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Abstract

This thesis presents a novel approach to the pricing of green bonds, a growing segment in financial mar-
kets with an emphasis on environmental sustainability. Unlike traditional financial instruments, green
bonds uniquely incorporate environmental considerations, particularly carbon price (ct), along with tra-
ditional factors like the short rate (rt), into their valuation. This integration is increasingly relevant in
today’s economy, reflecting a shift towards sustainable finance. The core of this research involves
applying advanced numerical methods, including the Finite Difference Method, Crank-Nicolson dis-
cretization, GMRES and Bi-CGSTAB, in order to develop and analyze pricing models for both green
and conventional bonds. The study aims to assess how environmental factors impact the efficiency of
these numerical techniques and to compare the outcomes with conventional bond models.
The research reveals that green bonds, compared to conventional bonds, present unique numerical
challenges, notably requiring more iterations for convergence in iterative methods GMRES and Bi-
CGSTAB because of the high carbon price volatility (σc) and the ’Greenium’ phenomenon. Moreover,
the comparative analysis showed that while Bi-CGSTAB outperforms GMRES in the green bond model,
the opposite is true for conventional bonds. This study not only contributes to the theoretical understand-
ing of green bond pricing but also offers practical insights for financial analysts and investors navigating
this evolving market.

Keywords: Green Bonds, Bond Pricing, Zero-Coupon Bond, Short Rate Modeling, Numerical Meth-
ods, Crank-Nicolson, GMRES, BiCGSTAB, Environmental Finance, Sustainable Investing, Compara-
tive Analysis, Financial Modeling.
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1
Introduction

This thesis explores the innovative field of green bond pricing, introducing a novel model that incorpo-
rates environmental factors, a feature that sets these bonds apart from traditional financial instruments.
The research focuses on the application of advanced numerical methods, including the Finite Differ-
ence Method, Crank-Nicolson discretization, Generalized Minimum Residual method and Biconjugate
Gradient Stabilized method, to solve the pricing models for both green and conventional bonds. The
aim is to evaluate the impact of environmental factors on the efficiency of these numerical methods
and compare the results with those obtained from conventional bond models.

1.1. Bonds
Bonds are a fundamental financial instrument, representing a loan made by an investor to a borrower,
which typically includes entities like corporations or various levels of government. They are essential
for entities to finance projects and operations, particularly when large sums are required that exceed
the capacity of average banks. Bonds are debt instruments. In a bond agreement, the issuer (bor-
rower) commits to pay back the face value of the bond on a specified maturity date, along with interest
payments (coupons) at agreed intervals (e.g., semiannually, annually). This interest rate, known as the
coupon rate, forms part of the return that bondholders earn for lending their funds. Bonds are a key
asset class in the financial market, commonly referred to as fixed-income securities. They differ from
stocks (equities) in that bondholders have a creditor stake in the entity, as opposed to an equity stake
like stockholders. This distinction means that in the event of bankruptcy, bondholders are prioritized
over stockholders for repayment, although they rank behind secured creditors. The liquidity of bonds
varies, with many being negotiable and transferable in the secondary market, which affects their mar-
ket price and can significantly diverge from the face value. The most common types of bonds include
municipal, corporate, and government bonds, each serving different financial and strategic purposes
for both issuers and investors. Therefore they play a crucial role in the financial system, allowing large
organizations and governments to raise capital efficiently and offering investors a way for lending funds
with a structured return.

Definition 1 The most basic form of a bond is the zero-coupon bond (ZCB), B(t, T ), which pays the
investor 1 currency unit (the face value, FV ) at maturity time T , i.e. B(T, T ) = 1 [24]. ZCB’s do not
yield any payments to the bondholder before maturity T .

1



1.1. Bonds 2

Figure 1.1: Cash flow for a zero-coupon bond, B(t, T ), with FV = 1 and maturity T

Definition 2 The coupon bond (CB), provides periodic payments cj ’s (coupons) in addition to the face
value FV at maturity [24]. The coupons are paid to the holder of the bond at a finite set of dates
{t1, t2, . . . , tn} ⊆ [0, T ]. The amount of the coupons depends on the coupon rate α ∈ [0, 1], which is a
percentage of the face value. This rate can be fixed, but can also be dependent on future market rates.

Figure 1.2: Cash flow for a coupon bond, B(t, T ), with FV = 1, coupon = cj and maturity T

Continuing with the exploration of bonds, an important concept in understanding the bond market is
the yield curve (figure 1.3). The yield curve is a graphical representation that plots the interest rates
of bonds of different maturities for similar quality bonds. The yield curve is a key focus for economists
and investors as it offers significant insights into the future trajectory of the economy. It serves as a
predictive tool for shifts in economic growth, inflation, and interest rates. A ’normal’ yield curve, char-
acterized by significantly higher long-term rates compared to short-term rates, often suggests robust
economic growth and increasing inflation. In such situations, the central bank might increase interest
rates to temper the economy and keep inflation in check. When the yield curve is inverted, this typically
suggests an upcoming recession. This scenario arises from investor expectations that the central bank
will lower interest rates to boost economic activity.

Figure 1.3: Yield curves



1.2. Green Bonds 3

1.2. Green Bonds
Adding to the spectrum of bonds are Green Bonds. Green Bonds are specifically designed to sup-
port climate-related or environmental projects. They provide investors with an opportunity to finance
projects that have a positive environmental impact, such as renewable energy, energy efficiency, sus-
tainable waste management, and clean transportation initiatives. The green bond market [2] has grown
rapidly since the first green bond issuance by the European Investment Bank (EIB) in 2007. Initially,
the market was dominated by banks and public institutions, but in recent years, corporate issuers and
governments have become increasingly active. The key feature that distinguishes green bonds from
other types of bonds is the requirement that the funds will be invested in environmentally sustainable
projects. Issuers of green bonds include governments, municipalities, and corporations, aligning their
funding needs with environmental objectives. This creates a win-win situation, where investors receive
the benefits of financial return—while also contributing to environmental sustainability. The growing de-
mand among investors for sustainable investment opportunities is causing a trend where green bonds
often trade at a premium compared to conventional bonds. Investors are increasingly willing to accept
lower yields for the opportunity to contribute to environmentally beneficial projects. This phenomenon
is called the ’Greenium’ [25]. On the other hand, a significant concern with green bonds is the risk of
’greenwashing’, where issuers might exaggerate or misrepresent their environmental impact. This is-
sue arises when companies inaccurately label projects as environmentally friendly to meet green bond
criteria, potentially compromising the integrity of green bonds. It is essential for investors and regulators
to carefully verify the actual environmental benefits of these projects, ensuring that the funds raised are
truly directed towards genuine green initiatives.

1.3. Related Literature
In this subsection I present some of the related literature that was most important during the research
that formed this thesis. The study by Bhutta et al. (2022), cited as [2], provides a foundational under-
standing of green bonds, setting the stage for a deeper investigation into their unique characteristics
and market dynamics. This is complemented by Hachenberg and Schiereck [16], who investigate the
pricing differences between green and conventional bonds, laying the groundwork for a deeper ex-
ploration of these instruments. Moreover, the phenomenon of ’Greemium,’ described in Pietsch and
Salakhova’s work ([25]), adds an some important information to our understanding of the price of green
bonds. In chapter 2 we will delve into the world of pricing of financial instruments. We start with a sub-
section providing preliminary mathematics. The stochastic calculus part comes from Oosterlee and
Grzelak’s ”Mathematical Modeling and Computation in Finance” ([24]) and Bertsekas and Tsitsiklis’s
”Introduction to Probability” ([1]). The linear algebra part is obtained from Vuik and Lahaye’s ”Scientific
Computing” ([32]). Option theory and other financial engineering concepts, such as risk-neutral pricing,
are elaborated in works like Oosterlee and Grzelak’s ([24]), Hull’s ”Options, Futures, and Other Deriva-
tives” ([18]) and ”Interest Rate Derivatives: Models of the Short Rate” ([17]), and Rásonyi’s ”Arbitrage
pricing theory and risk-neutral measures” ([26]). Then we will explain start introducing the stochastic
modeling of short rates, where we got the information from works of Cox, Ingersoll, and Ross ([11])
and Vasicek ([31]). These models are an essential element in the valuation of financial instruments like
bonds. Hereafter we used [28] for developing the model of conventional bond and [35] and [34] for de-
veloping the model of the green bond coupon rate. From Dong et al [13] and Feng et al [14] we obtained
important information about the volatility of the carbon price which we will extensively analyse in chap-
ter 4. In chapter 3 we introduce the finite difference method and apply the finite difference method with
knowledge obtained from Vuik and Lahaye’s ”Scientific Computing” [32]) and the book from Domingo
Tavella and Curt Randall [28]. In chapter 4 we will solve the obtained matrix equations that underlie
the financial models with iterative solvers GMRES and Bi-CGSTAB, where Saad’s ”Iterative Methods
for Sparse Linear Systems” ([27]) and again Vuik and Lahaye’s ”Scientific Computing” ([32]) have pro-
vided the necessary tools. Combining this diverse literature, this thesis presents a multidimensional
understanding of the mathematics behind (green) bond valuation.



2
Pricing Financial Instruments

In financial engineering, we encounter an intersection of probability theory, stochastic processes and
economic theory to price all kinds of financial instruments. We will start this chapter with a section
where we introduce important mathematical definitions and theorems, both from stochastic calculus
and linear algebra. In the subsequent sections and chapters will will use them to develop financial
models and analyse them.

2.1. Preliminary Mathematical Concepts
In this section we review some basics in stochastic calculus and numerical mathematics. We will define
a Wiener process and outline several of its key properties. Hereafter, we develop the Itô integral, a
crucial instrument for establishing Itô’s formula. This formula enables us to compute derivatives of
functions involving Wiener processes. Using this formula, we are able to derive the model of Black-
Scholes and the models for a conventional and green bond. We also show some important matrix
properties that influence the efficiency of numerical methods.

The following definitions and theorems all are cited from [24] or [32].

Definition 3 A stochastic process is a collection of random variables defined on a common probability
space (Ω,F , P ) and indexed by a set T . Specifically, it is a family {X(t) : t ∈ T} where:

• t typically represents time and can be discrete (e.g., t = 0, 1, 2, ...) or continuous (e.g., t ≥ 0).
• X(t) is a random variable for each t, which represents the state of the process at time t.
• The common probability space (Ω,F , P ) captures the inherent randomness of the system.

The process is often denoted as X(t, ω), where t ∈ T is the time index and ω ∈ Ω is a specific outcome
from the sample space.

Definition 4 (Wiener Process) A stochastic process {W (t) : t ≥ 0} is called a Wiener process (or
Brownian motion) if the following conditions hold:

1. This process starts at 0, i.e. W0 = W (0) = 0.
2. For all t > 0, Wt is normally distributed with mean equal to zero and variance equal to t, i.e.,

Wt ∼ N(0, t).
3. It has independent increments, i.e. for 0 ≤ t0 < t1 < · · · < tn, the random variables Yi =

W (ti)−W (ti−1) are independent for all i ∈ {1, . . . , n}.
4. It is an almost surely continuous path.

4
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Definition 5 (Stochastic Differential Equation) A stochastic differential equation (SDE) is a differential
equation that incorporates a stochastic process. Its general form can be represented as:

dXt = a(Xt, t)dt+ b(Xt, t)dWt (2.1)

where:

• dXt denotes the change in the process Xt.
• a(Xt, t) is the deterministic drift term.
• b(Xt, t) is the stochastic volatility term.
• Wt is a standard Wiener process or Brownian motion

The geometric Brownian Motion (GBM) model is widely recognized as the predominant process for
modeling asset prices in finance. In this model, the asset price’s logarithm follows an arithmetic Brow-
nian motion, driven by a Wiener process denoted as W (t).

Definition 6 (Geometric Brownian Motion) The asset price S(t) is said to follow a GBM process, when
it satisfies the following SDE:

dS(t) = µS(t) dt+ σS(t) dW (t), with S(t0) = S0.

where W (t) is a Brownian Motion, µ denotes the drift parameter, i.e. a constant deterministic growth
rate of the stock, and σ is the (constant) percentage volatility parameter. This can also be written in
integral formulation:

S(t) = S0 +

∫ t

t0

µS(z) dz +

∫ t

t0

σS(z) dW (z).

The amount by which an asset price differs from its expected value is determined by the volatility pa-
rameter σ. Volatility is thus a statistical measure of the tendency of an asset to rise or fall sharply within
a period of time.

Itô’s lemma plays a crucial role in the realm of stochastic processes, particularly to handle the Wiener
increment dW (t) as dt approaches zero. By this lemma we can derive solutions to SDE’s and formulate
PDE’s used for pricing various financial instruments.
Let us consider the following SDE (Stochastic Differential Equation), corresponding to the Itô process
X(t),

dX(t) = µ̄(t,X(t)) dt+ σ̄(t,X(t)) dW (t), with X(t0) = X0. (2.2)

With stochastic process X(t) determined by (2.5), another process Y (t) can be defined as a function
of t and X(t), i.e., Y (t) := g(t,X). Y (t) is a stochastic process and its SDE (Stochastic Differential
Equation) can also be determined.
To derive the dynamics dY (t) for Y (t) = g(t,X), we may take a look at the 2D Taylor series expansion
around some point (t0, X0), i.e.,

dg(t,X) =
∂g

∂t
dt+

1

2

∂2g

∂t2
(dt)2 +

∂g

∂X
dX +

1

2

∂2g

∂X2
dX2 +

∂2g

∂t∂X
dX dt+ . . . . (2.3)

The equality in 2.3 can be simplified, by neglecting the higher-order dt-terms, by writing,

dg(t,X) =
∂g

∂t
dt+

∂g

∂X
dX +

1

2

∂2g

∂X2
(dX)2. (2.8)

We need to make statements about the term dXdX, which, in the case of equation 2.2, reads:

(dX)2 = µ̄2(t,X) (dt)2 + σ̄2(t,X) (dW )2 + 2µ̄(t,X)σ̄(t,X) dW dt.

For this we make use of Itô’s table (proof can be found in [24]):



2.1. Preliminary Mathematical Concepts 6

Figure 2.1: Itô multiplication table for a Wiener process

Theorem 1 (Itô’s Lemma) Suppose a process X(t) follows the Itô dynamics,

dX(t) = µ̄(t,X(t)) dt+ σ̄(t,X(t)) dW (t), with X(t0) = X0,

where drift µ̄(t,X(t)) and diffusion σ̄(t,X(t)) satisfy the standard Lipschitz conditions on the growth of
these functions (see appendix).
Let g(t,X) be a function of X = X(t) and time t, with continuous partial derivatives, ∂g

∂X , ∂2g
∂X2 , ∂g

∂t . A
stochastic variable Y (t) := g(t,X) then also follows an Itô process, governed by the same Wiener
process W (t), i.e.,

dY (t) =

(
∂g

∂t
+ µ̄(t,X)

∂g

∂X
+

1

2

∂2g

∂X2
σ̄2(t,X)

)
dt+

∂g

∂X
σ̄(t,X)dW (t).

Definition 7 In probability theory [30], an event, A, is a member of a σ-algebra, Σ, of subsets of a
sample space Ω. A probability measure, P, is a normed measure over a measurable space (Ω,Σ); that
is, P is a real-valued function which assigns to every A in Σ, a probability, P(A), such that (a) P(A) ≥ 0
for all A ∈ Σ, (b) P(Ω) = 1; and (c) P is countably additive, i.e., if {Ai} is any collection of disjoint events,
then

P

(⋃
i

Ai

)
=
∑
i

P(Ai).

In probability theory, the following theorem is a key principle that describes the transformation of
stochastic processes when there is a shift in the probability measure. This theorem holds significant
value in the field of financial mathematics as it provides a framework for transitioning from the real-world
probability measure to the risk-neutral measure which we will discuss in subsection 2.2.1.

Theorem 2 (Girsanov for Wiener Process,[15]) Let {ft} be a square integrable stochastic process
adapted to Ft such that EP [Et (f)] < ∞ for all t ∈ [0, T ]. Then

W̃t = Wt −
∫ t

0

fs ds

is a Brownian motion with respect to an equivalent probability measure Q given by

dQ = ET (f) dP = exp

{∫ T

0

fs dWs −
1

2

∫ T

0

f2
s ds

}
dP.

Important to notice is that in this thesis Wt is a Wiener process under probability measure P
and that W̃t is a Wiener process under probability measure Q

Now we will introduce some important concepts in linear algebra and numerical mathematics that we
will use to analyse the matrix equations we obtain in later chapters.

Definition 8 The matrix A is symmetric if and only if AT = A.

Definition 9 The matrix A is called positive definite (positive semi-definite) if and only if

∀u ∈ RN \ {0} : uTAu > 0 (uTAu ≥ 0). (2.4)

If the matrix is also symmetric, it is called a symmetric positive definite (SPD) matrix
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Definition 10 The non-zero vector v[k] ∈ Cn \{0} is an eigenvector corresponding to the eigenvalue
λk ∈ C if and only if

Av[k] = λkv[k].

The algebraic multiplicity of λk is defined as the multiplicity of the root of λk of the characteristic equation
det(A− λI) = 0. The geometric multiplicity of λk is defined as the dimension of the space spanned by
the corresponding eigenvectors. The set of all eigenvalues of A is called the spectrum of A and will
be denoted as σ(A).

In [32], we also learn that matrix norms are often involved when analyzing matrix algorithms: If the
matrix used in solving equations is almost singular (meaning it almost does not have an inverse), the
solver might not work well. To quantify how close a matrix is to being singular, we need a way to
measure its ”distance” from singularity. Using vector norms and norms induced by operators helps us
define such a metric.

Definition 11 In the case of p = 1, p = 2 and p = ∞, the following expressions exist that allow to
compute the matrix p-norm in practice:

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij | maximum absolute column sum

∥A∥2 =
√

max
1≤i≤n

λi(ATA) =
√
λmax(ATA)

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij | maximum absolute row sum

The Frobenius norm of a matrix A is defined as

∥R∥F =

√√√√ m∑
i=1

n∑
j=1

|rij |2

It can be viewed as the Euclidean norm of the vector obtained from all rows (or columns) of A.

From [32]: ”Given the linear system Au = f , a small perturbation in the right-hand side vector f →
f +∆f will cause a perturbation in the solution u+∆u. We will see later that the condition number of
the matrix A, denoted as κp(A), allows us to bound the magnitude of the perturbation ∆u in terms of
the magnitude of the perturbation ∆f .”

Definition 12 The condition number measured in p-norm κp(A) of an invertible n×nmatrixA is defined
as

κp(A) = ∥A∥p∥A−1∥p.

Observe that for any p, κp(A) ∈ [1,∞). By using the previous definition, we obtain that the condition
number in 2-norm can be expressed as

κ2(A) =

√
λmax(ATA)

λmin(ATA)
.

Definition 13 The spectral radius ρ(A) of a matrix A ∈ Rn×n is defined as

ρ(A) = max
i=1,...,n

{|λi| : λi ∈ σ(A)}.

Note that in general ρ(A) /∈ σ(A). The computation of the spectral radius is not straightforward. The
following theorem gives an upper bound on the spectral radius.
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Theorem 3 Given ∥ · ∥ any multiplicative matrix norm, then

ρ(A) ≤ ∥A∥.

Proof. Assume (λ,u) any eigenvalue-eigenvector pair of A. Then Au = λu, and thus by virtue of the
sub-multiplicative property

|λ|∥u∥ = ∥λu∥ = ∥Au∥ ≤ ∥A∥∥u∥ ⇒ |λ| ≤ ∥A∥.

The result then follows from the fact that λ was chosen arbitrarily.

Definition 14 The matrix A is called row diagonal dominant if and only if

|aii| ≥
n∑

j=1,j ̸=i

|aij | for i = 1, . . . , n

with strict inequality for at least one i.

2.2. Pricing Financial Derivatives
Financial derivatives are instruments whose value is dependent on the performance of underlying as-
sets such as stocks, bonds, commodities, or market indices. The pricing of these derivatives is a piv-
otal concept in financial mathematics and risk management, involving complex models and theoretical
frameworks.

2.2.1. Risk-Neutral Valuation and the Market Price of Risk
Let us introduce a critical concept in derivative pricing, known as the risk-neutral valuation [18]. This
principle suggests that in the valuation of derivatives we can assume investors are risk-neutral. In such
a framework, investors do not demand higher expected returns for taking more risk. We name this
hypothetical world where investors are risk-neutral a ’risk-neutral world’. In reality, our world is not risk-
neutral; investors typically seek higher expected returns for taking higher risks. Using this risk-neutral
assumption leads to accurate derivative pricing for both our actual world and a risk-neutral one. This
approach conveniently deals with the challenge of determining the risk aversion levels participants in
the financial market. Risk-neutral valuation may appear counter-intuitive. Given the inherent risks in
options, should not individual risk preferences influence their pricing? Surprisingly, when pricing options
relative to the underlying stock’s price, the risk preferences of investors become irrelevant. As investors
growmore risk-averse, stock prices may fall, but the relationship between stock prices and option prices
remains constant. A risk-neutral world simplifies derivative pricing through two key characteristics [18]:

1. The expected return on any investment, such as stocks, aligns with the risk-free rate interest rate.
2. The discount rate used for calculating the present value of an expected payoff of a financial

derivative is also the risk-free rate.

The term that connects the real world with the risk-neutral world is called the market price of risk. It rep-
resents the additional return that investors require to compensate for the extra risk above the risk-free
rate. Mathematically, the market price of risk is used to transform the dynamics of asset prices from
their real-world expectations to those under risk-neutral conditions. It adjusts the drift dynamics of asset
prices in stochastic models, to equal the expected return with the risk-free rate. This transformation
is essential in implementing risk-neutral valuation, as it enables the use of risk-neutral probabilities in
pricing derivatives, ensuring that the prices are consistent with the no-arbitrage principle. Girsanov’s
Theorem (2.1) is fundamental in shifting from real-world probability measure P to risk-neutral measureQ
in financial modeling, especially for risk-neutral valuation of derivatives. It modifies asset price dynam-
ics, changing from amodel incorporating a risk premium under P to one reflecting growth at the risk-free
rate under Q. This transformation aligns asset returns with the risk-free rate, crucial for no-arbitrage
derivative pricing. Girsanov’s Theorem also aids in determining the market price of risk, showing how
much extra return investors require for additional risk. Its application simplifies derivative pricing and
deepens understanding of market dynamics and risk preferences, making it a key component in modern
financial theory.
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2.2.2. Option Theory
Financial derivatives are instruments that are based on the value of an underlying asset. Common
types are options, which are differentiated between call and put options. A call option gives the owner
the right to buy the underlying asset for a predetermined amount, K, whereas a put option gives the
owner the right to sell the underlying asset for a predetermined amount. We can also distinct between
European and American style options. European type options can only be exercised at the maturity
time t = T , while, on the other hand American style options can be exercised at any time t ≤ T . A
European call option is exercised when the asset’s price at maturity S(T ) exceeds the strike price K,
leading to a profit of S(T ) − K as the asset can be immediately sold in the market. Conversely, if
S(T ) ≤ K, the call option is not exercised and becomes valueless, as the asset could be bought for
less than K in the market. For a put option this is exactly the other way around. So we can define
the following payoff function, Vc(T, S) for the call option on an underlying asset S, strike price K and
maturity time T as

Vc(T, S(T )) = max{S(T )−K, 0}
For a put option we have

Vp(T, S(T )) = max{K − S(T ), 0}
Figure 2.2 shows the diagram of the payoff of a call and a put option.

Figure 2.2: The payoff diagram of a call option (left) and a put option (right) with strike price K = 10

2.2.3. Black Scholes
One of the most fundamental models in derivative pricing is the Black-Scholes model [7]. Developed by
Fischer Black, Myron Scholes, and Robert Merton in the early 1970s, this model provides a mathemati-
cal framework for estimating the price of European-style options. It revolutionized the field by offering a
closed-form solution for options pricing, which was previously not available. The Black-Scholes model
is predicated on several assumptions: the markets are efficient, the underlying asset’s price follows a
log-normal distribution [1], stock pays no dividends, there are no transaction costs, and the risk-free
rate is constant. Moreover, the expected rate of return of the underlying asset is adjusted to be the
risk-free rate, so the derivation of the Black-Scholes PDE involves changing the probability measure of
the asset dynamics from the real-world measure P to the risk-neutral measure Q:

Stock Price dynamics under P: dSt = µStdt+ σStdWt

Stock Price dynamics under Q: dSt = rStdt+ σStdW̃t

Under risk-neutral measure Q , the formula for an European call option is given by ([7]):

Vc(t, S(t)) = S(t)N(d1)−Ke−r(T−t)N(d2)

d1 =
ln
(

S(t)
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t
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The formula takes into account the current price of the underlying asset S, the option’s strike price
K, the time to expiration (T − t), the risk-free rate r, and the volatility σ of the underlying asset. N(.)
denotes the cumulative distribution function of the standard normal distribution [1].
This model is especially noted for its role in the development of the options market, as it provides a
standardized method to price options, enabling traders to estimate the fair value of options contracts.
To better describe the dynamics of the option price over time, the Black-Scholes PDE was found:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0.

The derivation of this formula can be found in appendix A. Let us break down each term from a mathe-
matical perspective:

• ∂V
∂t : The time derivative of the option price V , capturing how its value diminishes as expiration
approaches, known as ’time decay’.

• rSt
∂V
∂St

: The product of the risk-free rate r, stock price St, and the rate of change of V with
respect to St, representing the option’s delta (∆) [18].From a mathematical point of view this is a
convection term (first-order derivative), which is related to the systematic or directional movement
of the quantity being modeled.

• 1
2σ

2S2 ∂2V
∂S2 : This term is the most complex and significant part of the equation. It represents

the option’s gamma (Γ) [18], which is the rate of change of the option’s delta with respect to
the underlying asset’s price. The term includes the variance of the underlying asset σ2, and S2

t ,
indicating the option’s sensitivity to movements in St. From a mathematical perspective this is
a diffusion term (second-order derivative), which is linked to random fluctuations, uncertainty, or
risk, and it captures the dispersion of values over time.

• −rV : Represents the financing cost of holding the option.
• = 0: Aligns with the no-arbitrage principle, ensuring the option is priced to prevent risk-free profit
opportunities.

Let us now look at figures (2.3), (2.4) and (2.5) below. On the left we have generated the same asset
paths, St, for different values of the parameters r and σ and on the right we show the option value
for different values of time t and asset St. Figures (2.3) and (2.4) capture the impact of the volatility
parameter σ. We can see that with a higher volatility σ, the option value V increases. Especially
for options that are ’out-of-the-money’ (OTM), where St − K < 0, as they have a larger chance of
becoming profitable. Furthermore, when σ increases, the diffusion term, 1

2σ
2S2 ∂2V

∂S2 becomes more
significant. This will contribute to a higher option price due to increased market uncertainty and risk
premium. Generally, near expiration options depreciate in value over time, but a higher volatility can
counteract this effect by maintaining or increasing their value. In figures (2.4) and (2.5) we can see the
effect of the risk-free interest parameter r. An increase in r has a nuanced effect on option prices. For
call options, as in our case, a higher r generally leads to increased prices due to a rise in the cost of
carry, making the option to buy the underlying asset more attractive. For put options it will be the other
way around. Additionally, the increased r enhances the present value of the option’s payoff due to the
discounting effect, which influences its overall price. But the impact of r also varies based on the strike
price, and time to expiration. For example, deep in-the-money (ITM), St > K, call options might see a
bigger price increase with bigger r compared to OTM call options. Also, options with a longer time to
maturity are more sensitive to changes in r than short-term options because they have more time for
compounding.
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Figure 2.3: Stock price and call option value. Parameters: S0 = 100,K = 100, r = 0.05, σ = 0.05

Figure 2.4: Stock price and call option value. Parameters: S0 = 100,K = 100, r = 0.05, σ = 0.2

Figure 2.5: Stock price and call option value. Parameters: S0 = 100,K = 100, r = 0.1, σ = 0.2

Another common type of option is the following, the barrier option.

Definition 15 Barrier options are a type of exotic options [18] where the payoff depends on whether
the underlying asset’s price reaches a certain level (the barrier) during the life of the option.

A barrier option can be categorized as either a knock-out or knock-in type, or a combination of these.
In the case of a knock-out barrier option, the option becomes worthless if the underlying asset reaches
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a specified price level, the barrier. This caps the potential gains for the holder and limits the losses for
the issuer of the option. Alternatively, in a knock-in barrier option, the contract initially holds no value
and only becomes valuable when the underlying asset reaches the specified price level. In this thesis
we will use a double knock-out barrier option to describe the coupon value that green bond investors
receive over time. In section 2.4 we will further describe how this mechanism can incentivize green
bond issuers to perform well.

Figure 2.6: Stock price path and two barriers

2.2.4. Short Rates
Short rate models are fundamental in bond pricing, offering a comprehensive framework for understand-
ing bond value fluctuations over time. They play a crucial role in modeling the interest rate, which is a
fundamental in determining the present value of a bond’s future cash flows: the coupon payments and
the face value repayment. Additionally, they exhibit an inverse relation with bond prices, as explained
by [6]. When interest rates experience an increase, bond prices generally decline, and conversely,
when interest rates decrease, bond prices tend to rise. For instance, assume we have a bond that has
been issued with a fixed coupon rate. When market interest rates increase, new bonds are issued with
higher coupon rates, which reduces the attractiveness of older bonds with lower coupons. To account
for the lower coupon rate, the price of the older bond decreases. Conversely, in the scenario of falling
market interest rates, the older bond’s higher coupon rate becomes more appealing, resulting in an
increase in its price compared to newer bonds with lower coupon rates. This is a measure of a bond’s
sensitivity to interest rate changes. A bond with a longer duration is more sensitive to interest rate shifts.
Traditionally, interest rates are often modeled as deterministic functions of time:

1. Constant Deterministic Short Rate (r > 0):
In this scenario, where the short rate is a constant r, the bond priceB(t, T )must fulfill the equation
er(T−t)B(t, T ) = B(T, T ) = 1. Consequently, this results in

B(t, T ) = e−r(T−t), 0 ≤ t ≤ T.

Figure 2.7: Bond price for constant short rate r
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2. Time-dependent Deterministic Short Rate (rt):
When the short rate rt varies with time but is deterministic, the bond price B(t, T ) is shown to be

B(t, T ) = e−
∫ T
t

rs ds, 0 ≤ t ≤ T.

Figure 2.8: Bond price for time-dependent short rate r

but this approach is expanded in more sophisticated models where rates are represented by a
stochastic instantaneous short-rate process rt.

3. Stochastic Short Rate model rt:
These models are represented by the following stochastic differential equation:

drt = m(t, rt)dt+ n(t, rt)dWt,

wherem(t, rt) and n(t, rt) are the drift and the diffusion term of the short rate process, respectively,
andW a Brownian Motion. In 1997, Vašiček [31] proposed that the real-world instantaneous spot
rate follows an Ornstein-Uhlenbeck process with constant coefficients, described as

drt = α(β − rt)dt+ σdWt,

where β respresents the long-term mean of the short rate, α is the reversion rate parameter
and σ the overall level of the volatility. In this model, a notable characteristic is its tendency for
mean reversion. This means that when the short rate becomes larger than the long-term average
(rt > β), the drift becomes negative and will drive the short rate back to the long-term mean with
rate α. On the other hand, when the short rate falls below the long-term mean (rt < β), the drift
term becomes positive, and elevates the short rate back to β again. The value of α indicates the
speeds of this adjustment towards the long-term mean.
Another important model to describe the short rate is the Cox-Ingersoll-Ross (CIR) [11] model

drt = α(β − rt)dt+ σ
√
rtdWt

We can see it has the same drift factor, α(β−rt) as in the Vašičekmodel, signifyingmean reversion
towards the long-term mean β. However, in this model the diffusion term σ is multiplied with √

rt,
which precludes negative values for rt: As the interest rate nears zero, the volatility term σ

√
rt

also approaches zero, negating randomness and keeping the rate non-negative. High short rates
correspond to increased volatility, which is a desired property. When 2αβ ≥ σ2, Feller proved that
this guarantees a strictly positive short rate (rt > 0) [11]. When we change to risk-neutral measure,
Q, following Girsanov’s Theorem we obtain the following SDE for Vašiček

drt = (α(β − rt)− λrσ)dt+ σdW̃t,

and for CIR
drt = (α(β − rt)− λrσ

√
rt)dt+ σ

√
rtdW̃t,
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where in both models the constant λr represents the market price of risk. Let us now look at the
parameters α, β, σ and λr and the effect they have on the two short rate models. In figures (2.9)-
(2.15), we plotted both models with the same parameters setting and the same randomness
Wt. We observe that the short rate under the Vašiček model can become negative and that the
damping factor √rt has significant effect on the volatility factor in the CIR model. In figure 2.14,
we can see that when α is increased, the variation of the short rate decreases.

Figure 2.9: CIR (left) and Vašiček (right) short rate paths for different values of σ

Figure 2.10: CIR (left) and Vašiček (right) short rate paths for different values of α

The change in β by ϵ in the Vašiček model gives

r(ti+1) = r(ti) + α(β + ϵ− r(ti)∆t+ σ
√
∆tWi+1

and for the CIR model

r(ti+1) = r(ti) + α(β + ϵ− r(ti)∆t+ σ
√
r(ti)

√
∆tWi+1

So for both models this results in a similar change in the short rate of ϵα∆t (figure 2.15).
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Figure 2.11: CIR (left) and Vašiček (right) short rate paths for different values of β

An other interesting short rate model is the Hull-White [17] model, where parameter β becomes
time dependent, β(t). In this thesis we will mainly focus on the CIR model but also make some
comparisons with the Vašiček model.

2.3. Conventional Bond
In this section we will derive and analyse the pricing model of a conventional bond. It is important to
recognize that a coupon-bearing bond can be decomposed as a portfolio of zero-coupon bonds [20].
Each coupon payment can be treated as a zero-coupon bond maturing at its respective payment date.
So for a coupon bearing bond Bc(t, r;T )maturing at T with cash flows CFi at times ti for i = 1, 2, . . . , n,
where t1 ≤ t2 · · · ≤ tn = T we can decompose it as

Bc(t, r;T ) =

n∑
i=1

CFi ×B(t, r; ti)

2.3.1. Derivation of Pricing Model
In this section, we will derive the partial differential equation for a zero-coupon bond. We start by exam-
ining the dynamics of bond prices and their dependence on the short rate, which follows an Ito process.
This approach allows us to express bond price changes in terms of drift and volatility components. Uti-
lizing the no-arbitrage argument, we explore how bond prices are influenced by the market price of risk
associated with the short rate, which is not a traded security. Our analysis further includes the transfor-
mation of the bond price under the real world probability measure P to the risk-neutral probability mea-
sureQ [3], assuming the bond price only depends on the short rate. Employing Itô’s lemma (Lemma 1),
we derive the dynamics of the bond price and align it with the initial bond price equation. This alignment
helps us determine the drift rate and volatility of the bond price process. We also construct a portfolio
consisting of bonds with different maturities and demonstrate how it can be hedged against interest
rate risks. This leads to a conclusion about the market price of risk being consistent across different
bond maturities, a key concept in a no-arbitrage market. We will follow the derivation as in [20]. So let
us start with the following dynamics for a bond price:

dB = µB(t, r)Bdt+ σB(t, r)BdWt (2.5)

In the following equation we have a general SDE for the short rate rt, which is an Itô process:

drt = m(t, rt)dt+ n(t, rt)dWt, (2.6)

Here, dWt represents the differential of the Wiener process,m(t, rt) the drift and n(t, rt) volatility of the
short rate. We are going to derive the bond’s PDE using the principle of no arbitrage. Given that the
short rate is not a tradable asset, it is expected that the PDE equation will include the market price of
risk in the short ratert. We will represent the bond price through the expected value under the real-
world probability measure and subsequently derive the Radon–Nikodym derivative [3]. This derivative
plays a important role in the shift from the real-world probability measure to the risk-neutral measure.
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We assume that the bond value B(t, rt) is not influenced by other external factors such as default risk,
liquidity, or other external variables. By the use of Itô’s lemma 1 we obtain the following dynamics for
B(t, r)

dB(t, r) =
∂B

∂t
dt+

∂B

∂r
drt +

∂2B

∂r2
(drt)

2 (2.7)

Now we fill in equation 2.6 and use Itô’s table (2.1) to obtain:

dB(t, r) =

(
∂B

∂t
+m(t, rt)

∂B

∂r
+

1

2
n(t, rt)

2 ∂
2B

∂r2

)
dt+ n(t, rt)

∂B

∂r
dWt. (2.8)

The original equation 2.5 must match this SDE exactly:

dB = µB(t, r)Bdt+ σB(t, r)BdWt, (2.9)

Setting the drift and diffusion coefficients equal we obtain the following drift rate µB(t, r) and volatility
σB(t, r) of the bond price:

µB(t, r)B =

(
∂B

∂t
+m

∂B

∂r
+

1

2
n2 ∂

2B

∂r2

)
, (2.10)

σB(t, r)B = n
∂B

∂r
. (2.11)

Now we are going to construct a portfolio of two bonds. We buy one with value V1 and maturity T1, and
sell the second with value V2 and maturity T2. We obtain the following portfolio denoted by Π:

Π = V1 − V2. (2.12)

Denote now µB(t, r;Ti) := µBi
and σB(t, r;Ti) = σBi

, for i = 1, 2. The variation in portfolio value over
a time interval dt, by looking at the bond price dynamics in equation 2.8, is as follows:

dΠ = (V1µB1 − V2µB2) dt+ (V1σB1 − V2σB2) dWt. (2.13)

We choose V1 and V2 such that

V1 =
σB2

σB2
− σB1

·Π, (2.14)

V2 =
σB1

σB2 − σB1

·Π, (2.15)

Consequently, because the stochastic term in dΠ disappears, we arrive at

dΠ

Π
=

µB1
σB2

− µB2
σB1

σB2
− σB1

dt. (2.16)

Given that the portfolio does not include risk, to preclude any arbitrage possibilities, it is required to
earn the risk-free short rate such that

dΠ = rΠdt. (2.17)

Combining these two equations, we obtain:

µB1
− r

σB1

=
µB2

− r

σB1

. (2.18)

The stated equation is true for any maturity dates T1 and T2, indicating that the expression µB(t,r)−r
σB(t,r)

does not depend on maturity T . Let us define this common ratio as λ(t, r), expressed as:

µB(r, t)− r

σB(r, t)
= λ(t, r). (2.19)

This term, λ(t, r), is the market price of risk for the short rate. It represents the additional expected
return per extra unit of risk for a bond. In a no-arbitrage market, all hedgeable bonds, regardless of
their maturities, should share this common market price of risk.
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If we substitute µB(t, r) and σB(t, r) into the equation above, we obtain the following governing differ-
ential equation for the price of a zero-coupon bond:

∂B

∂t
+ (m(t, rt)− λ(t, rt)n(t, rt))

∂B

∂r
+

1

2
n(t, rt)

2 ∂
2B

∂r2
− rB(t, r) = 0, t < T, (2.20)

with final condition: B(T, T ) = 1. If we have a known drift m(t, rt) and diffusion coefficient n(t, rt), we
would still need an estimate for the λt to use this PDE. If the equation is not formulated this way, it
becomes unusable. Moreover, it is important to observe that in this PDE, the coefficient of ∂B

∂r acts
similar to the risk-adjusted drift in the dynamics of the short rate. Essentially, this is the same as
using the drift component from the short-rate dynamics under the risk-neutral measure Q. By applying
Girsanov’s theorem to equation 2.6, and transitioning from the Wiener processWt under measure P to
the risk-neutral measure Q, we derive a new SDE for rt:

drt = (m(t, rt)− λ(t, r)n(t, rt))dt+ n(t, rt)dW̃t (2.21)

Here, the drift in the SDE is adjusted to account for short rate risk. When transitioning the bond price
drift from µ(·) to rt, it becomes essential to shift the dynamics of the short rate fromm(t, rt) to (m(t, rt)−
λ(t, r)n(t, rt)). In this thesis, we will use the CIR model for the short rate:

drt = α(β − rt)dt+ σ
√
rtdWt (2.22)

We apply Girsanov’s theorem and obtain the following short rate dynamics under the risk-neutral mea-
sure:

drt = (α(β − rt)− λσ
√
rt)dt+ σ

√
rtdW̃t (2.23)

Consequently, we derive the PDE for the zero-coupon bond using the CIR model for the short rate:

∂B

∂t
+ (α(β − rt)− λσ

√
rt)

∂B

∂r
+

1

2
σ2rt

∂2B

∂r2
− rB(t, r) = 0, t < T, (2.24)

On the boundary rt = 0 we solve the PDE
∂B

∂t
+ αβ

∂B

∂r
= 0, t < T, (2.25)

We know that when r → ∞, the bond price B → 0. But this is not practical if we retain r as the
coordinate. In section 3 we will explain how to overcome this problem and how we can use rmax = 1.0
as upper boundary.
A zero-coupon bond with Vašiček as underlying short rate model would have the following PDE

∂B

∂t
+ (α(β − rt)− λσ)

∂B

∂r
+

1

2
σ2 ∂

2B

∂r2
− rB(t, r) = 0, t < T, (2.26)

2.3.2. Parameter Analysis
In this section we will dive deeper into the bond’s equation to better understand the effect of changes in
its parameters from both an economical and mathematical point of view. We will only break down the
bond’s PDE with CIR as underlying short rate, because the PDE following from Vašiček is very similar.
We have the following PDE:

∂B

∂t
+ (α(β − rt)− λσ

√
rt)

∂B

∂r
+

1

2
σ2rt

∂2B

∂r2
− rB(t, r) = 0, t < T, (2.27)

• ∂B
∂t : This is the time derivative of the bond price B. It captures the change in the bond’s price as
time progresses towards its maturity. In the context of bond pricing, this term often reflects the
time decay or the reduction in the bond’s price as it gets closer to its maturity, assuming other
factors remain constant.

• (α(β − rt) − λσ
√
rt)

∂B
∂r : This term represents the combined effect of the mean reversion and

the market price of risk on the rate of change of the bond price with respect to the interest rate
(r). Here, (α(β − rt) is the mean-reverting term, showing how the interest rate tends to revert to
its long-term mean β at a speed determined by α. The term λσ

√
rt adjusts this for the market

price of risk, reflecting the additional return demanded by investors for bearing risk. This term
can be seen as a ”drift” term in the context of stochastic processes, indicating the systematic or
directional movement of interest rates.
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• 1
2σ

2rt
∂2B
∂r2 : This term includes the variance of the interest rate (σ2), which is a measure of its

volatility, and its level (rt). It measures the convexity of the bond’s price in relation to the interest
rate. In the context of bond pricing, this term is related to how the bond’s sensitivity to interest rate
changes (captured by the first derivative) as the interest rate itself changes. From a mathematical
point of view, this is a diffusion term, capturing the random fluctuations and uncertainty in interest
rates over time.

• −rB(t, r): This term represents the cost of holding the bond. Regarding of bond pricing, this
concept can be seen as the potential missed return from choosing to invest in the bond rather
than investing the same amount in the risk-free interest rate.

• = 0: The equation equating to zero aligns with the no-arbitrage principle in financial mathematics,
ensuring that the bond is priced in a way that prevents risk-free profit opportunities.

In figure 2.12 we can see the valuation of a coupon bond, with FV = 1, maturity T = 4 and 5%
coupons paid every year under the two different short rate models. On the right we extended the short
rate domain to include negative values for the bond valuation under the Vašiček short rate model. In
section 2.2.4 we already learned about the inverse relationship between bond prices and short rates,
which can be seen clearly in both graphs.

Figure 2.12: Value of a Coupon Bond, CIR model (left) and Vašiček model (right), α = 1.0, β = 0.05, σr = 0.15, λr = 0.01,
T = 4

For the following analyses, we decompose the coupon bond into zero-coupon bonds and analyse the
Face Value of 1 that has to be paid back at T = 4. Let us start looking at the effect the volatility of the
short rate, σr, has on the bond’s price, for both models (figure 2.13). We can see that for both models,
a higher σr consistently leads to an increase in bond price over the whole period. This effect is less
pronounced when we look at the valuation under the CIR model, due to the extra √

rt in the diffusion
term. This increase in the value of the bond as the volatility rises, reflects the market’s demand for
higher returns to compensate for the increased risk.

Figure 2.13: Value of a Coupon Bond, CIR model (left) and Vašiček model (right), α = 1.0, β = 0.05, λr = 0.01, T = 4
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Now, let us consider the speed of mean reversion parameter, α. For both models we obtain similar
spreads for different values of α (figure 2.14). However, we can see that the value of the bond under
the Vašiček model starts a bit higher, which comes from the possibility of having negative short rates.
Furthermore, with a smaller α the probability of having smaller short rates becomes higher and drives
up the value of the bond for both models.

Figure 2.14: Value of a Coupon Bond, CIR model (left) and Vašiček model (right), β = 0.05, σr = 0.15, λr = 0.01, T = 4

In figure 2.15 we see that different values for the long-term mean, β, show similar results in both
models. Important to notice is the big spread at t = 0, due to the anticipated future short rate increas-
es/decreases.

Figure 2.15: Value of a Coupon Bond, CIR model (left) and Vašiček model (right), α = 1.0, σr = 0.15, λr = 0.01, T = 4

Now, let us look at how this market price of risk in the short rate parameter, λr, influences the bond’s
value. We can see that in both models, a more negative λr leads to a lower bond value (figure 2.16).
This is in line with the fact the investors require more compensation for taking additional risk, which
generally translates into a lower price for the bond.
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Figure 2.16: Bond Value over time, CIR model (left) and Vašiček model (right), α = 1.0, β = 0.05, σr = 0.15, T = 4
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2.4. Green Bond
In this section, we will develop a model for a green bond. As already stated, green bonds are specif-
ically designed to finance projects that have a positive environmental effect, differentiating them from
conventional bonds. A green bond does not only depend on the traditional financial metrics such as
the short rate, but also on environmental factors. An important indicator of environmental impacts in
the economy is the carbon price, primarily realized through the Emission Trading System (ETS). Our
model for the green bond will be structured to incorporate the carbon price, such that it dynamically re-
sponds to environmental factors. By doing so, the model aligns the financial performance of the bond
with its environmental impact, highlighting the green bond’s significant role in promoting sustainable
investment practices [22].

2.4.1. Carbon Pricing
Carbon pricing, also known as CO2 pricing, is a strategy adopted by nations to combat climate change.
It involves imposing a cost on greenhouse gas emissions, primarily from burning coal, oil, and gas,
which are significant contributors to climate change. The idea is to motivate emitters to reduce their
use of these fossil fuels [9]. This approach is broadly recognized and deemed efficient because it
tackles the issue of emissions being a negative externality, meaning they cause harm without being
directly priced in the market. There are typically two forms of carbon pricing: a carbon tax or a Cap-and-
Trade system, often implemented through an Emissions Trading Scheme (ETS) [21]. This mechanism
requires emitters to buy allowances for their emissions. Many economists consider carbon pricing
the most cost-effective method for reducing emissions. It aims to minimize the costs associated with
emission reduction, including both direct costs and the indirect inconvenience of using fewer fossil
fuel-based goods and services. Economics suggests that command and control regulation, where
the regulator decides who can emit and who cannot, is less efficient than market-based approaches
like carbon pricing [29]. This inefficiency stems from the regulator’s difficulty in accurately valuing
each emitter’s benefit from their emissions. In a Cap-and-Trade system, a market for permits helps
set the carbon price to ensure compliance with an established emissions cap. The government sets
this cap (e.g., 1000 tCO2 per year) and then distributes allowances, either freely or through auction.
These credits can then be traded privately and the price of these fluctuate in response to environmental
changes: When fossil fuel use and emissions decrease, driven by efforts in environmental sustainability,
this typically leads to lower demand for carbon credits in a Cap-and-Trade system, and consequently,
a decrease in carbon prices. On the other hand, worsening environmental conditions and increased
emissions push up the demand and price of carbon credits and [22] shows that higher levels of carbon
price can stimulate the advancement of innovative green technologies and enhance the efficiency of
emission reductions. This responsiveness makes carbon pricing a valuable indicator of environmental
health, signaling the effectiveness of climate change mitigation efforts.

2.4.2. Pricing Model
In this section, we develop a model that represents the (floating) coupon rate of a green bond based on
both the short rate and the carbon price. To develop this model we used the double barrier mechanism
from [35] and combine this with the derivation of the PDE in [34]. The model dynamically adjusts the
coupon rate in response to fluctuations in the carbon price by utilizing the mechanics of a European dou-
ble knock-out option on this carbon price. By aligning the coupon rate with environmental performance,
our model meets the increasing demand for sustainable investments, integrating financial returns with
environmental sustainability.
In our model, we consider that the short rate, rt, follows the CIR model with the specified stochas-
tic differential equation, and the carbon price, ct, is modeled using a geometric Brownian motion, as
described by the following equations:

drt = α(β − rt)dt+ σr
√
rtdW

r
t , (2.28)

dct = µctdt+ σcctdW
c
t , (2.29)

where W r
t and W c

t are Brownian motions, with dW c
t dW

r
t = ρdt. Here, α, β, σr, and σc are positive

constants, and ρ and µ can either be positive or negative constants. As previously discussed, under
CIR, the standard deviation factor σ√rt avoids the possibility of negative interest rates. In our model,
after each year, a coupon payment is made, the amount of which is determined by the prevailing coupon
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rate. The present value of these coupon payments in the i’th year is represented by Vi(t, r, c). In order
to simplify notation while deriving our model just write V for Vi(t, r, c). We follow [5] and apply Itô’s
lemma, to obtain

dV

V
= k(t, r, c)dt+ s1(t, r, c)dW

c
t + s2(t, r, c)dW

r
t ,

where

k(t, r, c) =
1

V

(
∂V

∂t
+ µc

∂V

∂c
+ α(β − r)

∂V

∂r
+ cρσcσr

√
r
∂2V

∂r∂c
+

1

2
σ2
cc

2 ∂
2V

∂c2
+

1

2
σ2
rr

∂2V

∂r2

)
,

s1(t, r, c) =
1

V
σcc

∂V

∂c
, s2(t, r, c) =

1

V
σr

√
r
∂V

∂r
.

Now, we consider forming a portfolio P by investing amounts x1, x2, x3 in bonds of maturities t1, t2,
and t3, respectively. Then, the rate of return on the portfolio will be free-risk,

dP

P
= rdt

such that we have
x1k(t1) + x2k(t2) + x3k(t3) = r,

x1s1(t1) + x2s1(t2) + x3s1(t3) = 0,

x1s2(t1) + x2s2(t2) + x3s2(t3) = 0.

(2.30)

From 2.30 we can get ∣∣∣∣∣∣
k(t1)− r k(t2)− r k(t3)− r
s1(t1) s1(t2) s1(t3)
s2(t1) s2(t2) s2(t3)

∣∣∣∣∣∣ = 0,

that is
k(t)− r = λcs1 + λrs2, (2.31)

where λr(t, r, c), λc(t, r, c) are market prices of risk in the interest rate and the carbon price. We change
from real world measure P to risk-neutral measure Q using Girsanov’s theorem (2) on the SDE of the
carbon price, and find

dW̃ c
t =

µ− r̂t
σc

dt+ dW c
t .

This gives us
λc(t, r, c) =

µ− r̂t
σc

,

and

dct = µctdt+ σcctdW
c
t , under measure P,

dct = r̂tctdt+ σcctdW̃
c
t , under measure Q,

Now we use Girsanov’s theorem on the short rate rt and obtain

drt = α(β − rt)dt+ σr
√
rtdW

r
t , under measure P,

dr̂t = [α(β − r̂t)− λrσr

√
r̂t]dt+ σr

√
r̂tdW̃

r
t , under measure Q,

Substituting k, s1, s2, λ1 and λ2 into equation 2.31, we obtain the partial differential equation

∂V

∂t
+ (µc− λcσcc)

∂V

∂c
+
(
α(β − r)− λrσr

√
r
) ∂V
∂r

(2.32)

+
1

2

(
σ2
cc

2 ∂
2V

∂c2
+ σ2

rr
∂2V

∂r2
+ 2cρσcσr

√
r
∂2V

∂r∂c

)
− rV = 0, (2.33)

This PDE shares similarities with the Black-Scholes PDE for pricing European call options on two
assets [10]. Let us now consider the initial and boundary conditions for our PDE. The final condition
at time t = Ti for our model is defined by a European call option payoff. Our coupon rate is described
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in percentages, so we will use percentage signs in the final and boundary conditions. Specifically, the
coupon rate, at t = Ti is given by max{cTi

− K, 0}% = (cTi
− K)+% (= 0.01 · (cTi

− K)+), where K
represents the strike price associated with the carbon price, and cTi

is the carbon price at maturity time
Ti. We set the face value of the green bond equal to 1, such that the coupon rate directly translates to
the coupon payment. For example, for a coupon rate of 5%(= 0.05), the coupon value is 0.05. Moreover,
we introduce the following lower and upper barriers of the carbon price, cmin and cmax, where we define
the coupon rate differently. At cmin, the coupon rate is set to 0, reflecting the minimum incentive for
emission reduction. Conversely, at cmax, the coupon rate is set to cmax − Ke−rt, aligning with extra
incentive of emission reduction. For a bond, we know that when rt → ∞, that B → 0. So we introduce
a function h2(t, c) [28] such that we can handle this boundary condition with a much more realistic
rmax. For rmin we introduce function h1(t, c) to have both boundaries aligned. These functions are
only dependent on time t and carbon price c, allowing us to model the boundary conditions in a way
that reflect the real-world dynamics of interest rates and carbon prices. Thus, on domain

D = {(t, r, c)|0 ≤ t ≤ Ti, rmin ≤ rt ≤ rmax, cmin ≤ ct ≤ cmax},

the complete model for the coupon rate at time Ti becomes:

∂V

∂t
+(µc− λcσcc)

∂V

∂c
+
(
α(β − r)− λrσr

√
r
) ∂V
∂r

+
1

2

(
σ2
cc

2 ∂
2V

∂c2
+ σ2

rr
∂2V

∂r2
+ 2cρσcσr

√
r
∂2V

∂r∂c

)
−rV = 0

Vi(Ti, r, c) = (cTi
−Ki, 0)

+%,

Vi(t, r, cmin) = 0,

Vi(t, r, cmax) = (cmax −Kie
−rt)%

Vi(t, rmin, c) = h1(t, c),

Vi(t, rmax, c) = h2(t, c),

where

1. h1(t, c) is obtained by solving the PDE:
∂V
∂t + 1

2σ
2
cc

2 ∂2V
∂c2 + (µc− λcσcc)

∂V
∂c − rminV = 0,

Vi(t, rmin, cmin) = 0,

Vi(t, rmin, cmax) = (cmax −Kie
−rmint)%,

Vi(Ti, rmin, c) = (cTi −Ki, 0)
+%

2. Similarly, h2(t, c) is obtained by solving the PDE:
∂V
∂t + 1

2σ
2
cc

2 ∂2V
∂c2 + (µc− λcσcc)

∂V
∂c − rmaxV = 0,

Vi(t, rmax, cmin) = 0,

Vi(t, rmax, cmax) = (cmax −Kie
−rmaxt)%,

Vi(Ti, rmax, c) = (cTi
−Ki, 0)

+%.

Under the Vašiček model, to allow negative short rates, we would have obtained the following PDE:

∂V

∂t
+ (µc− λcσcc)

∂V

∂c
+ (α(β − r)− λrσr)

∂V

∂r
+

1

2

(
σ2
cc

2 ∂
2V

∂c2
+ σ2

r

∂2V

∂r2
+ 2cρσcσr

∂2V

∂r∂c

)
− rV = 0

2.4.3. Parameter Calibration
In this section we will calibrate the parameters using the maximum likelihood estimation technique [23].
Let cn and rn be the observations of ct and rt at time t = tn, tn = ndt (n = 0, 1, 2, . . . , N ). Discretizing
the SDE’s of the CIR short rate and carbon price gives us:

rn ≈ rn−1 + α(β − rn−1)dt+ σr
√
rn−1dW

r
t ,

cn ≈ cn−1 + µcn−1dt+ σccn−1dW
c
t

Let us now look at the definition of the bivariate normal distribution:
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Definition 16 (Bivariate normal distribution) Two random variablesX and Y are said to have a bivariate
normal distribution N (µX , µY , σ

2
X , σ2

Y , ρ) if their joint PDF is given by

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

+

(
y − µY

σY

)2

− 2ρ
(x− µX)(y − µY )

σXσY

]}
(2.34)

where µX , µY ∈ R, σX , σY > 0 and ρ ∈ (−1, 1) are all constants.

We know that (dW c
t , dW

r
t ) both follow a normal distribution with (dW c

t , dW
r
t ) ∼ N (0, 0, dt, dt, ρ). So we

can plug in our discretized SDE’s and find:

(rn, cn) ∼ N
(
rn−1 + α(β − rn−1)dt, cn−1 + µcn−1dt, σ

2
rrn−1dt, σ

2
cc

2
n−1dt, ρ

)
, (2.35)

from which we can obtain an approximation of the conditional probability density function:

f(rn, cn|rn−1, cn−1) ≈
1

2πσrσc
√
rn−1cn−1dt

√
1− ρ2

× exp
{
− 1

2(1− ρ2)

[
(rn − (rn−1 + α(β − rn−1)dt))

2

σ2
rrn−1dt

−2ρ
(rn − (rn−1 + α(β − rn−1)dt))(cn − (cn−1 + µcn−1dt))

σcσrcn−1
√
rn−1dt

+
(cn − (cn−1 + µcn−1dt))

2

σ2
cc

2
n−1dt

]}
where exp{x} = ex.
To calibrate all the parameters, we need to have real historical data. We extract historical data on the
yield curve spot rate of a 4-year-maturity government bond, represented as rt, from data.ecb.europa.
eu. We can use this spot rate for rt because it provides a reliable benchmark for the risk-free interest
rate (short rate). Additionally, we gather historical carbon price data, ct, from icapcarbonaction.com.
We import and plot our obtained data in RStudio and obtain figures 2.17 and 2.18. In our analysis
we use the CIR model for the short rate and as you can see in figure 2.17, between 2015 and 2022
the yield curve spot rate was negative. As the CIR model does not allow for negative short rates, we
have chosen to exclude all the data from before 2022 for our parameter estimation. After performing
the maximum likelihood estimation in RStudio we obtain the following estimates for our parameters:

Parameter values
α 0.91
β 0.0451
σc 0.832
σr 0.179
µ 0.058
ρ 0.2

Figure 2.17: Yield curve spot rate, 4-year maturity - Government bond, rating triple A - Euro area

data.ecb.europa.eu
data.ecb.europa.eu
icapcarbonaction.com
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Figure 2.18: EU ETS

2.4.4. Parameter Analysis
In this section we will discuss the terms and parameters involved in our PDE for the green bond’s
coupon rate. The analysis aims to deepen our understanding of both the mathematical model and the
interplay of economic and environmental factors. By doing so, we will learn about the dynamics that
drive the valuation of green bonds. We break down the terms involved in the PDE:

• ∂V
∂t : This term represents the time derivative of the coupon rate V . It indicates how the coupon
rate changes over time, which could be influenced by market trends, nearing the green bond’s
maturity, or shifts in environmental regulations.

• (µc − λcσcc)
∂V
∂c : This term reflects the effect of expected changes in the carbon price c on the

coupon rate. With µc denoting the drift of the carbon price, λcσcc adjusts this drift for the market
price of carbon risk. In short, this term captures the coupon rate’s sensitivity to fluctuations in the
carbon market.

• (α(β − r)− λrσr
√
r) ∂V

∂r : Here, we see the impact of interest rate variations on the coupon rate.
The term α(β − r) signifies the mean-reverting process of the short rate r, towards a long-term
average β. The λrσr

√
r part accounts for the risk associated with the short rate changes.

• 1
2

(
σ2
cc

2 ∂2V
∂c2 + σ2

rr
∂2V
∂r2 + 2cρσcσr

√
r ∂2V
∂r∂c

)
: This complex term includes second-order derivatives,

illustrating the coupon rate’s convexity in response to shifts in both carbon price and interest
rate. The components σ2

cc
2 ∂2V

∂c2 and σ2
rr

∂2V
∂r2 measure the coupon rate’s sensitivity to changes in

carbon price and interest rate, respectively. The cross-derivative term 2cρσcσr
√
r ∂2V
∂r∂c signifies

the interaction between carbon price and interest rate variations.
• −rV : This term signifies the cost associated with the coupon rate. It represents the opportunity
cost of the bond’s coupon rate compared to the return rate of an investment at the risk-free interest
rate r.

• = 0: Setting the equation to zero aligns with the no-arbitrage principle in financial mathematics. It
suggests that the coupon rate is set in a manner that prevents risk-free profit opportunities, thus
maintaining market balance.

Now that we have a gained better insight of the dynamics of the PDE governing the coupon rate of the
green bond, we can analyse the parameters and assess which ones have the most significant influence
on the coupon rate. We take a green bond with maturity of 4 years and choose our parameters as
obtained in the previous section.

Parameter values
α 0.91
β 0.0451
σc 0.832
σr 0.179
µ 0.058
ρ 0.2
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We start with analysing the first coupon, scheduled for payment at t = T1 = 1. The graphs in figure 2.19
demonstrate the valuation of the coupon payment for a fixed short rate rt, and on the x- and y-axes the
time t and carbon price c, respectively. As expected, we see the graph of a European call option, with
at t = 1 the payoff V1(T1, r, c) = (cT1

−K1, 0)
+%. When we look at the coupon value near cmax, we see

that in the left graph (where rt = 0.08), the coupon value is slightly larger compared to the right graph
with rt = 0.05. This can feel counter-intuitive to the typical bond price behavior, where an increase in
the short rate results in a lower value for the bond. This can be understood by considering the coupon’s
structure, which has the mechanism of a double knockout call option. This offsets the decrease in the
value of the underlying bond due to rising short rate.

Figure 2.19: Difference in short rate rt

In figure 2.20 we see the value of the first coupon V1 valued at t = 0 (left) and t = 0.5 (right), with on
the x− and y−axes the carbon price ct and the short rate rt, respectively. In both graphs we can see
again that the higher the carbon price, the higher the value of the coupon. The graph on the left shows
slightly higher values due to the extra time available for the carbon price to potentially increase.

Figure 2.20: Valuation of coupon V1 at different times t

Let us now look at the effect of changes in the parameter values on the coupon, V1 (paid at T = 1) of
the green bond. In figure 2.21 we see that a higher volatility (σc) in the carbon price suggests a larger
range of potential future prices, which increases the coupon value at both t = 0 and t = 0.5. This is
due to the risk premium demanded by investors for having this extra uncertainty. The model indicates
that the possibility of upward movements in carbon price, and thus higher returns, weighs more heavily,
leading to an overall increase in the present value of expected coupon payments. As the payment
date is closer (t = 0.5), the effect of volatility subsides. This results in diverging coupon values across
different levels of σc, showing reduced sensitivity to volatility as there is less time for price fluctuations
to occur.
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Figure 2.21: Sensitivity coupon V1 for different values of σc

Figure 2.22 shows that the carbon price drift parameter µ significantly influences the coupon value,
with its effects more pronounced as the coupon payment date approaches. A positive µ indicates
expected upward trends in carbon prices, obviously leading to higher coupon values, while a negative
µ suggests a downward trend, resulting in lower values. At t = 0, there is a wider spread in coupon
values reflecting the market’s long-term expectations. However, at t = 0.5, we can see that the spread
narrows, showing less sensitivity to the drift, as there is less time for the drift to influence the carbon
price.

Figure 2.22: Sensitivity coupon V1 for different values of µ

In figure 2.23 we see the effects of different λc values. This parameter reflects the market’s attitude
towards risk and its expectations about future carbon prices. We can see that negative values for
λc suggest that the market is less concerned about the risk of changing carbon prices, leading to a
higher coupon value. In contrast, a positive λc indicates larger concern over declining carbon prices,
resulting in a lower coupon value. Moreover, we see that when the coupon payment date comes closer
(t = 0.5), the market’s immediate risk assessment has a more pronounced effect, narrowing the spread
of coupon values.
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Figure 2.23: Sensitivity coupon V1 for different values of λc

We can see in figure 2.24 that the correlation parameter ρ has a minimal impact on the coupon value V1

when assessed at both t = 0 and t = 0.5. This is because the coupon value is more directly influenced
by values of the other parameters rather than the interaction between carbon price and the short rate.

Figure 2.24: Sensitivity coupon V1 for different values of ρ

Now we will consider the second coupon, V2, which is due to payment after 2 years (t = T2). In
figure 2.25 we observe the same, but stronger, effects in response to different short rate values as we
have seen for coupon V1 (figure 2.19). This is also the case when we look at figure 2.26 and compare
the values with 2.20. This is in line with what we would expect because the carbon price has more time
to increase, resulting in a higher payoff.

Figure 2.25: Difference in short rate rt
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Figure 2.26: Valuation of coupon V2 at different times t

We can see in figure 2.27 that for the same varied σc values, we obtain less dispersed coupon values.
Actually, because the time to maturity became longer, the lower values σc can have more impact on
the carbon price too, resulting in a higher coupon valuation.

Figure 2.27: Sensitivity coupon V2 for different values of σc

For coupon V2 we can see something remarkable for a positive carbon price drift parameter µ (fig-
ure 2.28). We observe that V2 exhibits a concave increase in response to higher carbon prices ct. This
is due to the compounding effects of the positive drift parameter µ as result of the longer time period.

Figure 2.28: Sensitivity coupon V2 for different values of µ
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In figure 2.29, we observe a wider spread in values for the second coupon V2 across different λc values,
compared to the narrower range observed for the first coupon V1 in figure 2.23. This is because the
positive and negative λcvalues have a bigger impact on V2 due to the longer period over which risk and
carbon price expectations can evolve. This makes V2 more sensitive to changes in λc, causing a wider
spread in its values compared to the shorter-term V1.

Figure 2.29: Sensitivity coupon V2 for different values of λc

Looking at figure 2.30, we can see that the effect of ρ, the correlation between the short rate, rt and
carbon price ct is negligible for coupon V2 as well.

Figure 2.30: Sensitivity coupon V2 for different values of ρ
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Finite Difference Method

In this chapter, we will introduce the finite difference method, a pivotal numerical technique in approxi-
mating solutions to partial differential equations and ordinary differential equations. We will apply this
method on both bond’s PDE’s.

3.1. Theory
The finite difference method is a numerical technique used to approximate the solution of partial dif-
ferential equations and ordinary differential equations by discretizing the problem domain into a finite
number of nodes. The finite difference method replaces the derivatives in the differential equations
with their finite difference approximations. This is done in the time (t) and space (x) dimensions, result-
ing in a system of algebraic equations that can be solved numerically. Key to understanding the finite
difference method is the distinction between explicit and implicit methods:

• Explicit methods directly compute the future state (t + ∆t) from the current state (t). They are
generally simple to implement, but stability is a major concern. The step size must be chosen
with care; if it is not small enough, the solution may become unstable. The most basic explicit
method is the forward/explicit Euler method. When

• Implicit methods compute the future state (t+∆t) by solving an equation that includes both the
current (t) and future states (t+∆t). Although these methods are more stable than explicit meth-
ods, they often require solving a system of equations, which can be computationally intensive.
The most basic form is called the backward/implicit Euler method.

A method that combines the forward and backward Euler methods is called the Crank-Nicolson method
(figure 3.1, developed by John Crank and Phyllis Nicolson [12]. In the finite difference method we rep-
resent the partial derivatives in terms of solution values at discrete points within the domain of interest.
These points are organized into a multi-dimensional grid. The formulation of a finite difference solution
involves discretizing both the space and time derivatives, and the combination of these discretizations
forms the basis of the finite difference algorithm. Each dimension can have a different number of mesh
elements, reflecting the varying accuracy needs across different axes. For instance, let M represent
the number of mesh elements in the time dimension, andN1, N2, . . . , Nd denote the number of mesh el-
ements in each of the d space dimensions. The grid will have (M+1)×(N1+1)×(N2+1)×. . .×(Nd+1)
nodes, including those on the domain boundary Γ. The grid size in each dimension is determined ac-
cordingly depending on the size of the domain. For example, for time interval [a, b], one often chooses
∆t = b−a

M . This leads to the formation of a gridGh with a multidimensional structure. A two-dimensional
grid can be described with the following equation and figure 3.1

Gh = {(xi, yj)|xi = (i− 1)h, yj = (j − 1)h;h =
1

N
, 1 ≤ i, j ≤ N + 1;N ∈ N}.

31
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Figure 3.1: Representation of how the explicit method (upper left), implicit method (upper right) and Crank-Nicolson method
(low middle) work on the nodes of a grid.

Consider the two-dimensional function u(t, x) which depends on both time t and space x. We denote
the step size in time as ∆t and the step size in space as ∆x. For simplicity, we denote u(t, x) as ui,j

where i refers to the temporal index and j refers to the spatial index. So u(t +∆t, x) and u(t −∆t, x)
become ui+1,j and ui−1,j , respectively. The same holds for space dimension x. When discretizing the
partial derivatives, we can use forward, backward and central differences. The following approximations
[32] provide discrete representations of the partial derivatives of u(t, x) with respect to space and time.
Forward Difference:

• Time: ∂u
∂t ≈ ui+1,j−ui,j

∆t +O(∆t)

• Space: ∂u
∂x ≈ ui,j+1−ui,j

∆x +O(∆x)

Backward Difference:

• Time: ∂u
∂t ≈ ui,j−ui−1,j

∆t +O(∆t)

• Space: ∂u
∂x ≈ ui,j−ui,j−1

∆x +O(∆x)

Central Difference:

• Time: ∂u
∂t ≈ ui+1,j−ui−1,j

2∆t +O(∆t2) and ∂2u
∂t2 ≈ ui+1,j−2ui,j+ui−1,j

∆t2 +O(∆t2)

• Space: ∂u
∂x ≈ ui,j+1−ui,j−1

2∆x +O(∆x2) and ∂2u
∂x2 ≈ ui,j+1−2ui,j+ui,j−1

∆x2 +O(∆x2)

As you can see, we denoted the second order derivative approximations under central differences
as they are useful in most applications due to their higher accuracy and symmetry. When choosing
a difference scheme for discretizing a PDE, stability and accuracy are key considerations. Stability
requirements may necessitate a specific scheme, especially in time-sensitive problems. For exam-
ple, explicit methods using forward differences need smaller time steps to maintain stability. Accuracy
needs, on the other hand, often favor central differences for their higher precision, particularly in spa-
tial derivatives. The choice between the schemes hinges on balancing these stability and accuracy
demands according to the specific requirements of the problem. When solving PDE’s, a crucial aspect
are boundary conditions [32]. Boundary conditions ensure that the solution is well-defined and unique
within the problem domain. The following three types of boundary conditions are most commonly en-
countered in PDE problems:
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• Dirichlet: These conditions specify the value of the solution at the boundary of the domain. This
translates to directly assigning known values to the boundary nodes.

• Neumann: These conditions involve specifying the value of the derivative of the solution at the
boundary. These are a bit more complex to implement as they require approximating the deriva-
tive at the boundary using finite differences.

• Robin: Robin conditions are a combination of Dirichlet and Neumann conditions.

Incorporating these boundary conditions into the finite difference framework involves modifying the
finite difference equations at the boundary points. This often involves creating special cases in the
finite difference equations for nodes that are adjacent to the boundaries.

3.2. Conventional Bond
In this section we will apply the finite difference method to the PDE we obtained for a conventional
bond. When pricing financial derivatives such as a bond, we treat the time variable a bit differently. We
effectively go backward in time from the known final condition (maturity) to the present. We call this
’financial engineer’s time’ [28]. For a zero-coupon bond, the value at maturity is known: it is the amount
to be paid back at maturity, the face value, FV . Given this backward induction, let us now discretize
the PDE for the zero-coupon bond price by the Crank-Nicolson method. Under the CIR model for the
short rate, our PDE is equal to:

∂B

∂t
+ (α(β − r)− λrσr

√
r)
∂B

∂r
+

1

2
σ2r

∂2B

∂r2
− rB = 0 (3.1)

B(T, r) = FV (3.2)
(3.3)

Let us consider the short rate, rt ∈ [0,∞), boundary conditions. For the boundary conditions at rmin = 0,
we just solve

∂B

∂t
+ αβ

∂B

∂r
= 0 (3.4)

The theoretical upper boundary condition B = 0 as rt → ∞ is not useful. This is because we want
to retain rt as a coordinate and this would make the grid of order of magnitude larger than necessary.
So we want to use a much smaller rmax and use the pricing equation itself on this boundary [28]. We
will use central difference for the time derivative and central differences for the interest rate derivatives.
LetM , N be the amount of time steps and short rate steps, and ∆t = T/M and ∆r = (rmax − rmin)/N
be the step sizes. Define Bi,j to be the bond price at time ti = i ·∆t and interest rate rj = j ·∆r.
Central difference for ∂B

∂t gives us:

∂Bi−1/2,j

∂t
≈ Bi,j −Bi−1,j

∆t
+O(∆t)

Central differences for ∂B
∂r and ∂2B

∂r2 give:

∂Bi−1/2,j

∂r
≈ 1

2

(
∂Bi−1,j

∂r
+

∂Bi,j

∂r

)
≈ 1

2

(
Bi−1,j+1 −Bi−1,j−1

2∆r
+

Bi,j+1 −Bi,j−1

2∆r

)
+O(∆r2)

∂2Bi−1/2,j

∂r2
≈ 1

2

(
∂2Bi−1,j

∂r2
+

∂2Bi,j

∂r2

)
≈ 1

2

(
Bi−1,j+1 − 2Bi−1,j +Bi−1,j−1

∆r2
+

Bi,j+1 − 2Bi,j +Bi,j−1

∆r2

)
+O(∆r2)

We substitute these approximations into the PDE 3.1, combine the terms that affect the same node on
the grid and obtain:

∆t

4

(
α(β − rj)− λrσr

√
rj

∆r
− σ2rj

∆r2

)
Bi−1,j−1 +

(
1 +

∆t

2

(
σ2rj
∆r2

+ rj

))
Bi−1,j +

∆t

4

(
−
α(β − rj)− λrσr

√
rj

∆r
− σ2rj

∆r2

)
Bi−1,j+1

(3.5)

=
∆t

4

(
σ2rj
∆r2

−
α(β − rj)− λrσr

√
rj

∆r

)
Bi,j−1 +

(
1− ∆t

2

(
σ2rj
2∆r2

+ rj

))
Bi,j −

∆t

4

(
σ2rj
∆r2

+
α(β − rj)− λrσr

√
rj

∆r

)
Bi,j+1

(3.6)
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We rewrite this equation to a more concise and readable way

−âBi−1,j−1 + (1− b̂)Bi−1,j − ĉBi−1,j+1 = âBi,j−1 + (1 + b̂)Bi,j + ĉBi,j+1, (3.7)

With

â =
∆t

4

(
σ2rj
∆r2

−
α(β − rj)− λrσr

√
rj

∆r

)
b̂ = −∆t

2

(
σ2rj
2∆r2

+ rj

)
ĉ =

∆t

4

(
σ2rj
∆r2

+
α(β − rj)− λrσr

√
rj

∆r

)
We can put equation 3.7 into the following matrix equation:

CBi−1 = DBi +Ki−1 +Ki (3.8)

where

Bi =


Bi,1

Bi,2

...

...
Bi,N−1

 and Ki =


â1Bi,0

0
...
0

ĉN−1Bi,N

 (3.9)

C =



1− b̂1 −ĉ1 0 . . . 0

−â2 1− b̂2 −ĉ2 . . . 0

0 −â3 1− b̂3
. . . . . .

...
. . . . . . . . . −ĉN−2

0 . . . 0 −âN−1 1− b̂N−1

 (3.10)

D =



1 + b̂1 ĉ1 0 . . . 0

â2 1 + b̂2 ĉ2 . . . 0

0 â3 1 + b̂3
. . . . . .

...
. . . . . . . . . ĉN−2

0 . . . 0 âN−1 1 + b̂N−1

 (3.11)

To use the pricing equation itself on the boundary rmax we perform a Crank-Nicolson scheme that cou-
ples three grid points at the boundary [28]: We use central difference for ∂B

∂t gives us:

∂Bi−1/2,j

∂t
≈ Bi,j −Bi−1,j

∆t
+O(∆t)

Central differences for ∂B
∂r and ∂2B

∂r2 give:

∂Bi−1/2,j

∂r
≈ 1

2

(
∂Bi−1,j

∂r
+

∂Bi,j

∂r

)
≈ 1

2

(
3Bi−1,j − 4Bi−1,j−1 +Bi−1,j−2

2∆r
+

3Bi,j+1 − 4Bi,j−1 +Bi,j−2

2∆r

)
+O(∆r2)

∂2Bi−1/2,j

∂r2
≈ 1

2

(
∂2Bi−1,j

∂r2
+

∂2Bi,j

∂r2

)
≈ 1

2

(
Bi−1,j − 2Bi−1,j−1 +Bi−1,j−2

∆r2
+

Bi,j − 2Bi,j−1 +Bi,j−2

∆r2

)
+O(∆r2)
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3.3. Green Bond
In this section we will use the finite difference method on the PDE of the green bond coupon rate. The
difference with the conventional bond is that this PDE is two dimensional in ’space’: in the interest rate
r and the carbon price c. As for the interest rate, we use central differences for the carbon price partial
derivatives too. We can see that we also have the second order mixed partial derivative ∂2V

∂r∂c . Let
∆t = T/M , ∆r = (rmax − rmin)/N , ∆c = (cmax − cmin)/P be the step sizes in the time, short rate and
carbon price, respectively. Define Bi

j,k to be the bond price at time ti = i ·∆t, interest rate rj = j ·∆r
and carbon price ck = k ·∆c, for i = {1, . . . ,M}, j = {1, . . . , N}, k = {1, . . . , P}.

∂V

∂t
+ (µc− λ1σcc)

∂V

∂c
+
(
α(β − r)− λ2σr

√
r
) ∂V
∂r

(3.12)

+
1

2

(
σ2
cc

2 ∂
2V

∂c2
+ σ2

rr
∂2V

∂r2
+ 2cρσcσr

√
r
∂2V

∂r∂c

)
− rV = 0 (3.13)

Central difference for ∂V
∂t gives us:

∂V
i−1/2
j,k

∂t
≈

V i−1
j,k − V i

j,k

∆t
+O(∆t)

Central differences for ∂V
∂r and ∂2V

∂r2 give:

∂V
i−1/2
j,k

∂r
≈ 1

2

(
∂V i−1

j,k

∂r
+

∂V i
j,k

∂r

)
≈ 1

2

(
V i−1
j+1,k − V i−1

j−1,k

2∆r
+

V i
j+1,k − V i

j−1,k

2∆r

)
+O(∆r2)

∂2V
i−1/2
j,k

∂r2
≈ 1

2

(
∂2V i−1

j,k

∂r2
+

∂2V i
j,k

∂r2

)
≈ 1

2

(
V i−1
j+1,k − 2V i−1

j,k + V i−1
j−1,k

∆r2
+

V i
j+1,k − 2V i

j,k + V i
j−1,k

∆r2

)
+O(∆r2)

Central differences for ∂V
∂c and ∂2V

∂c2 give:

∂V
i−1/2
j,k

∂c
≈ 1

2

(
∂V i−1

j,k

∂c
+

∂V i
j,k

∂c

)
≈ 1

2

(
V i−1
j,k+1 − V i−1

j,k−1

2∆c
+

V i
j,k+1 − V i

j,k−1

2∆c

)
+O(∆c2)

∂2V
i−1/2
j,k

∂c2
≈ 1

2

(
∂2V i−1

j,k

∂c2
+

∂2V i
j,k

∂c2

)
≈ 1

2

(
V i−1
j,k+1 − 2V i−1

j,k + V i−1
j,k−1

∆c2
+

V i
j,k+1 − 2V i

j,k + V i
j,k−1

∆c2

)
+O(∆c2)

We approximate the mixed partial derivative ∂2V
∂r∂c by central differences too:

∂2V
i−1/2
j,k

∂r∂c
≈ 1

2

(
∂2V i−1

j,k

∂r∂c
+

∂2V i
j,k

∂r∂c

)

≈ 1

2

(
V i−1
j−1,k−1 − V i−1

j−1,k+1 − V i−1
j+1,k−1 + V i−1

j+1,k+1

4∆r∆c
+

V i
j−1,k−1 − V i

j−1,k+1 − V i
j+1,k−1 + V i

j+1,k+1

4∆r∆c

)
+O(∆r∆c)

We fill in the finite difference approximations and subsequently rearrange the equation and obtain:

−n̂1V
i−1
j−1,k−1 − n̂2V

i−1
j−1,k − n̂3V

i−1
j−1,k+1 − n̂4V

i−1
j,k−1 + (1− n̂5)V

i−1
j,k − n̂6V

i−1
j,k+1 − n̂7V

i−1
j+1,k−1 − n̂8V

i−1
j+1,k − n̂9V

i−1
j+1,k+1 (3.14)

= n̂1V
i
j−1,k−1 + n̂2V

i
j−1,k + n̂3V

i
j−1,k+1 + n̂4V

i
j,k−1 + (1 + n̂5)V

i
j,k + n̂6V

i
j,k+1 + n̂7V

i
j+1,k−1 + n̂8V

i
j+1,k + n̂9V

i
j+1,k+1 (3.15)



3.3. Green Bond 36

with

n̂1 =
∆t

2

ckσcσrρ
√
rj

4∆r∆c
n̂2 =

∆t

2

(
σ2
rrj

2∆r2
−

α(β − rj)− λ2σr
√
rj

2∆r

)
n̂3 =

∆t

2

−ckσcσrρ
√
rj

4∆r∆c

n̂4 =
∆t

2

(
σ2
cc

2
k

2∆c2
− µck − λ1σcck

2∆c

)
n̂5 = −∆t

2

(
σ2
rrj
∆r2

+
σ2
cck
∆c2

+ rj

)
n̂6 =

∆t

2

(
σ2
cc

2
k

2∆c2
+

µck − λ1σcck
2∆c

)
n̂7 =

∆t

2

−ckσcσrρ
√
rj

4∆r∆c
n̂8 =

∆t

2

(
σ2
rrj

2∆r2
−

α(β − rj) + λ2σr
√
rj

2∆r

)
n̂9 =

∆t

2

ckσcσrρ
√
rj

4∆r∆c

We see that we have a nine-point stencil. For every timestep we obtain the following matrix equation:

CV i−1 = DV i +Ki−1 +Ki (3.16)

With

V i =



V i
1,1

V i
1,2
...

V i
1,P−1

V i
2,1

V i
2,P−1
...

V i
N−1,1
...

V i
N−1,P−1



and Ki =



n̂1V
i
0,0 + n̂2V

i
0,1 + n̂3V

i
0,2 + n̂4V

i
1,0 + n̂7V

i
2,0

n̂1V
i
0,1 + n̂2V

i
0,2 + n̂3V

i
0,3

...
n̂1V

i
0,P−2 + n̂2V

i
0,P−1 + n̂3V

i
0,P + n̂6V

i
1,P + n̂9V

i
2,P

...
n̂1V

i
N−2,0 + n̂4V

i
N−1,0 + n̂7V

i
N,0 + n̂8V

i
N,1 + n̂9V

i
N,20

...
n̂7V

i
N,P−3 + n̂8V

i
N,P−2 + n̂9V

i
N,P−1

n̂3V
i
N−2,P + n̂6V

i
N−1,P+1 + n̂7V

i
N,P−2 + n̂8V

i
N,P−1 + n̂9V

i
N,P


(3.17)

C =



1− n̂5 −n̂6 0 . . . 0 0 −n̂8 −n̂9 . . . 0
−n̂4 1− n̂5 −n̂6 0 . . . 0 −n̂7 −n̂8 −n̂9 0

0 −n̂4 1− n̂5 −n̂6 0 . . .
. . . . . . . . . . . .

0 0 −n̂4 1− n̂5 −n̂6 0 . . .
. . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . 0

−n̂1 −n̂2 −n̂3 0 . . . 0 −n̂4 1− n̂5 −n̂6
. . .

. . . −n̂1 −n̂2 −n̂3 0 . . . 0 −n̂4 1− n̂5 −n̂6

0 . . . −n̂1 −n̂2 0 0 . . . 0 −n̂4 1− n̂5



(3.18)

D =



1 + n̂5 n̂6 0 . . . 0 n̂7 n̂8 n̂9 . . . 0
n̂4 1 + n̂5 n̂6 0 . . . 0 n̂7 n̂8 n̂9 0

0 n̂4 1 + n̂5 n̂6 0 . . .
. . . . . . . . . . . .

0 0 n̂4 1 + n̂5 n̂6 0 . . .
. . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . 0

n̂1 n̂2 n̂3 0 . . . 0 n̂4 1 + n̂5 n̂6
. . .

. . . n̂1 n̂2 n̂3 0 . . . 0 n̂4 1 + n̂5 n̂6

0 . . . n̂1 n̂2 n̂3 0 . . . 0 n̂4 1 + n̂5



(3.19)
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Now we will discretize the PDE’s h1(t, c), h2(t, c) for the boundary conditions at rmin, rmax, respectively.
In the previous section we applied the Crank-Nicolson discretization scheme to the conventional bond
equation (3.1). The boundary condition h1 (and h2 with rmax), described by

∂V

∂t
+

1

2
σ2
cc

2 ∂
2V

∂c2
+ (µc− λ1σcc)

∂V

∂c
− rminV = 0, (3.20)

exhibits a similar convection-diffusion equation. Therefore, we only present the final discretized form
for h1, avoiding the repetition of analogous discretization steps. For h1(t, c) we obtain

−x̂Vi−1,k−1 + (1− ŷ)Vi−1,k − ẑVi−1,k+1 = x̂Vi,k−1 + (1 + ŷ)Vi,k + ẑVi,k+1, (3.21)

With

x̂ =
∆t

4

(
c2kσ

2

∆c2
− µck − λ1σcck

∆c

)
ŷ = −∆t

2

(
c2kσ

2

2∆c2
+ rmin

)
ẑ =

∆t

4

(
c2kσ

2

∆c2
+

µck − λ1σcck
∆c

)
We can put equation 3.21 into the following matrix equation form:

CVi−1 = DVi +Ki−1 +Ki (3.22)

where

Vi =


Vi,1

Vi,2

...

...
Vi,P−1

 and Ki =


x̂1Vi,0

0
...
0

ẑP−1Vi,P

 (3.23)

C =


1− ŷ1 −ẑ1 0 . . . 0
−x̂2 1− ŷ2 −ẑ2 . . . 0

0 −x̂3 1− ŷ3
. . . . . .

...
. . . . . . . . . −ẑP−2

0 . . . 0 −x̂P−1 1− ŷP−1

 (3.24)

D =


1 + ŷ1 ẑ1 0 . . . 0
x̂2 1 + ŷ2 ẑ2 . . . 0

0 x̂3 1 + ŷ3
. . . . . .

...
. . . . . . . . . ẑP−2

0 . . . 0 x̂P−1 1 + ŷP−1

 (3.25)

To obtain the discretization and matrix equation for h2(t, c) we just replace rmin by rmax everywhere.



4
Numerical Results

In this chapter, we will perform comprehensive analysis of iterative methods in mathematics, with a
specific focus on the Generalized Minimal Residual (GMRES) method and the Biconjugate Gradient
Stabilized (Bi-CGSTAB) method. We will apply these methods to the two distinct models we obtained in
the previous chapters: the conventional bond model and the green bond model. First we will introduce
and explain the GMRES and Bi-CGSTAB algorithms to get knowledge about how these methods per-
form under different circumstances, particularly when enhanced with preconditioners. This first three
sections primarily draw upon ”Scientific Computing” by C. Vuik and D.J.P. Lahaye [32].

4.1. Direct methods
In the previous chapter we found systems of linear equations for the two different bond models. A
standard approach for solving systems like

Au = f (4.1)

is through direct solutionmethods. Thesemethods serve as subdomain solvers in domain-decomposition
techniques and as solvers for coarse grids in multigrid approaches. Consequently, they continue to be
a crucial element in modern solvers. However, because they are computationally expensive, direct
methods alone are not suitable for the large-scale problems often encountered in scientific computing.
We show that the Gaussian Elimination method, utilizing an LU -decomposition, can be employed in our
conventional bond model: If we look at equation 4.1, this method involves two phases. First, the coeffi-
cient matrix A is decomposed into two matrices, L and U such that their product is equal to A ∈ Rn×n.
Here, L and U are, respectively, lower and upper triangular matrices with L’s diagonal elements all
being equal to one. We obtain

LUu = f

Solving this linear system is straightforward, The process is executed as follows: LUu = f leads to
Ly = f, and then Uu = y is solved to find solution u. This results in a total computational cost equal to

n−1∑
k=1

(n− k)(n− k + 1) =

n−1∑
ℓ=1

ℓ(ℓ− 1) =
2

3
n3 +O(n2) flops.

Therefore, the efficiency of this method is greatly influenced by the problem size, which is why iterative
methods are favored for larger systems of linear equations.

4.2. Krylov subspace methods
In this section we look at the application of Krylov subspace method for iteratively solving large linear
systems of equations. The preference for employing Krylov subspace methods over direct methods in
large-scale systems is primarily due to their faster computational speed. Krylov subspace methods are
specifically engineered to eliminate the need for matrix-matrix operations, which are computationally

38
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intensive. Instead, thesemethods focus onmatrix-vector multiplications. The iterative process in Krylov
subspace methods is represented by the sequence

{uk}k≥0, where uk → u as k → ∞

TheKrylov subspace of dimension k, denoted asKk(A, r0), is defined by the span of {r0, Ar0, . . . , A
k−1r0}.

This subspace corresponds to the matrix A and the initial residual r0. The two Krylov subspace itera-
tive methods that we are going to use during this thesis are GMRES (Generalized Minimum Residual),
and Bi-CG (Biconjugate Gradient). These methods vary in their specific requirements and optimal use
scenarios:

• GMRES type methods: These methods say solution uk is an element of Kk(A; r0) and are char-
acterized by long recurrences, but come with particular properties of optimality. Due to these
extended recurrences, there is a proportional increase in both the computational and memory
effort per iteration as the iteration count rises.

• Bi-CG type methods: In these method, we also have that uk ∈ Kk(A; r0). However, these feature
short recurrences, but do not have an optimality property.

Another popular iterative method is CG (Congjugate Gradient). This method is highly efficient but
requires the coefficient matrix A to be SPD (def. 9.). Given that the matrices in our bond models are
not SPD the CG method is unfortunately not applicable and hence will not be further discussed.

4.3. The GMRES and Bi-CGSTAB methods
The Generalized Minimal Residual (GMRES) method is an iterative algorithm used for solving a system
of linear equations, particularly useful for large, sparse systems. It is especially effective when com-
bined with preconditioning techniques, which we will describe in subsection 4.3.1. The method is de-
scribed in [32] as follows: GMRES solves a linear systemAu = f , whereA is a non-singular matrix. The
method iteratively builds a solution in a Krylov subspace,Kn = Kn(A, r0) = span{r0, Ar0, A

2r0, . . . , A
n−1r0}.

The key idea is to find an approximate solution within this subspace that minimizes the residual in the
least-squares sense. Within the GMRES method, Arnoldi’s method is employed to calculate an or-
thonormal basis, denoted as {v1, . . . , vk}, for the Krylov subspace Kk(A; r0). The process follows the
modified Gram-Schmidt version of Arnoldi’s method, which is as follows:

Algorithm 1: Gram-Schmidt version of Arnoldi to form an orthonormal basis [32]
1 Start: Choose initial vector v1 with ∥v1∥ = 1.
2 for j = 1, 2, . . . do
3 a. Set hi,j = ⟨Avj , vi⟩, i = 1, 2, . . . , j

4 b. Set v̂j+1 = Avj −
∑j

i=1 hi,jvi
5 c. Set hj+1,j = ∥v̂j+1∥2
6 d. Set vj+1 =

v̂j+1

hj+1,j

7 The entries of the upper k + 1× k Hessenberg matrix Hk are the scalars hij .

In GMRES, the approximate solution uk = u0 + zk with zk ∈ Kk(A; r0) is such that

∥rk∥2 = ∥f −Auk∥2 = min
z∈Kk(A;r0)

∥r0 −Az∥2

As a consequence, rk is orthogonal to AKk(A; r0), so rk ⊥ Kk(A;Ar0). For the matrix Hk, it follows
that AVk = Vk+1Hk where the N × k matrix Vk is defined by Vk = [v1, . . . , vk]. With this equation, it is
shown that uk = u0 + Vkyk where yk is the solution of the following least squares problem:

∥βe1 −Hkyk∥2 = min
y∈Rk

∥βe1 −Hky∥2,

with β = ∥r0∥2 and e1 is the first unit vector inRk+1. In the context of our bond pricingmodels, GMRES is
utilized to refine solutions iteratively, proving especially suitable for large systems where direct methods
are not feasible. Moreover, GMRES does not necessitate the matrix A to be symmetric or positive
definite, aligning well with the properties of our bond pricing matrices.
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The Bi-CGSTAB algorithm, with preconditioner M (see subsection 4.3.1), for solving linear system
Au = b has the following scheme:

Algorithm 2: Bi-CGSTAB Method
1 u0 is initial guess; r0 = b−Au0

2 r̄0 is arbitrary vector, such that (r̄0, r0) ̸= 0, e.g., r̄0 = r0

3 ρ−1 = α−1 = ω−1 = 1
4 v−1 = p−1 = 0
5 for j = 1, 2, . . . do
6 ρi = (r̄0, ri); βi−1ρi/ρi−1)(αi−1/ωi−1)
7 pi = ri + βi−1(p

i−1 − ωi−1v
i−1)

8 p̂ = M−1pi

9 vi = Ap̂
10 αi = ρi/(r̄

0, vi)
11 s = ri − αiv

i

12 if ∥s∥ is small enough then
13 ui+1 = ui + αip̂
14 quit
15 z = M−1s
16 t = Az
17 ωi = (t, s)/(t, t)
18 ui+1 = ui + αip̂+ ωiz
19 if ui+1 is accurate enough then
20 quit
21 ri+1 = s− ωit

In fact, the algorithm follows Bi-CGSTAB for the explicitly postconditioned linear system

AM−1y = b,

but the residual vector and vector yi are transformed back to ui and ri corresponding to the original
system Au = b. The benefit of these methods lies in their utilization of short recurrences. However, a
drawback is their semi-optimality property. Consequently, this approach requires the use of additional
matrix-vector products, and it is not possible to prove any convergence properties. Lastly, it is important
to compare the norm of the updated residual with the exact residual ∥f−Auk∥2. If a ”near” breakdown
has happened in the algorithm, these values might vary significantly, sometimes by multiple orders of
magnitude.

4.3.1. Preconditioning
Iterative methods like GMRES and Bi-CGSTAB are often used with preconditioning to accelerate con-
vergence [8]. A preconditioner M of a matrix A is a matrix such that M−1A has a smaller condition
number than A. This results in the following equation

M−1Au = M−1f

As a result, this will improve the performance of iterative methods. We will use the following precondi-
tioners:

• The Jacobi or diagonal preconditioner: Here matrix M is chosen to be the diagonal of matrix A,
so M = diag(A). This preconditioner is efficient for diagonally dominant matrices.

• Incomplete LU factorization: Here the factorization A = LU is computed, with L a lower triangular
matrix and U an upper triangular matrix. Then our preconditioner is M = LU and the equation
becomes

U−1L−1Au = U−1L−1f

The Jacobi preconditioner is less computationally expensive compared to ILU. This is because the
Jacobi method simplifies calculations by focusing only on the diagonal elements of matrix A, whereas
ILU involves a more extensive decomposition process.
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4.3.2. Convergence of Iterative Methods
In the subsequent sections, the convergence of the iterative methods GMRES and Bi-CGSTAB on
our bond models is examined. In this subsection we outline how certain matrix properties influence the
number of iterations needed for convergence. The analysis specifically focuses on the eigenvalue ratio,
diagonal dominance, symmetry of the matrix, and the effectiveness of ILU and Jacobi preconditioners.
Suppose our system looks like:

Au = f

Key factors influencing the convergence of this system include:

1. Eigenvalue Ratio: The ratio of the largest to smallest eigenvalues ofA, or the eigenvalue ratio, is
a critical factor. A smaller ratio typically correlates with faster convergence for iterative methods.

2. Diagonal Dominance: The extent to which A is diagonally dominant affects convergence speed.
Strong diagonal dominance, where diagonal elements considerably outweigh off-diagonal ele-
ments in magnitude, often results in quicker convergence.

3. Symmetry: The analysis particularly considers the impact of symmetry in A. In general, a more
symmetric a matrix usually enhances convergence properties of iterative methods than less sym-
metric matrices.

4. Preconditioners: The application of ILU and Jacobi preconditioners is explored. A well-chosen
preconditioner can greatly reduce the number of iterations required by improving the condition
number or influencing the eigenvalue distribution of A.

Other factors, such as sparsity pattern, bandwidth, magnitude of non-zero elements, and perturbations
due to rounding errors, also influence convergence but are not the primary focus of this analysis. The
numerical study in this thesis is particularly geared towards understanding how the eigenvalue ratio,
diagonal dominance, and symmetry, along with the selected preconditioners, impact the efficiency of
iterative methods in solving large systems of linear equations.
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4.4. Conventional Bond Numerical Analysis
In this section, we delve into the numerical analysis of conventional bond pricing. Our focus is on un-
derstanding how changes in market parameters, influence the numerical behavior of our conventional
bond pricing model. By observing the eigenvalue ratios and the symmetry of the obtained tridiagonal
matrix, we aim to estimate the condition number and understand its implications on the matrix’s numer-
ical stability and complexity. Then we will look at the impact of these matrix properties on the efficiency
of the iterative solvers discussed in the previous section.
It is important to note that the matrix obtained after applying the Crank-Nicolson finite difference scheme
to the conventional bond PDE is tridiagonal (4.4). This specific structure means that the ILU pre-
conditioner effectively becomes a complete LU decomposition, leading to a scenario where iterative
methods like GMRES and Bi-CGSTAB converge in just one iteration. Due to this significant difference
in the matrix structure and the efficiency of the iterative methods, we have decided not to include a
direct comparison of the conventional bond model with the green bond model in our results tables. We
obtained the following system for the conventional bond:

CBi−1 = DBi +Ki−1 +Ki (4.2)

where

Bi =


Bi,1

Bi,2

...

...
Bi,N−1

 and Ki =


â1Bi,0

0
...
0

ĉN−1Bi,N

 (4.3)

C =



1− b̂1 −ĉ1 0 . . . 0

−â2 1− b̂2 −ĉ2 . . . 0

0 −â3 1− b̂3
. . . . . .

...
. . . . . . . . . −ĉN−2

0 . . . 0 −âN−1 1− b̂N−1

 (4.4)

D =



1 + b̂1 ĉ1 0 . . . 0

â2 1 + b̂2 ĉ2 . . . 0

0 â3 1 + b̂3
. . . . . .

...
. . . . . . . . . ĉN−2

0 . . . 0 âN−1 1 + b̂N−1

 (4.5)

â =
∆t

4

(
σ2
rrj
∆r2

−
α(β − rj)− λrσr

√
rj

∆r

)
b̂ = −∆t

2

(
σ2
rrj

2∆r2
+ rj

)
ĉ =

∆t

4

(
σ2
rrj
∆r2

+
α(β − rj)− λrσr

√
rj

∆r

)

Before analyzing the effects of parameter variations, let us consider some characteristics of our numer-
ical scheme, particularly in terms of stability and eigenvalues. As we observe the coefficients of our
discretized system, specifically â, b̂, and ĉ, we notice an interesting behavior as ∆r approaches zero.
The symmetric part (second derivative terms), becomes increasingly dominant over the non-symmetric
part (first derivative terms). This is attributed to the coefficients of the second derivative terms incorpo-
rating a (1/∆r)2 factor, becoming more prominent with decreasing ∆r. This shift towards a relatively
more symmetric matrix typically results in real and non-negative eigenvalues, indicating a stable numer-
ical scheme vital for avoiding oscillations or exponential growth due to small perturbations like rounding
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errors. However, this increasing relative symmetry contrasts with the absolute symmetry of the matrix
which we will asses by taking the Frobenius norm (Def. 11), ||C − CT ||F . An increase in this norm
reflects the absolute difference in symmetry, illustrating that even minor asymmetries in each element
can accumulate to a significant overall asymmetry in a larger matrix. Hence, while finer discretizations
improve relative symmetry and stability, they can simultaneously increase the matrix’s absolute asym-
metry, highlighting the nuanced balance in numerical methods between accuracy, stability, and matrix
characteristics. Note that through this section λmax, λmin refer to the maximum and minimum eigenval-
ues of matrix C and that λr is a model parameter.
Now, let us start looking at the effect of changes in σr, the volatility of the short rate. We can see in
table 4.1 and figures 4.1 and 4.2, that if the volatility of the short rate increases, the system becomes
more numerically challenging, evidenced by a higher eigenvalue ratio and reduced matrix symmetry.
Moreover, the table shows that when the grid size grows, the model becomes more sensitive to volatility
changes, intensifying these matrix properties.

σr N λmax/λmin ||C − CT ||F
10 1.6 3.7
100 73.9 137.5
200 308.4 392.0

0.15

300 703.7 722.1

0.20

10 1.8 3.8
100 133.8 139.3
200 552.4 397.2
300 1256.4 731.6
10 1.9 3.9
100 205.4 141.7
200 851.2 403.9

0.25

300 1941.7 744.1

Table 4.1: Matrix properties different values of σr , M = 11, α = 1.0, β = 0.05, λr = 0.01

Figure 4.1: Eigenvalue distribution for different values of σr and N = 100
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Figure 4.2: Diagonals of the matrix for different values of σr and N = 100. (For a higher σr the upper and lower diagonals are
further apart from each other)

In tables (4.2), (4.3) we can see what the effect is of the increase in complexity of the matrix on the
efficiency of the iterative solvers GMRES and Bi- CGSTAB. We notice that, in general, an increase in
volatility increases the amount of iterations the methods need to reach the tolerance value 1e − 08. If
we look at gridsize N , we see that despite a bigger N providing a finer discretization and potentially
more accurate solutions, both GMRES and Bi-CGSTAB demand effective preconditioners to ensure
faster convergence. We can see that the Jacobi preconditioner has great impact on the convergence
speed of both methods. The higher the volatility and gridsize the larger the effect is.

σr N Jacobi None
10 8 9
100 24 37
200 50 71

0.15

300 49 102

0.20

10 9 9
100 26 46
200 30 92
300 38 133
10 9 7
100 36 64
200 43 115

0.25

300 69 164

Table 4.2: Performance of GMRES for various σr values

σr N Jacobi None
10 12 10

100 47 72
200 91 111

0.15

300 150 153

0.20

10 11 9
100 65 76
200 120 127
300 171 203
10 14 10

100 75 89
200 115 166

0.25

300 199 223

Table 4.3: Performance of Bi-CGSTAB for various σr values

Figure 4.3: GMRES vs Bi-CGSTAB, for different values of σr , tol = 10−8

Now we will look what happens to our system by changes in parameter α, the mean reversion speed
of the short rate. If we look at table 4.4 and figure 4.4, we see that increasing/decreasing α has almost
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no effect on the eigenvalue ratio of the matrix. However, when we look at the table 4.4 and figure 4.5,
we see that differences in α have big impact on the symmetry of the matrix in our system. We can see
that this asymmetry becomes even bigger when N , and thus the grid size, increases.

α N λmax/λmin ||C − CT ||F
10 1.6 1.9
100 132.3 71.7
200 543.9 204.4

0.5

300 1238.8 376.5

1.0

10 1.8 3.8
100 133.8 139.3
200 552.5 397.2
300 1256.5 731.6
10 1.9 5.6
100 132.7 206.9
200 550.3 590.1

1.5

300 1252.9 1086.9

Table 4.4: Matrix properties different values of α, M = 11, σr = 0.2, β = 0.05, λr = 0.01

Figure 4.4: Eigenvalue distribution for different values of α and N = 100

Figure 4.5: Diagonals of the matrix for different values of α and N = 100

Now, knowing that higher values of α lead to a more ill-conditioned matrix and reduced symmetry,
let us look at the convergence behavior of GMRES and Bi-CGSTAB. Although both GMRES and Bi-
CGSTAB show a general trend of increasing iterations with increasing grid size N , we see that they
show different effects in response to changes in the parameter α. If we look at figure 4.6, we can see
that for N = 200, an increase in α has a positive effect on the convergence speed of Bi-CGSTAB, but a
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negative effect on GMRES. Moreover, we see that the use of preconditioners has great positive impact
on the convergence speed, especially for GMRES.

α N Jacobi None
10 6 6

100 18 55
200 17 104

0.5

300 25 150

1.0

10 9 9
100 26 46
200 29 92
300 34 133
10 7 9

100 43 56
200 30 95

1.5

300 42 127

Table 4.5: Performance of GMRES for various α values

α N Jacobi None
10 10 10
100 80 81
200 136 136

0.5

300 201 207

1.0

10 11 9
100 65 76
200 120 127
300 171 203
10 12 11
100 36 76
200 85 113

1.5

300 137 182

Table 4.6: Performance of Bi-CGSTAB for various α values

Figure 4.6: GMRES vs Bi-CGSTAB, for different values of α, tol = 10−8

Let us now analyse the effects of the long-term mean parameter β on the system model. Table 4.7
shows that both the eigenvalue ratio and matrix symmetry are slightly influenced by changes in β. We
see that increases in the grid size N have a more significant effect on the matrix properties. Looking
at the Frobenius norm of C − CT , we see that the matrix tends to become a little bit more symmetric
with higher β values.

β N λmax/λmin ||C − CT ||F
10 1.7 3.9
100 129.4 143.7
200 540.6 409.6

0.03

300 1236.5 754.5

0.05

10 1.8 3.8
100 133.8 139.3
200 552.5 397.2
300 1256.5 731.6
10 1.8 3.7
100 134.0 135.0
200 550.1 384.9

0.07

300 1250.5 709.0

Table 4.7: Matrix properties different values of β, M = 11, σr = 0.2, α = 1.0, λr = 0.01
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Figure 4.7: Eigenvalue distribution for different values of β and N = 100

Figure 4.8: Diagonals of the matrix for different values of β and N = 100

If we look at the convergence of GMRES and Bi-CGSTAB, we see that they are not as sensitive to
changes in β as to the other parameters, suggesting a relatively stable behavior across different long-
term mean values.

β N Jacobi None
10 11 9
100 38 55
200 24 99

0.03

300 31 136

0.05

10 9 9
100 26 46
200 29 92
300 34 133
10 9 9
100 27 51
200 29 95

0.07

300 57 136

Table 4.8: Performance of GMRES for various β values

β N Jacobi None
10 11 11

100 63 81
200 123 139

0.03

300 190 205

0.05

10 11 9
100 65 76
200 120 127
300 171 203
10 11 11

100 65 84
200 120 130

0.07

300 168 195

Table 4.9: Performance of Bi-CGSTAB for various β values
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Figure 4.9: GMRES vs Bi-CGSTAB, for different values of β, tol = 10−8

Let us now look at changes in the matrix properties (table 4.10) in response to different values of
parameter λr, the market price of risk. Like the other parameters, we see a consistent increase in
the eigenvalue ratio and asymmetry for larger grid sizes. A positive λr shows the most substantial
decrease in symmetry (figure 4.11), particularly in larger grids, while positive values, both large and
small, also impact the absolute symmetry but to varying degrees. Moreover, the different values of λr

have almost no effect on the eigenvalue ratio of the matrix our system (see figure 4.10).

λr N λmax/λmin ||C − CT ||F
10 1.7 3.0

100 134.3 110.4
200 551.8 314.7

−1.0

300 1253.9 579.7

0.01

10 1.8 3.8
100 133.8 139.3
200 552.5 397.2
300 1256.5 731.6
10 1.8 4.6

100 132.7 168.9
200 552.5 481.4

1.0

300 1258.1 886.6

Table 4.10: Matrix properties for different values of λr , M = 11, σr = 0.2, α = 1.0, β = 0.05

Figure 4.10: Eigenvalue distribution for different values of λr and N = 100
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Figure 4.11: Diagonals of the matrix for different values of λr and N = 100

Let us now look at tables 4.11, 4.12 and figure 4.12 to see the influence of λr on the efficiency of
GMRES and Bi-CGSTAB. We find that with both GMRES and Bi-CGSTAB, the iteration amount varies
subtly across different λr values, showing no clear trend of increase or decrease. This suggests that
the sensitivity to changes in λr is nuanced.

λr N Jacobi None
10 10 8
100 24 50
200 18 95

−1.0

300 27 137

0.01

10 10 9
100 26 46
200 30 92
300 38 133
10 9 9
100 34 46
200 28 89

1.0

300 38 129

Table 4.11: Performance of GMRES for various λr values

λr N Jacobi None
10 11 11
100 70 82
200 142 137

−1.0

300 218 183

0.01

10 11 9
100 65 76
200 120 127
300 171 203
10 13 11
100 50 76
200 112 135

1.0

300 166 198

Table 4.12: Performance of Bi-CGSTAB for various λr values

Figure 4.12: GMRES vs Bi-CGSTAB, for different values of λr , tol = 10−8

4.5. Green Bond GMRES analysis
In this section we will delve into the effect of various parameters on the behavior of the matrix equation
used to determine the coupon rate of a green bond. A critical aspect of this analysis is to understand how
different parts of the discretized PDE contribute to the matrix structure and its resulting characteristics.
Unlike the observed tridiagonal matrix in the conventional bond model, we can see that matrix C (4.7)
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in this model is much more difficult due to the inclusion of the carbon price variable ct. In this matrix C,
decreasing ∆r and ∆c significantly influences both the diagonal dominance and the relative symmetry
of the matrix. The main diagonal element n̂5 increases more rapidly due to its dependence on both
(1/∆r)2 and (1/∆c)2, enhancing diagonal dominance. This is contrasted with the other n̂ coefficients
in the matrix, which grow slower as they depend on single quadratic terms. This differential scaling
not only leads to a matrix that is more diagonally dominant and relatively symmetric but also impacts
the eigenvalues and stability of the system. The eigenvalues become real and positive, which are
indicative for a more stable numerical scheme. The enhanced diagonal dominance and symmetry
typically result in real, positive eigenvalues, which are indicative of a stable numerical scheme. This
stability is crucial in ensuring that the numerical solutions are reliable and not prone to oscillations or
numerical instabilities. Note that through this section λmax, λmin refer to the maximum and minimum
eigenvalues of matrix C and that λr and λc are model parameters. Because C is not tridiagonal, the
ILU-decomposition is not the same as LU-decomposition, so we can use it as a preconditioner. We
obtained the following system of equations for the green bond:

CBi−1 = DBi +Ki−1 +Ki (4.6)

where

C =



1− n̂5 −n̂6 0 . . . 0 0 −n̂8 −n̂9 . . . 0
−n̂4 1− n̂5 −n̂6 0 . . . 0 −n̂7 −n̂8 −n̂9 0

0 −n̂4 1− n̂5 −n̂6 0 . . .
. . . . . . . . . . . .

0 0 −n̂4 1− n̂5 −n̂6 0 . . .
. . . . . . . . .

0 0 0 −n̂4 1− n̂5 −n̂6 0 . . .
. . . . . .

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . 0

−n̂1 −n̂2 −n̂3 0 . . . 0 −n̂4 1− n̂5 −n̂6
. . .

. . . −n̂1 −n̂2 −n̂3 0 . . . 0 −n̂4 1− n̂5 −n̂6

0 . . . −n̂1 −n̂2 0 0 . . . 0 −n̂4 1− n̂5



(4.7)

with
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)
n̂7 =
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2
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σ2
rrj
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−

α(β − rj) + λ2σr
√
rj

2∆r

)
n̂9 =

∆t

2

ckσcσrρ
√
rj

4∆r∆c

Now, we will consider the effect changing the volatility of the carbon price parameter, σc, has on the
matrix. We can see that when we increase σc, the term

(
0.5σ2

cc
2
)
in n̂4, n̂5 and n̂6 becomes larger.

Consequently, this increases the values on the main-, super- and sub-diagonal of the central band,
impacting the matrix’s diagonal dominance and eigenvalue distribution. Moreover, an increase in σc in
our PDE, enhances (cσcσrρ

√
r) and will contribute to the terms n̂1, n̂3, n̂7 and n̂9. This has effect on the

off-diagonal elements on the upper and lower band of the matrix. If we look at table 4.13, we see that
increasing σc enhances both the diagonal and certain off-diagonal elements, which leads to a larger
eigenvalue spread. This is because the matrix becomes less diagonally dominant and more difficult.
The increase in far off-diagonal elements contributes to the matrix’s absolute asymmetry, increasing
the Frobenius norm of C − CT .
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Figure 4.13: Eigenvalue distribution for different values of σc and N = 10

σc N = P λmax/λmin ||C − CT ||F
10 8.4 11.7
100 1223.9 1422.8
200 5081.6 5749.8

0.5

300 11592.6 12981.3
10 17.5 14.6
100 2652.0 1760.0
200 11013.7 7109.0

0.8

300 25131.8 16047.5
10 24.6 18.7
100 3741.9 2248.3
200 15539.9 9079.2

1.0

300 35462.8 20493.0

Table 4.13: Matrix properties for different values of σc

We can see in table 4.14 that the number of iterations required for convergence in GMRES (with and
without preconditioners) increases with higher σc and larger grid sizes. This is the direct consequence
of the increasing eigenvalue spread and decreasing symmetry, as both these factors can make the
numerical solution more difficult. We see that the ILU and JAC preconditioners significantly improve
convergence compared to GMRES without preconditioners, particularly at higher volatilities. The effec-
tiveness of ILU in reducing iterations more than JAC can be attributed to its ability to better approximate
the inverse of the matrix.

σc N = P ILU Jacobi None
10 2 27 30
100 6 185 220
200 8 338 420

0.5

300 9 478 613
10 2 33 39
100 6 213 314
200 9 390 587

0.8

300 9 557 833
10 2 35 41
100 6 217 363
200 9 417 696

1.0

300 9 595 996

Table 4.14: Performance of GMRES for various σc values

σc N = P ILU Jacobi None
10 3 15 17
100 5 108 159
200 6 201 331

0.5

300 7 297 425
10 3 18 25
100 5 142 244
200 6 255 457

0.8

300 7 347 689
10 3 20 27
100 5 134 276
200 6 286 507

1.0

300 8 361 792

Table 4.15: Performance of Bi-CGSTAB for various σc values
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Figure 4.14: GMRES vs Bi-CGSTAB for different values of σc

In tables 4.16 and 4.17 we show the effect of the short rate volatility parameter σr on our model. We
see that when σr increases, the amount of iterations GMRES and Bi-CGSTAB also grows. But let us
now compare the effects of σr and σc on the efficiency of the iterative solvers. We notice the volatility
of the carbon price, σc has a more pronounced effect on the efficiency of the iterative solvers than the
volatility of the short rate. In the next section (4.6) we will discuss this in more detail.

σr N = P ILU Jacobi None
100 6 210 311
200 8 385 5820.15
300 8 548 825
100 6 213 314
200 8 390 5870.2
300 9 557 833
100 6 229 317
200 8 425 5900.25
300 9 604 838

Table 4.16: Performance of GMRES for various σr values

σr N = P ILU Jacobi None
100 5 126 230
200 6 258 4530.15
300 7 363 584
100 5 142 244
200 6 255 4800.2
300 7 347 689
100 5 159 236
200 6 265 4830.25
300 8 357 698

Table 4.17: Performance of Bi-CGSTAB for various σr values

Now we will look at the correlation coefficient ρ. We observe in table 4.18 that for larger grid sizes
(N = P ≥ 100), both the eigenvalue ratios and the Frobenius norms are the same for the different
values of ρ. This means that the impact of the correlation coefficient ρ on the matrix characteristics
becomes less pronounced as the grid size increases. But, we can see in figure 4.15 that even if the
eigenvalue ratios are the same, the actual distribution of the eigenvalues in the complex plane can be
different. This is why we still see some differences in the amount of iterations GMRES performs for
different values of ρ.

Figure 4.15: Eigenvalue distribution for different values of ρ and N = 10
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ρ N = P λmax/λmin ||C − CT ||F
10 17.2 14.6

100 2652.0 1760.0
200 11013.7 7109.0

−0.5

300 25131.8 16047.5
10 17.4 14.6

100 2652.0 1760.0
200 11013.7 7109.0

0.0

300 25131.8 16047.5
10 17.5 14.6

100 2652.0 1760.0
200 11013.7 7109.0

0.5

300 25131.8 16047.5

Table 4.18: Matrix properties for different values of ρ

ρ N = P ILU Jacobi None
10 2 32 38

100 6 213 314
200 9 390 587

−0.5

300 8 557 833
10 2 32 38

100 6 213 314
200 9 390 587

0.0

300 8 557 833
10 2 33 39

100 6 213 314
200 9 390 587

0.05

300 8 557 833

Table 4.19: Performance of GMRES for various ρ values

ρ N = P ILU Jacobi None
10 3 18 25
100 5 141 233
200 6 257 455

−0.5

300 7 350 688
10 3 18 25
100 5 140 212
200 6 255 457

0.0

300 7 428 700
10 3 18 25
100 5 142 244
200 6 255 480

0.05

300 7 347 689

Table 4.20: Performance of Bi-CGSTAB for various ρ values

Figure 4.16: GMRES vs Bi-CGSTAB for different values of ρ

The carbon price drift parameter µ directly affects terms n̂4 and n̂6 in the matrix. These terms influence
the rate of change of the coupon rate with respect to the carbon price. If we look at figure 4.17 and
table 4.21, we can see that changes in µ do not show great impact on the eigenvalue ratio. Because µ
only impacts n̂4 and n̂6, we see that the influence on the absolute asymmetry is significant but not the
sole factor. The variation in the number of iterations across different µ values show that µ has some
role in the convergence behavior for GMRES.
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Figure 4.17: Eigenvalue distribution for different values of µ and N = 10

µ N = P λmax/λmin ||C − CT ||F
10 17.5 15.7
100 2633.0 1885.0
200 10934.7 7613.9

−0.05

300 24951.6 17186.8
10 17.5 15.1
100 2643.2 1821.0
200 10977.3 7355.6

0.0

300 25048.8 16604.0
10 17.5 14.6
100 2652.0 1759.8
200 11013.7 7108.9

0.05

300 25131.8 16047.5

Table 4.21: Matrix properties for different values of µ

µ N = P ILU Jacobi None
10 2 32 38
100 6 213 311
200 9 387 577

−0.05

300 8 553 819
10 2 32 39
100 6 213 312
200 9 388 582

0.0

300 8 555 826
10 2 33 39
100 6 213 314
200 9 390 587

0.05

300 8 557 833

Table 4.22: Performance of GMRES for various µ values

µ N = P ILU Jacobi None
10 3 17 25

100 5 141 233
200 6 255 398

−0.05

300 7 350 667
10 3 18 25

100 5 128 230
200 6 274 466

0.0

300 7 385 691
10 3 18 25

100 5 142 244
200 6 255 480

0.05

300 7 347 689

Table 4.23: Performance of Bi-CGSTAB for various µ values
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Figure 4.18: GMRES vs Bi-CGSTAB for different values of µ

In table 4.24 we show the effects of λc, the market price of risk for the carbon price. When we look at
the eigenvalue ratio and ∥C −CT ∥ columns, we can see that when λc = 1.0, matrix C has the smallest
eigenvalue ratio, but is the least symmetric. Moreover, GMRES performs the best when λc = 1.0. So
we can conclude that the lower eigenvalue ratio has more impact on the condition number of the matrix
C, than the symmetry.

λc N = P λmax/λmin ||C − CT ||F
10 16.7 11.8
100 2585.6 1433.0
200 10737.7 5791.1

−1.0

300 24502.1 13074.4
10 17.5 14.7
100 2650.7 1769.4
200 11008.3 7147.6

−0.01

300 25119.5 16134.7
10 16.1 25.0
100 2350.7 2992.8
200 9760.8 12083.3

1.0

300 22273.6 27271.6

Table 4.24: Matrix properties for different values of λc

Figure 4.19: Eigenvalue distribution for different values of λc and N = 10
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λc N = P ILU Jacobi None
10 2 34 40
100 6 214 328
200 9 401 627

−1.0

300 9 573 906
10 2 33 39
100 6 213 314
200 9 390 586

−0.01

300 8 557 832
10 2 28 34
100 5 202 262
200 6 364 477

1.0

300 7 521 681

Table 4.25: Performance of GMRES for various λc values

λc N = P ILU Jacobi None
10 3 22 27
100 5 144 245
200 6 254 501

−1.0

300 7 383 678
10 3 18 25
100 5 142 244
200 6 255 480

−0.01

300 7 347 689
10 3 17 19
100 5 138 225
200 6 273 385

1.0

300 7 403 528

Table 4.26: Performance of Bi-CGSTAB for various λc values

Figure 4.20: GMRES vs Bi-CGSTAB for different values of λc

λr N = P ILU JAC None
10 2 29 35
100 6 212 318
200 8 392 592

−1.0

300 8 548 839
10 2 33 39
100 6 214 313
200 9 390 586

0.01

300 8 557 831
10 2 35 40
100 5 237 333
200 9 419 580

1.0

300 7 590 823

Table 4.27: Performance of GMRES for various λr values

λr N = P ILU JAC None
10 3 16 22

100 5 135 245
200 6 264 426

−1.0

300 7 354 686
10 3 19 25

100 5 142 232
200 6 256 466

0.01

300 7 380 650
10 3 22 29

100 5 156 231
200 9 284 441

1.0

300 7 404 579

Table 4.28: Performance of Bi-CGSTAB for various λr values
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Figure 4.21: GMRES vs Bi-CGSTAB for different values of λr

Let us now compare the GMRES and Bi-CGSTAB methods between the different coupons at the same
time step i. We use the parameter setting as described in the table below and obtain table 4.29. We
observe that for V1 the most iterations are needed and fewer for subsequent coupons. This is because,
as the model progresses back in time, the solutions for each time step are closer to the previous
solutions. In iterative solvers, the convergence rate is often influenced by how ”close” the initial guess
is to the true solution.

Parameter values
α 1.0 β 0.05
σc 0.8 σr 0.2
µ 0.05 ρ 0.2

N = P = 300 GMRES Bi-CGSTAB
M = 11 ILU Jacobi None ILU Jacobi None

V1 6 214 313 5 141 247
V2 6 209 249 5 132 195
V3 5 199 241 5 115 190
V4 5 195 238 4 114 187

Table 4.29: Performance of GMRES and Bi-CGSTAB for different coupons
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4.6. Comparative Analysis of the Conventional and Green Bond mod-
els

Having thoroughly analyzed the numerical properties and behaviors of the models, we will conduct
a comparative analysis of the results from the previous sections. This analysis aims to enhance our
understanding of how environmental factors impact the convergence efficiency of the iterative methods.
Let us begin by looking at the green bond model, focusing on the volatility parameters σr and σc. The
iteration counts for convergence, as observed in the tables in the previous section, reveal that carbon
price volatility σc significantly impacts the model more than short rate volatility σr (tables 4.30, 4.31).
This effect indicates that variations in carbon price introduce a higher degree of variability into the model
than changes in the short rate do. This heightened sensitivity to σc stems from the particular way the
carbon price interacts with the model and its variables. The inclusion of the double knock-out call option
on the carbon price further accentuates this effect. This feature means that high σc can lead to more
frequent triggering of the knockout barriers, resulting in abrupt and significant changes in the coupon
rate’s valuation. This does not hold for σr because this parameter does not directly interact with this
part of the model. We can conclude that the double knockout option on the carbon price, while making
the model more dynamic and market-responsive, also increases computational complexity, especially
in high volatility scenarios.

N = P = 300 GMRES Bi-CGSTAB
σr ILU Jacobi None ILU Jacobi None
0.15 8 548 825 7 363 584
0.25 9 604 838 8 357 698

Table 4.30: Performance of GMRES and Bi-CGSTAB for various σr values in the Green Bond model

N = P = 300 GMRES Bi-CGSTAB
σc ILU Jacobi None ILU Jacobi None
0.5 9 478 613 7 297 425
1.0 9 595 996 8 361 792

Table 4.31: Performance of GMRES and Bi-CGSTAB for various σc values in the Green Bond model

Let us now examine how the short rate volatility affects both the GMRES and Bi-CGSTAB solvers
for both bond models. We choose the same values for the short rate σr in both models and look at
table (4.30, Green bond), and table (4.32, Conventional Bond). The first thing we notice is the vast dif-
ference in iteration counts between the two models. So the extra complexity in the green bond model,
due to the carbon price influence compounded by the double knockout mechanism, requires substan-
tially more iterations for convergence. This is present in scenarios with and without preconditioners.
Furthermore, the GMRES solver shows a substantial increase in iterations from 548 to 604 as σr rises
from 0.15 to 0.25. This increase, being more significant in absolute terms, has a lower increase in per-
centages compared to the conventional bond model. This suggests that while the green bond model’s
difficulty leads to higher absolute numbers, its sensitivity to short rate volatility is less dominant.

N = 300 GMRES Bi-CGSTAB
σr Jacobi None Jacobi None
0.15 49 102 170 167
0.25 68 164 236 236

Table 4.32: Performance of GMRES and Bi-CGSTAB for various σr values in the Conventional Bond model

Let us now look at the amount of iterations for lower values of the carbon price volatility, σc. As evident
from table 4.33, the iteration counts required for convergence in the green bond model with lower σc

values are not much higher than those for the conventional bond model. However, it is important to
note that these lower volatility scenarios are not entirely representative of the typical market conditions
for the carbon price due to the great amount of factors influencing the price [19]. This higher volatility is
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also consistent with our parameter calibration earlier. Thus, while lower volatility scenarios show more
similar convergence rates, they probably do not typically represent the real-world conditions under
which green bonds operate [13][14].

N = P = 300 GMRES Bi-CGSTAB
σc ILU Jacobi None ILU Jacobi None
0.15 7 329 338 5 197 244
0.25 7 371 409 6 246 315

Table 4.33: Performance of GMRES and Bi-CGSTAB for lower σc values in the Green Bond model

Another factor we have to consider is the increasing trend in the introduction of new environmental
regulations by governments all around the world. These regulations typically drive the carbon price
upwards, reflected in a larger or positive µ in our model. In table 4.34, we can see how a positive µ
affects the performance of GMRES and Bi-CGSTAB. We observe that as µ becomes more positive,
the number of iterations required for convergence slightly increases for both GMRES and Bi-CGSTAB.
This effect is less pronounced when using one of the preconditioners. In addition to influencing the
drift parameter µ of the carbon price, regulatory shifts and policy changes often introduce uncertainties
and rapid adjustments in the market, which can significantly increase its volatility σc in our model. As
previously shown in table 4.31 this has a notable impact on the convergence efficiency of the iterative
solvers.

N = P = 300 GMRES Bi-CGSTAB
µ ILU Jacobi None ILU Jacobi None

−0.05 8 553 819 7 350 667
0.05 8 557 833 7 347 689
0.10 8 559 838 7 350 713

Table 4.34: Performance of GMRES and Bi-CGSTAB for various µ values in the Green Bond model

Furthermore, abnormal changes in traditional energy prices, particularly oil, can significantly impact
the carbon market [33]. For example, as we have seen last year, a sudden increase in oil prices might
make alternative energy sources, including renewable energy, more economically attractive. Such
fluctuations can cause uncertainty in the demand for and supply of carbon credit allowances, leading
to increased price volatility σc, thereby, as we comprehensively established thus far, resulting in an
increase in required iterations.

Now we will analyse the ’Greenium’ effect on the performance of GMRES and Bi-CGSTAB in both bond
models. As a brief reminder, the ’Greenium’ effect, is the phenomenon where investors exhibit a higher
willingness to accept risks and lower returns for green bonds due to their sustainable nature[4]. In the
context of financial engineering, this would mean the market price of risk parameter λ tends to be more
negative. Let us start considering the effect of both market price of risk parameters, λr and λc in the
green bond model. We can see in tables 4.35 and 4.36 that more negative values of λr and λc lead to
iterations required for both GMRES and Bi-CGSTAB solvers.

N = P = 300 GMRES Bi-CGSTAB
λc ILU Jacobi None ILU Jacobi None

−1.0 9 573 906 7 383 678
−0.01 8 557 832 7 347 689

Table 4.35: Performance of GMRES and Bi-CGSTAB for various λc values in the Green Bond model
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N = P = 300 GMRES Bi-CGSTAB
λr ILU Jacobi None ILU Jacobi None

−1.0 8 548 839 7 354 686
−0.01 8 557 831 8 380 629

Table 4.36: Performance of GMRES and Bi-CGSTAB for various λr values in the Green Bond model

The conventional bond model only includes the market price of risk in the short rate,λr. Here, λr is
likely to be positive, reflecting investors’ preference for higher returns, as sustainability factors are not
considered. We can see in table 4.37 that more positive values of λr result in fewer iterations required
for both solvers.

N = 300 GMRES Bi-CGSTAB
λr Jacobi None Jacobi None
0.01 38 301 193 227
1.0 38 273 193 220

Table 4.37: Performance of GMRES and Bi-CGSTAB for various λr values in the Conventional Bond model

Thus, this Greenium effect has significant impact on the performance of GMRES and Bi-CGSTAB and
can be seen as another environmental factor that increases the difficulty for iterative solvers in the con-
text of green bonds, differentiating them from conventional bonds.
In conclusion, this comparative analysis between the conventional and green bond models highlights
the substantial influence of environmental factors on the convergence of the iterative methods GM-
RES and Bi-CGSTAB. We observe that the green bond model’s sensitivity to carbon price volatility,
σc, notably increases the computational complexity. The ’Greenium’ effect further differentiates the
green bond model by affecting the market price of risk parameters, thereby increasing solver iterations.
These findings underscore the significant impact environmental variables have in the performance and
robustness of established numerical methods.

Additionally, it is important to discuss the impact of grid size on our models, particularly in the context
of the green bond model. In our analyses, the grid size was constrained to a maximum of 300 × 300,
which was the maximum for practicality. However, we observed the rapid increase in the number of
iterations required for convergence as the grid size increases, especially for the carbon price volatility,
σc.



5
Conclusion & Discussion

The primary objective of this thesis was to explore the impact environmental factors have on the pric-
ing methods of green bonds. During the literature review, we discovered that environmental factors
significantly influence the carbon price and its dynamics. Consequently, we developed a model for
the coupon rate of a green bond that is not only dependent on traditional financial factors, such as the
short rate (rt), but also depends on the carbon price ct. With this approach, we were able to to integrate
environmental aspects into the valuation of green bonds, thereby reflecting the evolving landscape of
sustainable finance. The coupon rate had the payoff mechanism of a European call option on the car-
bon price. From a financial perspective, this is reasonable as green bonds are issued to fund projects
with environmental benefits. When issuers perform well, they contribute positively to the environment,
which in turn can lead to a reduced demand for carbon allowances. This reduction in demand can
cause a decrease in the carbon price, consequently leading to lower coupon payouts. This mechanism
not only incentivizes issuers to perform better environmentally but also aligns the interests of investors
with sustainable environmental practices. We fitted the model to real market data to obtain estimations
for all the parameters. We compared this model with the model for the coupon rate of a conventional
bond, only dependent on the short rate rt.
In chapter 4 we did a detailed analysis of both the model’s numerical properties, focusing on matrix
characteristics, eigenvalue distributions, and the influence of various parameters. This comparative
analysis highlighted the unique challenges and complexities introduced by environmental factors. Then
we investigated the performance of the GMRES and Bi-CGSTAB methods found that the green bond
model consistently required more iterations for these methods to converge. This increased demand for
iterations was primarily attributed to the high volatility of the carbon price σc. We showed that when the
values of the carbon price volatility (σc) were low, the models exhibited similar requirements in terms
of the number of iterations needed. However, considering the multitude of environmental factors and
their inherent uncertainties, which in our model are collectively represented through the carbon price,
a realistically high σc is more appropriate. This aligns with the calibration we conducted in Chapter 2.
Additionally, we investigated the ’Greenium’ effect, where investors are willing to accept higher risks
and lower returns for green bonds. We observed that this also resulted in extra required iterations for
the iterative methods.
The performance of GMRES and Bi-CGSTAB varied between the green and conventional bond mod-
els. Notably, for the green bond model, Bi-CGSTAB outperformed GMRES in terms of efficiency and
required iterations. However, for the conventional bond model, GMRES demonstrated superior perfor-
mance compared to Bi-CGSTAB. Furthermore, the use of ILU and Jacobi preconditioners was found to
be effective in increasing the convergence rate of the GMRES and Bi-CGSTAB methods for both bond
models.
Having achieved significant findings, these also presents opportunities for further research. There are
many other innovative ways of integrating environmental impacts into financial models. For instance,
environmental impact could be modeled as a direct modifier of the green bond’s face value, FV , or as
a factor influencing its maturity time T . Moreover, future studies could expand this scope to include
diverse environmental metrics such as carbon footprint and sustainability ratings. In Chapter 4 we only
considered the CIR model, future research could incorporate the Vašiček model, which does allow for
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negative rates. Exploring additional matrix properties could also provide a deeper understanding of the
numerical behaviors and challenges in sustainable financemodeling. Our analyses were constrained to
a grid size of 300×300, which indicated a rapid increase in the number of iterations required for conver-
gence, especially in the green bond model, as the grid size increases. This suggests that larger grids,
potentially necessary for more detailed market modeling, could significantly escalate computational
demands. The limitation to GMRES and Bi-CGSTAB methods with ILU and Jacobi preconditioners
also suggest there are many more other iterative methods and preconditioning techniques to investi-
gate. This exploration could potentially uncover more efficient strategies for handling complex financial
models.
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A
Black-Scholes PDE Derivation

Let V (t, S) denote the option value, dependent on time t and the stochastic process S. Using Itô’s
lemma, we derive its dynamics

dV (t, S) =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2

=

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2

)
dt+ σS

∂V

∂S
dWP.

We then construct a portfolio Π(t, S) containing one option V (t, S) as well as some amount −∆ of the
underlying asset S(t). This yields

Π(t, S) = V (t, S)−∆S(t). (A.1)

We use the result of Itô’s lemma to derive the dynamics of portfolio Π

dΠ = dV −∆dS (A.2)

=
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∂t
+ µS
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∂S
+
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2
σ2S2 ∂
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∂S2

)
dt+ σS
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∂S
dWP −∆(µSdt+ σSdWP ) (A.3)

=
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dWP .

This portfolio contains randomness due to the σS
(
∂V
∂S −∆

)
dWP term, which we want remove by choos-

ing
∆ =

∂V

∂S
. (A.4)

Then, equation A.2 becomes

dΠ =

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt.

To avoid arbitrage, the money invested in a risk free savings account must be exactly the same as the
value this portfolio would generate. We model this for amount,Π(t, S), as

dΠ = rΠdt (A.5)

= r

(
V − S

∂V

∂S

)
dt

In the second equality, we used equations A.1 and A.4. Finally, by equating equations A.3 and A.5
and dividing by dt, we obtain the Black-Scholes PDE:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0.
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