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S U M M A R Y

The COVID-19 global pandemic has influenced almost everyone’s life on this planet,
since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) found its
way to the human race. Due to its highly transmissible nature and high death rate,
countries around the world have been taking preventive measures to protect their
citizens from being infected, including social distancing, face mask obligations, and
even lockdown.

Besides the health influence, the COVID-19 pandemic has also resulted in severe
economic disruptions, due to supply shortages and lockdown of businesses. Most
of the large events in the Netherlands have been cancelled since the first infection
case was identified in February. The significant decrease of festivals has posed a
serious negative impact on both the cultural and economical aspects of the event
industry. However, it is not yet known what is the most appropriate restrictions
to apply to event industry, as the exact risk of a visit to an event, such as a music
festival, has not been thoroughly studied.

This research aims to close this research gap by developing a SARS-CoV-2 trans-
mission risk analysis method for large events by modelling crowd interactions at
different types of event spaces and quantifying the SARS-CoV-2 transmission risks
in the process. The main research question to be answered by this study is formu-
lated as follows:

How to model SARS-CoV-2 transmission risks based on pedestrian behavior and
virus spread simulation at large events?

Through literature review, existing pedestrian modeling, virus spread modeling,
and risk identification approaches are identified. The most suitable approaches for
this research are selected as NOMAD, a force-based tactical to operational level
pedestrian model, QVEmod, an agent-based virus spread model, and the dose-
response model, which relates the amount of accumulated virus to the infection
risk of individuals. A research gap is identified of simulating transmission risks at
large events where people visit a set of different activity spaces during one day.

This research has proposed a method to connect activity scheduling, pedestrian
route choice and movement modeling, virus spread modeling, and infection risk
identification to determine the SARS-CoV-2 transmission risks at large events by
probability method.

The first part of the proposed method is the NOMAD pedestrian model, which
simulates pedestrian route choice and movement with the input of infrastructure
layout, social force parameters, and demand pattern. With NOMAD, a number of
activity spaces with potential SARS-CoV-2 transmission possibility can be simulated
under different infrastructure layouts and physical interventions, such as 1.5m or
1m queue distance. NOMAD generates pedestrian trajectories with the accuracy of
0.1m at each 0.1-second time step.

Then the output of NOMAD is transformed into agent scripts which include the
movement of pedestrians at the accuracy of 1m at each 20-second time step, the
respiratory characteristics of the agents, whether wearing a face mask, the initial
viral load, and other virus transmission related parameters. The second part of
the proposed method is QVEmod, the model that simulates the virus spread in
different activity spaces via 7 processes that the virus goes through, including emis-
sion, falling onto surfaces, decay, diffusion, inhalation, contaminating surfaces by
touching, and being picked up from surfaces by touching. QVEmod generates the
accumulated virus loads on agents via three routes, namely, droplets, aerosols, and
fomites.
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The third part of the method include e smaller steps of activity scheduling, pos-
sible exposure time and location identification, adding up virus obtained from dif-
ferent activity spaces, and infection risk estimation. The first step generates every
visitor’s activity schedule at the event, identifying where and when the infectious
and susceptible individuals are located. The second step summaries the where-
abouts of infectious individuals and derives the locations and duration of possible
virus exposure. In the third step, the susceptible individuals’ activity schedules
are compared with the derived locations and duration. If a match exists, a virus
exposure (obtained from the virus spread simulation) is assigned to this individual.
For all the susceptible individuals, the virus exposure acquired throughout the ac-
tivity schedule is added up. Finally, the accumulated virus exposure is fit into a
dose-response model to calculate the general infection risk of visiting this event.

A few factors need to be identified before applying this method. First, after de-
termining the type of event to evaluate and the general demand, the infrastructure
types and activity spaces should be identified as the input information to the NO-
MAD model. Then the activity pattern data of such an event needs to be collected
and analyzed, from which the activity schedules and demand pattern at activity
spaces can be derived. The former will be used for NOMAD simulation and the
latter for identification of virus locations and matching up the virus exposure on
susceptible individuals.

In the case study application, the proposed method has shown its capability of
revealing the general infection risk and the relation of influence factors to the trans-
mission scale, and it also identifies risk-prone areas in an event.

Comparing the different scenarios at each activity space, the general trend is
identified that the transmission of SARS-CoV-2 is limited when the facility is lo-
cated outdoor, the queue distance is increased (from 1m to 1.5m), the density is
lowered (from 5.76p/m2 to 0.4p/m2), and the respiratory activities are calmer (from
20%talking + 40%singing + 40%breathing to 20%talking + 80%breathing).

Among these four variables, the impact of increasing the queue distance from 1m
to 1.5m is the smallest. It is observed that the virus transmission scale varies much
more significantly when increasing the density from 1p/m2 (1m distance) to 2p/m2

(0.7m distance) and 5.76p/m2 (0.4m distance) compared to when increasing the
density from 0.4p/m2 (1.5m distance) to 1p/m2 (1m distance), which indicates the
capability of SARS-CoV-2 to transmit via airborne routes decays to a turning point
at around 1m distance. Before reaching this point, interventions that increase the
distance between people will have a strong impact on infection prevention, while
after reaching this point, the impact is much smaller when the distance becomes
longer.

Moving indoor events to an outdoor environment also has a positive influence on
limiting the spread of SARS-CoV-2, halving the total amount of virus transmitted
in the facility, as the viral-laden particles in aerosols and fomites decay much faster
in an outdoor and UV-exposed environment.

Performing calm respiratory activities can also significantly reduce the virus
transmission scale. When replacing 40% time spent on singing with breathing,
the amount of virus picked up by individuals goes down by more than 85% in
a 20-minute-duration 1000-participant music concert. The impact is even stronger
in outdoor music stages, which indicates singing affects droplet transmission more
than aerosol transmission.

It is also discovered that under the same distance between people, when staying
for the same duration of time in the same facility, the queues, where people move to
take up the place of the person in front of them, may be more risky than the music
stages, where people stand close to each other but do not move.

The above findings correspond to the advice from outbreak management team
(OMT), that keeping social distance, strictly limiting the scale of indoor activities/events,
limiting the scale of outdoor activities/events (bigger scale than indoor), limiting
the duration of festivals, applying fixed seating with low densities, requiring neg-



ative test results, and discouraging festival attendees from singing help limit the
transmission scale of SARS-CoV-2.

A sensitivity analysis is conducted with different scenarios of activity space com-
binations, which gives infection numbers of a 10-infectee 10000-participant music
festival ranging from 17.52 in the optimal scenario to 86.73 in the least expected sce-
nario, which equals to 0.18% to 0.87% of the total susceptible population. The result
of the least expected scenario falls into the infection probabilities of 2 smaller-scale
real-life experimental events (less than 2000 participants), while another large-scale
real-life event (10000 participants per day for two days) appeared to have a much
larger infection scale. Underestimating as the research findings may be, such direct
comparisons have very limited implications, due to the great differences between
the simulated events and real-life events. Factors such as the event scale, infras-
tructure setting, crowd management measures, heterogeneity in the emission rate,
activity schedules, group behavior, and number of infectious individuals, would
directly influence the amount of virus transmitted in the event. Nevertheless, this
research has shown when and where major risks can occur during an event. By com-
paring results of different scenarios, it also gives indications on crowd management
measures and interventions that can help reduce the virus transmission scale.

The focus of this study lies in developing a risk evaluation tool for big events, com-
paring the potential infection risk under different scenarios (infrastructure design,
physical intervention) and spotting where the most risk lies. It allows future explo-
ration and comparison of the transmission scales of certain kinds of events, without
posing ethical controversy of exposing people in infection risks. The method can
further assist decision making on crowd management approaches and interventions
to be used to reduce the infection risk at the simulated event. Yet, it has its limita-
tions of not considering group behavior at the event, which is commonly observed
at large events and may potentially increase the transmission scale. Another major
limitation is its heavy dependency on detailed virus transmission parameters and
activity patterns. The former needs to be validated under different scenarios, and
the latter needs to be identified from the data collected at the same type of event.
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1 I N T R O D U C T I O N

A global outbreak of the COVID-19 pandemic has posed threats to the physical and
mental health of people all over the world. Till August 24th, 2021, we have wit-
nessed more than 213.7 million cases of COVID-19 and 4.4 million deaths [Univer-
sity, 2021]. Almost everyone across the globe has been influenced by the pandemic.
For those who have been directly stricken by COVID-19, some lost their lives, others
survived but may still suffer from its clinical sequelae Xiong et al. [2021]. For those
who have been indirectly influenced by the pandemic, some grieve for the loss of
family members, others find it difficult to maintain a healthy mental status during
the lockdown and isolation [Rossi et al., 2020; Kaparounaki et al., 2020]. Besides its
health influence, the COVID-19 pandemic also has a huge global economical impact
on all kinds of industries. For instance, the production of goods has shrunken due
to the government measures to protect public health and the consumption profile
of people has changed due to the change of lifestyles shaped by the pandemic McK-
ibbin and Fernando [2020]; Maital [2020]. The economical impact, in return, also
poses an influence on people’s lives and mental health status.

Caused by the highly transmissible SARS-CoV-2 virus, COVID-19 spreads be-
tween people when a healthy person gets in close contact with an infected per-
son. The virus can be transmitted by respiratory droplets, indoor aerosols, contam-
inated surfaces, etc. [Harrison et al., 2020]. Due to the nature of its transmission
mechanics, countries across the globe have introduced prevention measures aim-
ing to limit the physical contact between people, such as lockdown on a nation-
al/provincial scale, curfew from dusk till dawn, restrictions for cross-border travel,
closing down unessential public areas, etc. RIVM [2020]; AMT [2020]. To control
the spread of COVID-19 in the Netherlands, the Dutch government has been con-
stantly adapting the COVID-19 measures and advice to the public since April 2020.
Before the vaccine coverage reaches the level that allows lifting all COVID-19 restric-
tions and recommendations, the control of the pandemic has mainly relied on the
non-pharmaceutical interventions (NPI’s), such as indoor mandatory face masks, 1.5-
meter social-distancing, shutting down unessential public spaces, including restau-
rants, hairdressers, shopping malls, sports stadiums, museums, and schools RIVM
[2020]. While these measures have contributed to controlling the spread of pan-
demic, they also pose a serious negative influence on the relevant industries. For
instance, event organizers have been unable to operate their businesses as normal.
In pre-pandemic time, 2019, 1117 festivals were held in the Netherlands, attracting
more than 27 million visitors, while in 2020, due to the COVID-19 measures, the
number of festivals dropped sharply to 190, with merely 1.4 million attendance
[Statista, 2021]. Popular festivals, such as the Vierdaagsefeesten Nijmegen (Interna-
tional Four Day Marches) and the Amsterdam Dance Festival (ADE), has all been
canceled due to the COVID-19 regulations. The significant decrease of festivals has
posed a serious negative impact on both cultural and economical aspects of the
event industry.

However, it is not yet known to what extent does an event contribute to the spread
of COVID-19, as the exact risk of a visit to an event, such as a music festival, during
this pandemic, has not been thoroughly studied. Numerous studies on the epidemi-
ological mechanism of COVID-19 and SARS-CoV-2 virus have been conducted since
the outbreak in December 2019 [Harrison et al., 2020; Gao et al., 2021; Arav et al.,
2020; Bouchnita and Jebrane, 2020]. A number of experiments exploring the actual
infection scale at events under different NPI’s have been organized and analyzed in
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the Netherlands in 2021 [FieldlabEvenementen, 2021; Ellyatt, 2021]. However, none
of the existing studies has been able to reveal or estimate the transmission risks of
SARS-CoV-2 at different types of large events. Simulation-based researches mainly
focus on the transmission profile on the city or provincial scale [Tian et al., 2020]
and the roughly estimated effectiveness of NPI’s on transmission risks under simple
circumstances, with assumptions of random movements of individuals [Bouchnita
and Jebrane, 2020]. However, to reveal the transmission profiles of specific events
more accurately, such as watching a football match or visiting a music festival, spe-
cific knowledge and assumptions about the event facilities, infection profile in the
population, and people’s activity schedule and actual movement in the space are
required. Experimental events reveal the transmission scales of certain types of
events, which are limited to the infection rate in the population at the time, the
specific event facilities, the NPI’s, etc. Moreover, this type of experiments obtain in-
fection data by organizing events that potentially expose participants to infection
risks, which may lead to ethical controversy. Media reported many people, includ-
ing scientists, have criticized the scientific and ethical aspects of the experimental
events [de Vrieze, 2021; RTLNieuws, 2021]. According to Ellyatt [2021], in July 2021,
more than 1000 people caught COVID-19 after a two-day outdoor festival held in
Utrecht, the Netherlands, which attracted more than 20000 people. Therefore, a re-
search gap exists for an approach to simulate the transmission risks of SARS-CoV-2
via pedestrian modelling.

With the increased coverage of vaccination and constantly emerging variants of
SARS-CoV-2, the society faces great challenges reopening businesses. Without de-
tailed knowledge of the transmission risks at event spaces, policy makers face chal-
lenges when making crucial decisions on COVID-19 regulations, leading to (some-
times inconsistent) measures which may unnecessarily restrict business develop-
ment, cause public doubts and non-compliance to measures, even social unrest.
Therefore, a reliable transmission risk analysis tool is in urgent need. In this re-
search, in order to better support the decision-making process of the government
on regulations in the event industry, an infection risk estimation method which
combines the pedestrian activity scheduling, pedestrian interactions modelling, and
virus transmission modelling, will be proposed. This method will be applied to the
risk estimation of a music festival under different infrastructure scenarios, the event
scale, facility types, and activity schedules of which are based on the Amsterdam
Open Air festival 2019. From the results, facilities and behavior that pose great risk
will be identified, as well as the general risk of attending the festival. The proposed
method can also be further adapted and applied to detect the infection risk at differ-
ent types of large events, thus assist the policy makers in making crucial decisions
on the event industry.

1.1 research questions
Following the above considerations, the research objective of this study is defined
as follows:

To develop a SARS-CoV-2 transmission risk quantification method at large events
by modelling activity scheduling, pedestrian behavior and SARS-CoV-2 transmis-
sions at different types of event spaces, and quantifying the SARS-CoV-2 transmis-
sion risks throughout the entire visits to the event by individuals.

Based on the objective, the main research question is formulated as follows:
How to model SARS-CoV-2 transmission risks based on pedestrian behavior and
virus spread simulation at large events?
To answer the main research question, the following sub-questions are put for-

ward:

1. What are the behavior frameworks of visitors at large events?
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To answer this sub-question, this research will identify the type of event to
be studied, the functional spaces in the event, and the behavior patterns of
visitors at this type of event. The answer to this question will be revealed
by the case study analyzing the real-life behavioral and infrastructural data
collected from an event in Chapter 5.

2. What are the SARS-CoV-2 transmission routes among visitors at these events?

To answer this sub-question, this research will identify the transmission me-
chanics of SARS-CoV-2 and match the possible transmission routes that may
occur during pedestrian interactions at the functional spaces of the events.
The answer to this question will be revealed by the literature study on the
state-of-art SARS-CoV-2 transmission studies in Chapter 2 and the theoretical
analysis on transmission routes at the identified event spaces in Chapter 5.

3. How to make use of real-life pedestrian interaction data, pedestrian simu-
lation models, and SARS-CoV-2 transmission models to identify the risk of
SARS-CoV-2 transmission at large events?

To answer this sub-question, this study will research on the existing SARS-
CoV-2 transmission modelling studies, analyze their data type and modelling
approaches, evaluate the real-life data and simulation models to be used in
this study, and identify their purposes based on the literature research and
evaluation. Therefore, this question will be answered by the literature study
reviewing pedestrian modelling methods, SARS-CoV-2 transmission risk mod-
elling studies in Chapter 2, proposing an approach for SARS-CoV-2 transmis-
sion risk modelling in Chapter 3 and Chapter 4 based on literature studies, a
case study analyzing the real-life data collected from an event and applying
the proposed approach for an event in Chapter 5.

4. What is the SARS-CoV-2 transmission risk profile at large events?

This question will be answered in Chapter 6, by analyzing the results of the
case study application of the proposed method, from which the transmission
risk will be quantified in number of infections and the risk-prone event spaces
will be identified as well.

5. How to apply the developed methodology in practice and how does it per-
form?

After researching on the state-of-art literature, developing the methodology,
applying the proposed method in a case study, and analyzing the results,
the process of the method application is presented. The capabilities and lim-
itations of the developed methodology will be discussed in Chapter 8 and
Chapter 9.

1.2 research scope
The scope of this research is described in this section. The following aspects are
addressed: the type of events considered in this research, the level of pedestrian
modelling taken into account in this research, the focus of transmission risk assess-
ment, and the scope of development of the proposed transmission risk quantifying
method.

Event type

Although all types of events, where close contact between people is unavoidable,
are in urgent need for infection risk assessment to supervise the Covid-19 related
regulations in the industry, the scale and activity type vary largely among differ-
ent events. The risk assessment method involving specific pedestrian modelling in
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event spaces is only capable of simulating the events which have similar functional
areas and activity patterns. In the Netherlands, music festivals account for a large
part of festival attendance, attracting both domestic and overseas visitors. Across
different music festivals, the functional areas and activity patterns remain similar,
which makes it possible to develop a general risk assessment tool for this type of
event. Therefore, in this research, the development and application of transmission
risk detection method will be mainly based on large music festivals, which may
also shed light on the risk assessment of other types of large events, such as football
matches and dance festivals.

Level of pedestrian modelling

Pedestrian modelling can be categorized in three levels, namely, strategical, tactical,
and operational level, representing pedestrian behavior decisions at different stages
[Hoogendoorn and Bovy, 2004]. From strategical to operational level, the choices
become more specific as they develop from departure time choice and activity pat-
tern choice to actual movement choice. More detailed explanations are presented in
Section 2.1. In this research, all levels of pedestrian modelling are considered and re-
viewed, as one level has an influence on the next one and in the end affect the actual
interactions between people. However, the pedestrian behavior considered in the
method proposed by this thesis does not necessarily cover all the levels, as existing
pedestrian behavior simulation tools mainly focus on one or two levels. The level(s)
included in the simulation method will be determined according to the findings
from literature review in Chapter 2. In Chapter 5, the choices of activity schedule
and activity area at tactical level are analyzed based on real-life data collected from
a music festival.

Focus of virus transmission risk assessment

In this research, the focus of virus transmission risk assessment lies in the general
risk profile of visiting a certain event, which is translated from the accumulated
virus dose of individuals who follow a general activity schedule and visit a number
of activity spaces during this event. The probability of getting infected at different
types of activity spaces will not be studied as it is not in a linear relation with the
accumulated virus dose of individuals [Nicas and Sun, 2006]. Nevertheless, the
infection risks of different types of activity spaces can be represented and analyzed
qualitatively according to the accumulated virus doses within the facility.

Scope of proposed method

This research aims to develop and validate a SARS-CoV-2 transmission risk identifi-
cation method which combines detailed pedestrian modelling with the transmission
dynamics of SARS-CoV-2. However, defining and validating the model parameters
does not fall into the scope of this research. The parameters representing pedes-
trian behavior, the essential parameters and assumptions for virus transmission
analysis are based on existing studies. The focus of this research lies in quantifying
the infection risk of a complete visit to an event by an average participant in spe-
cific event scenarios, by establishing a bridge connecting pedestrian modelling with
virus transmission risks at large events.

1.3 thesis outline
The approach for this research is illustrated in Figure 1.1.

As is shown below, the research begins with a background introduction in Chap-
ter 1, which brings out the research questions, the scope and the structure of this the-
sis. Then a thorough literature review follows in Chapter 2, presenting the state-of-
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art pedestrian behavior models, SARS-CoV-2 transmission mechanics, SARS-CoV-2
transmission models, and risk assessment methods. In Chapter 3, the reviewed
models and methods are placed in a theoretical framework for the proposed SARS-
CoV-2 transmission risk identification method, where the research gap is identified
and made up for. Next, the proposed methodology is presented in Chapter 4, con-
sisting of the detailed description of models and methods used in this research. In
Chapter 5, a case study, which derives the activity pattern of a music festival from
GPS data and applies the developed methodology for SARS-CoV-2 transmission
risk identification at event spaces, is conducted, providing feedback to Chapter 4.
After revising the methodology based on the findings from the case studies, the
general results of the proposed method is presented in Chapter 6. A sensitivity
analysis is then conducted in Chapter 7, exploring how variables (queue distance,
indoor/outdoor space, etc.) influence the infection profile by comparing the results
of different scenarios. In Chapter 8, other factors that might have an important in-
fluence on the results are discussed, such as assumptions and research scope. In
the end, Chapter 9 draws the conclusions of this research, which conclude the result
analysis, summarize the answer to the research question, discuss the inadequacy of
this research, and provide recommendations for further research.
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Figure 1.1: Thesis outline



2 L I T E R AT U R E R E V I E W

A review of literature regarding studies of pedestrian behavior models, virus trans-
mission models, and risk assessment methods is presented in this chapter.

The goal of the literature review presented here is threefold. First, to identify
which methods of pedestrian modelling and virus transmission modelling have
been proposed so far and what level of detail they are capable to achieve. Sec-
ond, to identify suitable methods for development of an infection risk model of
SARS-CoV-2 involving pedestrian interaction. Third, to identify a risk assessment
method that quantifies and visualize the model results. An overview of the state-of-
the-art pedestrian modelling methods is discussed in Section 2.1. The respiratory
virus transmission models, together with existing studies on SARS-CoV-2 transmis-
sion are reviewed in Section 2.2. The risk assessment methods are presented in
Section 2.3.

2.1 pedestrian behavior models
Pedestrian behavior has been studied by researchers since 1950s [Hankin and Wright,
1958]. Numerous models have been put forward to account for pedestrian’s travel
patterns from different angles. Some focus on the decisions of trips and activity
schedules. Some study the influence factors of pedestrian’s actual movements. To
present different types of models in an organized manner, this paper categorizes
them into three choice levels, namely strategical, tactical, and operational level, each
representing a different stage of pedestrian travel behavior. According to [Hoogen-
doorn and Bovy, 2004], the strategical level corresponds to the activity, destination,
and departure time choices; the tactical level models the activity schedule, activity
area, mode and route choice; the operational level explains the movement choice at
the presence of objects and other pedestrians. Although obtaining the choice at a
higher level is essential for generating the next-level choice, all of the existing mod-
els are not capable of simultaneously simulating choices at more than one level. In
practice, the input of the next-level model is usually assumed by the researchers or
randomly generated. In this section, pedestrian behavior models are reviewed sepa-
rately at each level. It is important to be aware that overlaps exist among models at
different levels, as some models can be implemented at more than one level, with
different inputs and adjusted settings.

The theories and features of the reviewed pedestrian models will be explained in
the following subsections, Section 2.1.1, Section 2.1.2, Section 2.1.3. A conclusion
will be reached in subsection Section 2.1.4.

2.1.1 Strategical level

At strategical level, pedestrian behavioral choices include departure time choice
and activity pattern choice [Hoogendoorn and Bovy, 2004]. Although departure
time and activity choice play an important role in pedestrian behavior, they receive
less attention compared to route choice and operational movement, as the latter
forms the ultimate presenting behavior. However, pedestrian choices at strategical
level have a crucial influence on the choices at tactical level, as they determine
when, where, who will be present. In other words, strategical choices influence
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the pedestrian demand, population characteristics, and walking environment at
an activity space. Therefore, pedestrian modeling at strategical level are of vital
importance to derive location-based pedestrian behavior. For instance, they have
often been developed for public transport stations and busy urban areas to assist
crowd management [Lai and Kontokosta, 2018; Desyllas et al., 2003].

Three types of models can be applied at strategical level, namely data-driven
models, equilibrium assignment models, and discrete choice models. It is important
to be aware that these models do not work exclusively for pedestrians. Instead, at
strategical level, mode choice is usually modelled together with departure time and
activity pattern choice.

Data-driven models

Data-driven models are defined as a type of macroscopic model, as it focuses on
deriving the trend from the historical number of people making the choice to visit
a certain location under certain circumstances. They predict pedestrians’ departure
time and activity pattern choice by analyzing the relation between the historical
demand and exogenous factors, such as attributes of activities and environmental
factors. Depending on the mathematical relation applied in the model, they can
be further categorized into linear models, such as multiple linear regression (MLR)
models and Auto Regressive Integrated Moving Average (ARIMA) model, non-linear
models, such as support vector regression (SVR) models. Data-driven models for
pedestrian demand estimation have mainly been adapted from vehicular traffic es-
timation, where they have been extensively developed [Barros et al., 2015; Li et al.,
2017]. As for application in pedestrian researches, Lai and Kontokosta [2018] de-
veloped multivariate MLR models to estimate pedestrian activities in urban regions,
based on the historical data from New York City. The models consider the influence
of contextual features and time-varying situational indicators on pedestrian activity
across time of day, day of the week, season, and year. The relation between pedes-
trian activity and land use, building density, transportation infrastructure, and other
factors commonly associated with urban walkability are quantified in the study. An
ARIMA model is developed by Wang et al. [2017] to predict the city foot traffic at
multiple locations in the City of Melbourne. By describing the autocorrelation in
the data, the ARIMA model is able to capture the trend in the time series and make
accurate long-term and short-term predictions without looking into external factors.

Data driven models have been used to explore the important drivers of local
pedestrian activities and provide scientific foundations for the improvement of
pedestrian experience in urban areas. By deriving trends from a large amount of
data, they are capable of producing realistic predictions with very limited assump-
tions of people’s decision making process. On one hand, they provide a method to
analyse pedestrian demand patterns without related knowledge. On the other hand,
they ignore the influence factors of choices at the individual level, which limits their
results to be further applied in models at the next level.

Equilibrium assignment models

The equilibrium assignment model is developed based on the 4-step transport mod-
elling framework, traditionally used for assignment of trips among origin and des-
tination (OD) pairs [de Dios Ortúzar and Willumsen, 2011]. For the application in
pedestrian modelling, it has been developed for departure time choice at the strate-
gic level. In this type of model, pedestrians select departure time of a certain OD pair,
according to a logit formula involving the predetermined departure time costs and
the equilibrium OD walking costs. The number of pedestrians choosing a certain
departure time is determined by the equilibrium used in the model, such as de-
terministic user equilibrium and stochastic user equilibrium [de Dios Ortúzar and
Willumsen, 2011]. Huang and Lam [2002] developed a dynamic pedestrian equilib-
rium assignment model for departure time and path choice. The model assumes a
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pedestrian network with a set of links where pedestrians are assigned to a depar-
ture time of a link based on their subjective disutility to the departure time. The
disutility is derived from the historical traffic conditions, the activity schedule and
utility in origins and destinations, and the subjective preference for the departure
time. By considering the time-dependent OD demands as endogenous variables,
this model also takes into account of inter-elasticity of OD demands between time
intervals, which enables flexible departure times.

Although this type of model involves the subjective disutility from pedestrians’
perspective, it does not consider the individual difference. Therefore, it falls into the
category of macroscopic models. With its macroscopic assumption, the application
of equilibrium assignment models in pedestrian-related research is very limited
compared to the transport modelling field.

Discrete choice models

Discrete choice models fall into the category of microscopic models, as they simu-
late choices of individuals, taking into account of personal characteristics. This type
of model determines the choice of an individual person or a group of people, ac-
cording to their own attributes and a set of rules, among an finite number of choices.
Discrete choice models can be further categorized by the decision rules used in the
model, such as multinomial logit and nested logit [Hall, 2012]. Discrete choice
models have been widely applied in all aspects of transport modelling [Aloulou,
2018]. In pedestrian related studies, numerous models have been developed and
applied at strategic level. Dekker et al. [2014] incorporated needs of satisfaction in
a discrete choice model for leisure activities. Besides conventional attributes, such
as activity costs and accessibility, the individual’s anticipation of activity satisfac-
tion also counts for the expected utility. Each individual aims for the activity with
the maximum utility. Västberg et al. [2020] developed a dynamic discrete choice
model (DDCM) for daily activity-travel planning. In this model, a sequence of de-
cisions of when, where, why, and how to travel compose a daily activity–travel
pattern. The sum of the utility of all trips and activities determines the individu-
als’ preferences for a certain activity–travel pattern. Individuals make choices at
each decision stage to maximize the expected utility of the remainder of the day.
This model allows for a detailed treatment of timing decisions consistent with other
choice dimensions, respects time–space constraints, and enables the inclusion of ex-
plicitly modeled uncertainties in travel time. It is capable of accurately reproducing
the activity patterns from choices of 1,240 locations, four modes, and six activities.
A group of such DDCMs have been developed at strategical level, with subtle ad-
justments. For instance, Karlström et al. [2009] developed a DDCM for mode choice
and departure time modelling, where the order of activities is considered dynam-
ically. To explore the effective dimensions in the real-life problem, the Restricted
Boltzmann Machine is used to realize a dimensionality reduction without losing
accuracy.

In general, discrete choice models provide an individual-based modelling ap-
proach, with preliminary assumptions of internal and external choice drivers. They
have been applied for both multimodal modelling and pedestrian modelling. They
can also be adapted to explore the important factors in individuals’ decision making
process.

Conclusion

In conclusion, models at strategical level provide both general and individual-based
approaches to simulate pedestrian departure time choice and activity pattern choice,
together or separately. They each have their own advantages and disadvantages.
Data-driven models make realistic reproductions of pedestrian activity without de-
tailed assumptions. Equilibrium assignment models are capable of simulating de-
parture time choice and path choice at the same time. However, they ignore individ-
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ual differences and it is difficult to take their results for models at the next level. In
discrete choice models for activity pattern modelling, personal attributes are taken
into account, which increases the computational efforts to achieve a realistic estima-
tion.

In this study, there are two types of activity area and activity schedule to be
considered. One takes into account the entire visit to the music festival, the activity
areas of which consist of all types of activity spaces. Its activity schedule refers to
the schedule to visit a set of activity areas. The corresponding strategical choices
include the activity choice of visiting this music festival and the departure time to
visit this music festival. On this aspect, the activity choice is predefined and the
departure time choice will be derived by a data-driven method in Chapter 5, which
analyzes the scattered real-life location data collected from a musical festival. The
other type considers one visit to one activity space in this event, for instance, one
visit to a bar. In this case, the activity area is the bar and the schedule is the schedule
to enter the bar, visit the counter, sit at the table and leave. The corresponding
strategical choices include the activity choice of visiting this bar and the departure
time to visit this bar. On this aspect, the both activity choice and the departure time
choice are determined by the the activity schedule of the entire visit to this music
festival. Therefore, except the data-driven method to derive the activity choice and
departure time choice to visit activity spaces, no further derivation is required in
this study.

2.1.2 Tactical level

The tactical level of pedestrian behavior describes the choices of activity schedule,
activity area, and route to reach activity areas [Hoogendoorn and Bovy, 2004]. The
decision making at this level is determined by how pedestrians perceive the environ-
ment. The influence factors include external factors, internal factors, and expected
traffic conditions. The external factors include the presence of obstacles and stim-
ulation of the environment, while the internal factors include time pressure and
attitudes of the pedestrian. The expected traffic conditions both influence and are
influenced by pedestrian travel demands and walking behavior [Hoogendoorn and
Bovy, 2004].

A variety of existing models have been developed to simulate pedestrian behavior
according to these factors. They can be categorized into 4 types, namely, network
models, queuing models, force-based models, and discrete choice models.

Network models

Network models are a type of macroscopic model, describing pedestrian flows by
aggregate density and speed. They simulate the pedestrian route choice within a
predefined network, where space is represented by links and pedestrians are sim-
plified as continuous flows. Daamen [2002] developed a simulation tool for pedes-
trian flow modelling at large transfer stations, partly based on a network model.
This model assigns pedestrians with certain OD pairs to the optimal routes in a net-
work, based on the shortest time principle. It derives the density in an area from
the number of pedestrians on a certain link and develops macroscopic relations be-
tween density and pedestrian speeds. Another application of network models is
conducted by Hänseler et al. [2017]. Following the principles of the well-known cell
transmission model [Daganzo, 1994] which discretizes time and space to simulate
vehicular traffic, Hänseler et al. [2017] developed a dynamic network loading model
that bases on a multi-directional-discretized formulation of a pedestrian fundamen-
tal diagram, adopted from the cell transmission model.

This type of model is capable of reproducing empirical walking time distributions
in counter-flow and cross-flow experiments. Network models have also shown ad-
vantages simulating large crowds at low densities.
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Queuing models

Queuing models [Løvås, 1994] describe individual pedestrian behavior in a queuing
network, where pedestrians move between nodes (rooms) through links (doorways)
in the network. Each link is randomly assigned with a waiting time, as a queue
builds up when the demand exceeds the node capacity. The space taken by queuing
pedestrians is not taken into account in the model, which let vertical queues build
up. Each pedestrian follows a prespecified evacuation plan, which is determined by
the rules of perceiving short routes and personal attributes. Different from network
models, queuing models simulate individual behavior rather than pedestrian flows.
Queuing models have been developed by other researchers as well Watts Jr [1987];
Yuhaski and Smith [1989]; Rahman et al. [2013], with different network and queue
settings.

Queuing models have limited applications for its single-purpose assumptions,
which ignore the dynamics inside each node (room) Johansson and Kretz [2012].
They have been used mostly for simulating pedestrian evacuation behavior from
buildings to assist and evaluate emergency infrastructure design.

NOMAD model

Hoogendoorn and Bovy [2004] developed a normative theory of pedestrian behav-
ior choice at the tactical level based on utility maximization under uncertainty. It
assumes that each pedestrian continuously optimizes his/her own utility function
for route choice, activity area choice, and activity scheduling. The function consists
of the utility gained from performing activities at a specific location, the predicted
cost of walking subject to the physical limitations of the pedestrians, and the kine-
matics of the pedestrian. The theory is different from discrete choice models as an
infinite number of alternatives are available and the uncertainty of alternatives is
considered. The theory has been applied in a microscopic model NOMAD to sim-
ulate pedestrian behavior in Schiphol Plaza, where the combined choice of route
and activity area to exit Schiphol Plaza is simulated according to the shortest path
based on minimum perceived disutility.

Both free flow and congested traffic can be simulated with the NOMAD model
and stand-alone applications also allow simulating route choice in infrastructure
facilities, such as transfer stations and shopping malls. Based on its formulation,
NOMAD model is defined as a type of force-based model, which will be further
explained in Section 2.1.3.

Discrete choice models

At tactical level, discrete choice models simulate the probability of an individual’s
route choice by considering the utilities of all alternative routes. Lue and Miller
[2019] developed a path size logit model with stochastic route choice generation
choice set based on the revealed preference from GPS data collected in Toronto.
The model takes into account multiple route attributes, including length, number
of turns, intersections, etc. and network characteristics, including percentage of
links with sidewalks, road type, etc. A generalized path size factor is introduced
in the model to correct for the correlation from overlapping alternatives. Attributes
such as route distance, the number of turns, the number of signalized intersections,
and distance along links with sidewalks on both sides of the street are proven to be
significant in this model. Discrete choice models have also been applied in smaller-
scale route planning, such as in a metro station where individuals’ decisions of exit
and routes to exits are simulated [Stubenschrott et al., 2014].

Based on the utilities taken into account in the model, different types of discrete
choice models can be categorized. For instance, the shortest-distance model can be
seen as the simplest model, as the utility of a route only consists of its distance.
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Compared to more sophisticated discrete choice models, which require more com-
putational efforts and a large amount of data to generalize, this shortest-distance
model have been commonly adopted in simulation methods with the advantage of
fast computation [Stubenschrott et al., 2014].

Discrete choice models provide a method to incorporate various internal and
external influence factors in the decision making process of individuals. However,
at tactical level, they usually merely focus on the route choice and are not able to
simulate activity space and scheduling simultaneously.

Route choice decision principle

Route choice decision principle is a fundamental property of pedestrian route choice
models. It defines the driven factors of why pedestrians choose a certain route. The
decision principle can be different in different route choice models. For instance, in
forced-based models, the decision principle is usually based on the shortest path,
which is measured by time, distance, or utility, influences by the velocity and posi-
tion of the pedestrian, people and obstacles in the vicinity, etc. [Hoogendoorn and
Bovy, 2004]. In discrete choice models, the decision principle can more flexible, as
more environmental and personal attributes, such as number of intersections, can
be included in the model [Lue and Miller, 2019]. In some other empirical studies,
the probability of route choice is derived from historical data and used as the deci-
sion principal [Ton et al., 2015]. Although this method is more commonly applied
in vehicular and bicycle traffic studies, its potential in pedestrian modeling is yet to
be discovered.

Conclusion

To conclude, models at tactical level are capable of different choice modeling, most
of which mainly focus on route choice. Whereas the normative force-based model
Hoogendoorn and Bovy [2004] provides an approach to simulate route choice, ac-
tivity area choice, and activity scheduling simultaneously. This model also entitles
other advantages such as taking into account individual differences and an infinite
number of alternatives.

2.1.3 Operational level

The operational level choice consists of the actual walking behavior of pedestrians
[Hoogendoorn and Bovy, 2004]. In previous studies, sometimes the route choice
and movement choice are not clearly extinguished, causing confusion to readers.
To specify the different, this paper defines the movement models as models repre-
senting how pedestrians react to the changing environment while moving along the
chosen routes.

Existing models at this level can be classified into 5 types, which consist of contin-
uum models, cellular automata models, force-based models, velocity-based models,
and discrete choice models.

Continuum models

Continuum models [Treuille et al., 2006] are a type of macroscopic model, which
simulates continuous pedestrian flows in discrete space cells in two dimensions.
Global navigation and local collision avoidance are integrated while individual
variability are ignored to achieve real-time crowd simulation with minimal com-
putational effort.

This type of model is capable of simulating real-time crowd motions of thousands
of individuals with intersecting paths. However, as individual characteristics are
not taken into consideration, continuous models can only simulate homogeneous
crowds and cannot cope with multidirectional pedestrian traffic.
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Cellular automata models

Cellular automata models were first introduced to model pedestrian behavior by
Blue and Adler [2001], studied and adapted further by Meyer-König et al. [2002];
Iltanen [2012]. In cellular automata models, three modes of bidirectional pedes-
trian flow are modeled based on predetermined local behavioral rules. This type
of model often discretizes the space and time in which pedestrians move and inter-
actions are determined based on a set of rules at each iteration. It is often used to
evaluate the effects of behavioral rules or crowd management measures.

This rule-based strategy saves computational efforts compared to equation-based
models and makes it easier to develop its algorithm. However, it is difficult to
incorporate the randomness of pedestrian behavior and the fixed behavioral rules
can lead to unrealistic movement in simulations.

Force-based models

The force-based models [Helbing and Molnar, 1995] assume that pedestrian behav-
ior is influenced by a multitude of social forces that either attract or repulse the
person, such as obstacles and the movement of other pedestrians. The accelera-
tion of each person is determined by the sum of forces at each discrete time step.
The movement space is continuous. This type of model has been widely applied
and modified with extended force interpretations, such as collision prediction rules
[Zanlungo et al., 2011] and self-stopping mechanism [Parisi et al., 2009].

The force-based models usually simulate fairly realistic movements and interac-
tions between pedestrians. It is possible to incorporate the environmental features,
such as light conditions and exit signs, in the analysis. However, higher computa-
tional efforts are required for force-based models.

Velocity-based models

The idea of velocity-based model is chronologically first put forward by Paris et al.
[2007]. Based on the same principle, other velocity-based models have been devel-
oped over the years [Van Den Berg et al., 2008; Karamouzas and Overmars, 2010].
This type of model assumes that a pedestrian optimizes the usage of the available
space and attempts to avoid collisions. Same as force-based models, velocity-based
models assume pedestrians move in a continuous space and make decisions at each
discrete time step. The velocity of a pedestrian is determined by the person’s cur-
rent path, available space, and the trajectories of other surrounding pedestrians.
This type of model is often used to analyze evacuation behavior and crowd behav-
ior at events.

Usually natural movements and pedestrian interactions are presented in velocity-
based models, supported by high computational efforts. The downsides of velocity-
based models also lie in the difficulty to model friction and incorporate environ-
mental features.

Discrete choice models

Discrete choice models have also been developed at operational level to model the
short-term behavior of individuals as a response to the immediate environment
and the presence of other pedestrians. Antonini et al. [2006] modeled pedestrian
walking process as a sequence of short-time choices. The destinations and routes are
known, generated by models at tactical level. Each pedestrian makes choices out of
a set of walking alternatives, based on utility maximization. The utility is calculated
as the weighted sum of various elements of the potential next positions, such as
change in kinetic energy, collision risk, availability, distance to other people, and
distance to destination. The model was calibrated with real-life data and has been
successfully applied in video surveillance applications for automatic tracking of
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pedestrians in video sequences. Further adaption of this model was made by Robin
et al. [2009], who introduced more data for revealed walking behavior, captured
leader–follower and collision-avoidance patterns in simulation, and validated the
model on another experimental data set.

Discrete choice models are not widely applied at operational level of pedestrian
modelling, as the interaction complexity of pedestrians cannot be easily captured
in the discrete choice model framework.

Conclusion

To sum up, at operational level, various types of models provide both macroscopic
and microscopic approaches to simulate pedestrian movement, each having their
own limitations. Continuous models require the minimum computational efforts
but cannot cope with multidirectional pedestrian traffic. The rule-based cellular
automata models either produce unrealistic movement or become very complicated
with a large number of rules. The discrete choice models with decades of devel-
opment in diverse fields encounter difficulties on revealing the complex movement
dynamics of pedestrians. The force-based and velocity-based models generate nat-
ural movements but are computationally expensive. Operational behavior plays an
important role for the detailed pedestrian interation modelling.

As mentioned before, most existing models do not simulate choices at more than
one level, which makes it difficult to incorporate operational movements with tacti-
cal route choices in a simulation. Whereas force-based models have this capability
to include choices at the tactical level explicitly. The NOMAD model, for instance,
can consider ”forces” from moving pedestrians in the process of routing simulation.
Therefore, in this study, the force-based model, NOMAD will be used for pedestrian
simulation.

2.1.4 Conclusion

To summarize, the reviewed models are categorized in Table 2.1.

Macroscopic models Microscopic models

Strategical level
Data-driven models
Equilibrium assignment models

Discrete choice models

Tactical level Network models
Queuing models
Force-based models
Discrete choice models

Operational level Continuum models

Cellular automata models
Force-based models
Velocity-based models
Discrete choice models

Table 2.1: Pedestrian behavior model overview

This study aims to reveal the dynamics of pedestrian interactions to assess the
virus transmission risks of individuals. Therefore, the simulation scope falls into the
category of microscopic models, which are also described as agent-based models,
as the behavior is computed separately for each individual, i.e. the agent.

It is clear from Table 2.1 that agent-based models dominant the pedestrian mod-
eling field. They are popular for several reasons [Treuille et al., 2006]. Firstly, the
agent-based assumption is realistic, as real crowds clearly operate with each in-
dividual making independent decisions. Such models can capture each person’s
unique situation: visibility, proximity of other pedestrians, and other local factors.
Therefore, an intuitive interpretation of equations is allowed. Secondly, different



2.2 virus transmission 15

simulation parameters may be defined for each crowd member, yielding complex
heterogeneous decisions. However, these advantages also lead to drawbacks. For
instance, these models are often stochastic, which requires multiple runs of simula-
tion to get the ”average”. Due to the large number of parameters and the stochastic
nature, it is difficult to develop and calibrate behavioral rules that consistently pro-
duce realistic decisions. Moreover, global path planning for each agent quickly
becomes computationally expensive, particularly in real-time contexts. As a result,
most microscopic models separate local collision avoidance from global path plan-
ning [Parisi et al., 2009; Zanlungo et al., 2011], and conflicts inevitably arise between
these two competing goals.

As mentioned in Section 2.1.3, only the microscopic force-based model, NOMAD,
fulfills the simulation requirements of this study. It is capable of incorporating
tactical choices with operational choices with different ’forces’. Therefore, the NO-
MAD model will be used for pedestrian simulation. As for the strategical choices
discussed in Section 2.1.1, the activity schedule of the entire visit to the simulated
event in this study will be derived by a data-driven method from the analysis of
real-life data. By determining the activity schedule in another model, the computa-
tional efforts can be saved as the pedestrian behavior at different activity spaces of
this event are independently simulated.

2.2 virus transmission

To understand how SARS-CoV-2 virus transmits during interactions of people, its
transmission routes are reviewed in Section 2.2.1. The models explaining the trans-
mission of respiratory viruses in the crowd are reviewed in Section 2.2.2. Existing
studies on SARS-CoV-2 virus transmission modelling are introduced in Section 2.2.3.
As this study aims to incorporate pedestrian modelling with the spread of SARS-
CoV-2 in the crowds at large events, the scope of the literature review on SARS-CoV-
2 transmission is limited to the agent-based level, excluding the studies that model
SARS-CoV-2 transmission based on the reproduction rate in the entire population.

2.2.1 Transmission routes

The spread of SARS-CoV-2 occur primarily through 3 routes, namely respiratory
droplets, aerosols, and fomites [Harrison et al., 2020]. Although cases of fecal–oral
transmission have also been reported, it is not likely to happen in event spaces and
will not be discussed in this study.

Among the three primary routes, droplet spread is considered as the main route
of transmission. Droplets are large liquid particles (usually defined as diameter
larger than 5 µm) loaded with viruses that spread into the air by infected people
when sneezing, coughing, talking, or breathing. These particles directly project
onto the mucous membranes or upper respiratory tract of a susceptible individual
through the person’s mouth, nose, or eyes [Morawska and Cao, 2020]. As droplets
can travel over limited distances, close, concurrent contacts are required for droplet
transmission to occur.

Aerosols and fomites transmission are defined as indirect routes, as they build
up the potential of virus in the environment. Aerosols are formed by small virus-
laden liquid particles (usually defined as diameter smaller than or equal to 5 µm)
evaporated from the droplets of infected people. These particles are so small that
transport by air current affects them more than gravitation. Therefore, they are free
to travel in the air and carry their viral content to meters and tens of meters away
from where they originated [Morawska and Cao, 2020]. Moreover, compared to
droplets, it usually takes much longer for aerosols in space (especially indoor space
with poor ventilation) to expire, which means that the possibility exists that individ-
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uals can be infected with SARS-CoV-2 by being in the same space where infected
people have stayed, spread the virus, and left. Studies have claimed that SARS-
CoV-2 virus RNA could be maintained in respirable-sized aerosols for up to 16

hours [Fears et al., 2020]. Fomites transmission occurs when an individual touches
a contaminated surface where the virus has landed on via droplets or aerosols from
infected people. Among the three primary routes, SARS-CoV-2 stays infectious the
longest on contaminated surfaces. Viable virus was detected up to 72 hours after
laboratory application to plastic and stainless steel surfaces [Van Doremalen et al.,
2020].

A summary of possible transmission routes are shown in Figure 2.1. It is im-
portant to consider different routes at different event spaces to assess the overall
risks of individuals participating in the event. For instance, transmission by fomites
and aerosols is not likely to occur at outdoor music stages where people do not
touch any surface and natural ventilation prevents aerosols from coming into being.
However, indoor spaces, such as toilets and indoor music stages, pose great risks
of aerosols transmission as indoor ventilation does not eliminate the possibility of
long-existing aerosols. At bars and food stands, fomites transmission plays and im-
portant role as people cannot avoid touching different kinds of surfaces. Therefore,
droplets, aerosols, and fomites are considered as the main transmission routes of
SARS-CoV-2 in event spaces, but each presents a different degree of risk at different
spaces. The virus transmission models related to these routes will be presented in
the next subsection.

Figure 2.1: Transmission routes of SARS-CoV-2 (Source: Harrison et al. [2020])

2.2.2 Transmission models

In the scientific field of virus transmission, a large range of models have been de-
veloped to describe the transmission mechanisms of different types of viruses. This
study specifically aims to understand the infection risk of SARS-CoV-2 virus among
visitors at event spaces. Therefore, only models explaining the transmission mecha-
nisms of respiratory viruses will be reviewed in this subsection. They are the Wells-
Riley model, dose-response models, and multi-route transmission models. The first
two mainly focus on airborne transmission.
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Wells-Riley model

The foundation of airborne transmission models is the Wells-Riley model, proposed
by Wells et al. [1955]. By assuming that infectious particles are well mixed and
steady in space, the Wells-Riley equation makes prediction of the number of new
cases in a certain time period based on the number of infected and susceptible in-
dividuals in an indoor space, the ventilation rate, and the quantity of infectious
material in the air. The concept of ”quantum of infection” is used in the Wells-Riley
model, implicitly taking into account of the infectivity, infectious source strength, bi-
ological decay of pathogens, etc. [Zhang and Lin, 2020]. A quantum unit is defined
as the number of infectious particles needed to cause 63% of individuals getting
infected. Its number is usually obtained through comparing infection data in a
well-defined indoor outbreak. Providing a simple and quick evaluation method of
airborne infection risk, the Wells-Riley model has been widely applied and adapted
in infectious respiratory disease studies. However, the model’s assumption of spa-
tially and temporally uniform distribution of virus-laden aerosols does not allow
heterogeneous infectivity of individuals as everyone has the same risk of infection
at any time. Therefore, the Wells-Riley model does not satisfy the analysis of indi-
vidual infection risk in this study.

Dose-response models

Another quantitative evaluation method is the dose-response model, which allows
individual heterogeneity in the analysis of infectivity. This type of model describes
the magnitude of the response, namely risk of infection, as a function of exposure to
different doses of a pathogen after a certain exposure duration [Crump et al., 1976;
Nicas, 1996]. The exposure dose is the amount of pathogens that reach the sus-
ceptible individuals under the circumstance of certain infectious people’s emission
rates, room volume, recipients’ pulmonary ventilation rate (i.e. the amount of air in-
haled per unit time), and exposure duration. Based on the type of the mathematical
function, dose-response models can be categorized into different types, for instance,
exponential and beta-Poisson models [Watanabe et al., 2010]. The dose-response
models are more flexible than the Wells-Riley model, as individual characteristics
can be taken into account to determine different infection risks for different people.
However, the limitation lies in the assumption of a uniform spatial distribution of
infectious particles, by which the risks of pedestrian interaction are directly simpli-
fied as being or having been in the same indoor space. This study aims to evaluate
the dynamic infection risks of individuals when moving and interacting with each
other. It is expected that the distances between people and their trajectories feature
different levels of risk. Therefore, the basic-assumption dose-response models do
not meet the evaluation requirements of this study.

Multi-route transmission models

Multi-route transmission models incorporate airborne transmission routes with trans-
mission by formites. This type of model has been developed for different types of
respiratory viruses. One of the widely applied frameworks is developed by Nicas
and Sun [2006], which integrates different source-environment-receptor pathways
and their physical elements in a discrete-time Markov chain model. Initial pathogen
loads are assumed on textile and nontextile surfaces and in the room air, depending
on the amount of pathogens emitted from the patient in events such as coughing
and body fluid discharges. A uniform distribution of aerosols in the room is as-
sumed. The pathogens can exchange between the surface and the air, due to particle
settling and resuspension. These pathogens follow different pathways to end up in
people’s respiratory tract, mucous membranes, losing viability, or being exhausted
from the room. The model estimates the rate of transfer at each step in the pathway
and the probability of a pathogen moving from one ”state” to another ”state” by
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the end of a specified time interval. As a result, the expected pathogen dose to an
individual’s mucous membranes and respiratory tract is estimated. A nonthresh-
old infectious dose model is used to relate the expected dose to infection risk. This
framework is composed of discrete events and therefore can be expanded for more
transmission pathways in detail.

Conlusion

In conclusion, either the Wells-Reily model or a dose-response model alone is not
capable of detailed virus transmission modelling. They need to be incorporated
with other models or be adjusted with specific settings for more complicated air-
borne transmission situations. To include multiple transmission routes, the study by
Nicas and Sun [2006] provides a modelling framework of discrete time and events,
by which the detailed transmission processes can be modeled. More multi-route
transmission models related to SARS-CoV-2 transmission will be reviewed in the
next section.

2.2.3 Existing studies on SARS-CoV-2 transmission in the crowd

Numerous studies revealing the transmission dynamics of SARS-CoV-2 have been
conducted since the start of the COVID-19 pandemic in December 2019, most of
which focus on evaluating the spread of the disease on a relatively large scale. In
this subsection, the models developed for SARS-CoV-2 transmission which incorpo-
rate multiple transmission routes and describing the transmission dynamics at the
crowd interaction level will be reviewed.

Arav et al. [2020] developed a multi-route quantitative mechanistic mathematical
model for pre-symptomatic transmission of SARS-CoV-2. The model tracks the
transmission dynamics based on individual activities, focusing on three transmis-
sion routes between people, namely, direct physical contact, fomites, and aerosols
(droplet nuclei). Instead of the common threshold of 5 µm, 100 µm is used as the
cutoff size between droplets and aerosols, as droplets smaller than 100 µm evapo-
rate to their droplet nucleus size before hitting the ground. With this conservative
assumption of the cutoff size, an overestimation of aerosols transmission contribu-
tion is expected. Moreover, droplet transmission is not considered in the study.
This stochastic model simulates a number of scenarios by generating an ensemble
of realizations via Monte-Carlo simulation. In each realization, the primary (infetor)
and secondary (infectee) individuals perform a series of randomized actions such
as touching each other, touching fomites, or touching their own faces. The hygienic
and behavioral parameters are obtained by other empirical studies. The duration of
each realization is the incubation time of the primary individual, which is on aver-
age 5 days, during which the viral load of the person increases exponentially until
reaching the level of showing symptoms. The probability of a secondary individual
being infected is inferred from the dose-response curve reported for SARS-CoV-1
[Watanabe et al., 2010].

This method provides a relatively detailed modelling framework of the agent-
based transmission process. However, the main limitation lies in the randomly
generated pedestrian interaction, which does not consider the actual movement of
pedestrians. As a result, heterogeneous aerosols distribution cannot be incorporated
in the model.

Gao et al. [2021] developed a multi-route transmission model considering (1)long-
range airborne transmission, (2)short-range airborne transmission, (3)direction in-
halation of medium droplets or droplet nuclei, (4)direct deposition of droplets of
all sizes, (5)indirect contact. The model combines the Wells-Riley equation and the
dose-response model to calculate the infection risk of an individual from all trans-
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mission routes in a certain location. Different dose-response coefficients are defined
for different routes to account for their potential different dose-response rates. The
exposure doses of the 5 considered routes are based on the following factors: (1)
For long-range airborne transmission, the exposure dose is calculated according to
the cumulative deposition infectious dose in the susceptible’s respiratory tract, tak-
ing into account of pulmonary ventilation rate, exposure time of the infectee, room
volume, the air change rate in the room, particle loss rate, etc. (2) As for short-
range airborne transmission, a respiratory jet cone with a certain spreading angle
is assumed to transmit the droplet nuclei to the infectee. The exposure dose is cal-
culated according to the distance to the infector, initial concentration and dilution
rate along the cone, face-to-face contact time, etc. (3) The exposure dose due to
direct inhalation of medium droplets or droplet nuclei is based on similar factors of
(2), considering additional parameters for larger droplets, modelled by combing the
buoyant round jet model and droplet evaporation and motion models. (4) The expo-
sure dose due to direct deposition in the facial membranes follows the assumption
of the respiratory jet cone and is estimated based on a similar parameter set. (5) As
for hand-surface contact, factors such as the frequency of the hand touching facial
membranes, transmission rate of droplets from hand to facial membranes, contact
area of the hand to mucous membranes, etc. are used to calculate the exposure
dose.

Although the parameter estimation of this model is based on influenza, the de-
tailed and realistic consideration of the multi-route transmission is applicable to
different types of respiratory infections, including SARS-CoV-2.

Bouchnita and Jebrane [2020] developed a hybrid model combining an Susceptible
- Exposed - Infectious - Recovered (SEIR) model and a social force model to describe
the transmission of SARS-CoV-2 in 250 individuals. The SEIR model is a type of com-
partmental models, which models the disease transmission in a closed population,
where four classes of people are identified, namely susceptible, exposed, infectious,
and recovered. This type of model is widely applied to describe the spread of dis-
eases with a long incubation period, such as COVID-19. The agent-based social
force model allows transmission tracking at the individual level. In this study, it is
assumed that people, all potentially symptomatic, move in random directions in a
square space of 250 × 250m2. A pre-symptomatic individual can transmit the virus
to other people via two routes, direct contact (droplets) and indirect contact (for-
mites). The threshold of direct contact is set as 1 meter. It is assumed that the virus
is transmitted when certain interactions such as sneezing, coughing, or handshak-
ing happen. A Bernoulli distribution is assumed for person-person transmission.
The formites transmission rate is based on the estimated lifetime of SARS-CoV-2
surviving on a hard surface and the probability of an individual touching the hard
surface. The demographic characteristics determine the mortality risk of infected
agents. The models simulate the spread of COVID-19 with and without nonphar-
maceutical interventions and are calibrated with real-life data in two situations.

Though the model development is based on a number of unrealistic assumptions,
such as enclosing individuals for 90 days and hard surfaces existing everywhere,
this hybrid framework provides an inspiring solution to incorporate macroscopic
epidemiological models with agent-based pedestrian models for virus transmission
modelling.

An ongoing research conducted by TU Delft and Wageningen university [Duives
et al., 2021], combines 4 models to simulate the risk of SARS-CoV-2 infection of
individuals during a visit to a restaurant, the model chain of which is illustrated
in Figure 2.2. The models include an activity scheduler, a microscopic pedestrian
model, NOMAD, a virus spread model, QVEmod, and a risk identification model.
The activity scheduler determines the strategical choices of individuals, including
activity choices, destination choices, and departure time choices, based on the con-
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text, spatial layout, population, demand, and COVID-19 control measures. The
NOMAD model, as discussed in Section 2.1, simulates pedestrian routing and move-
ment dynamics based on the minimum walking cost principle. Its output consists
of a set of trajectories which pertain the coordinates and velocity of each individual
at each time step of the simulation. The QVEmod model then takes the output of
NOMAD, combined with the epidemiological attributes of the environment and in-
dividuals, to simulate the emission of virus from infectious individuals, the spread
of the emitted virus in the environment (in droplets, aerosols, and formites), and
the virus dose landed on susceptible individuals at corresponding time steps to
the NOMAD output. The risk identification model then identifies the risk of indi-
viduals being infected by the accumulated virus dose and interaction locations of
high virus exposure based on the accumulated virus dose in the environment. The
connection between virus dose and infection risk is built based on the exponential
dose-response relationship developed by Nicas [1996].

This research provides an agent-based activity-specific simulation framework for
SARS-CoV-2 infection risk identification, with realistic activity planning, route sim-
ulation, virus spread, and the relation between the virus dose and the infection risk.
It makes up for the gap of fitting virus transmission modelling into real-life situa-
tion, the framework of which can be adapted in different scenarios to evaluate the
transmission risk in other public spaces.

Figure 2.2: Model chain of ongoing research to identify the SARS-CoV-2 transmission risk

To conclude, these multi-route agent-based models all incorporate dose-response
models to define the threshold of infection, referring to empirical dose-response
curve of SARS-CoV-1 [Arav et al., 2020], influenza data [Gao et al., 2021], or as-
sumptions of an SEIR model [Bouchnita and Jebrane, 2020]. For the consideration of
individual behavior, Arav et al. [2020] generate random actions and interactions by
Monte-Carlo simulations at discrete time steps; Gao et al. [2021] use predefined fre-
quency of individual behavior from empirical studies; Bouchnita and Jebrane [2020]
simulate agent movements by a social force model, incorporated with thresholds of
different types of contact and transmission rates; the ongoing research models the
activity scheduling, routing ans movements, fitting the most realistic pedestrian
behavior to the virus transmission modelling.

Among the reviewed models, only the hybrid modeling framework [Bouchnita
and Jebrane, 2020] and the activity-specific simulation framework from the ongoing
research [Duives et al., 2021] include both pedestrian interaction simulation and
virus spread simulation in their models, which fits the scope of this study. However,
as discussed in Section 2.1.4, this study separately simulates pedestrian behavior at
different activity spaces for a short time period during an event, which operates
in the same way for the virus spread simulation. Therefore, the activity-specific
simulation framework [Duives et al., 2021], which combines the NOMAD model
with a microscopic virus spread model, will be applied in this research.
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2.3 risk assessment

In this section, the risk assessment methods which identify the infection risks from
virus spread simulation results and real-life experiments will be reviewed, as well
as the risk quantification and visualization methods.

2.3.1 Risk identification

The reviewed risk identification methods include approaches used in simulations
and real-life experiments.

Risk identification in simulations

Jitsuk et al. [2020] estimated the SARS-CoV-2 transmission risk of the cancelled
2020 Songkran festival in Thailand based on the estimated contact between people
during the festival and the disease transmission rates obtained in Wuhan, China.
Instead of simulating individual contact during the event, this study approximated
an average contact frequency throughout the festival based on historical expense
data and calculated the number of infections in the entire population based on the
initial number of infections before the festival. Although this ’macroscopic’ method
provides insights on the possible impact of a national festival, it gives no indication
of the source of infection risk, i.e., which facilities of the event lead to a high possi-
bility of SARS-CoV-2 transmission, and therefore cannot assist decision making on
interventions and regulations at the event to prevent SARS-CoV-2 transmission.

To identify the SARS-CoV-2 transmission risk from the accumulated virus doses
on the individuals, obtained from the agent-based virus spread model [Duives et al.,
2021], there are two types of methods. These methods translate the accumulated
virus dose into infection risk by defining infection risk according to the pathogen
dose that have been used in previous studies, namely threshold and nonthreshold
models. A threshold model assumes that when the host receives a certain amount
of pathogens, the infection is certain to occur, whereas when the received amount
is smaller than that, the infection will certainly not occur [Nicas and Sun, 2006].
A nonthreshold model defines the infection risk as a probability by two parame-
ters, the probability of a single organism infecting the host, denoted as α, and the
expected dose that imparts a 50% chance of infecting a random individual who re-
ceives it, denoted as ID50 [Nicas and Sun, 2006]. They are related by the equation
ID50 = ln(2)÷ α.

These two models are, in essence, both dose-response models. The nonthreshold
method has been widely applied in infection risk identification studies [Watanabe
et al., 2010; Duives et al., 2021], as it indicates a probability of infection, which
implies how risky a certain amount of virus dose is. Therefore, a nonthreshold dose
response model developed by Nicas and Sun [2006], applied by Duives et al. [2021]
will be used in this study. This model builds up an exponential relationship between
the infection risk and the exposure to the number of viral particles from different
transmission routes, as the risk is influence by deposition locations (hands, lower
or upper respiratory tract) and the viability of the virus [Deng et al., 2020]. This
equation will be presented and further discussed in Equation 4.23 in Section 4.3.5.

Please note that, although this study separately simulates virus spread in differ-
ent activity spaces, the infection risk is not derived from separate activity spaces.
The purpose of this research is to derive a general risk profile of one visit to an
event. As the infection risk is not linearly related to the virus dose, in this study,
the infection risk of one individual from one visit to the event is determined by the
accumulated virus dose after visiting a set of activity spaces. The activity spaces are
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defined by the activity schedule derived from a data-driven method, as discussed
in Section 2.1.1.

Risk identification in real-life experiments

Besides estimating the SARS-CoV-2 transmission risk from simulations, studies that
derive the transmission scale from real-life experimental events have also been con-
ducted.

From February 2021 to May 2021, FieldlabEvenementen [2021] have conducted
24 experimental events in the Netherlands, in cooperation with the government,
universities, research groups, event organizers, and voluntary participants. The
experimental events were designed carefully on the scale, facilities, interventions,
and regulations to explore the actual risks of different types of events with different
limitations. Within 24 hours before the events, participants were required to do a
rapid test for COVID-19 and only people with negative test results are allowed in.
During the events, participants were informed with expected behavioral rules, such
as wearing face masks, keeping social distance, etc. Their trajectories were tracked
throughout the event, from which the contact profile was derived, summarizing the
contact characteristics including distance, duration, and time of occurrence. The
contacts were categorized into different risk levels according to the distance and
duration. After the events, the participants were again tested for COVID-19 and
the number of positive cases are analyzed as an indicator for the event risk. In
conclusion, the experimental events identify the transmission risk directly by the
actual infection and indirectly by tracing high-risk contacts.

The advantage of real-life experiments is self-explaining. The transmission scales
of certain types of events are directly revealed by the infection rate of the participa-
tion population. However, ethical concerns about the experiments exposing partici-
pants to potential high risks of infection have been raised among people including
scientists [de Vrieze, 2021; RTLNieuws, 2021]. Moreover, as the method is based on
tests, the accuracy of tests and the potential infections happened during commuting
to and from the event location both have an impact on the results, which is difficult
to measure. On the aspect of decision making support, the experimental results
may have limited capabilities to offer advice on effective measures at future events,
as a small number of experiments may not accurately imply the influence of differ-
ent kinds of interventions on the transmission scale. A large number of variables
exist in real-life experiments that are difficult to measure and control. For instance,
at the same type of events in similar scale and facilities, the respiratory activities of
people can be very different depending on the live atmosphere, which in turn lead
to very different infection numbers. Therefore, a stable simulation tool that takes
control of variables may be preferred on the aspect of decision making support. In
addition, simulations do not face ethical criticism and can limit the uncertainties in
the experiments, such as infections happened outside the event terrain.

2.3.2 Risk visualization

After identifying the infection probability, it is important to visualize and analyze
the detected risk in order to assist the decision making of COVID-19 related reg-
ulations. The risk assessment methods being used for existing repository virus
transmission studies are briefly reviewed in this section.

The most direct method is to simply illustrate the infection probability under
different circumstances in number or bar charts. Gao et al. [2021] demonstrated the
SARS-CoV-2 infection risks of 6 transmission routes between one infector and one
infectee by probability. The contribution of each route is identified under different
exposure distances. The relations of infection risk to environmental factors are
derived and visualized in bar charts and line charts.
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Besides using probability, the actual infection number (percentage) has also been
used for risk assessment. Bouchnita and Jebrane [2020] used the infection percent-
age of the population plotted in line charts to illustrate the development of SARS-
CoV-2 penetration since the hospitalization of the first patient. The concentration of
SARS-CoV-2 in space and the status of individuals are also visualized in a heat map,
where different colors of nodes represent people of different statuses, as shown in
Figure 2.3.

Figure 2.3: Visualization of individual’s infection status and SARS-CoV-2 concentration in
space (Source: Bouchnita and Jebrane [2020])

Another assessment method is based on the basic reproduction number (R0),
which is the expected number of infections directly generated by one infector in a
population where all the individuals are susceptible [Fraser et al., 2009]. When the
considered population is not fully uninfected, the number is defined as the effective
reproduction number (Re). Similarly, when interventions are taken, controlled re-
production number (Rc) is used. For the derivation of these R values, usually
large real-life data sets or simulations with the duration from days to months are
used [Nikbakht et al., 2019; Ferretti et al., 2020]. Methods to estimate R0 include
the exponential growth rate-based (EGR) method, Susceptible - Infectious - Recov-
ered (SIR) models, etc. [You et al., 2020], which usually do not consider the details of
contact between individuals. Although this study only focuses on the infection risk
of individuals at a short-duration event, R0 can be used as an indicator to evaluate
the transmission scale of SARS-CoV-2 in an event under different scenarios.

Besides direct indicators based on infection numbers and probabilities, indirect
indicators have also been used to visualize infection risks. In the study of real-
life experiments by FieldlabEvenementen [2021], the contacts between people are
also used as a risk indicator as displayed in Figure 2.4. As epidemiological studies
suggest, the possibility of airborne transmission of SARS-CoV-2 goes up when the
distance between people goes down and the contact time goes up [Harrison et al.,
2020; Morawska and Cao, 2020]. Therefore, categorizing the contacts by duration
and distance can represent the SARS-CoV-2 transmission risk to a certain extent. In
Figure 2.4, each contact category represents a risk level. The longer the duration
is, the more risky the contacts become. The contact distribution of different events
are compared to assess the potential infection risks and the sources of risks at these
events.
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However, as suggested by epidemiological studies [Harrison et al., 2020; Fears
et al., 2020], the risk of SARS-CoV-2 transmission lies beyond close contact. Viral-
laden droplet and aerosol particles remain for minutes and even hours on the lo-
cation where the infectious individuals have stayed, depending on the ventilation
rate. In this case, people can still catch virus by staying at the same location, sev-
eral minutes or hours after the infectious individuals have left, without having any
contact with them. Moreover, fomites transmission cannot be represented by con-
tact tracing, as it happens when people touch the same surface. For events where
touching surface is unavoidable, such as paying for drinks and using the lockers,
the contribution of fomites transmission is not negligible. Therefore, contact tracing
cannot accurately reflect the SARS-CoV-2 transmission risks during the entire event
and will not be used in this study.

To conclude, considering the simulation setting of this study, the infection risk
of individuals will be assessed by the probability of infection, which is translated
from the accumulated virus dose after performing a set of activities. To evaluate
the overall risks of individuals at the event, the number of infected individuals and
R0 will be the indicators to compare different event scenarios. The risk in different
types of event spaces will be analyzed on the scale of virus exposure, which is
visualized in bar plots.
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(a) Number of different types of contacts over time

(b) Box plot of the total number of different types of contacts

Figure 2.4: Visualization of contact tracing at Dance Festival in Biddinghuizen (Category 1:
contact distance ¡ 1.5m, contact time: 10sec - 1min; category 2: contact distance ¡
1.5m, contact time: 1min - 5min; category 3: contact distance ¡ 1.5m, contact time:
5min - 10min; category 4: contact distance ¡ 1.5m, contact time: 10min - 15min;
category 5: contact distance ¡ 1.5m, contact time ¿ 15min. Source: FieldlabEvene-
menten [2021])





3 F R A M E W O R K D E V E LO P M E N T

In this chapter, the models and methods reviewed in Chapter 2 will be placed in
a theoretical framework for the development of a SARS-CoV-2 transmission risk
identification method.

3.1 findings from literature review
As discussed in Chapter 2, a data driven approach to derive the activity pattern,
a forced-based pedestrian model, NOMAD Hoogendoorn and Bovy [2004]; Cam-
panella [2016], a virus spread model, QVEmod [Duives et al., 2021], and a dose-
response model [Duives et al., 2021; Nicas and Sun, 2006] will be adjusted and
applied to develop the research method of this study.

However, the revised models together do not form a full picture of all the required
steps to conduct this research. The purpose of this study is to drive a general
infection risk profile of a large event, which requires combining individuals’ activity
schedules and virus spread situation at different event spaces.

To incorporate existing models and make computation possible, this study sim-
ulates pedestrian behavior and virus spread separately at different activity spaces
of an event. As reviewed in Chapter 2, existing studies simulate only one enclosed
area/public space and then derive the infection risk merely based on one visit to the
simulated place, which builds up a research gap of connecting the infection risks of
multiple activity spaces during a visit to a large event.

To fill the gap, this study proposes a risk quantification method which connects
the processes of simulating transmitted virus doses in multiple activity areas and
deriving the infection risk of individuals after visiting a number of activity spaces.
The proposed method is fit into the theoretical framework and described in the
following section.

3.2 theoretical framework
Based on the above discussion, a theoretical framework of the proposed method
is adapted from Figure 2.2. As is illustrated in Figure 3.1, the proposed method
consists of 3 major parts, namely, the NOMAD pedestrian model, the virus spread
model, and the risk quantification steps. Although the input processing steps (in
dashed blue) are not part of the proposed method, they are essential for the ap-
plication of the method. In the input processing steps, the input to the NOMAD
pedestrian model and virus spread model is derived from the official databases,
real-life data analysis, and existing researches. In addition, the activity schedule is
generated from a data driven approach using real-life GPS data. The input process-
ing steps will be thoroughly explained within each model in Chapter 4.

The first part of the method is the NOMAD model [Hoogendoorn and Bovy, 2004;
Campanella, 2016], which is selected from a number of pedestrian behavior models
reviewed in Section 2.1. This model was selected for its agent-based microscopic
nature, continuous space and time assumption, capability to include tactical and
operational factors, and realistic choice simulation. NOMAD takes the input of
infrastructure settings, pedestrian movement parameters, and demand patterns, at
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Figure 3.1: Theoretical framework

each type of activity space. As is shown in Figure 3.1, the NOMAD parameters
are adapted from the existing studies to make sure the simulation of natural route
choices and movements. The parameters can also be varied according to different
age and gender distribution, which influences the optimal walking speed, and the
1.5 meter social distancing rule, which influences the ’forces’ from other pedestrians.
The output of NOMAD consist of individual trajectories within the infrastructure
during the simulated period of time, which is fed to the QVEmod model for the
virus spread simulation.

QVEmod [Duives et al., 2021] simulates the emissions of viruses from infectious
individuals during the activities performed within the simulated space, the landing
of viruses in the environment at each time step of the simulation, and eventually
the viruses that get taken up by susceptible individuals. The time and space are
both discrete in QVEmod. The input consists of the infrastructure settings, includ-
ing definitions of touchable surfaces, movements of individuals, environmental and
personal parameters of virus transmission dynamics. As illustrated in Figure 3.1,
the QVEmod parameters are adjusted according to existing studies on the transmis-
sion and decay mechanics of SARS-CoV-2, which vary in different environments.
For instance, personal parameters can be influenced by whether face masks are
mandatory and respiratory activities. The environmental parameters can be influ-
enced by the ventilation rate. After simultaneous simulation of virus transmission
via three routes, the output is produced, which includes the accumulated virus dose
in the environment and on individuals at each time step of the simulation.

After the first two steps, a general accumulated virus distribution on individuals
is obtained independently in each activity space.

To derive the general infection risk of individuals visiting the entire event, the
author proposed a risk assessment method which consists of four steps, namely,
activity schedule simulation, identification of the location and duration of possible
virus exposure, adding up accumulated virus doses, and a dose-response model
[Duives et al., 2021; Nicas, 1996]. As discussed in the previous section, this quan-
tification method is proposed to fill the gap of simulating infection risks at large
events where participants visit multiple facilities.
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The first step generates every visitor’s activity schedule at the event, identifying
where and when the infectious and susceptible individuals are located. The second
step summaries the whereabouts of infectious individuals and derives the locations
and duration of possible virus exposure. In the third step, the susceptible individ-
uals’ activity schedules are compared with the derived locations and duration. If
a match exists, a virus exposure (obtained from the virus spread simulation) is as-
signed to this individual. For all the susceptible individuals, the virus exposure
acquired throughout the activity schedule is added up. Finally, the accumulated
virus exposure is fit into a dose-response model to calculate the general infection
risk of one individual visiting this event.

From the infection risk distribution, the number of infections at this event can
be calculated, as well as the reproduction number, which quantifies the general
infection risk of this event. From the accumulated virus distribution of the entire
event, the proportion of virus transmitted in each type of activity space can be
obtained, which reflects the scale of transmission risk at facilities. Moreover, the
proportion of virus transmitted via each transmission route can be derived, which
reflects to what extent the route contributes to the infection profile. By analyzing the
results, the facilities/routes with high risks of transmission can be identified, which
can help the decision makers evaluate the infrastructure of the event, redesign the
facilities, and carry out more restrictions.

The models and methods presented in this theoretical framework will be further
discussed in Chapter 4.





4 M E T H O D O LO GY

In this chapter, the method used to conduct this research is thoroughly described.
4 models of the proposed method, including the NOMAD model, the QVEmod
model, contact probability model, and risk identification model, are discussed as
follows.

4.1 nomad model
As is introduced in Section 2.1, the NOMAD model, developed by Hoogendoorn
and Bovy [2004], simulate pedestrian routing behavior based on the minimum walk-
ing cost (maximum utility) principle. Pedestrians are assumed to continuously bal-
ance their movement to the destination with the cost of their behavior, such as
travel time and physical efforts. In the following sections, the model dynamics and
case-specific components of the NOMAD model are introduced.

4.1.1 Model dynamics

This subsection describes NOMAD model dynamics according to Campanella [2016]
and the ongoing project making use of NOMAD model for restaurant infection risk
analysis. The fundamental equations in NOMAD are displayed as follows.

d
dt
~rp(t) = ~vp(t) (4.1)

where:
~rp(t) is the position vector at time t.
~vp(t) is the velocity.

d
dt
~vp(t) =~a(t) (4.2)

where:
~a(t) is the acceleration.

~a(t) =~ac(t) +~ap(t) +~ε(t) (4.3)

where:
~ac(t) is the controlled acceleration.
~ap(t) is the physical acceleration (uncontrolled).
~ε(t) is the noise term.

~ac(t) =~as(t) +~aO(t) +~apq(t) (4.4)

where:
~as(t) is the path straying component.
~aO(t) is the obstacle interaction component.
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~apq(t) is the pedestrian interaction component.

~as(t) =
(v0(t) ·~eg)−~v(t)

τ
(4.5)

where:
(v0(t) ·~eg is the optimal velocity (speed and direction).
τ is the constant acceleration time.

~apq(t) = −~epq · A0 · e
−dpq

di (4.6)

where:
~epq is the unity vector in the normal direction pointing to the other pedestrian.
A0 is the interaction strength parameter.
dpq is the anticipated distance between pedestrians.
di is the interaction distance parameter.

~aO(t) = −~eO · AO ∑
oεO



1 for 0 < dpO < d0

1 − (dpO − d0) for d0 < dpO < 2d0

0 for dpO > 2d0

(4.7)

where:
~eO is the unity vector in the normal direction pointing to the closest point of the
obstacle.
AO is the obstacle interaction strength, which is a balancing parameter between
this components and the others.
dpO is the anticipated distance to the (nearest) obstacle.
d0 is a threshold distance (shy-away distance).
Equation 4.1 and Equation 4.2 represent the basic position dynamics of pedestrian

movements in continuous space.
Equation 4.3 describes the components of the acceleration that shapes the move-

ment of an individual, including a controlled component ~ac(t), an uncontrolled
physical component ~ap(t), and an error term~ε(t), which produces the natural fluc-
tuations of pedestrian movements.

The components of controlled acceleration are shown in Equation 4.4, namely the
path straying component ~as(t), the obstacle interaction component ~aO(t), and the
pedestrian interaction component~apq(t).

Equation 4.5 explains the derivation of the the path straying component, which
is the deviation from the optimal velocity (v0(t) ·~eg −~v(t) divided by an constant
acceleration time τ. The path straying component is defined for the purpose of mak-
ing pedestrians try to comply to the optimal route, which aligns an optimal velocity
at every position. In NOMAD, deviating from the optimal velocity is assumed to in-
crease costs. The acceleration time determines how much the increased cost is and
therefore controls the extent to which pedestrians stay close to the optimal velocity.
Pedestrians with a very small acceleration time ( 0.0s) tend to walk closely to their
optimal route with speeds around their optimal speeds. It will require very large
interaction accelerations (Equation 4.6 and Equation 4.7) to make these pedestrians
deviate from their routes.

The calculation of the pedestrian interaction component is illustrated in Equa-
tion 4.6. It is modelled by an exponential function that amplifies the close-by ac-
celerations. In NOMAD, getting closer to other pedestrians is assumed to increase
costs. This equation represents the interaction purpose of collision avoidance, where
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Figure 4.1: NOMAD structure (source: Campanella [2016])

the costs of proximity are inverse to the distance between pedestrians. The closer
they are to each other, the more intensively pedestrians want to increase their rel-
ative distance. The increased cost is controlled by two parameters, the interaction
strength parameter A0 and the interaction distance parameter di. A0 is the balanc-
ing parameter between the pedestrian interacting component and the other com-
ponents. The larger A0, the more important this component is in comparison to
the others. di relates the distance between the pedestrians and the intensity of the
interaction acceleration. Diminishing values of di ( 0.0m) diminish the distances
required to generate large interaction accelerations. Diminishing di decreases the
space between pedestrians in crowded situations.

Equation 4.7 describes the calculation of the obstacle interaction component. Sim-
ilar to the pedestrian interaction component, getting close to obstacles also increase
the costs. The strength obstacle interaction is dependent on the distance to the ob-
stacle dpO, the interaction strength of objects in general AO, and the direction of the
nearest obstacle~eO. The larger AO, the more important the obstacle interaction is. A
step-based approach is used for the definition of interaction strength, where obsta-
cles nearby have a very large influence and obstacles outside the range of influence
do not influence individuals’ movement dynamics at all. Two distance thresholds,
d0 and 2d0 are used to govern the gradual linear decline of the obstacle avoidance
force. As a result of the formulation, agents only react to obstacles when they are
really close to the obstacle. This is an advantage in the case of the modelling of
indoor spaces, where lots of obstacles are present.

4.1.2 NOMAD elements

The NOMAD model is structured as shown in Figure 4.1. In this section, the ele-
ments of the NOMAD model are described, namely, infrastructure setting, activity
schedule (demand and activity pattern), pedestrian parameters, and output.
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Infrastructure setting

In the NOMAD application to the proposed method, the walking costs of individ-
uals are computed within the walkable area of multiple infrastructure settings, in
a grid of 0.1m by 0.1m rectangular cells. NOMAD simulates all the risky activity
spaces in an event, where ’high-risk contacts’ are expected to happen. The ’high-
risk contacts’ include possible SARS-CoV-2 transmission via three identified routes,
namely, droplets, aerosols, and formites. After being identified, the infrastructure
layout of each risky activity space will be set up for pedestrian simulation, based
on the observed (estimated) infrastructure layout of various activity spaces in large
events.

5 elements compose the infrastructure setting of NOMAD, namely, walkable ar-
eas, obstacles, destinations, sources, and sinks. The walkable area defines where
pedestrians can potentially walk, which is usually the area within the activity space.
An obstacle occupies an area that is inaccessible to pedestrians and exerts a repul-
sive force on the pedestrians. When overlapping with the walkable area, the area
taken by an obstacle is removed from the walkable area. Destinations are the loca-
tions that define where a pedestrian goes to perform an activity. A source is the
location where pedestrians enter the model and a sink is where pedestrians leave
the model. Examples are presented during the application of proposed method in
Section 5.2.

Activity schedule and demand pattern

To simulate the routing behavior of individuals, the activity schedule within each
activity space is predefined according to the infrastructure layout and functions. It
determines the order to perform activities within the activity space. The demand
pattern of each activity space is determined by infrastructure capacity estimation
and the estimated demand of the entire event. In NOMAD, these two elements
are set up by a demand manager, which defines how many pedestrians enter the
simulation, where and when, and what their activity schedules are.

An example to derive the activity schedule and demand pattern will be given
during the application of proposed method in Section 5.2.

Pedestrian parameter

As is discussed in Section 4.1.1, there are 6 essential parameters in the NOMAD
model, namely, the optimal speed, v0(t),the constant acceleration time τ, the pedes-
trian interaction strength parameter A0, the pedestrian interaction distance param-
eter di, the obstacle interaction strength AO, the shy-away distance d0.

The parameter values may vary under different pedestrian behavior assumptions.
In the method application in Section 5.2, the assumptions made by this study and
the selected parameter values will be presented.

Output

The output of NOMAD consists of the detailed trajectories of individuals within
the simulated area. The agent ids, positions with time stamps compose the output,
which will be further processed as the input to the virus spread model. An example
of NOMAD output is given in the following table:

4.2 virus spread model
The virus spread model, QVEmod, developed by the ongoing research [Duives et al.,
2021], simulates the emissions of viruses from infectious individuals, the landing of
viruses in space and time through the environment, and eventually the viruses that



4.2 virus spread model 35

Agent Time[s] X[m] Y[m]
agent000 34.7 0.48552994 4.50332648

agent000 34.8 0.578413694 4.458839492

agent000 34.9 0.671980886 4.408461202

agent000 35 0.762384928 4.353293035

agent000 35.1 0.849703234 4.294231629

agent000 35.2 0.934359791 4.232008425

agent000 35.3 1.016717364 4.167267956

agent000 35.4 1.097182305 4.101209456

agent000 35.5 1.17618545 4.03523484

agent000 35.6 1.254189064 3.970662051

agent000 35.7 1.332111589 3.91015545

agent000 35.8 1.410100045 3.855186426

agent000 35.9 1.486240578 3.806447296

agent000 36 1.558026401 3.761731898

Table 4.1: NOMAD output example

Figure 4.2: QVEmod structure (source: Duives et al. [2021])

get taken up by susceptible individuals. In this section, the structure, input and
output of QVEmod are described.

4.2.1 Model structure

The QVEmod model consists of 7 parts, each representing one step of in the virus
transmission process. The model structure illustrated in Figure 4.2.

As is discussed in Section 2.2, three SARS-CoV-2 transmission routes are consid-
ered, including droplets, aerosols, and fomites. In QVEmod, these three transmis-
sion routes are realized in 7 steps:

1. An infectious individual emits virus into the air in the form of virus-laden
droplets and aerosols and virus-laden droplets (further referred to as aerosols
and droplets, depending on the size).

2. Droplets fall onto surfaces, which creates fomites.

3. Viruses lose their infectivity at a rate that depends on its state in the environ-
ment (both in the air and on surfaces).

4. Viruses in the droplets and aerosols travel and diffuse.
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5. Susceptible individuals get caught with viruses through inhaling the air with
viral-laden droplets and aerosols.

6. The infectious individual contaminates surfaces by touching the surfaces of
objects in the space (e.g., tables, benches, and counters).

7. Susceptible individuals get caught with viruses by touching contaminated sur-
faces (fomites).

Each step is simulated as a submodel, the detailed descriptions of which are
provided as follows. In QVEmod, all the submodels are continuous processes and
modelled in discrete time and space. The time steps of the following equations are
set as small as 1 minute. The space is partitioned into 0.5m x 0.5m cells.

Step 1

Step 1 simulates the process of virus emission. Equation 4.8 describes the total
volume of viruses that infectious individuals emit into the air at time t.

Vi(t) = Vi(t − ∆t) + ωδσpi(1 − FEi)∆t (4.8)

where:
i denotes the transmission route (aerosols or droplets).
Vi(t) is the virus volume in aerosols and droplets at time t.
∆t is the time step (1 minute).
ω is the virus emission rate of a typical infectious individual (scaled to 1 per

hour).
δ is an activity infectiousness scaler, which scales the heterogeneity in emission

rates during different respiratory activities. It can be weighted based on the propor-
tion of time an individual is engaged in a specific behavior.

σ is an individual infectiousness scaler, which scales the individual heterogeneity
in emission rates.

pi is the proportion of viruses emitted in the form of aerosols and droplets.
paerosols and pdroplets add up to 1.

FEi is the filter efficiency of face masks against droplets or aerosols.
As discussed in Section 2.2, infectious individuals emit viral-laden particles (droplets

and aerosols) by different respiratory activities such as speaking, coughing, or
sneezing, which lead to different virus emissions in the air. Equation 4.8 initially as-
sumes that infectious individuals emit virus at a constant rate ω. The activity scaler,
δ, scales the emission rate of different respiratory activities, based on the emission
rate under breathing condition. Then, the individual infectiousness scaler, σ, scales
different infectiousness of individuals relative to a typical emitter. In addition, the
introduction of the face mask filter efficiency, FEi, enables modeling situations in
which people wear face masks.

Step 2

Step 2 simulates the process of viral-laden droplets falling onto surfaces. Equa-
tion 4.9 describes the total volume of viruses from droplets that lands on contami-
nated surfaces at time t.

Vf omites(t) = Vf omites(t − ∆t) + Vdroplet(t − ∆t)udroplets∆t (4.9)

where:
udroplets is the deposition rate of viral-laden droplets.
As shown in Equation 4.9, the volume of viruses on surfaces is proportioned

to the volume of viruses in droplets by udroplets. In QVEmod, it is assumed that



4.2 virus spread model 37

high-touch surfaces can obtain viruses from droplets, while low-touch surfaces get
landed with viruses only when being touched by contaminated hands. Viruses are
assumed to be stationary and evenly distributed within the grid cells (0.5m x 0.5m).

Step 3

Step 3 simulates the process of viruses decaying in the air and on surfaces. Equa-
tion 4.10, Equation 4.10, and Equation 4.11 show the calculation of decayed virus
volume in three transmission routes.

Vaerosols(t) = Vaerosols(t − ∆t)e−uaerosols∆t−ACH∆t (4.10)

Vdroplets(t) = Vdroplets(t − ∆t)e−udroplets∆t (4.11)

Vf omites(t) = Vf omites(t − ∆t)e−u f omites∆t (4.12)

where:
uaerosols, udroplets, and u f omites are the decay rate of viruses in aerosols, the deposi-

tion rate of viral-laden droplets, and decay rate of virus in fomites.
ACH is the indoor air change rate.
As is displayed in the formula, viruses experience an exponential decay in the

environment. In aerosols, viruses lose infectivity with a constant rate while floating
in the air, which is influence by the indoor air change rate (ACH). The higher ACH,
the faster the viruses in the aerosol reduce. On the contrary, virus-laden droplets
deposit rapidly, which justifies the inactivation of viruses in droplets in the air to
be neglected. Decay in the droplet layer is therefore driven by the deposition rates.
On fomites, viruses decay with a constant rate, depending on the fomite’s material.

Step 4

Step 4 simulates the process of virus diffusion in the air. Equation 4.13 explains the
diffusion dynamics.

V(x,y,t) = D
(V(x−∆x,y,t−∆t) + V(x+∆x,y,t−∆t) + V(x,y−∆y,t−∆t) + V(x,y+∆y,t−∆t) − 4V(x,y,t−∆t))∆t

∆x∆y
(4.13)

where:
∆x and ∆y are the length unit of the cell (both 0.5m).
D is the diffusion coefficient per cell size (0.25m2).
In QVEmod, it is assumed that all particles are well mixed in the grid cells (0.5m

x 0.5m) and aerosols diffuse in two directions (x and y).

Step 5

Step 5 models the process during which susceptible individuals inhale air with viral-
laden droplets and aerosols. Equation 4.14 calculates the virus volume inhaled by
susceptible individuals.

Ei(t) = Vi(t)
ρ

L
(1 − FEi)∆t (4.14)

where:
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Ei(t) is the recipients’ exposure to the virus from route i during time step (t −
∆t, t).

ρ is the inhalation rate.
L is the cell volume.
In QVEmod, the exposure to the virus from aerosols and droplets is represented

by the portion of the airborne virus recipients inhaled from the cell where they
are. The inhaled virus is then deducted from the environment. As displayed in
Equation 4.14, the amount of inhaled viruses is calculated as the ratio of human
tidal volume, ρ, at each time step over the cell volume, L, multiplied by the total
viruses from route i, Vi(t), the efficiency of inhalation (1 − FEi), and the time step,
∆t.

Step 6

Step 6 models the process of infectious individuals contaminate surfaces by touch-
ing them, during which the viruses on their hands are transferred to the surfaces.
Equation 4.15 and Equation 4.16 calculates the virus volume on high-touch and
low-touch surfaces.

Vf omites−high(t) = Vf omites−high(t − ∆t) + Vhand(t − ∆t))γθπ∆t (4.15)

Vf omites−low(t) = Vf omites−low(t − ∆t) + Vhand(t − ∆t))θπ∆t (4.16)

where:
γ is the surface touching frequency.
θ is the transfer efficiency.
π is the ratio of finger pads surface relative to the contaminated area.
In QVEmod, two types of surfaces are defined. High-touch surfaces are the

type of surfaces that people touch at a constant rate. Low-touch surfaces are only
touched when needed. The touching behaviour of low-touch surfaces can be mod-
elled in the NOMAD model. Hence, in Equation 4.16, the virus volume of low-touch
surfaces does not include the surface touching frequency, γ.

Step 7

Step 7 models the susceptible individuals’ exposure to the virus from fomites. Equa-
tion 4.17 and Equation 4.18 calculates the virus volume picked up by susceptible
individuals from high-touch and low-touch surfaces.

E f omites(t) = Vf omites−high(t − ∆t)γθπ∆t (4.17)

E f omites(t) = Vf omites−low(t − ∆t)θπ∆t (4.18)

where:
E f omites(t) is the susceptible individuals’ exposure to virus from fomites during

(t − ∆t, t) time step.
Viruses from surfaces transfer to hands when people touch the surfaces. Similar

to hands contaminating surfaces, the virus transfer from surfaces to hands also
varies over two types of surfaces, as shown in Equation 4.17 and Equation 4.18.

4.2.2 Model input

The inputs to QVEmod include surface definition, agent scripts, and related model
parameters. These input elements are discussed as follows.
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Surface definition

QVEmod requires detailed identification of touchable surfaces, where the process
of virus landing, decaying, and being picked up by individuals is simulated. As is
discussed in Equation 4.2.1, two types of touchable surfaces can be defined, namely,
high-touch surfaces and low-touch surfaces. They are identified according to the
infrastructure context of the simulated activity spaces, in the unit of 10cm by 10cm.
When one touchable surface is larger than the unit, multiple surface units need to
be identified for this one surface. A surface definition script includes the name,
position, transfer efficiency, surface ratio (touchable surface/surface unit), touch
frequency (for high-touch surface), and the virus decay rate on the surface. An
example of one high-touch surface unit definition is illustrated in Figure 4.3.

{
”name ” : ” c h a i r 3 e e t s t o e l : 3 , 3 ” ,
”x ” : 23 ,
”y ” : 21 ,
” t r a n s f e r e f f i c i e n c y ” : 0 . 2 3 ,
” s u r f a c e r a t i o ” : 1 ,
” touch frequency ” : 15 ,
” s u r f a c e d e c a y r a t e ” : 0 . 193

}

Figure 4.3: Touchable surface example

Agent scripts

The agent scripts describe the ids, movements, initial virus loads, and the respira-
tory activity characteristics of the agents.

The ids and movements are processed from the output of NOMAD simulation,
during which the following changes are made.

First, the time stamps are aggregated in 20 seconds, instead of 0.1 seconds. Sec-
ond, the positions are aggregated in 0.1m unit, and presented as relative displace-
ments from the last time stamps. Third, with an agent leaving the simulation, the
action ’leave’ is assigned at the last time stamp of this agent’s script, so that he/she
will no longer be able to emit or pick up virus in the environment.

The initial virus loads define the amount of virus that agents bring into the sim-
ulation (every hour), which will be emitted in to the environment via droplets and
aerosols. The initial contamination load at hand (of the infectious individual) is
defined as a constant value [Duives et al., 2021]. Only one infectious individual is
assigned in each scenario simulation.

The respiratory activity characteristics include the inhalation rate, emission rate,
and proportion of viruses in the form of aerosols and droplets. Other features of
agents, such as if wearing a mask, are also included in the script. An example agent
script is given in Figure 4.4. The values used in this research will be presented in
the method application section of the next chapter.

Model parameters

As is discussed in Section 4.2.1, QVEmod requires a large number of environmental,
personal, and viral parameters in order to simulate the spread of virus in space and
on individuals. Existing studies provide reference to most of the parameters. Others
vary under different scenario settings. The assumptions made in this study and the
corresponding parameter values will be presented during the method application
in Section 5.2.
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{
”name ” : ” agent002 ” ,
” v i r a l l o a d ” : 0 ,
” c o n t a m i n a t i o n l o a d a i r ” : 0 ,
” contaminat ion load drople t ” : 0 ,
” contaminat ion load sur face ” : 0 ,
” e m i s s i o n r a t e a i r ” : 0 . 2 5 2 ,
” e m i s s i o n r a t e d r o p l e t ” : 0 . 7 4 8 ,
” p i c k u p a i r ” : 2 . 3 4 ,
” p ick up drople t ” : 2 . 3 4 ,
” c o n t a m i n a t i o n f r a c t i o n ” : 1 ,
” s c r i p t ” : {

” 1 ” : {
” type ” : ” enter ” ,
”x ” : 70 ,
”y ” : 39 ,
” f a c i n g ” : ”E”

} ,
” 2 ” : {

” type ” : ”move” ,
”x ” : 55 ,
”y ” : 109 ,
” f a c i n g ” : ”E”

} ,
” 3 ” : {

” type ” : ” leave ”
}

} ,
” i s a c t i v e ” : f a l s e ,
”wearing mask ” : f a l s e

}

Figure 4.4: Agent script example

4.2.3 Model output

The output of QVEmod is exported in four tables, three of which include the virus
volumes in droplets, in aerosols, and in fomites, in each grid cell in the space at
each time step of the simulation. The other table, agent exposure, displays the
amount of virus caught by each individual, at each position, and at each time step
of the simulation. The virus accumulations obtained from this table are essential
for infection risk analysis in Section 5.3.

To support the following infection risk analysis, the agent exposure data is fur-
ther processed. First, at each type of activity space, an virus exposure distribution
among all the susceptible agents is obtained by accumulating the virus exposure at
each time step. Second, the period, during which susceptible individuals enter the
simulation, are exposed to the possibility of picking up virus from the environment,
denoted as tk (k represents the activity space), is derived for all types of activity
spaces. At the same time, the number of agents who are exposed to the possibility
of catching the virus is also calculated.

4.2.4 Number of replications

As is introduced in Figure 4.2.2, the virus exposure results are obtained from the
QVEmod simulation with processed NOMAD trajectory output. Stochastic pro-
cesses exist in both models, such as the noise term in the acceleration definition in
NOMAD (Equation 4.3) and choice of the infectious individual in QVEmod. These
stochastic factors lead to variations in virus exposure result from the same input.
To tackle the stochasticity in the simulation results, while maintaining a reasonable
number of replications, the following assumption is made:



4.3 infection risk estimation 41

The variations in results mainly depend on the distance between people and the
time they they spend in ’close contact’. When a large group of agents are con-
sidered (in the case of this study, hundreds to thousands), it is assumed that one
iteration of NOMAD simulation represents an average interaction profile of a
certain scenario. In this case, the stochasticity in the results can be represented
by assigning a different agent (in the order of entering the simulation) as the
infectious individual in each iteration of the simulation scenario.

After each iteration, a virus exposure distribution is obtained. To tackle the
stochasticity in the resulting distributions, the two-step approach is applied to the
obtained distributions of accumulated virus exposure from a number of iterations
to determine if the current number of iterations is sufficient to make sure that the
estimate of the measure of performance (MOP) is calculated within a specific confi-
dence interval. This method is one of the two most popular methods to determine
the number of simulation runs required to achieve statistically confident results,
namely the two-step method and the sequential method [Truong et al., 2015]. Com-
pared to the sequential method, the two-step method is selected as it requires less
computational efforts and has produced reliable results in existing studies [Bluman,
2009; Truong et al., 2015].

In the two-step approach, a fixed number of initial runs are performed to estimate
the sample mean and standard deviation of a MOP, which are then used to compute
the required number of runs according to the following equation [Truong et al.,
2015].

n = [
zα/2S

E
]2 (4.19)

where:

n is the number of required runs.

S is the sample standard deviation of the MOP from the initially conducted runs.

E is the desired margin of error (sample mean of the MOP from the initially con-
ducted runs x desired percentage error).

zα/2 is the critical value of the normal distribution for α/2 (desired confidence
level equal to 100(1 − α)).

In this study, the MOPs are the mean and the standard deviation of each distri-
bution. The most critical value, the highest number of runs required by two MOPs,
will determine the required number of runs. If the calculated n is smaller than the
number of initially conducted runs, it is assumed that the current runs are sufficient
for providing an acute estimate of the distribution. If the calculated n is larger than
the number of initially conducted runs, more iterations need be be performed until
the calculated n is smaller that the number of conducted runs. Then the iteration
with the closest average exposure and standard deviation to the mean and standard
deviation of all iterations will be used for further virus spread analysis.

4.3 infection risk estimation

In order to derive the general infection risk at a large event from the virus exposure
at different activity spaces at the event, a number of procedures need to be con-
ducted, as illustrate in Figure 4.5. This section presents the detailed descriptions of
each step in this proposed infection risk estimation method.
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Figure 4.5: Infection risk estimation

4.3.1 Population profile estimation

First, the population profile, i.e., the number (proportion) of virus spreaders at the
event, is calculated based on governmental statistics and existing research according
to Equation 4.20.

Nin = pin · tin · N (4.20)

where:
Nin is the number of infectious visitors in the event.
pin is the average number of confirmed cases per 100,000 inhabitants per day.
tin is the average duration of infectious individuals staying infectious (the average

of the incubation period distribution).
N is the total number of visitors to the event.
The official COVID-19 infection statistics from the Dutch government [RIVM,

2021a] displays the historical data of the average number of confirmed cases per
100,000 inhabitants per day, denoted as pin.

To calculate the number of infectious individuals in the event, denoted as Nin,
a parameter tin describing the average duration of people staying infectious is re-
quired. According to the study by Lauer et al. [2020], the average incubation period
of COVID-19 (the period from getting infected with SARS-CoV-2 till symptoms de-
velop) is 5.1 days. In this thesis, it is assumed that people who develop symptoms
stay at home and do not come to the event. Therefore, the infectious individuals
at the event are people who are experiencing the incubation period. Considering
people being at different stages of the incubation period, the average stage of the
incubation period that visitors are at is assumed to be the average of 0 to 5.1 days.
Therefore, tin is defined as half of the average incubation period, as 2.55 days.

4.3.2 Activity schedule simulation

After obtaining the number of infectious individuals at the event, an activity sched-
ule simulation is conducted to obtain when and where the infectious people are
throughout the entire event. Following displays the required information of activ-
ity pattern for this simulation.
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1. Start and end time of the event.

2. Types and numbers of activity spaces at the event.

3. T, the duration of visit to the entire event.

4. na, the number of activity spaces visited during the event by one visitor.

5. The activity space transition table, displaying probabilities of visiting certain
activity spaces after leaving certain activity spaces.

6. The duration of stay at each type of activity space.

To simulate the activity schedule of an infectious individual, the duration of visit
to the event, T, and number of activity spaces visited, na, are randomly generated
from the derived distributions from the activity pattern analysis. Then the order of
visits to activity spaces is generated according to the transition table and the types
and numbers of activity spaces at the event. Next, the time spent at each activity
space, denoted as ti is assigned to the activity spaces in the visit order. The time
spent walking from one activity space to another, denoted as tw, is assumed to
be equal between different activity spaces, which is calculated as shown in Equa-
tion 4.21.

tw =
T − ∑iεna ti

na − 1
(4.21)

The starting time of the activity schedule is randomly selected between the earli-
est time possible and the latest time possible, given the selected T. By fitting in ti
and tw to the order of visits, an activity schedule is generated.

To give an example, assuming at one event, there are 2 entrance gates, 10 food
stands, 2 restrooms, and 2 exit gates. The event is held from 11:00 to 14:00. For one
agent’s schedule, T is drawn a visit duration distribution as 50 minutes; na is drawn
as 4. According to a transition table, the probability to go to a food stand is 80%
and a restroom 20%; after a food stand, the probability to go to another food stand,
a restroom, or the exit gate is 50%, 20%, 30%; after a restroom, the probability to
go to a food stand or the exit gate is 80%, 20%;. Assuming that a visit always starts
with the entrance gate and ends with the exit gate, the agent’s schedule may be
generated as ’entrance 1-food stand 4-restroom 2-exit 2’. Considering the duration
of the event, the entry time is selected as 12:00 for this agent. Assuming the duration
of stay at all the activity spaces, ti, is drawn as 5 minutes. Then tw is calculated as
10 minutes. The agent’s full schedule is generated as follows:

Entrance 1 12:00-12:05

Food stand 4 12:15-12:20

Restroom 2 12:30-12:35

Exit 2 12:45-13:50

4.3.3 Identification of the location and duration of possible virus exposure

From the previous step, the information of when and where the infectious individ-
uals are staying is obtained. From the virus spread simulation results, the time
from one infectious individual enters the activity space until the viruses in the en-
vironment decays completely (no one can pick up any virus from the environment),
denoted as tk (k represents the activity space), is derived.

To simulate how the virus spreads among all the event visitors, identification of
the location and duration of possible virus exposure (i.e., where and when suscepti-
ble individuals are exposed to the possibility of catching the virus) at event activity
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spaces is required. The location and duration are generated by fitting tk into the
activity schedules of infectious individuals (from the time when the infectious in-
dividual enters to the next tk minutes), creating a number of time periods with
exposure possibility at every activity space.

An example of the ’Risky’ schedule will be given during the method application
in the next chapter.

4.3.4 Accumulate virus contamination

In this step, the accumulated virus contamination on every susceptible individual
is added up. First, the activity schedules of all the susceptible individuals (N −
Nin) are generated in the same way as described in Section 4.3.2. Second, these
activity schedules are matched with the ’risky’ schedule one by one, to detect to
what extent the susceptible individuals are exposed to the possibility of catching
virus during the entire visit to the event. The match exists when one agent enters
the activity space during its ’risky’ time period. Then, out of every match of every
susceptible individual, the amount of virus he/she picks up at the exact activity
space, is randomly selected from the output of QVEmod, obtained by Section 4.2.3,
denoted as Vrij. i represents the activity space and j represents the susceptible
individual. At last, Vrij are added up together for each susceptible individual j and
the accumulated virus contamination distribution throughout the entire event is
created.The accumulated virus load on this susceptible individual during the entire
visit to this event, Va j is calculated in Equation 4.22.

Vaj = ∑
iεI

Vaij (4.22)

where:
I is the set of risky activity spaces visited by the susceptible individual.

4.3.5 Translation from virus dose to infection risk

The risk of being infected under exposure to a certain number of viral particles
varies between different transmission routes, because of different deposition loca-
tions (hands, lower or upper respiratory tract) and the viability of the virus [Deng
et al., 2020]. The relationship of infection probability and accumulated virus doses
from different transmission routes is modeled by an exponential dose-response re-
lationship in Equation 4.23, [Nicas, 1996].

P = 1 − e
−(

Eaerosols
kaerosols

+
Edroplets
kdroplets

+
E f omites
k f omites

)
(4.23)

where:
P is the probability of getting infected.
Eaerosols, Edroplets, and E f omites are the accumulated exposure (virus doses) from

the three transmission routes.
kaerosols, kdroplets, and k f omites are the route specific exposure at which individuals

have 63% chance of getting infected, which is calculated according to Equation 4.24.

kroute =
Din f

φ ∗ croute
(4.24)

where:
Din f is the infection virus dose.
φ is the emission rate of an average individual.
croute is the proportion of viral particles caught by humans that reaches the respi-

ratory tract cells.
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By fitting the virus dose distribution into the dose-response relationship, Equa-
tion 4.23, the probability distribution of all the susceptible individuals getting in-
fected during this event is obtained. The number of infected individuals can be
calculated from this distribution as well, following a random simulation method
[Duives et al., 2021]. Instead of directly deriving the infection number from the av-
erage infection probability, this random simulation method is selected to make sure
the high and low end of the distribution have limited contribution to the infection
number calculation. It is expected that a large number of agents with very low in-
fection probabilities will be resulting from the previous steps. To limit their impact
on the estimated infection number, the selected method is used as described below:

1. Draw a random number from a uniform distribution [0,1].

2. Compare the drawn number to the individual’s infection probability. This
individual is assumed to be infect if the infection probability is larger than the
number drawn.

3. Repeat Step 1 to 2 for all the simulated individuals.

4. Divide the total number of infections by the number of simulated individuals
and obtain the possibility of being infected during this event.

4.3.6 Number of replications

As stochasticity is involved in the process of activity schedule generation and selec-
tion of virus exposure from the distribution, replications of the above steps should
be conducted to make sure the ultimate output, number of infections, is represen-
tative. A two-step method is used to tackle stochasticity [Truong et al., 2015], by
which the MOP is the number of infections.





5 C A S E S T U DY

This chapter presents two case studies conducted during this research to support
the application of the proposed method and apply the proposed method.

In Section 5.1, the real-life data collected from a GPS-tracing application during a
musical festival in 2019 is analyzed, from which a general profile of activity pattern
is derived. The obtained activity pattern is then fed to Section 5.2 to generate activ-
ity schedules of visitors during the simulated event. The methodology developed
in the previous chapter is then applied to a music festival setting, with specified
scenario parameters values and assumptions.

5.1 derive activity pattern from gps data
This section describes the methods used to collect, process, and analyze a real-life
GPS data set. Initially, it was expected that this data set provides actual pedes-
trian interaction information that can be directly used for the dose response model.
However, during this case study, it turns out that due to the incomplete data set and
limited accuracy, the collected traces do not provide a full picture of event visitors’
interaction characteristics. Moreover, the data collection dates back to pre-COVID-
19 time, which provides no indication to pedestrian behavior under COVID-19 reg-
ulations such as social distancing. Therefore, the detailed pedestrian interaction
characteristics will be fully dependent on pedestrian simulation. The purpose of
this data analysis lies in deriving the activity pattern of visitors at this event, which
will be used to set up the simulation model.

The case study is carried out in the following method. First, the GPS data is
gathered and processed in Section 5.1.1. After being matched on the map, the
pedestrians’ duration of stay at different event spaces and the activity scheduling
characteristics are analyzed in Section 5.1.2 and Section 5.1.3. A conclusion is drawn
in Section 5.1.4.

5.1.1 Data collection and processing

The real-life data of this research was collected during the Amsterdam Open Air
musical festival, which was held in Gaasperpark, Amsterdam, on June 1st and 2nd,
2019. During this two-day event, about 20000 people participated. They were of-
fered with a mobile phone application, named Woov, to explore activity information
and communicate with friends. Each time when a participant used this application,
the GPS location of his or her mobile phone was collected, together with the times-
tamp, GPS accuracy and id of the device.

The raw data set used in this research consists of 104866 location stamps of 2688

devices. In the form of an excel sheet, 4 columns of data include the time stamp,
GPS location, encrypted id, and accuracy. Each time stamp consists of date and
time information, in the form of dd-mm-yyyy, hh:mm:ss. The GPS location data
is coded by PostGIS, in the form of a long string with numbers and letters. The
encrypted ids are short strings composed of numbers and letters. The accuracy is
measured in meters, ranging from 0 to above 100 meters.

To make use of the collected data, the following data processing steps are taken,
as illustrated in Figure 5.1.

47
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1. First, the GPS location data is decoded into Well-known text (WKT) forms by
PostGIS, resulting in two columns of latitude and longitude values.

2. All the location stamps are scatteredly mapped on the open street map [Open-
StreetMap, 2021], which provides a detailed infrastructure background of
Gaasperpark. It is observed that a part of the GPS traces is located outside
the event area, which is due to the use of the Woov app before entering and
after leaving the event location. Based on the location information of Gaasper-
park on Google maps [?], a rough geographical area of the musical festival
is determined. Then the data with location stamps outside the event area is
filtered out, as the scope of this study is limited to the behavior at the event,
excluding the commuting to and from the event.

3. Considering the large event area of this festival, it is assumed that location
stamps with the accuracy smaller than or equal to 30 meters provide sufficient
information of the activity areas where people stay. Therefore, the data with
accuracy larger than 30 meters is filtered out.

4. The repeated data rows are deleted.

5. The encrypted ids are replaced with numbers for the convenience of further
data analysis.

6. The data before 01-Jun-2019 06:00:00 and after 03-Jun-2019 06:00:00 is filtered
out to make sure traces recorded before and after this event are not included.
Next, the data is split into 2 two data sets, each including traces recorded in
one day of the event, divided at 02-Jun-2019 06:00:00, for the convenience of
further data analysis.

7. It is observed that the usage of the Woov app varies significantly among users.
Some of them provide continuous data with short time intervals and long
duration. However, the data of a large number of users consists of only several
scattered time stamps throughout the day, from which no clue of their activity
patterns can be derived. To make the best use of the limited filtered data, it is
assumed that data with a time interval smaller than 15 minutes would provide
sufficient information of the duration of stay at a certain activity area and the
movement among different areas. Thus, for each unique id, on each day, the
data rows that create a time interval larger than 15 minutes from the previous
data row are deleted.

Finally, the processed data set of 01-Jun-2019 is composed of 20186 location
stamps of 981 devices, the data set of 02-Jun-2019, 17266 location stamps of 916

devices.

5.1.2 Duration analysis

As is observed during data processing, the real-life data merely consists of a small
part of traces of 1/10 of the visitors to this event. Although the small sample size is
not sufficient for pedestrian interaction analysis, it enables deriving visitors’ activity
patterns, including how long they stay at a certain activity space (Section 5.1.2) and
what the order of visiting activity spaces is (Section 5.1.3). By analyzing these
patterns, the pedestrian characteristics as input to the detailed simulation can be
determined.

To analyze people’s duration of stay at different types of activity spaces, the
following steps are taken.

1. First, the activity spaces are defined based on clusters of location stamp map-
ping on the open street map [OpenStreetMap, 2021] and an Amsterdam Open
Air festival map [?], as shown in Figure 5.2 and Figure 5.3. It is observed
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Figure 5.1: Data processing steps

that some activity spaces are not not easy to distinguish by comparing the
clusters and the festival map, such as toilets and bars next to musical stages.
Therefore, only those activity spaces that can be distinguished are defined,
resulting in 5 musical stages, 3 bars (including food stands), 2 toilets, and 1

locker area. These spaces are defined by selecting multiple points on their
edges and exporting the location information of the points.

2. After defining activity spaces, the data with location stamps that fall into
each space is obtained. The same as data processing steps, the data within
one activity space whose time interval is larger than 15 minutes is filtered
out. It is important to be aware that the activity space definition method does
not provide very accurate spatial information. People clustering around the
edges or walking on the road next to these spaces might also be considered
as staying in these spaces, which will result in more data of short duration
being included. Therefore, it is assumed that the duration of stay shorter than
3 minutes at musical stages and shorter than 1 minute at bars, toilets, and
lockers is generated by people moving in the vicinity and not preforming any
activity in the activity space. The corresponding data is then deleted from the
data set.

3. Next, the summation of continuous time intervals of each id within each activ-
ity space is calculated, which represents the (minimum) time that that person
spent in that space. The statistics of the (minimum) duration of stay at each
type of activity space is summarized in Table 5.1. Figure 5.4 shows the his-
togram of the (minimum) duration of stay at each type of activity space. One
outlier of 01:36:49 at the activity space type of stage is too large to be included
in Figure 5.4.
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Figure 5.2: Scattered location stamps of filtered Woov data on 01-Jun-2019 on open street
map (Source: OpenStreetMap [2021])

Figure 5.3: Amsterdam Open Air 2019 festival map (Source: ?)

As is shown in Table 5.1, people spent on average 11 minutes 32 seconds in front
of the musical stages, 6 minutes 51 seconds at bar and food stands, 3 minutes 41

seconds at lockers and 3 minutes 21 seconds in toilets. The medians of duration is
slightly shorter than the mean values for all the activity spaces. The variations exist
in the duration ranges, as the standard deviations are relatively large. According to
the distribution illustrated in Figure 5.4, for the activity space type of bar and toilet,
the number of people staying in the area decreases nearly linearly with the increase
of duration. At bars, the largest number of people are observed from 00:01:00 to
00:03:00, same for toilets. At around 00:18:00 to 00:21:00, the number drops to
around 0 for bars and around 00:06:00 to 00:09:00 for toilets. For musical stages
and lockers, the number remains steady for several bins and drops significantly
afterwards. Most people stay for 00:01:00 to 00:06:00 at lockers and for 00:03:00 to
00:15:00 at stages.

It is important to be aware that the values shown in Table 5.1 and Figure 5.4 are
calculated from the time stamps when people continuously stay in each activity
space, which may not include the time when they enter and leave. Therefore, the
results may slightly underestimate the actual duration of stay at each type of activity
space.

5.1.3 Activity pattern analysis

As is mentioned above, not all the activity spaces can be defined to track the exact
locations where people have been. However, it is still important to study the activity
pattern on the aspect of the order to visit different types of event spaces based on
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Activity space Stage Bar Locker Toilet
Mean 00:11:32 00:06:51 00:03:41 00:03:21

Median 00:10:06 00:05:03 00:03:15 00:02:15

Maximum 01:36:49 00:33:03 00:13:05 00:25:30

Standard deviation 00:08:09 00:05:52 00:02:30 00:03:46

Table 5.1: Duration of stay at activity spaces

Figure 5.4: Duration of stay histogram of 4 types of activity spaces

available data. Together with the duration analysis, a full picture of visitors’ activity
pattern will be revealed.

To derive where visitors go after a certain type of activity space from the bulk
data, the following steps are taken.

1. The metrics of data, the locations of which fall within the same type of activity
space, are combined, resulting in four metrics, namely data located at musical
stages, bars, toilets, and lockers, respectively including 12400, 2423, 352, and
560 rows of data.

2. For each metrix, the intervals between time stamps of the same device are
calculated. For an interval larger than 15 minutes, it is assumed that this
person did not stay in this activity space and went to another activity space.
Considering the time it takes to reach another area, for instance, going from
one stage at the west end to another stage at the east end, it is assumed that
where a person is detected within the next 30 minutes (from the time stamp
that has an interval larger than 15 minutes compared to the next one in the
same metrix) is considered as the ”next” activity space he or she visits after
leaving the previous area. Therefore, for each metrix, the numbers of devices
detected within 30 minutes in four metrics are calculated.

3. Then the detected device numbers of four types of activity spaces are sum-
marized in Table 5.2, together with the percentage of each origin (previous
location) and destination (next location in the next 30 minutes) pair.

As is observed from Table 5.2, the majority of people go to musical stages or bars
after leaving all types of activity spaces. A small number of people are detected
for visiting toilets and lockers after leaving stages and bars. Most of the derived
information falls into expectation. For instance, it is observed that visitors pay more
frequent visits to stages and bars than other areas. As a music festival, the main
purpose of attending this event is anticipated to be enjoying the music performances.
Meanwhile, people also frequently grab drinks from bars. For visits to toilets, it is
expected to be fewer compared to the frequency of people switching from stage
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Activity space Stage Bar Toilet Locker
Stage 198 42% 210 44.5% 54 11.5% 10 2%
Bar 93 60% 38 25% 16 10% 7 5%
Toilet 13 37% 20 57% 2 6% /
Locker 17 61% 9 32% 2 7% /

Table 5.2: Transition matrix of observed activity pattern derived from bulk data (activity
spaces in the left column represent the origins, activity spaces in the top row
represent the destinations)

to stage and from stage to bar. The fewest visits are expected for the locker, as
normally people only visit it when they left an important belonging at the locker.

However, some other derived information rises doubts. For instance, 25% of
people leaving a bar are observed to visit a bar again and 6% of people leaving a
toilet are observed to visit a toilet again, which is not likely in happen in practice.
The reason that it is derived may be the long interval assumed for walking from one
area to another and the imprecise definition of activity spaces. Another problem
that hinders the reveal of activity patterns from Table 5.2 is the poor sample size.
It is surprising that such small numbers of people moving from one activity space
to another are summarized from relatively large data sets, which to some extent
implies how scattered the data is.

Besides the above-mentioned problems, the following limitations of the data and
analysis methods also make it difficult to make use of the bulk data to derive peo-
ple’s activity pattern. First, most of the data only provides short-interval location
information of a short time period, for instance, within 30 minutes, which is too
fragmented to be used for activity pattern analysis. Second, the limited GPS accu-
racy and imprecise definition of activity spaces do not allow categorizing all types
of spaces. For instance, it is relatively difficult to distinguish small bars and toilets
close to musical stages, compared to larger bar areas 20 meters away from other
stages. Therefore, to provide an accurate activity pattern analysis, it is important to
analyze individual traces with long duration and short intervals.

In the following steps, these traces are selected, mapped, and compared with the
festival map (Figure 5.3), to derive the visiting order of different activity spaces.

1. First, the location data of the same device with more than 120 time stamps in
one day of the event is selected. It is tested that all the time intervals during
the GPS tracking are smaller than 15 minutes.

2. Then the processed data of 19 traces on 01-Jun-2019 and 16 traces on 02-Jun-
2019 are mapped on the open street map [OpenStreetMap, 2021] to examine
if all the traces cover the complete visit to the event, which is indicated by
whether the traces start from entering the park and end at leaving the park
through an entrance. After filtering out incomplete traces, 6 traces on 01-Jun-
2019 and 11 traces on 02-Jun-2019 are used for deriving rough trajectories of
individuals throughout the day.

3. For each individual, the rough trajectory is mapped time stamp by time stamp
on the open street map [OpenStreetMap, 2021]. By comparing the festival map
(Figure 5.3) with trajectory mapping shown in Figure 5.5, the activity pattern
of each visitor is determined.

4. The results of all the traces are summarized, which compose a transition ma-
trix of the probability of the type of activity space to be visited (destination)
after visiting a certain type of activity space (origin), as shown in Table 5.3. A
transition diagram visualizing the observed activity pattern is shown in Fig-
ure 5.6. The grey circles represent all types of activity spaces visited before an
individual leaves the event.
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(a) Trajectory at time stamp 20 (b) Trajectory at time stamp 40

Figure 5.5: Trajectory mapping

Activity space Entrance Locker Stage Bar Toilet
Entrance / 100% / / /
Locker
(not before leaving)

/ / 52% 41% 8%

Stage / 13% 53% 23% 11%
Bar / 11% 81% / 9%
Toilet / 13% 78% 9% /
Locker
(before leaving)

100% / / / /

Table 5.3: Transition matrix of observed activity pattern derived from individual traces (ac-
tivity spaces in the left column represent the origins, activity spaces in the top row
represent the destinations)

From the individual-based activity analysis, other characteristics are derived as
follows.

1. An individual visits on from 9 to 26 (average: 17.5) activity spaces during this
musical festival. The average number of visits paid to each type of activity
space by one individual is listed in ??.

Activity space Average number of visits
Entrance/exit 2

Locker 2.6
Bar 2.8
Toilet 1.4
Music stage 8.7
Total 17.5

Table 5.4: Average number of visits at different activity spaces

2. The duration of the visit ranges from 7 hours 6 minutes to 10 hours 11 minutes,
with an average of 8 hours 50 minutes.

The observed activity pattern provides insights to the actual choice behavior of
people at the event and will be used as the reference to input of simulations.

5.1.4 Conclusion

From this case study, 4 important activity characteristics are derived as follows.

1. The duration of visit to the event, derived from analyzing individual trajecto-
ries, average 8 hours 50 minutes, ranging from 7 hours to 10 hours.
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Figure 5.6: Transition diagram of observed activity pattern (grey circles represent all types
of activity spaces visited before leaving the event)

2. The distribution of number of activity spaces visited during the event by one
visitor, derived from analyzing individual trajectories, ranging from 9 to 26.

3. The activity space transition table, Table 5.3, displaying probabilities of visit-
ing certain activity spaces after leaving certain activity spaces, derived from
analyzing all the documented trajectories.

4. The distribution of duration of stay of individuals at each type of activity
space, derived from analyzing all the documented trajectories and summa-
rized in Table 5.1.

These characteristics will be used to generate the contact probability distribution
in Section 5.2 according to the proposed method in Section 2.3.1.

5.2 method application
In this section, the developed method to identify SARS-CoV-2 transmission risk
from pedestrian interactions is applied in a simulated event, reproducing the Am-
sterdam Open Air music festival. The simulated festival is held for one day from
12:00 to 23:00 with 10000 participants. Within the event terrain, there are 7 different
types of activity spaces where the virus can be transmitted between people, namely,
entrance/exit queue, locker, big bar with sitting areas, small bar without sitting ar-
eas, normal indoor toilet, portable toilet and the queue, music stages. The number
of each type of activity spaces will be calculated based on the demand. The number
of infectious individuals at this event will be determined according to the infection
data from the government. The assumptions and inputs to the models described in
Chapter 4 will be specified in this section, following the structure of the proposed
methods. The purpose of this method application is to estimate the SARS-CoV-2
transmission profile at the reproduced Amsterdam Open Air music festival and
analyze the potential risk at different types of facilities.

5.2.1 NOMAD model application

As introduced in Section 4.1.2, to apply the NOMAD model, definition of 4 ele-
ments is required, namely, infrastructure, activity schedule, demand pattern, and
pedestrian parameters. In this subsection, these elements are defined under the
simulated scenarios.
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NOMAD infrastructure

In the application to the Amsterdam Open Air music festival, 5 types of risky activ-
ity spaces are defined for pedestrian simulation, namely, entrances/exits, lockers,
bars, toilets, and music stages. Every activity space is independently simulated
in NOMAD. These activity spaces are selected as ’high-risk contacts’ are expected
there, according to the high possibilities of three SARS-CoV-2 transmission routes
to occur. In a music festival, a dense crowd usually accumulates in front of en-
trances/exits, bars, and toilets, when people form queues to get in the activity space.
The largest crowds are usually gathered in front of music stages where the density
can grow extremely high (> 2P/m2) [Weppner and Lukowicz, 2013]. Even when
under social distancing rules, people are expected to get close to each other either in
the rush to reach the end of the queue or influenced by the live music atmosphere
[FieldlabEvenementen, 2021], which can lead to droplets and aerosols transmission
in both indoor and outdoor spaces. In places like lockers and bars, it is inevitable
for visitors to touch the locker door when depositing personal belongings, touch
the POS terminal when paying for a drink at a bar. Via these behaviors, virus trans-
mission via fomites may occur. As for inside the toilets, though people are expected
to disinfect themselves when washing their hands, aerosols transmission still plays
an important role.

Other activity spaces within the park are not simulated in this research, includ-
ing routes connecting different activity spaces and vast free areas where people
can sit on the grass for a rest. These places are considered not risky, because the
transmission risks in these places are assumed to be negligible for the following
reasons. First, there is almost no touchable surfaces which different people would
constantly touch during the visit, which nearly eliminates the possibility of fomites
transmission. Second, the space these places are expected to be large enough for
people to keep a relatively large social distance when walking around. With the nat-
ural outdoor ventilation, it is assumed that the possibilities of droplets and aerosols
transmission are negligible.

The simulated activity spaces are described and visualized in the following para-
graphs. The setup and dimensions are estimated from the music festival map Fig-
ure 5.3, an YouTube vlog shot during this this event [Huijkman, 2019], and daily life
experience. For some activity spaces, different infrastructure layouts and settings
are designed to explore the sensitivity of their influences on the infection risk profile.
In the following figures, the grey areas within the boundaries represent walkable
areas, the dark grey areas are obstacles, and the meshed areas are destinations. The
measurement unit is 1 meter.

1. Entrance/exit

In Figure 5.7, the queue layout at the entrance/exit is displayed. The design
follows the efficient ’s’ shape, which is often seen at the entrance/exit of large
events, such as football matches and music festivals. In a 20m by 20m area,
queuing points are distributed according to the assigned distance between
people. The destination placed at the top left corner is the entrance/exit gate,
which is assumed to open when visitors scan the digital ticket. As a result,
direct touching behavior is avoid and fomites transmission can be eliminated
in this facility. To explore the influence of the queuing distance, two sce-
narios with 1 meter and 1.5 meter queuing distance between individuals are
designed. In both scenarios, the demand will be calculated to make sure that
there are always enough spots for individuals to take up during the queuing
process. To guarantee one-way traffic, the entry is placed on the right bottom
and exit on the left top.

2. Lockers

Figure 5.8 displays the locker infrastructure layout, which is inspired from
the ubiquitous locker design shown in Figure 5.9. 4 rows of lockers, each 6
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Figure 5.7: Queue layout at the entrance/exit/small bar

Figure 5.8: Locker infrastructure layout
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Figure 5.9: A ubiquitous locker design (Source: Lockerlogic [2018])

meters long, 0.5 meters wide, are depicted as obstacles. The 0.3-meter wide
and 2-meter long destinations around the lockers represent where people aim
to visit during the simulation. To apply the social distancing regulation, 3

destinations on each side of the lockers are defined, each can only be taken up
by one person at a time. Therefore, the maximum capacity of this locker area
is 24 people at a time. To guarantee one-way traffic, the entry set is on the left
middle and exit on the right middle.

3. Bars

Two types of bar infrastructure are designed according to the music festival
map Figure 5.3 and the YouTube vlog of Amsterdam Open Air festival 2019 by
Huijkman [2019]. One is a big enclosed bar area as illustrated in ??. The other
is a small bar where no tables or benches are placed. In the big bar area, 6

bar counters lie on the right, offering drinks and snacks to visitors coming by.
The 1m x 0.3m area in front of each counter is set as the visitors’ destination.
14 tables and 28 benches are situated on the left and in the middle. The tables
are 2 meters long and 1 meter wide, defined as obstacles. The benches around
them are destinations and each bench can only be seated by one individual, in
order to promote social distance. Therefore, the maximum number of people
sitting in the entire bar area is 28 at a time. People are randomly assigned to
sit at the table or leave directly after visiting the bar counter, the proportion
of which will be calculated in the next section. One-way traffic rule is applied
in this area by locating the entry at the bottom left and the exit on the top left.
The design variable of the big bar infrastructure is indoor/outdoor setting.

A small bar area only involves one bar counter. Visitors are expected to leave
to other facilities after visiting the bar counter. In real-life practice, it is of-
ten observed that people form a queue in front of the bar counter, which
increases the risk of transmission by droplets and aerosols. The layout of the
queue is designed as the same as the queue at the entrance/exit, as displayed
in Figure 5.7. In this case, the destination at the top left corner is the bar
counter, where the action of paying at the POS terminal occurs. The design
variables of the small bar infrastructure include indoor/outdoor setting and
the queue distance. Same as the entrance/exit queue, 1 meter and 1.5 meters
queuing distance are designed, which are expected to influence the scale of
virus spread in the crowd.

4. Toilets

Two types of toilets are considered in this study. One is a normal toilet which
has been originally built in the park where the festival is held. The other is
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Figure 5.10: Big bar infrastructure layout

portable toilets which are brought to the event location by the organizers to
satisfy the need of a large number of visitors. The normal toilet infrastructure
layout is demonstrated in Figure 5.11a, inspired by everyday life experiences.
Four toilets (1m x 1m) are situated on the left and 4 basins on the right. The
entry and exit are through the same door, located on the bottom left corner.
The normal toilet is simulated indoor. There is no other scenario at this facility.

For portable toilets, as observed in everyday life experiences, they usually
stand in a line in the field, where people form a queue in front. Figure 5.12

displays portable toilets lined up in a real life application, which is often ob-
served in large temporary events. To simulate the virus spread situation in the
scenario of portable toilets, it is important to take into account the risk in the
queue formed in front of the toilet cubes, as people stay relatively close with
each other. The portable toilets are simulated in a similar layout as the queue
at entrance/exit/small bar counter, with 6 portable toilets cubes lining up on
the top as the destinations of visitors. Each cube is an 1m-by-1m enclosed
indoor space, where droplets and aerosols emitted by visitors remain until
decay completely. Figure 5.11b shows the layout design of portable toilets and
the queue, with 6 toilets aligned on the top. People wait in the outdoor queue
before entering the toilets. The design variable is the queue distance, the same
as the queue at entrance/exit/small bar.

5. Music stage

The standing area of music stage is designed in a square area of 50m x 50m,
as illustrated in Figure 5.13. The dimensions are estimated from the YouTube
vlog of Amsterdam Open Air festival 2019 by Huijkman [2019]. It is assumed
that the stage is on the top, entrance at the bottom left corner and exit at the
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(a) Normal toilet layout

(b) Portable toilet layout

Figure 5.11: Toilet infrastructure layout

Figure 5.12: A line of portable toilets (Source: Gobbler [2020])
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Figure 5.13: Music stage layout

Figure 5.14: Social distancing markers (Source: Nedelcheva [2020])
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bottom right corner. As is observed from real life experiences, visitors cluster-
ing in front of the music stage tend to stay around the same location during
their visit, due to the crowdedness. To simulate visitors’ behavior at the music
stage, this study assigns uniformly distributed points as a range of available
destinations to the agents. This design is inspired by the ubiquitous social
distancing markers that have been widely applied since the start of the pan-
demic, as shown in Figure 5.14. It also allows the quantification of infection
risk The distance between the points can be adjusted to simulate scenarios
with different densities. To simulate visitors’ choice of the destination point in
reality, a ’focal point’ is introduced. It is an ’attraction’ point to which visitors
tend to come as close as possible. During the simulation, if agents are set to
follow the focal point, they always take the available destination point that
is the nearest to the focal point. In this designed music stage area, the focal
point is placed in the center of the top line, to mimic the visitors’ behavior of
clustering in the center front of the stage. In real life practice, people do not
always want to go the most crowded area in front of the stage. Some would
prefer staying at a random location in the field. In this study, a randomness
indicator is incorporated for the choice of destination points. The indicator
defines the proportion of visitors following the focal point (80% in this sce-
nario) and the proportion of visitors randomly choosing the destination (20%
in this scenario). It is assumed that there is no touchable object in the mu-
sic stage area. The infrastructure related design variables include the density
and indoor/outdoor setting. Four types of density are simulated, namely jam
density (5.76p/m2 - distance between people: 0.4m) [Duives et al., 2015], very
high density (2p/m2 - distance between people: 0.7m), high density (1p/m2

- distance between people: 1m), ideal density (0.4p/m2 - distance between
people: 1.5m).

NOMAD demand pattern and activity schedule

After defining the infrastructure layout of different activity spaces, their demand
patterns are derived from the infrastructure capacity estimation and the demand
pattern of the entire event. As this study aims to reproduce the 2019 Amsterdam
Open Air music festival, the demand considered in this research remains the same
as the scale of this event, which is 10000 participants in a day. The activity schedules
are derived from the infrastructure settings in the previous subsection.

The demand patterns and activity schedules of simulated activity spaces are pre-
sented as follows.

1. Entrance/exit

The entire event accommodates 10000 visitors and lasts from 12:00 pm to 23:00

pm. As analyzed in Section 5.1, people spend 7 to 10 hours at the festival,
indicating a scattered demand during the first few hours. Considering the
simulation scale and computational limitations, this study aims to simulate
an ’average’ scenario for each activity space, ’averaging’ the risk throughout
the busy hours. It is assumed that visitors enter and leave the festival at a
constant rate. Deducting the average stay of 8 hours 50 minutes from the event
duration, 11 hours, the demand to the event is calculated as 10000 persons per
2 hours 10 minutes. Assuming there are 20 gates at the entrance, if all the
visitors arrive at the event within the first 2 hours 10 minutes, the demand
at each gate is 1 person every 15.6 seconds. In real life experiences, it often
happens that the demand is bigger than the entry rate, which builds up the
queue. In this study, the entry rate at the gate is set as 20 seconds per person,
which is considered by the author, as a reasonable time to scan the QR code,
wait till the gate open and walk through the gate. Under such an entry rate, it
is calculated that the queues will resolve within the first 2 hours 47 minutes,
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indicating the time spent at the queue ranges from 0 to 37 minutes. It is
assumed that the same rates also apply to the exit queues.

To conclude, there are 20 entrance/exit queues, each with a demand of 38.5p/10min
(1 person every 15.6 seconds) and a entry rate of 30p/10min (1 person every
20 seconds). The activity schedule is straight from the entry to the tail of the
queue, then to the entrance/exit gate, and exit the facility.

2. Lockers

For the locker area, the maximum capacity at a time is 24 people, as discussed
in the previous subsection. According to the activity pattern analysis from
Section 5.1.2, people on average spend 3’41” in the locker area, resulting in
a maximum flow rate of 65p/10min. As analyzed in Section 5.1.3, people al-
ways visit the locker after entering and before leaving and usually also pay
0 to 2 visits to the locker during the entire event. Therefore, for the first 2

hours 47 minutes (total time required to let in 10000 visitors), the inflow at
the locker area corresponds to the inflow at the entrance. Following the same
assumption at the exit, the inflow to the locker proceeds to the exit, which
makes the flow rate at the locker 10000 persons per 2 hours 10 minutes. To
avoid underestimating the infection risk at the locker area, this study simu-
lates the maximum flow rate scenario, which makes the flow rate of the entire
locker area only have an influence on the number of locker facilities. To allow
the higher flow rate at the exit, the number of locker facilities is calculated
as 12 (10000 persons per 2 hours 10 minutes inflow divided by 65p/10min
maximum flow rate). It is important to pay attention that, in practice, the
flow rate at the locker area does not always remain the maximum throughout
the entire event. By simulating maximum flow rate scenario, this study may
overestimate the infection probability at this event.

In conclusion, the demand at each locker facility is 65p/10min. 12 identical
lockers are installed in the simulated music event to satisfy the need to deposit
belongings for all the visitors.

The activity schedule is determined as simple as ’Entry-locker destination-
exit’, based on the infrastructure layout.

3. Bars

As summarized in Table 5.1, the average stay in the big bar area is 6’51”, which
includes the time spent to get a drink (or food) and the time spent sitting at
the tables in the area. As the big bar infrastructure layout is set up to promote
social distancing, the number of people seated is 24 at a time, which allows the
flow rate of 24p/6’51” = 35p/10min. Assuming each individual spends one
minute at the counter to order and pay for a drink (or food), the 6 counters in
total allow the flow rate of 60p/10min. Therefore, the maximum flow rate to
the big bar area is 60p/10min, while only 35 people out of the 60 are able to
sit at the tables.

Same for the small bar, maximum flow rate at a single counter is 10p/10min.
The demand pattern is set as 12p/10min for the first half and 8p/10min for
the second half to make sure that agents spend a period of time in the queue
and be potentially exposed to the virus. To satisfy the average number of
visits to the bar by on individual, 2.8 (Table 5.4), during the 11-hour event,
the overall demand flow rate to all the bars is calculated as: 2.8*10000p/11h
= 424p/10min. As a result, 4 big bar area (240p/10min) and 19 small bars
(190p/10min) are installed in the simulated music event.

According to the infrastructure function, the activity schedules at the big bar
are determined as ’Entry-counter-table-exit’ and ’Entry-counter-exit’. The lat-
ter also applies to the small bar areas.
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4. Toilets

The average duration of stay in toilets is 3’21”, as analyzed in Table 5.1. The in-
frastructure setting determines the maximum number of people in the normal
toilet is 4 at a time. Therefore, the maximum flow rate is derived as 4p/3’21”
= 12p/10min. For the portable toilet setting displayed in Figure 5.11b, the
maximum number of people is 6 and the maximum inflow is 6p/3’21” =
18p/10min. To simulate the risk in the queue, the simulated demand is set as
20p/10min for the first half and 16p/10min for the second half and guarantee
the queue resolves by itself. To satisfy the need of 10000 visitors each paying
1.4 visits to the toilet (Table 5.4) during the entire event (11 hours), the overall
flow rate to all the toilets is 1.4*10000/11h = 212p/10min. Therefore, 6 normal
toilets (72p/10min) and 8 portable toilet queues (144p/10min) are required.

The activity schedule is defined as ’Entry-toilet-basin-exit’ at the normal toilet
and ’Entry-queue-toilet-exit’ at the portable toilet setting.

5. Music stage

The demand pattern of a music stage is different from other facilities, as peo-
ple tend to enter and leave the area around the same time as other audience
to enjoy a certain show, instead of entering and leaving at a constant rate
throughout the whole day. The observed average duration of stay in front of
music stages is 11’32”, as summarized in Table 5.1. Based on this finding, the
simulation assumes that a show lasts on average 20 minutes. People enter the
facility at a constant rate for 8 minutes, stay there for 11’32” and then leave.
The capacity of the music stage varies according to the designed density, from
15625p (5.76p/m2)to 1111p (0.4p/m2). According to Table 5.4, the average
number of visits to the music stage by one individual is 8.7, which makes the
total number of visits to music stages 87000. As observed in real life experi-
ence, unlike other facilities which are constantly used during a day, a music
stage normally does not hold music shows throughout the entire day. Instead,
a certain number of performance is staged with intervals. It is important to
consider that this study aims to simulate an average scenario at each activity
space, under which circumstance, the difference among different facilities of
the same type is ignored. For the convenience of simulation and calculation,
it is assumed that 11 shows are played at each music stage at an interval of 1

hour throughout the day. Thus, when assuming each music stage accommo-
dates 1000 people at a time, holding 11 shows throughout the day, the number
of music stages to satisfy the demand is calculated as 87000/(1000*11) = 8.

As a result, the demand at the music stage is 1000p/8min for 1 show and 11

shows during the day. The activity schedule is defined as ’Entry-destination
point-exit’.

The demand patterns and activity schedules are summarized in Table 5.5.

Activity space Nr Demand Max flow Activity schedule
Entrance/exit quque 20 38.5p/10min 30p/10min Entry-queue-exit
Locker 12 65p/10min 65p/10min Entry-locker-exit

Big bar area 4 60p/10min 60p/10min
Entry-counter-table-exit
Entry-counter-exit

Small bar + queue 19 10p/10min
12p/10min (first half)
8p/10min (second half)

Entry-queue-counter-exit

Normal toilet 6 12p/10min 12p/10min Entry-toilet-basin-exit

Portable toilet + queue 8 18p/10min
20p/10min (first half)
16p/10min (second half)

Entry-queue-toilet-exit

Music stage 8 1000p/8min / Entry-destination point-exit

Table 5.5: Activity schedules in activity spaces
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NOMAD parameters

Based on the parameter calibration conducted by Campanella [2016] and the NO-
MAD application to a restaurant scenario [Duives et al., 2021], the parameters used
in this study are defined in Table 5.6. An ongoing calibration of NOMAD param-
eters under social distancing rules conducted by TU Delft suggested that the in-
teraction strength parameter, A0, and the interaction distance parameter, di, may
increase to 5.0m/s2 and 0.5m in order to keep 1.5m social distance with other peo-
ple. However, as agents being stuck in the corridors at the locker facility has been
observed with the calibrated values, they are not used in this study.

Parameter Value Unit Source

v0(t)
Normal distribution: (0.9, 0.2)
Min: 0.4, Max:1.4

m/s Campanella [2016]

τ 0.5 m/s2 Campanella [2016]
A0 2.0 m/s2 Campanella [2016]
di 0.1 m Campanella [2016]
AO 2.0 m/s2 Campanella [2016]

d0 0.3 m
Campanella [2016]
Duives et al. [2021]

Table 5.6: NOMAD parameter values

5.2.2 QVEmod model application

The inputs to QVEmod include surface definition, virus transmission related model
parameters and agent movement script, the last of which is processed from the
output of NOMAD. This subsection discusses the assumptions and definitions of
all the required inputs under the simulated scenarios.

Surface definition

QVEmod simulates virus spread in the same infrastructure setting as NOMAD. To
model the transmission by fomites, QVEmod requires the definition of touchable
surfaces, which constantly receive and give away virus from every touch made by
individuals. The touchable surfaces at the facilities are defined as follows.

At the entrance/exit gates, it is assumed that people scan QR codes to pass
through, without touching any surface. In real life, the area in front of a music
stage is usually an empty ground without any items to touch. In toilets, this study
assumed that people disinfect themselves by washing hands at the basin. As a re-
sult, in the simulation, transmission via fomites is assumed to be negligible at the
entrance/exit gates, music stages and toilets.

At lockers, the locker doors are defined as low-touch surfaces. It is assumed that
each person touches the locker door twice during every visit to the locker facility.
The material is assumed to be plastic.

At bars, the POS terminals at the counters are assumed to be touched only once
during one visit, as they are touched when visitors pay for their drinks. The POS
terminal material is simulated as plastic. In the big bar area, tables and benches are
defined as high-touch surfaces. It is assumed that people touch them at a constant
rate during sitting there [Duives et al., 2021]. The tables and benches are made from
wood.

QVEmod parameters

A large number of parameters are described in Section 4.2.1 to simulate detailed
virus spread dynamics. Following the ongoing research by Duives et al. [2021] and
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related studies, the parameter values are defined in the order of model equations
displayed in Section 4.2.1.

1. Equation 4.8

Virus mission rate, ω, represents the number of pathogens emitted per hour by
a typical infectious individual while ’breathing’, which is scaled to one. The
’breathing’ situation is, in fact, calibrated under a dinning-at-the-restaurant
situation, which involves other respiratory activities, such as talking. The
emission rates for other respiratory activities than ’breathing’ are calculated
by multiplying ω with δ, the activity infectiousness scaler. This study takes
reference from the research by Chen et al. [2021], which identified the value
of δ as 25 for singing and 3.6 for talking. It indicates the number of pathogens
emitted during these two respiratory activities is respectively 25 times and 3.6
times as the number of pathogens emitted during breathing. However, as the
base scenario ω is not based on 100% breathing rate, for singing and talking,
the infectiousness scaler, as well as other parameters related to respiratory ac-
tivities, should be adjusted. The method used to calibrate the δ of the scenario
of ’100% breathing’ to a restaurant scenario is discussed in Section 5.2.3.

The individual infectious scaler, σ, defines the extent to which an individ-
ual emit the virus. 0 indicates a susceptible individual who does not emit
the virus and 1 represents a typical infectious individual [Chen et al., 2021].
The individual infectious scaler represents the emission rate by an average
infectious individual, φ, defined as 106 RNA copies per hour [Ma et al., 2020;
Leung et al., 2020]. The proportion of viruses emitted in the form of aerosols
and droplets, paerosols and pdroplets, are defined based on three factors: 1) the
threshold size distinguishing particles of aerosols and droplets, 2) the relative
amounts of aerosols and droplets expelled by humans, and 3) the difference in
viral copies carried by aerosol and droplet particles. In this study, the thresh-
old size is defined as a dry size of 10m̆ [Duives et al., 2021]. paerosols is defined
as 0.252 for breathing, 0.344 for singing, and 0.434 for talking [Chen et al.,
2021], which should also be adjusted based on the calibrated restaurant sce-
nario [Duives et al., 2021]. The face mask filter efficiency FEi may vary for dif-
ferent types of masks and different airborne particles (aerosols and droplets)
according to studies by Pan et al. [2021]; Ueki et al. [2020]. As face masks are
not considered in this study, FEi remains 0.

2. Equation 4.9

The deposition rate of viral-laden droplets, udroplets, is regarded as the sedi-
mentation rate of droplets in static air [Xie et al., 2007]. Duives et al. [2021] de-
rived udroplets as 18.18 per hour from the experiment by Vuorinen et al. [2020],
considering the dry size of emitted particles.

3. Equation 4.10 to Equation 4.12

The decay rate of viral-laden aerosols, uaerosols, refers to the study conducted
by Van Doremalen et al. [2020], defined as 1.51 per hour. The decay rate of
viruses transmitted by fomites, u f omites, depends on the surface material and
the environment. The values are defined based on the lab studies by Liu et al.
[2021]; Van Doremalen et al. [2020]; Chin et al. [2020]. Other researches have
shown UV exposure also have a great influence on the decay rate of surface
virus [Nicastro et al., 2021; Raiteux et al., 2021; Carvalho et al., 2021]. However,
the existing studies have concluded very different results in different scales of
comparison. The study by Nicastro et al. [2021] suggested that exposure to
natural UV radiation at noon can reduce the lethal time of SARS-CoV-2 to the
shortest as within 2 minutes, depending on the latitude. Raiteux et al. [2021]
reported that illuminance of 10 klx and 56 klx can increase the SARS-CoV-2
decay rate from 0.58% per minute to 25.5% and 106% per minute. To explore
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a reliable SARS-CoV-2 decay rate in an average summer day in Amsterdam,
further research needs to be done. For the purpose of demonstration, this
study assumes u f omites to be 10 times when in an outdoor scenario.

The indoor ACH is based on recommendations by CIRES [2020], as 3 times per
hour. For outdoor spaces, the ACH is calculated according to the following
equation [Ratcliff, 2018]:

ACH = Q/Vol (5.1)

where:

Q is the volumetric flow rate of fresh air (m3/h).

V is the space volume (m3).

Assuming Q equals the space volume multiplied by the wind speed at site,
the equation can be interpreted as follows:

ACH = vwind · H · W · 1h/H · W · L = vwind · 1h/L (5.2)

where: vwind is the wind speed at site, which is assumed as the average wind
speed in Amsterdam, 18.4km/h [KNMI, 2021].

H, W, L are the height, width, and length of the space.

Therefore, the ACH at the outdoor entrance/exit queue, locker, music stage,
big bar, small bar queue, and portable toilet queue is calculated as 920, 1840,
368, 920, 920, and 920.

4. Equation 4.13

No parameter involved.

5. Equation 4.14

L, the cell volume, is calculated by 0.5m x 0.5m x 0.5m, as 125L. The inhalation
rate, ρ, is defined as the ratio of human tidal volume over the cell volume per
time step. The tidal volume is the volume of air that moves in or out of the
lungs during each respiratory cycle, which on average equals 0.4 L for an
adult [Hallett et al., 2020]. 12 respiratory cycles occur per minute [Hallett
et al., 2020]. Therefore, the inhalation rate is calculated as 0.4*12*60=288L per
hour. Individuals are assumed to inhale 2.304 times the cell volume (125L)
each hour. The inhalation rate increases to 1.5 times while singing [Bernardi
et al., 2017], which equals 432L per hour.

6. Equation 4.15 to Equation 4.18

The surface touching frequency, γ, for tables and chairs in restaurants and
bars is estimated as 0.25 touch per minute, according to the study by Lei et al.
[2020]. The virus transfer efficiency from touching the surfaces, θ, is defined
as 0.23 per touch [Julian et al., 2010]. The ratio of the finger pad size over the
cell size, π is calculated by 10cm2 over 10 ∗ 10cm2, as 0.1 [Gao et al., 2021].

The parameter values and sources are summarized in Table 5.7.

Infectious agent assignment

Considering the larger number of activity spaces installed in the simulated event (77

in total), the possibility of two infectious agents being in the same activity space is
relatively small. To maintain a reasonable number of simulations, this study assigns
one infectious agent in each simulation scenario. As discussed in Section 4.2.4, the
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choice of the infectious individual represents the stochasticity in the simulation.
The initial number of replications is set as 10. To make sure the simulation covers
all the agents exposed to a significant amount of virus within the simulated time
frame, the assigned infectious agent is randomly selected from the first 5% to 15%
individuals entering the simulation.

5.2.3 Influence factors

To explore the impact of different influence factors on the transmission scale in dif-
ferent facilities, a number of scenarios with different factor values are designed and
simulated. The factors considered in this study include different queue distance, in-
door and outdoor settings (air change rate and virus decay rate on surface, u f omites),
density, and respiratory activities, as shown in Table 5.8.

As is discussed in Section 5.2.2, the activity infectiousness scaler, δ, was consid-
ered as 1 for an average respiratory activity combination in the restaurant, for the
calibration of the transmission scale and other parameters such as croute [Duives
et al., 2021]. This average respiratory activity combination involves more than
just breathing. As observed in real life experiences, people also talk a lot dur-
ing a meal. Unfortunately, the scientific evidence of how long do people talk
and breath at a restaurant is lacking. It is estimated by the author that during
a two-person meal, people spend 40% of time having a conversation. Assuming
one person stays silent when the other one is talking, it results in one average
individual spending 20% of time talking and 80% of time breathing. Another as-
sumption is made that when people have a certain respiratory activity combination,
the activity infectiousness scaler of each respiratory activity linearly contributes
the overall activity infectiousness scaler. In this case, the activity infectiousness
scaler is calculated as 3.6 ∗ 20% + 1 ∗ 80% = 1.52, which means a restaurant sce-
nario with the activity infectiousness scaler of 1.52 has been calibrated with the
value of 1. Therefore, for other respiratory activity combinations, the calculated
activity infectiousness scaler should be corrected by 1/1.52. For instance, for the
’20%talking + 40%singing + 40%breathing’ scenario, the original activity infectious-
ness scaler is calculated as 3.6 ∗ 20% + 25 ∗ 40% + 1 ∗ 40% = 11.12. Divided by
1.52/1, the calibrated activity infectiousness scaler is then 7.32. The same calibra-
tion process also applies to proportion of viruses emitted in the form of aerosols,
paerosols, which should be 0.434 ∗ 20%+ 0.252 ∗ 80% = 0.2884 in the case of ’20%talk-
ing + 80%breathing’, but was assigned 0.252 in the restaurant case. Therefore,
paerosols in the scenario of ’20%talking + 40%singing + 40%breathing’, should be
(0.434 ∗ 20% + 0.344 ∗ 40% + 0.252 ∗ 40%)/(0.2884/0.252) = 0.2842. Besides δ and
paerosols, another parameter, inhalation rate, ρ, is also influenced by respiratory ac-
tivity. Its value does not require correction, as ρ stays the same for breathing and
talking. In the scenario of ’20%talking + 40%singing + 40%breathing’, ρ is calculated
as 288L ∗ 20% + 432L ∗ 40% + 288L ∗ 40% = 345.6.

Besides the variables listed in Table 5.8, following factors may also have a signifi-
cant influence on the virus transmission scale.

1. Face mask

Face masks can reduce the amount of virus emitted to and inhaled from the
environment. When face masks are required, it is expected that the virus
transmission scale will be limited. The extent of limitation depends on the
filter efficiency of the required face mask. However, the time frame of this
research is limited and the contribution of face masks has been more widely
recognized and evaluated [Pan et al., 2021], compared to the simulated design
variables. Therefore, face mask is not simulated as a design variable and
this study assumes agents emit and inhale viral-laden aerosols and droplets
without any face mask protection.

2. Willingness to comply with social distancing rules
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It is expected that encouraging social distance may have an influence on peo-
ple’s interaction behavior [Du et al., 2021]. When people are willing to comply
with the social distancing rules, the interaction strength and interaction dis-
tance may change to keep a longer distance between pedestrians, which refer
to A0 and di (Equation 4.6) in the NOMAD model. However, as discussed in
Table 5.2.1, the designed infrastructure layouts and flow rates do not allow sta-
ble simulation with calibrated parameters. Further calibration should be done
to guarantee a stable simulation in different infrastructure environments, be-
fore the impact of willingness to comply with social distancing rules can be
explored.

The expected transmission routes, simulation time, and number of agents simu-
lated in each scenario are listed in Table 5.9. The simulation time is initially set as
the displayed value and can be adjusted after obtaining the results to guarantee all
the agents being significantly exposed to the virus are included in the simulation.

5.3 infection risk estimation
In this section, the case-specific input to derive contact probability is introduced,
including population profile estimation and activity schedule simulation.

Population profile estimation

In this study, N is assumed to be 10000. Taking pin from April 13th 2021 [RIVM,
2021a], which is 38.7, Nin, according to Equation 4.20, the number of infectious
people visiting the event is calculated as 10.

Event infrastructure layout

To evaluate the infection risk of an entire event according to the findings from NO-
MADQVEmod simulation, a ’standard’ infrastructure layout (activity space com-
bination) of a music festival is proposed, based on everyday life experience and
existing information of the Amsterdam Open Air music festival 2019 [?Huijkman,
2019].

The number of each type of activity space has been calculated in item 5.2.1. The
selected scenarios of these facilities in a ’standard’ infrastructure layout are summa-
rized in Table 5.10.

Activity schedule simulation

According to the activity pattern analysis in Section 5.1, the following information
is obtained:

1. The duration of visit to the event: average 8 hours 50 minutes, ranging from 7

hours to 10 hours.

2. The number of activity spaces visited during the event by one visitor: average
17.5, ranging from 9 to 26.

3. The activity space transition table, Table 5.3, displaying probabilities of visit-
ing certain activity spaces after leaving certain activity spaces.

4. The duration of stay of individuals at each type of activity space: summarized
in Table 5.1.

Based on the information, individuals’ activity schedules are generated following
the method proposed in Section 4.3.2. An example of one individual’s activity
schedule is demonstrated in Figure 5.15.
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Figure 5.15: An example of one individual’s activity schedule

Figure 5.16: An example of one type of activity space bearing potential exposure risk for
susceptible individuals

5.3.1 Identification of the location and duration of possible virus exposure

This part and the following parts of the proposed method fully rely on the output of
the above discussed steps. Therefore, no further inputs or assumptions are required.
Figure 5.16 shows an example of part of the output of this step.
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Parameters Value Source

Emission rate (ω)
Scaled to 1 unit per hour (Typical
infectious individual, breathing)

Emission rate by an average
infectious individual (φ)

106 RNA copies per hour (used
for informing dose-response
relationships)

Leung et al. [2020]
Ma et al. [2020]

Activity infectiousness
scaler (δ)

25 (singing relative to breathing)
3.6 (talking relative to breathing)

Chen et al. [2021]

Individual infectiousness
scaler (σ)

1 (A typical infectious individual)
0 (Susceptible individual)
1000 (super-shedder)

Chen et al. [2021]

Proportion of viruses
emitted in the form of
aerosols ( paerosols)

0.252 (Breathing)
0.344 (Singing)
0.434 (Talking)

Chen et al. [2021]

Transfer efficiency (θ) 0.23 per touch Julian et al. [2010]
Ratio of finger pads size to
the cell size (π)

0.1 Gao et al. [2021]

Frequency of touching
surfaces (γ)

15 touch per hour Lei et al. [2020]

Decay rate of viruses in
aerosols (µaerosols)

1.51 per hour Van Doremalen et al. [2020]

Deposition rate of droplets
(µdroplets)

18.18 per hour
Xie et al. [2007]
Vuorinen et al. [2020]

Diffusion coefficient of
aerosol (D)

0.05 m2/s
Xie et al. [2007]
Vuorinen et al. [2020]

Decay rate of viruses on
surfaces (µ f omites)

Wood: 0.969 per hour,
Cloth: 0.275 per hour,
Plastic: 0.193 per hour,
Steel: 0.180 per hour,
Glass: 0.149 per hour,
Paper: 1.1 per hour,
Copper: 0.323 per hour,
Cardboard: 0.119 per hour
(10 times when exposed to the sun)

Liu et al. [2021]
Van Doremalen et al. [2020]
Chin et al. [2020]
Nicastro et al. [2021]
Raiteux et al. [2021]

Inhalation rate (ρ)
288 L per hour (breathing,
talking)
432 L per hour (singing)

Hallett et al. [2020]
Bernardi et al. [2017]

Volume of a cell (L) 125 L
Infectious dose (Din f ) 1000 RNA copies Popa et al. [2020]

The proportion of virions
reaching respiratory cells,
caerosols, cdroplets, c f omites

10 % (aerosols)
10 % (droplets)
1 % (fomites)

Zuo et al. [2020]
Hinds [1999]
Kraay et al. [2020]
Adam et al. [2020]

Air change rate (ACH)
Air in a room is replaced 3 times
per hour

CIRES [2020]

Table 5.7: QVEmod parameter values
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Activity space Factor Variable value

Entrance/exit queue
Indoor/outdoor

Indoor: ACH = 3

Outdoor: ACH = 920

Queue distance
1m
1.5m

Locker Indoor/outdoor
Indoor: ACH = 3, u f omitesp lastic = 0.193

Outdoor: ACH = 1840, u f omitesp lastic = 1.93

Music stage

Indoor/outdoor
Indoor: ACH = 3

Outdoor: ACH = 368

Density

5.76p/m2

2p/m2

1p/m2

0.4p/m2

Respiratory activity
20%talking + 80%breathing
20%talking + 40%singing + 40%breathing

Big bar Indoor/outdoor
Indoor: ACH = 3, u f omitesp lastic = 0.193,
u f omiteswood = 0.969

Outdoor: ACH = 920, u f omitesp lastic = 1.93,
u f omiteswood = 9.69

Small bar + queue
Indoor/outdoor

Indoor: ACH = 3, u f omitesp lastic = 0.193

Outdoor: ACH = 920, u f omitesp lastic = 1.93

Queue distance
1m
1.5m

Normal toilet Indoor ACH = 3

Portable toilet + queue
Indoor/outdoor

Indoor: ACH = 3

Outdoor: ACH = 920

Queue distance
1m
1.5m

Table 5.8: Selected simulation variable and their values

Activity space Transmission route Simulation time Nr of agents
Entrance/exit queue Aerosols/Droplets 2h 462

Locker Aerosols/Droplets/Fomites 2h 780

Big bar area Aerosols/Droplets/Fomites 2h 720

Small bar + queue Aerosols/Droplets/Fomites 2h 300

Normal toilet Aerosols/Droplets 2h 144

Portable toilet + queue Aerosols/Droplets 2h 216

Music stage Aerosols/Droplets 20min 1000

Table 5.9: Simulation attributes
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Activity space Nr Scenario

Entrance/exit queue 20

Outdoor: ACH = 920

Queue distance: 1m
Locker 12 Indoor: ACH = 3, u f omitesp lastic = 0.193

Big bar area 4

Outdoor: ACH = 920, u f omitesp lastic = 1.93,
u f omiteswood = 9.69

Small bar + queue 19

Outdoor: ACH = 920, u f omitesp lastic = 1.93

Queue distance: 1m
Normal toilet 6 Indoor: ACH = 3

Portable toilet + queue 8

Outdoor: ACH = 920

Queue distance: 1m

Music stage 8

1/8: Indoor: ACH = 3, density: 2p/m2

20%talking + 40%singing + 40%breathing
7/8: Outdoor: ACH = 368, density: 2p/m2

20%talking + 40%singing + 40%breathing

Table 5.10: A ’standard’ infrastructure layout of a large-scale music festival
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This chapter presents the results from the method application presented Section 5.2.
First, the results of virus spread simulation in different activity spaces with different
design variables are visualized and processed for computing the infection risk of
an entire visit to the music festival. Second, the simulated contact probability is
presented. Third, the virus exposure distribution is fitted into the simulated contact
probability. The accumulated virus doses then translate into the general risk profile
of the entire visit to this music festival.

6.1 virus spread simulation

In this subchapter, the results of virus spread simulation in different activity spaces
are presented. The distributions are used for computing the infection risk of an
entire visit to a music festival.

6.1.1 Significant threshold of accumulated virus dose

Before presenting and analyzing the simulation results, it is important to determine
a significant threshold of virus exposure, which separates the virus dose that con-
tributes to possible infections during visiting the entire event from the negligible
virus dose. It is observed from the simulation results that the virus transmitted by
fomites and aerosols in indoor scenarios can remain viable after several hours with
very small proportion that makes very little contribution to the infection probability.
To save the simulation time for QVEmod and to efficiently evaluate the accumulated
virus exposure in different activity spaces throughout the entire event, a significant
threshold value is introduced. Its value is determined according to the following
assumption.

The equivalent accumulated virus dose (Droplets + Aerosols + 10% Surface virus)
one agent caught at one activity space, multiplied by the maximum number of
activity spaces visited during one day (26), resulting in more than 0.1% chance of
being infected is considered as a significant contribution. The amount of exposure
smaller than this value is considered as negligible, and therefore will not be used
for computing the infection risk of an entire visit to a music festival.

The reason to count 10% of the surface virus is that c f omites, the proportion of virus
transmitted by fomites that reaches the respiratory tract cells, is 10% of cdroplets and
caerosols. The threshold infection probability of 0.1% is selected to make sure that the
actual infection number is at most 0.1%xnumbero f visitors higher than the resulting
infection number, the impact of which is assumed to be negligible in this study.

According to Equation 4.23 and Equation 4.24, the significant threshold value is
calculated as 3.846x10−7.

6.1.2 Entrance/exit queue

In the average case of entrance/exit queue, the infectious agent is the 32nd person
to enter the queue, who has the potential to infect not only the agents entering
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after him/her, but also the susceptible individuals who have already been inside
the space when the infectious agent enters.

The simulation result statistics of the entrance/exit queue are displayed in Ta-
ble 6.1 (dur is short for duration). It is observed that the first agent to catch the
virus is the first to enter the queue after the infectious individual. The amount of
virus picked up by followers then decreases rapidly. Figure 6.1 plots the virus dose
transmitted to the first 20 agents following the infectious agent, revealing the decay
trend of transmission in different scenarios.

Statistics
1m distance 1.5m distance

Indoor Outdoor Indoor Outdoor
Sum significant airborne exposure (10

−4) 31 17 25 15

Maximum airborne exposure (10
−4) 4.3 3.4 4.3 4.1

Average significant airborne exposure (10
−4) 0.2 0.3 0.3 0.3

Number of agents with significant exposure 167 64 87 50

Entry dur of possible significant exposure (min) 43 17 23 13

Table 6.1: Virus exposure statistics at the entrance/exit queue

Figure 6.1: The accumulated exposure of the first 20 agents picking up virus at the en-
trance/exit queue

As is shown in the figure, in all scenarios, the amount of virus transmitted to
susceptible individuals decreases to around 10% of the maximum exposure within
10 people. In outdoor scenarios, aerosols barely contribute to virus transmission,
while in indoor scenario, they continue to transmit the virus after droplet transmis-
sion decreases drastically. In the 1.5m-queue-distance scenario, it is observed that
the amount of transmitted virus decreases slightly faster compared to the 1m-queue-
distance scenario. The trend is displayed more clear in Table 6.1, as all the statistical
values are relatively higher in the 1m-queue-distance scenario. It can be concluded
from Table 6.1 that larger queue distance and outdoor setting help reduce the scale
of virus transmission in the crowd, which is within the expectation, as SARS-CoV-2
decays with distance and air change.
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6.1.3 Locker

In the average locker scenario, the infectious individual is the 54th person to en-
ter the facility, who has the potential to infect not only the agents entering after
him/her, but also the susceptible individuals who have already been inside the
space when the infectious agent enters.

The virus transmission trend is different in the locker facility compared to the
entrance/exit queue. The amount of virus being picked up does not decrease con-
stantly among the susceptible individuals who enter after the infectious individual.
In fact, agents with a significant virus dose arise after a while, which might be the
result of viral-laden aerosol and droplet particles not able to transmit further and
only land on agents visiting the same and nearby lockers. Figure 6.2 illustrates the
accumulated exposure on the first 60 agents who visit the locker facility following
the infectious individual during the first 9 minutes. As is displayed, in both indoor
and outdoor scenarios, only a small number of individuals catch a significant virus
dose spread by the infectious agent. The simulation result statistics of the locker are
listed in Table 6.2.

Statistics Indoor Outdoor
Sum significant exposure (10

−4) 11 8.5
Maximum exposure (10

−4) 7.7 7.4
Average significant exposure (10

−4) 0.1 0.4
Number of agents with significant exposure 87 21

Entry dur of possible significant exposure (min) 37 13

Table 6.2: Virus exposure statistics at the locker

Figure 6.2: The accumulated exposure of the first 60 agents following the infectious agents
at the locker

As is discussed in Chapter 5, the viruses caught via different routes contribute
differently to the infection risks. Viruses transmitted by fomites are 1/10 times as ef-
fective as viruses transmitted by droplets and aerosols. In Figure 6.2, the exposure
from three routes are demonstrated in proportion. It is clear that fomites trans-
mission barely contributes to the virus spread in the locker. It corresponds to the
expectation that fomites play a limited role in the transmission process. It is also
observed that only one agent throughout the distribution catches a relative large
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amount of virus, the dose of which consists the majority of the virus picked up by
all the following agents.

Concluding from Table 6.2, virus remains longer and spread to more people (in an
extremely low volume) in the indoor scenario. The outdoor scenario significantly
reduces the virus transmission scale on the aspect of the total number of agents
being exposed. However, the highest exposure and the sum of exposures are sim-
ilar in both situations, indicating the exceeding number of agents with significant
exposure, in fact, catch only a limited amount of virus.

6.1.4 Big bar area

During the simulation, it is discovered that in the indoor scenario, the amount of
virus caught by agents does not decrease to below the significant threshold in the
initially set simulation time, 2 hours. Therefore, the simulation is rerun for a longer
period, up to 5 hours. The range of assigned infectious individual remains the same
as the initial calculation in the 2-hours time frame, i.e., between the first 5% to 15%
people entering the facility.

In an average scenario, the infectious individual is the 44th person to enter the
facility. The results show that the exposure risk becomes negligible after 4.5 hours
and 1.5 hours in the indoor and outdoor scenario. The statistics are summarized
in Table 6.3. The accumulated virus distribution is similar to the locker scenario,
where the exposure depends both on when the agents enter and where the agents
stay in the facility. Figure 6.3 displays the accumulated virus dose of the first 90

agents that enter the facility after the infectious agents.

Statistics Indoor Outdoor
Sum significant exposure (10

−4) 48 24

Maximum exposure (10
−4) 8.5 8.2

Average significant exposure (10
−4) 0.2 0.3

Number of agents with significant exposure 208 90

Entry dur of possible significant exposure (min) 273 91

Table 6.3: Virus exposure statistics at the big bar area

Figure 6.3: The accumulated exposure of the first 90 agents following the infectious agents
at the big bar area
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As is illustrated in Figure 6.3, in both indoor and outdoor scenarios, among all
the agents entering after the infectious individual, only a small number of agents
catch a significant amount of virus. The largest exposure happens immediately after
the infectious individual, which is expected to be picked up by the individual who
sits at the same table as the infectious individual. Three routes all contribute the
virus transmission. In the indoor scenario, aerosol transmission plays an important
part for the 3 highest virus exposures, while it only contributes the 1 highest virus
exposure in the outdoor scenario. Same as aerosols, virus transmitted by fomites
also decreases faster in the outdoor scenario, due to the high decay rate under the
solar radiance.

It is observed in Table 6.3 that in the indoor scenario, the total amount of virus
transmitted is twice as high as the outdoor scenario, while the maximum exposure
remains similar. Due to the low air change rate and surface decay rate, more agents
are exposed to the possibilities of catching virus in the indoor scenario. In the
first 4.5 hours after the infectious individual has entered the facility, 208 out of 1638

visitors are exposed to a significant amount of virus in the indoor scenario. While in
the outdoor scenario, the proportion is 90 out of 547 and the duration is shortened
to 1.5 hours.

6.1.5 Small bar

It occurred during the simulation that in the indoor scenario, the accumulated virus
dose of agents does not decrease to below the significant threshold within the ini-
tially set time period, 2 hours. The simulation is then rerun for 4 hours to include
all the agents catching a significant amount of virus.

In the average case of the small bar and queue scenario, the infectious agent is the
18th person to enter the queue, who has the potential to infect not only the agents
entering after him/her, but also the susceptible individuals who have already been
inside the space when the infectious agent enters.

The simulation result statistics of the small bar are displayed in Table 6.4. The
same as the trend observed in the entrance/exit queue, it is the first agent enter-
ing the queue after the infectious individual catches the largest amount of virus.
Then the accumulated virus dose on the followers decreases rapidly. What’s worth
noticing is that the agent who enters before infectious individual also catches the
virus, but the amount is too far from being significant. This might be because of
that the agents who stand in front of the infectious individual never occupy the po-
sition where the infectious agent has stayed and emitted virus in the environment.
Therefore, the virus volume around the people who stand in front of the infectious
agent never becomes large enough to be picked up. For the convenience to observe,
Figure 6.1 only plots the virus dose transmitted to the first 20 agents following the
infectious agent, revealing the decay trend of transmission in different scenarios.

Statistics
1m distance 1.5m distance

Indoor Outdoor Indoor Outdoor
Sum significant exposure (10

−4) 49 27 46 26

Maximum exposure (10
−4) 14 11 13 10

Average significant exposure (10
−4) 0.3 0.3 0.2 0.3

Number of agents with significant exposure 189 89 189 89

Entry dur of possible significant exposure (min) 186 74 186 74

Table 6.4: Virus exposure statistics at the small bar + queue

It is clear from Figure 6.4 that fomites transmission plays a very limited role in
the transmission process for the first 20 agents. As expected, virus transmitted
by aerosols contributes more in the indoor scenario while rapidly decreasing to a
negligible level after being picked up by 1 or 2 agents. However, compared to the
simulation results at the entrance/exit queue, the value of the largest is almost 10
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Figure 6.4: The accumulated exposure of the first 20 agents following the infectious agents
at the small bar

times as high and the overall decreasing rate is also much higher. This is expected
to be caused by the relatively long time it takes to move up one point further (60s
instead of 20s) in the small bar queue. As a result, people spend more time in the
location with a high concentration of virus in the environment, where the infectious
agent emits viral-laden particles.

Table 6.4 confirms the findings in Figure 6.4, that the sum and maximum of sig-
nificant exposure are higher compared to the entrance/exit queue, which results
in more agents during a longer period of entry being exposed to the virus. It is
also observed that an outdoor setting helps reduce the number of agents being ex-
posed to a significant amount of virus to less than a half compared to the indoor
setting, mainly thanks to the UV radiance. As is displayed in Figure 6.4, after the
first 10 to 15 agents, the virus transmitted by fomites begins to dominate the ac-
cumulated virus exposure. Without the UV radiance, the time it takes for fomites
virus to decrease to an insignificant level is more than doubled in the indoor sce-
nario. Surprisingly, as is demonstrated in Table 6.4, increasing the queue distance
from 1m to 1.5m only slightly reduces the total virus being picked up by agents,
the degree of which is smaller than what is discovered at the entrance/exit queue.
This might be the result of fomites playing a major role in the virus transmission
and not influenced by the queue distance.

To conclude, a longer queue distance and an outdoor setting reduces the virus
transmission scale in the small bar, the latter being more efficient compared to the
queue distance increasing from 1m to 1.5m.

6.1.6 Music stage

In the average case of the music stage scenario, the infectious agent is the 98th
person to enter the facility, who has the potential to infect not only the agents
entering after him/her, but also the susceptible individuals who have already been
inside the space when the infectious agent enters.

During the simulation, it is observed that whether and how much a person pick
up virus does not depend on the time to enter the facility, but depends on the chosen
destination point. According to the results, even under the ’safest’ scenario, agents
entering both before and after the infectious agent are exposed to the possibility of
picking up the virus. As people stay in the same destination point for a relatively
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long period of time (more than 10 minutes), it is expected that the virus transmission
mainly occurs to people standing in the vicinity. Figure 6.5 shows the 20 highest
accumulated exposure in 16 scenarios on the log scale, due to huge differences
between the values in different scenarios. The axes are not specified in the graph
for the clarity of display, the meanings of which are explained in the caption. The
statics are summarized in Table 6.5 and Table 6.6.

Figure 6.5: The accumulated exposure of the 20 agents with the highest virus dose at the
music stage (Y axis - virus exposure, X axis - agent; when virus exposure by
droplets is the same as the total exposure, the orange line is covered by the
yellow line)
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As is illustrated in Figure 6.5, Table 6.5, and Table 6.6, indoor/outdoor setting,
density, and respiratory activity, these three factors all have significant influences
on the transmission scale.

For the indoor/outdoor setting, the same trend identified in other activity spaces
is observed in Figure 6.5, that the virus transmitted by aerosols decays rapidly in an
outdoor setting, as the viral-laden aerosol particles are removed as a much higher
frequency in an outdoor scenario. Only under the maximum density scenario, the
agent with the highest exposure, who stood next to the infectious agent for more
than 10 minutes, catches a relatively large amount of virus via aerosols. When
the density decreases, aerosol transmission’s role becomes negligible. This finding
reveals that when spending equal or more than 11 minutes within a very short dis-
tance (equal or shorter than 0.4m) to an average infectious individual, a high air
change rate (equal or higher than 368) does not eliminate the risk of aerosol trans-
mission. What makes this finding different from the previously discussed activity
space is that agents do not move during staying at the music stage, which eliminates
the possibility of following agents staying at the same location as where the infec-
tious individual has stayed. In a queue/locker room/bar, an infectious individual
stays in one location for a short period of time, emits virus in the environment, and
then leave. The next individual then comes in immediately, takes up this location
and picks up the virus emitted in the form of aerosols. In these scenarios, there is
always at least one individual picking up viral-laden aerosol particles on the same
scale as droplet particles. However, in the music stage simulation, this only happens
when the density is as high as 5.76p/m2 (distance between people 0.4m), which in-
dicates that people may pick up less virus transmitted by aerosols when staying in
the vicinity of the infectious individual, compared to when they stay in the same
location after the infectious individual has just left. In the latter case, people may
still catch a relatively large amount of virus without being close to the infectious
individual. According to Table 6.5 and Table 6.6, the total amount of virus picked
up by individuals decreases by around 35% (high density) to 50% (low density) in
the outdoor scenarios compared to the indoor scenarios. The maximum exposure,
average exposure, and the number of people catching a significant amount of virus
are around 20% smaller in the outdoor scenarios.

For the influence of densities, it is observed in Figure 6.5 that with the increase of
density, the transmission scale increases as well. Table 6.5 and Table 6.6 clearly dis-
play the differences in transmission scale under different densities. It appears that
the sum of significant virus exposure shrinks remarkably to 16.2%-16.8%, 3.6%-3.7%,
and 2.6%-2.7% in the indoor scenarios, when the density changes from 5.76p/m2

(0.4m distance between people), to 2p/m2 (0.7m distance between people), 1p/m2

(1m distance between people), and 0.4p/m2 (1.5m distance between people), while
the proportions are even lower (13%-13.1%, 2.8%-2.9%, and 2.1%) in the outdoor
scenarios. Other indicators, except the entry duration of possible significant expo-
sure, also display a similar trend, though less significant. This finding indicates that
density has a huge influence on the transmission scale, especially when it becomes
larger than 1p/m2, as the transmission scale does not increase by several times when
the density increase from 0.4p/m2 to 1p/m2, while it does from 1p/m2 to higher. It
was expected that a higher density triggers a higher transmission scale. However,
this simulation results also identify that the influence of increasing density is much
higher in scenarios of density larger than 1p/m2 compared to scenarios of density
smaller than 0.4p/m2. In addition, the influence of density is also bigger in outdoor
scenarios compared to indoor scenarios, which indicates that the density (distance
between people) has a more profound influence on droplet transmission compared
to aerosol transmission.

For the influence of respiratory activity, it is clearly shown in Figure 6.5 that the
scenarios under 20%talking + 40%singing + 40%breathing respiratory activity com-
bination pose a much bigger threat to susceptible agents, as the 20 highest accumu-
lated virus exposures are around 1 log scale higher in the scenarios of 20%talking
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+ 40%singing + 40%breathing. As is displayed in Table 6.5 and Table 6.6, the to-
tal and highest virus exposures are about 7.5 to 8 times higher, while the average
significant virus exposure is around 5 to 4 times higher. However, the change of
respiratory activity does not have a huge impact on the number of people picking
up a significant amount of virus, as it only goes up by 34% (high density) to 85%
(low density), the increase of which is relatively small compared to other indicators.
The relatively small increase may be the result of the limited transmission distance
of viral-laden aerosol/droplet particles, which could not accumulate after a certain
distance with a density that is large enough to transmit a significant virus dose to
susceptible individuals.

When replacing 40% time spent on singing with breathing, the amount of virus
picked up by individuals goes down by more than 85% in a 20-minute-duration
1000-participant music concert. The impact is even stronger in outdoor music stages,
which indicates singing affects droplet transmission more than aerosol transmission.
The higher increase proportion of accumulated virus dose under outdoor scenarios
is out of expectation. It is assumed that airborne viral-laden particles decay faster
with a higher air change rate, especially for aerosols. The compositions of aerosol
and droplet particles emitted by an individuals during breathing and singing are
different and a bigger share of aerosols is emitted while singing. Therefore, it is ex-
pected that, when replacing breathing with singing, the proportion of aerosols goes
up and a smaller share of viral-laden droplets should lead to a smaller increase of
accumulated virus dose. However, the results have proven that the activity infec-
tiousness factor has a bigger impact on the spread of virus via droplets, making
it increase by a larger proportion even when aerosols take a bigger proportion of
emissions.

In a nutshell, at the music stage, keeping the density low, increasing air change
rate, and avoiding singing can effectively lower the virus transmission scale. When
the density is lower than 1p/m2, increasing the distance between people still limits
the transmission scale, but is less efficient compared to when the density is higher
than 1p/m2. In an outdoor scenario, the risk of picking up the virus via droplets
might be higher when the agent takes up the position where the infectious individ-
ual has stayed compared to staying in the vicinity of the infectious individual.

6.1.7 Normal toilet

In the average normal toilet scenario, the infectious individual is the 9th person
to enter the facility, who has the potential to infect not only the agents entering
after him/her, but also the susceptible individuals who have already been inside
the space when the infectious agent enters.

Similar to the locker and big bar facility, the amount of virus picked up by a
susceptible individual does not merely depend on the entry time but also depends
on the location where the agent stays. Figure 6.6 displays the virus exposures of the
first 30 agents following the infectious agents at the normal toilet. The statistical
indicators are summarized in Table 6.7.

Statistics Normal toilet
Sum significant exposure (10

−4) 9.4
Maximum exposure (10

−4) 3.1
Average significant exposure (10

−4) 0.2
Number of agents with significant exposure 52

Entry dur of possible significant exposure (min) 47

Table 6.7: Virus exposure statistics at the normal toilet

As is illustrated in Figure 6.6, the second agent to enter the facility after the
infectious individual begins to pick up the virus and the fifth agent catches the
largest amount of virus (1/3 of the sum of all the significant exposures). Then the
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Figure 6.6: The accumulated exposure of the first 30 agents following the infectious agents
at the normal toilet

virus exposure peaks in a group of 3 among every 4 agents while declining. This
phenomenon occurs might be because of the the following behavior pattern. First,
the infectious agent takes 1 out the 4 toilet cubes and 1 out of the 4 washing basins.
Then the following agents who take the same toilet cube/washing basin and the
closest toilet cubes/washing basins pick up a relatively large amount of virus, as
they stay in the same location as and in the vicinity of where the infectious agent
has stayed. Droplet transmission declines rapidly to a negligible level within 20

agents (17 minutes), while viral-laden aerosol particles continue to infect people
with a very small dose until the 56th agent (47 minutes). According to Table 6.7, the
virus transmission scale in the normal toilet is very limited (similar to the locker
facility), compared to other activity spaces such as entrance/exit queues and small
bars due to the limited time people spend in the facility and limited close contact
(distance between people mostly larger than 1m).

In short, the virus transmission scale in the normal toilet is relatively small but
the duration of possible significant exposure is as long as 47 minutes.

6.1.8 Portable toilet

In the average normal toilet scenario, the infectious individual is the 23th person
to enter the facility, who has the potential to infect not only the agents entering
after him/her, but also the susceptible individuals who have already been inside
the space when the infectious agent enters.

As the exposure risk at the portable toilet facility exists both in the queue and in
the toilet cube, the virus transmission displays a different trend compared to other
queuing scenarios. Although, same as other queuing scenarios, agents entering the
queue after the infectious individual start to pick up a significant amount of virus,
the first agent following the infectious agent is not longer the most exposed person.
Figure 6.7 illustrates the accumulated exposure of the first 20 agents following the
infectious agent at the portable toilet. The statistics are summarized in Table 6.8.

As is shown in Figure 6.7, the agent with the highest exposure is the sixth to
enter after the infectious individual, who stayed at the same toilet cube. Comparing
the virus obtained in the cube with the virus obtained in the queue, it is clear
that staying in the same cube (for 3 minutes 22 seconds) as the infectious agent
immediately after he/she left (after being there for 3 minutes 22 seconds) poses a
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Figure 6.7: The accumulated exposure of the first 20 agents following the infectious agent at
the portable toilet

Statistics
1m distance 1.5m distance

Indoor Outdoor Indoor Outdoor
Sum significant exposure (10

−4) 31 24 27 21

Maximum exposure (10
−4) 10 9.9 9.9 9.6

Average significant exposure (10
−4) 0.4 0.7 0.4 0.7

Number of agents with significant exposure 71 32 68 30

Entry dur of possible significant exposure (min) 42 33 46 33

Table 6.8: Virus exposure statistics at the portable toilet + queue

much greater risk of catching a large amount of virus comparing to staying 1m to
1.5m away from the infectious individual in the queue. It is calculated that the first
agent to enter after the infectious individual spends approximately 3 minutes and
20 seconds in the queue. This finding corresponds to the finding at the music stage,
which concludes that agents may be exposed to greater amount of virus via aerosols
when staying at where the infectious agent has stayed compared to standing close
to the infectious agents. As the toilet cube is simulated as an indoor cube, we can
tell from here if a similar trend is displayed in an outdoor scenario or how much
does the trend change in an outdoor scenario.

The remaining virus in the cube keeps declining as time goes by. The second
person to enter the infectious agent’s cube catches much less virus than the first
one. According to Table 6.8, in total, around 30 (outdoor, 1.5m queue distance)
to 71 people (indoor, 1m queue distance) pick up a significant amount of virus in
different scenarios.

In general, outdoor setting and longer queue distance help with reducing the total
amount of exposure and the number of people catching virus. The contribution of
changing queue distance from 1m to 1.5m is very limited, while changing indoor
setting to outdoor reduced the number of agents catching virus to half.

6.1.9 Conclusion

After analyzing the virus spread simulation results of 7 different activity spaces,
it can be concluded that, in general, an outdoor setting, longer queue distance,
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smaller density, and calmer respiratory activities (breathing, talking) help reduce
the transmission scale of SARS-CoV-2.

An outdoor setting significantly limits aerosol and fomite transmission and in-
creases the decay rate of viral-laden droplet particles by a high air change rate and
a higher virus decay rate on the surface.

Increasing the queue distance from 1m to 1.5m does not have a huge impact on
the transmission scale, as the total amount of virus picked up by susceptible agents
and the number of agents with significant amount of virus are only slightly lower
in the 1.5m queue distance scenario.

However, as observed in the music stage simulation results, when the distance
between people is smaller than 1m, increasing the distance (0.4m to 0.7m, 0.7m to
1m) remarkably lowers the transmission scale. When the density decreases from the
jam density (5.76p/m2 - 0.4m distance) to very high density (2p/m2 - 0.7m distance),
high density (1p/m2 - 1m distance) and optimal density (0.4p/m2 - 1.5m distance),
the total amount of virus caught by agents declines to around 13% - 16%, 3% - 4%,
2% - 3%, and the number of agents with significant amount of virus is reduced to
about 35% - 42%, 28% - 35%, 20% - 28%. Lowering density has a bigger influence
on the outdoor scenario, which indicates that droplet transmission is effected more
by the density.

For respiratory activities, it is discovered that increasing the percentage of singing
significantly rises the transmission scale, with the total virus exposures about 7.5
to 8 times higher under the scenario of 20%talking + 40%singing + 40%breathing,
compared to 20%talking + 80%breathing, as the infectious scaler and inhalation rate
under singing are much higher. The impact on number of people getting infected
is much smaller, which indicates that people on average are exposed to a greater
amount of virus.

For the transmission routes, droplets play a major role in outdoor scenarios, as
aerosols decay rapidly with a high air change rate. In indoor scenarios, they both
contribute to SARS-CoV-2 transmission, while the viral-laden aerosol particles re-
main in the environment for much longer than droplet particles. Fomites contribute
very little to the virus transmission, as the amount of virus picked up by suscep-
tible agents is much less compared to airborne transmission. However, when not
exposed to UV rays, virus on the surface decay slowly and can be picked up by
people with a very small dose even after 3 hours (in the small bar case).

For transmission pattern, it is derived from the observed pattern at the music
stage and the portable toilet that staying in the same location where the infectious
individual has been and just left might pose a greater risk of infection compared to
standing next to the infectious individual (with 1m distance) for the same duration
of time. This finding is based on the observed pattern at the music stage where
aerosol transmission does not play any role in an outdoor setting when the distance
between people is longer than 0.7m, while in other queuing scenarios, where peo-
ple continuously take up the infectious individual’s position, aerosol transmission
always contributes to the highest exposure. In the portable toilet scenario, it is ob-
served that the first agent who enters the same cube as the infectious individual
catches more virus than the person who stays next to the infectious individual in
the queue for approximately the same duration of time. However, this finding is de-
rived from the activity-space-specific simulations, where the demand pattern, other
variables may all play a role on the virus spread scale. Further research should be
done to evaluate under which circumstances this finding is valid and how this can
contribute to crowd management during this COVID-19 pandemic.

6.2 risk estimation
In order to translate the above simulation results of each type of activity space into
the infection risk of an entire event, a ’standard’ music festival activity space com-
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Infection probability Number of agents Percentage
0 - 1% 4582 91.04%
1 - 5% 404 8.03%
5 - 10% 18 0.36%
10 - 20% 24 0.48%
20 - 30% 5 0.10%
30 - 100% 0 0

Total 5033 100%

Table 6.9: Infection probability of the ’standard’ scenario

bination has been proposed by the author, in Section 5.3. Based on the combination
and activity schedule generation, the accumulated virus dose distribution will be
obtained and then the infection risk distribution according to the dose-response
model. The total number of infected agents and the reproduction number will be
calculated based on the results.

6.2.1 ’Standard’ scenario

After simulating the activity schedules and matching virus exposure with agents
under the ’standard’ music festival activity space combination, the accumulated
virus exposure and infection risk distribution are obtained.

In total, 5033 agents catch a significant amount of virus, the 200 of which with
the highest exposure and infection probabilities are plotted in Figure 6.8, for the
convenience and clarity of display. Figure 6.9 illustrates the distribution of total
amount of accumulated virus in different activity spaces and via different routes.
Table 6.9 summarizes the contribution proportion of each transmission route and
the number of agents and percentages of certain infection probability ranges.

Figure 6.8: The 200 highest accumulated exposure and infection probability of agents at the
10000-people music festival

As displayed in Figure 6.8, under the ’standard’ scenario, a very small number of
agents (under 10) pick up a virus dose of more than 1.5x10−3 and have an infection
probability of more than 15%. Under 50 agents are exposed to more than 0.5x10−3

virus and have an infection probability of more than 5%. The infection probability
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(a) Distribution of virus picked up in different activity spaces
(b) Distribution of virus transmitted via

different routes

Figure 6.9: Virus distribution under ’standard’ scenario

curve then declines slowly after 5%, to which the majority of people are exposed. As
summarized in Table 6.9, more than 90% of the agents have a infection probability
smaller than 1% and only 0.94% of the exposed population, in total 29 people, has
a probability of more than 5% to get infected. Out of these 29 people, only 5 have a
relatively high infection probability, above 20%. Considering the large scale of this
simulated event, it can be concluded that for most visitors, the possibility of getting
infected in the event is as low as below 1% and only a very small number of people
have a higher infection probability, the highest being 25%.

The stacked bar plot of virus exposure in Figure 6.8 displays several plateaus,
where the volume and composition of the exposures are almost the same. This is the
result of drawing virus exposure from one distribution in each type of activity space.
For instance, the accumulated virus distribution is the same in 20 entrance/exit
queues. When people are exposed to the virus in entrance/exit queues, they are
assigned one value from the same distribution no matter which entrance/exit queue
they are in. In total, there are 8 distributions for 77 activity spaces and 10000 agents
in the simulation. When agents have the same combination of activity space types
where they are exposed to the virus, it can happen that they draw the same values
from the virus distributions, especially when the number of potential risky activity
spaces is small. As a result, there are small clusters of virus exposures of the same
volume and composition.

Figure 6.8 also illustrates that droplet transmission plays a major role in the ’stan-
dard’ scenario among the agents with relatively large exposures (the highest 200),
which is within the expectation, as most of the facilities are set outdoor where
aerosols decay rapidly. This is confirmed in Figure 6.9b that droplets transmission
takes up 81% of the total amount of virus caught by susceptible agents. Surpris-
ingly, fomites transmission contributes to as much as 14% of the total amount of
virus caught by agents, which is more than twice as the contribution of aerosols
transmission. Observing from Figure 6.8, the virus transmitted by fomites takes
up a small part of accumulated exposure for almost all 80 agents with the highest
exposures. This indicates that a large number of agents are exposed to very small
amounts of virus transmitted by fomites. These agents make up the majority of peo-
ple with very low virus exposure, which leads to an infection probability smaller
than 1%.

Figure 6.9a displays the distribution of the total amount of transmitted virus
in all types of activity spaces, which summarizes the actual virus transmission risk
(possibility x impact) of each facility. It is observed that small bars and entrance/exit
queues are the most risk-prone facilities, as they each transmit 36% of the virus.
Considering the average number of visits people pay to these two activity spaces, 2.8
(including big bars) and 2 (entrance/exit), which are relatively small, it is without
doubt that these two facilities are the most ’dangerous’ places regarding the amount
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of virus possibly caught by visitors at each visit. 8 music stages take up 19% of
the total amount of transmitted virus, making them the second most risk-prone
facilities. The average number of visits paid to the music stages is 7.8. Dividing
the proportions of virus transmitted in them by the average number of visits, it is
discovered that one visit to the entrance/exit queue or the smaller is much more
risky than one visit to the music stage. More virus is transmitted in an average small
bar compared to an average big bar, which indicates the risk of virus transmission
is higher in the queues of the small bars than the sitting areas in big bars. Locker
and toilet facilities are the least risk-prone facilities. It can be concluded that activity
spaces where people form queues (entrance/exit queues and small bars) or stand
close to each other for a relatively long period of time (more than 10 minutes in
music stages) may be in general more risky. Other facilities where people do not
have close interactions and stay for a short period of time (around 3 minutes at
lockers and normal toilets) may be less risky.

Following the method proposed in Section 4.3.5, it is calculated that the number
of infection during the entire event is about 23.3, which makes the infection per-
centage 0.23%. As the initial number of infectious agents are set as 10, the basic
reproduction number, R0, of this event is then calculated as 2.33. With a R0 of 2.33,
this ’standard’ scenario music festival would surely worsen the infection scale in
the population.

It can be concluded that in the ’standard’ event scenario, the general infection
probability is relatively low, as more than 90% people has an infection probability
smaller than 1% and the percentage of people getting infected is as low as 0.23%.
However, considering the small number of initial infectious agents and the scale of
the event, which accommodates 10000 visitors, the R0 is 2.3, which leads to a larger
scale of infection in the population. The most risk-prone facilities are the music
stages, entrance/exit queues and the bar areas. Lockers and toilets are relatively
less risky.

6.2.2 ’Group’ scenario

For the convenience of simulation and computation, this study assumes that all
the simulated agents attend the event alone and make their own decisions despite
other people. They plan their own activity schedules independently and every other
individual poses the same attractiveness to them. However, in practice, people
usually go to large events, such as music festivals and sports events, in a small
group, who stay close to each other for most of the time during the event.

To make up for the lack of group consideration during the simulation, this sub-
section aims to reveal the possible group effect purely based on the existing virus
spread simulation results of activity spaces.

This method assumes that the infectious individuals travel in a group of 4 and
always stay with the rest of the team during the entire event. In the entrance/exit
queues, lockers, big bar areas, small bars, normal toilets, and portable toilets, it is
assumed that the 3 other people in the group are the first 3 to enter the facility after
the infectious individual. In the music stage, it is assumed that the 3 are the 3 agents
who stay the closest to the infectious individual and therefore catch the highest
exposures. For 10 infectious agents, the 30 group mates of them are assumed to
have the same activity schedules throughout the day and each is randomly assigned
with one out of the 3 exposure values in each facility. The exposures taken by the
group mates are deducted from the possible exposures to the rest of the population.
Then the entire procedure of activity schedule generation and adding up exposures
are done for the rest 9960 agents. Taking virus exposure from the group mates and
the general population, the resulting number of significant exposure is 5077, almost
as the same as the ’standard’ scenario. The resulting statistics are summarized in
Figure 6.10, Figure 6.11, and Table 6.10.
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Figure 6.10: The 200 highest accumulated exposure and infection probability of agents at the
10000-people music festival with ’group’ behavior

(a) Distribution of virus picked up in different activity spaces
(b) Distribution of virus transmitted

via different routes

Figure 6.11: Virus distribution under ’group’ scenario

For the convenience and clarity of display, Figure 6.10 demonstrates the 200 high-
est virus exposure and infection probability. As is illustrated, when adding up
the virus load on people who stay the closest to the infectious agents, the accumu-
lated virus distribution displays a much higher peak (almost 10 times as high as
the ’standard’ scenario) and a relatively large number of agents with high expo-
sures and infection probabilities. The phenomenon of plateaus cannot be clearly
observed in Figure 6.10, which is because of the highest exposures are mainly from
the group mates of 10 infectious agents, among whom the activity schedules are not
the same. For the rest of the population, who get assigned virus doses by random
draw, plateaus certainly still exist. Observing from Figure 6.10, the composition of
the accumulated virus distribution is similar to the ’standard’ scenario, as droplet
transmission takes up the majority of the virus transmitted and aerosols and fomites
play a very limited role. As displayed in Figure 6.11b, virus transmitted by fomites
composes a much smaller part in this ’group’ scenario, which is corresponding to
the finding of the highest exposures being caught by the group mates of infectious
agents. The characteristic of fomites transmission is that the amount of the transmit-
ted virus remains low and decreases slowly. On the contrary, droplet transmission
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Infection probability Number of agents Percentage
0 - 1% 4842 95.37%
1 - 5% 199 3.92%
5 - 10% 6 0.12%
10 - 20% 0 0%
20 - 30% 3 0.06%
30 - 40% 8 0.16%
40 - 50% 5 0.14%
50 - 60% 2 0.04%
60 - 70% 1 0.02%
70 - 80% 1 0.02%
80 - 90% 3 0.06%
90 - 100% 7 0.14%
Total 5077 100%

Table 6.10: Infection probability of the ’group’ scenario

contributes the most to the nearest agents and decreases rapidly as the distance
grows bigger. Therefore, the group mates of the infected agents are exposed to a
much higher volume of airborne viral-laden particles compared to the rest of the
visitors, but the amount of virus they pick up via fomites transmission is not sig-
nificantly different from the rest. As a result of the remarkable increase of droplet
transmission, the contribution of fomites transmission is proportionally smaller.

For the virus distribution in different types of activity spaces, it is observed from
Figure 6.11a that the percentage of virus picked up at music stages has increased
to 59% and the proportions of virus transmitted in the entrance/exit queues and
the bar areas become smaller. Lockers and toilets remain the least risk-prone facili-
ties. The increase of virus proportion at the music stage follows a similar principle
as the increase of droplet transmission. As discussed in Section 6.1.6, the highest
exposures at the music stages are significantly higher than the highest exposures at
other activity spaces. As group mates of the infectious individuals are exposed to
the highest amount of virus at all kinds of activity spaces, the virus volumes accu-
mulated at the music stages are proportionally higher than the rest of the facilities,
which results in a higher proportion of virus transmitted in music stages. In gen-
eral, the distribution stays similar as the ’standard’ scenario, with the music stages,
entrance/exit queues and the small bars remaining the most risk-prone facilities,
with an increase of risk at the music stages.

Table 6.10 summarizes the distribution of infection probability. Compared to the
’standard’ scenario, the proportion of extremely low infection probability (0 − 1%)
is higher and infection probability between 5 to 20% is almost negligible. On the
other edge, there are 10 agents with extremely high infection probability (80 −
100%) and the 30 group mates of the infectious individuals all have an infection
probability higher than 20%, which means the visitors who are not in the same
group as the infectious individuals all have an infection probability lower than 10%.
This indicates that if infectious individuals stay in a group throughout the entire
event, except their group mates, the possibility of anyone from rest of the event
visitors being infected is very low, while their group mates are very likely to be
infected.

It is calculated that the number of infections during the entire event is about 26.8,
which makes the infection percentage 0.27% and R0 2.68. To be more specific, it is
calculated that 17.3 out of 26.8 infections are derived from the group mates of the
infectious individuals, which makes the rest of the population in this event exposed
to the infection possibility of as low as 9.5/9960.

It can be concluded that when considering group behavior, the transmission scale
of this event is expanded with the R0 increased by 0.35. However, 65% of the infec-
tions happen to the group mates of the infectious individuals. The infection proba-
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bility of the rest of the population is 59% lower compared to the ’standard’ scenario.
The risk at the music stages, entrance/exit queues and the small bars remains the
highest, with an increase of virus proportion transmitted at the music stages and a
slight decrease at the entrance/exit queues and the small bars. Fomites transmis-
sion plays a smaller role as the virus transmitted by droplets is significantly higher
among the group mates of the infectious individuals compared to the rest of the
population, while it does not become much higher via fomites.

Deriving from the current finding, it can be expected that when the group grows
bigger, the number of total infections may increase, but the majority of infections
will stay in the groups of the infectious individuals and the rest of the population
will have a even smaller infection probability.





7 S E N S I T I V I T Y A N A LY S I S

To explore how the SARS-CoV-2 transmission scale of the event changes under dif-
ferent combinations of activity space scenarios, a sensitivity analysis is conducted.
This analysis quantifies the variations in the impacts of infrastructure settings and
interventions, including queue distance, indoor/outdoor setting, density, and respi-
ratory activities, the findings of which may help assist the policy makers with major
decisions regarding COVID-19 related regulations concerning large events.

This chapter presents the design of 10 event scenarios in Section 7.1. The simula-
tion results are summarized and discussed in Section 7.2.

7.1 scenario design
10 scenarios are designed to explore to which extent the three major variables,
namely, queue distance, indoor/outdoor setting, density, and respiratory activities,
influence the infection scale at large events. The design of the scenario combina-
tions is illustrated in Figure 7.1. More detailed scenario settings are presented in
Appendix A, Table A.1, ??, Table A.3.

Figure 7.1: Design of event scenarios

As displayed in Figure 7.1, there are 5 groups of event scenarios, each repre-
senting a different indoor/outdoor setting and density level. Every group has
two scenarios, representing a calm respiratory activity combination (20%talking +
80%breathing) and an active respiratory activity combination (20%talking + 40%singing
+ 40%breathing).

The scenarios are labeled by their characteristics. The labels each consists of three
letter, representing the scenario design on the aspect of density, indoor/outdoor
setting, and respiratory activity. For density, ’J’, ’H’, ’L’ represent the jam density
(5.76p/m2), the very high density (2p/m2), and the optimal density (low density:
0.4p/m2). The indoor/outdoor settings are represented by ’I’ and ’O’ and respira-
tory activity by ’A’ for active and ’C’ for calm.

Scenario 0 is the ’standard’ scenario analyzed in Chapter 6. As it includes one
indoor music stage and 7 outdoor stages, it is labeled by H-IO-A. Scenario 00 is the
calm version of the ’standard’ scenario, labeled by H-IO-C. Scenario 1&2 represent
the optimal infrastructure combination, i.e., the most strict intervention, labeled by
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LOC and LOA. All the event facilities are placed outdoor and the distance between
individuals is kept as 1.5m. Scenario 3&4 are designed for optimal distance (1.5m)
but indoor situations, labeled by LIC and LIA. Comparing with LOC and LOA,
the difference of indoor and outdoor setting under low density and two types of
respiratory activity combinations will be revealed. Scenario 5&6 are on the other
side of the graph, involving the utmost jam density in outdoor facilities, labeled by
JOC and JOA. Scenario 7&8 are expected to be the worst case scenarios, labeled by
JIC and JIA, as the highest density and indoor settings come together.

7.2 result comparison

The resulting statistics under the 10 designed scenarios are summarized in the fol-
lowing figures. Figure 7.2 displays the number of infections generated in every
scenario. Figure 7.3 illustrates the infection probability curves of all scenarios, of
which the highest 100 values are included for the convenience and clarity of display.

Figure 7.2: Number of infections in different scenarios

Figure 7.3: The 100 highest infection probability in different scenarios (legend ranking based
on the number of infections)

As is shown in Figure 7.2, scenario 8 (JIA) has the largest number of infections,
86.73, followed by scenario 6 (JOA), 62.53, scenario 7 (JIC), 37.3, and scenario 5

(JOC), 28.26. The difference between scenario 5 (JOC) and other scenarios are much
smaller. Scenario 3 (LIC) and 4 (LIA) have infections numbers slightly higher than
scenario 00 (H-IO-C) and 0 (H-IO-A). Scenario 1 (LOC) is as expected the least
risky scenario considering the total infection number while scenario 2 (LOA) has an
infection number that is only slightly higher than scenario 00 (H-IO-C).
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Looking at scenarios in the group of calm respiratory activities, the expected
trend of high density and indoor setting leading to more infections is discovered.
The same trend is displayed in the group of active respiratory activities. However,
the increase of density does not force a linear increase in the number of infections.
In an outdoor setting, when the density rises from 0.4p/m2 (scenario 1 (LOC) and
2 (LOA)) to 2p/m2 (scenario 00 (H-IO-C) and 0 (H-IO-A)), even though one of the
music stages is set indoor in scenario 00 (H-IO-C) and 0 (H-IO-A), the number of
infections only increases by 1.18 (6.7%) and 3.82 (19.7%) under calm and active res-
piratory activities. When the density goes up to 5.76p/m2 (scenario 5 (JOC) and
6 (JOA)), the number of infections increases by 10.70 (61.3%) and 43.08 (221.4%)
compared to scenario 1 (LOC) and 2 (LOA) (0.4p/m2), and 9.52 (51.2%) and 39.26

(168.6%) compared to scenario (H-IO-C) and 0 (H-IO-A) (2p/m2). It can be con-
cluded that when the density goes above 2p/m2, increasing density has an much
bigger impact on the virus transmission scale compared to when the density is be-
low 2p/m2. For the influence of respiratory activity combinations, it is observed
that when more singing is involved, the impact of increasing density is also much
higher than when agents are more silent and mostly just breath.

In Figure 7.2, comparing the line of outdoor scenarios and the line of indoor
scenarios, it is observed that when the event is held in completely indoor facilities,
the number of infections goes up by 35.7% (scenario 1 (LOC) to 3 (LIC)), 35.6%
(scenario 2 (LOA) to 4 (LIA)), 32% (scenario 5 (JOC) to 7 (JIC)), 38.7% (scenario
6 (JOA) to 8 (JIA)), which indicates a stable impact under two different density
settings and two different respiratory activity combinations.

Figure 7.3 displays the trend in the infection probability among the agents with
the 100 highest infection probabilities. A clear split is observed between scenario
6 (JOA) and 8 (JIA) and other scenarios. The most noticeable difference is the
shape of the curves. For scenario 6 (JOA) and 8 (JIA), the infection probability
declines gradually from 100%, while for other scenarios, there is an immediate drop
of infection probability to around 10% to 30% within the 10 agents with highest
infection probabilities. In general, scenarios with the highest density (scenario 5,
6, 7, 8, i.e., JOC, JOA, JIC, JIA) display higher infection probabilities than scenarios
with lower density. Among the lower density group, scenario 1 (LOC) and 00 (H-IO-
C) with calm respiratory activities, and scenario 2 (LOA) with the lowest density
and active respiratory activities have the lowest infection probabilities, with the
maximum reaching below 20%. The in between scenarios have a higher maximum
infection probability, with a sudden decline within 10 to 20 agents, after which the
infection probability begins to steadily slowly decreasing around 15% to 3%.

Comparing Figure 7.2 and Figure 7.3, it is expected that the difference of infection
probability curves between scenario 6 (JOA) and 8 (JIA) and other scenarios lead to
the huge difference in infection numbers. As in other scenarios, it is relatively rare
for agents to reach an infection probability higher than 15%, while for scenario 6

(JOA) and 8 (JIA), there is no sudden decrease in the infection probability , which
indicates much more people are exposed to a high infection probability, making the
total infection number higher than other scenarios.

Figure 7.4 demonstrates the distribution of total amount of virus transmitted
throughout the entire event in different activity spaces.

It is observed that in all scenarios, the virus transmitted in entrance/exit queues,
small bars and music stages makes up for the majority of the total virus exposure,
which corresponds to the findings from Chapter 6. The change of the proportion of
virus transmitted in the music stages is significant. In scenario 00, 1, and 3 (i.e., H-
IO-C, LOC, and LIC), where agents follow calm respiratory activities, music stages
only contributes around 1% of the total amount of virus, while the proportion goes
up to around 10% to 19% in scenario 0, 2, 4 (i.e., H-IO-A, LOA, and LIA), which have
the same infrastructure setting as scenario 00, 1, and 3 (H-IO-C, LOC, and LIC)),
only with active respiratory activities. When the density increase to 5.76p/m2, the
music stage takes a much share in the total amount of transmitted virus, especially
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Figure 7.4: Distribution of transmitted virus in different activity spaces

under active respiratory activities, where the proportion of virus transmitted in
music stages grows from above 40% (scenario 5 (JOC) and 7 (JIC)) to more than
80% (scenario 6 (JOA) and 8 (JIA)). With the increase of the music stage’s share, the
proportion taken by entrance/exit queues and small bars goes down accordingly.
This does not mean that the virus transmitted in these facilities becomes less. On the
contrary, the infection risk at the entrance/exit queues and small bars are relatively
stable in either indoor or outdoor setting, as increasing queue distance from 1m to
1.5m does not make a great difference in the virus transmission scale within the
facilities. It can be concluded that the increase of density from 2p/m2 to 5.76p/m2

significantly enlarges the virus transmitted in the music stages. Under scenarios
with active respiratory activity, music stages also have a bigger contribution to the
total amount of virus, which poses a even bigger impact when the density reaches
the maximum.

Figure 7.5 demonstrate the distribution of total amount of virus transmitted
throughout the entire event via different routes.
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Figure 7.5: Distribution of transmitted virus via different routes

As is displayed, for scenarios with most facilities outdoor, droplets transmission
takes up most of the transmitted virus and the contribution of aerosols is steadily
around 6%. For scenarios with completely indoor settings, aerosols take up more
than 30% of the transmitted virus and the contribution of fomites also increases
from around 15% (scenario 1 & 2, LOC & LOA) to around 25% (scenario 3 & 4,
LIC & LIA) and from 9% and 2% (scenario 5 & 6, JOC & JOA) to 15% and 4%
(scenario 7 & 8, JIC & JIA). When the density is high, droplets play a more important
role compared to low-density scenarios and active respiratory activities make the
proportion of droplets transmission even bigger. It can be concluded that indoor
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scenarios increase the amount of virus transmitted by aerosols and fomites and
the increase of density and active respiratory activities enlarge the contribution of
droplets transmission.





8 D I S C U S S I O N S

This chapter discusses the implications and limitations of the results and sensitivity
analysis, as well as the limitations of the proposed method and the method applica-
tion.

8.1 result interpretations
As is summarized in Chapter 6, the general trend at all the activity spaces is iden-
tified that the transmission of SARS-CoV-2 is limited when the facility is located
outdoor, the queue distance is increased (from 1m to 1.5m), the density is lowered
(from 5.76p/m2 to 0.4p/m2), and the respiratory activities are calmer (from 20%talk-
ing + 40%singing + 40%breathing to 20%talking + 80%breathing).

Among these four variables, the impact of increasing the queue distance from
1m to 1.5m is the smallest, the reason of which can be derived from the findings at
the music stage, where people keep 1.5m distance under 0.4p/m2 density and 1m
distance under 1p/m2 density.

It is observed that the virus transmission scale varies much more significantly
when increasing the density from 1p/m2 to 2p/m2 and 5.76p/m2 compared to
when increasing the density from 0.4p/m2 to 1p/m2, which indicates the capa-
bility of SARS-CoV-2 to transmit via airborne routes decays to a turning point
at around 1m distance. Before reaching this point, interventions that increase the
distance between people have a strong impact on infection prevention, while after
reaching this point, the impact is much smaller when the distance becomes longer.
This finding implies that great risks lie under the type of events where fixed seating
is not required and visitors tend to stand close to each other (within 1m distance),
which is commonly observed at music festivals.

Moving indoor events to an outdoor environment also has a positive influence
on limiting the spread of SARS-CoV-2, halving the total amount of virus transmit-
ted in the facility, as the viral-laden particles in aerosols and fomites decay much
faster in an outdoor and UV-exposed environment. Therefore, events held at in-
door facilities can reduce the SARS-CoV-2 transmission risk by introducing outdoor
venues.

Performing calm respiratory activities can also significantly reduce the virus
transmission scale. When replacing 40% time spent on singing with breathing,
the amount of virus picked up by individuals goes down by more than 85% in
a 20-minute-duration 1000-participant music concert. The impact is even stronger
in outdoor music stages, which indicates singing affects droplet transmission more
than aerosol transmission. As a result, discouraging singing at events may signifi-
cantly reduce the transmission scale of SARS-CoV-2.

It is also discovered that under the same distance between people, when stay-
ing for the same duration of time in the same facility, the queues, where people
move to take up the place of the person in front of them, may be more risky than
the music stages, where people stand close to each other but do not move. It is
because the virus diffused in the environment is of the highest concentration at the
location where the infectious individual stays. When moving in a queue, people
who stand in the queue after the infectious individuals constantly move into the
space of the highest virus concentration. As a result, there is a great probability
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that they catch a relatively large amount of virus. This finding justifies the reason
why contact tracing is not used in this study, that is the risk of SARS-CoV-2 trans-
mission lies beyond close contact. People can pick up virus by staying at the same
location, several minutes or hours after the infectious individuals have left, without
having any contact with them. Fomites transmission also contributes to the infec-
tion probability, which cannot be represented by contact tracing. Therefore, contact
tracing would not provide an accurate reflection of the SARS-CoV-2 transmission
risk at the simulated event. Moreover, this finding suggests that compared to lim-
iting the distance between people, it may be more effective to limit the scenarios
where visitors take up other visitors’ positions, such as forming long queues.

The sensitivity analysis indicates a large variability in the actual number of in-
fections based on the context in which the pedestrian crowd resides. The infection
numbers range from 17.52 in the optimal scenario to 86.73 in the least expected
scenario, out of 10000 participants in the event, which is 0.18% to 0.87% of the total
susceptible population. This indicates that the context has a very large impact on
the number of infections, and as such the risk of virus spread at events. It also
concludes the impact of the infrastructure settings and respiratory activities on the
transmission scale and the variation in the virus proportion transmitted in different
types of activity spaces. For instance, the share of virus transmitted at music stages
increases from 1% under scenarios with low density and calm respiratory activities
(LOC, LIC, H-IO-C) to 85% under the jam density and active respiratory activities
(JOA and JIA), which indicates their great impact on the transmission scale of the
entire event.

8.2 result implications
It is difficult to validate the case study results with real-life data, due to the follow-
ing reasons caused by the nature of this research.

1. A large number of parameters are involved in the simulation process, some of
which are based on assumptions and are difficult to measure in real life. For
instance, respiratory activities and number of initial infectious visitor have a
great influence on the transmission scale but are difficult to observe in real
life. Validating the simulation results of inaccurately estimated parameters
with the real-life experimental results may lead to inaccurate implications.

2. Organizing experimental large events to expose people in a potentially high-
risk environment for infection can be controversial on the ethical aspect, which
makes it difficult to obtain the real-life virus transmission data.

Therefore, instead of validation, the results and findings are critically compared
to the Dutch government policies and recommendations and some of the real-life
infection data obtained from the experimental events.

8.2.1 Implications on policies

In general, the advice from the OMT, which will be discussed in the next paragraph,
corresponds to the findings of this research. OMT is a group of specialists and ex-
perts with different backgrounds and knowledge about COVID-19, convened by
the Dutch National Institute for Public Health and the Environment (RIVM) to dis-
cuss how to control the COVID-19 outbreak based on the latest information on the
transmission scale in the population, their professional expertise and the available
scientific literature.

In their advisory reports, OMT has given advice on keeping social distance, strictly
limiting the scale of indoor activities/events, limiting the scale of outdoor activi-
ties/events (bigger scale than indoor), limiting the duration of festivals, applying
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fixed seating with low densities, requiring negative test results, and discouraging
festival attendees from singing [RIVM, 2021b; NLtimes, 2021]. The findings of this
research justify their suggestions. This study shows that these measures limit initial
infectious individuals, limit exposure time, and help reduce the infection probabil-
ity of event participants.

Not all the proposed measures have been implemented due to difficulties im-
plementing and/or enforcing the measures. For instance, as is discovered by this
research and suggest by OMT, singing significantly rises the scale of virus transmis-
sion, it is not feasible and not enforceable at large events [NLtimes, 2021]. With
active respiratory activities, the transmission scale of SARS-CoV-2 can increase sig-
nificantly. With longer intervals allowed for tests, the possibility of people getting
infected in the time frame between the test and walking into the event terrain goes
up, which results in a higher probability of infectious people spreading the virus at
the event.

To better assist the policy makers to adopt feasible measures that also guarantee
the safety of the population, it is suggested that when adopting new measures in
the future, their risks and uncertainties need to be assessed under consideration of
the actual expected behaviour of the crowd. Models, such as the one developed in
this thesis, can support policy makers in quantifying the impact of their policies
and identifying the risk of super spreading events.

8.2.2 Implications on real-life infection data

FieldlabEvenementen [2021] has conducted 4 types of experiments during February
and March, 2021, including indoor events with static visitors, indoor events with
moving visitors, outdoor events with moving visitors, and outdoor events with
freely moving public. Interventions, such as compulsory social distancing, have
been applied to all events, except the last category, which features all kinds of fes-
tivals. On the 20th and 21st of March, a 9-hour dance festival and a 9-hour rock
festival were held in Walibi, Biddinghuizen, each with less than 2000 visitors. With
all visitors tested negative within 48 hours before the festival, the infection probabil-
ities of these two festivals are 0.072% (dance) and 0.032% (rock) per hour. Dividing
the simulated infection probabilities of this study by 11 hours of the event duration,
the probability in outdoor scenarios ranges from 0.016% to 0.057% per hour. The
maximum simulated probability lies in between the experimental infection prob-
abilities, which indicates a large variation in the real-life virus transmission scale
and a possible underestimation under the least expected simulated scenario, with
the density reaching the jam level and people spending 40% of time singing.

After a two-day outdoor festival held in Utrecht in July 2021 that attracted approx-
imately 20000 people, 1050 people were tested positive of COVID-19 Ellyatt [2021].
Assuming 10000 people attended the festival on each day, from which 525 people
were infected, the infection scale of this event is much higher than the simulated
worst case scenario for outdoor facilities.

Following are various potential reasons for the underestimation of this research,
which in themselves also hold important lessons pertaining our ability to model
their behaviour and quantify the impact of measures that limit virus spread.

1. Different event types and infrastructure settings may lead to a different virus
transmission scale. In the simulated event, there are in total 77 facilities, in-
cluding 20 entrance/exit queues, 12 lockers, 4 big bars with seating area, 19

small bars with queues, 6 normal toilets, 8 portable toilets, and 8 music stages
to guarantee that the pedestrian flow is well managed, in which case people
spend limited time in queues and all kinds of facilities. While in real-life
events, there might be limited number of facilities due to the limitations of
the event location, leading to longer time spent in the queue, smaller-distance
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headways between people (higher densities), which can significantly increase
the infection risks.

2. In the simulated event, the time that visitors are exposed to infection risk
might be underestimated. When simulating the activity schedule of individ-
uals, the time spent at each facilities is strictly based on the activity pattern
obtained from a real-life festival, which may result in underestimation of the
activity duration. In addition, it is assumed that the time spent in between
facilities are evenly distributed, during which there is no risk of exposure. In
real-life event, people may spend more time in facilities and still be exposed
to infection risk in between facilities, which leads to higher infection risks.

3. In this research, the smallest queue distance is 1m, as it is assumed that in
the simulated event, visitors, to some extent, stick to the social distancing
regulation. Therefore, in case of the queue, the transmission risk may be
underestimated due to the assumed long distances, as the number of people
within the most dangerous sphere of the influence of the infectious individual
is underestimated.

4. The heterogeneity in the emission rate during real-life events can lead to a
bigger transmission scale. In the simulated event, it is assumed that everyone
performs the same respiratory activities within an activity space. While in real-
life events, people may have very different respiratory activities. For instance,
as is frequently observed at festivals, at the music stages, there may be a
group of very passionate music lovers who would loudly sing along during a
performance. The respiratory activities of this group can be much more active
than the rest of the visitors, which may lead to a bigger virus transmission
scale in this group.

Moreover, limitations exist in both real-life experiments and the proposed simu-
lated method and therefore, direct comparisons have very limited implications. For
instance, the number of infectious individuals in the events remains unknown as
people participating in the events all have been tested negative. As the number of
infectious individuals is one of the most important influence factors of the event
infection probability, it directly impacts the amount of virus spread in the environ-
ment.

In a nutshell, although this method application may underestimate the virus
spread scale at the simulated event, it is capable of showing when and where the
major risks occur. By comparing the results of different scenarios, it also gives in-
dications on crowd management measures and interventions that can help reduce
the virus transmission scale.

The limitations of the proposed method and its application are discussed in the
following section.

8.3 method limitations
This section discusses the major limitations of the proposed method and its appli-
cation, including the lack of consideration of group behavior and the heavy de-
pendency on detailed virus transmission related parameters and activity pattern
assumptions.

8.3.1 Group behavior

In this study, pedestrians are considered as independent individuals, whose behav-
ior results from the joint force of all agents and obstacles in the vicinity. No bonds
are formed within a group of people, as all the agents are considered the same to
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the moving pedestrian. However, in real-life observation, people, especially at large
events, usually move in a cluster with a small group of people, the distance among
whom is usually kept relatively close [Qiu and Hu, 2010].

Group behavior is different to capture and model, yet it forms an important part
of crowd dynamics and may have a huge influence on the virus spread simulation.
People in a group usually cohere to each other during the entire event. They usu-
ally have close physical contact, which increases the risk of virus transmission by
fomites. The time they spent in close contact is also much longer than random
encounters at different activity spaces, which leads to higher risks of droplets and
aerosols transmission.

As is demonstrated in the results of the simplified ‘group’ scenario, if one infec-
tious person stays close to other members throughout the event, people in the group
usually have a high exposure. On the other hand, people in other groups may have
a lower infection probability, as it is less likely for them to have close contact with
infectious people in their own groups.

The purpose of the simulated ‘group’ scenario is mainly to illustrate possible out-
comes if infectious individuals stay close to their group members. In fact, modeling
group behavior is more sophisticated than the demonstration. The lack of considera-
tion of the group behavior of susceptible individuals may lead to an overestimation
of infection risk, as the social forces between groups are expected to be bigger than
the forces between individual pedestrians. On the other hand, due to the group
behavior, people would tend to stay close to their group members even in routes
connecting major activity spaces and vast open ground where they are able to keep
social distance, ignoring which may lead to an underestimation of infection risk
within the group, as people stay in close contact throughout the entire event.

To conclude, for a more realistic simulation of the infection risk at events, group
behavior must be considered in the process of activity schedule generation and
pedestrian route choice and movement modeling.

8.3.2 Parameter and activity pattern requirement

As is introduced in Chapter 5, this proposed method is heavily dependent on de-
tailed virus transmission related parameters. On the one hand, it gives solid the-
oretical support to the results. On the other hand, varying the parameter values
based on different assumptions of a scenario can give very different results, which
might be potentially misleading for the risk evaluation of the simulated event.

The same problem applies to activity patterns. For instance, as observed in the
case study application results, facilities with queues are the most risky among all
types of activity spaces. One of the decisive factors of transmission scale in queues
is the queuing time, which determines how long people spend in the queue trans-
mitting and picking up virus. However, as no data is available for how long people
spend on queuing to get into a facility, this study assumes a whole process of
queue building in a designed facility, during which the first half is spent building
the queue, the second half is used to resolve the queue. To make sure the simula-
tion time covers all possible virus transmission, only agents who enter the facility
as the first 5% to 15% of the population are assumed to be infectious, which does
not give an indication of how long an average visitor spend in the queue. Under
this assumption, it can be expected that if the infectious individual enters when
the queue has accumulated longer and people would stay longer in the queue, the
transmission scale will be even bigger.

Therefore, making sure the parameters are validated under the simulated scenar-
ios and acquiring detailed real life activity pattern data is of great importance for
the proposed method to give reliable results.
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8.4 method implications
This proposed method provides a quantifying approach to evaluate the infection
risk of SARS-CoV-2 in large events. Despite its limitations discussed above, it has
generated promising results in a large music festival simulation.

Compared to existing studies on the transmission of SARS-CoV-2, this study
has achieved a breakthrough in simulating the infection risk of visiting large-scale
events, where multiple activity spaces all potentially contribute to the virus trans-
mission at the same time.

In the case study application, the same phenomena as the existing studies have
been identified, including longer distance between people, outdoor scenarios with
high air change rates and UV exposure, low density, and calm respiratory activ-
ities leading to a lower infection risk, vice versa. Yet, it sheds new light on the
understanding of infection risk in different environment. For instance, by compar-
ing simulation results from queues and music stages, it is discovered that taking
up an infectious individual’s position might be more risky compared to standing
next to the infectious individual. It also quantifies the influence of queue distance,
indoor/outdoor setting, density, and respiratory activities on the transmission scale
of SARS-CoV-2, providing a reference to COVID-19 crowd management at large
events.

The main purpose of the proposed method is to quantify the infection risk of
SARS-CoV-2 in large events, by combining activity scheduling, route choice and
movement modeling, and virus spread simulation. Through the case study appli-
cation, it has been proven to be capable of revealing the general infection risk and
identifying risk-prone areas. Therefore, this method can be used as a risk evaluation
tool for big events, comparing the potential infection risk under different scenarios
(infrastructure design, physical intervention) and spotting where the most risk lies.
According to the results, crowd management approaches and interventions can be
used to reduce the infection risk at the simulated event, making events feasible and
safe again.



9 C O N C L U S I O N S

This chapter presents the conclusions, including the answer to the main research
question and recommendations for future research.

9.1 answer to main research question
The research objective of this study is to develop a SARS-CoV-2 transmission risk
analysis method at events by modelling crowd interactions at different types of
event spaces and quantifying the SARS-CoV-2 transmission risks in the process.
The main research question that will be answered in this section is:

How to model SARS-CoV-2 transmission risks based on pedestrian behavior and
virus spread simulation at large events?
The proposed method provides a method to connect activity scheduling, pedes-

trian route choice and movement modeling, virus spread modeling, and infection
risk identification to determine the SARS-CoV-2 transmission risks at large event by
the process shown on Figure 3.1.

To make use of the proposed method, a few factors need to identified beforehand.
First, after determining the type of event to evaluate and the general demand, the in-
frastructure types and activity spaces should be identified as the input information
to the NOMAD model. Then the activity pattern data of such an event needs to be
collected and analyzed, from which the activity schedules and demand pattern at
activity spaces can be derived. The former will be used for NOMAD simulation and
the latter for identification of virus locations and matching up the virus exposure
on susceptible individuals.

With the above mentioned information, the proposed method determine the
SARS-CoV-2 transmission risks in the following steps.

The first part of the proposed method is a tactical and operational level pedestrian
model, NOMAD, which simulates pedestrian route choice and movement with the
input of infrastructure layout, social force parameters, and demand pattern. With
NOMAD, a number of activity spaces with potential SARS-CoV-2 transmission pos-
sibility can be simulated under different infrastructure layouts and physical inter-
ventions, such as 1.5m or 1m queue distance. NOMAD generates pedestrian trajec-
tories with the accuracy of 0.1m at each 0.1-second time step.

Then the output of NOMAD is transformed into agent scripts which include the
movement of pedestrians at the accuracy of 1m at each 20-second time step, the
respiratory characteristics of the agents, whether wearing a face mask, the initial
viral load, and other virus transmission related parameters. The second part of
the proposed method is QVEmod, the model that simulates the virus spread in
different activity spaces via 7 processes that the virus goes through, including emis-
sion, falling onto surfaces, decay, diffusion, inhalation, contaminating surfaces by
touching, and being picked up from surfaces by touching. QVEmod generates the
accumulated virus loads on agents via three routes, namely droplets, aerosols, and
fomites.

The third part of the method include e smaller steps of activity scheduling, pos-
sible exposure time and location identification, adding up virus obtained from dif-
ferent activity spaces, and infection risk estimation. The first step generates every
visitor’s activity schedule at the event, identifying where and when the infectious
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and susceptible individuals are located. The second step summaries the where-
abouts of infectious individuals and derives the locations and duration of possible
virus exposure. In the third step, the susceptible individuals’ activity schedules
are compared with the derived locations and duration. If a match exists, a virus
exposure (obtained from the virus spread simulation) is assigned to this individual.
For all the susceptible individuals, the virus exposure acquired throughout the ac-
tivity schedule is added up. Finally, the accumulated virus exposure is fit into a
dose-response model to calculate the general infection risk of visiting this event.

In the case study application, the proposed method has shown its capability of
revealing the general infection risk and identifying risk-prone areas in an event.
This method can be used as a risk evaluation tool for big events, comparing the
potential infection risk under different scenarios (infrastructure design, physical
intervention) and spotting where the most risk lies. As a result, the method can
further assist decision making on crowd management approaches and interventions
to be used to reduce the infection risk at the simulated event.

9.2 recommendations
Recommendations for future research are given in this section, which are based on
the method implications and limitations discussed in Chapter 8.

9.2.1 Recommendations on method development

As is discussed in Section 8.3, the major limitations of the proposed method lie in
the lack of consideration of group behavior and the heavy dependency on validated
parameters and detailed activity patterns derived from real life data.

Group behavior

It is recommended that group behavior to be taken into consideration during activ-
ity scheduling, where the activity schedules within a group vary from each other
within a certain threshold. For instance, it can be applied that within each activity
space, the difference of entry and exit time of different group members should not
be more than 2 minutes.

The coherence of group members should also be considered outside the major
activity spaces, as people in the same group usually tend to stay close to each other
throughout the entire visit to the event. This can be achieved by simulating routes
connecting different activity spaces as one of the potential risky activity spaces,
where the movements of individuals are modeled and virus spread can be simu-
lated.

To implement group behavior in the NOMAD model, a smaller social force can be
applied within a group and a larger social force between different groups to make
sure the group members cohere to each other and maybe keep a longer distance to
people from other groups.

More literature research or surveys should be conducted to identify the average
group size in different types of events, to assist the activity scheduling and NOMAD
simulation.

Dependency on validated parameters and detailed activity pattern information

Dependency on accurate parameters and detailed activity pattern information lies
in the nature of the proposed method, making it difficult to be validated and applied
in difference scenarios.

However, it is the solid theoretical support and real-life data that makes the sim-
ulation results reliable and helpful for decision making. Therefore, for future re-
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search, it is recommended that for each type of event that this method is used for,
the virus spread related parameters are validated under the specific scenario. The
activity pattern information should be obtained from a same type of event and
analyzed thoroughly to support activity scheduling and derive input to NOMAD
simulations.

9.2.2 Recommendations on method application

In the case study application of the proposed method, due to the limited time frame,
incomplete data sets, and inaccurate parameter values, the result implications have
been limited. For future applications, the following recommendations are identi-
fied:

1. The GPS trajectory data should be matched with specified activity space GPS
locations. In this research, the exact locations of activity spaces has not been
available. The trajectories matching with the activity spaces mainly depends
on a simplified festival map and the cluster of trajectory points, which adds up
the inaccuracy of identifying the activity schedules and the time people spend
in different types of activity spaces. If the data allows, specified activity space
GPS locations would help make the derived activity patterns more accurate.

2. The sample size of the GPS trajectory data should be as big as possible, to
better capture the full picture of activity patterns at the events.

3. The time stamps of the GPS trajectory data should be as continuous as possi-
ble. In this study, data with intervals longer than 15 minutes was filtered out
to balance the continuity and the size of the data. However, 15-minute interval
may not be enough to capture short activities such as going to the toilet. It is
recommended to use GPS tracking device that obtain continuous trajectories
instead of only tracking the location when people use the application on the
phone.

4. The time step of the QVEmod should be shorter if possible. With a 20-second
time step, the movements of agents in small activity spaces might not be cap-
tured by QVEmod, which may lead to an underestimation of virus transmis-
sion scale in the facility.

5. QVEmod parameters, such as respiratory activity characteristics, need to vali-
dated under the simulated scenarios.

6. The choice of the influence factors can be more diverse. Due to time limitation,
whether wearing face mask and the willingness to comply to social distance
have not be taken into account as a design variable, yet they have an huge
influence on the virus transmission. If more influence factors are considered,
the risk evaluation may see huge variations in the resulting infection numbers
and may assist crowd management in a different direction.

7. The activity schedule simulation can be more realistic if the distance between
activity spaces are considered, instead of averaging the interval between visit-
ing two activity spaces during the entire event.
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