have an uniform weighting. This way, the optimizer will have to sought
out the benefits and disadvantages of having large material couplings near root rather than
mid-span and tip regions. Doing this, another advantage is that the optimal design will not be
affected by earlier conceptions of how the distribution should be.

3.2.1 Eigenfrequencies

Eigenfrequencies of WTB’s are an important aspect of their design requirements. Depending on
the frequencies, severe damage or catastrophic failure may occur due to resonance or instabilities.
The change in fiber angles introduce a reduced bending stiffness which changes the mode shapes.
The interaction between the aerodynamic forces and the blade can in extreme cases lead to
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negative aerodynamic dampings, as shown by Petersen et al. [54]. Another aspect is the
coupling between flapwise frequencies and torsional frequencies which might create a flutter
instability. Therefore, the distance between eigenfrequencies is controlled by selecting upper
and lower bounds for individual eigenfrequencies. The classical formulation in FE theory for
the structural eigenvalue problem is[6]:(

Kg − ω2
jMg

)
vj = 0, j = 1, ..., nd (3.8)

where nd is the number of degree of freedom and K and M is defined in section 2.3.2. The
matrices are assumed positive definite and symmetric. The eigenvalue problem above yields the
eigenvalues ω linked with the corresponding eigenvectors V =

[
v1, ...,vndof

]
and are provided

in ascending order i.e. ω1 ≤ ω2 ≤ · · · ≤ ωndof .

Multiple frequencies can be handled with either a constraint such that the subsequent eigen-
frequency must be 10-20% larger than the preceeding one: λj+1 = λj ∗ 1.2 or with method
described by Seyranian et al.[56]. The conversion from eigenvalue to eigenfrequency ([rad−2] to
[Hz]) is λj = √ωj/(2π).

3.2.2 Failure criteria

The failure of a material may be characterized as the instant the material partly or fully lose its
load carrying abilities. In a composite material, this may occur in a number of ways not limited
to delamination, fiber-pull-out, core failure, single ply failure, buckling, and ultimate failure
where the strain or stresses internally in the composite exceeds their limits and the structure is
tared apart. Due to their complexity; fatigue failure, crack propagation, delamination, buckling,
and fiber-pull-out, are not considered in this study. Since the strength is very directional for a
composite, maximum strain (Max Strain), maximum stress (Max Stress), and other common
failure criteria such as Tsai-Wu and Tsai-Hill are instead considered. These failure criteria are
able to, based on material experimental data, estimate the failure of laminae. Furthermore, by
using mentioned failure criterias no scaling of the constraints are needed since failure criterias
usually have values around one. In a FE mesh, every element exhibits its own strain and stress
i.e. the number of Failure Index(es) (FI), which is the numeric output from a failure criteria, is
equal to ne. All of the failure criterias presented below can be found in e.g. [34], [36] or [72].
In context of optimization, stresses have long seen their use. It was quickly discovered that
stress constraints pose multiple problems: not only does the number of constraints increases
significantly, but, the optimization might results in a local minima being unable to reach true
optimum. This was first illustrated with a 3 bar truss system, defined by Sved and Ginos
[64], where the true optima could only be achieved by removing one of the bars. This was not
possible due to the stress constraint. In weight optimization of truss structures, decreasing
the cross sectional area of a beam increases the stress in it, leading to intermediate grey
designs, and the bar cannot be removed. This is known as the stress singularity. Cheng and
Guo [18] introduced a relaxed method that solved the optimization problem iteratively, called
the epsilon-method. Whether this problem arises in laminate designs has been discussed and
proved by Bruyneel and Duysinx [12] and occurs with the removal of zero thickness plies.
In this study, the geometry and thickness is fixed, thus removing plies will not occur. The
stress singularity is therefore not suspected to occur.

The large amount of constraints can be handled by considering aggregation functions. Duysinx
and Sigmund [25] introduced a global stress measure using P-norm methods and doing so
reduced the local stress constraints to a single global constraint but resulted in problems

31



controlling the stress at a local level. Verbart et al. [67] states that P-norm and P-mean
aggregation functions usually are used to aggregate non-negative stress criteria, such as the
von Mises stress, into a global function (see Le et al. [39] and Holmberg et al [31]). The fact
that P-norm and P-mean are restricted to non-negative values is not a problem, since failure
criteria are used which results in values larger than zero. If a FI is larger than 1, the material
fails. Alternatively, the Kreisselsmeier-Stainhauser can be used, which is not restricted to
non-negative values.

The patching of elements are used to reduce the amount of fiber angles subject to change in the
full blade study, however, it has a second benefit in the form of reduced number of FI’s needed
as stress constraints. Instead of the mentioned aggregation functions above, the maximum FI
of a patch of elements is chosen which e.g. brings down the amount of constraints for a WTB
cross section from 500 (ne cross section FE’s, each with its own stress vector) to 80 for each
patch of elements. Using a maximum constraint approach, the most violated constraint value
i.e. highest FI of a patch is considered. This introduces some difficulties since the constraint
function will most likely not be continuous since the maximum may jump between elements
as a new iteration is performed. However, with the elements patched together in subparts
that share materials, material orientations, and placement in the cross section, the stresses
will not deviate greatly elements between. To this measure, the Tsai-Wu failure criteria and
its like is preferred over Max Strain and Max Stress failure criteria, since Tsai-Wu collects the
stresses to a single value while the others presents one for each directional stress and shear stress.

In the following sections, the failure criteria considered, implemented and used in this study is
presented.

Max Stress

The Max Stress constraints are defined as the ratio between the stress in the material and
the known stress limits for the material. The limits are defined with lab tests, measuring the
composite material properties or with simplified methods such as the Rule of Mixture[72]. The
sign of the stress is included such that a compression limit value is used if the stress evaluated at
the element is negative i.e. experiencing compression (limits σ̄tii / σ̄cii for tensile and compression
respectively). The shear stress, σij , is treated as sign independent and the absolute value is
used. Eq. (3.9) presents the Max Stress definition and eq. (3.10) presents the FI evaluation
from the Max Stress constraint fractions. When the FI takes on a value above 1, material failure
is predicted to occur.

σ̄cii < σii < σ̄tii
|σij | < |σ̄ij |

(3.9)

FIMaxStress =


σii/σ̄

t
ii, if σii ≥ 0, i = 1, 2, 3

σii/σ̄
c
ii, if σii < 0, i = 1, 2, 3

|σij |/|σ̄ij |, i, j = 1, 2, 3
(3.10)

Three FI’s are calculated for each of the general directions components as the fraction between
stress value and the proper material limit selected from the sign of the stress. Another three
FI are calculated for each of the shear components, summing to a total of six FI and thus six
stress constraints for the finite element.
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Max Strain

Equally simple and useful are the Max Strain criteria. Here, instead of the material stresses
in an element, the material strains are used. Eq. (3.11) presents the relation and eq. (3.12)
presents the failure criteria as the ratio between the material strains and the material known
limits. As with the Max Stress criteria, the Max Strain is relative to the sign of the strain.

ε̄cii < εii < ε̄tii
|εij | < |ε̄ij |

(3.11)

FIMaxStrain =


εii/ε̄

t
ii, if εii > 0, i = 1, 2, 3

εii/ε̄
c
ii, if εii < 0, i = 1, 2, 3

|εij |/|ε̄ij |, i, j = 1, 2, 3
(3.12)

Both Max Stress and Max Strain failure criteria are preexisting in BECAS. Common for
the Max Stress and Max Strain criteria is that the components are evaluated independently,
meaning that the loads in different direction neither interact or contribute to each other[72].
This is a main insufficiency of the criterias as the combined loading effects (e.g. how one shear
loading can affect the strength in principle direction) are omitted in the models. Most popular
efforts to account for these are the model known as Tsai-Hill and Tsai-Wu failure criteria. They
take their offset in empirical observations and thus contain empirical determined constants that
must be set prior to calculation. Although generally considered as more accurate and physical,
the methods do not predict failure modes (type of failure e.g. delamination or fiber-pull-out),
only whether failure occurs based on material stresses.

In BECAS, Tsai-Wu and Hashin failure criteria are preexisting, where the first of the two
are considered in this study. The Hashin failure criteria was originally also considered and
implemented with validated gradients against a central finite difference check, however, to limit
the already considerable amount of the thesis work on failure constraints, it was deemed that
the Tsai-Wu failure criterion is sufficient and represents a more sophisticated and inclusive
method than the simple Max Strain and Stress. The theory and sensitivity results of the
Hashin failure criterion can be seen in the appendix page 80).

Tsai-Wu

The Tsai-Wu failure criterion is defined below as implemented in BECAS. For a reference one
can look to Tsai and Hahn’s Introduction to Composite Materials[66] or Kassapoglou’s Design
and Analysis of Composite Structures With Application to Aerospace Structures[36], although
not represented in a similar fashion.

FITsai−Wu = A+B (3.13)

where

A = − σ2
11

σ̄t11σ̄
c
11
− σ2

22
σ̄t22σ̄

c
22
− σ2

33
σ̄t33σ̄

c
33

+ σ2
12
σ̄2

12
+ σ2

23
σ̄2

23
+ σ2

13
σ̄2

13
+ ... (3.14)

C12σ11σ22√
σ̄t11σ̄

c
11σ̄

t
22σ̄

c
22

+ C23σ22σ33√
σ̄t22σ̄

c
22σ̄

t
33σ̄

c
33

+ C13σ11σ33√
σ̄t11σ̄

c
11σ̄

t
33σ̄

c
33

(3.15)
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B =
( 1
σ̄t11

+ 1
σ̄c11

)
σ11 +

( 1
σ̄t22

+ 1
σ̄c22

)
σ22 +

( 1
σ̄t33

+ 1
σ̄c33

)
σ33 (3.16)

The constants Cij are coupling constants and takes values in the range Cij ∈ [−2...0] with a
recommended value of -1 for each, which is used in this study. As observed in the equations
above, the loading is now coupled.

3.3 Sensitivities

This section presents the sensitivities of the considered objective and constraint functions which
must be provided to the gradient based optimization algorithms. First, a small discussion on
the choice of sensitivity calculation method.

When sensitivities of displacements of a FE system is needed, two methods are generally
considered: the direct analytical and the adjoint method. The first mentioned is preferred
when the number of constraints is larger than the number of design variables and uses the
chain-rule for the equilibrium equation Kgu = p to obtain the displacement derivative. This
means the FE system of equilibrium equations are solved for each design variable xi which
can be costly if a large system exists i.e. large amount of elements. The adjoint method is
preferred when the number of design variables are larger than number of constraints. The
derivative of the displacements are not calculated explicitly but a zero function is added in the
calculation containing an arbitrary, fixed real vector[4]. Definition of this vector results in the
elimination of the state vector derivative i.e. the displacement gradient which results in one
backsubstitution per response (objective and constraints) whereas the direct method needed
one backsubstitution per design variable.

In this study, the adjoint method was initially not considered used since the FE beam formula-
tion presents a manageable system in that not being significantly large (approximately 20 beam
elements). Were this a topology optimization of the cross section, the adjoint method would
have be considered since each 2D cross section FE would impose a design variable. The stress
constraints, presented earlier, exhibits a FI for each patch of elements which quickly surpass
the number of design variables. This is since FI’s for all the patches in the cross section are
considered in the optimization whereas only a selected batch of patches exhibit design variables
e.g. caps element patches and/or shell elements patches. This means the number of constraints
are higher than number of design variables when failure criteria constraints are considered.

3.3.1 Compliance

The gradient of the compliance is calculated here. Assuming independent static loads and that
the cross section stiffness matrix is symmetric, the following is obtained by differentiating eq.
(3.2):

∂C

∂xi
= pT ∂u

∂xi
= uTKg

∂u
∂xi

(3.17)

Above the relation uTKg = pT from eq. (2.12) is used. This is used again to determine the
displacement field gradient ∂u/∂xi using the product rule:

∂Kg

∂xi
u + Kg

∂u
∂xi

= 0↔ ∂u
∂xi

= −K−1
g

∂Kg

∂xi
u (3.18)
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Inserting above in eq. (3.17) yields the final expression for the gradient of the compliance matrix

∂C

∂xi
= −uT ∂Kg

∂xi
u (3.19)

3.3.2 Cross section stiffness matrix

The analytic term for the cross section stiffness matrix gradient, ∂Ks/∂xi, w.r.t. the design
variables xi is determined in this section. It involves first determining the derivative of the cross
section solution followed by the compliance matrix gradient, ∂Fs/∂xi. Restating the compliance
eq. (2.40) here for convenience:

Fs = WTGW (3.20)

Gradient of Fs is then obtained by using the chain rule:

∂Fs

∂xi
= ∂WT

∂xi
GW + WT ∂G

∂xi
W + WTG∂W

∂xi
(3.21)

where

∂W
∂xi

= ∂K−1

∂xi
F (3.22)

from eq. (2.30). This can also be stated as (see appendix page 79 for illustration of this little
mathematical alternation):

∂W
∂xi

= −K−1∂K
∂xi

K−1F = −K−1∂K
∂xi

W (3.23)

Inserting this in eq. (3.21) gives

∂Fs

∂xi
= −WT ∂KT

∂xi
K−TGW + WT ∂G

∂xi
W−WTGK−1∂K

∂xi
W (3.24)

Defining V = K−TGW and assuming GT = G the above results in

∂Fs

∂xi
= −WT ∂KT

∂xi
V + WT ∂G

∂xi
W−VT ∂K

∂xi
W (3.25)

which in the end can be used for the cross section stiffness gradient:

∂Ks

∂xi
= ∂F−1

s

∂xi
(3.26)

G,K and W all dependent on the design variable through the rotated material constitutive
matrix, Qe, as observed in section 2.3.3 by eq. (2.26).

3.3.3 Tip deflection and twist gradient

From the global equilibrium equation eq. (2.12), restated below for convenience, the gradient
of the WTB tip deflection and twist can be determined.

Kg(x)u(x) = p (3.27)

calculating ∂u(x)/∂x and still assuming loads to be independent:
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∂Kg(x)
∂xi

u(x) + Kg(x)∂u(x)
∂xi

= ∂p
∂xj

= 0 (3.28)

Kg(x)∂u(x)
∂xi

= −∂Kg(x)
∂xi

u(x) (3.29)

∂u(x)
∂xi

= −Kg(x)−1
(
∂Kg(x)
∂xi

u(x)
)

(3.30)

The above is known as the pseudo-load due to its similarity to the equilibrium equations. The
gradient of the global stiffness matrix is needed. The global stiffness matrix is defined in eq.
(2.10) but is restated here for convenience:

Kg =
nb∑
b=1

Kb =
nb∑
b=1

∫ Lb

0
BT
b KsBbdz (3.31)

The gradients thus become:

∂Kg

∂xi
=

nb∑
b=1

∂Kb

∂xi
=

nb∑
b=1

∫ Lb

0
BT
b

∂Ks

∂xi
Bbdz (3.32)

with the gradient of the cross section stiffness matrix provided in eq. (3.26).

3.3.4 Eigenfrequencies gradients

The method to obtain the derivatives of the eigenfrequencies follows that proposed by Seyranian
et al. [56] which has seen its use in e.g. [6] and in [13].
The structural eigenvalue problem can be stated as:

Kgvj = λjMgvj , j = 1, ..., ndof (3.33)

where λj = ω2
j and Mg-orthonormalization is assumed: vTj Mgvk = δjk such that:

vTj Mgvk =
{

1 if j = k
0 if j 6= k

j, k = 1, ..., ndof (3.34)

and eigenvectors a Kg-orthogonal; vTj Kgvk = λjδjk such that:

vTj Kgvk =
{
λj if j = k
0 if j 6= k

j, k = 1, ..., ndof (3.35)

the gradient (single case) can be obtained by differentiation of eq. (3.33):

∂Kg

∂xi
vj + (K− λjMg)

∂vj
∂xi

= ∂λj
∂xi

Mgvj + λj
∂Mg

∂xi
vj (3.36)

∂λj
∂xi

= vTj
(
∂Kg

∂xi
− λj

∂Mg

∂xi

)
vj (3.37)
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3.3.5 Failure criteria gradients

The three considered failure criteria, Max Strain, Max Stress and Tsai-Wu, either needs the
material strains or stresses to evaluate the FI. The material stress in an element, σm, is given
by eq. (3.38) and the derivative w.r.t. design variable (fiber orientation) is presented in eq.
(3.39).

σm = Qmεm (3.38)

∂σm
∂xi

= Qm

∂εm
∂xi

(3.39)

The strain in the material coordinate system, εm, is the global strain, εg, rotated with standard
rotation matrix, T, see if necessary appendix page 75.

εm = TεgTT (3.40)

The gradient of the material strain in an element is:

∂(εm)e
∂xi

=


∂T
∂xi

(εg)eTT + T∂(εg)e
∂xi

TT + T(εg)e
∂TT

∂xi
, if e ∈ pi

T∂(εg)e
∂xi

TT , otherwise

(3.41)

meaning that if the element does not belong to a patch associated with the specific design
variable xi, the partial derivative of the transformation matrix T is zero. The interpretation of
this is that a change in fiber angle, or stiffness, for one ply/patch of elements does not affect
the local strains in other plies/patches. The global strain for element e is calculated with the
cross section warping displacement solution (and reusing cross section gradient arrays found in
section ??:

(εg)e = SZeϕ+ BeNeu + SNe
∂u
∂z

(3.42)

where ϕ = Yθ, u = Xθ and ∂u/∂z = ∂X/∂zθ. The gradient is calculated element-wise, and
below the subscript e is dropped for the strain for abbreviation.

εg = SZeYθ + (BeNeXθ) +
(

SNe
∂X
∂z
θ

)
(3.43)

of which the gradient is found with the product rule:

∂εg
∂xi

= SZe
(
∂Y
∂xi

θ + Y ∂θ

∂xi

)
+ BNe

(
∂X
∂xi

θ + X ∂θ

∂xi

)
+ SNe

(
∂

∂xi

∂X
∂z
θ + ∂X

∂z

∂θ

∂xi

)
(3.44)

The derivative of the warping solution to a unit load, X,Y, and ∂X/∂z w.r.t. the design
variables, xi, is obtained in a similar manor as for the cross section stiffness matrix gradients.
Restating eq. (2.30), differentiating w.r.t. to xi and isolating the warping solution gradient:

KW = F→ ∂W
∂xi

= ∂K−1

∂xi
F + K−1 ∂F

∂xi
(3.45)

Here ∂F/∂xi = 0, K−1F = W and by using chain rule the above can be reformulated to:
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∂W
∂xi

= −K∂K
∂xi

W (3.46)

which is very convenient since above is all known values from the displacement gradient calcu-
lation. The cross section forces and moments will change with varying fiber angles:

θ = Kbuedof →
∂θ

∂xi
= ∂Kb

∂xi
uedof + Kb

∂uedof
∂xi

(3.47)

Above, Kb is the beam element stiffness matrix of beam b and uedof is the nodal displacements
of beam element b. Everything for evaluating global strains (3.44), local strains (3.41), and
local stresses (3.39) are now known.

Max Stress gradient

The stress gradient in the material coordinate system is obtained by eq. (3.39). Using the value
obtained by this expression, the Max Stress FI derivative is easily found as:

∂FIMaxStress

∂xi
=



∂σkk
∂xi

1
σ̄tkk

, if σkk > 0, k = 1, 2, 3

∂σkk
∂xi

1
σ̄ckk

, if σkk < 0, k = 1, 2, 3

∣∣∣∣∂σkl∂xi

∣∣∣∣ · ∣∣∣∣ 1
σ̄kl

∣∣∣∣ k, l = 1, 2, 3

(3.48)

Max Strain gradient

The strain gradient in the material coordinate system is found using eq. (3.41). The Max Strain
FI gradient is then found as:

∂FIMaxStrain

∂xi
=



∂εkk
∂xi

1
ε̄tkk

, if εkk > 0, k = 1, 2, 3

∂εkk
∂xi

1
ε̄ckk

, if εkk < 0, k = 1, 2, 3

∣∣∣∣∂εkl∂xi

∣∣∣∣ · ∣∣∣∣ 1
ε̄kl

∣∣∣∣ k, l = 1, 2, 3

(3.49)

The gradients of the Max Strain and Max Stress FI’s are convenient since no modifications are
needed in the BECAS implementation. Instead of providing the material strain and stresses,
the gradient values are instead used as inputs. It is important to notice the dependence on the
principal stress or strain signs since this determines whether the material experiences compres-
sion or tensile loads. It is thus not the sign of the gradient which should be considered when
calculating the gradients of the above.

Tsai-Wu gradient

Using the product rule, the Tsai-Wu FI gradient value can be calculated as:

∂FITsai−Wu

∂xi
= ∂A

∂xi
+ ∂B

∂xi
(3.50)
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where (using ∂σ/∂xi = σ′ for abbreviation):

∂A

∂xi
= −2σ11σ′11

σ̄t11σ̄
c
11
− 2σ22σ′22

σ̄t22σ̄
c
22
− 2σ33σ′33

σ̄t33σ̄
c
33

+ 2σ12σ′12
σ̄2

12
+ 2σ23σ′23

σ̄2
23

+ 2σ13σ′13
σ̄2

13
+ C +D + E (3.51)

with

C = C12σ′11σ22√
σ̄t11σ̄

c
11σ̄

t
22σ̄

c
22

+ C12σ11σ′22√
σ̄t11σ̄

c
11σ̄

t
22σ̄

c
22

D = C23σ′22σ33√
σ̄t22σ̄

c
22σ̄

t
33σ̄

c
33

+ C23σ22σ′33√
σ̄t22σ̄

c
22σ̄

t
33σ̄

c
33

E = C13σ′11σ33√
σ̄t11σ̄

c
11σ̄

t
33σ̄

c
33

+ C13σ11σ′33√
σ̄t11σ̄

c
11σ̄

t
33σ̄

c
33

and

∂B

∂xi
=
( 1
σ̄t11

+ 1
σ̄c11

)
∂σ11
∂xi

+
( 1
σ̄t22

+ 1
σ̄c22

)
∂σ22
∂xi

+
( 1
σ̄t33

+ 1
σ̄c33

)
∂σ33
∂xi

(3.52)

3.3.6 BTC factor

The BTC factor, as defined in eq. (3.6) and restated below for convenience, has also been
considered as both objective and constraint. To this matter, the gradient is also determined.
The parameter is defined as the fraction between theK46 element in cross section and the square
root of the product of K44 and K66:

αn(xdv) = K
(n)
46 (xdv)√

K
(n)
44 (xdv)K(n)

66 (xdv)
, n = 1, ..., N (3.53)

where all stiffness terms are dependent on the fiber angle. The gradient of the BTC factor is
then (leaving out (xdv) and (n) for abbreviation):

∂αn
∂xi

=



∂K46
∂xi√
K44K66

− 1
2

K46

(
∂K44
∂xi

K66 +K44
∂K66
∂xi

)
(K66K44)3/2 if xi ∈ xdv

0 if xi 6∈ xdv

(3.54)

The gradient values are then summed with the same weightings as defined in eq. (3.7):

∂α

∂xi
=

N∑
n=1

wn
∂αn
∂xi

(3.55)

3.4 Validation
The analytic sensitivities are validated against self-build numeric finite difference gradients
checks. Both IPOPT and fmincon are accompanied with derivative checkers, however, these
have, from experience, showed to be less reliable. The error values presented in this section,
rely on the self-build finite difference checks. Prior to the results is a small introduction to the
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theory behind the sensitivity validation.

A finite difference gradient is simply an easy way to estimate the derivative or slope of a function.
The evaluation of a function, f(x), with a small perturbation step forwards or backwards, ±h,
added to the independent variable, x, allows for the approximation of the gradient. Most
common is the forward finite difference and central finite difference methods where the latter is
presented in eq. (3.56).

∂f(x)
∂xi CFD

≈ f(x + h · ei)− f(x− h · ei)
2h (3.56)

The vector e is the size of x with all zero except for a single element at the index i. The method
requires 2 function evaluations and is therefor more expensive than the forward finite difference
method that only has a single perturbation direction but also exhibits less accuracy compared
to the central finite difference. Derivation, discussions and more of finite-difference derivative
approximations can be found in for example the book Numerical Optimization by J. Nocedal[49].

Error of gradients, vector

For a vector of gradient values, the infinity norm is used to determine a combined error of the
vector errors, that is for example the difference between analytic obtained displacement and
rotation values ∂u/∂z, and the finite difference ones:

εu = max
i

(∣∣∣∣∣∣∣∣ ∂u
∂xi
− ∂u
∂xi CFD

∣∣∣∣∣∣∣∣
Inf

)
, ∀i = 1, ..., ndv (3.57)

To elaborate: the analytic gradients of each element in u is compared with a numerical gradient
by subtracting one from the other. That leaves a column vector of errors pr. design variable
i = 1, ..., ndv. The maximum error is found as the maximum infinity norm of each column
vector. Doing so can reveal the design variable providing the largest error which will be used to
investigate the truncation and conditional error since the numeric gradient is highly sensitive
to perturbation step size.

Error of gradients, array

For an array of gradient values, the error is found as the Frobenius norm of the difference
between the two matrices. This is the case for e.g. the cross section stiffness matrix.

εKs = max
i

(∣∣∣∣∣∣∣∣∂Ks

∂xi
− ∂Ks

∂xi

∣∣∣∣∣∣∣∣
Fro

)
, ∀i = 1, ..., ndv (3.58)

3.4.1 Gradient errors

All gradient values have been compared to a central finite difference check and the results
are summarized in this section by presenting the errors calculated with the above mentioned
methods and variable perturbation steps in figures 3.1a and 3.1b. The test case is the sandwich
beam presented in chapter 4, with material properties provided in MPa, density in 1e-6 kg/m3

and the load equally scaled to MN. This is done due to the norms’ sensitivity to size of value. If
the elements in a vector or array are large e.g. 1e6, the calculated gradient errors would also be
larger. From the figures, it is observed that, depending on the perturbation step, all errors can
present values below 1e-6 which is deemed sufficient. Eigenvalues present the highest minimum
error at h-step=5e-3 with an error of 4.3e-7 (rad/s)2.
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Figure 3.1: a: Errors for material constitutive matrix (Qm), cross section stiffness matrix (Ks),
BTC factor (BTC), beam FE displacement field for displacement and twist (u), eigenfrequencies (λ).
b: Errors for global stress (σg), material stress (σm), global strain (εg), material strain (εm), failure
criteria Max Strain (strain), failure criteria Max Stress (stress), failure criteria Tsai-Wu (Tsai-Wu).

3.5 Optimization of composites in general

Optimization of composite structures is a challenging problem due to the non-convexity and
multi-material composition. Structural optimization usually considers minimization of mass or
compliance with the aim of obtaining a low weight and stiff structure and can be generalized
into three subcategories: shape-, sizing/material and topology optimization where this study
is closest to sizing/material. Optimizing materials in a structure is complicated due to the
discrete design variables and to utilize a gradient based optimization algorithm, some form of
continuation is needed. Discrete design variables stems from the composite industry, where
fiber mats are produced in only off-the-shell angles such as [0°,±45°, 0°/90°]. Obtaining angles
different than the mentioned is possible, however, the cost of the production limits the selection.
Recent developments has led to discrete material optimization (DMO) methods that are appli-
cable to use for optimization of composite structures and has been demonstrated to be capable
of composite optimization problems using gradient based numerical optimization algorithms.
The DMO scheme developed by Stegmann and Lund[61] could be implemented to give a more
realistic design of the optimum bend-twist coupled WTB, however, this is left for future work.
Instead, for this study, the fiber angles/design variables are modeled as continuous which was
the common method prior to DMO, see e.g. Pedersen[52][53], Stegmann and Lund[61], and
Blasques and Stolpe[7].

3.6 Discussion on solvers

This section presents the discussion on choice of optimization algorithm. First it must be recog-
nized, that the full scale blade optimization problem to be solved is nonlinear, constrained, and
large-scale i.e. a large amount of design variables and constraints and likely many local mini-
mums. This means that the below considered solvers will likely converge to local minimum.
A right at hand algorithm is the Sequential Quadratic Programming (SQP) which is imple-
mented in the MATLAB function fmincon. SQP approximates the problem to a convex, nested
problem by a second order Taylor expansion at a given design point xk. The solution to the
nested problem is the new design point and the problem is iteratively solved this way until

41



no reduction in objective is found in any feasible directions, determined by constraint bound-
aries and gradient information. The method is known for its capabilities to handle significant
nonlinearities[49] and is thus a desirable choice for this study.
The other algorithm used in this study is the Interior Point OPTimization (IPOPT, pronounced
"eye-pee-opt")[69]. It utilizes an interior-point line-search filter method where the objective and
constraint functions can be linear/nonlinear and convex/non-convex. The optimization problem
to be solved contains inequality constraints which means that IPOPT will utilize slack variables
to turn them into equality constraints before solving the problem with a barrier method. Slack
variables result in a large increase of variables and all constraints are considered all the time,
however, its ability to handle large-scale problems might prove sucessfull where SQP is not. As
with SQP, IPOPT is likely unable to escape local minima since it searches only locally in the
design domain. An alternative to SQP and IPOPT is genetic algorithms which both can handle
nonlinear problems and possibly escape local minimums. However, this comes with a consider-
able computational cost due to the many function evaluations needed. The IPOPT algorithm
can be downloaded with no charge together with a MATLAB toolbox including dozens of other
optimization algorithms from inverseproblem.co.nz [33]. The motivation for using IPOPT is the
large amount of design variable that can occur of proper patching of elements are not provided
or that patching is not realized in the framework. Then the number of finite elements in the
cross section mesh drastically increase the problem size. Furthermore, it will be interesting to
observe the performance of the two algorithms.
Both algorithms may start from an unfeasible point, however, for any non-convex problem and
gradient based numerical algorithm, the solution depends on the point of departure.

3.7 Framework and implementation

The framework used for the optimization is build up using an input script, defining and
building the structures needed for the optimization and the structures needed to run BECAS
for the evaluation of above considered objective and constraint functions. The calculation of
cross section stiffness matrices, the assembly of the FE beam model and the evaluation of
response, eigenfrequencies, and stresses are all done by BECAS/FRANS as well as a majority
of the pre- and post-processing functions. Template files, allowing for the analysis of the
DTU10MW reference WTB is distributed with BECAS, and the pre-processing module, using
shellexpander.py, made for an easy way to import the WTB into BECAS as well as changing
initial layups. Without this, GMSH would have been the alternative to descritize the cross
section. The structure of the created framework takes its inspiration from the framework
presented in the DTU course 46415 - Structural analysis and design optimization of wind
turbine blades, which presented an organized and simplified optimization framework. The
present contributions to the structure is the sensitivity calculations, the sensitivity validation,
and extending the pre- and post-processing modules to accommodate blade optimization in a
efficient way. A lot of work has been put into proper bookkeeping which both keeps track of
chosen elements subject to fiber rotation as well as allows for skipping calculating and storing
arrays of zeros. An example of this is the element constitutive matrix gradient that exists only
for the specific associated element to the considered design variable whereas the rest is null i.e.
∂Qe/∂xi only has a value when the element belongs to a specific patch e ∈ p. All other e 6∈ p
are null. This is implemented in most of the framework, however, without exploited fully e.g.
the cross section stiffness matrix is repeatably calculated even when no change have been made
for example between objective and constraints evaluations. It is left for future work to further
improve the framework.
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The computational cost (time) of the cross section stiffness calculation and more are reduced
by utilizing parallel computing with MATLAB’s local parallel pool function. This also allows
for the framework to be used on high performance clusters, although this have not been tested
yet. The pool function allows MATLAB to utilize a computers multiple core by distributing
the evaluations in a for-loop. As of now, this has been implemented for the cross section
stiffness matrix evaluations and the strain, stress, and failure criterion evaluations since these
were the most expensive. The cost of using parallel computing is the higher amount of RAM
needed and some requirements to parameters being passed inside the loop.

A large part of the thesis work was dedicated to develop the framework and troubleshoot the
sensitivities. One persistent sign error was found early in the project and in an attempt to
locate the origin of this error, the rotation of the element material constitutive matrix was
changed. Originally, this was a generated function from the symbolic computing environment
Maple using a theory presented in [55], but was changed in an effort to rule out the sign error.
The new calculation is attached in the appendix page 82.
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CHAPTER 4

Validation of framework

This section presents the simplified study which was performed prior to the full blade optimiza-
tion. The motivation is to investigate the framework robustness and gain experience regarding
the two different solvers SQP (via fmincon) and IPOPT. The simplified study contains the
optimum design of a sandwich cantilever beam, subjected to end twist-, end displacement-,
eigenfrequencies-, stress-, strain-, and/or failure criteria constraints. The findings will aid in
the full blade optimization by appropriate selection of problem formulation and starting point
as well as having a functioning optimization framework with validated sensitivities.

4.1 Problem formulation

One of the aims of the parametric study is to obtain a suitable problem formulation for the
optimization of the large scale DTU10MW reference blade. The idea is, that some formulations
obtain the desired BTC response better than others due to the composition of choosing the
objective, constraints and optimization algorithm. It is possible that one composition might
achieve the global optimum where others will be stuck at local minimums and not reach the
desired response.
To gain insight in this, four problem formulations are investigated: (a) minimization of
compliance (b) minimization of tip flapwise deflection, (c) maximization of tip twist to flapwise
loading (d) maximization of BTC effects towards feather, see page 45. The aim is to determine
the problem formulation that will be used in the full blade optimization. Problem formulations
(a) and (b) have the same purpose of minimizing the tip deflection i.e. obtain a stiff structure
and to introduce BTC effects in the design, a constraint is defined with a minimum tip twist,(
utipϕ

)min
for these two. This case is opposite for problem formulations (c) and (d), where

the maximization of the bend-twist response is desired. Here, a constraint on the maximum
allowable tip flapwise deflection,

(
utipy

)max
is defined, such that the amount of BTC in the

structure is limited. The deflection constraint is also highly relevant in WTB design, as
discussed in section 3.2.
Common for the four problem formulations are the first two eigenfrequency constraints which
have a lower and upper bound, meaning that the eigenfrequencies can lie anywhere in between
fminj and fmaxj . Furthermore, for each patch of elements in the cross section, an upper, FImaxp ,
and lower, FIminp , bound on the FI is defined. The lower bound might be redundant since the
lowest value the FI can obtain is 0 since it is the fraction of element material stress/strain
and the material limit value. If stresses or strains goes to zero, so does the FI. The design
variables xi can take any real numbered values between its bounds of xmin and xmax making
it a continuous design variable. As discussed in section 3.5, industrial standards limits the
available fiber angles to a few discrete values. Discrete values can not be directly applied to a
gradient based solvers since functions and variables must be continuous to be differentiable.
Nevertheless, the continuous fiber angles used as design variables in this thesis work will provide
an estimate of how the optimal design could look although not directly applicable in the industry.
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(a) Minimize compliance

min
x∈Rndv

C(x)

s.t. utipϕ (x)−
(
utipϕ

)min
≤ 0

fminj ≤ fj(x) ≤ fmaxj ∀j = 1, ..., nf
FIminp ≤ FIp(x) ≤ FImaxp ∀p = 1, ..., np ∧xi ∈ xdv
xmin ≤ xi ≤ xmax ∀i = 1, ..., ndv

(b) Minimize tip deflection in flapwise direction

min
x∈Rndv

utipy (x)

s.t. utipϕ (x)−
(
utipϕ

)max
≤ 0

fminj ≤ fj(x) ≤ fmaxj ∀j = 1, ..., nf
FIminp ≤ FIp(x) ≤ FImaxp ∀p = 1, ..., np ∧xi ∈ xdv
xmin ≤ xi ≤ xmax ∀i = 1, ..., ndv

(c) Maximize tip twist response to flapwise loading

min
x∈Rndv

utipϕ (x)

s.t. utipy (x)−
(
utipy

)max
≤ 0

fminj ≤ fj(x) ≤ fmaxj ∀j = 1, ..., nf
FIminp ≤ FIp(x) ≤ FImaxp ∀p = 1, ..., np ∧xi ∈ xdv
xmin ≤ xi ≤ xmax ∀i = 1, ..., ndv

(d) Maximize BTC effects towards feather

min
x∈Rndv

α(x)

s.t. utipy (x)−
(
utipy

)max
≤ 0

fminj ≤ fj(x) ≤ fmaxj ∀j = 1, ..., nf
FIminp ≤ FIp(x) ≤ FImaxp ∀p = 1, ..., np ∧xi ∈ xdv
xmin ≤ xi ≤ xmax ∀i = 1, ..., ndv

4.2 Simple sandwich beam

The validation study is performed on a sandwich cantilever and prismatic beam with top and
bottom faces as CRFP laminae and a core between, since carbon fibers was found to produce
the largest BTC effects c.f. section 2.2.1. The material properties are presented in table 4.2
and the material limits in table 4.3. The length and cross section dimensions are given in figure
4.1. The design variables are the fiber angles in the faces that can take values irrespectively
of each other. The beam is subject to an end point load of 30kN in the positive y-direction
creating internal shear forces and bending moments. The minimum tip deflection is obtained
by having the fiber angles in the two faces go to zero and thus aligned with the beam axis. The
beam have similarities to a WTB by having high stiffness (and high density) material far away
from the neutral axis and a weak (and low density) core in between. It should be pointed out
that a thin walled beam would have even more resemblance with a WTB, however, the present
sandwich beam was deemed sufficient to validate the framework. The FE beam representation
is modeled using 4 elements to a total of 13 nodes. The cross section grid is made with GMSH
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with 728 Q4 elements and is based on the convergence study presented in section 2.5.

Table 4.2: Material data for core material (Divinycell H60[22]) and CFRP materials[73] used in simple
sandwich beam

E11 E22 E33 G12 G13 G23 ν12 ν13 ν23 ρ
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-] [kg/m3]

Core 0.13 0.13 0.13 0.035 0.035 0.035 0.35 0.35 0.35 100
GFRP 142.0 9.81 9.81 6.0 6.0 3.77 0.3 0.3 0.42 1800

Table 4.3: Material strength data for core material (Divinycell H60[22]) and CFRP materials[73] used
in simple sandwich beam

Stress [MPa] σ̄t11 σ̄t22 σ̄t33 τ̄12 τ̄13 τ̄13 σ̄c11 σ̄c22 σ̄c33
Core 3.5 3.5 3.5 1.6 1.6 1.6 -2.0 -2.0 -2.0
CRFP 1800 40 40 120 80 80 -1200 -220 -220
Strain [-] ε̄t11 ε̄t22 ε̄t33 γ̄12 γ̄13 γ̄13 ε̄c11 ε̄c22 ε̄c33
Core 0.0269 0.0269 0.0269 0.4 0.4 0.4 -0.0182 -0.0182 -0.0182
CRFP 0.013 0.004 0.004 0.015 0.01 0.01 -0.009 -0.021 -0.021

Shear center

t1

t2

wL

z

y

x

y

P

w

Figure 4.1: Sandwich cantilever beam used for parametric study. L = 10m, w = 0.25m,
t1 = t2 = 0.025m, P = 30kN

4.3 The design domain

Considering a minimization of tip displacement in y-direction or maximizing the negative
twist response of the simple sandwich beam presented in section 4.2 subject to two design
variables that describe the fiber angles in the beam faces, a graphical presentation has been
created to give insight into the design domain. A surface plot of the beam tip displacement
in the y-direction and a surface plot of the end beam twist as function of face fiber angles are
presented in figure 4.2a and 4.2b, respectively. Likewise, a contour plot of each response is also
presented in figure 4.3a and 4.3b. The surface plots can reveal saddle-points, local minimum,
and give a visual appealing interpretation of the design domain. Contour plots, presents the
same design domain and global minimum is clearly determined, however, saddle-points and
local minimums can be more difficult to interpret. Combined, the surface and contour plot
provides valuable information of the design domain which can be utilized when defining the
optimization problem. From these plots, the functions are determined as non-convex which
is well known for optimization of composites structures using fiber angles as design variables.
The twist response is likewise non-convex but with local minimums that easily can retain an
optimization algorithm. For example, a starting point at the wrong side of the saddle-point
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at [60;-60] will prevent gradient based algorithms to find the true optima, unless an "escape"
mechanism has been build in.

As stated earlier, for a minimization of tip displacement in the y-direction, the angles in both
faces must be aligned with the beam z-axis which is evident in both the contour and surface
plots for the displacement with a global minimum at x = [0°, 0°]. A maximization of the
negative twist response through material BTC, requires the fiber angles in both faces to present
values of approximately -20° to -30°. The fiber angles presenting the lowest deflection is not
coinciding with the design providing maximum twist, thus both optimal solution cannot be
obtained simultaneously.
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Figure 4.2: Surface plots of the end point deflection and twist as function of top and bottom lamina
fiber angles.
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Figure 4.3: Contour plots of the end point deflection and twist as function of top and bottom lamina
fiber angles.

47



4.4 Testing the problem formulations and framework
The approach to developing the framework and performing the parametric study was to
gradually implement and apply the constraints to the optimization problem until all constraint
and sensitivities had been implemented. The results presented in this section includes all
the implemented constraints defined in the four problem formulation on page 45 i.e. tip
displacement, tip twist, frequencies, and FI’s. Only the first two eigenfrequencies are consid-
ered with upper and lower constraints to limit the problem size. The four different failure
criteria, discussed in section 3.2.2, have all been tested with the framework and most showed
similar results, however, a few did not. The results presented in this section are for the Max
Strain failure criterion. The defined constraint values and bounds are presented in table 4.4.
As observed in the table, an additional test case, (a*), is formulated which is a copy of (a)
but with the objective compliance scaled to approximately 1 (originally in the order of 1e5).
This provided an improvement in the number of function evaluations for the SQP algorithm,
however, an increase for the IPOPT algorithm.

Table 4.4: Defined constraint and bound values for considered problem formulations to validate frame-
work.

Constraint & bounds (a) (a*) (b) (c) (d)(
utipϕ

)min
-4° -4° -4° - -(

utipy

)min
- - - 0.66m 0.66m[

fmin1 ; fmax1
]

[5.0; 9.0]Hz [5.0; 9.0]Hz [5.0; 9.0]Hz [5.0; 9.0]Hz [5.0; 9.0]Hz[
fmin2 ; fmax2

]
[9.0; 11.0]Hz [9.0; 11.0]Hz [9.0; 11.0]Hz [9.0; 11.0]Hz [9.0; 11.0]Hz[

FIminp ;FImaxp

]
∀p [0; 1.0] [0; 1.0] [0; 1.0] [0; 1.0] [0; 1.0]

[xmin;xmax] [−90°; 90°] [−90°; 90°] [−90°; 90°] [−90°; 90°] [−90°; 90°]

The in-equality constraints are defined such that the optimum point will be x =
[−5.614;−5.614°] with a tip end twist of -4°, a tip deflection in y-direction of 0.66m, eigen-
frequencies of f = [7.421; 9.803]Hz, and a FI index for each patch of elements in the cross
section of 0.25. Thus, either the displacement or the twist constraint is active while remaining
constraints are inactive given the bounds in table 4.4. Optimization formulations with alternat-
ing active constraints and using the SQP-method have also been tested and verified to converge
to an optimum point on the constraint boundary, however, these results have been left out of
this thesis report due to abbreviation.
Two starting points are selected as xinitial,1 = [−40°,−60°] and xinitial,2 = [0°, 0°] for the design
variables where x1 is the fiber angle in the bottom lamina and x2 denotes the fiber angle for the
top lamina. For (a), (a*), and (b) the starting point xinitial,1 is feasible whereas xinitial,2 is not.
Contrary, for (c) and (d) the starting point xinitial,2 is feasible whereas xinitial,1 is not. The
solvers are therefore tested from both a feasible and non-feasible point. Both design variables
are subject to the bounds xmin = −90° and xmax = 90° for all problem formulations.
Figure 4.4 presents number of function evaluations for the problem formulation created to test
the framework and aid in the selection of proper formulation for the full blade optimization.
That is, the number of function evaluations needed to converge to a stationary point of which
no decrease in objective can be obtained in all feasible directions. It is divided into four bun-
dles where the optimization algorithm performance, IPOPT and SQP, are compared from two
starting points. Each bar corresponds to a problem formulation, defined on page 45, with the
constraint values and bounds presented in table 4.4. For both starting points, the IPOPT for

48



IPOPT [-40;-60] IPOPT [0;0] SQP [-40;-60] SQP [0;0]
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Figure 4.4: Function evaluations for tested formulations with algorithms IPOPT and SQP from two
different starting positions: (a) minimize compliance - (a*) minimize scaled compliance - (b) minimize

tip tip deflection y-direction - (c) maximize tip twist around z-axis - (d) minimize BTC factor.

(c) and (d) shows a very slow convergence towards the optimum while for (a), (a*) and (b) it
only shows a slow convergence when the starting point is [−40°;−60°]. A possible interpretation
of this is that IPOPT either takes small steps (starting point is relatively far from optimum for
[−40°;−60°] for cases (a), (a*) and (b) but close to optimum when the starting point is [0; 0]
for the same cases) or that its performance is related to feasible versus non-feasible starting
points, that is, starting points where the constraints are violated to a larger extend. The final
fiber orientations at the end of the optimization is plotted in figure 4.6 for xinitial = [0; 0] and in
figure 4.5 for xinitial = [−40;−60]. Here it is observed that only one formulation, minimization
of twist (c), failed to converge to optimal point and ended with a relative error of approximately
26%. For the starting point xinitial = [−40;−60], IPOPT only converged to acceptable values
for formulations (a) and (b) with relative errors of less than 1%. The formulation case (a*)
converged to a point with ±5% error of the bottom and top fiber angle respectively. The final
two formulations, (c) and (d), presents significant errors up to approximately 265% for xinitial,1.

IPOPT bot IPOPT top SQP bot SQP top

-25
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0

Figure 4.5: Converged top and bottom fiber angle for tested formulations with algorithms IPOPT and
SQP for starting position xinitial,1 = [−40°;−60°]: (a) minimize compliance - (a*) minimize scaled
compliance - (b) minimize tip tip deflection y-direction - (c) maximize tip twist around z-axis - (d)

minimize BTC factor.

SQP shows much more consistent results where all formulations converged to global optimum.
The highest function count of 18 for both starting points was reduced to 13 and 8 for xinitial =
[0; 0] and xinitial = [−40;−60], respectively, by scaling the compliance to approximately unity.
Needless to say, SQP presents by far the quickest convergence towards global optimum whereas
IPOPT both is significant slower and fails to converge to global optimum in 5 out of 10 cases.
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Figure 4.6: Converged top and bottom fiber angle for tested formulations with algorithms IPOPT and
SQP for starting position xinitial,2 = [0°; 0°]: (a) minimize compliance - (a*) minimize scaled

compliance - (b) minimize tip tip deflection y-direction - (c) maximize tip twist around z-axis - (d)
minimize BTC factor.

Based on the study presented in this chapter, SQP with any starting point is predicted to show
good performance and convergence to constrained optimum, although a constrained global
optimum cannot be guaranteed for the full blade optimization. The simplified composite beam
presented here is too simple (prismatic and simple geometry) to transfer the presented design
domain directly to the design domain of a WTB. More discussion on this in chapter 5.

4.5 Discussion on results
The above presented results show a clear favor for the SQP algorithm, however, it should be
noted that IPOPT is generally considered as a robust and fast solver and such a small problem,
as the one investigated, should be no problem for IPOPT. In fact, equal performance was
expected from the two algorithms, thus, it is very surprising that IPOPT shows evaluations
counts many times higher. Even more peculiar, the poor performance is only present for some
of the problem formulation cases. Without being able to provide any evidence, a bug must
be present in the framework. Some of the things considered and investigated as the cause
are sensitivities, bounds on constraints, scaling, and passing of the parameters to IPOPT.
The sensitivities have been subject to a repeating validation check using the self defined finite
difference checks without locating any errors, and furthermore, the same sensitivities are used
with SQP. The bounds and scaling, if not defined properly, could be the cause, however, again
the same are used for SQP with the addition of lower bounds for IPOPT which are selected
sufficiently large e.g. -20° for (a), (a*) and (b). When passing the Jacobian (sparse array with
design sensitivities) to IPOPT, one can pass a zero-one array along with it, where each non-zero
entry defines a non-zero gradient value in the Jacobian. Now, for such a small problem, the
zero-one array is easily identified and to be sure, one can leave it out and IPOPT will assume a
full Jacobian. This and more have been tried to no avail, and it is left for future work to locate
the bug. Instead, the SQP algorithm is selected for the blade optimization.
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CHAPTER 5

Full blade optimization results

• interpolated to more sections along beam as described in 2.3.2.

This chapter presents the results obtained for the DTU10MW reference WTB optimization for
BTC effects. The validated framework and most promising problem formulations from chapter
4 are used in this study and findings are presented. Relevant findings in literature are presented
to illustrate what to expect and an introduction to the design of the WTB is presented followed
by obtained optimized designs. Unfortunately, the results are not what was desired and only to
some degree correspond to findings in literature. Different approaches have been tried to solve
this which will be discussed.

5.1 Literature findings

Ong and Tsai[51] investigated the benefits of changing unidirectional glass fibers in the spar
cap of a SERI-8 blade to carbon fibers and also included models where the carbon fibers
where 20° off blade axis. This angle was based on earlier studies by the same authors where
they maximized the BTC parameter in D-spars and verified this experimentally[50]. In their
work, they concluded that changing fibers from glass to carbon and orienting them 20° off
axis mitigated a reduction in the flapwise bending stiffness of the blade. They concluded the
modified blade maintained its structural integrity with wind speeds up 70m/s.
Bottasso et al.[9] performed structural optimization with a prescribed aerodynamic shape for a
2MW rotor blade where the aim was cost minimization. The framework presented in the paper,
contained multilevel analysis tools such that a complete load envelope and fatigue loads are
considered by a multibody aero-servo-elastic simulation. For each iteration and design change,
strain and stress evaluations are made on a FE low level beam model with cross sections
evaluated using their own implementation of Giavotto[29], thus have similarity to the software
used in the present study. Their findings showed significant stress concentrations between the
root and the maximum chord regions (approx 1/3 from root towards tip) and concluded that
the effects were not captured on the cross section discretized model level.
Bottasso et al.[10] also used their optimization framework for designing a 45m rotor blade for a
2MW wind turbine with BTC effects with the purpose of load alleviation. They conclude that
BTC for load alleviation by twist to feather is possible and indeed reduces fatigue damage in
the blade. Furthermore, their study showed benefits of including off axis unidirectional (UD)
fiber rotations in the shells by obtaining the same amount of BTC as only changing the caps
fiber angles could present. This resulted in less increase in weight and less reduction in bending
stiffness. The paper also presented a parametric study on partially coupled blades, meaning
that only part of the blade is subject to fiber rotations. The conclusion was that avoiding fiber
rotations from the blade root to about the span of maximum chord is beneficial in the sense
that benefits from rotating the fibers near root increases fatigue damage and only contributes
slightly to the coupling.
Bagherpour et al.[2] recently investigated BTC and load mitigation effects in the DTU10MW
reference WTB as a demonstration example of their tool hGAST. They concluded that no power
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loss were present due to BTC effects and that, maximum BTC was obtained at 22.5° which
was selected based on their literature findings. This paper was found during the thesis project
period and their aims are very similar to the problem formulation for this thesis work. Bagher-
pour et al.’s research will be used to compare the optimized blade design, obtained in this study.

From the above findings, a rather detailed picture of how the optimized design will look for
optimum BTC effects can be deducted. Fiber angles of approximately 20-22°, positive towards
leading edge from mid axis in caps and possibly also in shells, will provide the desired BTC.
Furthermore, to limit loss of bending stiffness, glass fibers can be substituted with carbon fibers
and inclusion of shells to the design variables may also mitigate this. Selecting correct spanwise
sections will lessen the computational burden in the form of fewer design variables but will still
allow for high couplings in the blade, as found from [10] above.

5.2 Introduction to reference wind turbine blade

5.3 sec:IntroductiontoReferenceWTB

This section presents a small introduction to the DTU10MW reference WTB[3]which can be
acquired from [21]. The wind turbine and rotor blades were designed at the Technical University
of Denmark (DTU) as part of a Light Rotor project. The blade is 86.4m in length and, in this
study, partitioned in 27 section along the blade span, see figure 5.1 and 5.2. The blade cross
section is sectioned into patches as blade sub-parts as defined in figure 5.3 (following a template
file accompanying BECAS) and the material layup of each sub-part is presented in the appendix
page 85 as well as the material properties and strength limits on page 84. Following the divided
cross section in figure 5.3, each patch will have a more or less uniform stress level (except parts
crossing the chord line e.g. webs where flapwise bending produces compression at the suction
side and tension at the pressure side), and thus a single FI can be considered for each patch
instead of each cross section element. The maximum FI of all the elements in a patch is used
when evaluating stress constraints, as discussed in section 3.2.2.

Figure 5.1: DTU10MW reference WTB planform, green vertical stippled lines are placements of cross
sections.

Without any modifications to the blade, the response to the selected load case, presented in
section 2.6, is a flapwise tip deflections of 13.54m and a tip twist response of -2.537°. The first
two eigenfrequencies of the WTB (1st flapwise and 1st edgewise) is [0.619; 0.947]Hz and the
maximum FI for each section using the different failure criteria, presented in 3.2.2, is illustrated
in figure 5.4. A rather unfortunate discovery is made with this plot, since the original design
violates Max Stress and Tsai-Wu failure criteria significantly for almost the entire span of the
blade. Only the Max Strain criterion presents values below the FI constraint maximum value
of 1.0. Although alot of time has been invested in looking for a cause and solution for this,
one could not be found. It is most likely that the blade design, available from [21] with the
provided layup and cross section discretizations, only has been tested in BECAS with Max
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Figure 5.2: DTU10MW reference WTB cross sections.
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Figure 5.3: Blade cross section patches

Strain criterion and thus constructed to fulfill this. The FI constraint violation is similar for
several random checks of the different load cases and is assumed to present the same for the all
14 load cases available. The solution for this issue has been to only use Max Strain criterion
in the full blade optimization, since this is the only one not violated from the original design.
Another possible solutions could be to try the optimization scheme regardless of the initial
design constraint violation, and see if the framework can provide a design that does not violate
failure criteria constraints.
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Figure 5.4: Max Strain, Max Stress and Tsai-Wu failure criteria for the initial blade design
considering load case 9 (see section 2.6).

Another possible cause could be high stress concentrations at e.g. connections between webs
and caps. An example is given in figure 5.5 where the Max Stress FI is 2.7 (recall that it must
be <1.0 for no failure to be predicted) for the stresses in the transverse direction in the material
coordinate system σ33. Investigating this further, it seems that this sort of concentration is
present throughout the blade and is the cause for both the high Max Stress and Tsai-Wu FI’s.
A mesh refinement might mitigate this, however, this could also be a more severe problem of
the node connection between webs and caps. More time is needed to investigate this or change
the framework to not consider stresses in the transverse direction but is left for future work.
Instead the Max Strain criterion is used.
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Figure 5.5: (a) Close-up of FI for Max Stress criterion and (b) cross section number 20 with Max
Stress FI pr. element for transverse stresses σ33 in the material coordinate system, made with ParaView

5.4 Optimization of wind turbine blade

In this section, it was desired to present a converged optimal design for BTC effects in the
blade, obtained with both IPOPT and SQP. The constraints of eigenfrequencies, displacement
or twist, and failure criteria should not be violated since this will mean that the blade would
fail. Both algorithms fail to converge to a result where a significant increase in the twist
response is obtained and where constraints are not violated. Judging on the history of the
optimization scheme, the optimization algorithm show little convergence to the design found in
literature, that being fiber angles of 20° off-axis.

Constraints and bounds defined for the optimization are a maximum displacement of(
utipy

)max
= 20m, an upper and lower bound for the first eigenfrequency of

[
fminj ; fmaxj

]
=

[0.2; 0.7]Hz and for the second eigenfrequency of
[
fminj ; fmaxj

]
= [0.8; 1.4]Hz, and a Max Strain

FI lower and upper bound of
[
FIminp ;FImaxp

]
= [0; 1.0]∀p. The eigenfrequencies bounds are

defined based on the starting values for the original blade design and, with fiber angles being
rotated off axis and thus lowering the stiffness, taken into account the decrease in eigenfrequen-
cies values. This gives some room for the optimization to reach higher values of fiber angles.
The maximum displacement is somewhat arbitrary chosen and was selected to see how much
BTC effect the optimization algorithm could obtain. A more realistic displacement bound is
the maximum allowable displacement based on the loaded WTB tip distance to the tower in-
cluding tilt and cone angles stated in[3]. The non-loaded WTB-tower clearance is stated as
18.3m while the minimum tower clearance during DLC1.3 is 5.9m resulting in a tip deflection
of 12.4m. Choosing this value as tip deflection constraint would pose no feasible point in the
design domain since the original design, with defined extreme load case, already violates it.

5.4.1 Obtained results

Based on the literature findings, a choice was made to change the TRIAX (fiber mats with
[−45, 0, 45] fiber angles) layers in the cap to UNIAX (fiber mats with a single fiber angle) due
to higher effects of changing fiber orientations achieved with the more anisotropic material.
Initial optimization was performed with the SQP algorithm from a starting point of [0° ;0°]
with the load case 9 distribution applied to beam nodes and the through thickness descritized
with 8 elements resulting in 9 design variables pr. considered section (from section 11 to
27 based on literature findings) to a total of 136 design variables. The problem formulation
(c) (maximization of negative twist response) with only the displacement constraints enabled
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was used and the algorithm reached a stationary point in 29 iterations with 80 function calls
where the displacement constraint was satisfied. Unfortunately, the objective function actually
increased to present lower coupling though fiber rotations where all positive. Time was invested
to figure out why this was so, with special focus on the twist gradients, however, the problem
seemed to be the applied loads. An error was indeed discovered that prevented updating the
F1D.in file to FRANS with the loads. Better convergence was now obtained, however, the
objective did not present the desired improvement that is a larger tip rotation.

To see if this effect was unique for the problem formulation, optimization using formulation
(d) (maximization of BTC effects by minimizing the BTC factor) and SQP was also performed
and still only considering a displacement constraint and starting point as above. A limit of
500 function calls was set which was reached in 247 iterations taking approximately 10.4 hours
without reaching an optimum. A summary of the optimization history can be observed in figure
5.6. From 5.6a a rather peculiar phenomenon is observed. Where the maximization of twist
response through a minimization of twist value is expected to show all positive fiber angles.
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Figure 5.6: History for maximization of twist response by minimization of the BTC factor for each
considered section weighted equally for the full scale blade using SQP and a single tip displacement
constraint.

In an effort to achieve a better result, the fiber angles in the shells were also included as
design variables and the TRIAX layers were changed to UNIAX. This was done to see whether
the change in fiber angles in caps alone was insufficient to generate the desired BTC effects.
This slightly improved the end twist to -3.158° but ended in an in-feasible point since the
displacement constraint was violated with by 20%.

In a last effort, the IPOT algorithm was used with problem formulation (b), based on the
discussion made in section 4.4, and constraints on the twist of

(
utipϕ

)min
= −4.5°. Design

variables showed more consistency with literature findings by obtaining values near 20° however
could not converge to a stationary point before max CPU-time of 12 hours was reached.
The closest to an optimum blade design achieved with IPOPT for formulation (b) considering
fiber angles in both caps and shells and all defined constraints is presented in figure 5.7.
However, final design show significant flapwise tip deflection leading to the conclusion that
the desired BTC effect is set too high. Furthermore, FI from the Max Strain failure criterion
could not be kept beneath set maximum value for sections 15 to 21 corresponding to the
spanwise section 37-75m. The design cannot be said to have converged to a local minimum
since constraints are violated.

In order to simplify the problem, the number of design variables are reduced to a single fiber
orientation for each of the sections 11 to 27. The load was changed from a distributed load
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Figure 5.7: History for minimization of flapwise tip deflection with a constraint on the minimum tip
twist for the full scale blade using IPOPT and defined constraint for problem formulation (b).

based on the values obtained in section 2.6, to a single point load of 100kN applied to the end
node of the end last element in the tip of the blade. By alternating the 17 design variables
between the bounds [-30°;30°], the figures 5.8a and 5.8b was created. Here, the displacement
response (constraint) and twist response (objective) is presented as a function of fiber angles
when all 17 design variables are equal. As expected, 5.8a presents an increase in tip deflection in
the positive y-direction as fiber angles moves away from the 0° point. In 5.8b the twist response
behavior is more or less as expected, with decreasing twist angle with decreasing fiber angle
rotations, however, the change in objective is smaller than expected. Comparing to literature,
Bagherpour et al.[2] presented a tip twist of up to 5.5° for fiber angles of approximately 20°,
which could not be reproduced.

(a) Tip displacement (b) Tip twist

Figure 5.8: Tip displacement in the y-direction and twist response around z-axis for a positive flapwise
loading

Knowing that there exists an optimum for the very simple case, a tryout is performed to see
if similar results can be obtained with a more realistic load setting. Using load case 9 and
the reduced number of design variables to a single fiber orientation in the caps per considered
sections 11 to 27, a minimization of the twist response (c) with a displacement constraint of 20m
was performed using the SQP algorithm. The optimization history is presented in figure 5.9 and
shows a converged result in 114 iterations with 244 function evaluation. The 17 design variables
converged to near -20° angles with a final objective twist of -2.993°. The objective function
value decrease shows a lower value than what could be obtained from other optimization runs
and therefore this design is selected to transfer to HAWC2 and observe in a aeroelastic setting
in chapter 6.
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Figure 5.9: History for minimization of tip twist rotation value with a constraint on the maximum tip
deflection for the full scale blade using SQP for problem formulation (c).

5.5 Discussion on implementation and results
This section discusses what is thought to be causing the problems with the framework that
prevents the optimization algorithms to converge to optimal or local solutions with a significant
change between initial and final twist.

5.5.1 Sensitivities

First thought that comes to mind is the sensitivities to be the root of the problems. There is no
question that providing wrong gradients to a gradient based numerical optimization algorithm
provides little chance for the algorithm to select appropriate search directions. The continuously
returning of in-feasible design points, where the constraints are violated, those indeed lead to
the notion that something is amiss with the gradients. A significant amount of the project
time has been used on obtaining analytic expressions, implement in the framework and validate
gradients with central finite difference gradients. However, most of the validation was made with
the simple composite beam case to test the framework, since it was deemed to time consuming
to redo the sensitivity validation for the WTB as well.

5.5.2 Changing layup and thickness

Although some effort was made to investigate this, further research into the benefits of where
the fiber angle changes are made is needed. Findings in literature, described in the beginning
of this chapter, showed that both caps and shells could be considered and that BTC could
be obtained for different and smaller sections along the blade by rotating the fibers to higher
angles. A consistent and structured investigation into this is needed to compare the benefits or
disadvantages of this. Some conclusions may be transferred from Bottasso et al. [10], however,
there’s a significant difference between the 2MW WTB used in the paper and the 10MW WTB
used in present study. In the same paper, Bottasso et al. mentioned that laminate thickness
also plays a role regarding how much BTC that can be obtained. With more investigation into
this subject, the final objective value might be able to be increased further.

5.5.3 Loads

The loads selected was chosen to give a conservative design, however, the edgewise bending load
might be preventing the blade to twist and the extreme flapwise bending might prove to high to
obtain the desired twist without violating the displacement constraint. Reducing the flapwise
bending loads and excluding the edgewise loading may prove to allow better convergence and
less constraint violations since constraints are defined from structural considerations. Another
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issue with the load might be a wrong direction of application or a wrong sign. The coordinate
system should be double checked with the F1D.in file to make sure distributed loads are applied
on the nodes in correct nodal d.o.f.
Recall the initial blade design twist of -2.5374° (original design). This response indicates that
transferring load applications point to shear center is insufficient since a simple point load
parallel to the cross section through shear center should produce no torsion. The shear center
is defined by BECAS based on the cross section stiffness terms and thus should successfully
capture both geometrical and material couplings. In fact transforming loads to shear center
would lead to no improvements in the optimization objective, because the shear center would
change with changing fiber angles.

5.5.4 Higher discretization

Increasing number of element in the cross sections will increase the detail and might capture
more of the anisotropic material orientation effects. No convergence study was made for the
mesh sizes and thus results might be mesh dependent meaning one discretization will provide
one result while the next is significantly different. The python program, shellexpander.py, used
to import and discretize the cross sections can easily add more elements through thickness of
the laminates, however, to the authors knowledge, the circumferential discretization for caps,
shell, leading- and trailing edge and width-wise discretization of the webs cannot be discretized
further. Another aspects of this is the RAM usage of the framework, when more design variables
are added. As of now, the limit is approximately 700 design variables in total before stored
arrays becomes to large. This has to do with the inefficiencies of the storage (even temporary)
of the strain, stresses and failure indexes. Six strain/stress/FI elements are stored for each
considered cross section for each cross section element. This is multiplied with number design
variables i.e. N -by-ne-by-6-by-ndv (or N x ne x 6 x ndv) is a significant amount of storage
needed. Some efforts have been made since a lot of this is just stored zeroes e.g. for the cross
section matrix gradients, however, there is still room for improvements e.g. utilize sparse storage
could show beneficial.

5.5.5 Coordinate system

In referenced papers in the beginning of this chapter, fiber angles are reported as positive
towards the leading edge for the BTC blade design which is not in accordance with findings in
the present study. This implies that the framework might be operating with a wrongly turned
coordinate system. The coordinate system considered in BECAS has been the x-axis towards
the leading edge of the blade, the y-axis positive towards the suction side, and z-axis along
the span with beginning at root end. The coordinate system in FRANS is likewise so it is not
obvious where the error occurs.
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CHAPTER 6

HAWC2 results

This chapter presents the comparison of the original DTU10MW reference WTB response with
the optimized WTB design response when subject to time domain simulations in both steady-
state environment as well as in a turbulent wind field i.e. DLC 1.3. The flapwise deflection, the
rotation around the longitudinal axis, and the root bending flapwise moments will be compared.
The fatigue equivalent damage can be used to observe the load mitigation effects, however, a
dataset was not successfully created during this study. Instead, a small discussion is presented.

6.1 HAWC2

The Horizontal Axis Wind turbine simulation Code 2 (HAWC2)[38], developed by DTU Wind
Energy, is an aeroelastic simulation software intended for calculating wind turbine response in
the time domain. It is very suitable for this project, since BECAS contains an export function,
allowing for the optimal blade design to be exported to HAWC2 in correct format. Furthermore,
the DTU10MW reference wind turbine model is distributed with HAWC2. This makes for an
easy update of the WTB since one can almost directly overwrite the blade structural file and
use the same turbine model and control in the simulations. Thus, comparison of the responses
and mitigation effects is directly available.

6.2 Comparison of blade response during steady state

In this section, the original blade response in a steady state environment with just below rated
wind speed is compared to the optimal blade design in the same environment. The motivation
is to see the flapwise and torsional loading as well the blade response in the form of flapwise
deflection and twist. Furthermore, to locate possible issues, e.g. resonance, with the new blade
design, a stepped wind profile is simulated. This will reveal the blade response and the wind
turbine control behavior through the entire operational wind speed interval.

6.2.1 Steady state and turbulent wind field with single wind speed

The steady state denotes a steady wind speed with no turbulence such that the only difference
in wind speed seen by the blades are from the shear, meaning the increase in wind speed as one
goes to higher altitudes. In the steady HAWC2 simulations, a power law is used with a shear
factor of 0.2 for the wind shear and only a horizontal wind vector component. Figure 6.1 presents
selected responses in a steady wind field and in a turbulent wind field. the oscillating signal
for the steady wind field measurements is due to the wind shear, where the blades experience a
maximum and minimum in relative wind speed once per revolution. The first row in figure 6.1
presents the flapwise bending moments at the root end of the WTB, the second row presents
the WTB tip deflection in the y-direction (see figure A.6 in appendix page 86 for the coordinate
system used in HAWC2), and the last row presents the rotation of the aerodynamic center
selected to represent the twisting of the tip.
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Figure 6.1: Comparison of regular response between original blade and optimum blade for a wind
speed of 10m/s. Blue signal is for the original blade design while red signal is for the optimized blade
design. Left column: Steady state. Right Column: Turbulent wind field. Note the units are displayed

in the legends.

The sensor selected for the tip twist measurements has its basis in the aerodynamic module.
It gives the local orientation of the chord related to blade root coordinates meaning that it
is independent of pitch angle. The extracted angle is calculated in the closest aerodynamic
point which is 1/4 chord also known as the aerodynamic center. The cross section with
the measured blade twist, θz is presented in figure 6.2. Not that despite the orientation
of the coordinate system, the twist is measured positive clockwise around z-axis following
normal convention. The comparison between the original blade design and the optimized should
therefore show a decrease in this angle as it is desired to have a negative rotation towards feather.

Concluding on the measured steady response, presented in figure 6.1, the root flapwise bending
moment show little difference between the two blade designs, however one can observe the
optimum design blade (red-line) to present a small reduction compared to the blue line. This
is in good agreement literature findings, discussed in chapter 5, that the BTC effects can act as
passive load mitigation. For the turbulent wind field, the load mitigation is not clearly visible
and cannot be concluded from this plot.
The tip displacement in a steady wind field shows approximately 4m of extra deflection for
the BTC blade compared to the original design. This is a major cost that likely will prove
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Figure 6.2: Cross section of WTB as used in HAWC2[38] showing measurement of twisting angle with
reference coordinate system being the main body coordinate system of the blade.

troublesome in higher wind speed regions where gusts and turbulence will cause much higher
deflections. For the wind speed of 10m/s, pitching of the blade have not yet initiated, which
will not be done until the reference generator shaft rotational speed is surpassed near 11.4m/s,
which is the DTU10MW reference wind turbine rated wind speed. For the turbulent wind field,
high displacements are observed which reaches near the maximum allowable tip displacement.
The last 2 plots in figure 6.1 presents the blade twist measured at the tip of the blade (86m
radius). The blade pre-twist (used to optimize performance of the blade in the below rated
wind speed region) of 3.43° is subtracted the signal to provide the true twist that results from
the aerodynamic forces. In the steady wind speed environment, a clear difference is observed.
Although the mean value between the two blade designs are rather small (approximately 0.4°)
the BTC design show higher amplitudes in the oscillations related to the azimuth positions
than the original blade design presents. This is explained with the higher BTC in the optimized
design compared to the original blade design such that the flapwise bending of the blade twists
the blade more compared to the non-modified blade. Recall that an initial twist response under
flapwise bending was observed in the original blade design c.f. section ??. The turbulent wind
environment presents similar signals where the higher coupling induce higher oscillations and
a lower mean twist value.

It is evident from the above observation, that the high reduction in flapwise bending stiffness
severely increases the blade tip deflections. BTC can therefore not be introduced without also
securing a minimum of the bending stiffness remain, which can either be done adding more
material or changing material to higher stiffness materials.

6.2.2 Steady state with stepped wind speed

A quick estimation of the wind turbine’s performance with the BTC blade is done with a
stepped wind profile. The wind speed in a steady state environment is increased gradually
with steps of 1m/s from cut in wind speed of 4m/s to cut out wind speed of 25m/s. The entire
operational wind region is thus covered where the blade will experience different wind speeds,
pitch settings and generator shaft speeds. The results can be used as a validation that the
turbine control system effectively keeps the generator shaft rotational speed at an optimum and
below harmful values as well as the effectiveness of the pitch system. Furthermore, instabilities,
either due to blade or control systems, may show here.
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Figure 6.3: A stepped wind profile from 4-25m/s with steps of 1. The right hand y-axis is the wind
speed in m/s while the left hand side y-axis is for the rotational speed of the shaft in rad/s and the pitch

of the blade in rad for both optimized and original blade designs.

Figure 6.3 presents the stepped wind speed simulation performed with one the optimized BTC
blade and the original one. From the coinciding lines of the generator shaft rotational speed
(blue-original blade and black-optimized blade), it can be concluded that no significant changes
occur and it can be inferred that the wind turbine presents equal power output. The BTC in
the optimized blade is a small value larger than the original blade, thus its effect on the wind
turbine performance can be assumed minor as well. As with the shaft rotational speed, the
pitch angle (red-original blade and purple-optimized blade) show a high similarity.
Based in the stepped wind profile plot, it is concluded that no instabilities in either control
system or blades are expected for a full turbulent DLC1.3 simulation for the fatigue damage
estimation in the next section.

A note to the above must be given. Without a modal analysis of the blade and the wind
turbine, possible resonance or instability issues cannot be predicted, however, with the stepped
wind profile result, they are not predicted with some confidence.

6.3 Comparison of fatigue damage

The fatigue damage is evaluated from a large amount of simulations. Following the IEC 61400-1
(Ed. 3) standard, a Class 1A (the DTU10MW wind turbine belongs to this class which is the
most extreme for offshore turbines), turbines must undergo numerous aero-servo-elastic time
simulations in different operational settings and wind environments to be certified. To cover
all the different load cases the standard specifies is out of the scope of this thesis, however,
an important DLC is the DLC 1.2 which is used to evaluate the fatigue load damage. The
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standard specifies that the wind turbine must be simulated in a normal turbulent environment
i.e. NTM with three different yaw settings, [10°/0°/-10°], and through the operational mean
wind speeds with steps of 2m/s: [4:2:26]m/s and using 2 seeds per mean wind speed. It is
assumed that the wind turbine operates at an yaw angle of 0° 50% of the time while the
remaining two yaw settings is 25% each. Based on the above, 72 simulations were needed for
each blade design which could not be accomplished in this thesis work.

Based on the 72 simulations, the blades life time equivalent load for the root bending moment
could be compared and the load mitigation effects visible by a lower value for the BTC blade
compared to the same value from the original blade design.
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CHAPTER 7

Future work

The work done in this thesis is but a small step down the path. This project has been
confronted with issues that, unfortunately, could not be solved which is therefore left for future
work. The possibilities and aspects of optimum wind turbine blade design results in a vast
amount of topics that could have been handled if unlimited time was provided. Since it is not,
some of these topics are presented here.

• Discrepancies between the internal forces and moments was found in section 2.6. The
recovered forces and moments, based on the distributed loads, showed flapwise bending
moments approximately half compared to the table values extracted from the DTU10MW
reference wind turbine report[3]. The reason for this have not been located and is thus left
for future work. One could argue whether they even are comparable, since one is obtained
by using HAWC2 simulations with aerodynamic loads and the other from a simplified
distributed load applied to a beam model. The forces from [3] relates to elastic axis
and as do the forces in FRANS. It seems, that in the conversion from internal forces to
external forces, too much information is lost. This is most likely not an unknown problem,
however, more time is needed to investigate this.

• Validation of sensitivities with a 3rd party sensitivity validation tools must be performed.
This could be performed with the in-build sensitivity validation check in IPOPT and
fmincon which has been utilized early in the beginning of the project, but not followed
through to the end. Furthermore, the sensitivities of the responses for the full blade
optimization framework must be validated, since this was only done in a structured way
for the simplified validation case concerning a composite beam.

• The build framework contains two algorithms for the optimization where it was found that
the SQP outperformed IPPOT. This was unexpected, as IPOPT is generally perceived as
a fast and robust solver. This issue could not be solved given, and thus it is left for future
work.

• A fatigue analysis of the optimized WTB and the original WTB design could illustrate the
load mitigation effects in the form of a reduced life time equivalent load for the flapwise
root bending moment.

• The optimized blade twist response showed to be less than expected based on findings in
literature. A FE-analysis of the optimized design in a more detailed environment such
as Abaqus is proposed. This will also allow for buckling analysis which is currently not
possible in the the BECAS software.

• To obtain more realistic layups, it is proposed to implement discrete material optimization
scheme which will allow for discrete design variable in the form of standard off-the-shelf
fiber angles as they are currently produced in the industry.
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• A modal analysis to verify the structural integrity of the optimized blade. This will reveal
important limitations to the amount of coupling possible due to instabilities and change
in mode damping. Research on this exists e.g. [60], which could be implemented in the
framework as additional constraints to the eigenfrequencies.

• Improved meshes and a convergence study is needed for any FE results to be completely
validated. One of the improvements to the framework is a better mesh software that allow
for more control of the cross section elements and their connections.
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CHAPTER 8

Conclusion

The purpose of this thesis was to obtain an optimum design of the DTU 10MW reference
wind turbine blade (WTB) designed for bend-twist coupling (BTC) effects and validate the
load mitigation effects with the aeroelastic simulation tool HAWC2. In this work, the gradient
numerical solvers SQP and IPOPT was used to obtain the optimum design with careful
selected constraints to ensure the structural integrity of the WTB. More specifically, the
tip deflection, tip twist, eigenfrequencies, and material stress limits was used as in-equality
constraints in the optimization scheme while both tip deflection, tip twist, and the BTC
factor was tested as objectives. The optimization framework was implemented together with
BECAS and FRANS which in combination takes any cross section geometries with anisotropic
materials oriented in arbitrary orientations and builds a FE beam model where deflections
can be estimated given predefined loads. BECAS can, based on given internal loads, cal-
culate the cross section element stresses which is then used with relevant material failure criteria.

An applicable analytic theory was sought in literature, that could predict the twist response
of a composite beam under simple point loads. Many beam formulations was found, however,
one particular by Chandra et al.[15] was presented together with analytic results, thus making
it easy to compare beam response. Using this, a simple beam was analyzed analytically and
numerically using BECAS and the results compared to each other as well as to the findings in
literature with good agreements.
With the purpose of obtaining an optimum design of the WTB, a framework, with basis
in BECAS, was build to perform the material optimization using the algorithms SQP and
IPOPT. Sensitivity analysis of the considered objective and constraint functions was performed,
implemented and validated against self build central finite difference numerical gradients.

To validate the frameworks capabilities and to gain knowledge on the performance and
robustness of the two algorithms, four optimization problem formulations was made with
different objectives: (a) minimization of compliance (b) minimization of tip flapwise deflection,
(c) maximization of tip twist to flapwise loading (d) maximization of BTC effects towards
feather. Comparing the performance from two different starting points and considering the
structural integrity constraints of eigenfrequencies, deflection or twist and material failure
indexes in the form of Max Strain, Max Stress and Tsai-Wu, it could be concluded that SQP
generally performed better that IPOPT, both regarding converging to the global optimum as
well as in number of function evaluations as a measure of computational time. However, signs
of issues with the framework was located and discussed.

With the sensitivities, framework, algorithms, and problem formulation tested considering
a simple sandwich cantilever beam, everything was in place for the full blade optimization.
Unfortunately, the full blade optimization proved much more difficult than anticipated and
with most of the project time invested in obtaining a robust framework that worked for a simple
composite beam, little project time was left for troubleshooting, obtaining and validation an
optimal WTB design for BTC effects. Efforts was made with simplified problem formulations
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and a optimum blade design was achieved, however, only considering a single constraint. The
blade design was exported to HAWC2.

To observe the load mitigation effects of BTC, simulations with the aeroelastic simulation
software, HAWC2, was performed. The measured flapwise root bending moments, tip flapwise
deflection and tip twist fell in good agreement with known results from literature, although, the
BTC effect was much smaller.
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CHAPTER A

Appendix

A.1 Airfoil sketch with relative angles
Below is a sketch of an airfoil from a WTB with the relative angles and force vectors defined.

Figure A.1: Definition of airfoil relative angles, taken from[44]

A.2 Transformation matrix
Standard rotation matrix for transforming strains and stresses.

T =

cos(x) 0 − sin(x)
0 1 0

sin(x) 0 cos(x)

 (A.1)

A.3 Analytic beam slope and twist by Chandra et al.

This section presents the analytic method presented by Chandra et al. [15] to estimate a
clamped thin walled composite beam’s bending slope and twist rate when subjected to a point
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load at the free end. The method presented here, builds on the coupled nonlinear analysis
of Hong and Chopra [32] which results in a simplified linear analysis that estimates bending
slope and twist rate for thin walled symmetric composite beams. In this simplified version, the
transverse shear effects are neglected. The reduced stiffness matrix is presented as:[

M
T

]
=
[
EI Kp

Kp GJ

] [
w′′

φ′

]
(A.2)

where w′′ is the bending curvature and φ′ is the twist derivative. The terms in the reduced
stiffness matrix are defined with CLT:

EI =
N∑
k=1

∫ ∫
1,2

(C̄11)kζ2dηdζ +
M∑
l=1

∫ ∫
3,4

(C̄11)lζ2dηdζ (A.3)

GJ =
N∑
k=1

∫ ∫
1,2

(C̄66)kζ2dηdζ +
∑
l=1

∫ ∫
3,4

(C̄66)lη2dηdζ (A.4)

Kp =
N∑
k=1

∫ ∫
1,2

(C̄16)kζ̂ζdηdζ (A.5)

1,2 represents top and bottom laminates of box beam; 3,4 represents left and right side laminates
of box beam. Stiffness terms are defined as:

C̄11 = Q̄11 − Q̄2
12/Q̄22

C̄16 = Q̄16 − Q̄12 × Q̄26/Q̄22
C̄66 = Q̄66 − Q̄2

26/Q̄22

(A.6)

Where Q̄ is the stiffness matrix of the kth lamina in x− η or x− ζ plane. N is the number of
layers in the laminate 1 or 2 andM is the number of layers in the laminate 3 or 4. η and ζ are the
coordinates in the plane of cross section. Including the warping function λ the coordinates are
ζ̂ = ζ+λ, η and η̂ = η−λ. The assumed warping function is λ = βζη, where β = (c−d)/(c+d)
for uniform wall thickness of the cross section. c and d are the width and height of the beam
respectively. The definition of the cross section and coordinate system can be observed in figure
A.2. The structural response is then estimated with:

w,x = P

2(EI −K2
p/GJ)(2Lx− x2) (A.7)

φ = Kp/GJ

2(EI −K2
p/GJ)P (2Lx− x2) (A.8)

where P is the point load applied at the free end of the beam through the shear center. L is
the length of the beam and x is the span-wise coordinate.

A.3.1 Comparison to findings in literature, the Chandra et al. experiment

Using GMSH the following cross section grid for the validation of Chandra et al.’s experiments
is created and presented below in figure A.3.
The obtained cross section stiffness matrix for this mesh and using the material properties and
layup presented in section 2.4, is presented below (element placements has been changed to
match that of Stäblein et al. [59]).
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Figure A.2: The coordinate system definition of the cross section, taken from [32]

Ks,present =



11.349e5 2.8454e5 −14.501 14.322 4.5545 0
4.1670e5 −19.666 15.630 −2.1972 0

3.0710e5 0 0 9.1284
61.407 −20.780 0

34.678 0
81.068


(A.9)

whereas the cross section stiffness matrix obtained by Stäblein et al. [59] is:

Ks,Stäblain =



11.387e5 2.909e5 0 −30.458 12.674 0
4.189e5 0 −11.932 8.689 0

3.122e5 0 0 12.302
62.962 −21.741 0

35.146 0
80.594


(A.10)

Small difference occurs especially at off diagonal terms and at entries [1,3] and [2,3] St.äblein
et al. reports null. Diagonal terms are close with a percentage of difference. The difference
might be due differences in number of FE since no convergence study has presently been made
to leave this out. There is no mention of how many elements is used in Stäblain et al.’s article.
The material properties from different sources are reported below in table A.1. The Frobenius
norm of the difference between present stiffness matrix and the one presented by Stäblein et al.
is 1.1249e+04 Pa.
The material data used in this study is that of Stäblein et al. by assuming E33 = E22, G13 = G12,
and ν13 = ν12.
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Figure A.3: Cross section mesh of beam used in Chandra et al. with 8767 Q4 elements

A.4 GMSH - Example file

An example of a GMSH input.geo file for generation of cross section structured mesh. This
example is for a prismatic sandwich beam with two laminae for faces separated with a core in
between.

lc = 1e-2;
w = .25;
t1 = .025;

Point(1) = {-w/2, -w/2, 0, lc};
Point(2) = {w/2, -w/2, 0, lc};
Point(3) = {w/2, -w/2+t1, 0, lc};
Point(4) = {w/2, w/2-t1, 0, lc};
Point(5) = {w/2, w/2, 0, lc};
Point(6) = {-w/2, w/2, 0, lc};
Point(7) = {-w/2, w/2-t1, 0, lc};
Point(8) = {-w/2, -w/2+t1, 0, lc};

Line(1) = {1,2};
Line(2) = {2,3};
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Table A.1: Comparison of material properties from original experiments by Chandra et al. [15], as
reported by Stäblein et al.[59], and finally as reported by Couturier [20]

E11 E22 E33 G12 G23 G13 ν12 ν23 ν13
Chandra (PSI) 20.59e6 1.42e6 0.89e6 0.42

Chandra (convert to GPa) 141.96 9.79 6.14 0.42
Stäblein (GPa) 142 9.81 6.00 3.77 0.30 0.42

Couturier (GPa) 142.0 9.79 9.79 6.00 4.80 6.00 0.42 0.02 0.42

Line(3) = {3,8};
Line(4) = {8,1};

Line(5) = {8,3};
Line(6) = {3,4};
Line(7) = {4,7};
Line(8) = {7,8};

Line(9) = {7,4};
Line(10) = {4,5};
Line(11) = {5,6};
Line(12) = {6,7};

Curve Loop(2) = {1,2,3,4};
Curve Loop(1) = {5,6,7,8};
Curve Loop(3) = {9,10,11,12};

Plane Surface(1) = {1};
Plane Surface(2) = {2};
Plane Surface(3) = {3};

Transfinite Surface(1) = {8,3,4,7};
Transfinite Surface(2) = {1,2,3,8};
Transfinite Surface(3) = {7,4,5,6};

Recombine Surface(1);
Recombine Surface(2);
Recombine Surface(3);

Physical Surface(1) = 1;
Physical Surface(2) = 2;
Physical Surface(3) = 3;

A.5 Chain rule - inverse

Assuming symmetric matrix the following is valid:

KK−1 = I (A.11)

of which the partial derivative is
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∂K
∂x

K−1 + K∂K−1

∂x
= 0 (A.12)

and isolating for the derivative of the inverse matrix:

∂K−1

∂x
= −K−1∂K

∂x
K−1 (A.13)

A.6 Standard forms
From lecture slides of the course ME46060 - Engineering Optimization - Concepts and
Applications 2017.

Positive null form
min
x∈R

f(x)
s.t. g(x) ≥ 0

h(x) = 0
(A.14)

Negative unity form
min
x∈R

f(x)
s.t. g(x) ≤ 1

h(x) = 1
(A.15)

Positive unity form
min
x∈R

f(x)
s.t. g(x) ≥ 1

h(x) = 1
(A.16)

A.7 Hashin failure criteria
The Hashin failure criteria is presented here as implemented in BECAS. It builds on the theory
of Hashin[30] and Yamada et al.[70] and adapted by Chang et al.[16]. The version implemented
in BECAS is the one adopted by Shokrieh et al.[57].

Fiber tension-compression

ffiber =


√

(σ11/σ̄t11)2 + (σ12/σ̄12)2 + (σ13/σ̄13)2 , if σ11 > 0√
σ11/σ̄c11 , if σ11 < 0

0 , otherwise
(A.17)

Matrix tension-compression

fmatrix =


√

(σ22/σ̄t22)2 + (σ12/σ̄12)2 + (σ23/σ̄23)2 , if σ22 > 0√
(σ22/σ̄c22)2 + (σ12/σ̄12)2 + (σ23/σ̄23)2 , if σ22 < 0

0 , otherwise
(A.18)

Noraml tension-compression

fnormal =


√

(σ33/σ̄t33)2 + (σ13/σ̄13)2 + (σ23/σ̄23)2 , if σ33 > 0√
(σ33/σ̄c33)2 + (σ13/σ̄13)2 + (σ23/σ̄23)2 , if σ33 < 0

0 , otherwise
(A.19)
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Fiber-matrix shearing

ffiber−matrix =
{√

(σ11/σ̄c11)2 + (σ12/σ̄12)2 + (σ13/σ̄13)2 , if σ11 < 0
0 , otherwise

(A.20)

A.7.1 Hashin gradient

Using the notation ∂σ/∂xi = σ′ for abbreviation the following presents the gradient values of
the FI using the Hashin failure criteria.
Fiber tension-compression gradient

ffiber =



σ11σ′11
Kfiber ∗ (σ̄t11)2 + σ12σ′12

Kfiber ∗ σ̄2
12

+ σ13σ′13
Kfiber ∗ σ̄2

13
, if σ11 > 0

1
2

σ′11√
σ11
σ̄c11
∗ σ̄c11

, if σ11 < 0

0 , otherwise

(A.21)

where

Kfiber =

√√√√ σ2
11

(σ̄t11)2 + σ2
12
σ̄2

12
+ σ2

13
σ̄2

13

Matrix tension-compression

fmatrix =



σ22σ′22
Kt
matrix ∗ (σ̄t22)2 + σ12σ′12

Kt
matrix ∗ σ̄2

12
+ σ23σ′23
Kt
matrix ∗ σ̄2

23
, if σ22 > 0

σ22σ′22
Kc
matrix (σ̄c22)2 + σ12σ′12

Kc
matrixσ̄

2
12

+ σ23σ′23
Kc
matrixσ̄

2
23

, if σ22 < 0

0 , otherwise

(A.22)

where

Kt
matrix =

√√√√ σ2
22

(σ̄t22)2 + σ2
12
σ̄2

12
+ σ2

23
σ̄2

23

Kc
matrix =

√√√√ σ2
22

(σ̄c22)2 + σ2
12
σ̄2

12
+ σ2

23
σ̄2

23

Noraml tension-compression

fnormal =



σ33σ′33
Kt
normal ∗ (σ̄t33)2 + σ13σ′13

Kt
normal ∗ σ̄2

13
+ σ23σ′23
Kt
normal ∗ σ̄2

23
, if σ33 > 0

σ33σ′33
Kc
normal ∗ (σ̄c33)2 + σ13σ′13

Kc
normal ∗ σ̄2

13
+ σ23σ′23
Kc
normal ∗ σ̄2

23
, if σ33 < 0

0 , otherwise
(A.23)
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where

Kt
normal =

√√√√ σ2
33

(σ̄t33)2 + σ2
13
σ̄2

13
+ σ2

23
σ̄2

23

Kc
normal =

√√√√ σ2
33

(σ̄c33)2 + σ2
13
σ̄2

13
+ σ2

23
σ̄2

23

Fiber-matrix shearing

ffiber−matrix =


σ11σ′11

Kfm ∗ (σ̄c11)2 + σ12σ′12
Kfm ∗ σ̄2

12
+ σ13σ′13
Kfm ∗ σ̄2

13
, if σ11 < 0

0 , otherwise
(A.24)

where

Kfm =

√√√√ σ2
11

(σ̄c11)2 + σ2
12
σ̄2

12
+ σ2

13
σ̄2

13
(A.25)

A.7.2 Gradient validation with central finite difference check

The Hashin failure criterion gradients are validated with a central finite difference check and
step size is gradually decreased from 1 to small values to see where the minimum truncation and
conditional error occurs. The result is presented in figure A.4. It is observed that the Hashin
failure criterion gradient error is as low as 1e-8 for a perturbation step size of approximately
1e-3. It can be concluded that the gradient calculation is correct.

10-10 10-8 10-6 10-4 10-2 100
10-10

10-8

10-6

10-4

10-2

100

Figure A.4: Truncation and conditional error of Hashin failure criterion gradient

A.8 Material rotated constitutive matrix

Here the new implementation of the rotation of the element constitutive matrix (fiber rotation).
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The compliance matrix is defined as:

Q−1
m = Sm =



1
E1

−ν12
E1

−ν13
E1

0 0 0
−ν12
E1

1
E2

−ν23
E2

0 0 0
−ν13
E1

−ν23
E2

1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12


(A.26)

The stiffness matrix is then defined as the inverse of the compliance matrix.

Qm = S−1
m (A.27)

To rotate the 3D constitutive matrix a 3D rotation matrix is used:

R =



cos2 sin2 0 0 0 2 cos sin
sin2 cos2 0 0 0 −2 cos sin

0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 − sin cos 0

− cos sin cos sin 0 0 0 cos2− sin2


(A.28)

The rotations is then performed as
Qg
m = RQl

mRT (A.29)
A reordering to comply with BECAS coordinate system is performed:

R(edof, edof) = R (A.30)

where:
edof = [6 1 2 3 5 4] (A.31)

resulting in:

R(edof, edof) =



cos2 0 0 −2 cos sin 0 sin2

0 1 0 0 0 0
0 0 cos 0 sin 0

cos sin 0 0 cos2− sin2 0 − cos sin
0 0 − sin 0 cos 0

sin2 0 0 2 cos sin 0 cos2


(A.32)

A.9 Full stiffness matrix and nomenclature

The stiffness matrix is provided by BECAS, eq. (2.41) and is presented in full form below:

Ks =



K11 K12 K13 K14 K15 K16
K22 K23 K24 K25 K26

K33 K34 K35 K36
symm. K44 K45 K46

K55 K56
K66


(A.33)

Diagonal terms nomenclature:
• K11: Edgewise shear stiffness (in the x-direction)
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• K22: Flapwise shear stiffness (in the y-direction)
• K33: Axial stiffness in the z-direction
• K44: Flapwise bending stiffness (around x-axis)
• K55: Edgewise bending stiffness (around y-axis)
• K66: Torsional stiffness (around z-axis)

Off-diagonal nomenclature introducing torsion couplings, from [23]:
• K16: Coupling term for edgewise shear stiffness and torsion
• K26: Coupling term for flapwise shear stiffness and torsion
• K36: Coupling term for axial force and torsion
• K46: Coupling term for flapwise bending and torsion
• K56: Coupling term for edgewise bending and torsion

The rest of the off-diagonal coupling terms can be illustrated with the figure below, taken from
lecture slide in the course AE4ASM109 - Design and Analysis of Composite Structures 1:

Figure A.5: Illustration of stiffness terms in laminate constitutive matrix

A.10 Original blade sub-part layup
Here, the material data for each material used in the DTU10MW reference WTB is presented:
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Table A.2: Material data for each material used in the DTU10MW reference WTB. Note: minthk is
the minimum layer thickness of respective material

name UNIAX TRIAX BIAX BALSA PVCFOAM TE_GLUE
E11[Pa] 4.1630E10 2.1790E10 1.3920E10 5.000E07 7.280E08 2.00E09
E22[Pa] 1.4930E10 1.4670E10 1.3920E10 5.000E07 7.280E08 2.00E09
E33[Pa] 1.3426E10 1.2099E10 1.2099E10 2.730E09 7.280E08 2.00E09
G12[Pa] 5.0470E09 9.4130E09 1.1500E10 1.667E07 2.800E08 7.69E08
G13[Pa] 5.0470E09 4.5386E09 4.5386E09 1.500E08 2.800E08 7.69E08
G23[Pa] 5.0470E09 4.5386E09 4.5386E09 1.500E08 2.800E08 7.69E08
ν12[-] 2.4100E-01 4.7800E-01 5.3300E-01 5.000E-01 3.000E-01 3.00E-01
ν13[-] 2.6750E-01 2.7500E-01 2.7500E-01 1.300E-02 3.000E-01 3.00E-01
ν23[-] 3.3010E-01 3.3290E-01 3.3290E-01 1.300E-02 3.000E-01 3.00E-01
σ̄t11[Pa] 3.9644E08 2.1738E08 1.0099E08 4.550E06 6.250E05 5.00E06
σ̄c11[Pa] -2.8317E08 -1.7785E08 -9.4684E07 5.050E06 1.050E06 5.00E06
σ̄t22[Pa] 2.5053E07 8.1167E07 9.1537E07 3.500E05 6.250E05 5.00E06
σ̄c22[Pa] -1.0155E08 -1.1974E08 -9.4684E07 2.000E05 1.050E06 5.00E06
τ̄12[Pa] 3.4333E07 5.7631E07 7.0408E07 1.000E06 5.250E05 5.00E06
ε̄t11[-] 9.5230E-03 9.9760E-03 7.2550E-03 9.100E-02 8.585E-04 2.50E-03
ε̄c11[-] -6.8020E-03 -8.1620E-03 -6.8020E-03 -1.010E-01 -1.442E-03 -2.50E-03
ε̄t22[-] 3.6780E-03 5.5329E-03 6.5760E-03 7.000E-03 8.585E-04 -2.50E-03
ε̄c22[-] -6.8020E-03 -8.1620E-03 -6.8020E-03 4.000E-03 1.442E-03 -2.50E-03
γ̄t11[-] 6.8027E-03 6.1224E-03 6.1224E-03 5.999E-02 1.875E-03 -2.50E-03
minthk [m] 1.0000E-04 1.0000E-04 1.0000E-04 5.000E-03 5.000E-03 1.00E-04
ρ [kg/m3] 1.9155E03 1.8450E03 1.8450E03 1.100E02 7.000E01 1.00E00

A.11 Coordinate systems in HAWC2

Below figure A.6 presents the coordinate systems used in HAWC2[38].

A.12 Original layup of the DTU10MW reference blade
Below, the material layups along the span are presented for each cross section sub-part for the
DTU10MW reference blade.
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Figure A.6: Coordinate system definition in HAWC2. Red coordinate system is the blade coordinate
system with z along blade span with 0 at root, y towards suction side, and x towards the leading edge.
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Figure A.7: Layup of caps
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Figure A.8: Layup of web A
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Figure A.9: Layup of web B
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Figure A.10: Layup of web C
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Figure A.11: Layup of nose (leading edge)
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Figure A.12: Layup of leading panels
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Figure A.13: Layup of trailing panels
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Figure A.14: Layup of web A
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Figure A.15: Layup of tail A
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Figure A.16: Layup of tail B
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Tail C
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Figure A.17: Layup of tail C
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Figure A.18: Layup of tail V
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