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Abstract 
MOSES DSS web-platform aims to assist stakeholders such as governments and farmers in order 
to manage water irrigation distribution in a higher efficiency and sustainability. The constructed 
algorithms are focused on forecast using weather models, data, as well as satellite multispectral 
observations in such a way that a 7-day ahead crop water requirement estimation is generated. 
The current drawback of the system in using the available and free satellite products such as 
Landsat 8 and Sentinel 2, is that it assumes that the crops are under standard conditions, e.g. there 
is no water stress, diseases etc.. The current work investigates how possible errors due to this 
assumption can be potentially tackled in the future by comparing CWR with S2REP VI and/or with 
water stress index and see the discriminative power of the latter. Furthermore, a comparison 
between several discrepancies between S2 and L8 (e.g. AC and co-registration) are studied since it 
is a crucial issue especially in temporal applications such as MOSES. On the one hand, the results 
showed that a harmonization of the two products is certainly needed. On the other hand, it seems 
that S2REP is capable of revealing crop stress information based on the methodologies of this 
work, thus it could potentially give more information compared to NDVI which is not sensitive to 
crop stress. 

 

Keywords: MOSES DSS, Landsat 8, Sentinel 2, Crop Water Requirement, crop stress, S2REP 
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1. Introduction 

1.1. Motivation and purpose 
This work is a minor part in the framework of the MOSES (Managing crOp water Saving with 
Enterprise Services) project which in turn operates under the umbrella of the research and 
innovation European programme H2020 being a DSS. The MOSES project aims to put in place and 
demonstrate at the real scale of application an information web platform devoted to water 
procurement and management agencies. The platform will provide information and support to 
water management authorities and farmers in order to make more efficient and sustainable use of 
water resources in agricultural activities. Ideally, the above stakeholders should be staying up-to-
date by being provided with crop status information regularly. One of the main system 
components of the MOSES platform is the in-season monitoring and short term forecast of Crop 
Water Requirement (CWR)1. Monitoring and short term forecast of CWR at high temporal 
resolution can be realized by using a combination of weather observation data and forecast 
models as well as multispectral Earth Observation (EO) data. Currently, MOSES platform does not 
provide sufficient prediction in the case when crops undergo stress, since EO data processing 
schemes assume no crop stress, i.e. water, salinity. The purpose of this project is to investigate the 
quality of the EO data outputs after processing, as well as make them more informative. More 
information can be found on the relevant webpage (http://moses-project.eu/moses_website/) as 
well as in Di Felice et al. (2017). 

 

1.2. CWR theoretical background 
One significant process in the general water balance model, along with runoff, precipitation and 
infiltration, is the evapotranspiration (ET). Generally, water transits from liquid to the gaseous 
phase through the evaporation from the soil, as well as the transpiration from the vegetation. 

According to the guidelines provided by the Food and Agriculture Organization of the United 
Nations (Allen et al., 1998) the ET in an agricultural domain depends on three factors; weather 
(radiation, air temperature, wind speed, humidity), environmental conditions including human 
factor (e.g. soil water content, soil permeability, diseases etc.) and crop factors (crop type, variety 
and growth stage). The crop ET under ideal climatic conditions can be defined as the reference 
crop ET (ET0) which assumes grass as a reference crop. Making the model more realistic, a crop 
factor KC is incorporated which represents the accumulated crop characteristics, thus the new ET 
is defined as ETC considering ideal environmental conditions. In addition, considering that 
environmental conditions are not perfect, we arrive at the final adjusted form of ET, ETC,adj which 
includes a crop water stress factor (KS). Eventually, taking into account the above information and 
under the context of the current project the CWR can be defined as the amount of water that is 

1 See definition in Section 1.2. 

1 
 

                                                            



necessary in order to compensate for the water decrease due to ETC, thus the water needed for the 
crop to grow optimally. The crops are considered to be under standard non-stressed condition. 

 

Remote Sensing approach 

In the case of EO data the aim is to use Landsat 8-OLI (L8) in combination with Sentinel-2 MSI (S2) 
missions, since they provide free online access and they can result in higher temporal resolution if 
used together. Namely, the temporal resolution of L8 is 15 days (U.S. Geological Survey, 2016), 
while for S2 constellation is 5 days, at the equator (ESA, 2015). However, the temporal resolution 
is even greater for both satellites at the mid latitudes, because of adjacent swath overlap, among 
others. In the study area which is presented later, L8 and S2 temporal resolution lies between 7-9 
days and 2-3 days, respectively, which can give a final temporal resolution of 1-3 days. The full 
potential of a minimum timespan of 1 day between some acquisitions can only be gained under 
cloud-free conditions, although an even lower temporal resolution of e.g. 2-3 days will be 
adequate in the case of atmospheric noise such as clouds. 

The RS application in estimating CWR has been mainly focused on three approaches; (i) RSEB (ii) 
crop coefficient and (iii) Penman-Monteith equation (Akdim et al., 2014; Calera et al., 2017). In 
order to estimate the CWR using RS, it has been shown that certain spectral regions are mainly 
useful which are exploited using vegetation indices, which in turn are correlated with crop 
parameters such as chlorophyll content, nitrogen content, biophysical etc. (Akdim et al., 2014). 
With regard to L8 and S2 instrument payload specifications they show lots of similarities since S2, 
at its core, was designed to provide continuity to Landsat series, among others. A comparison of 
the spectral resolution and bands can be seen below (Fig. 1). In particular, the bands that are used 
commonly in the CWR estimation are the red and NIR whose comparison between the two 
satellites can be seen in Table 1. The band 8a (20 m spatial resolution) of S2 is an equivalent to 
band 8 (10 m) and Landsat’s band 5, and was designed in order to minimize water vapor noise 
that Landsat experience showed to be apparent (U.S. Geological Survey, 2016). 

 

Table 1. Landsat 8-OLI and Sentinel 2-MSI bands that are commonly related to CWR estimation, 
as well as the red edge region bands of the S2 

Satellite Band 
Name/Number 

Central 
Wavelength (nm) 

Bandwidth (nm) Spatial 
Resolution 
(m) 

Landsat 8-OLI Red/4 654.5 37 30 
 NIR/5 865 28 30 

Sentinel-2 Red/4 665 30 10 
 NIR/8 842 115 10 
 Narrow NIR/8a 865 20 20 
 Red edge 1/5 705 15 20 
 Red edge 2/6 740 15 20 
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 Red edge 3/7 783 20 20 
 

 
Figure 1. Spectral resolution comparison between Landsat 8 and Sentinel-2 (from Kääb et al., 2016) 

 

1.3. Research Questions 
The two main research questions to be answered in the current project pertain to: 

i) How and, if so, why Sentinel 2 and Landsat 8 differ in terms of estimating crop water 
requirement 

ii) How good or bad is the use of kc-NDVI method (D’Urso, 2010) in estimating crop water 
requirement taking into account that in reality there are no standard crop conditions (e.g. 
crops are under water stress) 

In other words, the first goal of this study is to assess the potential differences between S2 and L8 
in estimating CWR and the second is whether crops under non-standard conditions can be 
identified using red edge position (S2REP) and canopy temperature (CSI) based indices, since 
NDVI is not sensitive enough. 

1.4. Study Area 
In MOSES project four demonstration areas have been set up; Italy, Spain, Romania and Morocco. 
The current thesis work is focused on the demonstration area in Italy (Fig. 2) which is located in a 
relatively flat area which comprises the irrigation districts. Namely, the wide majority of the 
region where the different plots are placed is characterized by very small slopes (< 3.8o) as 
inspected by deriving the slope of the 1-arcsec Digital Elevation Model (DEM) of Shuttle Radar 
Topography Mission (SRTM) (Fig. 3). Its climate is continental (summer maximum temperatures 
above 30 °C), mitigated by sea influence in the North-eastern part. The Apennine mountains on 
the Eastern side cause instability generating hot dry spells, with prevailing south-west currents, 
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mainly in Winter and Springs, and strong rainfall events, with prevailing Eastern currents. 
Although the total amount of rainfall appeared to be stable (750-850 mm), during the last few 
years a change of the temporal distribution has been recorded, namely an increase of heavy 
rainfall events alternated with long periods of drought is being realized. 

The Total Agricultural Surface in the area is about 230000 ha where approximately 16000 farms 
are operating. The 70% of the Used Agricultural Surface (about 165000 ha) is dedicated to the  
cultivation of sown crops and the 20% to the agricultural woody plants, while the prevailing crops 
are wheat, meadow, alfalfa, maize, sorghum, peach, vineyard, horticulture and sugar beet (2015 
AGREA data). 

 
Figure 2. MOSES demonstration area in Italy bounded by the intermittent 
white line. 
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Figure 3. The slopes (in degrees) of the morphological relief of 
the study area in Italy. The slopes have been generated by 
using the SRTM DEM (1-arcsec). 

 

2. Materials and Methods 
The datasets used can be classified into four categories; (a) L2 for L8 OLI and S2 MSI (b) L1 for L8 
OLI/TIRS and S2 MSI and (c) miscellaneous. All three of them are described thoroughly below. 
Regarding (a) and (b) the satellite images of S2 and L8 that were used in this project were 
downloaded directly from the corresponding web platforms that are 
scihub.copernicus.eu/dhus/#/home and earthexplorer.usgs.gov/, respectively. The former’s CRS is by 
default WGS84/UTM zone 32N (EPSG: 32632) while the latter’s is WGS84/UTM zone 33N (EPSG: 
32633). Every processing step was accomplished using ArcGIS™ benefitting from ModelBuilder and 
ArcPy, Python, MATLAB™, SNAP benefitting from the iCOR plugin (Sterckx et al., 2015a) and QGIS 
benefitting from the Semi-automatic classification plugin (Congedo, 2016). With regard to the co-
registration procedure, it has been observed that S2 and L8 are not completely aligned due to some 
errors in the ground stations of L8 (Claverie et al., 2017). This is the reason that several preliminary 
procedures were realized (see Appendix). 
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2.1. Category (a) 
Table 2 shows the ID information of the tiles of both satellites. As for S2, two scenes were 
downloaded which slightly overlap. The date of acquirement is 20/06/2017 and the time ~ 09:52 
and ~10:00 for L8 and S2, respectively. This is a fact that minimizes any discrepancies pertaining 
to solar angles etc. In addition, the L2 of L8 is an on-demand product, which means that the user 
needs to wait for several hours or maybe 1 day to have it delivered. S2 is generated using the 
sen2cor AC algorithm whilst L8 using LaSRC algorithm (Vermote et al., 2016). 

Table 2. The Scene ID information regarding L8 and S2 L2 products as provided by the 
relevant services (NASA, ESA). 

Landsat 8 LC08_L1TP_191029_20170620_20170630_01_T1 
Sentinel 2 S2A_MSIL2A_20170620T100031_N0205_R122_T32TQP_20170620T100453 
 S2A_MSIL2A_20170620T100031_N0205_R122_T32TQQ_20170620T100453 

 

Pre-processing 

The L2 products can directly provide information, such as the land cover, cloud coverage, 
saturated pixels, probable sensing issues etc. Therefore in this preliminary step of quality 
assessment the Landsat QA ArcGIS Tools toolbox was used in order to decode the corresponding 
QA bands of L8, such as LC08_L1TP_191029_20170620_20170630_01_T1_pixel_qa.tif, 
LC08_L1TP_191029_20170620_20170630_01_T1_radsat_qa.tif and 
LC08_L1TP_191029_20170620_20170630_01_T1_sr_aerosol.tif. The quality of every parameter 
seems to be adequate (e.g. sun elevation angle not too low (~64o)), as well as the cloud coverage 
over land was at minimal levels (0.11 %). Same thing holds for the aerosol presence which was 
high just over the towns which do not affect further processing since it is focused over the crops. 
Same procedure was followed for S2, where the saturation of pixels was minimal, thus do not 
affect the processing. 

Next step was to rescale the pixel values based on the rescaling factor 0.0001. Furthermore, a 
mosaic regarding S2 two different tiles of the scene of interest was created. This was realized 
using nearest neighbor interpolation without any feathering or smoothing, thus not affecting the 
original pixel values. As a last step, the S2 mosaicked scene was co-registered to L8 scene using 
the SNAP collocation tool. Collocation tool, according to SNAP help documentation, performs an 
automatic geographic co-registration (alignment-reprojection/resampling) using tie points, 
although no further information is available. 

2.2. Category (b) 
Same type of information as in category (a) can be seen in Table 3. Regarding time and date, of 
course, the same situation holds. 

Table 3. The Scene ID information regarding L8 and S2 L1 products as provided by the relevant 
services (NASA, ESA). 
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Landsat 8 LC08_L1TP_191029_20170620_20170630_01_T1 
Sentinel 2 S2A_MSIL1C_20170620T100031_N0205_R122_T32TQP_20170620T100453 
 S2A_MSIL1C_20170620T100031_N0205_R122_T32TQQ_20170620T100453 

 

Pre-processing 

The preprocessing steps were followed for the L1 products of S2 and L8 tiles. In particular, only 
the relevant bands that were going to be used for the spectral indices were processed, i.e.  B2, B4, 
B5, B6, B7, B8a, B8, B11 for S2 and B4, B5 for L8. 

Following, they were radiometrically and atmospherically corrected using the iCOR algorithm 
which is provided as a SNAP plugin. iCOR AC scheme is based on MODTRAN-5 LUTs (Berk et al., 
2005) and innate band information and it is has been especially created in order to harmonize L8 
and S2 regarding AC (Sterckx et al., 2015a). The parameters that were used for both S2 and L8 
were the default using an adjacency effect correction with an adjacency window of size 3x3. There 
was no need to apply the SIMEC adjacency correction since it is not necessary to strictly correct 
over water bodies for which SIMEC is specialized (Sterckx et al., 2015b). The adjacency effect is 
denoted as the noise of a pixel that originates from the scattering of the adjacent areas (pixels). 

After this, the products of each spectral band were co-registered using the collocation tool in 
SNAP and nearest neighbor resampling (30m) interpolation method. Again, the S2 tiles were 
mosaicked band by band with the same option as in category (a). 

As far as the L8 thermal band (B10) concerned, the processing procedure is described later. In 
addition, the same procedures were followed for the S2 bands that are relevant to BI except that 
they were not co-registered and resampled with L8 since there was no need. 

2.3. Category (c) 
The miscellaneous dataset is composed of rasters such as ETo, VPD, Air Temperature and crops 
polygons shapefile, as well as L8 LAI which was provided as an output from the MOSES processing 
platform. Everything is re-projected to WGS84/UTM zone 33N using nearest neighbor 
interpolation. The maize polygons are selected and extracted to a separate shapefile out of the 
crops polygon based on the ID of maize (ISM_ID = 38). Following, the ETo raster is converted to 
polygon and in combination with the maize polygon, the maize polygon that are completely within 
the ETo polygon are selected and extracted (Fig. 4). The final maize polygon is used as the clip 
polygon in order to restrict the further processing to maize, which is the crop of interest since it is 
grown during the month of June. It is worth to note that the crop classification was realized using 
KNN classifier by MOSES algorithms. The dataset used was a combination of spectral bands of 
pairs of images with a time lag of 15 days between them. For further information on MOSES crop 
classification one can refer to Spisni et al. (2017). 
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The ETo was computed based on the Penman-Monteith equation (Allen et al., 1998; Akdim et al., 
2014) using weather data measured from ground stations as parameters, as well as using crop 
reference (grass) values. The formula used by MOSES platform can be seen below: 

,min

( ) 1.013 /1
(1 / )

ns nl a
C

c a

R R G De rET
r r

r
l γ
D − − +

=
D + +  

Where:  
λ is the latent heat of vaporization [MT/kg]; 
Rns is the net SW radiation (MJ/m²d);  
Rnl is the net LW radiation (MJ/m²d);  
G is the soil heat flux (kJ/m²s),  
De is the VPD of the air (kPa);  
ρ is the mean air density at constant pressure (kg/m3);  
γ is the psychometric constant (kPa/°C);  
∆ is the slope of the saturation vapour pressure temperature relationship (kPa/°C);  
rc,min and ra are the minimum surface (in the absence of water stress) respectively the 
aerodynamic resistance. 
 
With regard to L8 LAI, it was produced out of L1 products which were atmospherically corrected 
using the MOBAC AC scheme developed specifically for MOSES project (Alfieri & Menenti, 2016). 
MOBAC is based on MODTRAN LUTs. Furthermore, LAI was computed using the procedure that is 
described by Akdim et al. (2014) which is based on WDVI. 

 
Figure 4. Spatial analysis of maize polygons. The purple polygon represents the ETo. The red and pink 
polygons show the maize plots. The red polygons represents those maize polygons that are used in 
the analysis and calculation of CWR that fall completely within the ETo polygon. 

 

2.4. Vegetation Indices (VIs) 
The Normalized Difference Vegetation Index (NDVI) for Sentinel 2 was computed as below: 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐵𝐵8𝑎𝑎 − 𝛣𝛣4
𝛣𝛣8𝛼𝛼 + 𝛣𝛣4

 

while for Landsat 8 as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐵𝐵5 − 𝛣𝛣4
𝛣𝛣5 + 𝛣𝛣4

 

The Sentinel 2 Red Edge Position (S2REP) was computed as developed in Frampton et al. (2013) 
using all three red edge bands and can be seen below:  

𝑆𝑆2𝑅𝑅𝑅𝑅𝑅𝑅 = 705 + 35
𝐵𝐵7 + 𝐵𝐵4

2 − 𝐵𝐵5
𝐵𝐵6 − 𝐵𝐵5

 (𝑛𝑛𝑛𝑛) 

Red edge is the spectral region where plant leaves and canopy reflect light with the largest slope 
and this is why it is so informative, thus useful for vegetation studies including chlorophyll 
content estimation (Filella & Penuelas, 1994; Frampton et al., 2013). The reflectance increases 
from about 0.68 μm to 0.75 μm. 

 

2.5. Crop Water Requirement 
Based on Allen et al. (1998) the CWR (or ETc)  is computed through: 

𝑅𝑅𝑇𝑇𝑐𝑐 = 𝐾𝐾𝑐𝑐  𝑅𝑅𝑇𝑇𝑜𝑜 

Using the RS approach the Kc can be computed as (D’Urso, 2010; Rocha et al., 2012; Akdim et al., 
2014): 

𝐾𝐾𝑐𝑐 = 1.25 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 0.2 

The two numerical parameters of the above equation can change locally based on the crop under 
study (D’Urso, 2010; Rocha et al., 2012), although in the current work the default formula is used. 

 

2.6. Canopy Stress Index (CSI) 
The foundation of crop stress index can be found in Idso et al. (1981a) and Idso (1981b) which is 
based on transpiration which in turn depends on air and canopy temperature as well as vapor 
partial pressure; the estimation of crop water stress is based on field measurements. However, 
since remote sensing approach inserts error due to noise Rodriguez et al. (2005) developed a 
solely satellite remote sensing version of the aforementioned work which is named Canopy Stress 
Index. CSI is defined as:  

9 
 



𝐶𝐶𝑆𝑆𝑁𝑁 =
𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑎𝑎
𝑁𝑁𝑅𝑅𝑁𝑁

 (𝑜𝑜𝐶𝐶/𝑘𝑘𝑅𝑅𝑘𝑘) 

where TC (oC) is the canopy temperature, Ta (oC) is the air temperature and VPD is the Vapor 
Pressure Deficit (kPa) as a normalization factor. Below, the steps towards the CSI computation are 
described in this project. 

Firstly, thermal band (B10) of L8 L1C product was derived in order to compute the Land (or 
Canopy) Surface Temperature (LST). According to U.S. Geological Survey (2016) thermal Band 11 
should be avoided due to very high noise that originates from stray light. The LST is computed 
using the L8 LAI as derived by the MOSES processing platform (Akdim et al., 2014) as seen below 
(Weng et al., 2004) using the Semi-automatic classification plugin (Congedo, 2016): 

𝐿𝐿𝑆𝑆𝑇𝑇 =
𝑇𝑇𝐵𝐵

1 + 𝜆𝜆𝑐𝑐𝑇𝑇𝐵𝐵
𝜌𝜌 𝑙𝑙𝑛𝑛𝜀𝜀

− 273.15 (𝑜𝑜𝐶𝐶) 

where TB is the Brightness temperature, λC (μm) the central wavelength of B10, ε the emissivity 
and ρ is a product of constants. In particular: 

𝜌𝜌 = ℎ
𝑐𝑐
𝜎𝜎

 (𝜇𝜇𝑛𝑛 𝛫𝛫) 

where h = 6.626 ∙ 10-34 J s (Planck’s constant), c = 2.998 ∙ 108 m s-1 (speed of light in space), σ = 
1.38 ∙ 10-23 J K-1 (Boltzmann’s constant) 

and 

λC = 10.895 μm (B10 central wavelength) 

Following, TB is computed according to U.S. Geological Survey (2016). As a result, a conversion to 
Top-Of-Atmosphere (TOA) spectral radiance based on the information provided in the metadata 
(*.MTL) file is needed using: 

𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿𝑄𝑄𝑐𝑐𝑎𝑎𝑙𝑙 + 𝐴𝐴𝐿𝐿  (
𝑊𝑊

𝑛𝑛2 ∙ 𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠 ∙ 𝜇𝜇𝑛𝑛
) 

where ML is B10 multiplicative rescaling factor (RADIANCE_MULT_BAND_10), AL is B10 additive 
rescaling factor (RADIANCE_ADD_BAND_10) and Qcal is the quantized and calibrated standard 
product pixel value (Digital Number) 

and 𝑇𝑇𝐵𝐵 = 𝐾𝐾2
ln (𝐾𝐾1𝐿𝐿𝜆𝜆

+1)
 (𝐾𝐾) 

where TB is the brightness temperature assuming an emissivity equal to 1, K1 and K2 are the 
thermal conversion constants for band 10 (Kx_CONSTANT_BAND_10) 

and finally ε = emissivity which can be computed based on LAI as (Allen et al., 2002) and is valid at 
the areas where NDVI is positive: 
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𝜀𝜀 = 0.95 + 0.01 ∙ 𝐿𝐿𝐴𝐴𝑁𝑁,   𝑓𝑓𝑓𝑓𝑠𝑠 𝐿𝐿𝐴𝐴𝑁𝑁 < 3 
𝑘𝑘𝑛𝑛𝑠𝑠 
𝜀𝜀 = 0.98,   𝑓𝑓𝑓𝑓𝑠𝑠 𝐿𝐿𝐴𝐴𝑁𝑁 ≥ 3 

Furthermore, according to Rodriguez et al. (2005) the derived LST is a mixed signal that 
originates from canopy and soil. Therefore, it should undergo a correction based on the ground 
cover –equivalent to Fractional Vegetation Cover (FVC). The aforementioned researchers derived 
empirical relationships between the correction parameter Delta and some VIs for wheat crops. In 
the current work by extrapolation the relationship between Delta and NDVI is used on maize 
crops which is: 

𝑁𝑁𝐷𝐷𝑙𝑙𝐷𝐷𝑘𝑘 = 28.4 ∙ 𝐷𝐷−3.6 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑜𝑜𝐶𝐶) 

 As a result, the final canopy temperature becomes: 

𝑇𝑇𝐶𝐶 = 𝐿𝐿𝑆𝑆𝑇𝑇 − 𝑁𝑁𝐷𝐷𝑙𝑙𝐷𝐷𝑘𝑘 

Regarding the rest of the two parameters for calculating CSI, namely air temperature (Ta) and VPD 
they are derived from MOSES platform meteorological inputs. The final product is the CSI raster in 
30m spatial resolution which denotes a crop under stress when it is positive and a healthy crop 
when it is negative. 

 

2.7. Bare-Soil Index (BI) 
The Bare-Soil Index was originally developed by Roy et al. (1996) and later reformulated by Roy 
et al. (1997) and Rikimaru & Miyatake (1997). The index was developed based on Landsat TM and 
discriminates well between non-vegetation (e.g. bare soil) and sparse or dense vegetation since it 
uses both absorption and reflectance bands, such as blue, red, NIR and SWIR. In addition, it has 
also being implemented for Landsat 8 OLI/TIRS (Akike & Samanta, 2016). As a result, in this study 
the equivalent index in S2 is used below which also offers better spatial resolution (10m) than L8 
(30m): 

𝐵𝐵𝑁𝑁 =
(𝐵𝐵11 + 𝐵𝐵4) − (𝐵𝐵5 + 𝐵𝐵2)
(𝐵𝐵11 + 𝐵𝐵4) + (𝐵𝐵5 + 𝐵𝐵2)

∙ 100 + 100 

where approximately 0 < BI < 200; high values denote presence of bare-soil and low values 
denote dense vegetation. 

By taking into account the histogram of the BI it seems to represent a mixture distribution, 
namely being bimodal. The one mode with the lower values represents the higher vegetated plots 
of maize while the second mode with higher values represents the less vegetated plots and/or 
bare soil that may be misclassified as maize. The latter information is an indication that came 
from visual inspection of the study area where not perfect maize classification was realized. In 
order to further filter the pixels that are supposed to represent maize in the same development 
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stage (maximum growth) based on the MOSES in-season crop mapping classification, a decision 
boundary was chosen over which the values are disregarded. The threshold was chosen by fitting 
a kernel density function on to the BI histogram values and then considering the local minimum as 
the decision boundary (Fig. 5). However, since the data showed two local minimums, the one with 
the highest BI (= 77) was chosen as the threshold value in order to include more values from the 
first mode (denser vegetation), although importing some noise because of the uncertainty due to 
mixture distribution and the incorporation of more values of the second mode (less vegetation 
and/or bare soil). 

 
Figure 5: The graph depicts the histogram of the BI generated from S2 relevant bands. It is clearly a 
mixture distribution, namely bimodal. The mode at the left side represents the maize regions where 
there is dense vegetation, while the mode at the right side represents those regions that are either 
sparse vegetation and/or bare soil misclassified as maize. 

 

3. Results and Discussion 
As far as the pre-processing stage concerned, several simplifications and assumptions were made 
for the accomplishment of this thesis. In particular, despite the two satellite sensor differences such 
as spectral and orbital setup which affect the signal that is received, only the radiometric (partly), 
atmospheric and geometric correction were taken into account in this work. Thus, there was no 
such pre-process as BRDF adjustment and/or band adjustment such as those proposed in Claverie 
et al. (2017) or Zhang et al. (2018) which are used to almost completely harmonize the L8 and S2 
sensors. Thus for a completely harmonized comparison between the products one should treat the 
following information with care. 
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Regarding the comparison itself between S2 and L8 products, several graphs and comments can be 
seen in the Appendix. They are not included in the current section since they were out of the initial 
scope of this study, although the discrepancies between the two satellites were considered 
significant therefore the comparison of different combinations between AC and co-registration was 
inevitable in order to choose the best AC and co-registration in the category (b) datasets. Generally, 
the co-registration is very important in a time series application such as MOSES project thus there 
are several approaches to solving this issue, namely described by Stumpf et al. (2018), Skakun et al. 
(2017) and Gao et al. (2009). Furthermore, apart from the misregistration between L8 and S2 due 
to L8 ground segment issue (Claverie et al., 2017) another geometrical discrepancy has been 
observed lately in Sentinel 2-A between different dates above the same geographical region (Yan et 
al., 2018), therefore this could be also an issue that needs care, although this is not an obstacle of 
the current study. 

Category (a) 

The results of the NDVI comparison regarding the category (a) can be seen below (Fig. 6a). The 
relation is linear as expected although it is not 1:1. Furthermore, the histogram along with summary 
statistics, as well as the absolute difference can be seen (Fig. 6b-d). The central tendency statistical 
moments are expected to be 0, ideally with a small standard deviation although this is not the case. 
The largest deviation between the two is observed at the lowest and highest quartiles (Fig. 6b). As is 
apparent, the L2 products of S2 and L8 provided by the services cannot be used in combination 
directly as they are –or at least by just simply co-registering- for CWR estimation due to the 
biasedness and not good agreement. This difference is most likely owed to the differentiation 
between the two AC schemes that the services use. Further information which elaborate on this can 
be found in the Appendix graphs which show the discrepancies and their most probable causes 
better. 

  
a b 
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Figure 6: a) Graphs shows the 2D histogram of the S2 vs L8 NDVI as computed by the L2 products 
downloaded directly from the relevant web services. The red intermittent line represents the 1:1 line b) 
Histogram of S2 and L8 NDVIs. The S2 histogram is transparent on top of the L8 histogram c) The absolute 
difference of S2 and L8 NDVIs which should be concentrated on top of 0 but this is not the case d) 
Summary statistics of the difference of S2 and L8 NDVIs. 
 

Category (b) 

The following information concern the category (b) datasets, namely the iCOR atmospherically 
corrected L1 products. The comparison between S2REP/CSI and Kc (Fig. 7a, b), S2REP and CSI 
(Fig. 7c), as well as NDVI/CWR L8 and CWR S2 can be seen below (Fig. 7d, e). The comparison of 
S2REP/CSI with Kc was chosen in order to avoid including the slight effect of ETo which would 
hide some information. First of all, in the graphs S2REP/CSI versus Kc a parabolic shape is 
observed. The curve starts taking an opposite direction at approximately Kc=1 (Fig. 8). By 
inspecting the map overlaid by BI and looking at the BI histogram there seem to be two modes or 
regions; one region which is either bare-soil or very sparsely vegetated (maybe crops that are in 
the beginning of their growth). By using the BI filter the lower values of the variables are 
disregarded in order to isolate crops at the maximum development stage (Fig. 5). Specifically, the 
values of Kc lower than ~1 are disregarded and the trend that is considered valid is kept. Namely, 
the positive and negative correlation between S2 Kc-S2REP (Fig. 7f) and L8 Kc-CSI (Fig. 7g), 
respectively, is an expected result. 
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e f 

  
g h 
Figure 7: a) KC-S2REP 2D histogram which show curve that first decreases and then increases. Also there 
are two modes observed which is probably related to the difference in LCC b) KC-CSI 2D histogram that 
shows similar but opposite relation as Fig. 7a c) S2REP-CSI 2D histogram which barely shows a 
correlation. In fact it is very slight negative if not absent d) Relationship between S2-L8 NDVI produced 
by iCOR AC and collocation tool co-registration by ESA SNAP. The relationship agrees with the 1:1 red 
intermittent line e) The corresponding S2-L8 CWR as produced by the NDVI in Fig. 7d using the KC-NDVI 
empirical method  f) The same graph as Fig. 7a filtered using the BSI = 77 threshold g) Same graph as in 
Fig. 7b filtered using the BSI = 77 threshold h) Histogram of S2REP which shows the bimodality more 
clear. 
 

CSI index is generally used as an indicator of crop water stress and can only be retrieved from 
thermal bands.  S2REP is instead a more direct indicator of chlorophyll content and hence can be 
used to monitor the health and function of crops since chlorophyll is a major regulator of crop 
health status. It could also be indirectly related to soil water content. However, it has been 
established that the leaf chlorophyll content decrease is not always caused by a reduction in leaf 
water content (water stress condition) (Ceccato et al., 2001), as the opposite holds for the case of 
maize (Schlemmer et al., 2005; Khayatnezhad & Gholamin, 2012), although some maize cultivars 
can be drought resistant keeping a high chlorophyll content (Khayatnezhad & Gholamin, 2012). On 
the other hand, the vegetation stress indices due to water deficiency -such as the one used in the 
current project (CSI)- are not always reliable. The reason for this is that water stress indices of this 
type are based on the assumption that a plant will minimize transpiration when it is start being 
depleted of water. In addition, the computation itself might import errors which could come from 
LAI, emissivity and Delta. However, it has been found that there are plant species which cease 
transpiration in order to maintain water thus preventing water stress conditions (Ceccato et al., 
2001). Therefore, those species can wrongly be taken as water stressed. In other words, spectral 
bands that span from visible to near-infrared, as well as thermal are only suitable for specific 

1 2 3 4 5 6 7

Sentinel 2 CWR Emp [mm/d]

1

2

3

4

5

6

7
La

nd
sa

t 8
 C

W
R

 E
m

p 
[m

m
/d

]

Level 2 iCOR Maize

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Sentinel 2 K
c

710

715

720

725

730

S
2R

E
P

 [n
m

]

Level 2 iCOR Maize

0.2 0.4 0.6 0.8 1 1.2 1.4

Landsat 8 K
c

-6

-4

-2

0

2

4

6

8

10

C
S

I [
o

C
/k

P
a]

Level 2 iCOR Maize Level 2 iCOR Maize

710 715 720 725 730

S2REP [nm]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

ba
bi

lit
y

15 
 



vegetation species regarding their water content, since those bands are commonly used to either of 
the two approaches (i.e. chlorophyll estimation and transpiration crop stress index). 

 

Furthermore, there are studies that have correlated positively the Red Edge Parameters with the 
leaf chlorophyll content such as Ding and Zhang (2016). Frampton et al. (2013) in a preliminary 
study regarding S2 showed that the corresponding REP (S2REP) is highly correlated with Leaf 
Chlorophyll Concentration (LCC), at least based on the crops that they studied which do not 
include maize. In the current study it is evident that S2REP contains such extra information 
through the bimodality which probably is owed to the increased leaf chlorophyll content partly at 
least (Fig. 7a, f, h). As far as maize concerned, despite a direct correlation between LCC and water 
content has not been grounded, the leaf spectral reflectance seems to be affected by acute water 
stress as Schlemmer et al. (2005) observed. The same authors explain this such that transmittance 
of NIR wavelengths is affected by the air between the cells of the leaf tissue which in turn are 
related to water content. Therefore, based on this information S2REP could possibly include 
information about leaf water status in the present project to a certain extent, although without 
being supported by strong evidence. 

As far as the 2-dimensional histogram between CSI and S2REP concern, it suggests that there is 
almost no correlation between the two variables. This means that the observed S2REP-CSI 
negative association is extremely weak if not absent, which in turn indicates that S2REP in the 
current scene is not related to water stress but some other kind of stress. In addition, almost no 
negative CSI values are observed, which would suggest that there are not well irrigated maize 
plots, although there might be a computation bias (systematic error) due to Delta as mentioned 
above which could drag the values to the positive side. This must be the most probable reason of 
the bias since Delta is not widely tested and when developed it was based on different crop type 
(Rodriguez et al., 2005).  

In addition, the S2REP-KC graph (Fig. 7f) shows a positive correlation after BI filtering, even though 
there is large scattering, and the CSI-KC (Fig. 7g) shows a negative correlation. The absolute values 
of the fitted curve slopes on the unfiltered graphs can be seen in Fig. 8a-d below against KC , which 
suggest that S2REP slopes are higher than CSI, thus S2REP is better in discriminating crop stressed 
areas where the assumption of KC-NDVI stress conditions does not hold since it changes at a higher 
rate than CSI. 

Additionally, the graphs of CWR (Fig. 7d) and NDVI (Fig. 7 e) between L8 and S2 seem to be 
reasonable, as the relation is a 1:1. The scattering of the data –which is very small compared to the 
comparisons in the Appendix (App. Fig. 9, 10) and category (a) output (Fig. 6)- could probably 
owed to transformations and absence of complete harmonization of the two sensors. This suggests 
that a common AC, accurate co-registration and other adjustments (e.g. spectral and BRDF) are of 
some importance if one concerns about perfect L8 and S2 matching. 
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a b 

  
c d 

Figure 8: a) threshold Kc = 0.96 where slopes is 0 with coefficients of 2nd order polynomial being a=-18.4, 
b=35.5, c=-11.1 b) threshold Kc = 0.85 where slope is 0 with coefficients of 2nd order polynomial being 
a=33.8, b=-57.3 and c=744.9. Both modes are taken into account for the curve fitting c) threshold Kc = 
0.90 where slope is 0 with coefficients of 2nd order polynomial being a=21.5, b=-38.6, c=738.3. The second 
mode has been disregarded from the curve fitting d) Absolute values of slopes for CSI, S2REP using both 
modes and S2REP using just the one mode as seen in Fig. 8c 
 

4. Conclusions and Suggestions 
In conclusion, throughout this project it has been found that the effect the discrepancies of 
L8 and S2 are important regarding every aspect such as spectral response, AC and mis-
registration. Furthermore, since the NDVI cannot depict accurate estimation of CWR under 
crop stressed conditions S2REP was investigated on how it could potentially show some 
aspect of crop stress. With the current methodology used, it is found that S2REP could 
better discriminate between stressed and not stressed crops than CSI being related not only 
to water content but also to other sources of stress. 

Since, officially, the project was supposed to be accomplished under a restricted period of 
time it is apparent that further work can be conducted in order to enhance and expand the 
knowledge. In particular, since a combined operational use of Sentinel 2 and Landsat 8 is 
needed, it is of primal importance that the two datasets are completely harmonized. In 
other words, it is suggested that the following steps can be followed in the view of the 
aforementioned; i) an even better parametrized common atmospheric correction based on 
the iCOR algorithm or another one as suggested by other authors such as Zhang et al. (2018) 
and Claverie et al. (2017) ii) a more precise co-registration e.g. an area and/or feature based 
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and/or frequency domain based satellite image co-registration along with geometric 
correction iii) spectral adjustments. In this way the products will be more homogeneous 
and, thus, provide a more consistent and reliable time series in the future. Regarding the 
NDVI weakness to disclose stress information, further research is needed in order to find 
such information using multispectral datasets, although the weakness is present indeed. 
Since S2REP is a promising VI regarding crop stress, its use and correlation analysis with KC 
could be expanded to a larger number of images in order to minimize the bias that could 
originate from the specific restricted study area, and in this way could assist the up to now 
widely used KC-NDVI method that only holds for standard crop conditions. 
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6. Appendix 
The graphs as can be seen below have been generated by S2 NDVI computed using B8 instead of 
B8a (Fig. 9 a-f). By comparing the Fig.9a and Fig. 9d, the impact of the spatial resolution is visible 
as 30m spatial resolution of both S2 and L8 (Fig. 9d) give a less spread of the data, thus converting 
products to common spatial resolution gives better results. The atmospheric effect due to water 
vapor of B8 as U.S. Geological Survey (2016) notes is apparent especially in Fig. 9a and Fig. 9d. By 
comparing them with Fig. 9g which uses the B8a S2 it suggests that B8 S2 is unsuitable in being 
used for NDVI calculation since it shows a systematic error, thus the relation NDVI S2-NDVI L8 is 
far from 1:1. Regarding the absolute differences whose central tendency moments do not 
accumulate over 0, as well as the large standard deviations they are the effects of the absence of co-
registration. The AC that was used is the DOS1 through the Semi-automatic classification Plug-in in 
QGIS (Congedo, 2016). The discrepancy observed in Fig. 9 j-l is due to both absence of co-
registration (spread of data) and differentiation in AC (systematic error in low and high values) of 
L2 products (LaSRC AC for L8 and sen2cor AC for S2). This can be also justified if one compares the 
Fig. 9 g-i with Fig. 9 j-l, which shows that there is no systematic error in DOS1, thus the systematic 
error is owed to ACs and not the absence of co-registration or different spatial resolutions. On the 
contrary, the impact of spatial resolution can be seen in the comparison between Fig. 10 g-i and 
Fig. 10 j-l which suggest that the resampling of S2 to L8 spatial resolution (30m) increases the 
precision. 

Fig. 10 m-o represents the iCOR comparisons. Taking everything into account the iCOR (Fig. 10 m-
o) seems to be slightly better than DOS1 (Fig. 10 j-l) correction based on their summary statistics 
(central moments). Also there seems to be a difference between the two especially at the lowest 
and highest values (Fig. 10 p-u). Namely, DOS1 underestimates the high values and overestimates 
the low values compared to iCOR. However, in the current work iCOR was considered to be more 
accurate due to the nature of the AC algorithms it uses which are not solely image-based as DOS1, 
thus could give slightly more realistic values. 
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k l 

Figure 9: a-c) S2 (10m) vs L8 (30m) NDVI (using S2 B8) using DOS1 AC with no co-registration  d-f) S2 
(30m) vs L8 (30m) NDVI (using S2 B8) using DOS1 AC with no co-registration  g-i) S2 (20m) vs L8 (30m) 
NDVI (using S2 B8a) using DOS1 AC with no co-registration j-l) S2 (20m) vs L8 (30m) NDVI (using S2 B8a) 
using L2 products with sen2cor and LaSRC ACs respectively, with no co-registration 
 

The graphs below (Fig. 10 a-l) represent comparisons with the use of co-registration 
(reprojection/resampling and collocation SNAP tool) combinations and DOS1 AC, as well as 
comparison with iCOR AC (Fig. 10 m-u). 
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Figure 10: a-c) L8 (20m) vs S2 (10m) DOS1 AC, reprojected and resampled in SNAP d-f) L8 (10m) vs S2 
(10m) DOS1 AC, reprojected and resampled in SNAP  g-i) L8 (10m) vs S2 (10m) DOS1 AC, collocated in 
SNAP j-l) L8 (30m) vs S2 (30m) DOS1 AC, collocated in SNAP m-o) L8 (30m) vs S2 (30m) iCOR AC, 
collocated in SNAP p-r) S2 DOS1 vs iCOR AC graphs  s-u) L8 DOS1 vs iCOR AC graphs 
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