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Abstract

Turbulent flows that are subject to streamline curvature and rotation experience additional
forces that can enhance or suppress turbulence. A particular case where streamline curvature
and rotation play an important role is in flows over aircraft engine components; such as: flows
over compressor and turbine blades, flows around the spinning discs carrying the blades in
axial turbines, flows in cooling channels of rotating blades, and flows over curved diffuser pas-
sages between compressor and turbine stages. The turbulence in a boundary layer entering a
convex curve is diminished by the centrifugal acceleration while the turbulence of a flow en-
tering a concave surface is amplified. These changes in the turbulence levels can significantly
affect the nature of the flow, and in particular, the laminar-to-turbulent transition process.
The boundary layer transition typically occurs around compressor and turbine blades, which
consist of a concave surface (pressure side) and a convex surface (suction side). The transition
phenomena can significantly affect the frictional losses, efficiency, and heat transfer over the
component. Therefore, further improvements in the engine performance require a thorough
understanding of the curvature effects in the boundary layer development.
This thesis presents an analysis of the curvature effects on turbulent flows for turbomachin-
ery applications and it documents the improvement in their prediction capability by standard
turbulence and transition models coupled with a curvature correction term on a series of two
dimensional flows. For this purpose, an in-house Reynolds-Averaged Navier-Stokes (RANS)
solver [18] is used, and the curvature correction proposed by Spalart and Shur [12] is imple-
mented in the k−ω shear stress transport (SST) model of Menter [19] and the γ−Reθt (ReT)
transition model of Langtry and Menter [8].
The curvature correction is first validated on two well known test cases, namely a subsonic
flow over an adiabatic flat plate [22], and the fully turbulent flow inside a U-duct channel
[23, 11]. As expected, the results for the flat plate indicate that the curvature correction
term has no effect on the solution. For the U-duct test case, the solution obtained from the
curvature corrected SST model is closer to the experimental data than the original SST.
Next, the performance of the curvature correction is analyzed for two well documented turbo-
machinery test cases. The first one being the prediction of the heat transfer coefficient over a
Von Karman Institute (VKI) transonic turbine guide vane [3], and the second the prediction
of the pressure coefficient over the high lift T106 low pressure turbine blade [21]. For the VKI
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test case, two different flow configurations are considered, both characterized by the presence
of boundary layer transition over the suction side of the profile. The results obtained from the
curvature corrected SST and the original SST models overestimate the heat transfer coeffi-
cient over the surface of the blade, and, in general, are not able to capture the transition. On
the other hand, the ReT transition model is able to predict laminar-to-turbulent transition
over the suction side. Moreover, when combined with curvature correction, the ReT model
predicts the transition onset closer to the experimental data, providing a much more accurate
calculation of the heat transfer coefficient.
Finally, for the T106 turbine blade two flow configurations with different turbulence inten-
sities are considered. In the case of high freestream turbulence, transition occurs before the
boundary layer separates. However, for the lower freestream turbulence case the boundary
layer separates and transition occurs in the shear layer above the laminar separation bub-
ble. Here, the transition model is essential for the predictive capability of the simulation
and the results are in good agreement with experimental data. For the two different flow
configurations no significant improvements are observed when using the curvature correction
term.
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Chapter 1

Introduction

1-1 Motivation

In aircraft engines, especially in turbomachinery components, the Reynolds numbers that
determine the evolution of the boundary layers are relatively low, hence a large part of the
flow along the blades surface is laminar or transitional. The boundary layer development,
losses, efficiency, and heat transfer are greatly affected by the location and extent of the
laminar-to-turbulent transition. The ability to accurately predict the transition process is
therefore crucial for the design of efficient and reliable machines [4].

The main goal of gas turbine development is to increase its thermodynamic performance
which depends on several factors such as the turbine inlet temperature, the selection of the
optimal compression ratio and system configuration (intercasing cooling, regeneration, etc).
However, nowadays the most substantial source of improvement comes from increasing the
turbine inlet temperature, which affects both the specific power and thermal efficiency of the
cycle [5]. The development in this area has been possible due to the progress in material
engineering, however, the temperatures are so high nowadays that the improvement of ma-
terial performance and specific design of new materials is not sufficient and the application
of cooling systems for the hot components is necessary. The cooling of gas turbine vanes
demands for accurate estimates of the cooling system location within the components and
the amount of cooling needed in order to achieve an economical use of the available cooling air
supply. In addition, there is a trend towards achieving a higher power output per stage, ne-
cessitating larger turning angles in cascades. For these reasons, designers have to understand
the development of the boundary layers on turbine airfoils to obtain as much information as
possible to mitigate the frictional losses and heat transfer. Despite the technical maturity
of gas turbines, the research, optimization and development concerning this technology still
continues, as increasing the engine’s performance by a small amount or improving the cooling
system provides substantial economic benefits.

Master of Science Thesis Roberto Suarez Raspopov



2 Introduction

1-2 Laminar to Turbulent Transition

The heat transfer and boundary layer separation strongly depend on the condition of the
boundary layer. In a turbulent boundary layer, heat transfer and friction losses can be about
five times higher than in a corresponding laminar boundary layer. In general, boundary layers
always change from a laminar to a turbulent state, whereby this process is called laminar to
turbulent transition. The location and extent of the transition process depend on the Reynolds
number, the freestream turbulence intensity, the pressure gradient and geometry of the walls.

In practice, there are three important modes of laminar to turbulent transition. The
first mode is called natural transition, which starts with a weak instability in the laminar
boundary layer and continues through various stages of amplified instability until the flow
is fully turbulent. The second mode is called separated flow transition which occurs in a
separated laminar boundary layer. The third mechanism is called bypass transition and is
caused by large disturbances in the external flow such as freestream turbulence. This is the
most common mode of transition in gas turbine engines.

At present, there are mainly three concepts used to model transition in industry [6]. The
first one is the application of low Reynolds number turbulent models, which are relatively
easy to implement and in some cases are capable of predicting transition in three dimensional
flows. Low Reynolds number turbulence models employ damping functions that are designed
to predict the viscous sublayer behaviour. These models do not require wall functions. In
order to predict transition they rely on the diffusion of turbulence from the freestream into the
boundary layer and the interaction of this freestream turbulence with the model source terms
[7]. On the other hand, a few of these models were found to predict transition at reasonable
Reynolds numbers when the freestream turbulence level was sufficiently high. The ability
of these models to predict transition seems to be coincidental and is due to the similarities
between the viscous sublayer and the developing laminar boundary layer where the production
of turbulence is damped.

The second approach is the so called eN method, which is based on the local, linear
stability theory and the parallel flow assumption in order to calculate the growth of the
disturbance amplitude from the boundary layer neutral point to the transition location. It
requires three successive steps: the first step consists of the calculation of the laminar velocity
and temperature profiles along the body of interest. In the second step the local growth rates
of the unstable waves are computed for each of these profiles. This can be accomplished by
solving either the local stability equations or the Parabolized Stability Equations (PSE). In the
third step, the local growth rates are integrated along each stream line in order to determine
the N factor. Once the disturbance amplitude ratio (eN ) exceeds the limiting N factor
transition is assumed to start. One issue with the eN method is that the N factor does not
represent the amplitude of a disturbance in the boundary layer, but rather the amplification
factor from an initial unknown amplitude. This initial amplitude of the disturbance is related
to external disturbance environment through an unknown receptivity process. For this reason,
the limiting factor N must be determined by calibration to wind tunnel or flight tests making
from the eN approach a semi-empirical method. However, there are several drawbacks in
applying the eN method in general aerospace applications. The first is that since it is based
on the linear stability theory, it cannot predict transition due to non-linear effects such as
bypass transition or surface roughness induced transition. In addition, the need to track the
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1-2 Laminar to Turbulent Transition 3

growth of the disturbance amplitude ratio along the streamline results in a significant issue
for 3D flows where the streamline direction is not aligned with the grid [7].

The third approach for predicting transition, which is favoured by the gas turbine industry,
is the use of experimental correlations. The empirical correlations usually relate the freestream
turbulence intensity Tu to the transition Reynolds number based on the momentum thickness
Reynolds number Reθt. These correlations are attractive because they have been successfully
used for several years and provide consistent results even when used in 3D structured Navier-
Stokes codes. In order to employ an empirical correlation for a transition onset, the laminar
solution around the body of interest must be first calculated. In a second step the boundary
layer quantities are integrated to obtain the momentum thickness Reynolds number Reθ along
the whole body. The transition onset is then assumed to occur at the position where the local
value of Reθt exceeds the one predicted by the correlation. Once the starting location of the
transition is determined, a turbulence model is turned on and the subsequent flow development
is calculated.

While empirical correlation methods prove to be sufficiently accurate, they present numer-
ical and programming drawbacks in Navier-Stokes codes. As mentioned before, for correlation
based transition models it is necessary to compare the actual momentum thickness Reynolds
number Reθ to the transition value from the correlation Reθt. This represents a difficult task
in a Navier-Stokes environment since the boundary layer edge is not well defined and the
integration will therefore depend on the implementation of a search algorithm. In addition,
there are serious difficulties regarding the implementation of non-local formulations in modern
CFD codes based on unstructured grids and massive parallel execution. Unstructured grids
do not easily provide the infrastructure needed to integrate global boundary layer parameters
because the grid lines normal to the surface cannot be easily identified. In the case of a
general parallelized code, the boundary layer can be divided between different CPU domains
making the integration very complex to perform in parallel. Despite the implementation dif-
ficulties, empirical correlation methods are very attractive, as they allow for the inclusion of
experimental data and additional parameters that are believed to affect transition. As a con-
sequence, the accuracy of the empirical correlations can be improved as better experimental
data on transition becomes available, and for this reason empirical correlations remain as an
attractive method for predicting transition [7].

In this work, the recent γ−Reθt transition model proposed by Langtry and Menter in Ref.
[8] will be used. The central mechanism by which this model operates is the intermittency
parameter γ, which is the fraction of time for which the flow is turbulent at a certain location
in space. The formulation proposed by Langtry and Menter is based on two transport equa-
tions. The first is an equation of the intermittency used to trigger the transition process by
controlling the production term of kinetic energy in the boundary layer. The second transport
is formulated in terms of the transition onset Reynolds number Reθt. Outside the boundary
layer, the transported variable is forced to follow the value of Reθt provided by the experi-
mental correlation which is then diffused into the boundary layer. By this mechanism, the
strong variations of turbulence intensity and pressure gradient in the freestream can be taken
into account. At every location of the flow the local vorticity Reynolds number is compared
to the transition Reynolds number to determine if the transition criterion is satisfied. If the
vorticity Reynolds number exceeds the local transition Reynolds number, a source term in
the intermittency equation is activated and turbulence is produced. In chapter 2 a detailed
description of this method is provided.
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4 Introduction

1-3 The Role of Computational Fluid Dynamics

The understanding of the laminar to turbulent transition is important to incorporate new
modeling methods into Computational Fluid Dynamics (CFD) codes, which are an effective
and powerful tool in the design of turbomachinery components and other aerospace devices
where wall shear stress or wall heat transfer are of interest. Currently, the transition modeling
largely limits the quality of CFD codes, and the error in the estimation of the onset and
extent of the transition can affect the calculated machine efficiency by several percent and
the component life by more than an order of magnitude [9]. An important feature of thin shear
flows around turbomachinery components is the presence of significant streamline curvature
and rotation. For example the flow over compressor and turbine blades, the flow around
the spinning discs carrying the blades in axial turbines, and the flow over curved diffuser
passages between the compressor and turbine. For these type of flows streamline curvature
and rotation exert additional forces which can change the turbulence levels in a boundary
layer. These changes in the turbulence levels can affect the process of laminar to turbulent
transition, the heat transfer and frictional losses over a surface.

Despite a fast growth of computer power and more and more intensive use, the Reynolds
averaged Navier-Stokes equations still remain as the most widely used modeling approach
in industrial applications. At the present, it is widely thought that linear eddy-viscosity
turbulence models fail to accurately predict (or even fail to predict them at all) the effects
of surface curvature and rotation [10]. Further progress in this area is often associated with
Reynolds stress models (RSMs) [11]. The explicit appearance of rotation and curvature terms
in the turbulence equations is cited as the fundamental advantage of RSMs over the simpler
eddy viscosity models (EVMs). However, these models are not robust enough for practical
applications in complex geometries [12]. Therefore, an effective alteration of the simple EVMs
to incorporate curvature effects represents the most practical solution to the problem.

1-4 Curvature Effects

The surface curvature can suppress or amplify turbulence, depending on whether is convex or
concave. The turbulence level in a boundary layer entering a convex curve (like the suction
side of a turbine guide vane) is diminished by the centrifugal acceleration, while the turbulence
of a flow entering a concave surface (pressure side) is amplified [2].

In 1937, Clauser and Clauser [13] recognized by means of experiments that laminar flows in
a concave surface become turbulent at lower Reynolds numbers than on flat or convex surfaces.
In his work, Görtler [14] determined that the laminar boundary layer on a concave surface
becomes unstable as a result of centrifugal forces. The instability results in a secondary flow
in the form of counter-rotating vortices (see Fig. 1-1) with axes parallel to the direction of the
mean flow [1]. Görtler vortices have been observed by Han and Cox [15] in cascade flows. Their
experiments suggested that the presence of the vortices could account for the increased heat
transfer experienced on the turbine pressure surfaces. At the present, many rotation and/or
streamline curvature (RC) corrections have been suggested in the literature. Howard et al.
[16] performed a numerical analysis to predict the flow in a straight, radial rotating channel
or rectangular cross section. The two equation k − ε model was employed, with alternative
modifications to include the influence of Coriolis force on the turbulent kinetic energy. The
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1-5 Thesis Outline 5

Figure 1-1: Görtler vortices in the boundary layer of a concave wall. (Adapted from Finnis and
Brown [1].)

results shown moderate agreement with experimental data, confirming nevertheless the need
for inclusion of Coriolis effects in the turbulence model.

Launder et al. [17] proposed an empirical coefficient to account for curvature effects which
is directly proportional to the Richardson number Ri based on the eddy time scale (k/ε). The
curvature correction term was implemented on the k − ε model by modifying the transport
equation for the turbulent energy dissipation ε. The modified turbulence model was validated
on a series of turbulent shear flows like the fully developed turbulent flow in a curved channel;
and the boundary layer over a convex and concave surfaces. The results shown a moderate
improvement over the results obtainable with the conventional k − ε model.

Though the above mentioned corrections are moderately successful in the specific flows for
which they were designed, they are still not universal, as they treat curvature and rotation
differently, and, in addition, often suffer from Galilean non-invariance. In this work, the
empirical function proposed by Spalart and Shur [12] to account for the effects of streamline
curvature and rotation will be used. This correction term is based on intuitive arguments
developed in thin shear layers, it is Galilean-invariant and fully defined in three dimensions.

1-5 Thesis Outline

The present work is concerned with curvature effects on the transition modeling over turbo-
machinery components. The curvature of a gas turbine guide vane can affect the extent an
location of the laminar to turbulent transition over its surface. The purpose of this work is
to improve the reliability of CFD calculations by incorporating the effect of surface curvature
into the transition modeling. For this purpose, the Stanford University in-house Reynolds-
Averaged Navier-Stokes (RANS) solver, developed by Pecnik et al. [18] is used. The curvature
correction proposed by Spalart and Shur in Ref. [12] is implemented in the k−ω SST turbu-
lence model coupled with the γ − Reθt transition model and the results of several test cases
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6 Introduction

are discussed.

The structure of this thesis is the following: in Chapter 2, a survey on turbulence modeling,
transition and curvature effects is given. In chapter 3 the implementation of the curvature
correction term in the RANS solver is discussed. Chapter 4 presents the results of imple-
menting the curvature correction on four different test cases: a flat plate, a U-duct channel,
the VKI turbine guide vane and the low pressure T106 blade profile. Finally, in Chapter 5 a
brief summary and the conclusions of this thesis are given.
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Chapter 2

Theoretical Framework

In the present chapter, a brief discussion of turbulence modeling, laminar to turbulent transi-
tion and curvature effects is provided. The k−ω SST turbulence model of Menter [19] and the
γ−Reθt transition model proposed by Langtry and Menter [8] are presented. In addition, the
modified Spalart and Shur correction term proposed by Smirnov and Menter [11] to account
for curvature effects in turbulent flows is discussed.

2-1 Turbulence Modeling

The motion of a fluid is governed by the Navier Stokes equations. In the turbulent regime,
the solution to these equations is a chaotic, three dimensional and unsteady. Such solutions
are not easily obtained, even on massively parallel supercomputers. A much simpler level of
description is required: this calls for a statistical approach. As it will be seen in the following,
there are no closed equations for the statistics of turbulent flow, which means that there
is a larger number of unknowns than equations. In the present survey only incompressible,
constant density flow will be considered.

The equations governing incompressible flow, whether laminar or turbulent, are

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂p

∂xi
+ ν∇2ũi, (2-1)

∂ũi
∂xi

= 0.

The first equation expresses the conservation of momentum. The second expresses the in-
compressibility of fluid volumes, which is equivalent to mass conservation in the present case.
The total instantaneous velocity is denoted by ũ and it can be decomposed in a mean velocity
component U and a fluctuating component u, in other words ũ = U +u. The fluctuation u is
usually referred to as the turbulence and U as the mean flow. If the previous decomposition
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8 Theoretical Framework

is substituted into Eqs. (2-1) they become

∂

∂t
(Ui + ui) + (Uj + uj)

∂

∂xj
(Ui + ui) = −1

ρ

∂

∂xi
(P + p) + ν∇2(Ui + ui), (2-2)

∂

∂xi
(Ui + ui) = 0.

The average of this equations is obtained by drawing a bar over each term, and considering
that Ū = U and ū = 0:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν∇2Ui −

∂

∂xj
ujui︸ ︷︷ ︸, (2-3)

∂Ui
∂xi

= 0.

These are the Reynolds-Averaged Navier-Stokes (RANS) equations. Equations (2-3) for the
mean flow are the same as Eqs. (2-1), except for the last term of the momentum equation.
This term is highlighted with an underbrace and corresponds to the derivative of the Reynolds
stress tensor uiuj .

The set of equations for the mean flow (2-3) define an unclosed mathematical problem
because they are a set of four equations (i = 1, 2, 3) with ten unknowns (P ; Ui, i = 1, 2, 3;
and ujui, i = 1, 2, 3, j ≤ i). The extra six unknowns are the components of the Reynolds
stress tensor. It is necessary to point out that the statistical problem (2-3) for the mean, or
first moment requires knowledge of the covariance or second moment. This is because the
Navier-Stokes equations have a quadratic non-linearity [2]. Any non-linearity causes moment
equations to be unclosed; here the first moment equation contains second moments, the second
moment equation will contain third moments.

The formulation of additional equations to obtain a solvable set of the Navier-Stokes
equations (2-3) is called closure modeling. When the purpose is to predict non-homogeneous
flow, possibly in complex engineering geometries, semi-empirical formulations to predict uiuj
are required. In this work, an eddy viscosity model will be implemented. In this approach,
the Reynolds stress tensor is explicitly related to the mean flow by a Newtonian constitutive
equation with an eddy viscosity: uiuj = −2νTSij + 2

3δijk. The term semi-empirical means
that the model is obtained from a combination of theoretical analysis of simplified models,
fluid mechanics, and experimental data. The semi-empirical model used here to calculate
the eddy viscosity is the k − ω SST model and it will be described in detail in the following
section.

2-2 The k − ω SST Model

The k − ω Shear Stress Transport model (SST) proposed by Menter in Ref. [19] utilizes the
original k − ω model of Wilcox in the inner region of the boundary layer and switches to the
standard k− ε model in the outer region and the free shear flow. In addition, it incorporates
a modification of the definition of the eddy viscosity which accounts for the effect of the
transport of the principal turbulent shear stress.
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2-2 The k − ω SST Model 9

The k− ω model is chosen in the sublayer and the logarithmic part of the boundary layer
since it has better performance than the k− ε model in equilibrium adverse pressure gradient
flows and in compressible flows. On the other hand, the k − ε model is adopted in the wake
region of the boundary layer and in free shear layers away from any surface. The reason is
the high sensitivity of the k−ω model to the freestream values ωf specified for ω outside the
boundary layer.

In order to achieve the desired behaviour of the model in the different regions, the k − ε
model is transformed into the k−ω formulation. It is then multiplied by the blending function
(1−F1) and added to the original k−ω model times F1. The blending function F1 is designed
to be zero in the wake region and to be one in the sublayer and the logarithmic region of the
boundary layer. The original k − ω model is given by:

Dρk

Dt
= τij

∂Ui
∂xj
− β?ρωk + ∂

∂xj

[
(µ+ σk1µt)

∂k

∂xj

]
, (2-4)

Dρω

Dt
= γ1

νt
τij
∂Ui
∂xj
− β1ρω

2 + ∂

∂xj

[
(µ+ σω1µt)

∂ω

∂xj

]
. (2-5)

Next, the k − ε model is transformed into a k − ω formulation, where an additional cross-
diffusion term appears in the ω equation. The transformed k − ε is given by

Dρk

Dt
= τij

∂Ui
∂xj
− β?ρωk + ∂

∂xj

[
(µ+ σk2µt)

∂k

∂xj

]
, (2-6)

Dρω

Dt
= γ2

νt
τij
∂Ui
∂xj
− β2ρω

2 + ∂

∂xj

[
(µ+ σω2µt)

∂ω

∂xj

]
+ 2ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
. (2-7)

Now, Eqs. (2-4) and (2-5) are multiplied by F1 while Eqs. (2-6) and (2-7) are multiplied by
(1− F1) and the corresponding equations of each set are added to obtain the new model:

Dρk

Dt
= τij

∂Ui
∂xj
− β?ρωk + ∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (2-8)

Dρω

Dt
= γ

νt
τij
∂Ui
∂xj
− βρω2 + ∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2 ∗ ρ(1− F1)σω2

1
ω

∂k

∂xj

∂ω

∂xj
, (2-9)

where any constant α ∈ (σk1, ...) is given by α = F1α1 + (1 − F1)α2, being α1 and α2 the
constants of the original k − ω model and the transformed k − ε model respectively.

In order to account for the effect of the transport of the principal turbulent shear stress
the eddy viscosity is redefined as

νt = a1k

max(a1ω; ΩF2) , (2-10)

where a1 is a constant, Ω is the absolute value of the vorticity and F2 is a function that is
one for boundary layer flows and zero for free shear layers.
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10 Theoretical Framework

2-3 Transition Prediction

The process by which a laminar flow turns into a turbulent one is called transition. The
transition process and the important role played by the Reynolds number Re = Ud/ν in this
transition was first pointed out by Reynolds in 1883. Reynolds was concerned with the water
flow along a straight smooth pipe, where a filament of coloured fluid was introduced at the inlet
(see Fig. 2-1). When the speed of the water was low, the filament remained distinct through
the entire length of the tube. When the speed was increased, the filament broke up at a given
point and diffused throughout the cross-section. In his paper, Reynolds distinguished these
two flow regimes (laminar and turbulent) and he argued that the parameter that controlled
the transition from wan regime to another had to be Re = Ud/ν. He also noted that the
critical value of Re at which turbulence first appears is very sensitive to disturbances at the
entrance of the pipe.

Figure 2-1: Schematic representation of Reynolds’ observations in 1883. Reynolds distinguished
two flow regime, laminar and turbulent, and he argued that the parameter that controlled the
transition from wan regime to another had to be Re = Ud/ν. (Adapted from Dubrin and
Pettersson Reif [2].)

In general, there are three important modes of transition, natural, bypass and separated flow
transition. Each one of these modes depends on the flow conditions such as the intensity of
fluctuations in the freestream, roughness and geometry of the walls.

For the case of natural transition, it is presently known that it envolves several stages
[20]. First, at a critical value of momentum thickness Reynolds number the boundary layer
becomes susceptible to small disturbances and develops an instability in the form of a two
dimensional Tollmien-Schlichting wave. Second, the instability amplifies in the layer to a
point where three-dimensional instabilities grow and develop into loop vortices with large
fluctuations. Finally, the highly fluctuating portions of the flow develop into turbulent spots,
which then grow and convect downstream within the boundary layer to eventually merge into
a fully developed turbulent boundary layer. In the case of bypass transition, at high freestream
turbulence levels, the first and possibly the second stages of the natural transition are omitted
(or bypassed) such that the turbulent spots are directly produced within the boundary layer
by the influence of freestream disturbances. For this case, no Tollmien-Schlichting waves are
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2-3 Transition Prediction 11

found.

Finally, when a laminar boundary layer separates, transition may occur in the free-shear-
layer-like flow near the surface, this is called separated flow transition. In this case, the flow
may reattach as turbulent forming a laminar separation/turbulent reattachment bubble on
the surface. In gas turbines separated flow transition is common and may occur in an over-
speed region near an airfoil’s leading edge on either the suction side, the pressure side or both.
Long bubbles can produce large losses and deviations in exit flow angles, for this reason they
should be avoided. On the other hand, short bubbles are an effective way to force the flow to
become turbulent and this can be considered as a means to control performance [20]. One of
the difficulties in transition modelling is to predict whether the bubble will be large or short.

In order to predict the transition process one could rely directly on the turbulence model
such as the k−ω SST which was described in the previous section. It is necessary to mention
that most of the transport equation models such as k− ε and k−ω do converge to a laminar
solution at low Reynolds numbers and to a turbulent solution at sufficiently high Reynolds
number exhibiting a transition in between (see Fig. 2-2). However, turbulence models are in

Figure 2-2: Skin friction coefficient in a plane channel versus Reynolds number based on the
centerline velocity and channel half width. Many turbulence models display laminar to turbulent
transition as the Reynolds number increases. (From Dubrin and Pettersson Reif [2].)

general developed for fully turbulent conditions and calibrated with turbulence data. Their
ability to capture accurately the transition mechanism is a property of the model equations,
not of the fluid dynamical mechanisms. For this reason, the prediction of laminar to turbu-
lent transition provided by turbulence models is seriously limited and therefore a different
approach is required. In this work, the recent γ−Reθt transition model proposed by Langtry
and Menter [8] will be used. The central idea behind this model is to use an intermittency
parameter γ to modulate the production of turbulent kinetic energy in the turbulence model.
The intermittency γ takes values from 0 to 1 and represents the probability that a given point
is located inside a turbulent region. A detailed description of the γ − Reθt transition model
is provided in the next section.
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12 Theoretical Framework

2-4 The γ −Reθt Transition Model

In the present section the γ−Reθt correlation based transition model proposed by Langtry and
Menter in [8] is described. This model is built strictly on local variables making it compatible
with modern CFD techniques such as unstructured grids and parallel computation.

The γ−Reθt transition model is based on the transport equation for intermittency, which
is used to trigger the transition locally. In addition, a second transport equation is solved
for the transition onset momentum thickness Reynolds number Reθt. This is required to
capture the non-local influence of turbulence intensity, which changes due to the decay of the
turbulence kinetic energy in the freestream, as well as to changes in the freestream velocity
outside the boundary layer. This second transport equation ties the empirical correlation to
the onset criteria in the intermittency equation.

The transport equation for intermittency is given by

∂ργ

∂t
+ ∂

∂xj
(ρUjγ) = Pγ + Eγ + ∂

∂xj

[(
µ+ µt

σf

)
∂γ

∂xj

]
. (2-11)

The transition source is defined as

Pγ1 = FlenghtCa1ρS
√
γFonset(1− ce1γ), (2-12)

where S is the strain rate magnitude and Flenght is an empirical correlation that controls the
length of the transition region. This function is based on a series of flat plate test cases and
is defined as

Flenght =


398.189 · 10−1 + (−119.270 · 10−4)R̃eθt + (−132.567 · 10−6)R̃e2

θt, R̃eθt < 400
263.404 + (−123.939 · 10−2)R̃eθt + (194.548 · 10−5)R̃e2

θt + (−101.695 · 10−8)R̃e3
θt 400 ≤ R̃eθt ≤ 596

0.5− (R̃eθt − 596.0) · 3.0 · 104 596 ≤ R̃eθt < 1200
0.3188 1200 ≤ R̃eθt

The function Fonset is used to trigger the intermittency production (i.e. activate Eq. (2-12)).
It is designed to switch rapidly from a value of zero in a laminar boundary layer to a value of
one at every location in the flow field where the local vorticity Reynolds number exceeds the
local transition onset criteria. The transition onset is controlled by the following equations:

Rev = ρy2S
µ ; RT = ρk

µω , (2-13)

Fonset1 = Rev
2.193·Reθc , (2-14)

Fonset2 = min(max(Fonset1,F 4
onset1

), 2.0), (2-15)

Fonset3 = max
(

1−
(
RT
2.5

)3
, 0
)
, (2-16)

Fonset = max(Fonset2 − Fonset3, 0). (2-17)

Reθc in Eq. (2-14) is the critical Reynolds number where the intermittency first starts to
increase in the boundary layer. This occurs upstream of the transition Reynolds number R̃eθt
because there is a delay due to the fact that turbulence must first build up to appreciable
levels in the boundary layer before any change in the laminar profile can occur. For this
reason, Reθc can be thought of as the location where turbulence starts to grow while R̃eθt is

Roberto Suarez Raspopov Master of Science Thesis



2-4 The γ −Reθt Transition Model 13

the location where the velocity profile first starts to deviate from the purely laminar profile.
The connection between the two must be obtained from an empirical correlation were

Reθc =

 R̃eθt − 396.035 · 10−2 + (−120.656 · 10−4)R̃eθt + (868.23 · 10−6)R̃e
2
θt

+(−696.596 · 10−9)R̃e
3
θt.(174.105 · 10−12)R̃e

4
θt R̃eθt ≤ 1870

R̃eθt − (593.11 + (R̃eθt − 1870) · 0.482) R̃eθt > 1870
(2-18)

and R̃eθt from the transport Eq. (2-22). This correlation is determined based on a series of
numerical experiments on a flat plate where the critical Reynolds number was varied along
with the freestream turbulence intensity and the subsequent transition Reynolds number was
measured based on the most upstream location where the skin friction started to increase.
The destruction or relaminarization source is defined as

Eγ = ca2ρΩγFturb(cesγ − 1), (2-19)

where Ω is the vorticity magnitude. This term acts like a sink term and ensures that the
intermittency remains close to zero in the laminar boundary layer. It also enables the model
to predict relaminarisation because it provides a means for the intermittency to return to
zero once the transition criteria in the Fonset function is no longer satisfied. Fturb is used to
disable the destruction/relaminarization source outside of a laminar boundary layer and is
defined as follows:

Fturb = e
−
(
RT

4

)4

. (2-20)

The boundary condition for γ at a wall is zero normal flux while at an inlet the value of γ
is equal to 1. In order to capture the laminar and transitional boundary layers correctly, the
grid must have a y+ of approximately 1 [8].

The experimental transition correlations relate the Reynolds number of transition onset,
Reθt to the turbulence intensity, Tu, and other quantities in the freestream where

Reθt = f(Tu, ..)freestream. (2-21)

This is a non-local operation since the value of Reθt is required by the intermittency equation
inside the boundary layer, and not only in the freestream. On the other hand, the turbulence
intensity can change strongly inside the domain and one global value over the entire flowfield
is not acceptable. In order to use only local quantities, a different way for passing informa-
tion from the freestream to the boundary layer is required. The solution to this problem
is provided by a second transport equation which treats the transition momentum thickness
Reynolds number Reθt as a transported scalar quantity. An empirical correlation is used to
calculate Reθt in the freestream and then its value is merged by the transport equation into
the boundary layer. This transport equation essentially takes a non-local empirical correlation
(i.e. Eq. (2-32)) and transforms it into a local quantity, which then can be used to compute
the transition length Flenght and the critical Reynolds number Reθc at every location of the
flow field.

The transport equation for the transition onset momentum thickness Reynolds number is
given by

∂(ρR̃eθt)
∂t

− ∂(ρUjR̃eθt)
∂xj

= Pθt + ∂

∂xj

[
σθt(µ+ µt)

∂R̃eθt
∂xj

]
. (2-22)
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14 Theoretical Framework

Outside the boundary layer, the source term Pθt is designed to force the transported scalar
R̃eθt to match the local value of Reθt calculated from an empirical correlation. The production
term can be computed from the relations below:

Pθt = cθt
ρ
t (Reθt − R̃eθt)(1− Fθt), (2-23)

t = 500µ
ρU2 (2-24)

Fθt = min
(

max
(
Fwakee

−( yδ )
4
, 1−

(
γ−1/ce2
1−1/Ce2

)2
)
, 1
)
, (2-25)

θBL = R̃eθtµ
ρU ; δBL = 15

2 θBL ; δ = 50Ωy
U δBL, (2-26)

Reω = ρωy2

µ ; Fwake = e

(
Reω

1×105

)2

, (2-27)

were t is a time scale defined for dimensional reasons. The blending function Fθt is used to
turn off the source term in the boundary layer and allow the transported scalar R̃eθt to diffuse
in from the freestream. Fθt is equal to zero in the freestream and 1 in the boundary layer.

The following constants are used in the model:

ca1 = 1, ca2 = 0.03, ce2 = 50, σf = 1, cθt = 0.03, σθt = 2. (2-28)

During the development of the γ − Reθt model it was observed that whenever a laminar
boundary layer separation occurred, the model predicted the turbulent reattachment location
too far downstream. By comparison with experimental results it was found that the accuracy
of the model tended to decrease as the freestream turbulence was lowered. The reason for
this is that the turbulent kinetic energy k in the separating shear layer is smaller at lower
freestream turbulence levels. As a consequence, it takes longer for k to become large enough to
make the boundary layer to reattach. In order to solve this problem, the following modification
to handle separation induced transition was implemented:

γsep = min
(
s1 max

[
0,
(

Rev
3.235Reθc

)
− 1

]
Freattach, 2

)
Fθt, (2-29)

where,

Freattach = e
−
(
RT
20

)4

, s1 = 2, (2-30)
γeff = max(γ, γsep). (2-31)

This modification allows k to grow rapidly once the laminar boundary layer separates and
has a negligible effect for attached transition. The main idea behind this correction is to
allow the local intermittency to exceed 1 whenever the laminar boundary layer separates.
This will result in a large production of k, which in turn will cause earlier reattachment. The
size of the separation bubble is controlled with the constant s1. The Freattach term disables
the modification once the viscosity ratio is large enough to cause reattachment and Fθt is the
blending function that confines the modification to boundary layer type flows.

The boundary condition for R̃eθt at a wall is zero flux. The boundary condition for R̃eθt
at and inlet should be calculated from an empirical correlation based on the inlet turbulence
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2-5 Curvature Effects on Turbulent Flow 15

intensity. The empirical correlation is defined as follows:

Reθt =
[
1173.51− 589.428Tu+ 0.2196

Tu2

]
F (λθ), Tu ≤ 1.3, (2-32)

Reθt = 331.5[Tu− 0.5658]−0.671F (λθ), Tu > 1.3, (2-33)

F (λθ) = 1− [−12.986λθ − 123.66λ2
θ − 405.689λ3

θ]e
−(Tu1.5 )1.5

, λ ≤ 0, (2-34)

F (λθ) = 1 + 0.275[1− e[−35λθ]]e−(Tu0.5 ), λ > 0, (2-35)

where,

λθ = ρθ2

µ
dU
ds , (2-36)

Tu = 100
√

2k/3
U . (2-37)

The derivative dU/ds corresponds to the acceleration along the streamwise direction and can
be computed by taking the derivative of the velocity U in the x, y and z directions and the
summing the contribution of these derivatives along the streamwise direction. The following
constraints are introduced for numerical robustness:

− 0.1 ≤ λθ ≤ 0.1, Tu ≥ 0.027, Reθt ≥ 20. (2-38)

The transition model is coupled to the k − ω SST model through the use of the effective
intermittency from Eq. (2-31) by modifying the production and dissipation terms in the k
equation as follows:

P̃k = γeffPk, D̃k = min(max(γeff , 0.1), 1)Dk, (2-39)

where Pk and Dk are the production and destruction terms in the turbulent kinetic energy of
the original SST equation respectively. The final modification to the SST model is a change
in the blending function F1 which is responsible for the switching between the k−ω and k− ε
models. The reason is that the original blending function could potentially switch from 1 to
0 in the center of the boundary layer, which is undesirable since the k − ω model should be
active in the laminar and transitional boundary layers. The modified blending function is
defined by

F1 = max(f1,orig, F3), F3 = e
−
(
Ry
120

)8

, Ry = ρy
√
k

µ
, (2-40)

where F1,orig is the original blending function of the SST model.
In the following sections the physical effects of curvature are discussed and the curvature
correction term proposed by Spalart and Shur [12] will be described in detail.

2-5 Curvature Effects on Turbulent Flow

The purpose of this section is to provide the physical explanation of curvature effects in tur-
bulent flows. Surface curvature can suppress or amplify turbulence depending on whether it
is convex or concave curvature. The turbulence in a boundary layer entering a convex curve
is diminished by centrifugal acceleration, while the turbulence entering a concave curve is
amplified. The shear is toward the center of curvature in the destabilizing case and outward
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Figure 2-3: Schematic of boundary layers on curved surfaces. Convex curvature is stabilizing
and concave is destabilizing. (Adapted from Dubrin and Reif [2].)

from it in the stabilizing. A schematic representation of this effect is shown in Fig. 2-3. The
origin of curvature effects can be understood by an examination of the Reynolds stress trans-
port equation, particularly the production term. The transport equation for the Reynolds
stress tensor uiuj is given by

∂uiuj
∂t

+ Uk
∂uiuj
∂xk

= −1
ρ

(
uj
∂p

∂xi
− ui

∂p

∂xj

)
− 2ν ∂ui

∂xk

∂uj
∂xk

−∂ukuiuj
∂xk

− ujuk
∂Ui
∂xk
− uiuk

∂Uj
∂xk

+ ν∇2uiuj , (2-41)

where −ujuk(∂Ui/∂xk)− uiuk(∂Uj/∂xk) corresponds to the production term [2].
If we consider cylindrical coordinates, x1 = Rθ and x2 = r, the shear flow in Fig. 2-3 is in
x1 direction U = U(r)e1, where e1 = (− sin θ, cos θ) is the unit vector in the circumferential
direction. The vector on the radial direction is e2 = (cos θ, sin θ). Then the velocity gradient
has the following non-zero components:

e1
∂

x1
U(r)e1 = e1U(r) ∂e1

∂x1
= −e1e1

U(r)
R

,

e2
∂

x2
U(r)e1 = e2e1

∂U(r)
∂r

, (2-42)

and

∂Uj
∂xi

=


0 −U(r)

R 0
∂U(r)
∂r 0 0
0 0 0

 (2-43)
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2-6 Curvature Correction 17

By considering the previous velocity gradient, the non-zero components of the production
term in the Reynolds stress transport equation (Eq. (2-41)) become

P11 = −2u1u2
∂U1
∂x2

= −2uv∂U
∂r

,

P22 = −2u2u1
∂U2
∂x1

= 2uvU
R
, (2-44)

P12 = −u2u2
∂U1
∂x2
− u1u1

∂U2
∂x1

= −v2∂U

∂r
+ u2U

R
,

and the turbulent kinetik energy production corresponds to

P = 1
2(P11 + P22) = −uv

(
∂U

∂r
− U

R

)
. (2-45)

On a convex wall the velocity increases in the radial direction; hence ∂rU > 0. The two terms
of P are opposite in sign and the curvature acts to diminish the production of turbulent kinetic
energy by the mean shear. On the other hand, for the case of a concave wall ∂rU < 0. The
two terms of the right hand side of Eqs. (2-44) that contribute to P12 and P have the same
sign. In this case curvature supplements the production by mean shear. From the previous
analysis it becomes clear that concave curvature is destabilizing and amplifies the turbulence.
In the following section, a correction term proposed by Spalart and Shur [12] in order to
account for the effects of curvature in turbulence models will be presented.

2-6 Curvature Correction

It was previously shown that curvature affects the production terms of the Reynolds stress
transport equation. The explicit appearance of these effects in the turbulent equations is
cited as a fundamental advantage of the full Reynolds stress turbulence models, which intend
to solve Eq. (2-41). However, these models are stiff and difficult to converge compared to
the simple eddy viscosity models for complex engineering applications. For this reason, a
more robust approach to account for curvature effects is to properly modify the simpler eddy
viscosity models. The measure proposed by Spalart and Shur in [12] is based on intuitive
arguments developed in thin shear layers, it is Galilean-invariant and fully defined in three
dimensions which makes is possible to implement in any RANS solver.

Consider a thin shear flow with a velocity profile U(y) = y and assume that Uy > 0 so
that the spanwise vorticity Ωz < 0. For this type of flow it holds that u2 > v2 which is
equivalent to stating that the principal axes of the strain tensor are not aligned with those of
the strain tensor, but rotated counterclockwise [12]. The curvature correction term proposed
by Spalart and Shur relies on a central hypothesis, which states that under weak rotation or
curvature turbulence is enhanced if the Reynolds stress principal axes are leading the strain
axes or vice versa. In this context they propose to track the direction of the principal axes of
the strain tensor. In a weakly curved thin shear flow, the flow direction, the direction of the
strain principal axes, and that of the Reynolds stress axes all evolve at the same rate U/R.
The strain axes are invariant and therefore usable in a simple turbulence model which leads
to the quantity

e ≡ Dα

Dt
, (2-46)
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18 Theoretical Framework

where the angle α gives the direction of the strain tensor principal axes with respect to an
inertial reference frame. The strain axes are invariant and the Lagrangian derivative of a
quantity which is defined with respect to an inertial frame, Dα/Dt is also Galilean invariant.

The direction of the strain tensor axes α is susceptible to system rotation. In a ho-
mogeneous rotating flow with system rotation rate Ωrot and time independent deformation,
Dα/Dt = Ωrot. If an inhomogeneous incompressible flow is considered, the Lagrangian deriva-
tive of α can be calculated for a two dimensional case by differentiating analytically the strain
tensor eigensystem, which results in

Dα

Dt
= Ωrot + 1

2(S2
11 + S2

12)

[
S11

DS12
Dt

− S12
DS11
Dt

]
. (2-47)

The strain rate tensor Sij and the Lagrangian derivative on the right hand side of Eq. (2-47)
are defined with respect to the reference frame of the system, which is rotating at a rate
Ωrot. The sign of e is only relevant compared with that of the vorticity. The stress-strain
misalignment is in the direction of the vorticity and the non dimensional quantity r̃ = e/Ωz is
then suggested as a prime candidate. Small positive values of r̃ suppress turbulence activity;
while small negative values enhance it. For the case of solid body rotation, the measure r̃
reduces to e = ω/2, so that r̃ = 1/2. In a pure azimuthal flow Uθ(r), e = Uθ/r sign d[rUθ]/dr.
Therefore the streamline curvature is recovered per se, Uθ/r. The extension of Eq. (2-47) to
three-dimensional flows is given by Eq. (2-52). The empirical function proposed by Spalart
and Shur in Ref. [12] to account for effects of streamline curvature and system rotation is
defined by

frotation = (1 + cr1) 2r?

1 + r?
[1− cr3 tan−1(cr2r̃)]− cr1, (2-48)

which was initially tested in the Spalart-Allarmas one-equation turbulence model. In order
to incorporate the curvature correction to the k − ω SST turbulence model, equation (2-48)
is replaced by Smirnov and Menter in Ref. [11] by fr1, which is defined as

fr1 = max[min(frotation, 1.25), 0.0], (2-49)

and it is used to control the production terms in the k − ω SST model equations as follows:

∂(ρk)
∂t

+ ∂(ρUjk)
∂xj

= Pkfr1 − β?ρkω + ∂

∂xj

[
µref

∂k

∂xj

]
. (2-50)

∂(ρω)
∂xj

+ ∂(ρUjω)
∂xj

= α
ρPk
µt

fr1 −Dω + Cdω + ∂

∂xj

[
µef

∂ω

∂xj

]
. (2-51)

The difference between Eqs. (2-48) and (2-49) is that the latter limits the function values from
0 which corresponds to a strong convex curvature (stabilized flow, no turbulence production)
to 1.25 corresponding to strong concave curvature (enhanced turbulence production). The
lower limit is proposed for numerical stability reasons whereas the upper limit is used to
avoid overgeneration of eddy viscosity in flows with destabilizing curvature or rotation. The
arguments in Eq. 2-48 are defined as follows:

r̃ = 2ΩikSjk

[
DSij
Dt

+ (εimnSjn + εjmnSin)Ωrot
m

] 1
ΩD3 , (2-52)

r? = S

Ω , (2-53)
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2-6 Curvature Correction 19

where Ωrot
m are the components of the system rotation vector in three dimensions and εijk is

the tensor of Levi-Civita. The different terms in Eqs. (2-52) and (2-53) are given by

Sij = 1
2

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
, (2-54)

Ωij = 1
2

((
∂Ui
∂xj
− ∂Uj

∂xi

)
+ 2εmjiΩrot

m

)
, (2-55)

S2 = 2SijSij , (2-56)
Ω2 = 2ΩijΩij , (2-57)

D2 = max(S2, 0.09ω2), (2-58)

and DSij/Dt are the components of the Lagrangian derivative of the strain tensor. Smirnov
and Menter [11] suggest a technique to calculate this term for a three-dimensional Navier-
Stokes CFD solver based on the control volume method. This technique will be applied in the
RANS solver and its implementation is discussed in Chapter 3. In order to apply the control
volume method, the material derivative DSij/Dt is expressed using the integral (Eulerian)
flow formulation, which states that the total derivative of each component of the strain tensor
in an arbitrary volume τ can be written as∫

τ

DSij
Dt

dτ = D

Dt

∫
τ
Sij dτ = ∂

∂t

∫
τ
Sij dτ +

∫
σ
SijUn dσ, (2-59)

where the first term on the right hand side corresponds to the local derivative and the second
term is the convective derivative. Here σ is the surface of the volume τ , Un = ~U · n̂, ~U and n̂
are the velocity and normal vectors at the integration point.

For steady state flows the first term in the right hand side of Eq. (2-59) is zero in converged
solutions so there is no need to compute it during iterations. Then

D

Dt

∫
τ
Sij dτ =

∫
σ
SijUn dσ. (2-60)

The application of the control volume approach to discretize the right hand side of Eq. (2-60)
results in ∫

σ
SijUn dσ →

N∑
k=1

S
(k)
ij U

(k)
n σ(k), (2-61)

where the summing is done over the N surfaces of the control volume. The superscript (k)
refers to the centres of the faces, σk is the area of the k-th face while S(k)

ij and U
(k)
n are

computed at the face centres. The final discrete formula for DSij/Dt is computed from Eq.
(2-61) by dividing through the cell volume

DSij
Dt

=
[
N∑
k=1

S
(k)
ij U

(k)
n σ(k)

]
1
τ
, (2-62)

where τ is the volume of the computational cell. Finally, the constants cr1, cr2 and cr3 in Eq.
(2-48) are 1.0, 2.0 and 1.0 respectively. In the next chapter the data structure of the RANS
solver will be presented and the implementation of the curvature correction term in the code
will be discussed.
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Chapter 3

Numerical Method

The purpose of this chapter is to document the implementation of the Spalart and Shur [12]
curvature correction term in the in-house Reynolds-Averaged Navier-Stokes (RANS) solver
developed at Stanford University by Pecnik et al [18]. In section 3-1 a brief descriprion of the
solver’s data structures is provided. Based on this data structure, section 3-2 describes the
algorithm to calculate the curvature correction factor.

3-1 Data Structure of the RANS Solver

The RANS solver is entirely written in C++ language and it solves the compressible Navier-
Stokes equations on unstructured meshes with a discretization based on the finite volume
formulation and implicit time integration scheme on arbitrary polihedral mesh elements [4].
The data structure of the solver employs the centers of the control volumes, the faces and the
nodes of the mesh (as shown in Fig. 3-1) to manipulate information. The cell centers store the

Figure 3-1: The data structure of the RANS solver requires the centers of the control volumes,
the faces and the nodes to store information.

physical information of the flow (P , ρ, ~V ... etc.) and every face inside the mesh is associated
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22 Numerical Method

Figure 3-2: Every face in the mesh is associated with the two neighboring control volume centers,
which are denoted as cv_ofa[i][0] and cv_ofa[i][1], where i is the index of the face and the second
index denotes the left and right control volume of the face. In addition, every face is associated
with a vector normal to it’s surface which points in the opposite direction of node cv_ofa[i][0]
and has the magnitude of the face area.

with two neighboring control volumes. These control volumes are denoted by cv_ofa[i][0] and
cv_ofa[i][1] where i is the index of the face. In addition, every face is associated with a vector
normal to its surface which points in the same direction as the vector connecting cv_ofa[i][0]
to cv_ofa[i][1] and has the magnitude of the face area. This is schematically illustrated in
Fig. 3-2. The following section describes the algorithm to calculate the curvature correction
factor based on the data structure previously described.

3-2 Curvature Correction Algorithm

The algorithm presented in this section calculates the curvature correction factor in every cell
center of the mesh at every time step. The correction factor fr1 is given by Eq. 2-49, where
the frotation term is calculated from Eq. 2-48, which reads

frotation = (1 + cr1) 2r?

1 + r?
[1− cr3 tan−1(cr2r̃)]− cr1.

The arguments in Eq. 2-48 are defined as follows:

r̃ = 2ΩikSjk

[
DSij
Dt

+ (εimnSjn + εjmnSin)Ωrot
m

] 1
ΩD3 ,

r? = S

Ω .

The physical properties in the previous equations such as S and Ω are defined in every cell
center. However, the total derivative of the strain tensor DSij/Dt is not defined. For this
reason, before evaluating Eq. 2-48, it is necesary to compute DSij/Dt over each cell center
of the grid. This can be achieved by making use of the descrete formula (Eq. 2-62) provided
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by Smirnov and Menter [11]:

DSij
Dt

=
[
N∑
k=1

S
(k)
ij V

(k)
n σ(k)

]
1
σ
,

where the summing is done over the N faces of the control volume. The superscript (k) refers
to the centres of the face, σk is the area of the k-th face while S(k)

ij and V (k)
n are computed at

the face centres. The τ factor corresponds to the volume of the computational cell.

In order to evaluate Eq. (2-62) at every cell center of the mesh a first subroutine is created.
This subroutine performs a cycle over the faces of the complete computational mesh and adds
the contribution of each face to its neighboring control volume centers. The algorithm is
repeated for every time step of the solver and can be summarized as follows:

1 For every face k in the mesh calculate the distances d0 and d1 from face center to the
neighboring control volumes cv_ofa[i][0] and cv_ofa[i][1].

2 Using the velocity gradient of each cell center calculate the velocity at the i-th face:

~V0,face = ~V0 +∇~V0 · ~dx0,face,

~V1,face = ~V1 +∇~V1 · ~dx1,face,

where ~V0 and ~V1 are the velocity vectors, and ∇~V0 and ∇~V1 are the velocity gradients
at the nodes [0] and [1] respectively. The vectors ~dx0,face and ~dx1,face represent the
relative position between the cell centers and the k-th face.

3 Calculate the average velocity at the k-th face using

~Vk =
~V1,face ∗ d0 + ~V0,face ∗ d1

d0 + d1
.

4 Using the same type of averaging calculate the strain tensor value Sij over the i-th face.

5 Calculate the V (k)
n σ(k) factor from Eq. 2-62: In order to achieve this, the dot product

between the normal vector (recall that the magnitude of the normal vector equals the
area of the face σ(k)) and the average velocity vector in the k-th face is performed:

V (k)
n σ(k) = ~n · ~Vk.

6 Calculate the contribution of the k-th face to the DSij
Dt value of each one of the neigh-

boring control volume centers:

DSij
Dt

[0] = DSij
Dt

[0] + (S(k)
ij V

(k)
n · V A) ∗ 1

τ0
,

DSij
Dt

[0] = DSij
Dt

[1]− (S(k)
ij V

(k)
n · V A) ∗ 1

τ1
.

The contribution is added or substracted by considering the correct sign for the sum-
mation of the fluxes based on the Green-Gauss theorem. The normal vector is always
pointing from index [0] to [1] of the control volumes. Then, at the boundary the normal
vector is always pointing outside the domain.
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Once the total derivative of the strain tensor DSij/Dt has been computed on every cell center
of the mesh, a second subroutine is used to evaluate Eqs. (2-48) and (2-49) in order to provide
the correction factor at every cell center. Once evaluated, the correction factor interacts with
the k − ω SST turbulence model through the production terms of the k and ω equations as
described in section 2-6. The C++ subroutines that calculate DSij/Dt and fr1 are included
in Appendix A. In the following chapter the curvature correction term is implemented in a
series of test cases and a detailed discussion of the results is provided.
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Chapter 4

Results

In the present chapter the implementation of the algebraic curvature correction term is vali-
dated for four different 2D test cases and a discussion of the results is provided. The first two
cases correspond to a flow over an adiabatic flat plate [22] and the fully turbulent flow inside
a U-duct channel [11, 23]. These tests are performed to ensure the correct implementation of
the curvature correction term in the RANS solver. Then, in order to assess the improvement
in the predictive capability of the solver, the correction term is tested on two well documented
turbomachinery test cases. The first one being the prediction of the heat transfer coefficient
over a Von Karman Institute (VKI) transonic turbine guide vane [3], and the second the
prediction of the pressure coefficient over a high lift T106 low pressure turbine blade [21].

In order to test the performance of the curvature correction term, four different model
configurations are used along this chapter. The k − ω SST turbulence model of Menter
[19] is used in its original form or combined with the γ − ReθT transition model of Langtry
and Menter [8], the modified curvature correction term of Smirnov and Menter [11] or both.
The different configurations are shown in Tab. 4-1, where the first column indicates the
abbreviations which are used hereafter.

Table 4-1: Four different numerical schemes used to assess the performance of the curvature
correction term. Each scheme is a combination of the k − ω SST turbulence model with the
γ −ReθT transition model, the curvature correction term or both.

Abbreviation Turbulence model Transition model Curvature correction
(SST) (ReT) (CC)

SST X - -
SST-CC X - X
SST-ReT X X -

SST-ReT-CC X X X
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4-1 Flat Plate

The purpose of the present test case is to compare the predictions of the turbulence model
combined with the transition model with and without curvature correction (SST-ReT and
SST-ReT-CC models) for a subsonic flow over a flat plate. Since a flat surface has no curva-
ture, the Spalart and Shur correction term must not affect the solution and the results of both
calculations should be identical. The flow conditions correspond to the test case T3A, with
zero pressure gradient boundary layer documented by Savill [22]. The boundary conditions
of the problem are presented in Appendix B.

The computational domain was provided by Dr. Rene Pecnik and it consists of 5120
control volumes divided by an H-type grid which provides a resolution of y+ < 0.3 at the
walls. Figure 4-1 shows the skin friction coefficient cf over the plate as a function of the
Reynolds number Rex, which is calculated based on the distance between the leading edge of
the plate and a generic location x over its surface. The skin friction coefficient is defined by

cf = τw
1
2ρ∞U

2
∞
, (4-1)

where τw = µ(∂U/∂y) is the local wall shear stress, ρ∞ and U∞ are the freestream density and
velocity, respectively. From Fig. 4-1 it is possible to distinguish the transition process by the
sudden increase of the skin friction coefficient from the laminar flow region at Rex = 15000 to
the turbulent one Rex = 27000. In addition, the comparison between the curvature corrected
solution (SST-ReT-CC) with the non-corrected one (SST-ReT) shows that the curvature
correction has no effect on the flow over a flat plate.

Figure 4-1: Skin friction coefficient as a function of the Reynolds number Rex over an adiabatic
flat plate. The Reynolds number Rex is calculated based on the distance between the leading
edge of the plate and the particular point x over the surface of the plate.
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4-2 Two-Dimensional Flow in a U-Duct Channel 27

4-2 Two-Dimensional Flow in a U-Duct Channel

In the present section the results of a two-dimensional flow in a U-duct channel are pre-
sented. The objective of this test is to compare the results of the numerical method against
experimental data provided by Monson and Seegmiller [23] and the simulations carried out
by Smirnov and Menter [11] in order to ensure the correct implementation of the curvature
correction term.

The fluid motion through a U-duct channel is a well known case which is characterized
by a strong streamline curvature and it contains flow separation and reattachment on the
inner (convex) wall of the duct. In addition, the flow upstream the U-bend is turbulent and
fully developed. These features represent a challenge for the different RANS solvers and a
thorough test for turbulence models.

The mesh of the computational domain is shown in Fig. 4-2 and it consists of 26307
elements clustered at the walls to ensure y+ values of nearly 0.1. The computational grid of
the U-duct test case was generated in the course of this work by a mesh generating program
developed in-house at the TU Delft by Ir. Enrico Rinaldi. The Reynolds number of the flow,
based on the channel width H and the mean flow velocity Um is set equal to Re = 106 as
specified in Refs. [23] and [11]. Additionally, the reference Mach number is set to M = 0.1
at the inlet in order to avoid compressibility effects. In order to guarantee a fully developed
turbulent flow and the specified value of Reynolds number Re at the inlet of the computational
domain, the boundary conditions of the problem are set as follows. In accordance with Ref.
[11], fully developed profiles of velocity, density and turbulence properties are calculated for
a straight channel in a pre-processing step and then specified as the inlet boundary condition
for the U-tube. At the outlet of the domain a constant value of static pressure is fixed. The
sides of the channel are considered symmetrical and a no slip condition is specified on the
walls. For sake of completeness, the specific values of the boundary conditions used for the U-
duct and the straight channel computations are included in Appendix B. In order to provide
a comparison with the numerical results of Smirnov and Menter [11], the fully turbulent
numerical solutions (SST and SST-CC) are used.

Figures 4-3 and 4-4 show the skin friction coefficient defined by Eq. (4-1) over the inner
and outer walls of the U-duct channel. The skin friction coefficient is calculated over the walls
by considering the position coordinate along the central line of the U-duct. From Fig. 4-3 it is
possible to observe that the flow accelerates when entering the curve (s = 0) which translates
in an increase of cf , and separation occurs on the inner wall near the position s = 2.5 which
is reflected by the negative sign of cf . Later on, at s = 5 flow reattaches and the skin friction
coefficient becomes positive. On the other hand, no separation is observed on the outer wall
of the channel since cf remains positive all the time. Figures 4-7 (d)-(f) show the turbulent
kinetic energy in the normal direction of the wall at different positions of the channel. At the
angles of 0 and 90 degrees of the U-turn (Figs. 4-7 (d)-(e)), it can be clearly seen that the
curvature correction term reduces the turbulence levels over the inner wall, which translates
in lower values of the skin friction coefficient of the SST-CC model compared to the non-
corrected SST. Additionally, the curvature correction enhances the turbulence levels over the
concave region of the outer wall, resulting in higher values of the skin friction coefficient of
the SST-CC model.
Figures 4-5 and 4-6 show the pressure coefficient over the inner and outer walls of the U-duct.
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Figure 4-2: Computational domain and grid used for the U-duct channel. The width of the
channel is 3.81 cm and the inner radius of the U-bend is 1.91 cm as specified by Monson and
Seegmiller [23].

The pressure coefficient is defined as

cp = P − P∞
1
2ρ∞U

2
∞
, (4-2)

where p is the static pressure over the surface, p∞ is the reference pressure, ρ∞ and U∞ are
the freestream density and average velocity specified at the inlet of the channel. Figures 4-7
(a)-(c) show the velocity profiles at different sections of the U-duct. From figures (a) and
(b) there is no visible effect of the curvature correction on the velocity profile. However,
from figure (c) (angle of 180o) it is possible to observe that the non-corrected SST model
predicts early flow reattachment as the velocity value near to the inner wall is close to zero.
The curvature correction reduces the turbulence levels over the inner (concave) surface of
the wall, which delays the reattachment point (see also Fig. 4-3) and translates in a higher
velocity value near the wall.

The calculations performed in this section are in good agreement with the experimental
results and show a positive effect of the curvature correction on the SST turbulence model.
Moreover, the results correspond to the numerical calculations of Smirnov and Menter [11].
From these results, in combination to the ones obtained in the previous section, it is possible
to conclude that the curvature correction is correctly implemented in the RANS solver.

4-3 Von-Karman Institute (VKI) Transonic Turbine Guide Vane

In the present section the curvature correction is tested for the flow computation around a
VKI transonic turbine guide vane. The VKI profile was experimentally investigated by Arts
et al. in Ref. [3]. The experiments were performed in a compression tube facility in order
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Figure 4-3: Skin friction coefficient cf along the inner wall of the U-duct. The x axis represents
the distance along the central line of the U-duct normalized with respect to the width H.

Figure 4-4: Skin friction coefficient cf along the upper wall of the U-duct. The x axis represents
the distance along the central line of the U-duct normalized with respect to the width H.
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Figure 4-5: Pressure coefficient cp along the inner wall of the U-duct. The x axis represents the
distance along the central line of the U-duct normalized with respect to the width H.

Figure 4-6: Pressure coefficient cp along the upper wall of the U-duct. The x axis represents the
distance along the central line of the U-duct normalized with respect to the width H.
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(a) (d)

(b) (e)

(c) (f)

Figure 4-7: Turbulent kinetic energy (right side) and streamwise velocity (left side) profiles at
different locations of the U-duct. The velocities are normalized with respect to the mean velocity
at the inlet of the channel. The x-axis shows the position coordinate perpendicular to the wall
normalized by the channel width.
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Table 4-2: Geometrical characteristics of the VKI turbine guide vane.

Parameter Value
Chord 67.647 [mm]

Pitch to chord 0.85 [-]
Stagger angle 55o [-]

Throat to chord 0.2207 [-]

Figure 4-8: Computational domain of the VKI transonic guide vane. The grid consists of 25000
control volumes providing a resolution of y+ < 1 at the first cell-row at the blade surface.

to study the influence of Mach number, turbulence intensity, and Reynolds number on the
transitional heat transfer distribution. The most important blade characteristics are given in
Tab. 4-2. The computational domain used for the present calculations (Fig. 4-8) was provided
by Dr. Rene Pecnik and it consists of 25000 control volumes with a grid resolution of y+ < 1
at the first cell-row at the blade surface. The reference temperature T∞ is prescribed to be
416 K, while the temperature of the blade Tw is kept constant at 300 K. The heat transfer
coefficient h is calculated based on the predicted heat flux qw and the difference between the
total and the wall temperatures:

h = qw
T∞ − Tw

.

The numerical calculations are performed for the two different flow conditions (cases MUR235
and MUR241 ), which are summarized in Tab. 4-3. For each test case, the four different
numerical schemes shown in Tab. 4-1 are used in order to assess the influence of the transition
model and the curvature correction on the solution. The specific values of the boundary
conditions used for the the MUR235 and MUR241 test cases can be found in Appendix B.

Figures 4-9 and 4-10 show the heat transfer coefficient as a function of the curvilinear
coordinate along the blade s/c normalized by the chord for the MUR235 and the MUR241
test cases. Positive values of s/c indicate the suction side, while negative values of s/c
correspond to the pressure side of the blade. From the experimental data it is possible to
observe laminar to turbulent transition on the suction side due to a sharp increase in the heat
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Table 4-3: Data of the VKI turbine guide vane test cases, where Mis,out and Rec,out are the
isentropic Mach number and the Reynolds number based on the chord length, both calculated at
the outlet region. ReM is the Reynolds number based on the velocity and mesh spacing of the
turbulence grid in the experimental setup, used to calculate the specific dissipation rate ω [4].

Tu% Mis,out Rec,out ReM
MUR235 6.0 0.927 1.15× 106 61700
MUR241 6.0 1.089 2.11× 106 61700

Figure 4-9: Heat transfer coefficient over the VKI blade profile for the MUR235 test case. The
different lines represent numerical calculations while the squares represent the experimental results
of Arts et al. [3]. Positive values of s/c indicate the suction side, while negative values of s/c
correspond to the pressure side of the blade.

transfer coefficient; at s/c = 0.8 for the MUR235 and at s/c = 0.6 for the MUR241 case. On
the other hand, none of the test cases exhibits transition on the pressure side as the variations
of the heat transfer coefficients are smooth. From the numerical calculations it is possible
to observe that the SST and the SST-CC schemes in general overestimate the heat transfer
coefficient along the surface. Both solutions present smooth oscillations in the heat transfer
coefficient over the suction side, for this reason no transition point can be distinguished. This
is an expected result as the SST model was developed for a fully turbulent boundary layer
and does not take transition into account. On the other hand, by comparing these two models
some trends in the qualitative behaviour of the curvature corrected solution can be provided.
In both test cases, the MUR235 and MUR241 it is possible to observe that the curvature
correction term mitigates the turbulence levels on the suction side (concave surface) which
translates in a lower heat transfer coefficient of the SST-CC model compared to the fully
turbulent SST. Furthermore, the turbulence levels are enhanced by the curvature correction
over the pressure side (concave surface), which translates in a higher heat transfer coefficient.
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Figure 4-10: Heat transfer coefficient over the VKI blade profile for the MUR241 test case.
The different lines represent numerical calculations while the squares represent the experimental
results of Arts et al. [3]. Positive values of s/c indicate the suction side, while negative values of
s/c correspond to the pressure side of the blade.

From the results of the SST-ReT calculations it is possible to distinguish laminar to turbu-
lent transition over the suction side for both, MUR235 and MUR241 test cases. Nevertheless,
despite the ability of the γ − Reθt model to predict transition there is a large deviation be-
tween the calculated transition point and the experimental data. It is necessary to notice
that the transition model is based on empirical correlations derived from incompressible flat
plate experiments that control the onset and extent of the transition. The critical Reynolds
number Reθc determines where the intermittency first starts to grow and Flenght controls the
extent of transition. Therefore, these deviations from the experimental data can be expected
as the complexity of the flow geometry increases.

On the other hand, the results from the turbulence model with transition and curvature
correction (SST-ReT-CC) show for both test cases a delay in the transition point which
improves the agreement with the experimental data. This effect is the consequence of the
curvature correction factor, which decreases the turbulence levels in the boundary layer over
a concave surface (suction side). The reduction of the turbulence levels in the boundary layer
cause the transition model to trigger the onset further downstream. This can be seen from
Fig. 4-12, which shows the turbulent kinetic energy and velocity distributions in the normal
direction of the blade for the MUR241 test case at different positions over the surface. These
locations are schematically indicated in Fig. 4-11.

Figures 4-12 (a)-(c) show that the turbulent kinetic energy predicted by the curvature
corrected model SST-ReT-CC is lower over the suction side than the one predicted by the
non-corrected model SST-ReT. In particular, at the position s/c = 0.6 the non corrected
model predicts a fully turbulent boundary layer which is reflected by the high values of k.
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Figure 4-11: Schematic representation of the VKI profile and the different points where the
turbulent kinetic energy is calculated.

At positions s/c = 0.85 and s/c = 1.2 the flow predicted by both models is fully turbulent,
however, the turbulent kinetic energy predicted by the corrected solution decays more rapidly.
For the pressure side (Figs. 4-12 (f)-(h)), the turbulent kinetic energy predicted by the
corrected solution is higher than then the non-corrected one. The pressure side of the profile
is a concave surface which translates in a higher value of the correction factor which enhances
turbulent kinetic energy production. The same situation occurs for the MUR235 case resulting
in similar graphs which are not included here. Figure 4-13 shows the skin friction coefficient
cf for both test cases calculated with the SST-ReT-CC method. As before, it is possible
to distinguish the transition point over the suction side of the airfoil which corresponds to
a sharp increase in cf . In addition, the skin friction coefficient always stays positive which
indicates that no flow separation occurs over the surface.

4-4 T106 Low-Pressure Turbine Blade

In the present section the curvature correction term is applied to a 2D steady state flow
computation around a high-lift low-pressure turbine blade, named T106 in the literature.
This test case is of high interest as of today there is a trend to increase the lift coefficients
of low pressure (LP) turbine blades in order to reduce engine weight and cost. The Reynolds
numbers of LP turbine blades range from about 0.5 × 105 in the final stage at high altitude
in small business jet applications to about 5 × 105 at sea level takeoff in the first stage of
the largest turbofans [21]. Given these Reynolds numbers and the lift coefficients of modern
LP turbines, boundary layer transition and separation play an important role in determining
engine performance at different operating conditions.

The T106 profile was experimentally investigated by Opoka et al. in Ref. [21]. The geo-
metrical characteristics of the T106A case are summarized in Tab. 4-4. The inlet conditions
correspond to a total temperature Tin of 606.5 K and a total pressure Pin of 1 bar. The numer-
ical calculations were performed for the two different flow conditions which are summarized
in Tab. 4-5. According to Opoka et al. [21], the turbulence intensity values in the second
column of Tab. 4-5 are measured in the absence of the blade, at a location corresponding
to the leading edge of the profile. In order to guarantee these turbulence levels in the T106
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-12: Turbulent kinetic energy (solid lines) and velocity distributions (dashed lines) in
the normal direction of the surface at different positions over the VKI profile. The distance is
normalized by the chord length of the profile.
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Figure 4-13: Skin friction coefficient over the VKI blade profile for the MUR241 and MUR235
test cases calculated with the SST-ReT-CC method.

Table 4-4: Geometrical characteristics of the T106 low pressure turbine blade.

Parameter Value
Chord 99 [mm]

Pitch to chord 0.799 [-]
Stagger angle 59.3o [-]
Inlet flow angle 37.7o [-]

computational domain, the inlet values of k and ω are first calculated for a straight channel
in a pre-processing step. The specific values of the boundary conditions for the T106 test
cases are given in Appendix B.

From the previous section it was found that the fully turbulent solution (SST or SST-CC)
is not capable of capturing the transition process. For this reason, the present test case is
performed only with the numerical models that incorporate the γ − Reθt transition model
(SST-ReT and SST-ReT-CC). The computational domain used for the T106 case (Fig. 4-14)
was provided by Dr. Rene Pecnik and it consists of 320 points around the blade surface and
88 points in the normal direction. The maximum value of y+ at the first cell-row at the blade
surface is less than 0.4.

Figures 4-15 and 4-16 show the isentropic pressure coefficient cp,is as a function of the
normalized curvilinear coordinate along the blade1 s/l for the Tu = 0.5% and the Tu = 4%

1This normalization is different to the one used in the VKI test case. The normalization is performed by
dividing the position at the suction side and the pressure side by the length of the suction side and the length
of the pressure side respectively. This is necessary in order to compare the solutions with the experimental
data of Opoka et al. [21]
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Table 4-5: Data of the T106A low pressure turbine test cases, whereMis,out and Rec,out are the
isentropic Mach number and the Reynolds number based on the chord length, both calculated at
the outlet region.

Tu% Mis,out Rec,out
Case 1 4.0 0.2986 1.6× 105

Case 2 0.5 0.2986 1.6× 105

Figure 4-14: Computational domain of the T106 low pressure turbine blade. The computational
domain consists of 320 points around the blade surface and 88 points in the normal direction
providing a resolution of y+ < 0.4 at the first cell-row over the surface.

test cases. The isentropic pressure coefficient is defined by

cp,is = P∞ − P
P∞ − Ps2

, (4-3)

where P is the static pressure over the surface, P∞ is the reference pressure and Ps2 is the
static pressure at the outlet.

From the experimental results it is possible to observe boundary layer separation at s/l =
0.6 for the lower turbulence intensity (Tu = 0.5%) case. From this point a pressure plateau
extends up to a distance s/l = 0.8. The end of the pressure plateau indicates the onset of
the transition process which manifests through the pressure recovery region. Downstream
of s/l = 0.9 the boundary layer reattaches. In the higher turbulence intensity (Tu = 4%)
case, the distribution of pressure coefficient does not develop a plateau between s/l = 0.6 and
s/l = 0.8, which suggests the absence of a separation bubble.

In general, the numerical results are in good agreement with the experimental data. More-
over, it is possible to observe that the results obtained from the curvature corrected calcula-
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Figure 4-15: Pressure coefficient over the T106 blade profile for the Tu = 4% test case. The lines
represent numerical calculations while the squares represent the experimental results of Opoka et
al. The curve on the bottom of the figure corresponds to the pressure side, while the upper one
lies on the suction side of the blade.

Figure 4-16: Pressure coefficient over the T106 blade profile for the Tu = 0.5%. The lines
represent numerical calculations while the squares represent the experimental results of Opoka et
al. The curve on the bottom of the figure corresponds to the pressure side, while the upper one
lies on the suction side of the blade.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-17: Turbulent kinetic energy (solid lines) and velocity distributions (dashed lines) in
the normal direction of the surface at different positions over the T106 profile. The distance is
normalized by the chord length of the profile.
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Figure 4-18: Schematic representation of the T106A profile and the different points where the
turbulent kinetic energy is calculated.

Figure 4-19: Skin friction coefficient over the T106A blade profile for the Tu = 4.0% and
Tu = 0.5% test cases as a function of the curvilinear coordinate along the blade s/c normalized
by the chord. The solid lines represent calculations performed with the SST-ReT-CC model,
while the dashed lines are obtained with the SST-ReT scheme. Positive values of s/l indicate the
suction side, while negative values of s/l correspond to the pressure side of the blade.

tions (SST-ReT-CC) are the same as from the non-corrected model (SST-ReT). The reason
is that, although the boundary layer might separate (Tu = 0.5%), the laminar to turbulent
transition occurs in the shear layer above the separation bubble. The increase on turbulent
kinetic energy in the boundary layer can be appreciated after the flow reattaches at the very
end of the suction side (s/l = 0.9). In the case of higher turbulence intensity (Tu = 4%), no
transition can be observed over the suction side as the skin friction coefficient changes along
the surface are smooth.
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Figure 4-17 shows the turbulent kinetic energy and velocity distributions in the normal
direction of the surface for the Tu = 0.5% test case at different positions over the blade, which
are schematically indicated in Fig. 4-18. As in the previous VKI test case, it is possible to
observe the effect of the curvature correction term within the boundary layer as it increases
the turbulent kinetic energy over the pressure side and decreases it over the suction side as
compared to the non-corrected solution. Moreover, figures (d)-(e) show the turbulent kinetic
energy within the separation bubble. The low values of the turbulent kinetic energy at these
positions indicate that no transition occurs across the bubble at this streamwise location.

Figure 4-19 shows the skin friction coefficient for both T106A test cases (Tu = 4% and
Tu = 0.5%) as a function of the curvilinear coordinate s/l. The skin friction coefficient for
the low turbulence case becomes negative near the point s/c = 0.6 confirming the presence of
a separation bubble. For the higher turbulence test case, transition occurs over the suction
side of the profile which can be distinguished as a sharp increase of the skin friction coefficient
at s/l = 0.6. In addition, it can be seen that the curvature corrected solution (CC) shifts
the transition onset towards the trailing edge (s/l=1). This effect is the consequence of the
curvature correction factor, which decreases the turbulence levels in the boundary layer over
a concave surface (suction side). This reduction of the turbulence levels in the boundary layer
causes the transition model to trigger the onset further downstream.
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Chapter 5

Summary and Conclusions

This thesis presents a thorough analysis of the curvature effects on turbulent flows for tur-
bomachinery applications and documents the steady state simulation of a series of two di-
mensional test cases characterized by a strong streamline curvature. For this purpose, the
Reynolds-Averaged Navier-Stokes (RANS) solver developed by Pecnik et al. [18] is upgraded
with two new subroutines which use the local flow field properties, namely the velocity U , the
strain tensor Sij , vorticity tensor Ωij and specific turbulence dissipation rate ω, to calculate
the Spalart and Shur [12] curvature correction (CC) term. The correction factor is then im-
plemented in the k−ω shear stress transport (SST) model of Menter [19] and in the γ−Reθt
(ReT) transition model of Langtry and Menter [8].

The new subroutines are first validated on two well known test cases, namely a subsonic
flow over an adiabatic flat plate [22] and the fully turbulent flow inside a U-duct channel
[23, 11]. As expected, the results show that the curvature correction term has no effect on the
solution of the flat plate test case. For the U-duct channel case, the numerical calculations
show that the curvature corrected SST-CC turbulence model agrees better with the experi-
mental data than the original model.
Next, the curvature correction is tested on two well documented turbomachinery test cases.
The first one being the prediction of the heat transfer coefficient over a Von Karman Institute
(VKI) transonic turbine guide vane [3], and the second the prediction of the pressure coeffi-
cient over the high lift T106 low pressure turbine blade [21]. For the VKI test case, two flow
configurations (MUR235 and MUR241) are considered, both characterized by the presence of
a transition spot over the suction side of the profile. The results show that the SST-CC and
the original SST turbulence models overestimate the heat transfer coefficient over the surface
of the blade and they are not able to capture the transition process. On the other hand,
the results obtained from using the ReT transition model exhibit laminar to turbulent tran-
sition over the suction side of the blade and have a better agreement with the experimental
data. However, the transition point is still located too far upstream when compared to the
experimental values. The results obtained by the curvature corrected ReT model present a
significant improvement with respect to the original ReT model as the curvature correction
term reduces the turbulence levels over the suction side which cause the transition model to
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trigger the onset further downstream.
Finally, the high lift T106 low pressure turbine blade is considered for two different turbulence
intensities: Tu = 4% and Tu = 0.5%. In the case of high freestream turbulence, transition
occurs before the boundary layer separates. However, for the lower freestream turbulence
case the boundary layer separates and transition occurs in the shear layer above the laminar
separation bubble. Here, the transition model is essential for the predictive capability of the
simulation and the results are in good agreement with experimental data. For the two dif-
ferent flow configurations no significant improvements are observed when using the curvature
correction term.

In this work it has been shown that turbulence in a boundary layer entering a convex
curve is diminished by the centrifugal acceleration, while the turbulence of a flow entering a
concave surface is amplified. The curvature correction term interacts with the SST turbulence
model by modulating the turbulent kinetic energy production. This is particularly beneficial
for the ReT transition model performance, which is based on empirical correlations obtained
from flat plate experimental data. For a convex surface it has been found that the original
SST turbulence model overpredicts the value of the turbulent kinetic energy which leads to
an early prediction of the transition point by the ReT model. The effect of the curvature
correction term is to reduce the turbulent kinetic energy within the boundary layer delaying
the transition point further downstream. On the other hand, the original SST model under-
predicts the turbulent kinetic energy over a concave surface. For this reason, although none
of the test cases in the present thesis exhibits transition over a concave surface, a delayed
transition onset can be expected from the ReT transition model if the curvature correction is
not used.

In general, the results obtained in this work show a positive effect of the curvature cor-
rection on the flow solutions. Furthermore, the additional computational cost of calculating
the correction term is not significant as compared to the operations required by the solver, as
the complexity of the algorithm is linear (i.e. the amount of operations is proportional to the
number of cells in the computational domain). It is necessary to notice that the curvature
correction proposed by Spalart and Shur [12] has been originally developed for weak rotation
or curvature. As none of the present test cases exhibit system rotation it becomes necessary
to further assess the predictive capability of the correction term by including this effect. In
addition, the upper and lower limits of the curvature correction are based on the tests per-
formed by Smirnov and Menter [11]. For this reason, a recalibration of these limits must be
considered when applying the curvature correction for turbomachinery test cases .
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Appendix A

Subroutines to calculate the Spalart
and Shur Correction Term

In the present chapter the subroutines to calculate the Spalart and Shur correction term
implemented in the RANS solver are presented. The first subroutine is used to calculate the
DSij
Dt (Equation 2-62) over each cell center of the grid:

1
2 virtual void shearstressface ( )
3 {
4
5 int oo , ii ;
6 double d1 , d2 , VA1 , VA2 ;
7
8 for ( int i=0; i<ncv ; i++)
9 for ( int j=0; j<3; j++) //Set dsdt to 0 for each time

step
10 for ( int k=0; k<3; k++)
11 {
12 dsdt [ i ] [ j ] [ k ]=0;
13 }
14
15 //INTERNAL FACES
16 for ( int i=nfa_b ; i<nfa ; i++) //Recalculate dsdt for the

new time step
17 {
18
19 oo=cvofa [ i ] [ 0 ] ;
20 ii=cvofa [ i ] [ 1 ] ;
21 d1=sqrt ( pow ( x_cv [ oo ] [ 0 ] − x_fa [ i ] [ 0 ] , 2 . 0 )+pow ( x_cv [ oo ] [ 1 ] − x_fa [ i

] [ 1 ] , 2 . 0 )+pow ( x_cv [ oo ] [ 2 ] − x_fa [ i ] [ 2 ] , 2 . 0 ) ) ;
22 d2=sqrt ( pow ( x_cv [ ii ] [ 0 ] − x_fa [ i ] [ 0 ] , 2 . 0 )+pow ( x_cv [ ii ] [ 1 ] − x_fa [ i

] [ 1 ] , 2 . 0 )+pow ( x_cv [ ii ] [ 2 ] − x_fa [ i ] [ 2 ] , 2 . 0 ) ) ;
23
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24
25 double vel_fa [ 3 ] ; //VELOCITY AVERAGE
26 double vel_fa0 [ 3 ] ;
27 double vel_fa1 [ 3 ] ;
28 for ( int j=0; j<3; j++){
29 vel_fa0 [ j ]=vel [ oo ] [ j ]+grad_u [ oo ] [ j ] [ 0 ] ∗ ( x_fa [ i ] [ 0 ] − x_cv [ oo ] [ 0 ] )+

grad_u [ oo ] [ j ] [ 1 ] ∗ ( x_fa [ i ] [ 1 ] − x_cv [ oo ] [ 1 ] )+grad_u [ oo ] [ j ] [ 2 ] ∗ ( x_fa [
i ] [ 2 ] − x_cv [ oo ] [ 2 ] ) ;

30 vel_fa1 [ j ]=vel [ ii ] [ j ]+grad_u [ ii ] [ j ] [ 0 ] ∗ ( x_fa [ i ] [ 0 ] − x_cv [ ii ] [ 0 ] )+
grad_u [ ii ] [ j ] [ 1 ] ∗ ( x_fa [ i ] [ 1 ] − x_cv [ ii ] [ 1 ] )+grad_u [ ii ] [ j ] [ 2 ] ∗ ( x_fa [
i ] [ 2 ] − x_cv [ ii ] [ 2 ] ) ;

31 }
32
33
34
35 for ( int j=0; j<3; j++){
36 vel_fa [ j ]= ( vel_fa0 [ j ]∗ d2+vel_fa1 [ j ]∗ d1 ) /(d2+d1 ) ;
37 }
38
39 VA1 = ( vel_fa [ 0 ] ∗ fa_normal [ i ] [ 0 ]+ vel_fa [ 1 ] ∗ fa_normal [ i ] [ 1 ]+ vel_fa

[ 2 ] ∗ fa_normal [ i ] [ 2 ] ) /cv_volume [ oo ] ;
40 VA2 = ( vel_fa [ 0 ] ∗ fa_normal [ i ] [ 0 ]+ vel_fa [ 1 ] ∗ fa_normal [ i ] [ 1 ]+ vel_fa

[ 2 ] ∗ fa_normal [ i ] [ 2 ] ) /cv_volume [ ii ] ;
41
42 for ( int j=0; j<3; j++)
43 for ( int k=0; k<3; k++)
44 {
45 dsdt [ oo ] [ j ] [ k]+= (0 . 5∗ ( grad_u [ oo ] [ j ] [ k ]+grad_u [ oo ] [ k ] [ j ] ) ∗d2

+0.5∗( grad_u [ ii ] [ j ] [ k ]+grad_u [ ii ] [ k ] [ j ] ) ∗d1 ) ∗VA1 /(d2+d1 ) ;
//dsdt_node=dsdt_node -Sij*VA/vol_node

46 dsdt [ ii ] [ j ] [ k]−= (0 . 5∗ ( grad_u [ oo ] [ j ] [ k ]+grad_u [ oo ] [ k ] [ j ] ) ∗d2
+0.5∗( grad_u [ ii ] [ j ] [ k ]+grad_u [ ii ] [ k ] [ j ] ) ∗d1 ) ∗VA2 /(d2+d1 ) ;

47 }
48
49 }
50
51 //BOUNDARY FACES
52 for ( int i=0; i<nfa_b ; i++)
53 {
54 oo=cvofa [ i ] [ 0 ] ;
55 VA1 = ( vel_bfa [ i ] [ 0 ] ∗ fa_normal [ i ] [ 0 ]+ vel_bfa [ i ] [ 1 ] ∗ fa_normal [ i ] [ 1 ]+

vel_bfa [ i ] [ 2 ] ∗ fa_normal [ i ] [ 2 ] ) /cv_volume [ oo ] ;
56 for ( int j=0; j<3; j++)
57 for ( int k=0; k<3; k++)
58 {
59 dsdt [ oo ] [ j ] [ k ]=dsdt [ oo ] [ j ] [ k ] + ( 0 . 5∗ ( grad_u [ oo ] [ j ] [ k ]+

grad_u [ oo ] [ k ] [ j ] ) ) ∗VA1 ;
60 }
61 }
62
63 }
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47

Once the total derivative of the strain tensor DSij
Dt has been computed over every cell center

of the mesh, the following subroutine is used to evaluate the curvature correction term fr
(equations 2-48 and 2-49) at every cell center of the grid.

1 virtual void CurvatureCorrection ( int icv )
2 {
3 double f_rotation , norm_s , norm_om , r_tilde , r_star , D ;
4 double c1=1,c2=2,c3=1;
5
6 norm_s = 0 ;
7 norm_om = 0 ;
8
9 for ( int j=0; j<3; j++) //Set dsdt to 0 for each

time step
10 for ( int k=0; k<3; k++)
11 {
12 Aux1 [ icv ] [ j ] [ k ]=0;
13 }
14
15
16 r_tilde = 0 ;
17
18 for ( int f=0;f<3;f++){ //Here compute S

and Omega
19 for ( int g=0;g<3;g++){
20 s [ icv ] [ f ] [ g ] = 0 . 5∗ ( grad_u [ icv ] [ f ] [ g ]+grad_u [ icv ] [ g ] [ f ] ) ;
21 om [ icv ] [ f ] [ g ] = 0 . 5∗ ( grad_u [ icv ] [ f ] [ g]−grad_u [ icv ] [ g ] [ f ] ) ;
22 } }
23
24 for ( int f=0;f<3;f++){ //Here compute S

and Omega norm
25 for ( int g=0;g<3;g++){
26 norm_om = norm_om + om [ icv ] [ f ] [ g ]∗ om [ icv ] [ f ] [ g ] ;
27 norm_s = norm_s + s [ icv ] [ f ] [ g ]∗ s [ icv ] [ f ] [ g ] ;
28 }}
29 norm_om = sqrt (2∗ norm_om ) ;
30 norm_s = sqrt (2∗ norm_s ) ;
31 D = sqrt ( max ( norm_s∗norm_s , 0 . 0 9∗ omega [ icv ]∗ omega [ icv

] ) ) ;
32 r_star = norm_s/norm_om ;
33
34 for ( int i=0;i<3;i++){ //Here compute

omega_ik*S_jk=omega_ik*S_kj=Aux_ij
35 for ( int j=0;j<3;j++){
36 for ( int k=0;k<3;k++){
37 Aux1 [ icv ] [ i ] [ j ]=Aux1 [ icv ] [ i ] [ j ]+om [ icv ] [ i ] [ k ]∗ s [ icv ] [ j ] [ k

] ;
38 }}}
39
40 for ( int f=0;f<3;f++){ //Here compute

Aux1_ij*dsdt_ij=f
41 for ( int g=0;g<3;g++){
42 r_tilde = r_tilde + 2∗Aux1 [ icv ] [ f ] [ g ]∗ dsdt [ icv ] [ f ] [ g ] ;
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43 } }
44 r_tilde = r_tilde /( norm_om∗pow (D , 3 ) ) ;
45
46 f_rotation = (1+c1 ) ∗(2∗ r_star/(1+r_star ) )∗(1−c3∗atan (c2∗

r_tilde ) )−c1 ;
47 f_r1 [ icv ] = max ( min ( f_rotation , 1 . 2 5 ) , 0 . 0 ) ;
48
49 }
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Appendix B

Additional Test Case Data

For the sake of completeness, the particular values of the boundary conditions used for the
different test cases of this thesis are presented in this appendix. Tables B-1 to B-3 show the
values of the boundary conditions used for the flat plate, the U-duct channel and the straight
channel. The turbomachinery test cases, namely the VKI transonic turbine guide vane and
the T106 low pressure turbine blade are summarized in table B-4.

Table B-1: Boundary conditions used for the T3A flat plate test case.

Boundary Parameter Value
ρ∞ [kg/m3] 1.2

Reference P∞ [Pa] 101634
Values T∞ [K] 293.1

µ∞ [Pa·s] 6.743e-05
Pin [Pa] 101634

Inlet Tin [K] 293.1
kin [m2/s2] 30
ωin [1/s] 40000

Outlet Pout [Pa] 0.953e5
Type Adiabatic

Wall Uwall [m/s] 0
kwall [m2/s2] 0
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Table B-2: Boundary conditions used for the straight channel.

Boundary Parameter Value
ρ∞ [kg/m3] 15.1

Reference P∞ [Pa] 12e5
Values T∞ [K] 277.1

µ∞ [Pa·s] 1.841e-5
Inlet/Outlet ∆P [Pa] 1113

Type Adiabatic
Wall Uwall [m/s] 0

kwall [m2/s2] 0

Table B-3: Boundary conditions used for the U-duct channel test case. At the inlet section,
fully developed profiles of velocity, density and turbulence properties were calculated for a straight
channel in a pre-processing step and then specified as the boundary condition.

Boundary Parameter Value
ρ∞ [kg/m3] 15.08

Reference P∞ [Pa] 12e5
Values T∞ [K] 277.1

µ∞ [Pa·s] 1.841e-5
Uin [m/s] Straight channel

Inlet ρin [kg/m3] Straight channel
kin [m2/s2] Straight channel
ωin [1/s] Straight channel

Outlet Pout [Pa] 12e5
Type Adiabatic

Wall Uwall [m/s] 0
kwall [m2/s2] 0

Table B-4: Boundary conditions used for the turbomachinery test cases, namely the VKI transonic
turbine guide vane (MUR235 and MUR241) and the T106 low pressure turbine blade (Tu=0.5%
and Tu=4.0%).

Boundary Parameter MUR235 MUR241 T106 (Tu=0.5%) T106 (Tu=4.0%)
ρ∞ [kg/m3] 1.54 2.72 0.574 0.574

Reference P∞ [Pa] 1.828e5 3.257e5 1e5 1e5
Values T∞ [K] 416.3 416.3 606.5 606.5

µ∞ [Pa·s] 1.716e-5 1.716e-5 4.971e-5 4.971e-5
Pin [Pa] 1.828e5 3.257e5 1e5 1e5

Inlet Tin [K] 416.3 416.4 606.5 606.5
kin [m2/s2] 20.55 20.55 0.18 15
ωin [1/s] 5e4 1.1e5 170 170

Outlet Pout [Pa] 1.049e5 1.547e5 0.94e5 0.94e5
Twall [K] 300.0 300 606.5 606.5

Wall Uwall [m/s] 0 0 0 0
kwall [m2/s2] 0 0 0 0
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Abstract

Turbulent flows that are subject to streamline curvature and rotation experience additional
forces that can enhance or suppress turbulence. A particular case where streamline curvature
and rotation play an important role is in flows over aircraft engine components; such as: flows
over compressor and turbine blades, flows around the spinning discs carrying the blades in
axial turbines, flows in cooling channels of rotating blades, and flows over curved diffuser pas-
sages between compressor and turbine stages. The turbulence in a boundary layer entering a
convex curve is diminished by the centrifugal acceleration while the turbulence of a flow en-
tering a concave surface is amplified. These changes in the turbulence levels can significantly
affect the nature of the flow, and in particular, the laminar-to-turbulent transition process.
The boundary layer transition typically occurs around compressor and turbine blades, which
consist of a concave surface (pressure side) and a convex surface (suction side). The transition
phenomena can significantly affect the frictional losses, efficiency, and heat transfer over the
component. Therefore, further improvements in the engine performance require a thorough
understanding of the curvature effects in the boundary layer development.
This thesis presents an analysis of the curvature effects on turbulent flows for turbomachin-
ery applications and it documents the improvement in their prediction capability by standard
turbulence and transition models coupled with a curvature correction term on a series of two
dimensional flows. For this purpose, an in-house Reynolds-Averaged Navier-Stokes (RANS)
solver [18] is used, and the curvature correction proposed by Spalart and Shur [12] is imple-
mented in the k−ω shear stress transport (SST) model of Menter [19] and the γ−Reθt (ReT)
transition model of Langtry and Menter [8].
The curvature correction is first validated on two well known test cases, namely a subsonic
flow over an adiabatic flat plate [22], and the fully turbulent flow inside a U-duct channel
[23, 11]. As expected, the results for the flat plate indicate that the curvature correction
term has no effect on the solution. For the U-duct test case, the solution obtained from the
curvature corrected SST model is closer to the experimental data than the original SST.
Next, the performance of the curvature correction is analyzed for two well documented turbo-
machinery test cases. The first one being the prediction of the heat transfer coefficient over a
Von Karman Institute (VKI) transonic turbine guide vane [3], and the second the prediction
of the pressure coefficient over the high lift T106 low pressure turbine blade [21]. For the VKI
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test case, two different flow configurations are considered, both characterized by the presence
of boundary layer transition over the suction side of the profile. The results obtained from the
curvature corrected SST and the original SST models overestimate the heat transfer coeffi-
cient over the surface of the blade, and, in general, are not able to capture the transition. On
the other hand, the ReT transition model is able to predict laminar-to-turbulent transition
over the suction side. Moreover, when combined with curvature correction, the ReT model
predicts the transition onset closer to the experimental data, providing a much more accurate
calculation of the heat transfer coefficient.
Finally, for the T106 turbine blade two flow configurations with different turbulence inten-
sities are considered. In the case of high freestream turbulence, transition occurs before the
boundary layer separates. However, for the lower freestream turbulence case the boundary
layer separates and transition occurs in the shear layer above the laminar separation bub-
ble. Here, the transition model is essential for the predictive capability of the simulation
and the results are in good agreement with experimental data. For the two different flow
configurations no significant improvements are observed when using the curvature correction
term.
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Chapter 1

Introduction

1-1 Motivation

In aircraft engines, especially in turbomachinery components, the Reynolds numbers that
determine the evolution of the boundary layers are relatively low, hence a large part of the
flow along the blades surface is laminar or transitional. The boundary layer development,
losses, efficiency, and heat transfer are greatly affected by the location and extent of the
laminar-to-turbulent transition. The ability to accurately predict the transition process is
therefore crucial for the design of efficient and reliable machines [4].

The main goal of gas turbine development is to increase its thermodynamic performance
which depends on several factors such as the turbine inlet temperature, the selection of the
optimal compression ratio and system configuration (intercasing cooling, regeneration, etc).
However, nowadays the most substantial source of improvement comes from increasing the
turbine inlet temperature, which affects both the specific power and thermal efficiency of the
cycle [5]. The development in this area has been possible due to the progress in material
engineering, however, the temperatures are so high nowadays that the improvement of ma-
terial performance and specific design of new materials is not sufficient and the application
of cooling systems for the hot components is necessary. The cooling of gas turbine vanes
demands for accurate estimates of the cooling system location within the components and
the amount of cooling needed in order to achieve an economical use of the available cooling air
supply. In addition, there is a trend towards achieving a higher power output per stage, ne-
cessitating larger turning angles in cascades. For these reasons, designers have to understand
the development of the boundary layers on turbine airfoils to obtain as much information as
possible to mitigate the frictional losses and heat transfer. Despite the technical maturity
of gas turbines, the research, optimization and development concerning this technology still
continues, as increasing the engine’s performance by a small amount or improving the cooling
system provides substantial economic benefits.
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2 Introduction

1-2 Laminar to Turbulent Transition

The heat transfer and boundary layer separation strongly depend on the condition of the
boundary layer. In a turbulent boundary layer, heat transfer and friction losses can be about
five times higher than in a corresponding laminar boundary layer. In general, boundary layers
always change from a laminar to a turbulent state, whereby this process is called laminar to
turbulent transition. The location and extent of the transition process depend on the Reynolds
number, the freestream turbulence intensity, the pressure gradient and geometry of the walls.

In practice, there are three important modes of laminar to turbulent transition. The
first mode is called natural transition, which starts with a weak instability in the laminar
boundary layer and continues through various stages of amplified instability until the flow
is fully turbulent. The second mode is called separated flow transition which occurs in a
separated laminar boundary layer. The third mechanism is called bypass transition and is
caused by large disturbances in the external flow such as freestream turbulence. This is the
most common mode of transition in gas turbine engines.

At present, there are mainly three concepts used to model transition in industry [6]. The
first one is the application of low Reynolds number turbulent models, which are relatively
easy to implement and in some cases are capable of predicting transition in three dimensional
flows. Low Reynolds number turbulence models employ damping functions that are designed
to predict the viscous sublayer behaviour. These models do not require wall functions. In
order to predict transition they rely on the diffusion of turbulence from the freestream into the
boundary layer and the interaction of this freestream turbulence with the model source terms
[7]. On the other hand, a few of these models were found to predict transition at reasonable
Reynolds numbers when the freestream turbulence level was sufficiently high. The ability
of these models to predict transition seems to be coincidental and is due to the similarities
between the viscous sublayer and the developing laminar boundary layer where the production
of turbulence is damped.

The second approach is the so called eN method, which is based on the local, linear
stability theory and the parallel flow assumption in order to calculate the growth of the
disturbance amplitude from the boundary layer neutral point to the transition location. It
requires three successive steps: the first step consists of the calculation of the laminar velocity
and temperature profiles along the body of interest. In the second step the local growth rates
of the unstable waves are computed for each of these profiles. This can be accomplished by
solving either the local stability equations or the Parabolized Stability Equations (PSE). In the
third step, the local growth rates are integrated along each stream line in order to determine
the N factor. Once the disturbance amplitude ratio (eN ) exceeds the limiting N factor
transition is assumed to start. One issue with the eN method is that the N factor does not
represent the amplitude of a disturbance in the boundary layer, but rather the amplification
factor from an initial unknown amplitude. This initial amplitude of the disturbance is related
to external disturbance environment through an unknown receptivity process. For this reason,
the limiting factor N must be determined by calibration to wind tunnel or flight tests making
from the eN approach a semi-empirical method. However, there are several drawbacks in
applying the eN method in general aerospace applications. The first is that since it is based
on the linear stability theory, it cannot predict transition due to non-linear effects such as
bypass transition or surface roughness induced transition. In addition, the need to track the
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1-2 Laminar to Turbulent Transition 3

growth of the disturbance amplitude ratio along the streamline results in a significant issue
for 3D flows where the streamline direction is not aligned with the grid [7].

The third approach for predicting transition, which is favoured by the gas turbine industry,
is the use of experimental correlations. The empirical correlations usually relate the freestream
turbulence intensity Tu to the transition Reynolds number based on the momentum thickness
Reynolds number Reθt. These correlations are attractive because they have been successfully
used for several years and provide consistent results even when used in 3D structured Navier-
Stokes codes. In order to employ an empirical correlation for a transition onset, the laminar
solution around the body of interest must be first calculated. In a second step the boundary
layer quantities are integrated to obtain the momentum thickness Reynolds number Reθ along
the whole body. The transition onset is then assumed to occur at the position where the local
value of Reθt exceeds the one predicted by the correlation. Once the starting location of the
transition is determined, a turbulence model is turned on and the subsequent flow development
is calculated.

While empirical correlation methods prove to be sufficiently accurate, they present numer-
ical and programming drawbacks in Navier-Stokes codes. As mentioned before, for correlation
based transition models it is necessary to compare the actual momentum thickness Reynolds
number Reθ to the transition value from the correlation Reθt. This represents a difficult task
in a Navier-Stokes environment since the boundary layer edge is not well defined and the
integration will therefore depend on the implementation of a search algorithm. In addition,
there are serious difficulties regarding the implementation of non-local formulations in modern
CFD codes based on unstructured grids and massive parallel execution. Unstructured grids
do not easily provide the infrastructure needed to integrate global boundary layer parameters
because the grid lines normal to the surface cannot be easily identified. In the case of a
general parallelized code, the boundary layer can be divided between different CPU domains
making the integration very complex to perform in parallel. Despite the implementation dif-
ficulties, empirical correlation methods are very attractive, as they allow for the inclusion of
experimental data and additional parameters that are believed to affect transition. As a con-
sequence, the accuracy of the empirical correlations can be improved as better experimental
data on transition becomes available, and for this reason empirical correlations remain as an
attractive method for predicting transition [7].

In this work, the recent γ−Reθt transition model proposed by Langtry and Menter in Ref.
[8] will be used. The central mechanism by which this model operates is the intermittency
parameter γ, which is the fraction of time for which the flow is turbulent at a certain location
in space. The formulation proposed by Langtry and Menter is based on two transport equa-
tions. The first is an equation of the intermittency used to trigger the transition process by
controlling the production term of kinetic energy in the boundary layer. The second transport
is formulated in terms of the transition onset Reynolds number Reθt. Outside the boundary
layer, the transported variable is forced to follow the value of Reθt provided by the experi-
mental correlation which is then diffused into the boundary layer. By this mechanism, the
strong variations of turbulence intensity and pressure gradient in the freestream can be taken
into account. At every location of the flow the local vorticity Reynolds number is compared
to the transition Reynolds number to determine if the transition criterion is satisfied. If the
vorticity Reynolds number exceeds the local transition Reynolds number, a source term in
the intermittency equation is activated and turbulence is produced. In chapter 2 a detailed
description of this method is provided.
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4 Introduction

1-3 The Role of Computational Fluid Dynamics

The understanding of the laminar to turbulent transition is important to incorporate new
modeling methods into Computational Fluid Dynamics (CFD) codes, which are an effective
and powerful tool in the design of turbomachinery components and other aerospace devices
where wall shear stress or wall heat transfer are of interest. Currently, the transition modeling
largely limits the quality of CFD codes, and the error in the estimation of the onset and
extent of the transition can affect the calculated machine efficiency by several percent and
the component life by more than an order of magnitude [9]. An important feature of thin shear
flows around turbomachinery components is the presence of significant streamline curvature
and rotation. For example the flow over compressor and turbine blades, the flow around
the spinning discs carrying the blades in axial turbines, and the flow over curved diffuser
passages between the compressor and turbine. For these type of flows streamline curvature
and rotation exert additional forces which can change the turbulence levels in a boundary
layer. These changes in the turbulence levels can affect the process of laminar to turbulent
transition, the heat transfer and frictional losses over a surface.

Despite a fast growth of computer power and more and more intensive use, the Reynolds
averaged Navier-Stokes equations still remain as the most widely used modeling approach
in industrial applications. At the present, it is widely thought that linear eddy-viscosity
turbulence models fail to accurately predict (or even fail to predict them at all) the effects
of surface curvature and rotation [10]. Further progress in this area is often associated with
Reynolds stress models (RSMs) [11]. The explicit appearance of rotation and curvature terms
in the turbulence equations is cited as the fundamental advantage of RSMs over the simpler
eddy viscosity models (EVMs). However, these models are not robust enough for practical
applications in complex geometries [12]. Therefore, an effective alteration of the simple EVMs
to incorporate curvature effects represents the most practical solution to the problem.

1-4 Curvature Effects

The surface curvature can suppress or amplify turbulence, depending on whether is convex or
concave. The turbulence level in a boundary layer entering a convex curve (like the suction
side of a turbine guide vane) is diminished by the centrifugal acceleration, while the turbulence
of a flow entering a concave surface (pressure side) is amplified [2].

In 1937, Clauser and Clauser [13] recognized by means of experiments that laminar flows in
a concave surface become turbulent at lower Reynolds numbers than on flat or convex surfaces.
In his work, Görtler [14] determined that the laminar boundary layer on a concave surface
becomes unstable as a result of centrifugal forces. The instability results in a secondary flow
in the form of counter-rotating vortices (see Fig. 1-1) with axes parallel to the direction of the
mean flow [1]. Görtler vortices have been observed by Han and Cox [15] in cascade flows. Their
experiments suggested that the presence of the vortices could account for the increased heat
transfer experienced on the turbine pressure surfaces. At the present, many rotation and/or
streamline curvature (RC) corrections have been suggested in the literature. Howard et al.
[16] performed a numerical analysis to predict the flow in a straight, radial rotating channel
or rectangular cross section. The two equation k − ε model was employed, with alternative
modifications to include the influence of Coriolis force on the turbulent kinetic energy. The
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1-5 Thesis Outline 5

Figure 1-1: Görtler vortices in the boundary layer of a concave wall. (Adapted from Finnis and
Brown [1].)

results shown moderate agreement with experimental data, confirming nevertheless the need
for inclusion of Coriolis effects in the turbulence model.

Launder et al. [17] proposed an empirical coefficient to account for curvature effects which
is directly proportional to the Richardson number Ri based on the eddy time scale (k/ε). The
curvature correction term was implemented on the k − ε model by modifying the transport
equation for the turbulent energy dissipation ε. The modified turbulence model was validated
on a series of turbulent shear flows like the fully developed turbulent flow in a curved channel;
and the boundary layer over a convex and concave surfaces. The results shown a moderate
improvement over the results obtainable with the conventional k − ε model.

Though the above mentioned corrections are moderately successful in the specific flows for
which they were designed, they are still not universal, as they treat curvature and rotation
differently, and, in addition, often suffer from Galilean non-invariance. In this work, the
empirical function proposed by Spalart and Shur [12] to account for the effects of streamline
curvature and rotation will be used. This correction term is based on intuitive arguments
developed in thin shear layers, it is Galilean-invariant and fully defined in three dimensions.

1-5 Thesis Outline

The present work is concerned with curvature effects on the transition modeling over turbo-
machinery components. The curvature of a gas turbine guide vane can affect the extent an
location of the laminar to turbulent transition over its surface. The purpose of this work is
to improve the reliability of CFD calculations by incorporating the effect of surface curvature
into the transition modeling. For this purpose, the Stanford University in-house Reynolds-
Averaged Navier-Stokes (RANS) solver, developed by Pecnik et al. [18] is used. The curvature
correction proposed by Spalart and Shur in Ref. [12] is implemented in the k−ω SST turbu-
lence model coupled with the γ − Reθt transition model and the results of several test cases
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are discussed.

The structure of this thesis is the following: in Chapter 2, a survey on turbulence modeling,
transition and curvature effects is given. In chapter 3 the implementation of the curvature
correction term in the RANS solver is discussed. Chapter 4 presents the results of imple-
menting the curvature correction on four different test cases: a flat plate, a U-duct channel,
the VKI turbine guide vane and the low pressure T106 blade profile. Finally, in Chapter 5 a
brief summary and the conclusions of this thesis are given.
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Chapter 2

Theoretical Framework

In the present chapter, a brief discussion of turbulence modeling, laminar to turbulent transi-
tion and curvature effects is provided. The k−ω SST turbulence model of Menter [19] and the
γ−Reθt transition model proposed by Langtry and Menter [8] are presented. In addition, the
modified Spalart and Shur correction term proposed by Smirnov and Menter [11] to account
for curvature effects in turbulent flows is discussed.

2-1 Turbulence Modeling

The motion of a fluid is governed by the Navier Stokes equations. In the turbulent regime,
the solution to these equations is a chaotic, three dimensional and unsteady. Such solutions
are not easily obtained, even on massively parallel supercomputers. A much simpler level of
description is required: this calls for a statistical approach. As it will be seen in the following,
there are no closed equations for the statistics of turbulent flow, which means that there
is a larger number of unknowns than equations. In the present survey only incompressible,
constant density flow will be considered.

The equations governing incompressible flow, whether laminar or turbulent, are

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂p

∂xi
+ ν∇2ũi, (2-1)

∂ũi
∂xi

= 0.

The first equation expresses the conservation of momentum. The second expresses the in-
compressibility of fluid volumes, which is equivalent to mass conservation in the present case.
The total instantaneous velocity is denoted by ũ and it can be decomposed in a mean velocity
component U and a fluctuating component u, in other words ũ = U +u. The fluctuation u is
usually referred to as the turbulence and U as the mean flow. If the previous decomposition
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8 Theoretical Framework

is substituted into Eqs. (2-1) they become

∂

∂t
(Ui + ui) + (Uj + uj)

∂

∂xj
(Ui + ui) = −1

ρ

∂

∂xi
(P + p) + ν∇2(Ui + ui), (2-2)

∂

∂xi
(Ui + ui) = 0.

The average of this equations is obtained by drawing a bar over each term, and considering
that Ū = U and ū = 0:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν∇2Ui −

∂

∂xj
ujui︸ ︷︷ ︸, (2-3)

∂Ui
∂xi

= 0.

These are the Reynolds-Averaged Navier-Stokes (RANS) equations. Equations (2-3) for the
mean flow are the same as Eqs. (2-1), except for the last term of the momentum equation.
This term is highlighted with an underbrace and corresponds to the derivative of the Reynolds
stress tensor uiuj .

The set of equations for the mean flow (2-3) define an unclosed mathematical problem
because they are a set of four equations (i = 1, 2, 3) with ten unknowns (P ; Ui, i = 1, 2, 3;
and ujui, i = 1, 2, 3, j ≤ i). The extra six unknowns are the components of the Reynolds
stress tensor. It is necessary to point out that the statistical problem (2-3) for the mean, or
first moment requires knowledge of the covariance or second moment. This is because the
Navier-Stokes equations have a quadratic non-linearity [2]. Any non-linearity causes moment
equations to be unclosed; here the first moment equation contains second moments, the second
moment equation will contain third moments.

The formulation of additional equations to obtain a solvable set of the Navier-Stokes
equations (2-3) is called closure modeling. When the purpose is to predict non-homogeneous
flow, possibly in complex engineering geometries, semi-empirical formulations to predict uiuj
are required. In this work, an eddy viscosity model will be implemented. In this approach,
the Reynolds stress tensor is explicitly related to the mean flow by a Newtonian constitutive
equation with an eddy viscosity: uiuj = −2νTSij + 2

3δijk. The term semi-empirical means
that the model is obtained from a combination of theoretical analysis of simplified models,
fluid mechanics, and experimental data. The semi-empirical model used here to calculate
the eddy viscosity is the k − ω SST model and it will be described in detail in the following
section.

2-2 The k − ω SST Model

The k − ω Shear Stress Transport model (SST) proposed by Menter in Ref. [19] utilizes the
original k − ω model of Wilcox in the inner region of the boundary layer and switches to the
standard k− ε model in the outer region and the free shear flow. In addition, it incorporates
a modification of the definition of the eddy viscosity which accounts for the effect of the
transport of the principal turbulent shear stress.
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2-2 The k − ω SST Model 9

The k− ω model is chosen in the sublayer and the logarithmic part of the boundary layer
since it has better performance than the k− ε model in equilibrium adverse pressure gradient
flows and in compressible flows. On the other hand, the k − ε model is adopted in the wake
region of the boundary layer and in free shear layers away from any surface. The reason is
the high sensitivity of the k−ω model to the freestream values ωf specified for ω outside the
boundary layer.

In order to achieve the desired behaviour of the model in the different regions, the k − ε
model is transformed into the k−ω formulation. It is then multiplied by the blending function
(1−F1) and added to the original k−ω model times F1. The blending function F1 is designed
to be zero in the wake region and to be one in the sublayer and the logarithmic region of the
boundary layer. The original k − ω model is given by:

Dρk

Dt
= τij

∂Ui
∂xj
− β?ρωk + ∂

∂xj

[
(µ+ σk1µt)

∂k

∂xj

]
, (2-4)

Dρω

Dt
= γ1

νt
τij
∂Ui
∂xj
− β1ρω

2 + ∂

∂xj

[
(µ+ σω1µt)

∂ω

∂xj

]
. (2-5)

Next, the k − ε model is transformed into a k − ω formulation, where an additional cross-
diffusion term appears in the ω equation. The transformed k − ε is given by

Dρk

Dt
= τij

∂Ui
∂xj
− β?ρωk + ∂

∂xj

[
(µ+ σk2µt)

∂k

∂xj

]
, (2-6)

Dρω

Dt
= γ2

νt
τij
∂Ui
∂xj
− β2ρω

2 + ∂

∂xj

[
(µ+ σω2µt)

∂ω

∂xj

]
+ 2ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
. (2-7)

Now, Eqs. (2-4) and (2-5) are multiplied by F1 while Eqs. (2-6) and (2-7) are multiplied by
(1− F1) and the corresponding equations of each set are added to obtain the new model:

Dρk

Dt
= τij

∂Ui
∂xj
− β?ρωk + ∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (2-8)

Dρω

Dt
= γ

νt
τij
∂Ui
∂xj
− βρω2 + ∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2 ∗ ρ(1− F1)σω2

1
ω

∂k

∂xj

∂ω

∂xj
, (2-9)

where any constant α ∈ (σk1, ...) is given by α = F1α1 + (1 − F1)α2, being α1 and α2 the
constants of the original k − ω model and the transformed k − ε model respectively.

In order to account for the effect of the transport of the principal turbulent shear stress
the eddy viscosity is redefined as

νt = a1k

max(a1ω; ΩF2) , (2-10)

where a1 is a constant, Ω is the absolute value of the vorticity and F2 is a function that is
one for boundary layer flows and zero for free shear layers.
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10 Theoretical Framework

2-3 Transition Prediction

The process by which a laminar flow turns into a turbulent one is called transition. The
transition process and the important role played by the Reynolds number Re = Ud/ν in this
transition was first pointed out by Reynolds in 1883. Reynolds was concerned with the water
flow along a straight smooth pipe, where a filament of coloured fluid was introduced at the inlet
(see Fig. 2-1). When the speed of the water was low, the filament remained distinct through
the entire length of the tube. When the speed was increased, the filament broke up at a given
point and diffused throughout the cross-section. In his paper, Reynolds distinguished these
two flow regimes (laminar and turbulent) and he argued that the parameter that controlled
the transition from wan regime to another had to be Re = Ud/ν. He also noted that the
critical value of Re at which turbulence first appears is very sensitive to disturbances at the
entrance of the pipe.

Figure 2-1: Schematic representation of Reynolds’ observations in 1883. Reynolds distinguished
two flow regime, laminar and turbulent, and he argued that the parameter that controlled the
transition from wan regime to another had to be Re = Ud/ν. (Adapted from Dubrin and
Pettersson Reif [2].)

In general, there are three important modes of transition, natural, bypass and separated flow
transition. Each one of these modes depends on the flow conditions such as the intensity of
fluctuations in the freestream, roughness and geometry of the walls.

For the case of natural transition, it is presently known that it envolves several stages
[20]. First, at a critical value of momentum thickness Reynolds number the boundary layer
becomes susceptible to small disturbances and develops an instability in the form of a two
dimensional Tollmien-Schlichting wave. Second, the instability amplifies in the layer to a
point where three-dimensional instabilities grow and develop into loop vortices with large
fluctuations. Finally, the highly fluctuating portions of the flow develop into turbulent spots,
which then grow and convect downstream within the boundary layer to eventually merge into
a fully developed turbulent boundary layer. In the case of bypass transition, at high freestream
turbulence levels, the first and possibly the second stages of the natural transition are omitted
(or bypassed) such that the turbulent spots are directly produced within the boundary layer
by the influence of freestream disturbances. For this case, no Tollmien-Schlichting waves are
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2-3 Transition Prediction 11

found.

Finally, when a laminar boundary layer separates, transition may occur in the free-shear-
layer-like flow near the surface, this is called separated flow transition. In this case, the flow
may reattach as turbulent forming a laminar separation/turbulent reattachment bubble on
the surface. In gas turbines separated flow transition is common and may occur in an over-
speed region near an airfoil’s leading edge on either the suction side, the pressure side or both.
Long bubbles can produce large losses and deviations in exit flow angles, for this reason they
should be avoided. On the other hand, short bubbles are an effective way to force the flow to
become turbulent and this can be considered as a means to control performance [20]. One of
the difficulties in transition modelling is to predict whether the bubble will be large or short.

In order to predict the transition process one could rely directly on the turbulence model
such as the k−ω SST which was described in the previous section. It is necessary to mention
that most of the transport equation models such as k− ε and k−ω do converge to a laminar
solution at low Reynolds numbers and to a turbulent solution at sufficiently high Reynolds
number exhibiting a transition in between (see Fig. 2-2). However, turbulence models are in

Figure 2-2: Skin friction coefficient in a plane channel versus Reynolds number based on the
centerline velocity and channel half width. Many turbulence models display laminar to turbulent
transition as the Reynolds number increases. (From Dubrin and Pettersson Reif [2].)

general developed for fully turbulent conditions and calibrated with turbulence data. Their
ability to capture accurately the transition mechanism is a property of the model equations,
not of the fluid dynamical mechanisms. For this reason, the prediction of laminar to turbu-
lent transition provided by turbulence models is seriously limited and therefore a different
approach is required. In this work, the recent γ−Reθt transition model proposed by Langtry
and Menter [8] will be used. The central idea behind this model is to use an intermittency
parameter γ to modulate the production of turbulent kinetic energy in the turbulence model.
The intermittency γ takes values from 0 to 1 and represents the probability that a given point
is located inside a turbulent region. A detailed description of the γ − Reθt transition model
is provided in the next section.
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12 Theoretical Framework

2-4 The γ −Reθt Transition Model

In the present section the γ−Reθt correlation based transition model proposed by Langtry and
Menter in [8] is described. This model is built strictly on local variables making it compatible
with modern CFD techniques such as unstructured grids and parallel computation.

The γ−Reθt transition model is based on the transport equation for intermittency, which
is used to trigger the transition locally. In addition, a second transport equation is solved
for the transition onset momentum thickness Reynolds number Reθt. This is required to
capture the non-local influence of turbulence intensity, which changes due to the decay of the
turbulence kinetic energy in the freestream, as well as to changes in the freestream velocity
outside the boundary layer. This second transport equation ties the empirical correlation to
the onset criteria in the intermittency equation.

The transport equation for intermittency is given by

∂ργ

∂t
+ ∂

∂xj
(ρUjγ) = Pγ + Eγ + ∂

∂xj

[(
µ+ µt

σf

)
∂γ

∂xj

]
. (2-11)

The transition source is defined as

Pγ1 = FlenghtCa1ρS
√
γFonset(1− ce1γ), (2-12)

where S is the strain rate magnitude and Flenght is an empirical correlation that controls the
length of the transition region. This function is based on a series of flat plate test cases and
is defined as

Flenght =


398.189 · 10−1 + (−119.270 · 10−4)R̃eθt + (−132.567 · 10−6)R̃e2

θt, R̃eθt < 400
263.404 + (−123.939 · 10−2)R̃eθt + (194.548 · 10−5)R̃e2

θt + (−101.695 · 10−8)R̃e3
θt 400 ≤ R̃eθt ≤ 596

0.5− (R̃eθt − 596.0) · 3.0 · 104 596 ≤ R̃eθt < 1200
0.3188 1200 ≤ R̃eθt

The function Fonset is used to trigger the intermittency production (i.e. activate Eq. (2-12)).
It is designed to switch rapidly from a value of zero in a laminar boundary layer to a value of
one at every location in the flow field where the local vorticity Reynolds number exceeds the
local transition onset criteria. The transition onset is controlled by the following equations:

Rev = ρy2S
µ ; RT = ρk

µω , (2-13)

Fonset1 = Rev
2.193·Reθc , (2-14)

Fonset2 = min(max(Fonset1,F 4
onset1

), 2.0), (2-15)

Fonset3 = max
(

1−
(
RT
2.5

)3
, 0
)
, (2-16)

Fonset = max(Fonset2 − Fonset3, 0). (2-17)

Reθc in Eq. (2-14) is the critical Reynolds number where the intermittency first starts to
increase in the boundary layer. This occurs upstream of the transition Reynolds number R̃eθt
because there is a delay due to the fact that turbulence must first build up to appreciable
levels in the boundary layer before any change in the laminar profile can occur. For this
reason, Reθc can be thought of as the location where turbulence starts to grow while R̃eθt is
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2-4 The γ −Reθt Transition Model 13

the location where the velocity profile first starts to deviate from the purely laminar profile.
The connection between the two must be obtained from an empirical correlation were

Reθc =

 R̃eθt − 396.035 · 10−2 + (−120.656 · 10−4)R̃eθt + (868.23 · 10−6)R̃e
2
θt

+(−696.596 · 10−9)R̃e
3
θt.(174.105 · 10−12)R̃e

4
θt R̃eθt ≤ 1870

R̃eθt − (593.11 + (R̃eθt − 1870) · 0.482) R̃eθt > 1870
(2-18)

and R̃eθt from the transport Eq. (2-22). This correlation is determined based on a series of
numerical experiments on a flat plate where the critical Reynolds number was varied along
with the freestream turbulence intensity and the subsequent transition Reynolds number was
measured based on the most upstream location where the skin friction started to increase.
The destruction or relaminarization source is defined as

Eγ = ca2ρΩγFturb(cesγ − 1), (2-19)

where Ω is the vorticity magnitude. This term acts like a sink term and ensures that the
intermittency remains close to zero in the laminar boundary layer. It also enables the model
to predict relaminarisation because it provides a means for the intermittency to return to
zero once the transition criteria in the Fonset function is no longer satisfied. Fturb is used to
disable the destruction/relaminarization source outside of a laminar boundary layer and is
defined as follows:

Fturb = e
−
(
RT

4

)4

. (2-20)

The boundary condition for γ at a wall is zero normal flux while at an inlet the value of γ
is equal to 1. In order to capture the laminar and transitional boundary layers correctly, the
grid must have a y+ of approximately 1 [8].

The experimental transition correlations relate the Reynolds number of transition onset,
Reθt to the turbulence intensity, Tu, and other quantities in the freestream where

Reθt = f(Tu, ..)freestream. (2-21)

This is a non-local operation since the value of Reθt is required by the intermittency equation
inside the boundary layer, and not only in the freestream. On the other hand, the turbulence
intensity can change strongly inside the domain and one global value over the entire flowfield
is not acceptable. In order to use only local quantities, a different way for passing informa-
tion from the freestream to the boundary layer is required. The solution to this problem
is provided by a second transport equation which treats the transition momentum thickness
Reynolds number Reθt as a transported scalar quantity. An empirical correlation is used to
calculate Reθt in the freestream and then its value is merged by the transport equation into
the boundary layer. This transport equation essentially takes a non-local empirical correlation
(i.e. Eq. (2-32)) and transforms it into a local quantity, which then can be used to compute
the transition length Flenght and the critical Reynolds number Reθc at every location of the
flow field.

The transport equation for the transition onset momentum thickness Reynolds number is
given by

∂(ρR̃eθt)
∂t

− ∂(ρUjR̃eθt)
∂xj

= Pθt + ∂

∂xj

[
σθt(µ+ µt)

∂R̃eθt
∂xj

]
. (2-22)
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Outside the boundary layer, the source term Pθt is designed to force the transported scalar
R̃eθt to match the local value of Reθt calculated from an empirical correlation. The production
term can be computed from the relations below:

Pθt = cθt
ρ
t (Reθt − R̃eθt)(1− Fθt), (2-23)

t = 500µ
ρU2 (2-24)

Fθt = min
(

max
(
Fwakee

−( yδ )
4
, 1−

(
γ−1/ce2
1−1/Ce2

)2
)
, 1
)
, (2-25)

θBL = R̃eθtµ
ρU ; δBL = 15

2 θBL ; δ = 50Ωy
U δBL, (2-26)

Reω = ρωy2

µ ; Fwake = e

(
Reω

1×105

)2

, (2-27)

were t is a time scale defined for dimensional reasons. The blending function Fθt is used to
turn off the source term in the boundary layer and allow the transported scalar R̃eθt to diffuse
in from the freestream. Fθt is equal to zero in the freestream and 1 in the boundary layer.

The following constants are used in the model:

ca1 = 1, ca2 = 0.03, ce2 = 50, σf = 1, cθt = 0.03, σθt = 2. (2-28)

During the development of the γ − Reθt model it was observed that whenever a laminar
boundary layer separation occurred, the model predicted the turbulent reattachment location
too far downstream. By comparison with experimental results it was found that the accuracy
of the model tended to decrease as the freestream turbulence was lowered. The reason for
this is that the turbulent kinetic energy k in the separating shear layer is smaller at lower
freestream turbulence levels. As a consequence, it takes longer for k to become large enough to
make the boundary layer to reattach. In order to solve this problem, the following modification
to handle separation induced transition was implemented:

γsep = min
(
s1 max

[
0,
(

Rev
3.235Reθc

)
− 1

]
Freattach, 2

)
Fθt, (2-29)

where,

Freattach = e
−
(
RT
20

)4

, s1 = 2, (2-30)
γeff = max(γ, γsep). (2-31)

This modification allows k to grow rapidly once the laminar boundary layer separates and
has a negligible effect for attached transition. The main idea behind this correction is to
allow the local intermittency to exceed 1 whenever the laminar boundary layer separates.
This will result in a large production of k, which in turn will cause earlier reattachment. The
size of the separation bubble is controlled with the constant s1. The Freattach term disables
the modification once the viscosity ratio is large enough to cause reattachment and Fθt is the
blending function that confines the modification to boundary layer type flows.

The boundary condition for R̃eθt at a wall is zero flux. The boundary condition for R̃eθt
at and inlet should be calculated from an empirical correlation based on the inlet turbulence
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intensity. The empirical correlation is defined as follows:

Reθt =
[
1173.51− 589.428Tu+ 0.2196

Tu2

]
F (λθ), Tu ≤ 1.3, (2-32)

Reθt = 331.5[Tu− 0.5658]−0.671F (λθ), Tu > 1.3, (2-33)

F (λθ) = 1− [−12.986λθ − 123.66λ2
θ − 405.689λ3

θ]e
−(Tu1.5 )1.5

, λ ≤ 0, (2-34)

F (λθ) = 1 + 0.275[1− e[−35λθ]]e−(Tu0.5 ), λ > 0, (2-35)

where,

λθ = ρθ2

µ
dU
ds , (2-36)

Tu = 100
√

2k/3
U . (2-37)

The derivative dU/ds corresponds to the acceleration along the streamwise direction and can
be computed by taking the derivative of the velocity U in the x, y and z directions and the
summing the contribution of these derivatives along the streamwise direction. The following
constraints are introduced for numerical robustness:

− 0.1 ≤ λθ ≤ 0.1, Tu ≥ 0.027, Reθt ≥ 20. (2-38)

The transition model is coupled to the k − ω SST model through the use of the effective
intermittency from Eq. (2-31) by modifying the production and dissipation terms in the k
equation as follows:

P̃k = γeffPk, D̃k = min(max(γeff , 0.1), 1)Dk, (2-39)

where Pk and Dk are the production and destruction terms in the turbulent kinetic energy of
the original SST equation respectively. The final modification to the SST model is a change
in the blending function F1 which is responsible for the switching between the k−ω and k− ε
models. The reason is that the original blending function could potentially switch from 1 to
0 in the center of the boundary layer, which is undesirable since the k − ω model should be
active in the laminar and transitional boundary layers. The modified blending function is
defined by

F1 = max(f1,orig, F3), F3 = e
−
(
Ry
120

)8

, Ry = ρy
√
k

µ
, (2-40)

where F1,orig is the original blending function of the SST model.
In the following sections the physical effects of curvature are discussed and the curvature
correction term proposed by Spalart and Shur [12] will be described in detail.

2-5 Curvature Effects on Turbulent Flow

The purpose of this section is to provide the physical explanation of curvature effects in tur-
bulent flows. Surface curvature can suppress or amplify turbulence depending on whether it
is convex or concave curvature. The turbulence in a boundary layer entering a convex curve
is diminished by centrifugal acceleration, while the turbulence entering a concave curve is
amplified. The shear is toward the center of curvature in the destabilizing case and outward
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16 Theoretical Framework

Figure 2-3: Schematic of boundary layers on curved surfaces. Convex curvature is stabilizing
and concave is destabilizing. (Adapted from Dubrin and Reif [2].)

from it in the stabilizing. A schematic representation of this effect is shown in Fig. 2-3. The
origin of curvature effects can be understood by an examination of the Reynolds stress trans-
port equation, particularly the production term. The transport equation for the Reynolds
stress tensor uiuj is given by

∂uiuj
∂t

+ Uk
∂uiuj
∂xk

= −1
ρ

(
uj
∂p

∂xi
− ui

∂p

∂xj

)
− 2ν ∂ui

∂xk

∂uj
∂xk

−∂ukuiuj
∂xk

− ujuk
∂Ui
∂xk
− uiuk

∂Uj
∂xk

+ ν∇2uiuj , (2-41)

where −ujuk(∂Ui/∂xk)− uiuk(∂Uj/∂xk) corresponds to the production term [2].
If we consider cylindrical coordinates, x1 = Rθ and x2 = r, the shear flow in Fig. 2-3 is in
x1 direction U = U(r)e1, where e1 = (− sin θ, cos θ) is the unit vector in the circumferential
direction. The vector on the radial direction is e2 = (cos θ, sin θ). Then the velocity gradient
has the following non-zero components:

e1
∂

x1
U(r)e1 = e1U(r) ∂e1

∂x1
= −e1e1

U(r)
R

,

e2
∂

x2
U(r)e1 = e2e1

∂U(r)
∂r

, (2-42)

and

∂Uj
∂xi

=


0 −U(r)

R 0
∂U(r)
∂r 0 0
0 0 0

 (2-43)
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2-6 Curvature Correction 17

By considering the previous velocity gradient, the non-zero components of the production
term in the Reynolds stress transport equation (Eq. (2-41)) become

P11 = −2u1u2
∂U1
∂x2

= −2uv∂U
∂r

,

P22 = −2u2u1
∂U2
∂x1

= 2uvU
R
, (2-44)

P12 = −u2u2
∂U1
∂x2
− u1u1

∂U2
∂x1

= −v2∂U

∂r
+ u2U

R
,

and the turbulent kinetik energy production corresponds to

P = 1
2(P11 + P22) = −uv

(
∂U

∂r
− U

R

)
. (2-45)

On a convex wall the velocity increases in the radial direction; hence ∂rU > 0. The two terms
of P are opposite in sign and the curvature acts to diminish the production of turbulent kinetic
energy by the mean shear. On the other hand, for the case of a concave wall ∂rU < 0. The
two terms of the right hand side of Eqs. (2-44) that contribute to P12 and P have the same
sign. In this case curvature supplements the production by mean shear. From the previous
analysis it becomes clear that concave curvature is destabilizing and amplifies the turbulence.
In the following section, a correction term proposed by Spalart and Shur [12] in order to
account for the effects of curvature in turbulence models will be presented.

2-6 Curvature Correction

It was previously shown that curvature affects the production terms of the Reynolds stress
transport equation. The explicit appearance of these effects in the turbulent equations is
cited as a fundamental advantage of the full Reynolds stress turbulence models, which intend
to solve Eq. (2-41). However, these models are stiff and difficult to converge compared to
the simple eddy viscosity models for complex engineering applications. For this reason, a
more robust approach to account for curvature effects is to properly modify the simpler eddy
viscosity models. The measure proposed by Spalart and Shur in [12] is based on intuitive
arguments developed in thin shear layers, it is Galilean-invariant and fully defined in three
dimensions which makes is possible to implement in any RANS solver.

Consider a thin shear flow with a velocity profile U(y) = y and assume that Uy > 0 so
that the spanwise vorticity Ωz < 0. For this type of flow it holds that u2 > v2 which is
equivalent to stating that the principal axes of the strain tensor are not aligned with those of
the strain tensor, but rotated counterclockwise [12]. The curvature correction term proposed
by Spalart and Shur relies on a central hypothesis, which states that under weak rotation or
curvature turbulence is enhanced if the Reynolds stress principal axes are leading the strain
axes or vice versa. In this context they propose to track the direction of the principal axes of
the strain tensor. In a weakly curved thin shear flow, the flow direction, the direction of the
strain principal axes, and that of the Reynolds stress axes all evolve at the same rate U/R.
The strain axes are invariant and therefore usable in a simple turbulence model which leads
to the quantity

e ≡ Dα

Dt
, (2-46)
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18 Theoretical Framework

where the angle α gives the direction of the strain tensor principal axes with respect to an
inertial reference frame. The strain axes are invariant and the Lagrangian derivative of a
quantity which is defined with respect to an inertial frame, Dα/Dt is also Galilean invariant.

The direction of the strain tensor axes α is susceptible to system rotation. In a ho-
mogeneous rotating flow with system rotation rate Ωrot and time independent deformation,
Dα/Dt = Ωrot. If an inhomogeneous incompressible flow is considered, the Lagrangian deriva-
tive of α can be calculated for a two dimensional case by differentiating analytically the strain
tensor eigensystem, which results in

Dα

Dt
= Ωrot + 1

2(S2
11 + S2

12)

[
S11

DS12
Dt

− S12
DS11
Dt

]
. (2-47)

The strain rate tensor Sij and the Lagrangian derivative on the right hand side of Eq. (2-47)
are defined with respect to the reference frame of the system, which is rotating at a rate
Ωrot. The sign of e is only relevant compared with that of the vorticity. The stress-strain
misalignment is in the direction of the vorticity and the non dimensional quantity r̃ = e/Ωz is
then suggested as a prime candidate. Small positive values of r̃ suppress turbulence activity;
while small negative values enhance it. For the case of solid body rotation, the measure r̃
reduces to e = ω/2, so that r̃ = 1/2. In a pure azimuthal flow Uθ(r), e = Uθ/r sign d[rUθ]/dr.
Therefore the streamline curvature is recovered per se, Uθ/r. The extension of Eq. (2-47) to
three-dimensional flows is given by Eq. (2-52). The empirical function proposed by Spalart
and Shur in Ref. [12] to account for effects of streamline curvature and system rotation is
defined by

frotation = (1 + cr1) 2r?

1 + r?
[1− cr3 tan−1(cr2r̃)]− cr1, (2-48)

which was initially tested in the Spalart-Allarmas one-equation turbulence model. In order
to incorporate the curvature correction to the k − ω SST turbulence model, equation (2-48)
is replaced by Smirnov and Menter in Ref. [11] by fr1, which is defined as

fr1 = max[min(frotation, 1.25), 0.0], (2-49)

and it is used to control the production terms in the k − ω SST model equations as follows:

∂(ρk)
∂t

+ ∂(ρUjk)
∂xj

= Pkfr1 − β?ρkω + ∂

∂xj

[
µref

∂k

∂xj

]
. (2-50)

∂(ρω)
∂xj

+ ∂(ρUjω)
∂xj

= α
ρPk
µt

fr1 −Dω + Cdω + ∂

∂xj

[
µef

∂ω

∂xj

]
. (2-51)

The difference between Eqs. (2-48) and (2-49) is that the latter limits the function values from
0 which corresponds to a strong convex curvature (stabilized flow, no turbulence production)
to 1.25 corresponding to strong concave curvature (enhanced turbulence production). The
lower limit is proposed for numerical stability reasons whereas the upper limit is used to
avoid overgeneration of eddy viscosity in flows with destabilizing curvature or rotation. The
arguments in Eq. 2-48 are defined as follows:

r̃ = 2ΩikSjk

[
DSij
Dt

+ (εimnSjn + εjmnSin)Ωrot
m

] 1
ΩD3 , (2-52)

r? = S

Ω , (2-53)
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2-6 Curvature Correction 19

where Ωrot
m are the components of the system rotation vector in three dimensions and εijk is

the tensor of Levi-Civita. The different terms in Eqs. (2-52) and (2-53) are given by

Sij = 1
2

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
, (2-54)

Ωij = 1
2

((
∂Ui
∂xj
− ∂Uj

∂xi

)
+ 2εmjiΩrot

m

)
, (2-55)

S2 = 2SijSij , (2-56)
Ω2 = 2ΩijΩij , (2-57)

D2 = max(S2, 0.09ω2), (2-58)

and DSij/Dt are the components of the Lagrangian derivative of the strain tensor. Smirnov
and Menter [11] suggest a technique to calculate this term for a three-dimensional Navier-
Stokes CFD solver based on the control volume method. This technique will be applied in the
RANS solver and its implementation is discussed in Chapter 3. In order to apply the control
volume method, the material derivative DSij/Dt is expressed using the integral (Eulerian)
flow formulation, which states that the total derivative of each component of the strain tensor
in an arbitrary volume τ can be written as∫

τ

DSij
Dt

dτ = D

Dt

∫
τ
Sij dτ = ∂

∂t

∫
τ
Sij dτ +

∫
σ
SijUn dσ, (2-59)

where the first term on the right hand side corresponds to the local derivative and the second
term is the convective derivative. Here σ is the surface of the volume τ , Un = ~U · n̂, ~U and n̂
are the velocity and normal vectors at the integration point.

For steady state flows the first term in the right hand side of Eq. (2-59) is zero in converged
solutions so there is no need to compute it during iterations. Then

D

Dt

∫
τ
Sij dτ =

∫
σ
SijUn dσ. (2-60)

The application of the control volume approach to discretize the right hand side of Eq. (2-60)
results in ∫

σ
SijUn dσ →

N∑
k=1

S
(k)
ij U

(k)
n σ(k), (2-61)

where the summing is done over the N surfaces of the control volume. The superscript (k)
refers to the centres of the faces, σk is the area of the k-th face while S(k)

ij and U
(k)
n are

computed at the face centres. The final discrete formula for DSij/Dt is computed from Eq.
(2-61) by dividing through the cell volume

DSij
Dt

=
[
N∑
k=1

S
(k)
ij U

(k)
n σ(k)

]
1
τ
, (2-62)

where τ is the volume of the computational cell. Finally, the constants cr1, cr2 and cr3 in Eq.
(2-48) are 1.0, 2.0 and 1.0 respectively. In the next chapter the data structure of the RANS
solver will be presented and the implementation of the curvature correction term in the code
will be discussed.

Master of Science Thesis Roberto Suarez Raspopov



20 Theoretical Framework

Roberto Suarez Raspopov Master of Science Thesis



Chapter 3

Numerical Method

The purpose of this chapter is to document the implementation of the Spalart and Shur [12]
curvature correction term in the in-house Reynolds-Averaged Navier-Stokes (RANS) solver
developed at Stanford University by Pecnik et al [18]. In section 3-1 a brief descriprion of the
solver’s data structures is provided. Based on this data structure, section 3-2 describes the
algorithm to calculate the curvature correction factor.

3-1 Data Structure of the RANS Solver

The RANS solver is entirely written in C++ language and it solves the compressible Navier-
Stokes equations on unstructured meshes with a discretization based on the finite volume
formulation and implicit time integration scheme on arbitrary polihedral mesh elements [4].
The data structure of the solver employs the centers of the control volumes, the faces and the
nodes of the mesh (as shown in Fig. 3-1) to manipulate information. The cell centers store the

Figure 3-1: The data structure of the RANS solver requires the centers of the control volumes,
the faces and the nodes to store information.

physical information of the flow (P , ρ, ~V ... etc.) and every face inside the mesh is associated
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22 Numerical Method

Figure 3-2: Every face in the mesh is associated with the two neighboring control volume centers,
which are denoted as cv_ofa[i][0] and cv_ofa[i][1], where i is the index of the face and the second
index denotes the left and right control volume of the face. In addition, every face is associated
with a vector normal to it’s surface which points in the opposite direction of node cv_ofa[i][0]
and has the magnitude of the face area.

with two neighboring control volumes. These control volumes are denoted by cv_ofa[i][0] and
cv_ofa[i][1] where i is the index of the face. In addition, every face is associated with a vector
normal to its surface which points in the same direction as the vector connecting cv_ofa[i][0]
to cv_ofa[i][1] and has the magnitude of the face area. This is schematically illustrated in
Fig. 3-2. The following section describes the algorithm to calculate the curvature correction
factor based on the data structure previously described.

3-2 Curvature Correction Algorithm

The algorithm presented in this section calculates the curvature correction factor in every cell
center of the mesh at every time step. The correction factor fr1 is given by Eq. 2-49, where
the frotation term is calculated from Eq. 2-48, which reads

frotation = (1 + cr1) 2r?

1 + r?
[1− cr3 tan−1(cr2r̃)]− cr1.

The arguments in Eq. 2-48 are defined as follows:

r̃ = 2ΩikSjk

[
DSij
Dt

+ (εimnSjn + εjmnSin)Ωrot
m

] 1
ΩD3 ,

r? = S

Ω .

The physical properties in the previous equations such as S and Ω are defined in every cell
center. However, the total derivative of the strain tensor DSij/Dt is not defined. For this
reason, before evaluating Eq. 2-48, it is necesary to compute DSij/Dt over each cell center
of the grid. This can be achieved by making use of the descrete formula (Eq. 2-62) provided
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3-2 Curvature Correction Algorithm 23

by Smirnov and Menter [11]:

DSij
Dt

=
[
N∑
k=1

S
(k)
ij V

(k)
n σ(k)

]
1
σ
,

where the summing is done over the N faces of the control volume. The superscript (k) refers
to the centres of the face, σk is the area of the k-th face while S(k)

ij and V (k)
n are computed at

the face centres. The τ factor corresponds to the volume of the computational cell.

In order to evaluate Eq. (2-62) at every cell center of the mesh a first subroutine is created.
This subroutine performs a cycle over the faces of the complete computational mesh and adds
the contribution of each face to its neighboring control volume centers. The algorithm is
repeated for every time step of the solver and can be summarized as follows:

1 For every face k in the mesh calculate the distances d0 and d1 from face center to the
neighboring control volumes cv_ofa[i][0] and cv_ofa[i][1].

2 Using the velocity gradient of each cell center calculate the velocity at the i-th face:

~V0,face = ~V0 +∇~V0 · ~dx0,face,

~V1,face = ~V1 +∇~V1 · ~dx1,face,

where ~V0 and ~V1 are the velocity vectors, and ∇~V0 and ∇~V1 are the velocity gradients
at the nodes [0] and [1] respectively. The vectors ~dx0,face and ~dx1,face represent the
relative position between the cell centers and the k-th face.

3 Calculate the average velocity at the k-th face using

~Vk =
~V1,face ∗ d0 + ~V0,face ∗ d1

d0 + d1
.

4 Using the same type of averaging calculate the strain tensor value Sij over the i-th face.

5 Calculate the V (k)
n σ(k) factor from Eq. 2-62: In order to achieve this, the dot product

between the normal vector (recall that the magnitude of the normal vector equals the
area of the face σ(k)) and the average velocity vector in the k-th face is performed:

V (k)
n σ(k) = ~n · ~Vk.

6 Calculate the contribution of the k-th face to the DSij
Dt value of each one of the neigh-

boring control volume centers:

DSij
Dt

[0] = DSij
Dt

[0] + (S(k)
ij V

(k)
n · V A) ∗ 1

τ0
,

DSij
Dt

[0] = DSij
Dt

[1]− (S(k)
ij V

(k)
n · V A) ∗ 1

τ1
.

The contribution is added or substracted by considering the correct sign for the sum-
mation of the fluxes based on the Green-Gauss theorem. The normal vector is always
pointing from index [0] to [1] of the control volumes. Then, at the boundary the normal
vector is always pointing outside the domain.

Master of Science Thesis Roberto Suarez Raspopov



24 Numerical Method

Once the total derivative of the strain tensor DSij/Dt has been computed on every cell center
of the mesh, a second subroutine is used to evaluate Eqs. (2-48) and (2-49) in order to provide
the correction factor at every cell center. Once evaluated, the correction factor interacts with
the k − ω SST turbulence model through the production terms of the k and ω equations as
described in section 2-6. The C++ subroutines that calculate DSij/Dt and fr1 are included
in Appendix A. In the following chapter the curvature correction term is implemented in a
series of test cases and a detailed discussion of the results is provided.
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Chapter 4

Results

In the present chapter the implementation of the algebraic curvature correction term is vali-
dated for four different 2D test cases and a discussion of the results is provided. The first two
cases correspond to a flow over an adiabatic flat plate [22] and the fully turbulent flow inside
a U-duct channel [11, 23]. These tests are performed to ensure the correct implementation of
the curvature correction term in the RANS solver. Then, in order to assess the improvement
in the predictive capability of the solver, the correction term is tested on two well documented
turbomachinery test cases. The first one being the prediction of the heat transfer coefficient
over a Von Karman Institute (VKI) transonic turbine guide vane [3], and the second the
prediction of the pressure coefficient over a high lift T106 low pressure turbine blade [21].

In order to test the performance of the curvature correction term, four different model
configurations are used along this chapter. The k − ω SST turbulence model of Menter
[19] is used in its original form or combined with the γ − ReθT transition model of Langtry
and Menter [8], the modified curvature correction term of Smirnov and Menter [11] or both.
The different configurations are shown in Tab. 4-1, where the first column indicates the
abbreviations which are used hereafter.

Table 4-1: Four different numerical schemes used to assess the performance of the curvature
correction term. Each scheme is a combination of the k − ω SST turbulence model with the
γ −ReθT transition model, the curvature correction term or both.

Abbreviation Turbulence model Transition model Curvature correction
(SST) (ReT) (CC)

SST X - -
SST-CC X - X
SST-ReT X X -

SST-ReT-CC X X X
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4-1 Flat Plate

The purpose of the present test case is to compare the predictions of the turbulence model
combined with the transition model with and without curvature correction (SST-ReT and
SST-ReT-CC models) for a subsonic flow over a flat plate. Since a flat surface has no curva-
ture, the Spalart and Shur correction term must not affect the solution and the results of both
calculations should be identical. The flow conditions correspond to the test case T3A, with
zero pressure gradient boundary layer documented by Savill [22]. The boundary conditions
of the problem are presented in Appendix B.

The computational domain was provided by Dr. Rene Pecnik and it consists of 5120
control volumes divided by an H-type grid which provides a resolution of y+ < 0.3 at the
walls. Figure 4-1 shows the skin friction coefficient cf over the plate as a function of the
Reynolds number Rex, which is calculated based on the distance between the leading edge of
the plate and a generic location x over its surface. The skin friction coefficient is defined by

cf = τw
1
2ρ∞U

2
∞
, (4-1)

where τw = µ(∂U/∂y) is the local wall shear stress, ρ∞ and U∞ are the freestream density and
velocity, respectively. From Fig. 4-1 it is possible to distinguish the transition process by the
sudden increase of the skin friction coefficient from the laminar flow region at Rex = 15000 to
the turbulent one Rex = 27000. In addition, the comparison between the curvature corrected
solution (SST-ReT-CC) with the non-corrected one (SST-ReT) shows that the curvature
correction has no effect on the flow over a flat plate.

Figure 4-1: Skin friction coefficient as a function of the Reynolds number Rex over an adiabatic
flat plate. The Reynolds number Rex is calculated based on the distance between the leading
edge of the plate and the particular point x over the surface of the plate.
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4-2 Two-Dimensional Flow in a U-Duct Channel 27

4-2 Two-Dimensional Flow in a U-Duct Channel

In the present section the results of a two-dimensional flow in a U-duct channel are pre-
sented. The objective of this test is to compare the results of the numerical method against
experimental data provided by Monson and Seegmiller [23] and the simulations carried out
by Smirnov and Menter [11] in order to ensure the correct implementation of the curvature
correction term.

The fluid motion through a U-duct channel is a well known case which is characterized
by a strong streamline curvature and it contains flow separation and reattachment on the
inner (convex) wall of the duct. In addition, the flow upstream the U-bend is turbulent and
fully developed. These features represent a challenge for the different RANS solvers and a
thorough test for turbulence models.

The mesh of the computational domain is shown in Fig. 4-2 and it consists of 26307
elements clustered at the walls to ensure y+ values of nearly 0.1. The computational grid of
the U-duct test case was generated in the course of this work by a mesh generating program
developed in-house at the TU Delft by Ir. Enrico Rinaldi. The Reynolds number of the flow,
based on the channel width H and the mean flow velocity Um is set equal to Re = 106 as
specified in Refs. [23] and [11]. Additionally, the reference Mach number is set to M = 0.1
at the inlet in order to avoid compressibility effects. In order to guarantee a fully developed
turbulent flow and the specified value of Reynolds number Re at the inlet of the computational
domain, the boundary conditions of the problem are set as follows. In accordance with Ref.
[11], fully developed profiles of velocity, density and turbulence properties are calculated for
a straight channel in a pre-processing step and then specified as the inlet boundary condition
for the U-tube. At the outlet of the domain a constant value of static pressure is fixed. The
sides of the channel are considered symmetrical and a no slip condition is specified on the
walls. For sake of completeness, the specific values of the boundary conditions used for the U-
duct and the straight channel computations are included in Appendix B. In order to provide
a comparison with the numerical results of Smirnov and Menter [11], the fully turbulent
numerical solutions (SST and SST-CC) are used.

Figures 4-3 and 4-4 show the skin friction coefficient defined by Eq. (4-1) over the inner
and outer walls of the U-duct channel. The skin friction coefficient is calculated over the walls
by considering the position coordinate along the central line of the U-duct. From Fig. 4-3 it is
possible to observe that the flow accelerates when entering the curve (s = 0) which translates
in an increase of cf , and separation occurs on the inner wall near the position s = 2.5 which
is reflected by the negative sign of cf . Later on, at s = 5 flow reattaches and the skin friction
coefficient becomes positive. On the other hand, no separation is observed on the outer wall
of the channel since cf remains positive all the time. Figures 4-7 (d)-(f) show the turbulent
kinetic energy in the normal direction of the wall at different positions of the channel. At the
angles of 0 and 90 degrees of the U-turn (Figs. 4-7 (d)-(e)), it can be clearly seen that the
curvature correction term reduces the turbulence levels over the inner wall, which translates
in lower values of the skin friction coefficient of the SST-CC model compared to the non-
corrected SST. Additionally, the curvature correction enhances the turbulence levels over the
concave region of the outer wall, resulting in higher values of the skin friction coefficient of
the SST-CC model.
Figures 4-5 and 4-6 show the pressure coefficient over the inner and outer walls of the U-duct.
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Figure 4-2: Computational domain and grid used for the U-duct channel. The width of the
channel is 3.81 cm and the inner radius of the U-bend is 1.91 cm as specified by Monson and
Seegmiller [23].

The pressure coefficient is defined as

cp = P − P∞
1
2ρ∞U

2
∞
, (4-2)

where p is the static pressure over the surface, p∞ is the reference pressure, ρ∞ and U∞ are
the freestream density and average velocity specified at the inlet of the channel. Figures 4-7
(a)-(c) show the velocity profiles at different sections of the U-duct. From figures (a) and
(b) there is no visible effect of the curvature correction on the velocity profile. However,
from figure (c) (angle of 180o) it is possible to observe that the non-corrected SST model
predicts early flow reattachment as the velocity value near to the inner wall is close to zero.
The curvature correction reduces the turbulence levels over the inner (concave) surface of
the wall, which delays the reattachment point (see also Fig. 4-3) and translates in a higher
velocity value near the wall.

The calculations performed in this section are in good agreement with the experimental
results and show a positive effect of the curvature correction on the SST turbulence model.
Moreover, the results correspond to the numerical calculations of Smirnov and Menter [11].
From these results, in combination to the ones obtained in the previous section, it is possible
to conclude that the curvature correction is correctly implemented in the RANS solver.

4-3 Von-Karman Institute (VKI) Transonic Turbine Guide Vane

In the present section the curvature correction is tested for the flow computation around a
VKI transonic turbine guide vane. The VKI profile was experimentally investigated by Arts
et al. in Ref. [3]. The experiments were performed in a compression tube facility in order
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Figure 4-3: Skin friction coefficient cf along the inner wall of the U-duct. The x axis represents
the distance along the central line of the U-duct normalized with respect to the width H.

Figure 4-4: Skin friction coefficient cf along the upper wall of the U-duct. The x axis represents
the distance along the central line of the U-duct normalized with respect to the width H.
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Figure 4-5: Pressure coefficient cp along the inner wall of the U-duct. The x axis represents the
distance along the central line of the U-duct normalized with respect to the width H.

Figure 4-6: Pressure coefficient cp along the upper wall of the U-duct. The x axis represents the
distance along the central line of the U-duct normalized with respect to the width H.
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(a) (d)

(b) (e)

(c) (f)

Figure 4-7: Turbulent kinetic energy (right side) and streamwise velocity (left side) profiles at
different locations of the U-duct. The velocities are normalized with respect to the mean velocity
at the inlet of the channel. The x-axis shows the position coordinate perpendicular to the wall
normalized by the channel width.
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Table 4-2: Geometrical characteristics of the VKI turbine guide vane.

Parameter Value
Chord 67.647 [mm]

Pitch to chord 0.85 [-]
Stagger angle 55o [-]

Throat to chord 0.2207 [-]

Figure 4-8: Computational domain of the VKI transonic guide vane. The grid consists of 25000
control volumes providing a resolution of y+ < 1 at the first cell-row at the blade surface.

to study the influence of Mach number, turbulence intensity, and Reynolds number on the
transitional heat transfer distribution. The most important blade characteristics are given in
Tab. 4-2. The computational domain used for the present calculations (Fig. 4-8) was provided
by Dr. Rene Pecnik and it consists of 25000 control volumes with a grid resolution of y+ < 1
at the first cell-row at the blade surface. The reference temperature T∞ is prescribed to be
416 K, while the temperature of the blade Tw is kept constant at 300 K. The heat transfer
coefficient h is calculated based on the predicted heat flux qw and the difference between the
total and the wall temperatures:

h = qw
T∞ − Tw

.

The numerical calculations are performed for the two different flow conditions (cases MUR235
and MUR241 ), which are summarized in Tab. 4-3. For each test case, the four different
numerical schemes shown in Tab. 4-1 are used in order to assess the influence of the transition
model and the curvature correction on the solution. The specific values of the boundary
conditions used for the the MUR235 and MUR241 test cases can be found in Appendix B.

Figures 4-9 and 4-10 show the heat transfer coefficient as a function of the curvilinear
coordinate along the blade s/c normalized by the chord for the MUR235 and the MUR241
test cases. Positive values of s/c indicate the suction side, while negative values of s/c
correspond to the pressure side of the blade. From the experimental data it is possible to
observe laminar to turbulent transition on the suction side due to a sharp increase in the heat
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Table 4-3: Data of the VKI turbine guide vane test cases, where Mis,out and Rec,out are the
isentropic Mach number and the Reynolds number based on the chord length, both calculated at
the outlet region. ReM is the Reynolds number based on the velocity and mesh spacing of the
turbulence grid in the experimental setup, used to calculate the specific dissipation rate ω [4].

Tu% Mis,out Rec,out ReM
MUR235 6.0 0.927 1.15× 106 61700
MUR241 6.0 1.089 2.11× 106 61700

Figure 4-9: Heat transfer coefficient over the VKI blade profile for the MUR235 test case. The
different lines represent numerical calculations while the squares represent the experimental results
of Arts et al. [3]. Positive values of s/c indicate the suction side, while negative values of s/c
correspond to the pressure side of the blade.

transfer coefficient; at s/c = 0.8 for the MUR235 and at s/c = 0.6 for the MUR241 case. On
the other hand, none of the test cases exhibits transition on the pressure side as the variations
of the heat transfer coefficients are smooth. From the numerical calculations it is possible
to observe that the SST and the SST-CC schemes in general overestimate the heat transfer
coefficient along the surface. Both solutions present smooth oscillations in the heat transfer
coefficient over the suction side, for this reason no transition point can be distinguished. This
is an expected result as the SST model was developed for a fully turbulent boundary layer
and does not take transition into account. On the other hand, by comparing these two models
some trends in the qualitative behaviour of the curvature corrected solution can be provided.
In both test cases, the MUR235 and MUR241 it is possible to observe that the curvature
correction term mitigates the turbulence levels on the suction side (concave surface) which
translates in a lower heat transfer coefficient of the SST-CC model compared to the fully
turbulent SST. Furthermore, the turbulence levels are enhanced by the curvature correction
over the pressure side (concave surface), which translates in a higher heat transfer coefficient.
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Figure 4-10: Heat transfer coefficient over the VKI blade profile for the MUR241 test case.
The different lines represent numerical calculations while the squares represent the experimental
results of Arts et al. [3]. Positive values of s/c indicate the suction side, while negative values of
s/c correspond to the pressure side of the blade.

From the results of the SST-ReT calculations it is possible to distinguish laminar to turbu-
lent transition over the suction side for both, MUR235 and MUR241 test cases. Nevertheless,
despite the ability of the γ − Reθt model to predict transition there is a large deviation be-
tween the calculated transition point and the experimental data. It is necessary to notice
that the transition model is based on empirical correlations derived from incompressible flat
plate experiments that control the onset and extent of the transition. The critical Reynolds
number Reθc determines where the intermittency first starts to grow and Flenght controls the
extent of transition. Therefore, these deviations from the experimental data can be expected
as the complexity of the flow geometry increases.

On the other hand, the results from the turbulence model with transition and curvature
correction (SST-ReT-CC) show for both test cases a delay in the transition point which
improves the agreement with the experimental data. This effect is the consequence of the
curvature correction factor, which decreases the turbulence levels in the boundary layer over
a concave surface (suction side). The reduction of the turbulence levels in the boundary layer
cause the transition model to trigger the onset further downstream. This can be seen from
Fig. 4-12, which shows the turbulent kinetic energy and velocity distributions in the normal
direction of the blade for the MUR241 test case at different positions over the surface. These
locations are schematically indicated in Fig. 4-11.

Figures 4-12 (a)-(c) show that the turbulent kinetic energy predicted by the curvature
corrected model SST-ReT-CC is lower over the suction side than the one predicted by the
non-corrected model SST-ReT. In particular, at the position s/c = 0.6 the non corrected
model predicts a fully turbulent boundary layer which is reflected by the high values of k.
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Figure 4-11: Schematic representation of the VKI profile and the different points where the
turbulent kinetic energy is calculated.

At positions s/c = 0.85 and s/c = 1.2 the flow predicted by both models is fully turbulent,
however, the turbulent kinetic energy predicted by the corrected solution decays more rapidly.
For the pressure side (Figs. 4-12 (f)-(h)), the turbulent kinetic energy predicted by the
corrected solution is higher than then the non-corrected one. The pressure side of the profile
is a concave surface which translates in a higher value of the correction factor which enhances
turbulent kinetic energy production. The same situation occurs for the MUR235 case resulting
in similar graphs which are not included here. Figure 4-13 shows the skin friction coefficient
cf for both test cases calculated with the SST-ReT-CC method. As before, it is possible
to distinguish the transition point over the suction side of the airfoil which corresponds to
a sharp increase in cf . In addition, the skin friction coefficient always stays positive which
indicates that no flow separation occurs over the surface.

4-4 T106 Low-Pressure Turbine Blade

In the present section the curvature correction term is applied to a 2D steady state flow
computation around a high-lift low-pressure turbine blade, named T106 in the literature.
This test case is of high interest as of today there is a trend to increase the lift coefficients
of low pressure (LP) turbine blades in order to reduce engine weight and cost. The Reynolds
numbers of LP turbine blades range from about 0.5 × 105 in the final stage at high altitude
in small business jet applications to about 5 × 105 at sea level takeoff in the first stage of
the largest turbofans [21]. Given these Reynolds numbers and the lift coefficients of modern
LP turbines, boundary layer transition and separation play an important role in determining
engine performance at different operating conditions.

The T106 profile was experimentally investigated by Opoka et al. in Ref. [21]. The geo-
metrical characteristics of the T106A case are summarized in Tab. 4-4. The inlet conditions
correspond to a total temperature Tin of 606.5 K and a total pressure Pin of 1 bar. The numer-
ical calculations were performed for the two different flow conditions which are summarized
in Tab. 4-5. According to Opoka et al. [21], the turbulence intensity values in the second
column of Tab. 4-5 are measured in the absence of the blade, at a location corresponding
to the leading edge of the profile. In order to guarantee these turbulence levels in the T106
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-12: Turbulent kinetic energy (solid lines) and velocity distributions (dashed lines) in
the normal direction of the surface at different positions over the VKI profile. The distance is
normalized by the chord length of the profile.
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Figure 4-13: Skin friction coefficient over the VKI blade profile for the MUR241 and MUR235
test cases calculated with the SST-ReT-CC method.

Table 4-4: Geometrical characteristics of the T106 low pressure turbine blade.

Parameter Value
Chord 99 [mm]

Pitch to chord 0.799 [-]
Stagger angle 59.3o [-]
Inlet flow angle 37.7o [-]

computational domain, the inlet values of k and ω are first calculated for a straight channel
in a pre-processing step. The specific values of the boundary conditions for the T106 test
cases are given in Appendix B.

From the previous section it was found that the fully turbulent solution (SST or SST-CC)
is not capable of capturing the transition process. For this reason, the present test case is
performed only with the numerical models that incorporate the γ − Reθt transition model
(SST-ReT and SST-ReT-CC). The computational domain used for the T106 case (Fig. 4-14)
was provided by Dr. Rene Pecnik and it consists of 320 points around the blade surface and
88 points in the normal direction. The maximum value of y+ at the first cell-row at the blade
surface is less than 0.4.

Figures 4-15 and 4-16 show the isentropic pressure coefficient cp,is as a function of the
normalized curvilinear coordinate along the blade1 s/l for the Tu = 0.5% and the Tu = 4%

1This normalization is different to the one used in the VKI test case. The normalization is performed by
dividing the position at the suction side and the pressure side by the length of the suction side and the length
of the pressure side respectively. This is necessary in order to compare the solutions with the experimental
data of Opoka et al. [21]
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Table 4-5: Data of the T106A low pressure turbine test cases, whereMis,out and Rec,out are the
isentropic Mach number and the Reynolds number based on the chord length, both calculated at
the outlet region.

Tu% Mis,out Rec,out
Case 1 4.0 0.2986 1.6× 105

Case 2 0.5 0.2986 1.6× 105

Figure 4-14: Computational domain of the T106 low pressure turbine blade. The computational
domain consists of 320 points around the blade surface and 88 points in the normal direction
providing a resolution of y+ < 0.4 at the first cell-row over the surface.

test cases. The isentropic pressure coefficient is defined by

cp,is = P∞ − P
P∞ − Ps2

, (4-3)

where P is the static pressure over the surface, P∞ is the reference pressure and Ps2 is the
static pressure at the outlet.

From the experimental results it is possible to observe boundary layer separation at s/l =
0.6 for the lower turbulence intensity (Tu = 0.5%) case. From this point a pressure plateau
extends up to a distance s/l = 0.8. The end of the pressure plateau indicates the onset of
the transition process which manifests through the pressure recovery region. Downstream
of s/l = 0.9 the boundary layer reattaches. In the higher turbulence intensity (Tu = 4%)
case, the distribution of pressure coefficient does not develop a plateau between s/l = 0.6 and
s/l = 0.8, which suggests the absence of a separation bubble.

In general, the numerical results are in good agreement with the experimental data. More-
over, it is possible to observe that the results obtained from the curvature corrected calcula-

Roberto Suarez Raspopov Master of Science Thesis



4-4 T106 Low-Pressure Turbine Blade 39

Figure 4-15: Pressure coefficient over the T106 blade profile for the Tu = 4% test case. The lines
represent numerical calculations while the squares represent the experimental results of Opoka et
al. The curve on the bottom of the figure corresponds to the pressure side, while the upper one
lies on the suction side of the blade.

Figure 4-16: Pressure coefficient over the T106 blade profile for the Tu = 0.5%. The lines
represent numerical calculations while the squares represent the experimental results of Opoka et
al. The curve on the bottom of the figure corresponds to the pressure side, while the upper one
lies on the suction side of the blade.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-17: Turbulent kinetic energy (solid lines) and velocity distributions (dashed lines) in
the normal direction of the surface at different positions over the T106 profile. The distance is
normalized by the chord length of the profile.
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Figure 4-18: Schematic representation of the T106A profile and the different points where the
turbulent kinetic energy is calculated.

Figure 4-19: Skin friction coefficient over the T106A blade profile for the Tu = 4.0% and
Tu = 0.5% test cases as a function of the curvilinear coordinate along the blade s/c normalized
by the chord. The solid lines represent calculations performed with the SST-ReT-CC model,
while the dashed lines are obtained with the SST-ReT scheme. Positive values of s/l indicate the
suction side, while negative values of s/l correspond to the pressure side of the blade.

tions (SST-ReT-CC) are the same as from the non-corrected model (SST-ReT). The reason
is that, although the boundary layer might separate (Tu = 0.5%), the laminar to turbulent
transition occurs in the shear layer above the separation bubble. The increase on turbulent
kinetic energy in the boundary layer can be appreciated after the flow reattaches at the very
end of the suction side (s/l = 0.9). In the case of higher turbulence intensity (Tu = 4%), no
transition can be observed over the suction side as the skin friction coefficient changes along
the surface are smooth.
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Figure 4-17 shows the turbulent kinetic energy and velocity distributions in the normal
direction of the surface for the Tu = 0.5% test case at different positions over the blade, which
are schematically indicated in Fig. 4-18. As in the previous VKI test case, it is possible to
observe the effect of the curvature correction term within the boundary layer as it increases
the turbulent kinetic energy over the pressure side and decreases it over the suction side as
compared to the non-corrected solution. Moreover, figures (d)-(e) show the turbulent kinetic
energy within the separation bubble. The low values of the turbulent kinetic energy at these
positions indicate that no transition occurs across the bubble at this streamwise location.

Figure 4-19 shows the skin friction coefficient for both T106A test cases (Tu = 4% and
Tu = 0.5%) as a function of the curvilinear coordinate s/l. The skin friction coefficient for
the low turbulence case becomes negative near the point s/c = 0.6 confirming the presence of
a separation bubble. For the higher turbulence test case, transition occurs over the suction
side of the profile which can be distinguished as a sharp increase of the skin friction coefficient
at s/l = 0.6. In addition, it can be seen that the curvature corrected solution (CC) shifts
the transition onset towards the trailing edge (s/l=1). This effect is the consequence of the
curvature correction factor, which decreases the turbulence levels in the boundary layer over
a concave surface (suction side). This reduction of the turbulence levels in the boundary layer
causes the transition model to trigger the onset further downstream.
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Chapter 5

Summary and Conclusions

This thesis presents a thorough analysis of the curvature effects on turbulent flows for tur-
bomachinery applications and documents the steady state simulation of a series of two di-
mensional test cases characterized by a strong streamline curvature. For this purpose, the
Reynolds-Averaged Navier-Stokes (RANS) solver developed by Pecnik et al. [18] is upgraded
with two new subroutines which use the local flow field properties, namely the velocity U , the
strain tensor Sij , vorticity tensor Ωij and specific turbulence dissipation rate ω, to calculate
the Spalart and Shur [12] curvature correction (CC) term. The correction factor is then im-
plemented in the k−ω shear stress transport (SST) model of Menter [19] and in the γ−Reθt
(ReT) transition model of Langtry and Menter [8].

The new subroutines are first validated on two well known test cases, namely a subsonic
flow over an adiabatic flat plate [22] and the fully turbulent flow inside a U-duct channel
[23, 11]. As expected, the results show that the curvature correction term has no effect on the
solution of the flat plate test case. For the U-duct channel case, the numerical calculations
show that the curvature corrected SST-CC turbulence model agrees better with the experi-
mental data than the original model.
Next, the curvature correction is tested on two well documented turbomachinery test cases.
The first one being the prediction of the heat transfer coefficient over a Von Karman Institute
(VKI) transonic turbine guide vane [3], and the second the prediction of the pressure coeffi-
cient over the high lift T106 low pressure turbine blade [21]. For the VKI test case, two flow
configurations (MUR235 and MUR241) are considered, both characterized by the presence of
a transition spot over the suction side of the profile. The results show that the SST-CC and
the original SST turbulence models overestimate the heat transfer coefficient over the surface
of the blade and they are not able to capture the transition process. On the other hand,
the results obtained from using the ReT transition model exhibit laminar to turbulent tran-
sition over the suction side of the blade and have a better agreement with the experimental
data. However, the transition point is still located too far upstream when compared to the
experimental values. The results obtained by the curvature corrected ReT model present a
significant improvement with respect to the original ReT model as the curvature correction
term reduces the turbulence levels over the suction side which cause the transition model to
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trigger the onset further downstream.
Finally, the high lift T106 low pressure turbine blade is considered for two different turbulence
intensities: Tu = 4% and Tu = 0.5%. In the case of high freestream turbulence, transition
occurs before the boundary layer separates. However, for the lower freestream turbulence
case the boundary layer separates and transition occurs in the shear layer above the laminar
separation bubble. Here, the transition model is essential for the predictive capability of the
simulation and the results are in good agreement with experimental data. For the two dif-
ferent flow configurations no significant improvements are observed when using the curvature
correction term.

In this work it has been shown that turbulence in a boundary layer entering a convex
curve is diminished by the centrifugal acceleration, while the turbulence of a flow entering a
concave surface is amplified. The curvature correction term interacts with the SST turbulence
model by modulating the turbulent kinetic energy production. This is particularly beneficial
for the ReT transition model performance, which is based on empirical correlations obtained
from flat plate experimental data. For a convex surface it has been found that the original
SST turbulence model overpredicts the value of the turbulent kinetic energy which leads to
an early prediction of the transition point by the ReT model. The effect of the curvature
correction term is to reduce the turbulent kinetic energy within the boundary layer delaying
the transition point further downstream. On the other hand, the original SST model under-
predicts the turbulent kinetic energy over a concave surface. For this reason, although none
of the test cases in the present thesis exhibits transition over a concave surface, a delayed
transition onset can be expected from the ReT transition model if the curvature correction is
not used.

In general, the results obtained in this work show a positive effect of the curvature cor-
rection on the flow solutions. Furthermore, the additional computational cost of calculating
the correction term is not significant as compared to the operations required by the solver, as
the complexity of the algorithm is linear (i.e. the amount of operations is proportional to the
number of cells in the computational domain). It is necessary to notice that the curvature
correction proposed by Spalart and Shur [12] has been originally developed for weak rotation
or curvature. As none of the present test cases exhibit system rotation it becomes necessary
to further assess the predictive capability of the correction term by including this effect. In
addition, the upper and lower limits of the curvature correction are based on the tests per-
formed by Smirnov and Menter [11]. For this reason, a recalibration of these limits must be
considered when applying the curvature correction for turbomachinery test cases .
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Appendix A

Subroutines to calculate the Spalart
and Shur Correction Term

In the present chapter the subroutines to calculate the Spalart and Shur correction term
implemented in the RANS solver are presented. The first subroutine is used to calculate the
DSij
Dt (Equation 2-62) over each cell center of the grid:

1
2 virtual void shearstressface ( )
3 {
4
5 int oo , ii ;
6 double d1 , d2 , VA1 , VA2 ;
7
8 for ( int i=0; i<ncv ; i++)
9 for ( int j=0; j<3; j++) //Set dsdt to 0 for each time

step
10 for ( int k=0; k<3; k++)
11 {
12 dsdt [ i ] [ j ] [ k ]=0;
13 }
14
15 //INTERNAL FACES
16 for ( int i=nfa_b ; i<nfa ; i++) //Recalculate dsdt for the

new time step
17 {
18
19 oo=cvofa [ i ] [ 0 ] ;
20 ii=cvofa [ i ] [ 1 ] ;
21 d1=sqrt ( pow ( x_cv [ oo ] [ 0 ] − x_fa [ i ] [ 0 ] , 2 . 0 )+pow ( x_cv [ oo ] [ 1 ] − x_fa [ i

] [ 1 ] , 2 . 0 )+pow ( x_cv [ oo ] [ 2 ] − x_fa [ i ] [ 2 ] , 2 . 0 ) ) ;
22 d2=sqrt ( pow ( x_cv [ ii ] [ 0 ] − x_fa [ i ] [ 0 ] , 2 . 0 )+pow ( x_cv [ ii ] [ 1 ] − x_fa [ i

] [ 1 ] , 2 . 0 )+pow ( x_cv [ ii ] [ 2 ] − x_fa [ i ] [ 2 ] , 2 . 0 ) ) ;
23
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24
25 double vel_fa [ 3 ] ; //VELOCITY AVERAGE
26 double vel_fa0 [ 3 ] ;
27 double vel_fa1 [ 3 ] ;
28 for ( int j=0; j<3; j++){
29 vel_fa0 [ j ]=vel [ oo ] [ j ]+grad_u [ oo ] [ j ] [ 0 ] ∗ ( x_fa [ i ] [ 0 ] − x_cv [ oo ] [ 0 ] )+

grad_u [ oo ] [ j ] [ 1 ] ∗ ( x_fa [ i ] [ 1 ] − x_cv [ oo ] [ 1 ] )+grad_u [ oo ] [ j ] [ 2 ] ∗ ( x_fa [
i ] [ 2 ] − x_cv [ oo ] [ 2 ] ) ;

30 vel_fa1 [ j ]=vel [ ii ] [ j ]+grad_u [ ii ] [ j ] [ 0 ] ∗ ( x_fa [ i ] [ 0 ] − x_cv [ ii ] [ 0 ] )+
grad_u [ ii ] [ j ] [ 1 ] ∗ ( x_fa [ i ] [ 1 ] − x_cv [ ii ] [ 1 ] )+grad_u [ ii ] [ j ] [ 2 ] ∗ ( x_fa [
i ] [ 2 ] − x_cv [ ii ] [ 2 ] ) ;

31 }
32
33
34
35 for ( int j=0; j<3; j++){
36 vel_fa [ j ]= ( vel_fa0 [ j ]∗ d2+vel_fa1 [ j ]∗ d1 ) /(d2+d1 ) ;
37 }
38
39 VA1 = ( vel_fa [ 0 ] ∗ fa_normal [ i ] [ 0 ]+ vel_fa [ 1 ] ∗ fa_normal [ i ] [ 1 ]+ vel_fa

[ 2 ] ∗ fa_normal [ i ] [ 2 ] ) /cv_volume [ oo ] ;
40 VA2 = ( vel_fa [ 0 ] ∗ fa_normal [ i ] [ 0 ]+ vel_fa [ 1 ] ∗ fa_normal [ i ] [ 1 ]+ vel_fa

[ 2 ] ∗ fa_normal [ i ] [ 2 ] ) /cv_volume [ ii ] ;
41
42 for ( int j=0; j<3; j++)
43 for ( int k=0; k<3; k++)
44 {
45 dsdt [ oo ] [ j ] [ k]+= (0 . 5∗ ( grad_u [ oo ] [ j ] [ k ]+grad_u [ oo ] [ k ] [ j ] ) ∗d2

+0.5∗( grad_u [ ii ] [ j ] [ k ]+grad_u [ ii ] [ k ] [ j ] ) ∗d1 ) ∗VA1 /(d2+d1 ) ;
//dsdt_node=dsdt_node -Sij*VA/vol_node

46 dsdt [ ii ] [ j ] [ k]−= (0 . 5∗ ( grad_u [ oo ] [ j ] [ k ]+grad_u [ oo ] [ k ] [ j ] ) ∗d2
+0.5∗( grad_u [ ii ] [ j ] [ k ]+grad_u [ ii ] [ k ] [ j ] ) ∗d1 ) ∗VA2 /(d2+d1 ) ;

47 }
48
49 }
50
51 //BOUNDARY FACES
52 for ( int i=0; i<nfa_b ; i++)
53 {
54 oo=cvofa [ i ] [ 0 ] ;
55 VA1 = ( vel_bfa [ i ] [ 0 ] ∗ fa_normal [ i ] [ 0 ]+ vel_bfa [ i ] [ 1 ] ∗ fa_normal [ i ] [ 1 ]+

vel_bfa [ i ] [ 2 ] ∗ fa_normal [ i ] [ 2 ] ) /cv_volume [ oo ] ;
56 for ( int j=0; j<3; j++)
57 for ( int k=0; k<3; k++)
58 {
59 dsdt [ oo ] [ j ] [ k ]=dsdt [ oo ] [ j ] [ k ] + ( 0 . 5∗ ( grad_u [ oo ] [ j ] [ k ]+

grad_u [ oo ] [ k ] [ j ] ) ) ∗VA1 ;
60 }
61 }
62
63 }
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47

Once the total derivative of the strain tensor DSij
Dt has been computed over every cell center

of the mesh, the following subroutine is used to evaluate the curvature correction term fr
(equations 2-48 and 2-49) at every cell center of the grid.

1 virtual void CurvatureCorrection ( int icv )
2 {
3 double f_rotation , norm_s , norm_om , r_tilde , r_star , D ;
4 double c1=1,c2=2,c3=1;
5
6 norm_s = 0 ;
7 norm_om = 0 ;
8
9 for ( int j=0; j<3; j++) //Set dsdt to 0 for each

time step
10 for ( int k=0; k<3; k++)
11 {
12 Aux1 [ icv ] [ j ] [ k ]=0;
13 }
14
15
16 r_tilde = 0 ;
17
18 for ( int f=0;f<3;f++){ //Here compute S

and Omega
19 for ( int g=0;g<3;g++){
20 s [ icv ] [ f ] [ g ] = 0 . 5∗ ( grad_u [ icv ] [ f ] [ g ]+grad_u [ icv ] [ g ] [ f ] ) ;
21 om [ icv ] [ f ] [ g ] = 0 . 5∗ ( grad_u [ icv ] [ f ] [ g]−grad_u [ icv ] [ g ] [ f ] ) ;
22 } }
23
24 for ( int f=0;f<3;f++){ //Here compute S

and Omega norm
25 for ( int g=0;g<3;g++){
26 norm_om = norm_om + om [ icv ] [ f ] [ g ]∗ om [ icv ] [ f ] [ g ] ;
27 norm_s = norm_s + s [ icv ] [ f ] [ g ]∗ s [ icv ] [ f ] [ g ] ;
28 }}
29 norm_om = sqrt (2∗ norm_om ) ;
30 norm_s = sqrt (2∗ norm_s ) ;
31 D = sqrt ( max ( norm_s∗norm_s , 0 . 0 9∗ omega [ icv ]∗ omega [ icv

] ) ) ;
32 r_star = norm_s/norm_om ;
33
34 for ( int i=0;i<3;i++){ //Here compute

omega_ik*S_jk=omega_ik*S_kj=Aux_ij
35 for ( int j=0;j<3;j++){
36 for ( int k=0;k<3;k++){
37 Aux1 [ icv ] [ i ] [ j ]=Aux1 [ icv ] [ i ] [ j ]+om [ icv ] [ i ] [ k ]∗ s [ icv ] [ j ] [ k

] ;
38 }}}
39
40 for ( int f=0;f<3;f++){ //Here compute

Aux1_ij*dsdt_ij=f
41 for ( int g=0;g<3;g++){
42 r_tilde = r_tilde + 2∗Aux1 [ icv ] [ f ] [ g ]∗ dsdt [ icv ] [ f ] [ g ] ;
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48 Subroutines to calculate the Spalart and Shur Correction Term

43 } }
44 r_tilde = r_tilde /( norm_om∗pow (D , 3 ) ) ;
45
46 f_rotation = (1+c1 ) ∗(2∗ r_star/(1+r_star ) )∗(1−c3∗atan (c2∗

r_tilde ) )−c1 ;
47 f_r1 [ icv ] = max ( min ( f_rotation , 1 . 2 5 ) , 0 . 0 ) ;
48
49 }
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Appendix B

Additional Test Case Data

For the sake of completeness, the particular values of the boundary conditions used for the
different test cases of this thesis are presented in this appendix. Tables B-1 to B-3 show the
values of the boundary conditions used for the flat plate, the U-duct channel and the straight
channel. The turbomachinery test cases, namely the VKI transonic turbine guide vane and
the T106 low pressure turbine blade are summarized in table B-4.

Table B-1: Boundary conditions used for the T3A flat plate test case.

Boundary Parameter Value
ρ∞ [kg/m3] 1.2

Reference P∞ [Pa] 101634
Values T∞ [K] 293.1

µ∞ [Pa·s] 6.743e-05
Pin [Pa] 101634

Inlet Tin [K] 293.1
kin [m2/s2] 30
ωin [1/s] 40000

Outlet Pout [Pa] 0.953e5
Type Adiabatic

Wall Uwall [m/s] 0
kwall [m2/s2] 0
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50 Additional Test Case Data

Table B-2: Boundary conditions used for the straight channel.

Boundary Parameter Value
ρ∞ [kg/m3] 15.1

Reference P∞ [Pa] 12e5
Values T∞ [K] 277.1

µ∞ [Pa·s] 1.841e-5
Inlet/Outlet ∆P [Pa] 1113

Type Adiabatic
Wall Uwall [m/s] 0

kwall [m2/s2] 0

Table B-3: Boundary conditions used for the U-duct channel test case. At the inlet section,
fully developed profiles of velocity, density and turbulence properties were calculated for a straight
channel in a pre-processing step and then specified as the boundary condition.

Boundary Parameter Value
ρ∞ [kg/m3] 15.08

Reference P∞ [Pa] 12e5
Values T∞ [K] 277.1

µ∞ [Pa·s] 1.841e-5
Uin [m/s] Straight channel

Inlet ρin [kg/m3] Straight channel
kin [m2/s2] Straight channel
ωin [1/s] Straight channel

Outlet Pout [Pa] 12e5
Type Adiabatic

Wall Uwall [m/s] 0
kwall [m2/s2] 0

Table B-4: Boundary conditions used for the turbomachinery test cases, namely the VKI transonic
turbine guide vane (MUR235 and MUR241) and the T106 low pressure turbine blade (Tu=0.5%
and Tu=4.0%).

Boundary Parameter MUR235 MUR241 T106 (Tu=0.5%) T106 (Tu=4.0%)
ρ∞ [kg/m3] 1.54 2.72 0.574 0.574

Reference P∞ [Pa] 1.828e5 3.257e5 1e5 1e5
Values T∞ [K] 416.3 416.3 606.5 606.5

µ∞ [Pa·s] 1.716e-5 1.716e-5 4.971e-5 4.971e-5
Pin [Pa] 1.828e5 3.257e5 1e5 1e5

Inlet Tin [K] 416.3 416.4 606.5 606.5
kin [m2/s2] 20.55 20.55 0.18 15
ωin [1/s] 5e4 1.1e5 170 170

Outlet Pout [Pa] 1.049e5 1.547e5 0.94e5 0.94e5
Twall [K] 300.0 300 606.5 606.5

Wall Uwall [m/s] 0 0 0 0
kwall [m2/s2] 0 0 0 0
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