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ABSTRACT: Probabilistic design of infrastructure is based on estimates of design values. These are mostly
done using classical statistical models. The statistical procedures used in structural reliability are restricted due
to lack of data. The lack of data is most evident when the estimation is conditional on infrequent situations. Non
Parametric Continuous Bayesian Belief Nets (NPCBBN) in combination with structured expert judgment could
help approximate situations that are difficult to observe in the data. The advantage of using NPCBBNs is that
data can be generated artificially once a model has been quantified. Additionally, the use of NPCBBN provides
the user with the possibility to do fast updating on the joint distribution once evidence becomes available. This
could be of great advantage for decision makers. In this paper first NPCBBN are described. As an example,
with data from highway RW16 in the Netherlands for April 2008 a BBN for bridge design load is quantified.
Variables included are axle load, number of axles per vehicle, velocity, total vehicular weight, and vehicular
length. Possibilities to extend the model with structured expert judgment are discussed.

1 INTRODUCTION

One of the main concerns in structural reliability is
the estimation of design values. Usually these cor-
respond to return periods of hundreds or thousands
of years. Data is often available for limited periods
of time to estimate design values. Often, paramet-
ric probability distributions are fitted to these obser-
vations and then extreme quintiles are determined.
However the associated return period is large com-
pared with the length of the period of observations.
For example while in the Netherlands a return period
of 76,500(NEN 2002) years is required for bridge de-
sign loads, observations used to compute the design
load might include only one month. A similar situa-
tion occurs for flood discharges where a return period
of 1,250 years in river dikes is of interest while flood
discharges are only available for a period of approx-
imately a hundred years (van Noortwijk, Kalk, and
Chbab 2003).

The statistical procedures used in structural relia-
bility are restricted due to lack of data. For example,
if design loads for bridges were to be computed with
the conditional distribution of axle load given vehicles
with 11 axles and total weight equal to 1,000kN the
data available would be severely restricted. Non Para-

metric Continuous Bayesian Belief Nets (NPCBBN)
in combination with structured expert judgment could
help approximate situations that are difficult to ob-
serve in the data such as the one previously described.
Data can be generated artificially for such situations.
Additionally, the use of NPCBBN provides the user
with the possibility to do fast updating on the joint
distribution once evidence becomes available. This
could be of great advantage when rapid exploration
of a data base is required.

In this paper first NPCBBN are described. Then,
with data from highway R16 in the Netherlands for
April 2008 a BBN for bridge design load is quantified.
Variables included are axle load, number of axles per
vehicle, velocity, total vehicular weight, and vehicular
length. Possibilities to extend the model with struc-
tured expert judgment are discussed.

2 CONCEPTS & DEFINITIONS.

Copulae are part of the building blocks of the graph-
ical models to be used in this paper and for that rea-
son basic concepts and definitions regarding them are
introduced. The book by (Nelsen 1998) presents an
introduction to the subject.

Bivariate copulae will be of special interest for us.
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In this paper by copula (or copulae) we mean a bi-
variate copula (or bivariate copulae) unless otherwise
specified. The bivariate copula or simply the copula
of two random variables X and Y is the function C
such that their joint distribution can be written as:

FX,Y (x, y) = C(FX(x), FY (y)).

Copulae are functions that allow naturally the in-
vestigation of association between random variables.
Measures of association such as the rank correlation
or Kendall’s tau may be expressed in terms of copu-
lae (Nelsen 1998). The measures of association to be
used in this paper are described in the appendix.

Of special interest in this paper will be the nor-
mal copula. Denote by Φρ the bivariate standard nor-
mal cumulative distribution function with correlation
ρ and Φ−1 the inverse of the univariate standard nor-
mal distribution function then

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
; (u, v) ∈ [0,1]2

is called the normal copula.
Notice that ρ is a parameter of the normal copula.

In the case of a conditional bivariate copula the pa-
rameter ρ1,2;3,...,n is used instead.

2.1 Bayesian belief networks.

Bayesian Belief Networks (BBNs) are directed acyclic
graphs whose nodes represent univariate random vari-
ables and whose arcs represent direct influences be-
tween adjacent nodes. These influences may be prob-
abilistic or deterministic1. The graph of a BBN in-
duces a non unique ordering of variables and stipu-
lates that each variable is conditionally independent
of its non-descendants given its parents. The parent
set of variable Xi will be denoted as Pa(i). Hence, to
specify a joint distribution through a BBN the graph
must be specified together with conditional probabil-
ity functions of each variable given its parents (equa-
tion 1).

f(x1, x2, ..., xn) =
n∏

i=1

f(xi|xPa(i)) (1)

If Pa(i) = ∅ then f(xi|xPa(i)) = f(xi). A BBN
is then a concise and complete representation of the
joint distribution. In the case that all nodes in the
BBN are discrete then the functions to be specified
are conditional probability tables (CPT) of each node
given its parents. When variables are continuous, one

1When an influence is deterministic, nodes will be called
functional. The discussion presented next refers to probabilis-
tic influences unless otherwise specified.

possibility is to discretize them into a large enough
number of states and use discrete BBNs. This ap-
proach might however turn out to be infeasible even
for a modest sized model mainly because of the num-
ber of parameters to be specified. In general, the
number of probabilities to be assessed K for a dis-
crete BBN on n nodes with ki states for each Xi for
i = 1, ..., n is:

K =
∑
j∈S

kj − |S|+
∑
l∈C

(kl − 1)
∏

m∈Pa(l)

km (2)

where S = {Xj|Pa(j) = ∅} and C = {Xl|Pa(l) ̸= ∅}
and |S|+ |C| = n. It is clear from equation (2) that
K grows rather quickly as the number of states of
each Xi grow. This is one of the main drawbacks
of discrete BBNs. Some of the drawbacks of dis-
crete BBNs were discussed in (Hanea, Kurowicka,
and Cooke 2006) and (Cowell, Dawid, Lauritzen, and
D.J. 1999). We list a summary of them next:

1. K imposes an assessment burden that might lead
to informal and indefensible quantification or a
drastic discretization or reduction of the model.

2. Marginal distributions are often available from
data. Marginal distributions for children nodes is
calculated from probability tables and this could
impose severe restrictions in a quantification pro-
cess.

3. Discrete BBNs are flexible with respect to recal-
culation and updating however they are not flex-
ible with respect to modelling changes. If a par-
ent node is added then the child nodes must be
completely re-quantified.

Continuous-discrete non-parametric BBNs
(Kurowicka and Cooke 2005), (Hanea, Kurow-
icka, and Cooke 2006) have been developed to
cope with some of the drawbacks that discrete (and
discrete-normal) models impose. These will be
discussed next.

2.2 Non-Parametric Continuous BBNs.

Non-parametric Continuous BBNs and their rela-
tionship to other graphical models were presented
in (Kurowicka and Cooke 2005) and extended in
(Hanea, Kurowicka, and Cooke 2006). A non-
parametric continuous (or continuous-discrete) BBN
(NPCDBBN) is a directed acyclic graph whose
nodes represent continuous univariate random vari-
ables and whose arcs are associated with parent-
child (un)conditional rank correlations. For each vari-
able Xi with parents Xj, ...,X|Pa(i)| associate the arc
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XPa(i)−k → Xi with the conditional rank correlation:{
ri,Pa(i), k = 0
ri,Pa(i)−k|Pa(i),...,Pa(i)−k+1, 1 ≤ k ≤ Pa(i)− 1

(3)
The assignment is vacuous if {Xj, ...,XPa(i)} = ∅.

These assignments together with a copula family in-
dexed by correlation and with conditional indepen-
dence statements embedded in the graph structure of
a BBN are sufficient to construct a unique joint dis-
tribution. Moreover, the conditional rank correlations
in 3 are algebraically independent, hence any number
in (-1,1) can be attached to the arcs of a NPCDBBN
(Hanea, Kurowicka, and Cooke 2006).

Any copula with an invertible conditional cumula-
tive distribution function may be used as long as the
chosen copula possesses the zero independence prop-
erty2. Choosing the normal copula presents advan-
tages with respect to other copulae for building the
joint distribution. Observe that for the normal copula
relation (9) holds and since conditional correlations
are equal to partial correlations then formula (8) may
be used to compute the correlation matrix correspond-
ing to the graph. Moreover since for the joint normal
distribution, conditional distributions are also normal
(Tong 1990, p.33), then analytical updating is pos-
sible by this choice (Hanea, Kurowicka, and Cooke
2006, p.724).
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load [kN]
r4,5|3 // X5: Vehicle

Speed [km/h]

X1: Nr.

of axles [-]

r4,1|2,3
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Figure 1: BBN for Axle Loads in Highway R16 (Left
Lane) in the Netherlands.

Figure 1 shows an example of a NPCDBBN on 5
2A copula with an analytic form for the conditional and in-

verse conditional cumulative distribution function accelerates
the sampling procedure. One example of such a copula is
Frank’s copula. See (Nelsen 1998)

nodes. To illustrate the assignment or rank and con-
ditional rank correlations consider variable X4 with
parents Pa(4) = {X1,X2,X3}. According to the as-
signment in (3), the unconditional rank correlations
r4,3 is used first. Then the conditional rank correlation
r4,3−1|3 = r4,2|3 is assigned. Finally the conditional
rank correlation r4,3−2|3,2 = r4,1|3,2 is assigned. Other
(un)conditional rank correlations have been assigned
in a similar way.

The indices in the assignment (3) refer to the index
of the variable in the ordering in the parent set and
hence it does not necessarily need to coincide with
the variable’s original index. However once the cor-
relations have been assigned the variables’original in-
dices are used.

The structure of the BBN gives information about
the dependence structure in the joint distribution. For
example variables X1 and X2 are correlated. X1 in-
fluences X3 directly but also through X2. This is de-
scribed in terms of the conditional rank correlation
r1,3|2. In general every variable in the graph is con-
ditionally independent of its ancestors given its par-
ents. For example X5 is conditionally independent of
{X1,X2} given {X3,X4}. For a more complete de-
scription of the semantics of the graph of a BBN see
(Pearl 1988, ch. 3).

3 NON-PARAMETRIC CONTINUOUS BBNS FOR
DESIGN LOADS IN BRIDGES.

NPCBBNs have been used before in risk and uncer-
tainty analysis. In (Ale, Bellamy, Boom, Cooper,
Cooke, Goossens, Hale, Kurowicka, Morales, Roe-
len, and Spouge 2007) and (Morales Nápoles 2009)
a large scale BBN for aviation safety3 is discussed.
In the public health field, in (Jesionek and Cooke
2009) a BBN for benefits and risks associated with
food consumption is presented. An environmental ap-
plication is presented in (Hanea, Kurowicka, Cooke,
and Ababei 2010) where a NPCBBN is quantified
from data of polluting gases in the USA. With respect
to risks in civil infrastructure in (Morales Nápoles
and Delgado Hernández 2009) a BBN for earth dam
safety and its quantification through expert judgment
is presented.

The BBN from Figure 1 is presented in this paper
as an example for the use of these kind of models for
bridge design loads calculations. The BBN in Figure
1 could have a number of advantages for users:

• A rapid visualization of conditional distributions
could be available for analysts once the model is
quantified.

• Artificial data can be generated based on the

3Approximately 1,500 nodes and 5,000 arcs.
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model to reduce the uncertainty related to lack
of data in estimating extreme quantiles.

• The model could be used not only for investigat-
ing extreme axle loads but any other univariate
marginal not conditionalized in the model.

The quantification of the model was done from data
partially as in (Hanea, Kurowicka, Cooke, and Ababei
2010). The quantification of the model is described
next.

3.1 Model quantification

We use data from the Weigh in Motion (WIM) sys-
tem in the Netherlands. The data records the variables
presented in figure 1 for different locations. We use
highway RW16 in the left lane for the month of April
2008. In total 239,994 vehicles are contained in the
data. If joint data were available then a full quan-
tification of the model would be possible following
(Hanea, Kurowicka, Cooke, and Ababei 2010). This
is however not the case.

Observe that a single measurement per vehicle is
observed for variables X1, X2, X3 and X5. The
marginal distribution for X4 refers to axle load. Each
vehicle can have from 2 to 13 observations for X4.
Hence its marginal distribution is available. However,
the required rank correlations cannot be assessed di-
rectly from data because we have more observations
for X4 than for all other variables.

Instead, a smaller model with variables
{X1,X2,X3,X5} is quantified as in (Hanea,
Kurowicka, Cooke, and Ababei 2010). The quan-
tification consists roughly in computing the rank
correlations of interest in figure 1 from the data.
Then the full correlation matrix of the BBN using
the normal copula (ΣBBNS

) may be computed. To
validate the model 1) the determinant of the rank
correlation matrix obtained by transforming the
univariate distributions to standard normals, and
then transforming the product moment correlations
to rank correlations using Pearson’s transformation4

(ΣNORS
) is compared with the distribution of the

determinant of the BBN; and 2) the determinant of
the empirical rank correlation matrix (ΣEMPS

) is
compared with the sample distribution of the deter-
minant of the rank correlation matrix obtained by
transforming the univariate distributions to standard
normals, and then transforming the product moment
correlations to rank correlations using Pearson’s
transformation.

The motivation to use the determinants of corre-
lation matrices as measures for model validation is
described in (Hanea, Kurowicka, Cooke, and Ababei
2010). The determinant of the correlation matrix is

4Equation 9

a measure of linear dependence in a joint distribu-
tion. If all variables are independent, the determi-
nant is 1, and if there is linear dependence between
the variables, the determinant is 0. Intermediate val-
ues reflect intermediate dependence. The determinant
of a NPCBBN can be factorized in terms of the par-
tial correlations (after transforming conditional rank
correlations with equation 9) attached to its arcs.

Finally after the smaller model containing variables
{X1,X2,X3,X5} has been quantified, variable X4 is
introduced and the remaining rank correlations es-
timated. The rank correlations of interest for the
model with {X1,X2,X3,X5} computed from data
are: r2,1 = 0.5197, r2,3 = 0.452431, r3,1|2 = 0.5284
and r5,3 = −0.0954. The rank correlation matrices of
interest for the same model are shown in 4 to 6.

ΣBBNS
=

 1 0.52 0.641 −0.0629
0.52 1 0.452 −0.0448
0.641 0.452 1 −0.0954

−0.0629 −0.0448 −0.0954 1


(4)

ΣEMPS
=

 1 0.495 0.611 −0.0518
0.495 1 0.44 0.0333
0.611 0.44 1 −0.0737

−0.0518 0.0333 −0.0737 1


(5)

ΣNORS
=

 1 0.52 0.641 −0.0811
0.52 1 0.452 −0.0045
0.641 0.452 1 −0.0954

−0.0811 −0.0045 −0.0954 1


(6)

Observe that ΣNORS
and ΣBBNS

differ only with
respect to r5,1 and r5,2. This is because the subgraph
consisting of {X1,X2,X3} is complete. When intro-
ducing X5 the assumption that it is independent of X1

and X2 given X3 is used to compute r5,1 and r5,2 in
ΣBBNS

.
In our case det(ΣBBNS

) = 0.411637,
det(ΣEMPS

) = 0.448537 and det(ΣNORS
) =

0.410093. In order to give an indication of whether
our model is a good representation of the normal data
we obtain from a 100 simulations the sample distribu-
tion of det(ΣBBNS

). The 5th and 95th percentiles of
this distribution are 0.40893 and 0.41523 respectively.
det(ΣNORS

) ∈ ( ̂det(ΣBBNS
)5th ,

̂det(ΣBBNS
)95th) =

(0.40893,0.41523) and hence we could have some
confidence that the model represents adequately the
normal data.

To have an idea of how the normal data
represents the original data we obtain the
sampling distribution of ΣNORS

and com-
pare det(ΣEMPS

) with it. In our case
det(ΣEMPS

) ̸∈ ( ̂det(ΣNORS
)5th ,

̂det(ΣNORS
)95th) =
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(0.40765,0.41307). This could be an indication that
the normal data could not be the best representation
of the empirical data. The different sign that we
obtain between ΣEMPS

and the remaining two
matrices for r2,5 is the cause that the normal data
seems to be not representative of the data. In this
case however since we still have to estimate the
remaining dependence structure outside the data we
decide to leave our model as it is warning about this
discrepancy between the original data and the normal
representation.

Adding X4 to our model implies the estimation
of r3,4, r2,4|3, r1,4|2,3 and r4,5|3. These can be es-
timated through experts as in (Morales, Kurowicka,
and Roelen 2008) and (Morales-Nápoles, Kurowicka,
Cooke, and van Baren 2009). For our presentation
we estimate them by computing r3,4j , r2,4|3j , r1,4|2,3j
and r4,5|3j for j = 2, . . . ,13 for each axle. Finally
we average over j to obtain our final estimates. By
doing so we obtain r3,4 = 0.8605, r2,4|3 = −0.2081,
r1,4|2,3 − 0.3647 and r4,5|3 − 0.3979. The correla-
tion matrix of the final BBN consisting of variables
{X1,X2,X3,X4,X5} is shown in equation (7). The
determinant of the rank correlation matrix of our
model from figure 1 after the final quantification is
det(ΣBBN) = 0.0766.

ΣBBN =


1 0.52 0.641 0.4 0.0634

0.52 1 0.452 0.295 0.0365
0.641 0.452 1 0.860 −0.0954
0.4 0.295 0.860 1 −0.277

0.0634 0.0365 −0.0954 −0.277 1


(7)

Figure 2: Quantified BBN in UniNet

Figure 2 presents the model in UniNet (Hanea
2008). Each node in figure 2 presents the univariate
marginal distribution of {X1, ...,X5}. In the bottom
part of each node the mean and standard deviation
(after the ± sign) are shown. UniNet is a stand alone
software that allows the manipulation of NPCBBNs.

Figure 3: BBN in UniNet Conditional on X1 = 13

It has been used in the past in measuring health risks
(Jesionek and Cooke 2009) and air transport safety
(Ale, Bellamy, Cooke, Goossens, Hale, Roelen, and
Smith 2006).

UniNet allows analytical conditioning over the
BBN when evidence becomes available. this is shown
in figure 3. Observe for example that conditional on
13 axles vehicles, the expectation of vehicular weight
is about 2.8 times higher than the expectation of the
unconditional distribution. In the case of the axle load
distribution, the expectation grows approximately 1.8
times. The univariate margins of vehicular length and
speed are updated similarly.

Interval conditioning is also available in UniNet
through sample based conditioning. The conditional
means and standard deviations for axle load and ve-
hicular weight are computed from the 29 samples
where X1 ≥ 9 and X5 ∈ [10,60]. Situations as those
described in figures 3 and 4 could be of interest for
researchers. However, they are difficult to observe in
the data alone. The use of NPCBBNs in such situa-

Figure 4: Sample based conditioning in UniNet
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tions is illustrated in the next section.

4 EXTREME WEIGHTS FOR BRIDGES IN THE
NETHERLANDS.

In (Steenbergen and Morales Nápoles 2010a) and
(Steenbergen and Morales Nápoles 2010b) tech-
niques for finding extreme values for axle loads
and total vehicular weight for bridge design in the
Netherlands are discussed. The data used in sec-
tion 3.1 for the quantification of the BBN here
presented is part of the data used in (Steenbergen
and Morales Nápoles 2010b). These data together
with the techniques described in (Steenbergen and
Morales Nápoles 2010b) will be used further to ex-
emplify the use of NPCBBNs in structural reliability.
More specifically for the calculation of extreme val-
ues.

From our model in figure 1 we would like to see
the effect of number of axles and vehicle speed on
weight and axle load distributions. We suspect that
vehicles with more that 9 axles and with speed smaller
that 60km

h will be of more concern because they are
heaviest. In our original database only two vehicles
fulfill these characteristics.

In order to overcome this lack of data, we could
use our BBN to generate data artificially. Once our
model has been fully quantified we can generate data
similarly to figure 4 and use it to estimate our condi-
tional distribution. We generate 50 million samples of
which 151 vehicles have more that 9 axles and speed
smaller that 60km

h .
Figure 5 show the unconditional and conditional

empirical exceedence probabilities. A mixture of nor-
mals is fitted to each empirical distribution accord-

ing to the procedures described in (Steenbergen and
Morales Nápoles 2010b). The statistical toolbox of
matlab 7.10.0(R2010a) is used for the fitting. For de-
tails see (Mclachlan and Peel 2000) and (Steenbergen
and Morales Nápoles 2010b).

As expected the conditional distribution indicates
smaller probabilities of exceedence for extreme val-
ues. For example observe that the probability of ex-
ceeding 2,000kN is about 1× 10−11 in the uncondi-
tional distribution and one order of magnitude larger
in the conditional distribution. Other extreme values
for vehicle weight can easily be determined in this
way for both the conditional and unconditional distri-
butions.

5 DISCUSSION.

In this paper we have presented the NPCBBNs in the
context of structural reliability. A model for vehic-
ular weight, axle load, vehicular speed, number of
axles and vehicular length has been quantified for Mo-
erdijk highway R16 in the left lane for the month of
April 2008. The normal copula assumption for vari-
ables {X1,X2,X3,X5} needs to be further investi-
gated. Because the model is hybrid in the sense that
the relationship between {X1,X2,X3,X5} and X4 is
investigated through expert judgment we decide to al-
low for the normal copula assumption.

The model in figure 1 quantified in this paper will
evolve into a model whose base should be the BBN in
figure 6. Observe that a load distribution is included
for each axle in each vehicle type. In the same way,
for each vehicle type a distribution for vehicular ve-
locity and vehicular length is computed. The weight
distribution is a function of the number of axles, and
each axle load variable. For example if the model
consisted only of two and three axles vehicles the
the weight distribution would be computed as with
the following formula: Weight = if(Number Axles =
2,axle 1 of 2 axle vehicles + axle 2 of 2 axle vehi-
cles,if(Number Axles = 3,axle 1 of 3 axle vehicles +
axle 2 of 3 axle vehicles + axle 3 of 3 axle vehicles)).
The weight formula may be written similarly for ve-
hicles with up to 13 axles. Whenever data is missing
for the quantification of arcs, they may be computed
through structured expert judgment as in (Morales,
Kurowicka, and Roelen 2008).

Similar models as in figure 6 may be computed for
other locations in the Netherlands. These include lo-
cations in 4 different highways for the left and right
lanes. Thus a total of eight BBNs similar to figure
6 may be quantified. All of these can be combined
into a single BBN and analyzed in real time using
UNINET. The final model would look as in figure
7. The BBN in figure 7 consists of 697 nodes and
2,175 arcs. In the center of the model the time to rush
hour variable connects the separate locations. This
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Figure 6: BBN for the Weight in Motion system in
the Netherlands (one location).

model is at the moment of the writing being quan-
tified. The reader may observe that the dependence
structure of the model is still complex. However, the
BBN helps clarifying and reducing the complexity of
the dependence structure present in the data. With
UNINET sampling such a BBN an conditionalizing is
done in minutes.

Figure 7: BBN for the Weight in Motion system in
the Netherlands (8 locations).

Applications similar to the one described in this pa-
per may profit from the use of NPCBBNs and struc-
tured expert judgment. Whenever the computation of
design values is severely restricted due to lack of data
the approach presented in this paper may be of advan-
tage.
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analysis wim registrations april 2008. report TNO report
2010-DWARS-M002, Netherlands Organization for ap-
plied Scientific Research.

Tong, Y. (1990). The multivariate Normal Distribution. Se-
ries in Statistics. Springer.

van Noortwijk, J., H. Kalk, and E. Chbab (2003, 15-18 June).
Bayesian computation of design discharges. In T. Bed-
ford and P. van Gelder (Eds.), Safety and Reliability, Pro-
ceedings of ESREL 2003 - European Safety and Reliabil-
ity Conference 2003, Maastricht, The Netherlands, pp.
1179–1187. Lisse: Swets & Zeitlinger.

Yule, G. and M. Kendall (1965.). An introduction to the the-
ory of statistics (14th ed.). Belmont, California.: Charles
Griffin & Co.

Appendix
The product moment correlation of random variables
X and Y with finite expectations E(X), E(Y ) and
finite variances var(X), var(Y ) is:

ρX,Y = E(XY )−E(X)E(Y )√
var(X)var(Y )

.

The rank correlation of random variables X , Y
with cumulative distribution functions FX and FY is:

rX,Y = ρFX(X),FY (Y ) =
E(FX(X)FY (Y ))−E(FX(X))E(FY (Y ))√

var(FX(X))var(FY (Y ))
.

The rank correlation is the product moment correla-
tion of the ranks of variables X and Y , and measures
the strength of monotonic relationship between vari-
ables. The rank correlation always exists, is indepen-
dent of marginal distributions and is invariant under
non-linear strictly increasing transformations.

The conditional rank correlation of X and Y given
Z is:

rX,Y |Z = r
X̃,Ỹ

where (X̃, Ỹ ) has the distribution of (X,Y ) given
Z = z.

The (conditional) rank correlation is the depen-
dence measure of interest because of its close re-
lationship with conditional copulae used in non-
parametric continuous BBNs (see section 2.2). One
disadvantage of this measure however is that it fails
to capture non-monotonic dependencies.

Rank correlations may be realized by copulae,
hence the importance of these functions in depen-
dence modeling. Partial correlations are also of in-
terest in this paper.

Partial correlations can be computed recursively
from correlations (see (Yule and Kendall 1965)):

ρ1,2;3,...,n =
ρ1,2;4,...,n − ρ1,3;4,...,n · ρ2,3;4,...,n

((1− ρ21,3;4,...,n) · (1− ρ22,3;4,...,n))
1
2

(8)

The relationship between r (the rank correlation
of the normal variables) and the parameter ρ or
ρ1,2;3,...,n is known and given by the following formula
((Kurowicka and Cooke 2005, p.55)):

ρ = 2sin
(
π

6
r
)
. (9)
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