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S U M M A R Y

The COVID-19 global pandemic has influenced almost everyone’s life on this planet,
since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) found its
way to the human race. Due to its highly transmissible nature and high death rate,
countries around the world have been taking preventive measures to protect their
citizens from being infected, including social distancing, face mask obligations, and
even lockdown.

Besides the health influence, the COVID-19 pandemic has also resulted in severe
economic disruptions, due to supply shortages and lockdown of businesses. Most
of the large events in the Netherlands have been cancelled since the first infection
case was identified in February. The significant decrease of festivals has posed a
serious negative impact on both the cultural and economical aspects of the event
industry. However, it is not yet known what is the most appropriate restrictions
to apply to event industry, as the exact risk of a visit to an event, such as a music
festival, has not been thoroughly studied.

This research aims to close this research gap by developing a SARS-CoV-2 trans-
mission risk analysis method for large events by modelling crowd interactions at
different types of event spaces and quantifying the SARS-CoV-2 transmission risks
in the process. The main research question to be answered by this study is formu-
lated as follows:

How to model SARS-CoV-2 transmission risks based on pedestrian behavior and
virus spread simulation at large events?

Through literature review, existing pedestrian modeling, virus spread modeling,
and risk identification approaches are identified. The most suitable approaches for
this research are selected as NOMAD, a force-based tactical to operational level
pedestrian model, QVEmod, an agent-based virus spread model, and the dose-
response model, which relates the amount of accumulated virus to the infection
risk of individuals. A research gap is identified of simulating transmission risks at
large events where people visit a set of different activity spaces during one day.

This research has proposed a method to connect activity scheduling, pedestrian
route choice and movement modeling, virus spread modeling, and infection risk
identification to determine the SARS-CoV-2 transmission risks at large events by
probability method.

The first part of the proposed method is the NOMAD pedestrian model, which
simulates pedestrian route choice and movement with the input of infrastructure
layout, social force parameters, and demand pattern. With NOMAD, a number of
activity spaces with potential SARS-CoV-2 transmission possibility can be simulated
under different infrastructure layouts and physical interventions, such as 1.5m or
1m queue distance. NOMAD generates pedestrian trajectories with the accuracy of
0.1m at each 0.1-second time step.

Then the output of NOMAD is transformed into agent scripts which include the
movement of pedestrians at the accuracy of 1m at each 20-second time step, the
respiratory characteristics of the agents, whether wearing a face mask, the initial
viral load, and other virus transmission related parameters. The second part of
the proposed method is QVEmod, the model that simulates the virus spread in
different activity spaces via 7 processes that the virus goes through, including emis-
sion, falling onto surfaces, decay, diffusion, inhalation, contaminating surfaces by
touching, and being picked up from surfaces by touching. QVEmod generates the
accumulated virus loads on agents via three routes, namely, droplets, aerosols, and
fomites.
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The third part of the method include e smaller steps of activity scheduling, pos-
sible exposure time and location identification, adding up virus obtained from dif-
ferent activity spaces, and infection risk estimation. The first step generates every
visitor’s activity schedule at the event, identifying where and when the infectious
and susceptible individuals are located. The second step summaries the where-
abouts of infectious individuals and derives the locations and duration of possible
virus exposure. In the third step, the susceptible individuals’ activity schedules
are compared with the derived locations and duration. If a match exists, a virus
exposure (obtained from the virus spread simulation) is assigned to this individual.
For all the susceptible individuals, the virus exposure acquired throughout the ac-
tivity schedule is added up. Finally, the accumulated virus exposure is fit into a
dose-response model to calculate the general infection risk of visiting this event.

A few factors need to be identified before applying this method. First, after de-
termining the type of event to evaluate and the general demand, the infrastructure
types and activity spaces should be identified as the input information to the NO-
MAD model. Then the activity pattern data of such an event needs to be collected
and analyzed, from which the activity schedules and demand pattern at activity
spaces can be derived. The former will be used for NOMAD simulation and the
latter for identification of virus locations and matching up the virus exposure on
susceptible individuals.

In the case study application, the proposed method has shown its capability of
revealing the general infection risk and the relation of influence factors to the trans-
mission scale, and it also identifies risk-prone areas in an event.

Comparing the different scenarios at each activity space, the general trend is
identified that the transmission of SARS-CoV-2 is limited when the facility is lo-
cated outdoor, the queue distance is increased (from 1m to 1.5m), the density is
lowered (from 5.76p/m2 to 0.4p/m2), and the respiratory activities are calmer (from
20%talking + 40%singing + 40%breathing to 20%talking + 80%breathing).

Among these four variables, the impact of increasing the queue distance from 1m
to 1.5m is the smallest. It is observed that the virus transmission scale varies much
more significantly when increasing the density from 1p/m2 (1m distance) to 2p/m2

(0.7m distance) and 5.76p/m2 (0.4m distance) compared to when increasing the
density from 0.4p/m2 (1.5m distance) to 1p/m2 (1m distance), which indicates the
capability of SARS-CoV-2 to transmit via airborne routes decays to a turning point
at around 1m distance. Before reaching this point, interventions that increase the
distance between people will have a strong impact on infection prevention, while
after reaching this point, the impact is much smaller when the distance becomes
longer.

Moving indoor events to an outdoor environment also has a positive influence on
limiting the spread of SARS-CoV-2, halving the total amount of virus transmitted
in the facility, as the viral-laden particles in aerosols and fomites decay much faster
in an outdoor and UV-exposed environment.

Performing calm respiratory activities can also significantly reduce the virus
transmission scale. When replacing 40% time spent on singing with breathing,
the amount of virus picked up by individuals goes down by more than 85% in
a 20-minute-duration 1000-participant music concert. The impact is even stronger
in outdoor music stages, which indicates singing affects droplet transmission more
than aerosol transmission.

It is also discovered that under the same distance between people, when staying
for the same duration of time in the same facility, the queues, where people move to
take up the place of the person in front of them, may be more risky than the music
stages, where people stand close to each other but do not move.

The above findings correspond to the advice from outbreak management team
(OMT), that keeping social distance, strictly limiting the scale of indoor activities/events,
limiting the scale of outdoor activities/events (bigger scale than indoor), limiting
the duration of festivals, applying fixed seating with low densities, requiring neg-



ative test results, and discouraging festival attendees from singing help limit the
transmission scale of SARS-CoV-2.

A sensitivity analysis is conducted with different scenarios of activity space com-
binations, which gives infection numbers of a 10-infectee 10000-participant music
festival ranging from 17.52 in the optimal scenario to 86.73 in the least expected sce-
nario, which equals to 0.18% to 0.87% of the total susceptible population. The result
of the least expected scenario falls into the infection probabilities of 2 smaller-scale
real-life experimental events (less than 2000 participants), while another large-scale
real-life event (10000 participants per day for two days) appeared to have a much
larger infection scale. Underestimating as the research findings may be, such direct
comparisons have very limited implications, due to the great differences between
the simulated events and real-life events. Factors such as the event scale, infras-
tructure setting, crowd management measures, heterogeneity in the emission rate,
activity schedules, group behavior, and number of infectious individuals, would
directly influence the amount of virus transmitted in the event. Nevertheless, this
research has shown when and where major risks can occur during an event. By com-
paring results of different scenarios, it also gives indications on crowd management
measures and interventions that can help reduce the virus transmission scale.

The focus of this study lies in developing a risk evaluation tool for big events, com-
paring the potential infection risk under different scenarios (infrastructure design,
physical intervention) and spotting where the most risk lies. It allows future explo-
ration and comparison of the transmission scales of certain kinds of events, without
posing ethical controversy of exposing people in infection risks. The method can
further assist decision making on crowd management approaches and interventions
to be used to reduce the infection risk at the simulated event. Yet, it has its limita-
tions of not considering group behavior at the event, which is commonly observed
at large events and may potentially increase the transmission scale. Another major
limitation is its heavy dependency on detailed virus transmission parameters and
activity patterns. The former needs to be validated under different scenarios, and
the latter needs to be identified from the data collected at the same type of event.
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1 I N T R O D U C T I O N

A global outbreak of the COVID- 19 pandemic has posed threats to the physical and
mental health of people all over the world. Till August 24th, 2021, we have wit-
nessed more than 213.7 million cases of COVID- 19 and 4.4 million deaths [Univer-
sity, 2021]. Almost everyone across the globe has been in�uenced by the pandemic.
For those who have been directly stricken by COVID- 19, some lost their lives, others
survived but may still suffer from its clinical sequelae Xiong et al. [ 2021]. For those
who have been indirectly in�uenced by the pandemic, some grieve for the loss of
family members, others �nd it dif�cult to maintain a healthy mental status during
the lockdown and isolation [Rossi et al., 2020; Kaparounaki et al., 2020]. Besides its
health in�uence, the COVID- 19pandemic also has a huge global economical impact
on all kinds of industries. For instance, the production of goods has shrunken due
to the government measures to protect public health and the consumption pro�le
of people has changed due to the change of lifestyles shaped by the pandemic McK-
ibbin and Fernando [ 2020]; Maital [ 2020]. The economical impact, in return, also
poses an in�uence on people's lives and mental health status.

Caused by the highly transmissible SARS-CoV-2 virus, COVID- 19 spreads be-
tween people when a healthy person gets in close contact with an infected per-
son. The virus can be transmitted by respiratory droplets, indoor aerosols, contam-
inated surfaces, etc. [Harrison et al., 2020]. Due to the nature of its transmission
mechanics, countries across the globe have introduced prevention measures aim-
ing to limit the physical contact between people, such as lockdown on a nation-
al/provincial scale, curfew from dusk till dawn, restrictions for cross-border travel,
closing down unessential public areas, etc. RIVM [ 2020]; AMT [ 2020]. To control
the spread of COVID- 19 in the Netherlands, the Dutch government has been con-
stantly adapting the COVID- 19 measures and advice to the public since April 2020.
Before the vaccine coverage reaches the level that allows lifting all COVID- 19 restric-
tions and recommendations, the control of the pandemic has mainly relied on the
non-pharmaceutical interventions ( NPI's), such as indoor mandatory face masks, 1.5-
meter social-distancing, shutting down unessential public spaces, including restau-
rants, hairdressers, shopping malls, sports stadiums, museums, and schools RIVM
[2020]. While these measures have contributed to controlling the spread of pan-
demic, they also pose a serious negative in�uence on the relevant industries. For
instance, event organizers have been unable to operate their businesses as normal.
In pre-pandemic time, 2019, 1117festivals were held in the Netherlands, attracting
more than 27 million visitors, while in 2020, due to the COVID- 19 measures, the
number of festivals dropped sharply to 190, with merely 1.4 million attendance
[Statista, 2021]. Popular festivals, such as the Vierdaagsefeesten Nijmegen (Interna-
tional Four Day Marches) and the Amsterdam Dance Festival (ADE), has all been
canceled due to the COVID-19 regulations. The signi�cant decrease of festivals has
posed a serious negative impact on both cultural and economical aspects of the
event industry.

However, it is not yet known to what extent does an event contribute to the spread
of COVID- 19, as the exact risk of a visit to an event, such as a music festival, during
this pandemic, has not been thoroughly studied. Numerous studies on the epidemi-
ological mechanism of COVID- 19and SARS-CoV-2 virus have been conducted since
the outbreak in December 2019 [Harrison et al., 2020; Gao et al., 2021; Arav et al.,
2020; Bouchnita and Jebrane,2020]. A number of experiments exploring the actual
infection scale at events under different NPI's have been organized and analyzed in
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the Netherlands in 2021[FieldlabEvenementen, 2021; Ellyatt, 2021]. However, none
of the existing studies has been able to reveal or estimate the transmission risks of
SARS-CoV-2 at different types of large events. Simulation-based researches mainly
focus on the transmission pro�le on the city or provincial scale [Tian et al., 2020]
and the roughly estimated effectiveness of NPI's on transmission risks under simple
circumstances, with assumptions of random movements of individuals [Bouchnita
and Jebrane,2020]. However, to reveal the transmission pro�les of speci�c events
more accurately, such as watching a football match or visiting a music festival, spe-
ci�c knowledge and assumptions about the event facilities, infection pro�le in the
population, and people's activity schedule and actual movement in the space are
required. Experimental events reveal the transmission scales of certain types of
events, which are limited to the infection rate in the population at the time, the
speci�c event facilities, the NPI's , etc. Moreover, this type of experiments obtain in-
fection data by organizing events that potentially expose participants to infection
risks, which may lead to ethical controversy. Media reported many people, includ-
ing scientists, have criticized the scienti�c and ethical aspects of the experimental
events [de Vrieze, 2021; RTLNieuws, 2021]. According to Ellyatt [ 2021], in July 2021,
more than 1000people caught COVID- 19 after a two-day outdoor festival held in
Utrecht, the Netherlands, which attracted more than 20000people. Therefore, a re-
search gap exists for an approach to simulate the transmission risks of SARS-CoV-2
via pedestrian modelling.

With the increased coverage of vaccination and constantly emerging variants of
SARS-CoV-2, the society faces great challenges reopening businesses. Without de-
tailed knowledge of the transmission risks at event spaces, policy makers face chal-
lenges when making crucial decisions on COVID- 19 regulations, leading to (some-
times inconsistent) measures which may unnecessarily restrict business develop-
ment, cause public doubts and non-compliance to measures, even social unrest.
Therefore, a reliable transmission risk analysis tool is in urgent need. In this re-
search, in order to better support the decision-making process of the government
on regulations in the event industry, an infection risk estimation method which
combines the pedestrian activity scheduling, pedestrian interactions modelling, and
virus transmission modelling, will be proposed. This method will be applied to the
risk estimation of a music festival under different infrastructure scenarios, the event
scale, facility types, and activity schedules of which are based on the Amsterdam
Open Air festival 2019. From the results, facilities and behavior that pose great risk
will be identi�ed, as well as the general risk of attending the festival. The proposed
method can also be further adapted and applied to detect the infection risk at differ-
ent types of large events, thus assist the policy makers in making crucial decisions
on the event industry.

1.1 research questions

Following the above considerations, the research objective of this study is de�ned
as follows:

To develop a SARS-CoV-2 transmission risk quanti�cation method at large events
by modelling activity scheduling, pedestrian behavior and SARS-CoV- 2 transmis-
sions at different types of event spaces, and quantifying the SARS-CoV-2 transmis-
sion risks throughout the entire visits to the event by individuals.

Based on the objective, the main research question is formulated as follows:

How to model SARS-CoV- 2 transmission risks based on pedestrian behavior and
virus spread simulation at large events?

To answer the main research question, the following sub-questions are put for-
ward:

1. What are the behavior frameworks of visitors at large events?
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To answer this sub-question, this research will identify the type of event to
be studied, the functional spaces in the event, and the behavior patterns of
visitors at this type of event. The answer to this question will be revealed
by the case study analyzing the real-life behavioral and infrastructural data
collected from an event in Chapter 5.

2. What are the SARS-CoV-2 transmission routes among visitors at these events?

To answer this sub-question, this research will identify the transmission me-
chanics of SARS-CoV-2 and match the possible transmission routes that may
occur during pedestrian interactions at the functional spaces of the events.
The answer to this question will be revealed by the literature study on the
state-of-art SARS-CoV-2 transmission studies in Chapter 2 and the theoretical
analysis on transmission routes at the identi�ed event spaces in Chapter 5.

3. How to make use of real-life pedestrian interaction data, pedestrian simu-
lation models, and SARS-CoV- 2 transmission models to identify the risk of
SARS-CoV-2 transmission at large events?

To answer this sub-question, this study will research on the existing SARS-
CoV-2 transmission modelling studies, analyze their data type and modelling
approaches, evaluate the real-life data and simulation models to be used in
this study, and identify their purposes based on the literature research and
evaluation. Therefore, this question will be answered by the literature study
reviewing pedestrian modelling methods, SARS-CoV- 2 transmission risk mod-
elling studies in Chapter 2, proposing an approach for SARS-CoV-2 transmis-
sion risk modelling in Chapter 3 and Chapter 4 based on literature studies, a
case study analyzing the real-life data collected from an event and applying
the proposed approach for an event in Chapter 5.

4. What is the SARS-CoV-2 transmission risk pro�le at large events?

This question will be answered in Chapter 6, by analyzing the results of the
case study application of the proposed method, from which the transmission
risk will be quanti�ed in number of infections and the risk-prone event spaces
will be identi�ed as well.

5. How to apply the developed methodology in practice and how does it per-
form?

After researching on the state-of-art literature, developing the methodology,
applying the proposed method in a case study, and analyzing the results,
the process of the method application is presented. The capabilities and lim-
itations of the developed methodology will be discussed in Chapter 8 and
Chapter 9.

1.2 research scope

The scope of this research is described in this section. The following aspects are
addressed: the type of events considered in this research, the level of pedestrian
modelling taken into account in this research, the focus of transmission risk assess-
ment, and the scope of development of the proposed transmission risk quantifying
method.

Event type

Although all types of events, where close contact between people is unavoidable,
are in urgent need for infection risk assessment to supervise the Covid- 19 related
regulations in the industry, the scale and activity type vary largely among differ-
ent events. The risk assessment method involving speci�c pedestrian modelling in



4 introduction

event spaces is only capable of simulating the events which have similar functional
areas and activity patterns. In the Netherlands, music festivals account for a large
part of festival attendance, attracting both domestic and overseas visitors. Across
different music festivals, the functional areas and activity patterns remain similar,
which makes it possible to develop a general risk assessment tool for this type of
event. Therefore, in this research, the development and application of transmission
risk detection method will be mainly based on large music festivals, which may
also shed light on the risk assessment of other types of large events, such as football
matches and dance festivals.

Level of pedestrian modelling

Pedestrian modelling can be categorized in three levels, namely, strategical, tactical,
and operational level, representing pedestrian behavior decisions at different stages
[Hoogendoorn and Bovy, 2004]. From strategical to operational level, the choices
become more speci�c as they develop from departure time choice and activity pat-
tern choice to actual movement choice. More detailed explanations are presented in
Section2.1. In this research, all levels of pedestrian modelling are considered and re-
viewed, as one level has an in�uence on the next one and in the end affect the actual
interactions between people. However, the pedestrian behavior considered in the
method proposed by this thesis does not necessarily cover all the levels, as existing
pedestrian behavior simulation tools mainly focus on one or two levels. The level(s)
included in the simulation method will be determined according to the �ndings
from literature review in Chapter 2. In Chapter 5, the choices of activity schedule
and activity area at tactical level are analyzed based on real-life data collected from
a music festival.

Focus of virus transmission risk assessment

In this research, the focus of virus transmission risk assessment lies in the general
risk pro�le of visiting a certain event, which is translated from the accumulated
virus dose of individuals who follow a general activity schedule and visit a number
of activity spaces during this event. The probability of getting infected at different
types of activity spaces will not be studied as it is not in a linear relation with the
accumulated virus dose of individuals [Nicas and Sun, 2006]. Nevertheless, the
infection risks of different types of activity spaces can be represented and analyzed
qualitatively according to the accumulated virus doses within the facility.

Scope of proposed method

This research aims to develop and validate a SARS-CoV-2 transmission risk identi�-
cation method which combines detailed pedestrian modelling with the transmission
dynamics of SARS-CoV-2. However, de�ning and validating the model parameters
does not fall into the scope of this research. The parameters representing pedes-
trian behavior, the essential parameters and assumptions for virus transmission
analysis are based on existing studies. The focus of this research lies in quantifying
the infection risk of a complete visit to an event by an average participant in spe-
ci�c event scenarios, by establishing a bridge connecting pedestrian modelling with
virus transmission risks at large events.

1.3 thesis outline

The approach for this research is illustrated in Figure 1.1.
As is shown below, the research begins with a background introduction in Chap-

ter 1, which brings out the research questions, the scope and the structure of this the-
sis. Then a thorough literature review follows in Chapter 2, presenting the state-of-
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art pedestrian behavior models, SARS-CoV-2 transmission mechanics, SARS-CoV-2
transmission models, and risk assessment methods. In Chapter 3, the reviewed
models and methods are placed in a theoretical framework for the proposed SARS-
CoV-2 transmission risk identi�cation method, where the research gap is identi�ed
and made up for. Next, the proposed methodology is presented in Chapter 4, con-
sisting of the detailed description of models and methods used in this research. In
Chapter 5, a case study, which derives the activity pattern of a music festival from
GPS data and applies the developed methodology for SARS-CoV-2 transmission
risk identi�cation at event spaces, is conducted, providing feedback to Chapter 4.
After revising the methodology based on the �ndings from the case studies, the
general results of the proposed method is presented in Chapter 6. A sensitivity
analysis is then conducted in Chapter 7, exploring how variables (queue distance,
indoor/outdoor space, etc.) in�uence the infection pro�le by comparing the results
of different scenarios. In Chapter 8, other factors that might have an important in-
�uence on the results are discussed, such as assumptions and research scope. In
the end, Chapter 9 draws the conclusions of this research, which conclude the result
analysis, summarize the answer to the research question, discuss the inadequacy of
this research, and provide recommendations for further research.
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Figure 1.1: Thesis outline



2 L I T E R AT U R E R E V I E W

A review of literature regarding studies of pedestrian behavior models, virus trans-
mission models, and risk assessment methods is presented in this chapter.

The goal of the literature review presented here is threefold. First, to identify
which methods of pedestrian modelling and virus transmission modelling have
been proposed so far and what level of detail they are capable to achieve. Sec-
ond, to identify suitable methods for development of an infection risk model of
SARS-CoV-2 involving pedestrian interaction. Third, to identify a risk assessment
method that quanti�es and visualize the model results. An overview of the state-of-
the-art pedestrian modelling methods is discussed in Section 2.1. The respiratory
virus transmission models, together with existing studies on SARS-CoV- 2 transmis-
sion are reviewed in Section 2.2. The risk assessment methods are presented in
Section 2.3.

2.1 pedestrian behavior models

Pedestrian behavior has been studied by researchers since1950s [Hankin and Wright,
1958]. Numerous models have been put forward to account for pedestrian's travel
patterns from different angles. Some focus on the decisions of trips and activity
schedules. Some study the in�uence factors of pedestrian's actual movements. To
present different types of models in an organized manner, this paper categorizes
them into three choice levels, namely strategical, tactical, and operational level, each
representing a different stage of pedestrian travel behavior. According to [Hoogen-
doorn and Bovy, 2004], the strategical level corresponds to the activity, destination,
and departure time choices; the tactical level models the activity schedule, activity
area, mode and route choice; the operational level explains the movement choice at
the presence of objects and other pedestrians. Although obtaining the choice at a
higher level is essential for generating the next-level choice, all of the existing mod-
els are not capable of simultaneously simulating choices at more than one level. In
practice, the input of the next-level model is usually assumed by the researchers or
randomly generated. In this section, pedestrian behavior models are reviewed sepa-
rately at each level. It is important to be aware that overlaps exist among models at
different levels, as some models can be implemented at more than one level, with
different inputs and adjusted settings.

The theories and features of the reviewed pedestrian models will be explained in
the following subsections, Section 2.1.1, Section 2.1.2, Section 2.1.3. A conclusion
will be reached in subsection Section 2.1.4.

2.1.1 Strategical level

At strategical level, pedestrian behavioral choices include departure time choice
and activity pattern choice [Hoogendoorn and Bovy, 2004]. Although departure
time and activity choice play an important role in pedestrian behavior, they receive
less attention compared to route choice and operational movement, as the latter
forms the ultimate presenting behavior. However, pedestrian choices at strategical
level have a crucial in�uence on the choices at tactical level, as they determine
when, where, who will be present. In other words, strategical choices in�uence
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the pedestrian demand, population characteristics, and walking environment at
an activity space. Therefore, pedestrian modeling at strategical level are of vital
importance to derive location-based pedestrian behavior. For instance, they have
often been developed for public transport stations and busy urban areas to assist
crowd management [Lai and Kontokosta, 2018; Desyllas et al., 2003].

Three types of models can be applied at strategical level, namely data-driven
models, equilibrium assignment models, and discrete choice models. It is important
to be aware that these models do not work exclusively for pedestrians. Instead, at
strategical level, mode choice is usually modelled together with departure time and
activity pattern choice.

Data-driven models

Data-driven models are de�ned as a type of macroscopic model, as it focuses on
deriving the trend from the historical number of people making the choice to visit
a certain location under certain circumstances. They predict pedestrians' departure
time and activity pattern choice by analyzing the relation between the historical
demand and exogenous factors, such as attributes of activities and environmental
factors. Depending on the mathematical relation applied in the model, they can
be further categorized into linear models, such as multiple linear regression ( MLR)
models and Auto Regressive Integrated Moving Average ( ARIMA ) model, non-linear
models, such as support vector regression (SVR) models. Data-driven models for
pedestrian demand estimation have mainly been adapted from vehicular traf�c es-
timation, where they have been extensively developed [Barros et al., 2015; Li et al.,
2017]. As for application in pedestrian researches, Lai and Kontokosta [ 2018] de-
veloped multivariate MLR models to estimate pedestrian activities in urban regions,
based on the historical data from New York City. The models consider the in�uence
of contextual features and time-varying situational indicators on pedestrian activity
across time of day, day of the week, season, and year. The relation between pedes-
trian activity and land use, building density, transportation infrastructure, and other
factors commonly associated with urban walkability are quanti�ed in the study. An
ARIMA model is developed by Wang et al. [ 2017] to predict the city foot traf�c at
multiple locations in the City of Melbourne. By describing the autocorrelation in
the data, the ARIMA model is able to capture the trend in the time series and make
accurate long-term and short-term predictions without looking into external factors.

Data driven models have been used to explore the important drivers of local
pedestrian activities and provide scienti�c foundations for the improvement of
pedestrian experience in urban areas. By deriving trends from a large amount of
data, they are capable of producing realistic predictions with very limited assump-
tions of people's decision making process. On one hand, they provide a method to
analyse pedestrian demand patterns without related knowledge. On the other hand,
they ignore the in�uence factors of choices at the individual level, which limits their
results to be further applied in models at the next level.

Equilibrium assignment models

The equilibrium assignment model is developed based on the 4-step transport mod-
elling framework, traditionally used for assignment of trips among origin and des-
tination ( OD) pairs [de Dios Ort úzar and Willumsen, 2011]. For the application in
pedestrian modelling, it has been developed for departure time choice at the strate-
gic level. In this type of model, pedestrians select departure time of a certain OD pair,
according to a logit formula involving the predetermined departure time costs and
the equilibrium OD walking costs. The number of pedestrians choosing a certain
departure time is determined by the equilibrium used in the model, such as de-
terministic user equilibrium and stochastic user equilibrium [de Dios Ort úzar and
Willumsen, 2011]. Huang and Lam [ 2002] developed a dynamic pedestrian equilib-
rium assignment model for departure time and path choice. The model assumes a
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pedestrian network with a set of links where pedestrians are assigned to a depar-
ture time of a link based on their subjective disutility to the departure time. The
disutility is derived from the historical traf�c conditions, the activity schedule and
utility in origins and destinations, and the subjective preference for the departure
time. By considering the time-dependent OD demands as endogenous variables,
this model also takes into account of inter-elasticity of OD demands between time
intervals, which enables �exible departure times.

Although this type of model involves the subjective disutility from pedestrians'
perspective, it does not consider the individual difference. Therefore, it falls into the
category of macroscopic models. With its macroscopic assumption, the application
of equilibrium assignment models in pedestrian-related research is very limited
compared to the transport modelling �eld.

Discrete choice models

Discrete choice models fall into the category of microscopic models, as they simu-
late choices of individuals, taking into account of personal characteristics. This type
of model determines the choice of an individual person or a group of people, ac-
cording to their own attributes and a set of rules, among an �nite number of choices.
Discrete choice models can be further categorized by the decision rules used in the
model, such as multinomial logit and nested logit [Hall, 2012]. Discrete choice
models have been widely applied in all aspects of transport modelling [Aloulou,
2018]. In pedestrian related studies, numerous models have been developed and
applied at strategic level. Dekker et al. [ 2014] incorporated needs of satisfaction in
a discrete choice model for leisure activities. Besides conventional attributes, such
as activity costs and accessibility, the individual's anticipation of activity satisfac-
tion also counts for the expected utility. Each individual aims for the activity with
the maximum utility. V ästberg et al. [2020] developed a dynamic discrete choice
model (DDCM ) for daily activity-travel planning. In this model, a sequence of de-
cisions of when, where, why, and how to travel compose a daily activity–travel
pattern. The sum of the utility of all trips and activities determines the individu-
als' preferences for a certain activity–travel pattern. Individuals make choices at
each decision stage to maximize the expected utility of the remainder of the day.
This model allows for a detailed treatment of timing decisions consistent with other
choice dimensions, respects time–space constraints, and enables the inclusion of ex-
plicitly modeled uncertainties in travel time. It is capable of accurately reproducing
the activity patterns from choices of 1,240 locations, four modes, and six activities.
A group of such DDCM s have been developed at strategical level, with subtle ad-
justments. For instance, Karlström et al. [2009] developed a DDCM for mode choice
and departure time modelling, where the order of activities is considered dynam-
ically. To explore the effective dimensions in the real-life problem, the Restricted
Boltzmann Machine is used to realize a dimensionality reduction without losing
accuracy.

In general, discrete choice models provide an individual-based modelling ap-
proach, with preliminary assumptions of internal and external choice drivers. They
have been applied for both multimodal modelling and pedestrian modelling. They
can also be adapted to explore the important factors in individuals' decision making
process.

Conclusion

In conclusion, models at strategical level provide both general and individual-based
approaches to simulate pedestrian departure time choice and activity pattern choice,
together or separately. They each have their own advantages and disadvantages.
Data-driven models make realistic reproductions of pedestrian activity without de-
tailed assumptions. Equilibrium assignment models are capable of simulating de-
parture time choice and path choice at the same time. However, they ignore individ-
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ual differences and it is dif�cult to take their results for models at the next level. In
discrete choice models for activity pattern modelling, personal attributes are taken
into account, which increases the computational efforts to achieve a realistic estima-
tion.

In this study, there are two types of activity area and activity schedule to be
considered. One takes into account the entire visit to the music festival, the activity
areas of which consist of all types of activity spaces. Its activity schedule refers to
the schedule to visit a set of activity areas. The corresponding strategical choices
include the activity choice of visiting this music festival and the departure time to
visit this music festival. On this aspect, the activity choice is prede�ned and the
departure time choice will be derived by a data-driven method in Chapter 5, which
analyzes the scattered real-life location data collected from a musical festival. The
other type considers one visit to one activity space in this event, for instance, one
visit to a bar. In this case, the activity area is the bar and the schedule is the schedule
to enter the bar, visit the counter, sit at the table and leave. The corresponding
strategical choices include the activity choice of visiting this bar and the departure
time to visit this bar. On this aspect, the both activity choice and the departure time
choice are determined by the the activity schedule of the entire visit to this music
festival. Therefore, except the data-driven method to derive the activity choice and
departure time choice to visit activity spaces, no further derivation is required in
this study.

2.1.2 Tactical level

The tactical level of pedestrian behavior describes the choices of activity schedule,
activity area, and route to reach activity areas [Hoogendoorn and Bovy, 2004]. The
decision making at this level is determined by how pedestrians perceive the environ-
ment. The in�uence factors include external factors, internal factors, and expected
traf�c conditions. The external factors include the presence of obstacles and stim-
ulation of the environment, while the internal factors include time pressure and
attitudes of the pedestrian. The expected traf�c conditions both in�uence and are
in�uenced by pedestrian travel demands and walking behavior [Hoogendoorn and
Bovy, 2004].

A variety of existing models have been developed to simulate pedestrian behavior
according to these factors. They can be categorized into4 types, namely, network
models, queuing models, force-based models, and discrete choice models.

Network models

Network models are a type of macroscopic model, describing pedestrian �ows by
aggregate density and speed. They simulate the pedestrian route choice within a
prede�ned network, where space is represented by links and pedestrians are sim-
pli�ed as continuous �ows. Daamen [ 2002] developed a simulation tool for pedes-
trian �ow modelling at large transfer stations, partly based on a network model.
This model assigns pedestrians with certain OD pairs to the optimal routes in a net-
work, based on the shortest time principle. It derives the density in an area from
the number of pedestrians on a certain link and develops macroscopic relations be-
tween density and pedestrian speeds. Another application of network models is
conducted by H änseler et al. [2017]. Following the principles of the well-known cell
transmission model [Daganzo, 1994] which discretizes time and space to simulate
vehicular traf�c, H änseler et al. [2017] developed a dynamic network loading model
that bases on a multi-directional-discretized formulation of a pedestrian fundamen-
tal diagram, adopted from the cell transmission model.

This type of model is capable of reproducing empirical walking time distributions
in counter-�ow and cross-�ow experiments. Network models have also shown ad-
vantages simulating large crowds at low densities.
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Queuing models

Queuing models [Løv 	as,1994] describe individual pedestrian behavior in a queuing
network, where pedestrians move between nodes (rooms) through links (doorways)
in the network. Each link is randomly assigned with a waiting time, as a queue
builds up when the demand exceeds the node capacity. The space taken by queuing
pedestrians is not taken into account in the model, which let vertical queues build
up. Each pedestrian follows a prespeci�ed evacuation plan, which is determined by
the rules of perceiving short routes and personal attributes. Different from network
models, queuing models simulate individual behavior rather than pedestrian �ows.
Queuing models have been developed by other researchers as well Watts Jr [1987];
Yuhaski and Smith [ 1989]; Rahman et al. [2013], with different network and queue
settings.

Queuing models have limited applications for its single-purpose assumptions,
which ignore the dynamics inside each node (room) Johansson and Kretz [ 2012].
They have been used mostly for simulating pedestrian evacuation behavior from
buildings to assist and evaluate emergency infrastructure design.

NOMAD model

Hoogendoorn and Bovy [ 2004] developed a normative theory of pedestrian behav-
ior choice at the tactical level based on utility maximization under uncertainty. It
assumes that each pedestrian continuously optimizes his/her own utility function
for route choice, activity area choice, and activity scheduling. The function consists
of the utility gained from performing activities at a speci�c location, the predicted
cost of walking subject to the physical limitations of the pedestrians, and the kine-
matics of the pedestrian. The theory is different from discrete choice models as an
in�nite number of alternatives are available and the uncertainty of alternatives is
considered. The theory has been applied in a microscopic model NOMAD to sim-
ulate pedestrian behavior in Schiphol Plaza, where the combined choice of route
and activity area to exit Schiphol Plaza is simulated according to the shortest path
based on minimum perceived disutility.

Both free �ow and congested traf�c can be simulated with the NOMAD model
and stand-alone applications also allow simulating route choice in infrastructure
facilities, such as transfer stations and shopping malls. Based on its formulation,
NOMAD model is de�ned as a type of force-based model, which will be further
explained in Section 2.1.3.

Discrete choice models

At tactical level, discrete choice models simulate the probability of an individual's
route choice by considering the utilities of all alternative routes. Lue and Miller
[2019] developed a path size logit model with stochastic route choice generation
choice set based on the revealed preference from GPS data collected in Toronto.
The model takes into account multiple route attributes, including length, number
of turns, intersections, etc. and network characteristics, including percentage of
links with sidewalks, road type, etc. A generalized path size factor is introduced
in the model to correct for the correlation from overlapping alternatives. Attributes
such as route distance, the number of turns, the number of signalized intersections,
and distance along links with sidewalks on both sides of the street are proven to be
signi�cant in this model. Discrete choice models have also been applied in smaller-
scale route planning, such as in a metro station where individuals' decisions of exit
and routes to exits are simulated [Stubenschrott et al., 2014].

Based on the utilities taken into account in the model, different types of discrete
choice models can be categorized. For instance, the shortest-distance model can be
seen as the simplest model, as the utility of a route only consists of its distance.
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Compared to more sophisticated discrete choice models, which require more com-
putational efforts and a large amount of data to generalize, this shortest-distance
model have been commonly adopted in simulation methods with the advantage of
fast computation [Stubenschrott et al., 2014].

Discrete choice models provide a method to incorporate various internal and
external in�uence factors in the decision making process of individuals. However,
at tactical level, they usually merely focus on the route choice and are not able to
simulate activity space and scheduling simultaneously.

Route choice decision principle

Route choice decision principle is a fundamental property of pedestrian route choice
models. It de�nes the driven factors of why pedestrians choose a certain route. The
decision principle can be different in different route choice models. For instance, in
forced-based models, the decision principle is usually based on the shortest path,
which is measured by time, distance, or utility, in�uences by the velocity and posi-
tion of the pedestrian, people and obstacles in the vicinity, etc. [Hoogendoorn and
Bovy, 2004]. In discrete choice models, the decision principle can more �exible, as
more environmental and personal attributes, such as number of intersections, can
be included in the model [Lue and Miller, 2019]. In some other empirical studies,
the probability of route choice is derived from historical data and used as the deci-
sion principal [Ton et al., 2015]. Although this method is more commonly applied
in vehicular and bicycle traf�c studies, its potential in pedestrian modeling is yet to
be discovered.

Conclusion

To conclude, models at tactical level are capable of different choice modeling, most
of which mainly focus on route choice. Whereas the normative force-based model
Hoogendoorn and Bovy [ 2004] provides an approach to simulate route choice, ac-
tivity area choice, and activity scheduling simultaneously. This model also entitles
other advantages such as taking into account individual differences and an in�nite
number of alternatives.

2.1.3 Operational level

The operational level choice consists of the actual walking behavior of pedestrians
[Hoogendoorn and Bovy, 2004]. In previous studies, sometimes the route choice
and movement choice are not clearly extinguished, causing confusion to readers.
To specify the different, this paper de�nes the movement models as models repre-
senting how pedestrians react to the changing environment while moving along the
chosen routes.

Existing models at this level can be classi�ed into 5 types, which consist of contin-
uum models, cellular automata models, force-based models, velocity-based models,
and discrete choice models.

Continuum models

Continuum models [Treuille et al., 2006] are a type of macroscopic model, which
simulates continuous pedestrian �ows in discrete space cells in two dimensions.
Global navigation and local collision avoidance are integrated while individual
variability are ignored to achieve real-time crowd simulation with minimal com-
putational effort.

This type of model is capable of simulating real-time crowd motions of thousands
of individuals with intersecting paths. However, as individual characteristics are
not taken into consideration, continuous models can only simulate homogeneous
crowds and cannot cope with multidirectional pedestrian traf�c.
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Cellular automata models

Cellular automata models were �rst introduced to model pedestrian behavior by
Blue and Adler [ 2001], studied and adapted further by Meyer-K önig et al. [2002];
Iltanen [ 2012]. In cellular automata models, three modes of bidirectional pedes-
trian �ow are modeled based on predetermined local behavioral rules. This type
of model often discretizes the space and time in which pedestrians move and inter-
actions are determined based on a set of rules at each iteration. It is often used to
evaluate the effects of behavioral rules or crowd management measures.

This rule-based strategy saves computational efforts compared to equation-based
models and makes it easier to develop its algorithm. However, it is dif�cult to
incorporate the randomness of pedestrian behavior and the �xed behavioral rules
can lead to unrealistic movement in simulations.

Force-based models

The force-based models [Helbing and Molnar, 1995] assume that pedestrian behav-
ior is in�uenced by a multitude of social forces that either attract or repulse the
person, such as obstacles and the movement of other pedestrians. The accelera-
tion of each person is determined by the sum of forces at each discrete time step.
The movement space is continuous. This type of model has been widely applied
and modi�ed with extended force interpretations, such as collision prediction rules
[Zanlungo et al., 2011] and self-stopping mechanism [Parisi et al., 2009].

The force-based models usually simulate fairly realistic movements and interac-
tions between pedestrians. It is possible to incorporate the environmental features,
such as light conditions and exit signs, in the analysis. However, higher computa-
tional efforts are required for force-based models.

Velocity-based models

The idea of velocity-based model is chronologically �rst put forward by Paris et al.
[2007]. Based on the same principle, other velocity-based models have been devel-
oped over the years [Van Den Berg et al., 2008; Karamouzas and Overmars, 2010].
This type of model assumes that a pedestrian optimizes the usage of the available
space and attempts to avoid collisions. Same as force-based models, velocity-based
models assume pedestrians move in a continuous space and make decisions at each
discrete time step. The velocity of a pedestrian is determined by the person's cur-
rent path, available space, and the trajectories of other surrounding pedestrians.
This type of model is often used to analyze evacuation behavior and crowd behav-
ior at events.

Usually natural movements and pedestrian interactions are presented in velocity-
based models, supported by high computational efforts. The downsides of velocity-
based models also lie in the dif�culty to model friction and incorporate environ-
mental features.

Discrete choice models

Discrete choice models have also been developed at operational level to model the
short-term behavior of individuals as a response to the immediate environment
and the presence of other pedestrians. Antonini et al. [ 2006] modeled pedestrian
walking process as a sequence of short-time choices. The destinations and routes are
known, generated by models at tactical level. Each pedestrian makes choices out of
a set of walking alternatives, based on utility maximization. The utility is calculated
as the weighted sum of various elements of the potential next positions, such as
change in kinetic energy, collision risk, availability, distance to other people, and
distance to destination. The model was calibrated with real-life data and has been
successfully applied in video surveillance applications for automatic tracking of
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pedestrians in video sequences. Further adaption of this model was made by Robin
et al. [2009], who introduced more data for revealed walking behavior, captured
leader–follower and collision-avoidance patterns in simulation, and validated the
model on another experimental data set.

Discrete choice models are not widely applied at operational level of pedestrian
modelling, as the interaction complexity of pedestrians cannot be easily captured
in the discrete choice model framework.

Conclusion

To sum up, at operational level, various types of models provide both macroscopic
and microscopic approaches to simulate pedestrian movement, each having their
own limitations. Continuous models require the minimum computational efforts
but cannot cope with multidirectional pedestrian traf�c. The rule-based cellular
automata models either produce unrealistic movement or become very complicated
with a large number of rules. The discrete choice models with decades of devel-
opment in diverse �elds encounter dif�culties on revealing the complex movement
dynamics of pedestrians. The force-based and velocity-based models generate nat-
ural movements but are computationally expensive. Operational behavior plays an
important role for the detailed pedestrian interation modelling.

As mentioned before, most existing models do not simulate choices at more than
one level, which makes it dif�cult to incorporate operational movements with tacti-
cal route choices in a simulation. Whereas force-based models have this capability
to include choices at the tactical level explicitly. The NOMAD model, for instance,
can consider ”forces” from moving pedestrians in the process of routing simulation.
Therefore, in this study, the force-based model, NOMAD will be used for pedestrian
simulation.

2.1.4 Conclusion

To summarize, the reviewed models are categorized in Table 2.1.

Macroscopic models Microscopic models

Strategical level
Data-driven models
Equilibrium assignment models

Discrete choice models

Tactical level Network models
Queuing models
Force-based models
Discrete choice models

Operational level Continuum models

Cellular automata models
Force-based models
Velocity-based models
Discrete choice models

Table 2.1: Pedestrian behavior model overview

This study aims to reveal the dynamics of pedestrian interactions to assess the
virus transmission risks of individuals. Therefore, the simulation scope falls into the
category of microscopic models, which are also described as agent-based models,
as the behavior is computed separately for each individual, i.e. the agent.

It is clear from Table 2.1 that agent-based models dominant the pedestrian mod-
eling �eld. They are popular for several reasons [Treuille et al., 2006]. Firstly, the
agent-based assumption is realistic, as real crowds clearly operate with each in-
dividual making independent decisions. Such models can capture each person's
unique situation: visibility, proximity of other pedestrians, and other local factors.
Therefore, an intuitive interpretation of equations is allowed. Secondly, different
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simulation parameters may be de�ned for each crowd member, yielding complex
heterogeneous decisions. However, these advantages also lead to drawbacks. For
instance, these models are often stochastic, which requires multiple runs of simula-
tion to get the ”average”. Due to the large number of parameters and the stochastic
nature, it is dif�cult to develop and calibrate behavioral rules that consistently pro-
duce realistic decisions. Moreover, global path planning for each agent quickly
becomes computationally expensive, particularly in real-time contexts. As a result,
most microscopic models separate local collision avoidance from global path plan-
ning [Parisi et al., 2009; Zanlungo et al., 2011], and con�icts inevitably arise between
these two competing goals.

As mentioned in Section 2.1.3, only the microscopic force-based model, NOMAD,
ful�lls the simulation requirements of this study. It is capable of incorporating
tactical choices with operational choices with different 'forces'. Therefore, the NO-
MAD model will be used for pedestrian simulation. As for the strategical choices
discussed in Section 2.1.1, the activity schedule of the entire visit to the simulated
event in this study will be derived by a data-driven method from the analysis of
real-life data. By determining the activity schedule in another model, the computa-
tional efforts can be saved as the pedestrian behavior at different activity spaces of
this event are independently simulated.

2.2 virus transmission

To understand how SARS-CoV-2 virus transmits during interactions of people, its
transmission routes are reviewed in Section 2.2.1. The models explaining the trans-
mission of respiratory viruses in the crowd are reviewed in Section 2.2.2. Existing
studies on SARS-CoV-2 virus transmission modelling are introduced in Section 2.2.3.
As this study aims to incorporate pedestrian modelling with the spread of SARS-
CoV-2 in the crowds at large events, the scope of the literature review on SARS-CoV-
2 transmission is limited to the agent-based level, excluding the studies that model
SARS-CoV-2 transmission based on the reproduction rate in the entire population.

2.2.1 Transmission routes

The spread of SARS-CoV-2 occur primarily through 3 routes, namely respiratory
droplets, aerosols, and fomites [Harrison et al., 2020]. Although cases of fecal–oral
transmission have also been reported, it is not likely to happen in event spaces and
will not be discussed in this study.

Among the three primary routes, droplet spread is considered as the main route
of transmission. Droplets are large liquid particles (usually de�ned as diameter
larger than 5 mm) loaded with viruses that spread into the air by infected people
when sneezing, coughing, talking, or breathing. These particles directly project
onto the mucous membranes or upper respiratory tract of a susceptible individual
through the person's mouth, nose, or eyes [Morawska and Cao, 2020]. As droplets
can travel over limited distances, close, concurrent contacts are required for droplet
transmission to occur.

Aerosols and fomites transmission are de�ned as indirect routes, as they build
up the potential of virus in the environment. Aerosols are formed by small virus-
laden liquid particles (usually de�ned as diameter smaller than or equal to 5 mm)
evaporated from the droplets of infected people. These particles are so small that
transport by air current affects them more than gravitation. Therefore, they are free
to travel in the air and carry their viral content to meters and tens of meters away
from where they originated [Morawska and Cao, 2020]. Moreover, compared to
droplets, it usually takes much longer for aerosols in space (especially indoor space
with poor ventilation) to expire, which means that the possibility exists that individ-
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uals can be infected with SARS-CoV-2 by being in the same space where infected
people have stayed, spread the virus, and left. Studies have claimed that SARS-
CoV-2 virus RNA could be maintained in respirable-sized aerosols for up to 16
hours [Fears et al., 2020]. Fomites transmission occurs when an individual touches
a contaminated surface where the virus has landed on via droplets or aerosols from
infected people. Among the three primary routes, SARS-CoV- 2 stays infectious the
longest on contaminated surfaces. Viable virus was detected up to 72 hours after
laboratory application to plastic and stainless steel surfaces [Van Doremalen et al.,
2020].

A summary of possible transmission routes are shown in Figure 2.1. It is im-
portant to consider different routes at different event spaces to assess the overall
risks of individuals participating in the event. For instance, transmission by fomites
and aerosols is not likely to occur at outdoor music stages where people do not
touch any surface and natural ventilation prevents aerosols from coming into being.
However, indoor spaces, such as toilets and indoor music stages, pose great risks
of aerosols transmission as indoor ventilation does not eliminate the possibility of
long-existing aerosols. At bars and food stands, fomites transmission plays and im-
portant role as people cannot avoid touching different kinds of surfaces. Therefore,
droplets, aerosols, and fomites are considered as the main transmission routes of
SARS-CoV-2 in event spaces, but each presents a different degree of risk at different
spaces. The virus transmission models related to these routes will be presented in
the next subsection.

Figure 2.1: Transmission routes of SARS-CoV-2 (Source: Harrison et al. [2020])

2.2.2 Transmission models

In the scienti�c �eld of virus transmission, a large range of models have been de-
veloped to describe the transmission mechanisms of different types of viruses. This
study speci�cally aims to understand the infection risk of SARS-CoV- 2 virus among
visitors at event spaces. Therefore, only models explaining the transmission mecha-
nisms of respiratory viruses will be reviewed in this subsection. They are the Wells-
Riley model, dose-response models, and multi-route transmission models. The �rst
two mainly focus on airborne transmission.
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Wells-Riley model

The foundation of airborne transmission models is the Wells-Riley model, proposed
by Wells et al. [1955]. By assuming that infectious particles are well mixed and
steady in space, the Wells-Riley equation makes prediction of the number of new
cases in a certain time period based on the number of infected and susceptible in-
dividuals in an indoor space, the ventilation rate, and the quantity of infectious
material in the air. The concept of ”quantum of infection” is used in the Wells-Riley
model, implicitly taking into account of the infectivity, infectious source strength, bi-
ological decay of pathogens, etc. [Zhang and Lin, 2020]. A quantum unit is de�ned
as the number of infectious particles needed to cause 63% of individuals getting
infected. Its number is usually obtained through comparing infection data in a
well-de�ned indoor outbreak. Providing a simple and quick evaluation method of
airborne infection risk, the Wells-Riley model has been widely applied and adapted
in infectious respiratory disease studies. However, the model's assumption of spa-
tially and temporally uniform distribution of virus-laden aerosols does not allow
heterogeneous infectivity of individuals as everyone has the same risk of infection
at any time. Therefore, the Wells-Riley model does not satisfy the analysis of indi-
vidual infection risk in this study.

Dose-response models

Another quantitative evaluation method is the dose-response model, which allows
individual heterogeneity in the analysis of infectivity. This type of model describes
the magnitude of the response, namely risk of infection, as a function of exposure to
different doses of a pathogen after a certain exposure duration [Crump et al., 1976;
Nicas, 1996]. The exposure dose is the amount of pathogens that reach the sus-
ceptible individuals under the circumstance of certain infectious people's emission
rates, room volume, recipients' pulmonary ventilation rate (i.e. the amount of air in-
haled per unit time), and exposure duration. Based on the type of the mathematical
function, dose-response models can be categorized into different types, for instance,
exponential and beta-Poisson models [Watanabe et al., 2010]. The dose-response
models are more �exible than the Wells-Riley model, as individual characteristics
can be taken into account to determine different infection risks for different people.
However, the limitation lies in the assumption of a uniform spatial distribution of
infectious particles, by which the risks of pedestrian interaction are directly simpli-
�ed as being or having been in the same indoor space. This study aims to evaluate
the dynamic infection risks of individuals when moving and interacting with each
other. It is expected that the distances between people and their trajectories feature
different levels of risk. Therefore, the basic-assumption dose-response models do
not meet the evaluation requirements of this study.

Multi-route transmission models

Multi-route transmission models incorporate airborne transmission routes with trans-
mission by formites. This type of model has been developed for different types of
respiratory viruses. One of the widely applied frameworks is developed by Nicas
and Sun [2006], which integrates different source-environment-receptor pathways
and their physical elements in a discrete-time Markov chain model. Initial pathogen
loads are assumed on textile and nontextile surfaces and in the room air, depending
on the amount of pathogens emitted from the patient in events such as coughing
and body �uid discharges. A uniform distribution of aerosols in the room is as-
sumed. The pathogens can exchange between the surface and the air, due to particle
settling and resuspension. These pathogens follow different pathways to end up in
people's respiratory tract, mucous membranes, losing viability, or being exhausted
from the room. The model estimates the rate of transfer at each step in the pathway
and the probability of a pathogen moving from one ”state” to another ”state” by
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the end of a speci�ed time interval. As a result, the expected pathogen dose to an
individual's mucous membranes and respiratory tract is estimated. A nonthresh-
old infectious dose model is used to relate the expected dose to infection risk. This
framework is composed of discrete events and therefore can be expanded for more
transmission pathways in detail.

Conlusion

In conclusion, either the Wells-Reily model or a dose-response model alone is not
capable of detailed virus transmission modelling. They need to be incorporated
with other models or be adjusted with speci�c settings for more complicated air-
borne transmission situations. To include multiple transmission routes, the study by
Nicas and Sun [2006] provides a modelling framework of discrete time and events,
by which the detailed transmission processes can be modeled. More multi-route
transmission models related to SARS-CoV-2 transmission will be reviewed in the
next section.

2.2.3 Existing studies on SARS-CoV-2 transmission in the crowd

Numerous studies revealing the transmission dynamics of SARS-CoV- 2 have been
conducted since the start of the COVID- 19 pandemic in December 2019, most of
which focus on evaluating the spread of the disease on a relatively large scale. In
this subsection, the models developed for SARS-CoV-2 transmission which incorpo-
rate multiple transmission routes and describing the transmission dynamics at the
crowd interaction level will be reviewed.

Arav et al. [ 2020] developed a multi-route quantitative mechanistic mathematical
model for pre-symptomatic transmission of SARS-CoV- 2. The model tracks the
transmission dynamics based on individual activities, focusing on three transmis-
sion routes between people, namely, direct physical contact, fomites, and aerosols
(droplet nuclei). Instead of the common threshold of 5 mm, 100 mm is used as the
cutoff size between droplets and aerosols, as droplets smaller than 100 mm evapo-
rate to their droplet nucleus size before hitting the ground. With this conservative
assumption of the cutoff size, an overestimation of aerosols transmission contribu-
tion is expected. Moreover, droplet transmission is not considered in the study.
This stochastic model simulates a number of scenarios by generating an ensemble
of realizations via Monte-Carlo simulation. In each realization, the primary (infetor)
and secondary (infectee) individuals perform a series of randomized actions such
as touching each other, touching fomites, or touching their own faces. The hygienic
and behavioral parameters are obtained by other empirical studies. The duration of
each realization is the incubation time of the primary individual, which is on aver-
age 5 days, during which the viral load of the person increases exponentially until
reaching the level of showing symptoms. The probability of a secondary individual
being infected is inferred from the dose-response curve reported for SARS-CoV- 1
[Watanabe et al., 2010].

This method provides a relatively detailed modelling framework of the agent-
based transmission process. However, the main limitation lies in the randomly
generated pedestrian interaction, which does not consider the actual movement of
pedestrians. As a result, heterogeneous aerosols distribution cannot be incorporated
in the model.

Gao et al. [2021] developed a multi-route transmission model considering ( 1)long-
range airborne transmission, (2)short-range airborne transmission, (3)direction in-
halation of medium droplets or droplet nuclei, ( 4)direct deposition of droplets of
all sizes, (5)indirect contact. The model combines the Wells-Riley equation and the
dose-response model to calculate the infection risk of an individual from all trans-
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mission routes in a certain location. Different dose-response coef�cients are de�ned
for different routes to account for their potential different dose-response rates. The
exposure doses of the 5 considered routes are based on the following factors: (1)
For long-range airborne transmission, the exposure dose is calculated according to
the cumulative deposition infectious dose in the susceptible's respiratory tract, tak-
ing into account of pulmonary ventilation rate, exposure time of the infectee, room
volume, the air change rate in the room, particle loss rate, etc. (2) As for short-
range airborne transmission, a respiratory jet cone with a certain spreading angle
is assumed to transmit the droplet nuclei to the infectee. The exposure dose is cal-
culated according to the distance to the infector, initial concentration and dilution
rate along the cone, face-to-face contact time, etc. (3) The exposure dose due to
direct inhalation of medium droplets or droplet nuclei is based on similar factors of
(2), considering additional parameters for larger droplets, modelled by combing the
buoyant round jet model and droplet evaporation and motion models. ( 4) The expo-
sure dose due to direct deposition in the facial membranes follows the assumption
of the respiratory jet cone and is estimated based on a similar parameter set. (5) As
for hand-surface contact, factors such as the frequency of the hand touching facial
membranes, transmission rate of droplets from hand to facial membranes, contact
area of the hand to mucous membranes, etc. are used to calculate the exposure
dose.

Although the parameter estimation of this model is based on in�uenza, the de-
tailed and realistic consideration of the multi-route transmission is applicable to
different types of respiratory infections, including SARS-CoV- 2.

Bouchnita and Jebrane [2020] developed a hybrid model combining an Susceptible
- Exposed - Infectious - Recovered (SEIR) model and a social force model to describe
the transmission of SARS-CoV-2 in 250individuals. The SEIRmodel is a type of com-
partmental models, which models the disease transmission in a closed population,
where four classes of people are identi�ed, namely susceptible, exposed, infectious,
and recovered. This type of model is widely applied to describe the spread of dis-
eases with a long incubation period, such as COVID- 19. The agent-based social
force model allows transmission tracking at the individual level. In this study, it is
assumed that people, all potentially symptomatic, move in random directions in a
square space of 250� 250m2. A pre-symptomatic individual can transmit the virus
to other people via two routes, direct contact (droplets) and indirect contact (for-
mites). The threshold of direct contact is set as 1 meter. It is assumed that the virus
is transmitted when certain interactions such as sneezing, coughing, or handshak-
ing happen. A Bernoulli distribution is assumed for person-person transmission.
The formites transmission rate is based on the estimated lifetime of SARS-CoV-2
surviving on a hard surface and the probability of an individual touching the hard
surface. The demographic characteristics determine the mortality risk of infected
agents. The models simulate the spread of COVID-19 with and without nonphar-
maceutical interventions and are calibrated with real-life data in two situations.

Though the model development is based on a number of unrealistic assumptions,
such as enclosing individuals for 90 days and hard surfaces existing everywhere,
this hybrid framework provides an inspiring solution to incorporate macroscopic
epidemiological models with agent-based pedestrian models for virus transmission
modelling.

An ongoing research conducted by TU Delft and Wageningen university [Duives
et al., 2021], combines 4 models to simulate the risk of SARS-CoV-2 infection of
individuals during a visit to a restaurant, the model chain of which is illustrated
in Figure 2.2. The models include an activity scheduler, a microscopic pedestrian
model, NOMAD, a virus spread model, QVEmod, and a risk identi�cation model.
The activity scheduler determines the strategical choices of individuals, including
activity choices, destination choices, and departure time choices, based on the con-
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text, spatial layout, population, demand, and COVID- 19 control measures. The
NOMAD model, as discussed in Section 2.1, simulates pedestrian routing and move-
ment dynamics based on the minimum walking cost principle. Its output consists
of a set of trajectories which pertain the coordinates and velocity of each individual
at each time step of the simulation. The QVEmod model then takes the output of
NOMAD, combined with the epidemiological attributes of the environment and in-
dividuals, to simulate the emission of virus from infectious individuals, the spread
of the emitted virus in the environment (in droplets, aerosols, and formites), and
the virus dose landed on susceptible individuals at corresponding time steps to
the NOMAD output. The risk identi�cation model then identi�es the risk of indi-
viduals being infected by the accumulated virus dose and interaction locations of
high virus exposure based on the accumulated virus dose in the environment. The
connection between virus dose and infection risk is built based on the exponential
dose-response relationship developed by Nicas [1996].

This research provides an agent-based activity-speci�c simulation framework for
SARS-CoV-2 infection risk identi�cation, with realistic activity planning, route sim-
ulation, virus spread, and the relation between the virus dose and the infection risk.
It makes up for the gap of �tting virus transmission modelling into real-life situa-
tion, the framework of which can be adapted in different scenarios to evaluate the
transmission risk in other public spaces.

Figure 2.2: Model chain of ongoing research to identify the SARS-CoV- 2 transmission risk

To conclude, these multi-route agent-based models all incorporate dose-response
models to de�ne the threshold of infection, referring to empirical dose-response
curve of SARS-CoV-1 [Arav et al., 2020], in�uenza data [Gao et al., 2021], or as-
sumptions of an SEIRmodel [Bouchnita and Jebrane, 2020]. For the consideration of
individual behavior, Arav et al. [ 2020] generate random actions and interactions by
Monte-Carlo simulations at discrete time steps; Gao et al. [2021] use prede�ned fre-
quency of individual behavior from empirical studies; Bouchnita and Jebrane [ 2020]
simulate agent movements by a social force model, incorporated with thresholds of
different types of contact and transmission rates; the ongoing research models the
activity scheduling, routing ans movements, �tting the most realistic pedestrian
behavior to the virus transmission modelling.

Among the reviewed models, only the hybrid modeling framework [Bouchnita
and Jebrane,2020] and the activity-speci�c simulation framework from the ongoing
research [Duives et al., 2021] include both pedestrian interaction simulation and
virus spread simulation in their models, which �ts the scope of this study. However,
as discussed in Section2.1.4, this study separately simulates pedestrian behavior at
different activity spaces for a short time period during an event, which operates
in the same way for the virus spread simulation. Therefore, the activity-speci�c
simulation framework [Duives et al., 2021], which combines the NOMAD model
with a microscopic virus spread model, will be applied in this research.
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2.3 risk assessment

In this section, the risk assessment methods which identify the infection risks from
virus spread simulation results and real-life experiments will be reviewed, as well
as the risk quanti�cation and visualization methods.

2.3.1 Risk identi�cation

The reviewed risk identi�cation methods include approaches used in simulations
and real-life experiments.

Risk identi�cation in simulations

Jitsuk et al. [2020] estimated the SARS-CoV-2 transmission risk of the cancelled
2020Songkran festival in Thailand based on the estimated contact between people
during the festival and the disease transmission rates obtained in Wuhan, China.
Instead of simulating individual contact during the event, this study approximated
an average contact frequency throughout the festival based on historical expense
data and calculated the number of infections in the entire population based on the
initial number of infections before the festival. Although this 'macroscopic' method
provides insights on the possible impact of a national festival, it gives no indication
of the source of infection risk, i.e., which facilities of the event lead to a high possi-
bility of SARS-CoV- 2 transmission, and therefore cannot assist decision making on
interventions and regulations at the event to prevent SARS-CoV- 2 transmission.

To identify the SARS-CoV-2 transmission risk from the accumulated virus doses
on the individuals, obtained from the agent-based virus spread model [Duives et al.,
2021], there are two types of methods. These methods translate the accumulated
virus dose into infection risk by de�ning infection risk according to the pathogen
dose that have been used in previous studies, namely threshold and nonthreshold
models. A threshold model assumes that when the host receives a certain amount
of pathogens, the infection is certain to occur, whereas when the received amount
is smaller than that, the infection will certainly not occur [Nicas and Sun, 2006].
A nonthreshold model de�nes the infection risk as a probability by two parame-
ters, the probability of a single organism infecting the host, denoted as a, and the
expected dose that imparts a 50% chance of infecting a random individual who re-
ceives it, denoted as ID50 [Nicas and Sun, 2006]. They are related by the equation
ID50 = ln(2) � a.

These two models are, in essence, both dose-response models. The nonthreshold
method has been widely applied in infection risk identi�cation studies [Watanabe
et al., 2010; Duives et al., 2021], as it indicates a probability of infection, which
implies how risky a certain amount of virus dose is. Therefore, a nonthreshold dose
response model developed by Nicas and Sun [2006], applied by Duives et al. [ 2021]
will be used in this study. This model builds up an exponential relationship between
the infection risk and the exposure to the number of viral particles from different
transmission routes, as the risk is in�uence by deposition locations (hands, lower
or upper respiratory tract) and the viability of the virus [Deng et al., 2020]. This
equation will be presented and further discussed in Equation 4.23 in Section 4.3.5.

Please note that, although this study separately simulates virus spread in differ-
ent activity spaces, the infection risk is not derived from separate activity spaces.
The purpose of this research is to derive a general risk pro�le of one visit to an
event. As the infection risk is not linearly related to the virus dose, in this study,
the infection risk of one individual from one visit to the event is determined by the
accumulated virus dose after visiting a set of activity spaces. The activity spaces are
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de�ned by the activity schedule derived from a data-driven method, as discussed
in Section 2.1.1.

Risk identi�cation in real-life experiments

Besides estimating the SARS-CoV-2 transmission risk from simulations, studies that
derive the transmission scale from real-life experimental events have also been con-
ducted.

From February 2021 to May 2021, FieldlabEvenementen [2021] have conducted
24 experimental events in the Netherlands, in cooperation with the government,
universities, research groups, event organizers, and voluntary participants. The
experimental events were designed carefully on the scale, facilities, interventions,
and regulations to explore the actual risks of different types of events with different
limitations. Within 24 hours before the events, participants were required to do a
rapid test for COVID- 19 and only people with negative test results are allowed in.
During the events, participants were informed with expected behavioral rules, such
as wearing face masks, keeping social distance, etc. Their trajectories were tracked
throughout the event, from which the contact pro�le was derived, summarizing the
contact characteristics including distance, duration, and time of occurrence. The
contacts were categorized into different risk levels according to the distance and
duration. After the events, the participants were again tested for COVID- 19 and
the number of positive cases are analyzed as an indicator for the event risk. In
conclusion, the experimental events identify the transmission risk directly by the
actual infection and indirectly by tracing high-risk contacts.

The advantage of real-life experiments is self-explaining. The transmission scales
of certain types of events are directly revealed by the infection rate of the participa-
tion population. However, ethical concerns about the experiments exposing partici-
pants to potential high risks of infection have been raised among people including
scientists [de Vrieze, 2021; RTLNieuws, 2021]. Moreover, as the method is based on
tests, the accuracy of tests and the potential infections happened during commuting
to and from the event location both have an impact on the results, which is dif�cult
to measure. On the aspect of decision making support, the experimental results
may have limited capabilities to offer advice on effective measures at future events,
as a small number of experiments may not accurately imply the in�uence of differ-
ent kinds of interventions on the transmission scale. A large number of variables
exist in real-life experiments that are dif�cult to measure and control. For instance,
at the same type of events in similar scale and facilities, the respiratory activities of
people can be very different depending on the live atmosphere, which in turn lead
to very different infection numbers. Therefore, a stable simulation tool that takes
control of variables may be preferred on the aspect of decision making support. In
addition, simulations do not face ethical criticism and can limit the uncertainties in
the experiments, such as infections happened outside the event terrain.

2.3.2 Risk visualization

After identifying the infection probability, it is important to visualize and analyze
the detected risk in order to assist the decision making of COVID- 19 related reg-
ulations. The risk assessment methods being used for existing repository virus
transmission studies are brie�y reviewed in this section.

The most direct method is to simply illustrate the infection probability under
different circumstances in number or bar charts. Gao et al. [ 2021] demonstrated the
SARS-CoV-2 infection risks of 6 transmission routes between one infector and one
infectee by probability. The contribution of each route is identi�ed under different
exposure distances. The relations of infection risk to environmental factors are
derived and visualized in bar charts and line charts.
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Besides using probability, the actual infection number (percentage) has also been
used for risk assessment. Bouchnita and Jebrane [2020] used the infection percent-
age of the population plotted in line charts to illustrate the development of SARS-
CoV-2 penetration since the hospitalization of the �rst patient. The concentration of
SARS-CoV-2 in space and the status of individuals are also visualized in a heat map,
where different colors of nodes represent people of different statuses, as shown in
Figure 2.3.

Figure 2.3: Visualization of individual's infection status and SARS-CoV- 2 concentration in
space (Source: Bouchnita and Jebrane [2020])

Another assessment method is based on the basic reproduction number (R0),
which is the expected number of infections directly generated by one infector in a
population where all the individuals are susceptible [Fraser et al., 2009]. When the
considered population is not fully uninfected, the number is de�ned as the effective
reproduction number ( Re). Similarly, when interventions are taken, controlled re-
production number ( Rc) is used. For the derivation of these R values, usually
large real-life data sets or simulations with the duration from days to months are
used [Nikbakht et al., 2019; Ferretti et al., 2020]. Methods to estimate R0 include
the exponential growth rate-based ( EGR) method, Susceptible - Infectious - Recov-
ered (SIR) models, etc. [You et al., 2020], which usually do not consider the details of
contact between individuals. Although this study only focuses on the infection risk
of individuals at a short-duration event, R0 can be used as an indicator to evaluate
the transmission scale of SARS-CoV-2 in an event under different scenarios.

Besides direct indicators based on infection numbers and probabilities, indirect
indicators have also been used to visualize infection risks. In the study of real-
life experiments by FieldlabEvenementen [ 2021], the contacts between people are
also used as a risk indicator as displayed in Figure 2.4. As epidemiological studies
suggest, the possibility of airborne transmission of SARS-CoV-2 goes up when the
distance between people goes down and the contact time goes up [Harrison et al.,
2020; Morawska and Cao, 2020]. Therefore, categorizing the contacts by duration
and distance can represent the SARS-CoV-2 transmission risk to a certain extent. In
Figure 2.4, each contact category represents a risk level. The longer the duration
is, the more risky the contacts become. The contact distribution of different events
are compared to assess the potential infection risks and the sources of risks at these
events.
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However, as suggested by epidemiological studies [Harrison et al., 2020; Fears
et al., 2020], the risk of SARS-CoV-2 transmission lies beyond close contact. Viral-
laden droplet and aerosol particles remain for minutes and even hours on the lo-
cation where the infectious individuals have stayed, depending on the ventilation
rate. In this case, people can still catch virus by staying at the same location, sev-
eral minutes or hours after the infectious individuals have left, without having any
contact with them. Moreover, fomites transmission cannot be represented by con-
tact tracing, as it happens when people touch the same surface. For events where
touching surface is unavoidable, such as paying for drinks and using the lockers,
the contribution of fomites transmission is not negligible. Therefore, contact tracing
cannot accurately re�ect the SARS-CoV-2 transmission risks during the entire event
and will not be used in this study.

To conclude, considering the simulation setting of this study, the infection risk
of individuals will be assessed by the probability of infection, which is translated
from the accumulated virus dose after performing a set of activities. To evaluate
the overall risks of individuals at the event, the number of infected individuals and
R0 will be the indicators to compare different event scenarios. The risk in different
types of event spaces will be analyzed on the scale of virus exposure, which is
visualized in bar plots.
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