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Summary

Self-learning controllers offer various strong benefits over conventional controllers, the most
important one being their ability to adapt to unexpected circumstances. Their application is
however limited, the most important reason being that, for self-learning controllers to work on
continuous domains, nonlinear function approximators are required, and as soon as nonlinear
function approximators are involved, it is uncertain whether convergence will occur.

This project has as goal to contribute towards achieving convergence guarantees. The first
focus lies on using reinforcement learning, combined with neural network function approxima-
tion, to create self-learning controllers. A reinforcement learning controller architecture has
been set up which is capable of controlling systems with continuous states and actions. Also
an extension has been made that enables the controller to freely vary its timestep without
any significant consequences.

A literature research has shown that there are no convergence proofs yet of practically feasible
reinforcement learning controllers with nonlinear function approximators. Several proofs of
convergence for the case of linear function approximators have been provided. Also, a proof
exists that a certain reinforcement learning controller algorithm with nonlinear function ap-
proximation converges. However, the corresponding learning algorithm requires an infinite
amount of iterations for the value function to converge even before the policy is updated,
making it practically unfeasible.

The reasons why convergence often does not occur for reinforcement learning controllers
with neural network function approximators include overestimated value functions, incorrect
generalization, function approximators incapable of approximating the actual value function
and error amplification due to bootstrapping. Furthermore, when convergence does occur,
it’s not necessarily to a global optimum. Ideas to solve these issues have been offered, but
it is still far from certain whether these ideas will work. Furthermore, they will make the
algorithm very complex. Proving that the resulting algorithm will converge, even if it’s only
convergence to a local optimum, will prove to be extremely difficult, if it is at all possible.
Hence reinforcement learning controllers with neural network function approximators do not
seem to be appropriate if convergence to the global optimum needs to be ensured.

The literature research has also revealed that so far no attempt has been made in combining
reinforcement learning with interval analysis. To investigate the possibilities of combining
these two fields, the intervalQ-learning algorithm has been designed. This algorithm combines
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a discrete version of Q-learning with interval analysis techniques. This algorithm has proven
convergence for the discrete case.

Subsequently, the discrete interval Q-learning algorithm has been expanded to the continu-
ous domain. This was done using the main RL value assumption, which assumes that the
derivatives dQ/dsi and dQ/daj , for every state parameter si and action parameter aj , have
known bounds. The resulting continuous interval Q-learning algorithm was shown to have
proven convergence to the optimal value function Q∗. Furthermore, bounds on how fast the
algorithm converges were given.

The most important downside of the first version of the continuous interval Q-learning algo-
rithm was its slow run-time. This made the algorithm practically infeasible. To still meet
the goals of the project, a different function approximator was designed. This function ap-
proximator used many small blocks to bound Q∗ in every part of the state-action-space.
Furthermore, the number of blocks was increased dynamically as the algorithm learned, thus
giving the function approximator a theoretically unlimited accuracy. Though the resulting
algorithm used information slightly less efficiently than its precursor, its run-time was signif-
icantly improved. It became practically feasible to apply this algorithm.

In the end of the report, the algorithm has been applied to a few simple test problems. An
important parameter here was the dimension D of the problem, which equals the sum of
the number of state and action parameters. For two- and three-dimensional problems, the
algorithm was able to sufficiently bound the optimal value function Q∗ quite quickly, resulting
in a controller with satisfactory performance. For the cart and pendulum system, which is
a five-dimensional problem, this turned out to be different. A long training (in the order of
several hours or more) will be required before a satisfactory performance can be obtained.
However, since the algorithm has proven convergence to the globally optimal policy, this does
not necessarily have to be a big problem.

Finally, it is mentioned that this thesis report has introduced the world’s first combination of
reinforcement learning and interval analysis. It also introduced the world’s first practically
feasible continuous RL controller with proven convergence to the global optimum. The key
to accomplishing such a controller turned out to be (A) letting go of conventional ways of
designing continuous RL controllers, and (B) quantifying the assumption that the value Q of
two nearby states s and s′ are similar through the main RL value assumption.
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Acronyms

ANN Artificial neural network
CAP Cart and pendulum
CF Centered form
CMAC Cerebella model articulation controller
DHP Dual heuristic programming
GDHP Global dual heuristic programming
GMM Gaussian mixture model
HDP Heuristic dynamic programming
IA Interval analysis
LQR Linear quadratic regulator
LSPI Least-squares policy iteration
MAS Multi-agent system
MDP Markov decision process
MSE Mean-squared error
MTF Monotonicity test form
MVF Mean value form
NDP Neuro-dynamic programming
NEAT Neuro-evolution of augmenting topologies
NN Neural network
PDF Probability density function
RBF Radial basis function
RGD Restricted gradient-descent
RL Reinforcement learning
RMS Root mean square
RRL Relational reinforcement learning
SF Slope form
TD Temporal difference
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Part I

Introductory matter
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Chapter 1

Introduction

In the world of control theory, controllers are usually static programs. They cannot adjust to
unexpected circumstances. Self-learning controllers, due to their learning abilities, can cope
with unexpected events. Applying self-learning controllers thus seems like a significant step
forward, not only towards making control systems more effective, but also to making them
more safe. Possible applications, for example in the world of aerospace engineering, are legion.

The reason why self-learning controllers, and specifically reinforcement learning controllers
with function approximators, aren’t broadly applied yet, is because they have several issues.
The current project has as aim to contribute towards solving these issues. First the issues
themselves are investigated. Then a literature survey is conducted on how far along mankind
is at solving them. Finally an additional contribution is made towards solving the issues
involved in continuous reinforcement learning.

Part I offers an introduction into the problem to be solved. This is mainly done in chapter
2, which examines the problem to be solved, as well as what needs to be accomplished to
solve the problem. Next, part II offers summarized background knowledge on all required
techniques used in the remainder of this report. Chapter 3 is on reinforcement learning,
chapter 4 discusses neural networks, chapter 5 discusses combining reinforcement learning
with function approximation and chapter 6 contains a summarized introduction into interval
analysis. The readers that already have background knowledge in these fields may skip this
part of the report.

Part III discusses a literature research on reinforcement learning with function approximation.
Chapter 7 contains a rather specific literature research focused on the exact problem to be
solved. At the end of this chapter is a summary on the findings of this literature research,
listing which problems arose in literature and what the possible solutions are. On the other
hand, chapter 8 goes into depth on subjects less directly related to the problems involved with
reinforcement learning and function approximation. However, as can be read in this chapter,
fields not directly related to reinforcement learning can still provide ample inspiration to
improve the reinforcement learning algorithm.

Next, part IV offers an initial problem analysis. Chapter 9 offers a discussion on setting up
a reinforcement learning controller for a cart and pendulum system. It looks at the issues
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involved in doing so and then examines whether it is possible to prove (global) convergence of
such an algorithm. Chapter 10 offers a completely different approach. It examines whether it
is possible to combine interval analysis and Q-learning. The subsequent interval Q-learning
algorithm for discrete RL systems shows that such a combination is indeed possible.

In the final part, part V, the discrete interval Q-learning algorithm is expanded to the contin-
uous domain, resulting in the continuous interval Q-learning algorithm. Chapter 11 sets up
the theory behind the algorithm and also proves that it indeed always converges to the global
optimum. Chapter 12 then shows that the designed algorithm is too slow to be practically
feasible. It then continuous by developing an alternative function approximator, which is
only slightly less efficient in its data usage, but is fast enough to be practically feasible. The
resulting algorithm is then applied to several practical problems. In the end, in chapter 13,
some conclusions and recommendations are given.

Finally, there are also two appendices. Appendix A contains various mathematical theo-
rems and proofs, while appendix B discusses the author’s thoughts on developing human-like
artificial intelligence.

It is hoped that this thesis report contributes towards improving reinforcement learning con-
trollers and brings them one step closer towards actually being implemented in the world
around us.
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Chapter 2

Problem statement

Self-learning controllers are a very promising type of controllers. One of the reasons they
are not yet so widespread is because there are still some issues in their implementation. In
this chapter, these issues will be examined, as well as what needs to be done to solve them.
Section 2-1 will look at some general complications involved in controlling systems using self-
learning controllers. After that, section 2-2 discusses the working principle of a basic cart
and pendulum system, while section 2-3 discusses the goals of the current project and of this
report.

2-1 Issues in self-learning controllers

Imagine that self-learning controllers would work well, and would be widely applied across
this planet. What benefits would this have? Of course it would prevent the need to make
adequate controllers for every system all the time. It would save a lot of time, manpower and
money. But that is not the only (and not even the most important) benefit.

In aviation, it regularly occurs that an airplane encounters some unexpected phenomenon.
For example, an engine may fall off as occurred during the Bijlmercrash (El Al Flight 1862) in
October 1992, see (Raad voor de Luchtvaart (Netherlands Aviation Safety Board), 1994), the
airplane might fly too slowly as was the case for the Buffalo crash (Colgan Air Flight 3407) in
February 2009, see (Aviation Safety Network, 2009), or something as simple as a pitot tube
icing may occur, as happened with Air France Flight 447, see (BEA (Bureau d’Enquêtes et
d’Analyses pour la sécuritéde l’aviation civile), 2011). If something like this happens, the
autopilot realizes it has not been designed for the current situation and shuts off. The pilots
are thrust back in control. However, often the pilots know less about the current situation
than the autopilot does. Subsequently, it often happens that the pilots choose the wrong
course of action and crash the airplane, as has happened in the three previously mentioned
examples.

It would be much better if the autopilot would be able to adapt to unknown circumstances.
Conventional controllers cannot do such a thing. Self-learning controllers can. They can learn
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6 Problem statement

how to cope with new unknown circumstances on the fly. Or what would be even better:
they could be trained to handle thousands, if not millions, of different possible unexpected
circumstances. Giving every pilot in the world such a training would be economically (if not
practically) impossible. Giving one computer such a training and then copying the result to
all airplanes would be possible. If an unexpected situation then arises, the smart autopilot
would recognize it from its earlier training and quickly adapt in the optimal way – something
a pilot could rarely, if ever, do.

So why aren’t these self-learning controllers applied? The reason is that they are not reliable
enough yet. When these self-learning controllers are trained, they sometimes learn the right
behavior, but sometimes they do not. It can occur that the learning algorithm converges
to a sub-optimal behavior, to an erroneous behavior, or it may not converge at all. This
phenomenon has occurred countless of times in literature, but it still isn’t well-understood,
nor (as will be seen in chapter 7 of this report) has anyone found a conclusive solution yet.

If a self-learning controller would ever be applied on an aircraft, there need to be guarantees
that it learns the right behavior. Without such guarantees, it would be impossible to get
the controller certified. One goal of the current project is thus to explore ways with which
convergence of self-learning controllers to the optimal behavior might be ensured. This report
provides a preliminary exploration on the subject.

2-2 The cart and pendulum system

Once a controller has been made, it needs to be tested on a system. One very popular and
well-known system in the world of control theory is the cart and pendulum (CAP) system.
According to (Russell & Norvig, 2003), ‘over two thousand papers in reinforcement learning
and control theory have been published on this seemingly simple problem.’ This section briefly
discusses how the system works and will continue on why this is such a relevant problem.

2-2-1 The dynamics of the cart and pendulum system

The cart and pendulum system consists, as might have been guessed, of a cart with a pen-
dulum on top of it, as shown in Figure 2-1. The goal of the system is first of all to keep the
pendulum up-right. In other words, the clockwise rotation α should be kept at 0 degrees. If
the angle becomes too big (say, |α| > 10◦), the simulation is terminated. The second goal of
the system is to keep the horizontal position of the cart at xc = 0. If the cart is too far off
(say, |xc| > 1 m), the simulation is terminated as well.

The CAP system has various parameters. First of all, there is the length L of the (massless)
pendulum. In this report, it has been set to L = 1 m. There are also the mass of the cart
mc = 4 kg and the mass of the ball attached to the pendulum mb = 1 kg. Finally, there is
the gravitational coefficient g = 9.81 m/s2.

There is only one way to control the cart and the pendulum: through a horizontal force F
applied to the cart. This force is bounded by |F | ≤ Fmax = 10 N and should be used to
satisfy the two goals mentioned earlier. Before it can be figured out how this can be done,
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2-2 The cart and pendulum system 7

Figure 2-1: Visualization of the cart and pendulum system. Visible are the cart, the pendulum,
the controlling force F and the terminating boundaries.

first the dynamics of the system need to be analyzed. It can be shown using basic mechanics
that α̈ equals

α̈ = − α̇2L sin(α) cos(α)mb + F cos(α)− (mb +mc)g sin(α)

L(mc +mb sin
2(α))

. (2-2-1)

Once α̈ has been found, also the horizontal force Fx that is exerted between the pendulum
and the cart can be found. It equals

Fx =
mb

mb +mc

(

mcL cos(α)α̈+ F −mcL sin(α)α̇2
)

. (2-2-2)

With this force, it is easy to find the second derivative of the horizontal cart position xc. It
is given by

ẍc =
F − Fx

mc
. (2-2-3)

By numerically integrating α̈ and ẍc, the four state parameters α, α̇, xc and ẋc can be found.
Since simulation accuracy is not a necessity here, the numerical integration simply takes place
by multiplying the derivatives by the relatively small time step.

2-2-2 Goals of the controller

One important goal of this report is to write a controller that adequately learns to control
that CAP system. With ‘adequate’, several things are meant. The controller should...

• Keep the pendulum up-right.

• Get the cart near the reference position. Even in case of a changing reference position,
the cart should follow the reference position.

• Do the above without any significant (unnecessary) oscillations.
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• Do the above without any significantly high input values.

Furthermore, the controller will not be given any data on the dynamics of the system. It
should figure this out entirely on its own. Of course the controller will know the dimension
of the state vector, as well as the dimension of the input vector, but no system dynamics are
provided.

So how can the controller learn the system behavior? It will simply have to provide an input
F to the system, observe what happens to the state s and learn from this. From this, it
should then learn how to control the system. If possible, it should to this in a reasonable
time. What is more important though, is that convergence is guaranteed. The chance that
the wrong behavior is learnt should be minimized, or preferably even avoided altogether.

2-2-3 The relevance of the cart and pendulum system

The question remains: why is the CAP system so popular? One of the most important reasons
is that it is a very simple system that still contains many of the same characteristics as its
more complicated counterparts.

First of all, there is the integrative (delay) kind of behavior. The input force F only affects
ẋc and α̇. The parameters to be controlled, however, are xc and α. This is similar to an
aircraft where, for example, the elevator deflection only affects the pitch rate q, while the
actual parameter to be controlled is the pitch angle θ or the angle of attack α.

Secondly, the CAP system has a complicated dynamic behavior. To see how, imagine that
the pendulum is positioned perfectly upright (α = 0) at xc = 0 m and needs to be moved
to xc = 1 m. To achieve this, the cart needs to be moved to the right, but if this is done
directly, the pendulum will fall to the left. Instead, the cart should first be moved to the left
(in the opposite direction) to cause the pendulum to fall to the right. Then, to ‘catch’ the
pendulum, the cart can also be moved to the right. Subsequentially, the cart should overshoot
the desired position xc = 1 m a bit, slow down and move back to xc = 1 m to once more get
the pendulum upright.

This behavior of ‘first going into the wrong direction’ is a type of behavior that not all
controllers can learn. However, such behavior is present in an airplane. (For example, when
you’re in a stall and want to gain altitude, you should first dive down; i.e., move in the ‘wrong’
direction.) So any controller architecture that might one day aspire to control an airplane
should easily be able to cope with the relatively simple CAP system.

So it is seen that the CAP system is a simple system that is easy to analyze, but still exhibits
many of the same complicated types of behaviors as an actual airplane. It is thus ideal to
test potential controllers on. One more goal of this report is to find out how to set up and
then actually produce a self-learning controller that is able to learn how to control a CAP
system, subject to the requirements mentioned in the previous subsection. Subsequentially,
some ideas should be postulated on how it might be possible to ensure that the self-learning
controller always learns the optimal behavior.
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2-3 Goals of the project and of this report 9

2-3 Goals of the project and of this report

The current project has various goals. Some have already been described earlier in this
chapter. Now all goals are stated below.

• Examine how self-learning controllers can be applied to continuous systems like aircraft.
Also explore any arising issues.

• Find ways to combine interval analysis with reinforcement learning. Interval analysis
is a promising technique that is often used to bound parameters. It might be used to
ensure that the reinforcement learning algorithm stays bounded and actually converges.
How this should be done is something that needs to be examined.

• Explore ways with which convergence of self-learning controllers to the optimal behavior
might be ensured.

• Set up a self-learning algorithm and prove its convergence, either to a local optimum or
(preferably) to the global optimum.

• Test the resulting algorithm on the representative cart and pendulum system to analyze
its performance.

This report describes the process of achieving these goals throughout the research project.

Guaranteed Globally Optimal Continuous Reinforcement Learning Hildo Bijl



10 Problem statement

Hildo Bijl Guaranteed Globally Optimal Continuous Reinforcement Learning



Part II

Background knowledge
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Chapter 3

Reinforcement learning

Reinforcement Learning (RL), in some literature also calledNeuro-Dynamic Program-
ming (NDP), is a technique with which learning controllers can be made. This chapter intro-
duces the technique and discusses its possibilities and limitations. Concepts in this chapter
have mainly originated from (Babuška, 2010), (Sutton & Barto, 1998) and own derivations,
though (Russell & Norvig, 2003), (Qiang & Zhongly, 2011) and (Webb, 2002) have also
contributed insights.

3-1 Basics of reinforcement learning

3-1-1 Definitions in reinforcement learning

In reinforcement learning (RL), there is an agent and an environment. At every time
instance k, the agent has a certain state sk ∈ S. During every step, the agent needs to
choose one of the possible actions ak ∈ A. It then reaches a new state sk+1. By doing this,
it gets an immediate reward rk+1 ∈ R from the environment.

The goal of the agent is to maximize the total reward Rk. This total reward is a function
of all future rewards. Often, the sum is used. So, Rk = rk+1+ rk+2+ . . .. Another often-used
function is

Rk = rk+1 + γrk+2 + γ2rk+3 + . . . =
∞
∑

n=0

γnrk+n+1. (3-1-1)

The parameter γ, which satisfies 0 ≤ γ ≤ 1, is called the discount rate, or sometimes also
the decay factor. It basically says that rewards obtained in the near future are more valuable
than rewards obtained in the far future. Note that, if γ = 1, then again the first definition
of the total reward is used. In this report, only the discounted version of the total reward is
considered, since it is more general.

The main idea behind reinforcement learning is to find the optimal policy. A policy is a
mapping: for every state s, it maps which action a is chosen by the agent in that state. For
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14 Reinforcement learning

some problems it is possible to write a = π(s). That is, the action a is uniquely defined by
the state s. Such a policy is called a deterministic policy: for every state s, always the
same action a is chosen. However, for some problems it’s better to use a stochastic policy.
In this case, the policy is described by Π(s, a), where Π(s, a) denotes the probability that in
state s action a is chosen by the agent.

3-1-2 The environment

The amount of knowledge on the environment that is available varies per problem. In some
problems, the agent doesn’t fully know the state of the environment. (Think of games like
poker.) Such problems are called partially observable problems. These types of problems
are very difficult to deal with and will not be discussed further in this report. Instead, this
report only considers fully observable problems, in which the state of the environment is
always fully known. (An example of a fully observable problem is chess)

Now consider an agent that is in some state sk and chooses an action ak. Also, all the previous
states and actions sk−1, ak−1, sk−2, ak−2, . . . are known. In a deterministic environment,
it is always certain which state sk+1 the agent winds up in. (Again, think of chess.) This is
not the case in problems (like for example backgammon) with a stochastic environment.
Now, the probability that the agent reaches the state sk+1 is denoted by

P (sk+1|sk, ak, sk−1, ak−1, sk−2, ak−2, . . .) . (3-1-2)

Consider the above relation. As times progresses, the list of past state and actions sk, ak, . . .
becomes very long and cumbersome. Therefore, it is often assumed that the system has
the Markov property. This means that the new state and reward at time k + 1 only
depend on the state and action at time k. Thus, the above probability is simply written as
P (sk+1, rk+1|sk, ak). An RL task which satisfies this property is called a Markov decision
process (MDP). In this report only Markov decision processes will be considered.

For MDPs, a shorter notation can be used. The state transition probability function is
written as

Pa
ss′ = P

(

sk+1 = s′|sk = s, ak = a
)

. (3-1-3)

Similarly, the expected reward is defined as

Ra
ss′ = E

{

rk+1|sk = s, ak = a, sk+1 = s′
}

. (3-1-4)

3-1-3 The value function

Again, consider an agent in some state s. This agent also has a policy π. The value function
V π(s) is defined as the expected total reward Rk when the policy π is used. So,

V π(s) = Eπ {Rk|sk = s}

= Eπ

{

∞
∑

n=0

γnrk+n+1|sk = s

}

, (3-1-5)

where Eπ is the expectation operator, given that the agent follows the policy π. (Note that
for deterministic problems the expectation operator can be omitted from the above equation.)
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In a similar way, the action-value function Qπ(s, a) is defined as the expected total reward
Rk when an agent chooses action a in state s and follows the policy π afterwards. So,

Qπ(s, a) = Eπ {Rk|sk = s, ak = a}

= Eπ

{

∞
∑

n=0

γnrk+n+1|sk = s, ak = a

}

. (3-1-6)

When applying RL, always either V or Q is used, but never both. As will be seen later,
sometimes V is more convenient to use, while sometimes Q works better. Since this varies
per problem, for now both V and Q will be discussed.

The goal of reinforcement learning is to find an optimal policy π∗. This optimal policy π∗

is the policy π which maximizes the value function V π or, alternatively, Qπ. How this policy
can be found depends on the type of problem. Several types of problems will be considered
in the upcoming sections.

3-2 Model-based RL

In model-based RL it is assumed that a model of the environment is known. That is, the
state transition function P (sk+1|sk, ak) is known, or accurately approximated. The whole
point of an RL agent is that it learns to choose good actions. How can it do that? That will
be discussed now.

3-2-1 The Bellman optimality equation

Imagine that the agent is in a state s and chooses an action a. If it does this, then there is a
chance Pa

ss′ that it winds up in the state s′. In this state, the expected total reward E {Rk}
will be the sum of the immediate reward Ra

ss′ , and of the expected total reward of future
states γV ∗(s′). (Note that a discount rate has to be added.) Of course, the agent wants
to choose the action a which maximizes its expected total reward. This logic results in the
recursively defined Bellman optimality equation

V ∗(s) = max
a

∑

s′

Pa
ss′
(

Ra
ss′ + γV ∗(s′)

)

. (3-2-1)

A similar equation can be derived for Q. This gives

Q∗(s, a) =
∑

s′

Pa
ss′

(

Ra
ss′ + γmax

a′
Q∗(s′, a′)

)

. (3-2-2)

The trick is to find the value function V or Q that satisfies this optimality equation. This
can be very hard, as will be seen in the remainder of this section.

Suppose for now that the optimal value function V ∗ or Q∗ is found. How can one then find
the optimal policy? In this case the optimal policy is the so-called greedy policy. The agent
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simply takes the action a that maximizes the value function (i.e. the expected total reward).
In an equation this becomes,

π(s) = argmax
a∈A

∑

s′

Pa
ss′ (Ra

ss′ + γV π(s)) , (3-2-3)

π(s) = argmax
a∈A

Q∗(s, a). (3-2-4)

3-2-2 Finding the optimal value function

There are two often-used methods to find the optimal value function V ∗ or Q∗: policy iteration
and value iteration.

In policy iteration, one starts off with a certain initialization V0(s) of the value function
and with a certain policy π. Then several iterations are performed, each containing a policy
evaluation step and a policy improvement step. In the policy evaluation step, the current
policy π is used to update the value function. This is done according to

Vn+1(s) = Eπ {rk+1 + γVn(sk+1)} =
∑

s′

Pa
ss′
(

Ra
ss′ + γVn(s

′)
)

, (3-2-5)

with a = π(s). This is continuously done for all states s until the value function Vn+1(s)
converges. Next, in the policy improvement step, the new value function is used to improve
the policy π. In fact, the new policy will be the greedy policy π, corresponding to the new
value function Vn+1(s). It can be shown that every policy results in improved performance.
Eventually the algorithm is guaranteed to converge to the optimal policy π∗.

The policy iteration method has a drawback. Sometimes, the policy evaluation step takes
a long time to converge. A solution is the value iteration method. In this method, one
does not wait for the value function to converge. Instead, one simply updates the value
function Vn+1(s) once for every state s, after which the policy improvement step immediately
commences. This simplification effectively turns the whole iteration into one equation, being

Vn+1(s) = max
a

E {rk+1 + γVn(sk+1)|sk = s, ak = a}

= max
a

∑

s′

Pa
ss′
(

Ra
ss′ + γVn(s

′)
)

. (3-2-6)

3-3 Model-free RL

Previously, it was assumed that a model of the environment was known. This is not always
the case though. It is also possible to drop an agent into an unknown world. The only way
in which it can then learn is by exploring: trying actions and seeing what rewards it will get.
But in what way should it explore, and how does it learn from it? In this section several
solutions to those questions are discussed.
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3-3-1 Temporal difference methods

The most often used methods in model-free RL are the temporal difference (TD) methods.
Suppose that the agent is in some state sk. It then goes to a state sk+1 in which it receives
a reward rk+1. In TD methods, this reward is used to update V (sk). This actually makes
sense: if rk+1 is big, then V (sk) should also have been big, while if rk+1 is small, then V (sk)
should have been small as well.

The equation that is used in TD methods is

V (sk) ← (1− αk)V (sk) + αk (rk+1 + γV (sk+1))

= V (sk) + αk (rk+1 + γV (sk+1)− V (sk))

= V (sk) + αkδk. (3-3-1)

In the above equation, αk is the learning rate at time k. Also, δk = rk+1+γV (sk+1)−V (sk)
is a quantity known as the TD-error.

3-3-2 Eligibility traces

One might be wondering, why is rk+1 used to only update V (sk). Isn’t it better to use rk+1

to update V (sk−1), V (sk−2), . . . as well? Well, it is. The question just is: how much should
they be updated?

For this, the eligibility trace ek(s) is used. This eligibility trace can be seen as the ‘strength’
of the relation between the reward rk+1 and the state s. If the state s occurred very recently
(for example, s = sk−1) then there is a relatively strong relation between s and rk+1, so ek(s)
should be big. On the other hand, if (for example) s = sk−20, then ek(s) should be small. So
ek(s) can be defined as

ek(s) =

{

γλek−1(s) if s 6= sk,

1 if s = sk.
(3-3-2)

The parameter λ is called the trace-decay parameter. (γ is still the discount rate.) Based
on this eligibility trace, the value function V (s) can be updated. The change in V (s) (denoted
as ∆V (s)) is now given by

∆V (s) = αδkek(s). (3-3-3)

The above method is called replacing eligibility traces: every time a state s is visited, its
trace is replaced by the number 1. Alternatively, one can also use accumulating eligibility
traces. This turns the update relation into

ek(s) =

{

γλek−1(s) if s 6= sk,

γλek−1(s) + 1 if s = sk.
(3-3-4)

In this way, when a state s is visited more often, eligibility traces accumulate for that state.
Depending on the problem to be solved, this might make the RL agent learn faster or less
fast.
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3-3-3 Q-learning

Another model-free RL method is Q-learning. It is a so-called off-policy method: it learns
the Q-function for the greedy policy, even when it uses a totally different policy. To start,
the function Q(s, a) is given initial values. It is then updated using

Q(sk, ak) ← Q(sk, ak) + α
(

rk+1 + γmax
a

Q(sk+1, a)−Q(sk, ak)
)

= Q(sk, ak) + αδk. (3-3-5)

How does this work? Suppose that the value Q(sk, ak) requires updating. The agent then
starts in the state sk and chooses action ak, bringing it to the state sk+1 with immediate
reward rk+1. This data is used to update Q(sk, ak). The new value depends on the old value,
the immediate reward rk+1 and the maximum expected future reward Q(sk+1, a) which the
agent expects to be able to get. This method has proven convergence, as long as all state-
action pairs (sk, ak) are continually visited during execution of the learning algorithm.

It is also possible to add eligibility traces to the Q-learning method. This turns the above
equation into

Q(s, a)← Q(s, a) + αδkek(s, a). (3-3-6)

3-3-4 SARSA

Another method, which is somewhat similar to Q-learning, is the SARSA method. (SARSA
stands for State, Action, Reward, State, Action.) But contrary to Q-learning, SARSA is an
on-policy method. That is, it does follow a policy π or Π, and it learns the Q-function for
that particular policy.

How does it work? The agent simply walks around in its environment according to its policy
π (or Π). So when it is in state sk, it select the action ak = π(sk). (Or similarly, the chance
that it chooses ak equals Π(sk).) It then updates the value function Q(sk, ak) according to

Q(sk, ak)← Q(sk, ak) + α (rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)) . (3-3-7)

The Q-learning method is very suitable when it is easy to change the state sk to any required
state. (For example, it is easily possible to place the robot agent at any position in the maze.)
If this is not possible, and the only way to change the state is by choosing an action, then
the SARSA method is more suitable.

3-3-5 Exploration

When applying the SARSA method, which policy π should be used? That is a difficult
question. It is important that all states s are visited. One option is to always choose greedy
actions which have the highest expected rewar, but this is likely to prevent the agent from
reaching certain states s or trying certain actions a. It could be missing out on a very good
action a.

Instead, to learn well, the agent should also do explorative actions. These actions have a
lower expected reward, but the goal of choosing them is to learn. It might just be possible
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to find an action that has a very high reward, which will improve the rewards of the greedy
actions. The trick now is to find a good balance between greedy and explorative actions.
There are several ways to do this. The most well-known type of methods are known as
undirected exploration methods. The word ‘undirected’ simply means that chances are
used in selecting actions.

The most simple undirected exploration method is the ε-greedy policy. In this method,
there is a chance ε that a random action is selected. In the other case (with chance 1− ε), a
normal greedy policy is followed, and thus the action with the highest Q(s, a) value is chosen.

Another type of undirected exploration is Max-Boltzmann exploration, also called soft-
max exploration. Now the chance that an action a is chosen is given by

P (a|s) = eQ(s,a)/τ

∑

a′ e
Q(s,a′)/τ

. (3-3-8)

The parameter τ is a variable that determines how much is explored. If τ = ∞, actions are
selected fully randomly (as if ε = 1), but if τ = 0, a greedy policy is used.

One could also use optimistic initial values. What this means is that Q(s, a) (or alterna-
tively, V (s)) is given very high initial values. Subsequently, a greedy policy with a normal
updating method for Q is used. When the agent tries an action a, the Q(s, a) value will very
likely decrease, so the next time it arrives at state s, it will choose a different action. Only
if, for some action a, the value of Q(s, a) stops to decrease, will the agent continue to choose
the same action a. This is then quite likely the best action.

A very interesting question to ask is: how much should be explored? This is called the
exploration vs. exploitation dilemma. Initially the agent should explore quite a bit.
But, as time progresses, and the agent probably has found some good sets of actions, it
should also exploit its knowledge, to cash in on the high rewards. Thus, when applying an
ε-greedy policy or a Max-Boltzmann policy, the value of ε or τ should decrease over time.
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Chapter 4

Neural networks

Reinforcement learning is a promising technique, but it has a downside. When the number of
states increases, or when the state is continuous (and there are thus infinitely many possible
states) it is computationally impossible to calculate the value for every state. The solution
to this problem is to use a function approximator.

One such a function approximator is an (Artificial) Neural Network (ANN/NN). ANNs
are imitations of biological neural networks, like human brains. They can be very adept
at approximating nonlinear functions, even when only few training data is available. This
chapter introduces the basic principles of ANNs, starting with individual neurons, building
up to complete neural networks, continuing with the backpropagation learning algorithm and
ending with possible improvements to NNs. Concepts in this chapter have mainly originated
from (Babuška, 2010), (Haykin, 1999), (Zalzala & Morris, 1996), (Graupe, 1997), (Russell &
Norvig, 2003) and own derivations.

4-1 The basic set-up of a Neural Network

4-1-1 The neuron

The basic building block of an ANN is a neuron, as shown in Figure 4-1. A neuron has
several inputs xi. Each of these inputs is multiplied by a weight wi and then added up.
Often, a bias b is added as well. The result is the neuron’s activation z. So,

z =

p
∑

i=1

wixi = wTx or z =

p
∑

i=1

wixi + b =
[

wT b
]

[

x
1

]

. (4-1-1)

From the above equation, it can be seen that adding a bias b works the same as adding
an additional input with weight b and value 1. Therefore, the relation z = wTx can also
incorporate the bias and will thus be used in the remainder of this report.
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w

w
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σInputs Output

Figure 4-1: Overview of a Neuron. Inputs are multiplied by weights, summed up and fed into a
sigmoidal function. The result is the Neuron output.

Once the neuron’s activation z has been obtained, it is fed into the activation function
σ(z). Which activation function is used depends on the ANN designer’s choice. Common
activation functions are the threshold function and the sigmoidal function, respectively
defined as

σ(z) =

{

−1 for z < 0

1 for z ≥ 0
and σ(z) =

1− exp(−sz)
1 + exp(−sz) , (4-1-2)

or the Radial Basis Function (RBF) φ(||x− c||), where often

φ(r) = exp
(

−(σr)2
)

. (4-1-3)

Also, c is the RBF center, while σ determines the width of the RBF. In this report, the
sigmoidal function as defined above will be used. In this function, the parameter s determines
how ‘steep’ the sigmoidal function is. If s→∞, then the threshold function is again obtained.
In this report s = 1 is used. The output of the activation function σ(z) subsequently becomes
the output y of the neuron.

4-1-2 The neural network architecture

An artificial neural network consists of interconnected neurons. (That is, the output of one
neuron is fed as input to the next neuron.) The neurons are usually assembled in layers. In
a feedforward network, the neurons of every layer are connected to the next layer. On
the other hand, in recurrent networks, neurons are also connected to previous layers as
some sort of ‘feedback mechanism’. When using an ANN as a function approximator in an
RL scheme, the advantages of feedback mechanisms are very limited, so therefore this report
will only consider feedforward networks. An example of a feedforward network is shown in
Figure 4-2.

NNs always have an input layer (at the start) and an output layer (at the end). There
are also hidden layers in between. In this report, only one hidden layer is used. The
reason is that multiple hidden layers make the neural network computationally much more
complex, while one (sufficiently large) hidden layer is already capable of approximating any
continuous function. It has also been verified with tests (which for reasons of brevity will not
be elaborated here) that using multiple hidden layers will significantly increase the runtime,

Hildo Bijl Guaranteed Globally Optimal Continuous Reinforcement Learning



4-1 The basic set-up of a Neural Network 23
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Figure 4-2: Overview of a neural network. Inputs are fed into the input layer, pass through one
or more hidden layers and are then fed through the output layer as output of the neural network.

while not having a significant improvement on performance. Nevertheless, for generality, this
chapter will still explain the theory of NNs with multiple hidden layers.

Every hidden layer has a number of neurons. Choosing this number is very important, but
also very difficult. If one uses too few neurons, then the neural network can’t approximate the
desired output function well enough. If however one uses too many neurons, then overtraining
may occur: the system only works on the few test samples that have been provided, but is
useless for any other input. Furthermore, it would increase the runtime of the learning
algorithm. Generally, the number of hidden neurons primarily depends on the number of
training samples (having more training samples implies that more neurons can be used) and
the complexity of the output function (more complex output functions often require more
neurons). Designer’s experience and intuition play a large role in deciding this number.

4-1-3 Finding the output of a neural network

Consider again the network shown in Figure 4-2. Given an input x, how is the output y of
this network defined? To answer this question, one starts at the input layer. This input layer
doesn’t really do anything with this input. It only passes it on to every neuron of the first
hidden layer.

Next, consider any hidden layer j. The input to hidden layer j is denoted by xh
j . (Note that

xh
1 = x.) The weight matrix of this layer is given by

W h
j =













wh
j1

T

wh
j2

T

...

wh
jpj

T













, (4-1-4)

where pj is the number of neurons in layer j. Also, wh
ji is the weight vector of neuron i in

hidden layer j of the network. The activation zji of any hidden neuron i in this layer j can now

be found using zji = wh
ji

T
xh
j . But of course there are multiple hidden neurons. Therefore,

the general equation for the layer activation zj of layer j is

zj = W h
j x

h
j . (4-1-5)
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The layer output yj of layer j is then given by yh
j = σ(zj). The output of this layer then

becomes the input for the next layer. Thus, xh
j+1 = yh

j .

This continues until the output layer is reached. This output layer does have a weight matrix
W o, but no activation function is applied. The output of the neural network is thus given by

y = W oxo, (4-1-6)

where xo is the input to the output layer. (It equals the output of the last hidden layer.)

It is interesting to note that the input signal ‘flows’ through the network, through all layers,
until the output layer is reached. Every time, the signal is fed forward to the next layer. This
is the reason why such a network is called a feedforward network.

4-2 Training neural networks

Before ANNs work, they need to be trained. That is, their weights (and biases) need to
be set such that certain inputs give certain outputs. Suppose that a set of inputs X with
corresponding desired outputs D is known. How does one then find the right weights? Several
techniques exist. One of the simplest is the backpropagation technique. This technique
will be examined here.

4-2-1 The underlying idea

The main idea behind backpropagation is to minimize an error function J . Almost always,
the error function that is used is

J =
1

2

∑

X,D

||e||2, (4-2-1)

where e = d− y is the difference between the desired output d and the current output y.
The summation is done over the entire set of inputs X and desired outputs D. The norm in
the above relation can in principle be any norm, but generally the Euclidian norm is preferred.
In this report, only the Euclidian norm will be considered.

Backpropagation is a gradient descent method. It adjusts the weights in the direction of the
gradient −∂J/∂w. This should reduce the cost function J . The weight update law is thus
given by

wnew = wold − α
∂J

∂w
, (4-2-2)

where α is the learning rate. This law can be applied for every weight w. The main difficulty
of backpropagation is finding the partial derivative in the relation above. Accomplishing that
is a matter of applying the derivative chain rule. Applying it for any weight w results in

∂J

∂w
=
∑

X,D

(

∂J

∂e

∂e

∂y

∂y

∂w

)

. (4-2-3)
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The first two of these three partial derivatives are easily obtained.

∂J

∂e
= eT , (4-2-4)

∂e

∂y
= −I. (4-2-5)

It is the third derivative that is the hardest to obtain. How does the output y of the neural
network vary with the weights w? To figure that out, the way in which the internal neu-
ral network signals (i.e., node activations and sums) depend on the output y needs to be
considered first.

4-2-2 Derivatives with respect to node output and activation

First consider the output layer. This output layer does not have an activation; only an output
yo. This output equals the neural network output. Thus, ∂y/∂yo = I. Also, it is known
that y = W oxo. Therefore,

∂y

∂xo
=

∂y

∂yo

∂yo

∂xo
= IW o = W o. (4-2-6)

The input xo to the output layer equals the output of the last hidden layer. Now consider any
hidden layer j. Assume that ∂y/∂yh

j is known. It is known that yh
j = σ(zj). The derivative

of the NN output y with respect to the hidden layer node activation zj now is

∂y

∂zj
=

∂y

∂yh
j

∂yh
j

∂zj
=

∂y

∂yh
j

σ′(zj), (4-2-7)

where the derivative of the activation function is

σ′(z) =
2s exp(−sz)

(1 + exp(−sz))2
. (4-2-8)

Next, it is known that zj = W h
j x

h
j . With this, the derivative of the NN output y with respect

to the hidden layer input xh
j can be obtained. The result is

∂y

∂xh
j

=
∂y

∂zj

∂zj

∂xh
j

=
∂y

∂zj
W h

j . (4-2-9)

Since xh
j equals yh

j−1 (except of course for j = 1), also the derivative ∂y/∂yh
j−1 is known.

In this way, the derivative of the output y with respect to any internal signal of the neural
network can be found. All it takes is recursively propagating back through the layers of the
neural network.

4-2-3 Derivatives with respect to the weights

Now it is possible to find the derivative of the NN output y with respect to the weights. To

do this, consider any node i in layer j. This node has an activation zji, where zji = wh
ji

T
xh
j .
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The derivative of the NN output y with respect to the weights wh
ji is given by

∂y

∂wh
ji

=
∂y

∂zji

∂zji

∂wh
ji

=
∂y

∂zji
xh
j . (4-2-10)

In this way, the partial derivative of the NN output y with respect to any weight w in the
network can be determined. If this knowledge is combined with the update law (4-2-2) and
the relations (4-2-3) through (4-2-5), one finds as update law

wnew = wold + α
∑

X,D

(

eT
∂y

∂wh
ji

)

. (4-2-11)

This equation intuitively makes sense. The term eT describes in which direction the output
needs to be adjusted, while the partial derivative ∂y/∂wh

ji describes how to adjust the weights
to actually change this output appropriately.

4-2-4 Batch updating versus individual updating

Suppose that various input samples x with known desired outputs d are available. It is
possible to find the error e = d−y for all these samples and use equation (4-2-11) to update
the weights. This is called batch updating of the Neural Network. All input samples are
considered simultaneously.

Batch updating has a few drawbacks though. Imagine that half of the input samples x have
correct outputs y (that is, y ≈ d), while the other half has incorrect outputs (that is, y differs
significantly from d). If batch updating is applied, the correct samples will not be updated
– after all, the error e is zero – while the incorrect samples will be updated. Afterwards, the
correct samples will be incorrect. Furthermore, if all of the incorrect samples require a similar
update of the weights w, then the resulting update might be excessively large, quite probably
leading to an overshoot. This could cause instability in the learning algorithm.

An alternative to batch updating, which suffers far less (yet still suffers a bit) from these
drawbacks, is individual updating. In individual updating only one of the input samples
is used to update the weights, again according to equation (4-2-11). Then a second input
sample is used to update it again. Then a third, and so on. This continues until all samples
have been used.

The additional computational cost of individual updating is relatively low. The most com-
putationally intensive part of the entire updating algorithm is to find the partial derivatives
∂y/∂wh

ji for all weights, and that needs to be done the same amount of times for both algo-
rithms. The additional benefits of individual updating are, however, legion.

First of all, because the weights are adjusted much more often, the algorithm can adapt more
quickly and is less sensitive to overadapting. Tests have shown that in most cases individual
updating has faster convergence behavior. Secondly, applying individual updates adds a bit of
randomness to the algorithm; especially if the samples are used in a random order. In many
applications, including as a function approximator for a reinforcement learning algorithm,
having an added randomness improves learning performance. Both these statements are also
confirmed by (Schiller, 2003). Because of these added benefits, in the remainder of this report,
only individual updating will be considered.
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4-3 Improvements to the NN architecture

In this chapter so far, the equations have been described with which a neural network software
architecture can be built. Such a software architecture has been developed for this project.
During the development, several additional improvements to this architecture have also been
considered and if possible incorporated, improving learning performace.

4-3-1 Normalizing input and output

When the neural network is initialized, it needs to be given weights. Which initial weights
to choose can be a difficult decision. Going for zero weights is not an option, as then ∂y/∂w
would be zero for every weight w and no updating will occur whatsoever. Instead, weights are
often initialized with a normal (Gaussian) distribution. The question remains which mean
and variance this distribution should then have.

Tests have shown that a mean of zero can give an adequate learning performance. Choosing
a non-zero weight has never given a significant learning performance increase, but has occa-
sionally given a reduced learning performance. Thus a mean of zero in the random weight
initialization seems to be the best option.

The variance of the distribution was harder to choose. It turned out that this strongly depends
on the Root Mean Square (RMS) of the input and output signals. If the input signals had
a big RMS, then a big variance of the nodes of the first (and only) hidden layer would improve
learning performance. Similarly, if the output signals had a big RMS, then a big variance of
the nodes of the output layer would improve learning performance.

One might suggest that the weights should be chosen, based on the expected RMS of the
input and output signals. Instead, there is a more elegant solution. When initializing the
NN, the expected RMS of the input and output signals should be defined as well. Every
input and (desired) output that are subsequently passed to the NN will be normalized using
this expected RMS. The weights itself are subsequently initialized with a variance of 1. This
variance value has proven to give a better learning performance than nearby variance values
like 3 or 0.3.

Another option (which has not been implemented in this report, but might be interesting for
further research into NN learning performance) is to use an adaptive expected RMS. Every
time a new input signal or desired output signal is fed to the NN, the expected RMS of the
input and/or output is updated. It is expected that this will accelerate adaptation of the NN
to new circumstances, especially when they involve an input and/or output RMS that varies
with time.

4-3-2 Automatically varying the learning rate

The learning rate α strongly influences the speed at which the NN learns. If it’s too high,
learning instability might occur, while if it’s too low, learning might just take too long. The
trick is to set α well. An alternative, one which has not been implemented (nor tested) in
this report, but which could be an interesting subject for further research, is to automatically
adjust α.
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In literature, adjusting the learning rate has already been applied in various ways. For
example, (van Kampen, 2006) varies the learning rate based on the error E that exists between
the desired NN output and actual NN output. This method has proven to work, but the
effectiveness can still be improved, the reason being that the error magnitude is not always
directly related to the amount of weight adjustment required.

Here an alternative will be offered to adjust the learning rate α. To see how α should be
adjusted, first examine the (unlikely) case of a system with only one weight w. During one
learning step, the value of w is adjusted by an amount

∆w = α
∑

X,D

(

eT
∂y

∂w

)

. (4-3-1)

After adjusting w, the value of ∆w should be calculated again. Denote the first (executed)
adjustment as (∆w)1 and the second (non-executed) adjustment as (∆w)2. If they both have
the same sign, then it’s an indication that w could have initially been adjusted more. In other
words, (∆w)1 could have been bigger. Thus, α should be increased. Similarly, if they have
different signs, then overadjustment has taken place and α should be decreased. α should
thus be adjusted by an amount

∆α = β
(∆w)2
(∆w)1

, (4-3-2)

where β is an adjustment factor for the learning rate.

Now consider an actual NN with several weights. ∆w can now be seen as a vector, containing
an update for all weights of the entire NN. Comparing signs of two vectors of course isn’t
possible. Instead, one should consider the projection of (∆w)2 onto (∆w)1, and whether it
points in the same direction as (∆w)1. An indication of this is given by

ρ =
(∆w)1 · (∆w)2
||(∆w)1||||(∆w)2||

. (4-3-3)

Subsequently, α should be adjusted by an amount

∆α = βρ. (4-3-4)

As was mentioned before, this technique has not been implemented due to time constraints,
so no further discussion can be held on its actual performance in a real experiment. This can
be a topic for further research.
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Chapter 5

Reinforcement learning with function

approximators

When a reinforcement learning controller is combined with a function approximator, it be-
comes suitable to control continuous systems. Adding the function approximators to the
RL algorithm still poses some difficulties though. How this can be done is discussed in this
chapter.

First some general theories are discussed. After that, the discussion continues more in-depth
on an actual way to implement neural networks into an RL controller. Concepts in this
chapter have mainly originated from (Bertsekas & Tsitsiklis, 1996), (Babuška, 2010), (Sutton
& Barto, 1998), (van Kampen, 2006) and own derivations.

5-1 General aspects of RL with function approximators

5-1-1 The parameter vector

Normally in RL, the value function V (s) only depends on the state s. (Or similarly, Q(s, a)
only depends on the state s and the action a.) When using function approximators, a pa-
rameter vector θ is added. Now V (θ, s) depends on both θ and s. When learning, only the
components of the parameter vector θ are adjusted. The function V itself remains unchanged.

During updates, changing θ will not only change the value of V (θ, s) for the current value of s,
but it will also change the value of V (θ, s′) for other (nearby) states s′. This generalization
idea, of changing the value function V for multiple states simultaneously, is a fundamental
aspect of RL with function approximators. It is not only a positive aspect, but (due to the
infinite number of possible states) also an absolutely necessary aspect.

The important question is, how should θ be adjusted? First suppose that the goal is to find θ
such that V (θ, s) approximates the value V π(s) of state s corresponding to a policy π. Most
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supervised learning methods try to minimize a cost function J , like the mean-squared error
(MSE),

J = MSE(θ) =
∑

s∈S

P (s) (V π(s)− V (θ, s)))2, (5-1-1)

where P is some kind of ‘weighing factor,’ indicating the importance of every state s. The
question then is, how should θ be adjusted to reduce the MSE?

5-1-2 The learning method

A very basic way to reduce the MSE (for neural networks, but also for other function approx-
imators) is the gradient decent method. Suppose that for some state s the value V π(s) is
known. θ should now be adjusted in the direction of the gradient

−
∂
(

(P (s) (V π(s)− V (θ, s)))2
)

∂θ
. (5-1-2)

This results in the update law

θnew = θold −
1

2
αP (s)

∂ (V π(s)− V (θold, s))
2

∂θold

= θold + αP (s) (V π(s)− V (θold, s))
∂V (θold, s)

∂θold
. (5-1-3)

In this relation, α is the learning rate. It indicates how much θ is adjusted in the direction
of the negative gradient. Higher values of α initially may cause faster learning, but could later
on result in worse convergence properties. Often it is wise to decrease α during the learning
process, though this will be discussed in-depth later in this report as well.

5-1-3 Estimating the value function

Sadly, often the exact value of V π(s) is not known. Instead, only an approximation vs
of it is available. Luckily, as long as vs is an unbiased estimate of V π(s) (so as long as
E {vs} = V π(s)), and as long as no function approximators are applied, it can be shown that
the algorithm will still always converge. If function approximators are applied, convergence
is not yet guaranteed.

One such unbiased estimate is the Monte Carlo state-value prediction. To obtain this
estimate, the agent should simply make sure it is in state s at some time k and continue
to walk around, following the policy π. When it’s done walking around, one can find the
estimate vs using

vs = Rk = rk+1 + γrk+2 + γ2rk+3 + . . . . (5-1-4)

This method can then also be applied for all other states s that have been visited. As long
as the agent keeps walking around and visits enough states s, then the value function V will
converge to V π.
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Alternatively, it is also possible to use TD(λ) methods. Assume that at some time k the
parameter vector is given by θk. Also, at time k the state is sk. An action ak is selected,
bringing the agent to a state sk+1 with immediate reward rk+1. The update law now is

θk+1 = θk + αδkek. (5-1-5)

Here, δk is the TD-error

δk = rk+1 + γV (θk, sk+1)− V (θk, sk). (5-1-6)

Also, ek is a vector of eligibility traces for each component of θk. It satisfies

ek = γλek−1 +
∂V (θk, sk)

∂θk
. (5-1-7)

Sadly, for λ < 1, this method does not provide an unbiased estimate vs. (Generally, the lower
λ is, the bigger the bias is.) But although in this method V will not always converge to V π,
it occasionally learns much faster than the Monte-Carlo state-value prediction.

Note that every method can be performed similarly in case Q is used. For example, relation
(5-1-5) would still work if

δk = rk+1 + γQ(θk, sk+1, ak+1)−Q(θk, sk, ak), (5-1-8)

ek = γλek−1 +
∂Q(θk, sk, ak)

∂θk
, (5-1-9)

where ak+1 follows from the policy π and thus equals π(sk+1). The only thing that’s really
different is the name of the method. It is now called the gradient-descent SARSA(λ)
method.

5-2 Setting up an RL controller with neural networks

In the previous section, it has only been discussed how to update the value function. When
setting up an RL controller, it is also necessary to compute a policy. One thing that is
necessary to compute the policy is knowledge on how the environment works. If that is not
given, an identifier is required. With this identifier, a policy can be derived.

5-2-1 The identifier and the controller architecture

In some RL problems, no knowledge of the environment is known whatsoever. In this case, an
identifier is required. The goal of the identifier I is to find out how the environment works.
The identifier can be seen as a mapping from state sk and action ak to the new state sk+1.
Thus, sk+1 ≈ I(sk, ak). (Note that, for brevity, the parameter vector θ has been omitted.)

The identifier is (just like the value function) a function approximator like a neural network.
As the agent walks around the environment, it continuously finds combinations (sk, ak, sk+1).
These combinations are used to train the identifier. To adequately train the identifier, it is
important that it encounters a decent distribution of representative states sk and selects a
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Figure 5-1: Overview of the RL controller. Knowledge of the state and the action taken is used
to train the value function and the identifier. These are then subsequently used to train the policy,
which provides the system with a new input.

decent distribution of representative actions ak. If this is not the case, then the identifier will
only be trained well for a small subset of the state/action space.

As the agent walks around the environment, it also finds combinations (sk, rk+1). With these
combinations (and possibly additional data, like rk+2, rk+3, . . .) it can train the value function.
One may wonder: what kind of value function is best to use? V or Q? In theory it is possible
to use either of them. However, if Q is used, then during the training of the RL controller, it
will often be necessary to determine the optimal action

a = max
a′

Q(s, a′) (5-2-1)

for some state s. Thanks to the nonlinear nature of neural networks, the maximization in
the above relation is very hard to do. It is possible to find the maximum (possibly using
interval analysis, see (de Weerdt, Chu, & Mulder, 2009)) but this will computationally be
very expensive, making the algorithm practically unfeasible. Thus, as value function V will
be used.

Once both the identifier and the value function have been trained, the RL controller knows
how the environment works (i.e., how to get from one state to another) and how valuable
every state is. This is sufficient to train a policy. This entire process has been visualized in
Figure 5-1.

5-2-2 Training the policy

The question remains: which policy should be used? Using a greedy policy can be trouble-
some. In the case of continuous actions, finding which action gives the best value is a complex
nonlinear optimization problem. Instead, often a more simple approach is used: the gradient
descent method.
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To start the learning process, a policy π is randomly initialized. Imagine that the agent is at
a state sk. The policy π says that the agent should take an action ak = π(sk). According
to the identifier, this action will bring the agent to state sk+1 = I(sk, ak). The goal is to
maximize the total reward

Rk = rk+1 + γrk+2 + γ2rk+3 + . . . . (5-2-2)

The value function can give the agent an approximation of

V (sk+1) ≈ Rk+1 = rk+2 + γrk+3 + γ2rk+4 + . . . . (5-2-3)

(Again, for brevity, the parameter vector θ has been omitted from V .) Assuming that the
value function is accurate, the goal of the RL controller thus is to maximize rk+1+γV (sk+1).
Generally, the reward rk+1 is derived from a known reward function r of the state reached
sk+1 and action taken ak. So rk+1 = r(sk+1, ak). Thus, the goal is to maximize

r(I(sk, π(sk)), π(sk)) + γV (I(sk, π(sk))). (5-2-4)

In the gradient descent method, the weights w (or equivalently the parameter vector θ) of the
policy should be adjusted such as to increase the above quantity. The update law, for every
weight w, thus becomes

wnew = wold + α
∂ (r(I(sk, π(sk)), π(sk)) + γV (I(sk, π(sk))))

∂w

= wold + α

(

∂r(I(sk, π(sk)), π(sk))

∂w
+ γ

∂V (I(sk, π(sk)))

∂w

)

. (5-2-5)

Note that the above relation consists of two partial derivatives. Consider the right one first.
Using the chain rule, it can be expanded as

∂V (I(sk, π(sk)))

∂w
=

∂V

∂s
(I(sk, π(sk)))

∂I

∂a
(sk, π(sk))

∂π

∂w
(sk) . (5-2-6)

The first derivative is the derivative of V (s) with respect to s, evaluated at I(sk, π(sk)). The
second derivative is the derivative of I(s, a) with respect to a, evaluated at (sk, π(sk)). Finally,
the third derivative is the derivative of π(s) with respect to its own NN weights, evaluated at
sk. Note that the first two derivatives are NN input-output derivatives. How to find these has
already been discussed in chapter 4 on neural networks. The third derivative is a derivative
of the NN output with respect to its weights, which has also been discussed in chapter 4.

Now consider the left partial derivative of equation (5-2-5). Since the reward function r is
known, as well as its derivatives ∂r/∂s and ∂r/∂a, it can be expanded in an identical way.
This gives

∂r(I(sk, π(sk)), π(sk))

∂w
=

∂r

∂s
(I(sk, π(sk)), π(sk))

∂I

∂a
(sk, π(sk))

∂π

∂w
(sk)

+
∂r

∂a
(I(sk, π(sk)), π(sk))

∂π

∂w
(sk) . (5-2-7)

The full weight update law can now be condensed into

wnew = wold + α

((

∂r

∂s
(I(sk, π(sk)), π(sk)) + γ

∂V

∂s
(I(sk, π(sk)))

)

∂I

∂a
(sk, π(sk))

+
∂r

∂a
(I(sk, π(sk)), π(sk))

)

∂π

∂w
(sk) . (5-2-8)
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With this relation, the policy can be updated according to the gradient descent method.
Consequentially, it will select actions that result in higher values.

It is important to note that this whole process of improvement is cyclic. First the value
function needs to be trained for a given policy. Then the policy needs to be improved, based
on the value function. Then the value function needs to be adjusted for the new policy.
Then the policy is improved again. And so on. One can wonder: will this ever converge to
a stationary situation? And if so, will this stationary situation have the optimal policy or a
sub-optimal policy? If it is the optimal policy, can it also be proven that the optimal policy
will always be found? Those are interesting questions that will be further discussed in later
chapters.

5-3 Making the controller continuous in time

This chapter so far has shown how to make an RL controller that can deal with both con-
tinuous states and continuous actions. It is however not yet continuous in time. There will
always be time steps ∆t. In each time step, the action a that is used will be constant, and it
will not change until the next time step commences. This can be seen as a downside: if the
time steps are relatively big, then the achievable control accuracy is limited.

Is there an easy way to get around this problem? Sadly, the answer is no. On digital
computers, discrete time steps will always be required. To get rid of time steps, a system
with analog hardware needs to be designed, but that is outside of the scope of this project.
The solution to this problem is to vary the time step ∆t to find which one works best. It
needs to be small enough to prevent significant effects of this problem, yet still big enough to
get a good computational efficiency.

It is here that a problem arises. The neural networks of the RL controller are all trained for a
specific time step ∆t. Changing the time step will change the required NN outputs, making
the NNs obsolete. But is there a way to solve this problem? This time the answer is yes.

5-3-1 The identifier

First consider the identifier. Previously, the identifier’s output was the next state sk+1. In
a continuous system, it would be more appropriate for the identifier to output the state
derivative ṡ. Once this is know, the next state will be given by sk+1 = sk + ṡ∆t. As long
as the time step ∆t is kept sufficiently small, it may be varied at will without getting any
significant deviations.

5-3-2 The value function

Next, consider the value function. As has been mentioned before, the value function is the
estimation of the weighted sum of all future rewards

V (s) ≈ Rk = rk+1 + γrk+2 + γ2rk+3 + . . . =
∞
∑

i=0

γirk+i+1. (5-3-1)
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Figure 5-2: Weighing of the reward function in conventional constant-timestep RL. The weight
of every time step is a factor γ times the previous time step.
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Figure 5-3: Transitioning of states in reinforcement learning. States are points in time, while
actions are taken over time and rewards are obtained over time.

These weights have been visualized in Figure 5-2. The problem is that, if the time step ∆t
is decreased, then the RL agent will encounter many more states within the same time span.
The result is that it will think much more short-term. This should be compensated for.

The solution here is to realize that rewards are always given over a certain time span, as is
shown in Figure 5-3. A reward rk+1 is not given simply for reaching the state sk+1. It is the
reward that has resulted from the entire process of selecting action ak to reach state sk+1

from state sk. It concerns the entire time step between time tk and time tk+1. This gives rise
to the idea of replacing the reward weighing by a continuous weight function wr(t).

Using this idea, the expression for the total reward can be adjusted. The weight for the time
step from sk+i to sk+i+1 is now not simply γi. It becomes the integral of the weight function
wr(t) over this time step, where time is measured starting from tk. So the weight is

∫ tk+i+1

tk+i

wr(t− tk) dt. (5-3-2)

If this is inserted into the relation for the total reward at time tk, the result is

Rk =
∞
∑

i=0

(

∫ tk+i+1

tk+i

wr(t− tk) dt

)

rk+i+1. (5-3-3)

A useful and intuitive weight function wr(t) would be the decreasing exponential

wr(t) = γt dt, (5-3-4)

with 0 < γ < 1. The integral of this function equals

Wr(a, b) =

∫ b

a
γt dt =

γb − γa

ln γ
. (5-3-5)
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Figure 5-4: Weighing of the reward function in variable-timestep RL. The reward weight now is
continuous. In this case, it is an exponentially decreasing function of time.

This turns the relation for the total reward into

Rk =
∞
∑

i=0

(

γ(tk+i+1−tk) − γ(tk+i−tk)

ln γ

)

rk+i+1. (5-3-6)

This method of weighing rewards is visualized in Figure 5-4.

Using this technique will also change the update law in a TD method. Previously, the TD
error was defined as

δk = rk+1 + γV (sk+1)− V (sk). (5-3-7)

In this expression, the reward rk+1 has a weight of 1. In the new method this is different. To
find the weight, the weight function wr should be integrated from 0 to tk+1− tk. rk+1 is thus
weighed by

Wr(0, tk+1 − tk) =
γtk+1−tk − 1

ln γ
. (5-3-8)

The term V (sk) has already been weighed appropriately, with a total weight of Wr(0,∞) =
−1/ ln(γ). (Remember that V (sk) is an estimate of Rk.) The same holds for the term V (sk+1).
However, in reality this latter term should be weighed with a total weight of Wr(tk+1−tk,∞).
This should be compensated for. The TD error thus becomes

δk = Wr(0, tk+1 − tk)rk+1 +
Wr(tk+1 − tk,∞)

Wr(0,∞)
V (sk+1)− V (sk). (5-3-9)

Implementing relations (5-3-4) and (5-3-5) turns the TD error into

δk =
γtk+1−tk − 1

ln γ
rk+1 + γtk+1−tkV (sk+1)− V (sk). (5-3-10)

5-3-3 The policy

Finally the policy needs to be made independent of the time step. Initially one might think
that the policy is strongly affected by the time step. After all, it is very different to apply an
action a for only a brief time step ∆t or to apply the same action a for a very long time step
∆t. But this subsection will show that that is actually not the case.

First, examine the weight update law (5-2-8). This law should be updated using the right
weighing for all parameters. Applying relations (5-3-4) and (5-3-5) right away to the policy
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weight update law results in

wnew = wold + α

((

γtk+1−tk − 1

ln γ

∂r

∂s
(I(sk, π(sk)), π(sk)) + γtk+1−tk

∂V

∂s
(I(sk, π(sk)))

)

∂I

∂a
(sk, π(sk)) +

γtk+1−tk − 1

ln γ

∂r

∂a
(I(sk, π(sk)), π(sk))

)

∂π

∂w
(sk) . (5-3-11)

Now the question arises: would variations in ∆t = tk+1 − tk change this update law? And if
so, how?

Of course, if ∆t is very big, or equivalently if γ is very small, there will be variations. In most
cases though, ∆t ≈ 0 and γ ≈ 1. If this holds, then there are only a few terms that vary with
∆t. ∂r/∂s does not, and nor do ∂V/∂s, ∂r/∂a and ∂π/∂w. However, both the term ∂I/∂a
and the weighing factors that contain ∆t do vary with ∆t. The way in which they do can
best be described using a first-order Taylor expansion about ∆t = 0. This gives

γ∆t − 1

ln γ
≈ γ∆t∆t ≈ ∆t, (5-3-12)

γ∆t ≈ ln(γ)∆t ≈ 0, (5-3-13)

∂I

∂a
≈ ∂ṡ

∂a
∆t. (5-3-14)

(To see why this last part holds, recall that the identifier I returns the state sk+1, given the
state sk and the action ak. And if the time step ∆t is small, the state derivative ṡ can be
assumed constant between tk and tk+1, thus approximating sk+1 as sk+1 = sk + ṡ∆t. Taking
the partial derivative with respect to the action a directly results in the above relation.)

Based on these results, two things can be noted when the time factor ∆t is halved. First of all,
the importance of the reward rk+1 will also be halved. Relatively more attention will be paid
to the actual value of the state sk+1 that is reached. Secondly, the amount with which the
weights of the policy will be updated will also be halved. However, these are the only effects
that a changing time step ∆t would have on the policy. And if the above update is simply
executed twice (because there will be double the number of time steps), then the effects will
mostly be negated. Thus, it seems that a varying time step ∆t does not significantly influence
the way in which the policy is updated.

With the expansion of reinforcement learning described in this section, it is thus possible to
make an RL controller in which the time step can be freely varied without any complications.
This not only removes the constraint of a constant time step, but it also creates various
opportunities. An example of such an opportunity is a controller which can decide for itself
which time step it should take. However, such a controller would be outside of the scope of
this project, and thus remains merely a suggestion for further research.
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Chapter 6

Interval analysis

Interval Analysis (IA) has proven to be a useful technique in finding bounds on parameters.
It has uses in setting up proofs for mathematical bounds, as well as in optimization algorithms.
As such, it could prove to be useful in finding convergence proofs for RL learning algorithms.
This chapter explains the basic theories and ideas behind interval analysis. It is a medium-
level summary of (Moore, Baker Kearfott, & Cloud, 2009) and is written to provide anyone
new to the field of IA with a quick yet easy introduction. For various interesting optimization
applications of IA, the reader is referred to (van Kampen, 2010).

Initially some basic interval properties are discussed. The summary then continues with
discussing interval sequences and interval functions. Later on more advanced techniques are
discussed, like how to use intervals to find good bounds for functions, how interval matrices
work and how intervals can be used to bound differential equation solutions.

6-1 Interval basics – Notations, definitions and operations

What are intervals, what properties do they have and what can be done with them? Those
questions are discussed in this first section.

6-1-1 Introduction to intervals

An interval [a, b] is a special type of set. It contains all real numbers x ∈ R for which
a ≤ x ≤ b. If a number x falls in an interval [a, b], then one can write x ∈ [a, b]. The number
a is called the lower bound of the interval, while b is the upper bound.

Consider the equation
x2 − c = 0, (6-1-1)

where the value of c is unknown. It is only known that c ∈ [2, 3]. What does this tell about x?
In this simple case, it can right away be seen that x ∈ [

√
2,
√
3]. That is, [

√
2,
√
3] provides an

interval enclosure for the solution of x. It is also the most narrow interval enclosure
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possible. However, for more complicated equations, finding a narrow interval enclosure isn’t
so easy. In this summary, several methods will be investigated with which interval enclosures
can be found and subsequently made as narrow as possible.

6-1-2 Outward rounding and interval hulls

Solving equations with interval analysis is usually performed by computers, and computers
aren’t so good with numbers like

√
3. They would use a rounded number, like 1.73. But if a

computer would use 1.73 as upper bound for our previous problem, things could go horribly
wrong: the solution x = 1.732 would be ignored! For this reason, when rounding intervals, it’s
always appropriate to play it safe: round the lower bound downwards and the upper bound
upwards. Of course it evidently holds that x ∈ [1.41, 1.74]. This very important idea is called
outward rounding.

Note that not all sets can be expressed as intervals. For example, the set of all numbers x
with either 0 ≤ x ≤ 1 or 2 ≤ x ≤ 3 contains a gap, and can thus not be expressed as an
interval. However, all possible values x can be bound using an interval hull. It is then
simply said that x ∈ [0, 3].

6-1-3 Notations and definitions

From now on, intervals will be denoted with capital letters, like X. (So for example, X =
[1.41, 1.74].) The two endpoints of an interval are denoted by X and X. Thus, X = [X,X].
Now several properties will be listed which intervals might have.

• If an exact number x falls in an interval X, then x ∈ X.

• If X = X (and X is thus an exact number), then X is called degenerate. Degenerate
intervals are denoted by lower case letters, like x.

• Two intervals are said to be equal if both X = Y and X = Y . This is written as
X = Y .

• One can write X < Y (X is lower than than Y ) if all numbers x ∈ X and y ∈ Y satisfy
x < y. So X < Y if X < Y . Similarly, X > Y if X > Y . (Note that, for two intervals
X and Y , it is possible that neither X = Y , nor X < Y or X > Y . An example of this
is X = [2, 4] and Y = [3, 5].)

• An interval X is called positive if X > 0 (or equivalently X > 0). Similarly, it is
negative if X < 0.

• One may write X ⊆ Y if all numbers x ∈ X also satisfy x ∈ Y . This is the case if
X ≥ Y and X ≤ Y .

• The absolute value of an interval X is defined as |X| = max(|X|, |X|). So for every
number x ∈ X, it holds that |x| ≤ |X|.

• The width of an interval X is defined as w(X) = X −X.
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• The midpoint of an interval X is defined as

m(X) =
1

2
(X +X). (6-1-2)

Note that any interval X can now be written as
[

m(X)− 1
2w(X),m(X) + 1

2w(X)
]

.

• An interval is symmetric if X = −X. That is, if m(X) = 0.

6-1-4 Operations

There are several operations that can be performed on intervalsX and Y . The most important
ones will be examined here.

• The intersection X ∩ Y of two intervals x and Y consists of all numbers z such that
both z ∈ X and z ∈ Y . If either X > Y or X < Y , then X ∩ Y = ∅. That is, the
intersection equals the empty set. Otherwise, it holds that

X ∩ Y =
[

max(X,Y ),min(X,Y )
]

. (6-1-3)

• The union X ∪ Y of two intervals X and Y consists of all numbers z such that z ∈ X
or z ∈ Y or both. If neither X > Y nor X < Y , then it is easily found that

X ∪ Y =
[

min(X,Y ),max(X,Y )
]

. (6-1-4)

However, if X < Y or X > Y , then the union of X and Y can’t be described with one
simple interval. (There will be a gap between the intervals X and Y .) It is possible
to use multiple intervals to describe the union, but as the number of intervals grows,
it could significantly complicate computations. Instead, often the interval hull is used,
resulting in

X ∪Y =
[

min(X,Y ),max(X,Y )
]

. (6-1-5)

Note that X ∪ Y ⊆ X ∪Y .

• Arithmetic operations (like +, −, · and /) can also be applied to intervals. Let’s denote
� as any such type of operation. Then it is said that X�Y equals the set of all numbers
z such that there are x ∈ X and y ∈ Y with z = x� y. In set notation, this becomes

X � Y = {x� y : x ∈ X, y ∈ Y } . (6-1-6)

• An example of the above item is the sum X + Y of two intervals X and Y . It can be
determined that

X + Y = [X + Y ,X + Y ]. (6-1-7)

• The difference X − Y is given by

X − Y = X + (−Y ) = [X − Y ,X − Y ]. (6-1-8)

Note that −Y = [−Y ,−Y ]. (So next to adding a minus sign, also the upper and lower
bounds are interchanged.)
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• The product X · Y is given by

X · Y = [min(S),max(S)], where S =
{

XY ,XY ,XY ,XY
}

. (6-1-9)

Often, the dot ‘·’ is not written down. So XY also denotes the product of X and Y .

• The division X/Y is given by

X/Y = X · (1/Y ) = [X,X] ·
[

1/Y , 1/Y
]

. (6-1-10)

Note that the division operator doesn’t work when 0 ∈ Y .

• All above operations also work in case a constant c (i.e. a degenerate intervals) is used.
For example, X + c = [X + c,X + c]. So interval arithmetics is simply an expansion of
normal arithmetics.

6-2 Interval basics – Arithmetics properties and vectors

In this section, the discussion on the basics of interval analysis and interval arythmetics is
continued, but now some more in-depth properties will be discussed.

6-2-1 An example to show interval dependency

Consider the problem of finding all values z satisfying

z =
x

1 + x
, (6-2-1)

where x ∈ X = [1, 2]. To do this, interval arithmetics can be used. First all terms x are
replaced by the corresponding interval X. So,

Z =
X

1 +X
. (6-2-2)

Then the basic interval arithmetics rules are applied and things are worked out further. This
gives, step by step,

1 +X = [2, 3], (6-2-3)

1

1 +X
= [1/3, 1/2] (6-2-4)

Z1 =
X

1 +X
= [1, 2][1/2, 1/3] = [1/3, 1]. (6-2-5)

Alternatively, one can also use

Z =
1

1 + 1
X

. (6-2-6)
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This time it is found that

1

X
= [1/2, 1] (6-2-7)

1 +
1

X
= [3/2, 2] (6-2-8)

Z2 =
1

1 + 1
X

= [1/2, 2/3]. (6-2-9)

But those two intervals are different! Which one is correct? The answer is: they’re both
correct, but the second interval Z2 is much narrower, and thus more useful.

The question remains, why do the results differ? The reason lies in interval dependency.
In the first calculation, the term X appeared twice in the equation. If X would be replaced
by a random number x ∈ X, then the x for the first occurrence of X has to be the same as
the x for the second occurrence of X. But when applying interval arithmetics, this was not
taken into account. In fact, what was calculated was

Z1 =
X

1 + Y
, with X = [1, 2] and Y = [1, 2], X and Y independent. (6-2-10)

For this problem, Z1 is indeed the narrowest interval possible. However, for the actual problem
it must hold that x = y, and then Z2 is the narrowest interval possible. This interval
dependency is a very important (and sometimes confusing) aspect of interval analysis.

6-2-2 Properties of addition and multiplication

Next up in the discussion are addition and multiplication. What kind of properties do they
have? To start with, are these operations commutative and associative? It turns out that
they are. In other words, it holds that

X + Y = Y +X, X + (Y + Z) = (X + Y ) + Z, (6-2-11)

XY = Y X, X(Y Z) = (XY )Z. (6-2-12)

However, the operations are not distributive. That is, it generally does not hold that

X(Y + Z) = XY +XZ. (6-2-13)

The reason for this is that the term X appears twice on the right hand side, so interval
dependency again occurs. The interval on the right hand side will thus be broader than the
one on the left hand side. It now follows that

X(Y + Z) ⊆ XY +XZ. (6-2-14)

This property is called subdistributivity.

And what about identity elements? Do the operations have them? Yes, they do. The
identity elements are respectively 0 and 1. So for any interval X it holds that

0 +X = X + 0 = X and 1 ·X = X · 1 = X. (6-2-15)
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However, in IA, there is no such thing as an inverse. In fact,

X + (−X) =
[

X −X,X −X
]

6= 0. (6-2-16)

(That is, unless X is degenerate.) A similar thing holds for multiplication.

Finally, there is the cancellation law. This law holds for addition but not for multiplication.
That is,

X + Z = Y + Z ⇒ X = Y but not XZ = Y Z ⇒ X = Y. (6-2-17)

6-2-3 Interval vectors

As a final part in this chapter, interval vectors are considered. An n-dimensional interval
vector is a vector X = (X1, . . . , Xn) of intervals. Such vectors are also denoted using capital
letters, like X. In fact, from now on when writing X, always a (possibly one-dimensional)
interval vector is considered.

Of course interval vectors have various properties as well.

• It is said that a vector x = (x1, . . . , xn) of normal (degenerate) numbers satisfies x ∈ X if
for every element i it holds that xi ∈ Xi. So, while a one-dimensional interval describes
a region on the number line, a two-dimensional interval vector describes a rectangular
area in the two-dimensional plane. Similarly, an n-dimensional interval vector describes
a box in n-dimensional space.

• If an interval vector X has at least one element Xi being the empty set ∅, then it is said
that X = ∅. That is, X itself is empty.

• It is said that X ⊆ Y if and only if for all elements Xi and Yi it holds that Xi ⊆ Yi.
(So the n-dimensional box Y completely encompasses the box X.)

• The intersection of two interval vectors X and Y can be found by intersecting each
individual element. So,

X ∩ Y = (X1 ∩ Y1, . . . , Xn ∩ Yn). (6-2-18)

This works identically for the union of two interval vectors.

• The scalar width w(X) of an interval vector X is the largest of the widths of any of
the elements Xi. So, w(X) = maxw(Xi).

• The midpoint m(X) of an interval vector X is defined as the vector m(X) =
(m(X1), . . . ,m(Xn)).

• The norm ||X|| of an interval vector X is defined as the largest of the absolute values
|Xi| of any of the elements Xi. So, ||X|| = max |Xi|.

• The inner product P = X · Y of two vectors X and Y consists of the sum of the
products of the individual elements. So,

P = XY = X1Y1 + . . .+XnYn. (6-2-19)

Next to interval vectors, it is also possible to build interval matrices by putting intervals in a
matrix form. This will be treated in a later section.
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6-3 Interval sequences

Working with intervals often requires a lot of iterations, which results in a whole sequence of
intervals. In this chapter, such interval sequences are going to be looked at more closely.

6-3-1 A distance metric for interval analysis

In many parts of calculus, including sequence analysis, there is the need for some measure
of ‘distance’ between numbers. This measure is called a distance metric d and is always
defined on some metric space S. For all elements x, y ∈ S, the metric d must satisfy

d(x, y) = 0 if and only if x = y, (6-3-1)

d(x, y) = d(y, x), (6-3-2)

d(x, y) ≤ d(x, z) + d(z, y) for any z. (6-3-3)

For real numbers a common metric is d(x, y) = |x− y|. This won’t work so well for intervals
though, so in the field of interval analysis the most commonly used distance metric is

d(X,Y ) = max
(

|X − Y |, |X − Y |
)

. (6-3-4)

In the rest of this summary, this is the distance metric that will be used.

6-3-2 Convergence in interval analysis

Examine a sequence of numbers {xk}. The sequence is called convergent if there is a real
number x∗ such that, for every ε, there is a natural number N = N(ε) with

|xk − x∗| < ε (6-3-5)

whenever k > N . In this case, x∗ is called the limit of the sequence {xk}.
It is possible to translate this definition to the world interval analysis. Consider an interval
sequence {Xk}. Instead of using the distance metric d(x, y) = |x − y|, one now uses the
distance metric of the previous paragraph. So, it is said that an interval sequence {Xk} is
called convergent if there is an interval X∗ such that, for every ε, there is a natural number
N = N(ε) with

d(Xk −X∗) < ε (6-3-6)

whenever k > N . In this case, X∗ is the limit interval of the sequence {Xk}. It means that
Xk converges to X∗ and Xk converges to X

∗
.

6-3-3 Nesting

Again consider an interval sequence {Xk}. Such a sequence is called nested if Xk+1 ⊆ Xk.
A nested sequence always convergences.

Consider a progress that iteratively solves an equation using interval analysis. During every
step k, it is known that the solution x lies in the intervalXk. However, the sequence {Xk} does
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not necessarily converge. To solve this problem, a nice option is to apply nesting. Simply
take the intersection Yk of all intervals Xi (with i = 1, . . . , k). Recursively, this becomes

Yk = Xk ∩ Yk−1, (6-3-7)

with Y1 = X1. The sequence Yk is the nested version of Xk, so it converges. And since x ∈ Xk

for all k, it must also hold that x ∈ Yk for all k. This thus results in a converging bound on
the solution for x.

A sequence {Xk} is said to have finite convergence if there is a positive integer K such that

Xk = XK for k ≥ K. In other words, after the Kth interval, Xk stops changing. In analytical
interval analysis, finite convergence rarely occurs. However, in computational interval analysis
finite convergence always occurs. This is because, within the precision of the computer, Xk

can only have a finite amount of values. A converging series will therefore always converge to
one of these values.

6-4 Interval functions

Consider a function f(x). (An example is f1(x) = ex with x ∈ R, or f2(x) = x1 + x2, with
x = (x1, x2) ∈ R

2.) Officially, a function always consists of both a formula and a domain,
and normally intervals aren’t part of this domain. So to apply interval analysis to functions,
it is first necessary to extend their domains to include intervals. There are multiple ways to
do this. In this chapter, two important ways will be considered. After that, the relationship
between these two ways will be examined.

6-4-1 The united extension and the interval extension

The first method is called the united extension. To find it, all possible values of f(x) (with
x ∈ X) are examined and then assembled (united) in one set. The resulting set is denoted
by f(X) and is officially defined as

f(X) = {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn} = {f(x) : x ∈ X} . (6-4-1)

It is important to note that the set f(X) cannot always be described by an interval. For
example, when f contains discontinuities, then the resulting set may contain gaps. Never-
theless, f(X) is defined as the smallest interval that contains all possible values of f(x) with
x ∈ X.

To find f(X), it is necessary to look at all possible x ∈ X. If X contains real numbers, this is
often impossible and it is thus not possible to find f(X). Luckily, there a few cases in which
f(X) can be found quite easily. Suppose that f(x) is increasing in x. (Or, if x is a vector,
that f(x) is increasing in all parameters xi.) It then holds that

f(X) =
[

f(X), f(X)
]

. (6-4-2)

This relation can be applied to functions like ex or ln(x), as well as parts of functions, like
sin(x) (with −π/2 ≤ x ≤ π/2) or xy (with x > 0 and y > 0). Similarly, if f(x) is decreasing
in x, then

f(X) =
[

f(X), f(X)
]

. (6-4-3)
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Another way to extend a function is to use the (natural) interval extension, denoted
by F (X). To find it, start with the function f(x). Then replace every term xi by the
corresponding interval Xi. Finally, use interval arithmetics to evaluate the function. For
example, if

f(x1, x2) =
x1

1 + x2
, then F (X1, X2) =

X1

1 +X2
=

[

X1, X1

]

1 +
[

X2, X2

] , (6-4-4)

where the resulting interval equation can be worked out further. In general, interval extensions
are a lot easier to work with than united extensions. The downside is that interval extensions
don’t always provide a very narrow bound.

6-4-2 The fundamental theorem of interval analysis

Now it is time to discuss the fundamental theorem of interval analysis, but before that can
be done, first some extra definitions need to be considered.

• A function f(x) is a rational function if its values are defined by a specific finite
sequence of the interval arithmetic operations +, −, · and /. In other words, it is possible
to find the value of f(x) by only adding, subtracting, multiplying and/or dividing.

• If an interval-valued function F (X) is a rational function, it is called a rational interval
function. An example of such a function is F1(X) = [−1, 1](X + [1, 2]). On the other
hand, F2(X) = 1

2X + 1
2m(X) is not a rational interval function due to the presence of

m(X).

• A function f(x) is an elementary function if its values are defined by a specific
finite sequence of interval arithmetic operations and elementary unary functions. (A
unary function is a function with only one parameter. Elementary unary functions

include (among others) exponentials, logarithms and nth roots.) Note that all rational
functions are elementary functions.

• If an elementary function f(x) takes as input n variables (so the vector x is of size n),
then it is said that f is in the class FCn(X0) (written as f ∈ FCn(X0)).

• An interval-valued function F (X) is said to be inclusion isotonic if

X ⊆ Y ⇒ F (X) ⊆ F (Y ). (6-4-5)

United extensions are always inclusion isotonic. The same holds for elementary func-
tions. An example of a function that is not inclusion isotonic is F2(X) = 1

2X + 1
2m(X).

With the help of these properties, it is possible to discuss the fundamental theorem of
interval analysis. This theorem states that, if F is an inclusion isotonic interval extension
of a function f , then

f(X) ⊆ F (X). (6-4-6)

In other words, the interval extension always encompasses the united extension. And, when
f(x) is an elementary function in which every parameter xi occurs only once (i.e. there is no
interval dependency), then it even holds that f(X) = F (X). Sadly, in practice this is rarely
ever the case.
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6-4-3 Excess width and refinement

Consider an inclusion isotonic interval extension F (X) of some function f(x). It is known
that f(X) ⊆ F (X). In other words, F (X) provides some sort of bound for f(X), but often
it is too big. In fact, the bounding error E is defined such that

f(X) = F (X) + E. (6-4-7)

(Note that this does not imply that E = f(X)−F (X).) To know how good the bound F (X)
is, one can look at the width of E. This width is called the excess width and can be found
using

w(E(X)) = w(f(X))− w(F (X)). (6-4-8)

Suppose the goal is to find an as accurate bound on f(X) as possible. (The excess width
should be minimized.) One way to do that is to use refinement. The first thing that is then
done is to apply a uniform subdivision to the interval vector X. Every element Xi is split
up into N equally wide subintervals Xi,j . So,

Xi,j =

[

X i +
j − 1

N
w(Xi), X i +

j

N
w(Xi)

]

. (6-4-9)

Note that this gives a total of Nn subintervals, and if they’re all put together again, the
original interval X is once more obtained.

Now it is possible to find the refinement F(N)(X) over X. This is done using

F(N)(X) =
N
⋃

ji=1

F (X1,j1 , . . . , Xn,jn). (6-4-10)

In other words, each of the Nn subintervals is inserted into F (X) and then all the resulting
outcomes are merged together. The resulting set F(N)(X) has a lower excess width than the
original set F (X). In fact, define the refinement bounding error EN such that

F(N)(X) = f(X) + EN (X). (6-4-11)

The refined excess width w(EN (X)) now turns out to be inversely proportional to N . In
other words, there is a constant K such that w(EN (X)) ≤ Kw(X)/N . So if N becomes twice
as big, the excess width becomes (roughly) twice as small.

6-5 Narrowing the interval extension F (X)

Next, consider an elementary function f(x), its united extension f(X) and its interval ex-
tension F (X) on some interval X. If every term xi appears only once in the relation for
f(x), and there is thus no interval dependency, then f(X) = F (X), but if there is interval
dependency, it only holds that f(x) ⊆ F (X). The question then is, how can someone narrow
down F (X)? One method that can make F (X) more narrow (refinement) has already been
discussed. This section will examine various more such methods.
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6-5-1 The centered form

The first method that well be looked at is called the centered form (CF). The idea behind
it is to reduce the effects of interval dependency. When applying it, first c is defined as
c = m(X). Then x is substituted by y + c (or equivalently, xi by yi + ci) and g(y) is found
using

g(y) = f(y + c)− f(c). (6-5-1)

When f(x) is a polynomial, then it is possible to write g(y) in the form

g(y1, . . . , yn) = y1h1(y1, . . . , yn) + . . .+ ynhn(y1, . . . , yn). (6-5-2)

Thus, f(x) can be written as

f(x) = f(c) + y1h1(y) + . . .+ ynhn(y). (6-5-3)

(If f(x) is not a polynomial, simply write as many terms as possible in the form yihi(y).) If
interval extension is applied to this version of f(x), the result will be

Fc(X) = f(c) + Y1H1(Y ) + . . .+ YnHn(Y ). (6-5-4)

In this relation, the subscript c in Fc denotes the centered form. Also note that the interval
Y in this case equals Y = X− c = X−m(X). (In fact, this is why they call this the centered
form.)

So what’s the use of all this rewriting? Well, the resulting interval extension Fc(X) often
results in a closer bound on f(X) then the original interval extension F (X). In fact, it can
be shown that the excess width w(E(X)) now is proportional to w(X)2 instead of w(X). So
if one applies refinement to Fc(X), then w(EN (X)) ≤ Kw(X)/N2 for some constant K.

6-5-2 The mean value form

Define DiF (X) to be the interval extension of the partial derivative ∂f(x)/∂xi. This term
DiF (X) actually represents an enclosure of the slope ∂f(x)/∂xi over the interval X. This
enclosure is used when applying the mean value form (MVF). In fact,

Fmv(X) = f(y) +
n
∑

i=1

DiF (X)(Xi − yi), (6-5-5)

where generally y is chosen to be the mean (midpoint) of the interval, so y = m(X) and
yi = m(Xi). Fmv(X) is called the mean value extension of f on X. Just like the CF, the
MVF also has an excess width w(E(X)) of order w(X)2,

6-5-3 The slope form

In the slope form (SF), slopes are examined. The slope s(f, x, y) between the points f(x)
and f(y) is defined such that

f(y)− f(x) = s(f, x, y)(y − x). (6-5-6)
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The idea of this slope s can be extended to the interval domain. The slope interval S(f,X, y)
is an enclosure of all slopes s(f, x, y) with x ∈ X.

The above definition of slope works well for functions f with only one parameter, but if x is
a vector, things get somewhat harder. In this case, the slope in the direction xi is defined
such that

f(y)− f(x) = s(f, x, y)(yi − xi). (6-5-7)

The slope interval in the direction xi (denoted as Si(f,X, y)) is then defined as the
enclosure of all slopes si(f, x, y) with x ∈ X.

Now it is finally possible to discuss the slope form. This form is very similar to the mean
value form, except that DiF (X) is replaced by Si(f,X, y). So,

Fs(X) = f(y) +
n
∑

i=1

Si(f,X, y)(Xi − yi), (6-5-8)

where again often y = m(X) is chosen. An interesting fact is that, if the same point y is used
for both the MVF and the SF, then Si(f,X, y) ⊆ DiF (X) and thus Fs(X) ⊆ Fmv(X). In
other words, the SF will always perform at least as good as the MVF. The big downside to
the SF is that it can sometimes be very hard to find good bounds for Si(f,X, y).

6-5-4 The monotonicity test form

In the monotonicity test form (MTF), a close look is given to the differentials DiF (X).
Suppose that D1F (X) ≥ 0. In other words, the partial derivative ∂f/∂x1 is non-negative for
all x ∈ X. In that case, f(x) is minimized if x1 = X1. Similarly, it is maximized if x1 = X1.
That is great to know, since now it’s not necessary anymore to take into account x1 when
trying to find the minimum or maximum of f(x). It is then possible to simply apply (for
example) the mean value form to the remaining parameters. (Note that a nearly identical
trick can be applied if D1F (X) ≤ 0. Then the minimum occurs when x1 = X1.)

The above idea is the main idea behind the monotonicity test form. First define S as the
set of all indices i with DiF (X) < 0 < DiF (X). (So these are all indices for which the
monotonicity trick does not work.) Then the MTF is given by

Fmt(X) = [f(u), f(v)] +
∑

i∈S

DiF (X)(Xi − yi), (6-5-9)

where the elements of the vectors u and v are given by

(ui, vi) =











(X i, Xi) if DiF (X) ≥ 0,

(X i, Xi) if DiF (X) ≤ 0,

(yi, yi) otherwise.

(6-5-10)

So if either DiF (X) ≥ 0 or DiF (X) ≤ 0, then the monotonicity trick is applied to parameter
xi. Otherwise, xi is involved in the MVF.
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6-5-5 The Skelboe-Moore algorithm

The Skelboe-Moore algorithm is an improved version of the refinement procedure. Sup-
pose that one wants to find the minimum minX(f(x)) of a function f(x) on an interval X, or
at least an accurate lower bound F (X) of this minimum. The refinement procedure simply

divides X in Nn regions Z(i), finds F (Z(i)) for all regions i and then selects the lowest value
of F (Z(i)) as the lower bound. (Any of the earlier discussed methods can be used to find

F (Z(i)).) The Skelboe-Moore algorithm tries to search more efficiently.

In the Skelboe-Moore algorithm, all intervals Z are kept in a list L. This list is ordered on
F (Z), so the first element of the list is always the interval Z with the lowest value of F (Z).
The algorithm is now executed as follows.

1. Initialize L as {X}. So initially L contains only X.

2. Take the first element out of L and call it Z. Note that this is the element with
the smallest value of F (Z) so far.

3. Check if F (Z) is narrow enough. That is, check if w(F (Z)) < ε, with ε the required
accuracy. If so, jump to step 6. If not, continue with step 4.

4. Bisect Z into Z(1) and Z(2). To bisect Z, first find the dimension i in which Z has
the largest width w(Zi). (So w(Zi) = w(Z).) Then split up Z along this dimension.

(That is, split up Zi into two equally wide subintervals Z
(1)
i and Z

(2)
i . Keep all other

intervals Zj = Z
(1)
j = Z

(2)
j (with j 6= i) the same, and assemble them all again into two

interval vectors Z(1) and Z(2).)

5. Insert Z(1) and Z(2) into L. Jump back to step 2. Note that Z(1) and Z(2) should
be inserted such that the ordering of L is maintained. So, when they’re ‘good’ enough
to be considered later, they’ll automatically drift to the front of the list L.

6. Algorithm result: an accurate lower bound F (X) for f(x) is given by F (Z).
Note that it must be the case that minX(f(x)) ∈ F (Z). And since w(F (Z)) < ε, it
must therefore also be true that minX(f(x)) − F (Z) < ε. This implies that the lower
bound that has been found has at least an accuracy ε.

By the way, it is not always certain that the value xmin that minimizes f(x) is in Z. xmin

might also be in one of the other intervals Z ′ ∈ L. Though if xmin ∈ Z ′ 6= Z, then Z ′

must satisfy F (Z ′) ≤ F (Z). So if it is necessary to find an interval that bounds xmin, then
the above algorithm needs to be slightly expanded. It should then, in the end, examine all
intervals Z ′ ∈ L with F (Z ′) ≤ F (Z).

Finally, note that finding a lower bound for a function f(x) is equivalent to finding an upper
bound for a function −f(x). So the Skelboe-Moore algorithm can be used to find upper
bounds F (X) as well. In this way, a bound F (X) of f(X) with any accuracy ε can be
obtained.
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6-6 Linear systems of equations

Solving only one-dimensional functions is a bit boring. In this section linear systems of interval
equations will be considered. First the workings of interval matrices will be examined. After
that, several methods to solve linear systems of equations will be discussed.

6-6-1 Interval matrices

An interval matrix is a matrix whose elements are intervals. These matrices may have
various properties.

• If A is an interval matrix and B is a degenerate matrix (with real numbers), and if
Bij ∈ Aij for all i, j, then one may write B ∈ A.

• The matrix norm ||A|| is an extension of the maximum row sum norm that is
occasionally used for degenerate matrices. So,

||A|| = max
i

∑

j

|Aij |. (6-6-1)

In other words, to find the matrix norm, examine all rows. The row with the largest
sum of interval norms gives the matrix norm. If B is a degenerate matrix with B ∈ A,
then always ||B|| ≤ ||A||.

• The width w(A) of an interval matrix A is defined as the maximum of the widths of
the elements. So,

w(A) = max
i,j

w(Ai,j). (6-6-2)

• The midpoint m(A) of an interval matrix is the matrix whose elements are the mid-
points of the elements of A. So,

(m(A))i,j = m(Ai,j). (6-6-3)

• The matrix determinant det(A) can be found in the same way as for a degenerate
matrix, except this time the result will be an interval.

• Adding, subtracting and multiplying interval matrices is identical to adding, subtracting
and multiplying degenerate matrices, except this time interval arithmetics are applied.

• If A and B are interval matrices and C and D are degenerate matrices satisfying C ∈ A
and D ∈ B, then it always holds that C�D ∈ A�B, where � can be any of the above
three operations. In case of adding and subtracting, A ± B forms a tight bound for
C ±D. However, in case of multiplying, there will almost always be matrices E ∈ AB
that cannot be the result of any multiplication CD. (This is the result of interval
dependency.)
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6-6-2 Solving a simple matrix interval equation

Examine the matrix interval equation Ax = B with A an interval matrix and B an interval
vector. If A is a 2× 2 interval matrix, the equation will look like

[

A1,1 A1,2

A2,1 A2,2

]

x =

[

B1

B2

]

. (6-6-4)

Finding the set X of all possible solutions x is generally very hard. Also, the solution space
often has a shape that is nowhere near a rectangle (or an n-dimensional box). So describing
all possible solutions of x with an interval vector X will result in a very rough bound. The
question remains, how can such a rough bound be obtained?

One way is to try to solve the system algebraically. For this, first rewrite the set of equations
to

A1,1x1 +A1,2x2 = B1 ⇒ A1,1A2,1x1 +A1,2A2,1x2 = A2,1B1, (6-6-5)

A2,1x1 +A2,2x2 = B1 ⇒ A1,1A2,1x1 +A1,1A2,2x2 = A1,1B2. (6-6-6)

Subtracting the first equation from the second will eliminate x1. (Note that with interval
arithmetics, it generally does not hold that C−C = 0 for an interval C. But if both intervals
C represent the same real number c, then this C −C = 0 can be applied.) Solving for x2 will
then give

x2 ∈
A1,1B2 −A2,1B1

A1,1A2,2 −A1,2A2,1
. (6-6-7)

x1 can be solved for in a similar way. Do note that solutions only occur if 0 /∈ A1,1A2,2 −
A1,2A2,1 = det(A). If it does occur that 0 ∈ det(A), then the matrix interval equation cannot
be solved.

6-6-3 The Krawczyk method

Another way to solve a matrix interval equation is the Krawczyk method. In this method,
both sides of the equation are multipled by a matrix P and rewritten to

x = PB + (I − PA)x = PB + Ex, (6-6-8)

where E is defined as E = I − PA. The goal is to have ||E|| < 1. A matrix P which often
accomplishes this is P = (m(A))−1 (or an approximation of it). If ||E|| < 1, then the above
relation can be used to iteratively solve for the solution X. One starts with the interval vector
X(0) whose elements are given by

X
(0)
i =

[−1, 1]||Pb||
1− ||E|| . (6-6-9)

If a solution x is in X(k), then it must also be in PB + EX(k). (This follows from the
requirement ||E|| < 1.) The solution bound X(k) can therefore be iteratively refined using
the nested sequence

X(k+1) =
(

PB + EX(k)
)

∩X(k). (6-6-10)

And, since the sequence is nested, it will converge.
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6-6-4 The Hansen-Sengupta method

The Hansen-Sengupta method is an interval extension of the original Gauss-Seidel it-
eration. To apply it, again a matrix P is required (with often P ≈ (m(A))−1) to turn the
equation Ax = B into Gx = C with G = PA and C = PB. The iteration is now done
according to

X
(k+1)
i =

1

Gi,i



Ci −
i−1
∑

j=1

Gi,jX
(k+1)
j −

n
∑

j=i+1

Gi,jX
(k)
j



 ∩X
(k)
i . (6-6-11)

The downside of this method is that it does not work if 0 ∈ Gi,i for some i. In that case,
a division by zero would occur, which results in problems. There are tricks to work around
these problems, but these tricks are outside the scope of this summary.

6-7 Nonlinear systems of equations

In the previous chapter, linear systems of equations have been considered. In this chap-
ter, it will be examined how to solve nonlinear systems of equations. First the simple one-
dimensional case will be considered. Then two solving methods for the multi-dimensional
problem will be looked at.

6-7-1 The univariate Newton method

Consider a one-dimensional (nonlinear) function f(x). Suppose the goal is to find a solution
to f(x) = 0 on some interval X(0). To do this, it is possible to apply Newton’s method in
one dimension. The mean value theorem states that, for every x and y, there is an s
between x and y such that

f(x) = f(y) + f ′(s)(x− y). (6-7-1)

So any solution x to f(x) = 0 would have to satisfy

f(y) + f ′(s)(x− y) = 0 ⇔ x = y − f(y)

f ′(s)
(6-7-2)

for any y ∈ X(0). It is often conveniently chosen that y = m (X0). Also denote the interval of
all possible values of f ′(x) with x ∈ X as F ′(X). Then it is known that the solution x must
lie in

N(X(0)) = m(x)− f(m(x))

F ′(X(0))
. (6-7-3)

This procedure can be recursively refined using nesting, giving

X(k+1) = X(k) ∩N(X(k)). (6-7-4)

The sequence {Xk} will then converge to an interval X∗ which contains all solutions f(x) = 0
with x ∈ X(0).
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6-7-2 Extended interval arithmetics

A problem occurs with the above algorithm if 0 ∈ F ′(X). In normal interval analysis it is
not possible to divide by an interval containing zero. As a solution, extended interval
arithmetics can be used, which do allow this. If X = [a, b], then

1

X
=











[1/b,+∞) if a = 0 < b,

(−∞, 1/a] ∪ [1/b,∞) if a < 0 < b,

(−∞, 1/a] if a < 0 = b.

(6-7-5)

The problem then is that it’s possible to wind up with two intervals instead of one. Using
an interval hull won’t work either, since that would give (−∞,∞). The solution is to simply
consider each of the two intervals separately. So first Newton’s method is applied for one
interval, and then it is applied again for the other interval. In this way, the Newton method
can find all zeroes of a function f(x) in a given interval X.

6-7-3 The nonlinear Krawczyk method

In the world of interval analysis, of course there aren’t only linear interval equations and
one-dimensional interval equations. Now, examine the system of nonlinear equations

f1(x1, . . . , xn) = 0,

...

fn(x1, . . . , xn) = 0. (6-7-6)

This system is often written in vector form, as f(x) = 0. The question is, how can one find
solutions x ∈ X for this system of equations using interval analysis?

The first thing that needs to be done is determine whether there actually is a solution. Luckily
there is a trick for that. First, define f ′(x) to be the Jacobian matrix with as elements
(f ′(x))i,j = ∂fi(x)/∂xj . The interval extension of this matrix is denoted as F ′(X). Also P is
defined to be a nonsingular approximation of f ′(m(X))−1. And finally, y is taken to be any
vector y ∈ X. Now define K(X) as

K(X) = y − Pf(y) +
(

I − PF ′(x)
)

(X − y). (6-7-7)

It can be shown that if K(X) ⊆ X, then there must be a solution x ∈ X for the system of
equations f(x) = 0. (The reasoning behind this is just a bit too complicated to explain in
this summary.)

The above function K(X) is used in the Krawczyk method. (The Krawczyk method for
linear systems was already discussed in the previous chapter. Now the method is extended
for nonlinear systems.) During every iteration in this method, the matrix m(F ′(X(k)))−1 is
approximated as P . It is then checked if

||I − PF ′(X(k))|| ≤ ||I − P (k−1)F ′(X(k−1))||. (6-7-8)
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If this relation holds, then the approximation P is better than the old approximation P (k−1)

and P (k) is set to P . If not, then the old approximation is better and again P (k) = P (k−1) is
used. Also, y(k) is defined as y(k) = m(X(k)). The iteration is then finished by updating

X(k+1) = K(X(k)) ∩X(k). (6-7-9)

The sequence {X(k)} will converge to a limit X∗ containing the solution x.

6-7-4 The multivariate Newton method

A nonlinear system of equations can also be solved using the Newton method, but to do that,
it needs to be extended to multiple dimensions first. This time, consider a vector function
f(x). The solution x could be found using

x = y − F ′(X)−1f(y). (6-7-10)

(Note that F ′(X) is an interval matrix function now.) However, inverting an integral matrix
is not the most convenient course of action. So instead, consider the rightmost term and
define it as V = −F ′(X)−1f(y). If V is known, then it is also known that the solution x lies
in

x ∈ N(X) = y + V. (6-7-11)

But how can one find V ? Well, the interval V bounds all numbers v satisfying v =
F ′(X)−1f(y), or, equivalently,

F (X)v = f(y). (6-7-12)

This is simply a set of linear interval equations, so it is possible to use a linear solving method
(like the Gauss-Seidel method or the linear Krawcyk method) to solve for V . Once V is
known, N(x) can be found and then the solution interval X can be refined using equation
(6-7-4).

6-8 Integrals and interval analysis

Consider a complicated integral that needs to be approximated using interval analysis. How
is this done? This section first examines a few simple ways to bound the value of the integral.
After that, a look will be given at how integral polynomials can be used to find a more narrow
bound.

6-8-1 A few simple ways to bound integrals

Examine a one-dimensional function f(x). This function can be integrated over an interval
X = [a, b]. This integral is written as either

∫ b

a
f(x) dx,

∫

[a,b]
f(x) dx or

∫

X
f(x) dx. (6-8-1)
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If f(x) is continuous, it is easily possible to find bounds on this integral. In fact, a rough
bound is given by

∫

X
f(x) dx ∈ f(X)w(X). (6-8-2)

This bound can be refined by splitting up X into N subintervals X1, . . . , XN . This gives

∫

X
f(t) dt ∈

N
∑

i=1

F (Xi)w(Xi). (6-8-3)

If it is also known that the width w(F (X)) varies at most linearly with the width w(X) (that
is, if w(F (X)) ≤ Lw(X) for some constant L), then

w

(

N
∑

i=1

F (Xi)w(Xi)

)

≤ L
N
∑

i=1

w(Xi)
2. (6-8-4)

In other words, the width of the integral estimate decreases quadratically with the width of
the intervals Xi. So to get a more accurate bound on the integral, one can simply take more
(and thus smaller) intervals Xi.

It is also possible to have integrals of interval-valued functions. Such an interval integral is
defined as

∫

X
F (t) dt =

[∫

X
F (t) dt,

∫

X
F (t) dt

]

. (6-8-5)

The above tricks work the same for this kind of integral.

6-8-2 Integration of interval polynomials

An interval polynomial is a polynomial with interval coefficients, like

P (t) = A0 +A1t+ . . .+Aqt
q. (6-8-6)

When integrating an interval polynomial, one gets

∫

[a,b]
P (t) dt = T0 + T1 + . . .+ Tq, (6-8-7)

where the coefficients are given by either

Ti = Ai
(bi+1 − ai+1)

i+ 1
(6-8-8)

if i is even or a and b have the same sign, or

Ti =

[

Aib
i+1 −Aia

i+1

i+ 1
,
Aib

i+1 −Aia
i+1

i+ 1

]

(6-8-9)

if i is odd and a and b have a different sign (a < 0 < b).
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6-8-3 Interval enclosures

Consider a time-varying parameter x(t). An interval function X(t) that encloses x(t) at
every time t ∈ T is called an interval enclosure. If X(t) can also be written as an interval
polynomial, then it is called an interval polynomial enclosure.

It is possible to obtain an interval polynomial enclosure X(t) of any time-varying parameter
x(t) using Taylor series. The Taylor series of x(t), with respect to some point x0, is given by

x(t) = x(t0) +
∞
∑

k=0

(

1

k!

dkx

dtk
(t0)

)

(t− t0)
k. (6-8-10)

Of course, summing up an infinite amount of terms is computationally not a good idea. If

the series is cut off at the Kth term, then the result is

x(t) = x(t0) +
K−1
∑

k=0

(

1

k!

dkx

dtk
(t0)

)

(t− t0)
k + rK , (6-8-11)

where rK is the remainder term. From calculus, it is known that an interval enclosure RK

of this remainder rK is given by

rK ∈ RK =

(

1

K!

dKx

dtK
(T )

)

(t− t0)
K , (6-8-12)

where T0 = [t0, t]. Combining this with the rest of the Taylor polynomial of x(t) will result
in an enclosure X(t) of x(t). This gives

x(t) ∈ X(t) = x(t0) +
K−1
∑

k=0

(

1

k!

dkx

dtk
(t0)

)

(t− t0)
k +

(

1

K!

dKx

dtK
(T0)

)

(t− t0)
K . (6-8-13)

Note that this is an interval polynomial enclosure of x(t). And since the only interval occurs
in the last term, it’s a pretty good interval enclosure as well, as long as w(T0) doesn’t become
too big.

6-8-4 Finding interval enclosure coefficients

Take a closer look at the coefficients of the interval enclosures. First, for shorter notation,
define

(x)0 = x(t0) and (x)k =
1

k!

dx

dtk
(t0). (6-8-14)

Finding these coefficients is possible, but may computationally be a bit inefficient, due to all
the derivatives. Luckily, there are some tricks that can be used. Consider the time-varying
parameters u(t) and v(t), as well as their sum u + v. The coefficients of their sum can be
found through

(u+ v)k = (u)k + (v)k. (6-8-15)
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There are similar tricks for various other combinations/functions of u and v. Some examples
include

(uv)k =

k
∑

j=0

(u)j(v)k−j , (6-8-16)

(u

v

)

k
=

(

1

(v)0

)



(u)k −
k
∑

j=1

(v)j

(u

v

)

k−j



 , (6-8-17)

(ua)k =

(

1

u

) k−1
∑

j=0

(

a− j(a+ 1)

k

)

(u)k−j(u
a)j , (6-8-18)

(eu)k =
k−1
∑

j=0

(

1− j

k

)

(eu)j(u)k−j . (6-8-19)

Similar relations exist for many more mathematical functions.

By using the above relations, one can express the coefficients of functions of (u)k and (v)k in
earlier derived coefficients. This allows for recursively derived coefficients, which is often a
more efficient way of finding them than the traditional way involving derivatives.

It is even possible to find the coefficients of a very complicated function, as long as it is
written as a sequence of basic operations. Simply recursively walk through all the operations
until all coefficients have been found.

6-8-5 Integration of polynomial interval enclosures

Once an interval enclosureX(t) of x(t) for some t0 has been obtained, then it can be integrated
over the interval A. The integral of X(t) over A then provides a bound on the integral of x(t)
over A.

But what if the interval is too wide, and a more narrow interval is required? There are then
two options. First of all, one can vary K. Higher values of K often (though not always) give
more narrow intervals.

A second option is to divide A into N subintervals Ai. One can then evaluate X(t) separately
for each subinterval Ai. So,

∫

A
x(t) dt ∈

N
∑

i=1

(∫

Ai

X(t) dt

)

. (6-8-20)

Denote A as A = [a, b]. If a and b have the same sign, then the right-hand side of the above
relation can also be further worked out as

N
∑

i=1

(

K−1
∑

k=0

(

(x)k(Ai)w(Ai)
k+1

k + 1

)

+
(x)K(Ai)w(Ai)

K+1

K + 1

)

. (6-8-21)

Now, by varying either or both of N and K, and then taking the intersection of all the
resulting bounds, a narrow bound for the integral of x(t) over A can be obtained.
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6-9 Bounding differential equation solutions

The final application of IA to be discussed in this summary is to use intervals in bounding
solutions of differential equations. This section briefly discusses how that works for ordinary
differential equations. Bounding partial differential equations is however outside of the scope
of this summary.

6-9-1 Function and interval operators

A function operator p is an operator that can be applied to normal functions like y(t). It
may contain derivatives, integrals, etcetera of y(t). An example of a function operator p is

p(y)(t) = h(t, y(t)) +

∫ t

0
f(t, s, y(s)) ds, (6-9-1)

where h and f can be any functions. Note that a function operator has a function as both
its input and its output.

Similar to the function operator p is the interval operator P . This operator takes interval
functions like Y (t) as input and has another interval function P (Y ) as output. An interval
operator can have various properties. An interval operator P is said to be inclusion isotonic
if

X ⊆ Y ⇒ P (X) ⊆ P (Y ). (6-9-2)

(Note that, for interval functions X(t) and Y (t), it is said that X ⊆ Y only if X(t) ⊆ Y (t)
for every t.) Furthermore, an interval operator P is said to be an interval majorant of a
function operator p if

p(y) ∈ P (Y ) for every y ∈ Y. (6-9-3)

(Note that, for a function y(t) and an interval function Y (t), it is said that y ∈ Y only if
y(t) ∈ Y (t) for every t.)

Now consider the example function operator p of equation (6-9-1). If the interval extensions
H and F are inclusion isotonic, then the interval operator

P (Y )(t) = H(t, Y (t)) +

∫ t

0
F (t, s, Y (s)) ds (6-9-4)

is an inclusion isotonic interval majorant of p.

6-9-2 Solving ordinary differential equations

It is often necessary to find solutions y(t) of the equation y = p(y), with p of the form (6-9-1).
For example, consider the special case where

y(t) = y0 +

∫ t

0
f(s, y(s)) ds. (6-9-5)

Taking the derivative of this equation gives dy/dt = f(t, y(t)) with y(0) = y0. So this is in fact
an initial value problem. In a similar way y = p(y) can be rewritten to other well-known
ordinary differential equation problems.
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Finding the function y that satisfies y = p(y) is often pretty hard. Instead of finding it directly,
one can also try to bound it by finding the interval function Y that satisfies Y = P (Y ).

Suppose that P is an inclusion isotonic interval majorant of p. Now consider the sequence
Y (k+1) = P (Y (k)). It can be shown that, if P (Y (0)) ⊆ Y (0), then also Y (k+1) ⊆ Y (k) for every
k. So the sequence is nested. Furthermore, the limit

Y (t) = ∩∞k=0Y
(k)(t) (6-9-6)

will converge to a bound on y(t). In the special case that also

sup
t

w(P (X)(t)) ≤ c sup
t

w(X(t)) (6-9-7)

for all interval functions X ∈ Y (0) (with c < 1 a constant), then it can be shown that
w(Y (t)) = 0. In other words, Y (t) will become a normal (degenerate) function y(t), equaling
the solution to y = p(y).
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Chapter 7

On convergence of RL with function

approximators

Reinforcement learning with function approximation has been considered often in literature.
Many articles have been written on it, or subjects related to it. This chapter will go into
depth on these articles. First some recent applications of RL with function approximators are
considered. After that, articles that discuss issues in applying RL with function approximators
are discussed. Finally, some articles giving proofs of convergence and/or divergence of RL
with function approximators are examined.

7-1 Applications of RL with function approximation

This section considers several articles that have set up and applied some version of reinforce-
ment learning combined with function approximation.

7-1-1 The block world problem

The first article to consider is (Irodova & Sloan, 2005), in which RL with function approxi-
mation is applied to a version of the block world problem. This is a typical problem with a
very large number of discrete states, and solving the problem requires careful planning.

To solve this problem, (Irodova & Sloan, 2005) has used Q-learning, combined with a linear
value function and hand-picked features. First a feature vector f with various useful features
fi is set up. The Q-function is then described as Q(θ, s, a) = θT f . The update law for the
parameter vector θ is

θ ← θ + α

(

r + γmax
a′

Q(θ, s′, a′)−Q(θ, s, a)

)

dQ(θ, s, a)

dθ
. (7-1-1)

Though this research shows the promise of function approximators combined with reinforce-
ment learning, the applicability of (Irodova & Sloan, 2005) for the current project remains
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limited. The reason for this is that the problems that are considered in the current project do
not have discrete states. Also, the system dynamics aren’t necessarily linear – in fact, they
are often nonlinear – thus questioning the usefulness of using a linear value function.

7-1-2 Least-squares policy iteration

The article (Lagoudakis, Parr, & Bartlett, 2003) discusses and applies the Least-Squares
Policy Iteration (LSPI) algorithm. This algorithm uses a linear function approximator,
which approximates the Q-function. It does not use a function approximator for the policy.
Instead, it directly searches for the action a that maximizes the Q-function.

The LSPI uses linear function approximators, which does not exactly correspond with the sub-
ject of the current project. Nevertheless, the algorithm is interesting to analyse. (Lagoudakis
et al., 2003) contains a theorem that the LSPI algorithm is stable and always converges to
a region near the optimal performance. (So not a local optimum but the global optimum.)
However, no proof for this theorem is given, so it cannot be verified.

(Lagoudakis et al., 2003) also discusses an experiment of a cart and pendulum system, very
similar to the one considered in the current project. However, there are some issues with
this experiment. First of all, it is said that the displacements given to the pendulum in the
experiment are very small. Second, it is noted that, ‘With 1000 training episodes even the
worst policy could balance the pendulum for at least half the time.’ In other words, there were
policies that regularly failed to balance the pendulum. This statement makes the validity of
the earlier theorem very doubtful. Nevertheless, the article does show that combining least-
squares techniques with linear function approximators can be a powerful way to solve certain
RL problems.

7-1-3 Cerebella model articulation controllers

In (Zheng, Luo, & Lv, 2006), a double inverted pendulum is controlled using reinforce-
ment learning. As function approximator, a Cerebella Model Articulation Controller
(CMAC) is used. This type of controller puts several ‘grids’ over the state space. Every state
thus falls in a cell of each grid. These cells are subsequently activated. Every cell also has a
weight. The output of the network then becomes the weighted sum of all activated cells.

What is novel, is that the controller in (Zheng et al., 2006) does not use one CMAC controller
but two. One controller has very generalized learning, while the other controller has more
specialized learning. If a state hasn’t been visited much, then (slightly simplified) the gener-
alized network is used, while if it has, the specialized network is used. This is an interesting
solution to the generalization/specialization dilemma.

The two CMAC controllers do eventually manage to control the double inverted pendulum.
However, they do require a significantly long training time for this. (Almost 500.000 trials are
required.) Furthermore, though a CMAC controller can be applied to continuous problems,
its working principle resembles more that of a discrete controller than that of a continuous
controller. A CMAC controller is thus not suitable for problems like the one considered in
the current project, which has a highly continuous nature.

Hildo Bijl Guaranteed Globally Optimal Continuous Reinforcement Learning



7-2 Issues in reinforcement learning with function approximation 67

7-1-4 A SARSA controller

Reinforcement learning is also suitable at playing games. This has of course been proven by
the famous TD-gammon controller. One other instance where this is shown is (Beitelspacher,
Fager, Henriques, & Mcgovern, 2006). Here the SARSA method is used to play a variant of
the Spacewar game. Though the SARSA controller does not manage to come close to the
optimal performance (for as much as an ‘optimal performance’ exists in a computer game
with a lot of randomness and complex opponents), it does achieve adequate performance. It
is also found that the way in which the state is fed to the controller significantly influences
the learning performance of the controller.

7-1-5 Adaptive critic designs

One article which considers several variations of RL is (Prokhorov & Wunsch, 1997). This
article looks at various RL architectures – how to train the actor (policy) and critic (value
function). For example, in Heuristic Dynamic Programming (HDP), it is attempted to
minimize the magnitude of

V (sk)− γV (sk+1)− r, (7-1-2)

while in Dual Heuristic Programming (DHP) one tries to minimize the derivative

∂V (sk)

∂s
− γ

∂V (sk+1)

∂s
− ∂r

∂s
. (7-1-3)

Finally, in Global Dual Heuristic Programming (DHP), one tries to minimize the above
two quantities simultaneously, through two different learning rates. This method is rather
complicated, especially because finding the derivatives will be hard, but (Prokhorov & Wun-
sch, 1997) claims (without showing actual experiment results) a theoretical increase in learning
performance.

7-2 Issues in reinforcement learning with function approximation

Literature has several articles and papers on issues in reinforcement learning as well. This
section takes a look at a few important ones.

7-2-1 Value overestimation

(Thrun & Schwartz, 1993) offers a research on issues in reinforcement learning and function
approximators, very similar to the goal of this report. However, the authors’ approach is
very different. They assume that the number of applicable actions is finite – in fact, strongly
bounded – and focus on Watkin’s Q-learning algorithm, combined with function approxima-
tors. They note that, when estimating the value of a state using Q, there will always be an
error ε. They assume this error is normally distributed. Subsequentially, during the update
rule of Q-learning (relation (3-3-5)), it will be necessary to find

max
a

Q(s, a). (7-2-1)
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Because there is an error in Q, this maximization will generally result in a too high value: an
overestimate of the value. The result will be an incorrect value function and thus possibly
also an incorrect policy.

(Thrun & Schwartz, 1993) offers various ways to reduce the effects of this overestimation.
First it provides bounds on γ, such that the effects of overestimation will not significantly
influence the policy. Later, it also suggests to add pseudo-costs to the update relation, to
counteract for value overestimation.

Though it is a good article on a very similar topic, the value of (Thrun & Schwartz, 1993)
for the current project remains limited. This is mainly because in (Thrun & Schwartz, 1993)
it has been assumed that the number of actions is limited, while in the current project the
action is continuous, and there are thus infinitely many actions possible. This prevents the
theory that is offered from being applied.

7-2-2 Issues in function approximation

Another article which describes issues in using function approximation with reinforcement
learning is (Motta Salles Barreto & Anderson, 2008). It mentions various problems that can
occur.

• In function approximation, when the value V (s) of some state s is updated, the value
V (s′) of nearby states s′ also gets updated. Although for most learning algorithms it is
possible to ensure that V (s) becomes more accurate, the same cannot always be said of
V (s′).

• Sometimes it’s not possible for the function approximator to sufficiently approximate
the actual value function V . And even if it is possible, it’s not always possible to
represent intermediate versions of V .

• Finally, even if a good approximation of the value function has been obtained, the fact
that it is an approximation may still cause the resulting policy π to perform poorly.

(Motta Salles Barreto & Anderson, 2008) goes on to describe a way in which some of the issues
mentioned in both (Thrun & Schwartz, 1993) and (Motta Salles Barreto & Anderson, 2008)
can be circumvened. The article describes a Restricted Gradient-Descent (RGD) algorithm.
The value function that is applied uses radial basis functions. The ‘restricted’ part of the
RGD algorithm implies that the widths σ of these RBFs may not increase. They can only
decrease. Furthermore, the center c of the RBFs may only move towards states s that have
actually been visited. This confines the centers c to the convex hull of the visited state space.
Since both σ and c are bounded, no divergence can occur during learning.

Furthermore, (Motta Salles Barreto & Anderson, 2008) applies a very interesting addition
to the neural networks it uses. Instead of using a fixed number of hidden neurons, the
number of hidden neurons increases as the neural network learns. When the algorithm detects
that additional ‘resolution’ is required (i.e., none of the neurons is sufficiently activated), an
additional neuron is added at the current state s.
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7-2-3 Divergence due to error amplification

Another article that examines convergence issues in reinforcement learning is (Boyan &Moore,
1995). This article distinguishes four kinds of results of the learning algorithm. Good con-
vergence occurs when the value function approximator approximates the real value function
well, thus resulting in the right policy. Lucky convergence takes place when the value func-
tion approximator does not converge to the actual value function, but still the right policy is
derived. There is bad convergence when wrong (suboptimal) value functions and policies
are derived. Finally, there is divergence when the value function diverges.

(Boyan & Moore, 1995) argues that the most important reason for divergence is the amplifica-
tion of errors due to the dynamic programming step. The function approximators are updated
through the quantity V (sk)−γV (sk+1)−r, but when V (sk+1) is inaccurate, this update can be
wrong, potentially resulting in divergence. To prevent this, (Boyan & Moore, 1995) proposes
an algorithm called Grow-support, which doesn’t use TD updates but instead considers
the entire ‘rollout’ of an experiment and uses that to update the value function, just like in
Monte Carlo state-value prediction. This is guaranteed to prevent divergence, and it often
also results in convergence, though convergence is not guaranteed.

7-3 Convergence proofs

Many attempts have been made in literature to prove the convergence of a reinforcement
learning controller with function approximation. No one has succeeded in general, nor come
close to it. However, for specific cases convergence proofs have been found.

7-3-1 Linear quadratic regulation

One of the first articles with a convergence proof is (Bradtke, 1993), which examines linear
systems with Linear Quadratic Regulators (LQRs). It describes a policy iteration algo-
rithm for LQR problems that is proven to converge to the optimal policy. In contrast to
standard methods of policy iteration, it does not require a system model. It is a good start
into the world of convergence proofs. However, since it is only applicable to systems with
linear dynamics, it is not applicable to the current project.

7-3-2 Finite state and action spaces

(Gordon, 2001) considers the SARSA(0) and V(0) algorithms. (The latter was used in the
well-known TD-Gammon program.) The article doesn’t show that these algorithms converge
to a set point, but it does prove that they converge to a region. To be more precise, the
algorithms are proven to be stable in the sense that there exist bounded regions which, with
probability 1, they eventually enter and never leave. This does not imply that the algorithm
converges to a point though, and for some MDPs this occasionally also doesn’t occur. It must
be noted that in the article, no mention is made what kind of function approximator is used.
However, it is assumed that the amount of states and actions are both finite. Thus, these
theories are not applicable to the case in which there are continuous states and/or actions,
like in the current project.
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7-3-3 Convergence of linear function approximators

Another early proof that certain cases of reinforcement learning with function approximators
converge is given in (Tsitsiklis & van Roy, 1997). This article has established the convergence
of on-line temporal-difference learning with linear function approximators when applied to
irreducible aperiodic Markov chains. At the end of the article, it is also shown that con-
vergence is not necessarily the case when nonlinear function approximators are used. An
example of an RL agent with a special type of nonlinear function approximator is given that
has divergent learning on a specific problem. As such, the article shows that not all RL agents
with nonlinear function approximators converge. However, it also poses the question whether
this would hold for specific nonlinear function approximators, like NNs, or whether things are
different then.

One article which has some very powerful results on the convergence of linear function ap-
proximators is (Merke & Schoknecht, 2004). It considers synchronous reinforcement learning
with linear function approximation and transforms this process into inhomogeneous matrix
iterations. It then provides necessary and sufficient conditions for various kinds of conver-
gence. Since these conditions are both necessary and sufficient, it is also possible to prove
divergence, which is a very powerful result. Though this theory evidently is not applicable to
nonlinear function approximators, it is definitely a powerful result.

(Melo, Meyn, & Ribeiro, 2008) considers Q-learning combined with linear function approxi-
mation. It proves that, given certain conditions, this algorithm converges with probability 1.
Its method is very similar to (Merke & Schoknecht, 2004), with as most notable difference
that (Melo et al., 2008) uses an ordinary differential equation θ̇(t) = Aθθ(t) + b to show con-
vergence, whereas (Merke & Schoknecht, 2004) uses a discrete version θ(k + 1) = Aθ(k) + b.
Nevertheless, the outcome is the same. Given certain conditions, Q-learning with linear
function approximation converges.

7-3-4 Expansion to nonlinear function approximators

So far linear function approximators have been considered. Convergence proofs for RL with
nonlinear function approximators are very rare. One example of an article that does discuss it
is (Sutton, McAllester, Singh, & Mansour, 1999), in which it is shown for the first time that a
version of policy iteration with arbitrary differentiable function approximation is convergent
to a locally optimal policy. In this article, two function approximators are used: a policy πθ
(with parameter vector θ) and a value function fw (with parameter vector w), the latter of
which serves as an approximation of Q(s, a)− V (s).

In the algorithm, a form of policy iteration is applied. This iteration consists of two steps.
First, in the policy evaluation step, w is varied until fw reaches a local optimum, thus ap-
proximating Qπ(s, a)− V π(s) as well as possible. Second, in the policy improvement step, θ
is adjusted in the direction of the negative gradient ∂ρ/∂θ, with ρ the expected total reward.
It is then shown that this iteration (subject to various conditions) is ensured to converge to
a local optimum.

Though the article provides a very powerful proof, it does have a few downsides.
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• The proof given in the paper is incomplete. It uses theorems without showing all
conditions for these theorems are met. Nevertheless, this problem can be fixed by
extending the proof.

• The given algorithm has little practical applicability so far; the reason being that the
policy evaluation step is likely to require an infinite number of iterations to converge.
Of course, one can terminate the policy evaluation sooner, giving a nearly identical
performance, but then the proof given doesn’t hold anymore and convergence is not
guaranteed.

• The algorithm ensures convergence to a local optimum, and although a convergence
guarantee certainly is valuable, convergence to a local optimum that does not equal the
global optimum can still be unsatisfactory in practical applications.

One possible improvement to the algorithm described in (Sutton et al., 1999) is thus to change
the policy iteration algorithm into a value iteration algorithm, and see if a similar proof can
be found. Another option is to combine the given algorithm with a variation of the Skelboe-
Moore algorithm of interval analysis (as described in subsection 6-5-5) to try and find a way
to ensure convergence to the global optimum.

An article that continues on the work of (Sutton et al., 1999) is (Bhatnagar, Sutton,
Ghavamzadeh, & Lee, 2009). It offers four actor-critic algorithms with linear function ap-
proximators and provides theoretical convergence proofs to local minima for them. It is the
first article that provides a convergence proof of an algorithm that applies bootstrapping both
for the actor (policy) and the critic (value function). (In bootstrapping methods, estimates
are updated based on other estimates. The TD-method is an example of a bootstrapping
method.)

Again, the applicability of the article to the current project remains limited. First of all, it
applies linear function approximators, while these are likely to be insufficient for the type of
nonlinear problems that needs to be solved in the current project. Furthermore, though the
convergence proofs of the provided algorithms in the article are very impressive, the downside
is that everywhere in the text references are made to so many theorems and claims from other
articles that it is nearly impossible to verify the proofs. Finally, none of the algorithms have
been tested in an actual experiment. Their effectiveness thus remains very doubtful.

7-4 Summary of issues and potential solutions

This section summarizes the previous sections. What proofs are around? What are the
present issues? And how can these issues be circumvented?

It is hard to adequately summarize what has been accomplished, since there are so many
different ways of setting up an RL controller with function approximators. What is certain, is
that no one has yet proved convergence for a practical application of RL with neural network
function approximators. Nor has anyone tried to do so using interval analysis.

Something that has been proven is the convergence of many types of RL controllers with linear
function approximators. These types of function approximators are relatively well-understood
and it is also relatively easy to derive powerful equations with them. However, the current
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project focusses on nonlinear function approximators, so these results are not directly useful
for this report.

When it comes to RL with nonlinear function approximators, only one convergence proof has
been found. However, this was for an algorithm that is not yet practically applicable. For
the more practically applicable algorithms, several issues arise. They will be examined one
by one, including potential solutions for them.

• Problem: When applying Q-learning with function approximators, then the intro-
duced approximation errors, combined with the maximization step, may result in an
overestimation of the Q values.
Possible solutions: It is possible to introduce pseudo-costs, to use function approxi-
mators that only make underestimates and no overestimates, or simply to change the
algorithm and get rid of the maximization step. If for example an actor is derived using
gradient descent method, then no maximization of the Q function is required, and the
problem disappears.

• Problem: When the value of V (s) is being adjusted, the value of V (s′) is also adjusted,
where s′ is close to s. (This is due to the generalization that takes place.) Though the
value of V (s) generally becomes more accurate, things may be different for V (s′).
Possible solutions: This problem is hard to solve as the generalization is the exact
reason why function approximators are used. One possible solution would be to use a
function approximator with which it is possible to tune the ‘range’ of adaptation. If
adjustments are made in such a way that only states s′ very close to s are affected by an
update of s, then this problem will be solved. The immediate downside will of course be
a reduced generalization ability and thus a lower learning performance. To circumvent
this, one could try lowering the range of adaptation as the algorithm learns. However,
this solution is still not optimal.

• Problem: Sometimes the function approximator cannot sufficiently approximate the
value function, or intermediate stages of it. This may result in learning the wrong value
function. Alternatively, it may result in a decent approximation of the value function,
which however still results in an incorrect policy.
Possible solutions: This problem can be solved by using the right function approx-
imator. For example, if an NN is given enough hidden nodes, it can approximate any
function. The number of hidden nodes of the network can be increased. This can be
done prior to learning, but what would be even more promising is to do this on the
fly. By doing this, any function can be approximated as accurately as required. Given
enough learning time, the problem should eventually stop to occur.

• Problem: Initially, the TD error is based on an inaccurate value function. This incor-
rect TD error may cause divergence in TD methods.
Possible solutions: It is known that TD methods use biased estimates of the value
function. Using Monte Carlo methods instead (i.e., simply executing an entire episode
and then use the final result to update the value function) will result in unbiased es-
timates of the value function. Furthermore, while the TD error can diverge, the value
estimates resulting from Monte Carlo methods are always bounded, so no divergence can
occur. A possible solution would thus be to apply Monte Carlo methods until the value
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function is sufficiently accurate to switch to TD methods. This switch is warranted by
the fact that TD methods generally still adjust faster than Monte Carlo methods.

• Problem: Many learning methods are based on gradient descent methods. These
methods have as inherent disadvantage that they can converge to a local optimum
instead of a global optimum.
Possible solutions: This is probably the hardest problem to solve. To do so, one needs
to keep track of all possible sets of weights that may lead to the global solution. One
possible idea to accomplish this is to apply a version of the Skelboe-Moore algorithm to
make sure the global optimum is found. Alternatively, there are statistical approaches
that may achieve the same, though more of these will be seen in the next chapter. It is
not clear yet in which exact way these methods should be applied, but it is clear that
they should keep track of the set of possible policies in such a way that they do not
miss the global optimum.

It can be concluded that there are still many issues which may cause RL controllers with func-
tion approximators to diverge or converge incorrectly. However, ideas to solve all these issues
are present. Further research should show whether these possible solutions actually work, and
whether they work well enough to ensure convergence of nonlinear function approximators to
the global optimum.
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Chapter 8

On further relevant ideas

During the literature research, several articles have been found that do not directly concern
reinforcement learning with function approximation. However, they do provide interesting
tools or inspiritations to improve reinforcement learning algorithms with. First, some possible
improvements on neural network learning will be considered. Second, some inspirations by
nature will be examined. Finally, a look will be given to any other potential improvements
that can be made to RL controllers.

8-1 On neural networks

The function approximator that is closely examined in the current project is the neural net-
work. This neural network may have some potential improvements, which will be considered
in this section.

8-1-1 Interval analysis applied to neural networks

In (de Weerdt et al., 2009), methods are explained with which the neural network output can
be optimized using interval analysis. Given a neural network, this article discusses methods
to maximize (or equivalently minimize) the NN output. Though there are some drawbacks to
this method, like a high computational load and dependency effects, it does guarantee that
all solutions are found to any degree of accuracy with guaranteed bounds.

Whether the methods discussed in (de Weerdt et al., 2009) will be useful for the current
project is still unsure. One might initially think they will not. After all, this project focusses
on changing the actual neural networks, and not on finding the optimal output for a fixed
neural network. However, consider the hypothetical case where the value function V and the
identifier I both converge to the correct values, but the policy π does not. Then the way
in which the policy learns should be altered. It is possible, using the methods discussed in
(de Weerdt et al., 2009), to exactly find the optimal action a for a state s, given the value
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function V and the identifier I. This optimal action can subsequently be used to train the
policy π, after which it will converge to the correct values as well. Whether this situation
arises still remains to be seen. If it does, this article will be kept in mind.

8-1-2 Statistical approaches to neural networks

A problem of neural networks and its backpropagation algorithm is that it often converges to a
local (and not a global) minimum. This especially poses problems for self-learning controllers,
which might converge to the wrong behavior. An alternative to the backpropagation method
that might solve this issue is offered in (Levin, Tishby, & Solla, 1989), which discusses a
statistical approach to learning and generalization in NNs.

In general, the idea of an NN is to approximate a function F by an approximated function
Fw. The main idea of (Levin et al., 1989) is to examine the probability p(y|x,w) that y is
outputted given the input x and weight set w. The goal now is to find the weights w that
maximize p(yi|xi, w) for every test sample i. Or, to be more specific, the goal is to maximize
the probability P (X,Y |w) that the entire test set X,Y occurred. This probability is given
by

P (X,Y |w) =
m
∏

i=1

PF (xi)

m
∏

i=1

p(yi|xi, w). (8-1-1)

This relation should be maximized for the weight w. This is however pretty hard to do. So
instead, using Bayes formula, the relation is inverted to

ρ(w) = P (w|X,Y ) =
ρ0(w)

∏m
i=1 p(yi|xi, w)

∫

W ρ0(w)
∏m

i=1 p(yi|xi, w)
. (8-1-2)

Here, the quantity ρ(w) describes the distribution of the weights, and ρ0(w) describes the
initial (prior) distribution.

Though it is not directly evident how the theory described in (Levin et al., 1989) can be
applied to the current project, the idea of statistically analyzing neural networks does seem
promising enough to keep in mind. The main advantage is that this theory does not have a
fully defined set of NN weights, but instead continually examines the entire distribution of
possible weights. Though computationally this will be very complicated, especially due to the
integral over the weight space W , it may be the main part of an idea that would ultimately
find the global optimum of NN training.

A different approach, that also uses statistics but in a completely different way, is posed
in (Agostini & Celaya Llover, 2010). This article describes the application of a Gaussian
Mixture Model to reinforcement learning. A GMM is a weighted sum of multivariate
Gaussian Probability Density Functions (PDFs), and is used to represent general probability
density distributions in multi-dimensional spaces. In the article, a GMM is used to describe
the PDF of the joint space of the state s, the action a and the corresponding Q-value.

As the algorithm learns, it updates the GMM. Gaussian PDFs may be added and the
strengths, mean vectors and covariance matrices of the existing PDFs are updated. A down-
side of this algorithm is that regions that are rarely visited are forgotten, but an adjustment
is described that solves this problem. In the end, (Agostini & Celaya Llover, 2010) tests the
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performance of the algorithm and finds that it is very well capable of learning to swing up a
pendulum.

The theory discussed in (Agostini & Celaya Llover, 2010) is very promising, and might very
well be suitable to apply to the current project. The only downside of the article is that
it avoids the use of an actor, and subsequentially faces the problem of maximizing Q(s, a)
manually. It does this by simply trying out the value of Q(s, a) for a finite number of actions
a. This may very well result in sub-optimal actions, though it may also be possible to create
a method to work around this problem. Besides this issue, the use of GMMs is promising
enough to deserve a closer examination in later stages of the current project.

8-2 Inspirations from nature

Reinforcement learning is a technique that is derived from nature. It is very similar to the
way a human, or almost any animal for that matter, learns. This means that, when looking
for ways to improve the reinforcement learning algorithm, one can also look at and be inspired
by nature. Of course, this has already been done many times in literature.

8-2-1 Inspirations from scientific articles

(Daw & Frank, 2009) describes a brief literature survey in which various research groups have
looked closely at animals, and even have done experiments with animals, to derive more about
the way they learn.

One example of such a research project is described in (Huys & Dayan, 2009). This article
describes learned helplessness. First an agent (e.g., a mouse) is subjected to punishments
(e.g., electric shocks). The agent may have control over when to stop these punishments (e.g.,
by pushing a button), or he may not. (Huys & Dayan, 2009) found that in the latter case,
the agent is subject to learned helplessness. The next time that the agent is subjected to
punishments, the agent will not even try to make it stop, even if it has the option to.

This interesting concept can be translated to RL. It shows that, in nature, the training of the
value function and the policy go hand in hand. If, during initial training, the agent can stop
his punishments, he will learn a good policy: try to find a way to stop the punishments. On
the other hand, if he cannot stop his punishments, then this will also reflect in the policy. The
policy will simply be ‘take no action in case of punishments, since it is of no use anyway.’ It is
thus important to directly train the agent on a scenario that is as representative as possible.

8-2-2 Inspirations from popular literature

Popular literature also offers various books on how humans learn. Since reinforcement learning
is so similar to how humans learns, using the theories in these books can provide a lot of
inspiration on how to improve the RL algorithm.

Guaranteed Globally Optimal Continuous Reinforcement Learning Hildo Bijl



78 On further relevant ideas

Intrinsic motivation

In (Pink, 2010), it is described how humans have an intrinsic drive to achieve mastery: to
learn something useful and to learn it well. People often do things not because they get a
reward, but because they like to get better at something. In reinforcement learning, such
a drive is not present. Only rewards matter. This gives rise to the idea of implementing
intrinsic motivation into reinforcement learning. That is, unfamiliar actions that lead to the
learning of new behavior should be rewarded as well. How exactly this should be implemented
in detail is something that still requires further thought though.

Short-term versus long-term thinking

Another interesting perspective on learning is offered in (Swaab, 2010), which discusses the
working principles of an actual human brain from a brain surgeon’s point of view. It is told
that the prefrontal cortex of human children is not fully developed yet. This part of the brain
is involved in planning and long-term thinking. Only near adolescence will the prefrontal
cortex fully mature. It is only then that people will be fully capable of thinking long-term. It
is argued that this late development of the prefrontal cortex improves learning at early ages.
People first need to learn what is important to do in the short term to be able to think about
the long-term effects of their actions.

How can this idea be implemented in the reinforcement learning algorithm? The parameter
that determines long-term thinking is the discount factor γ. A high value of γ ensures long-
term thinking, while a low value causes short-term thinking. So this gives rise to the idea of
starting off with a low value of γ, and increasing it as the controller learns.

But is it possible to do this? Yes, but not without some minor adaptations, as otherwise this
would result in conflicts with the theory presented in section 5-3. This section told that the
value function should approximate the total (weighted) reward

Rk =
∞
∑

i=0

(

γ(tk+i+1−tk) − γ(tk+i−tk)

ln γ

)

rk+i+1. (8-2-1)

Now, if γ is increased, the weights in this relation will increase as well, and so will the value
of Rk. Since the NN value function approximation is not directly adapted, this would result
in an incorrect value function approximation. To solve this, the value function approximator
should not approximate the actual total reward Rk (since this varies with γ) but the weighted
average reward R̄k (which does not directly vary with γ). It is given by dividing Rk by the
sum of the weights. So,

R̄k =

∑

∞

i=0

(

γ(tk+i+1−tk)
−γ(tk+i−tk)

ln γ

)

rk+i+1

∑

∞

i=0

(

γ(tk+i+1−tk)
−γ(tk+i−tk)

ln γ

) =
∞
∑

i=0

(

γ(tk+i−tk) − γ(tk+i+1−tk)
)

rk+i+1, (8-2-2)

or, to be really short, R̄k = − ln(γ)Rk. Implementing this idea and having γ increase accord-
ingly should speed up the learning process.
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Muscle learning

Another interesting insight comes from the field of muscle learning. When learning a new
task, it’s not only the brain that learns. It’s also the muscles. And the way muscles do this
is interesting to look at.

Imagine you’re learning a new task that requires precision, like throwing a dart. Initially,
your muscles cannot provide this precision. Although in theory you know exactly how to
execute the task, your muscles still cannot throw the dart in the right place all the time.
Sometimes you have a hit, but sometimes it’s too high or too low. There’s too much variance
in the execution. The theory says that this variance is present so you learn the right behavior.
It’s the ‘exploration’ required by the muscles. As you practice more, this variance decreases
though, until you can throw the dart almost perfectly almost all the time.

This theory of muscle learning can also be used to get rid of some flaws in common solutions
to the exploration/exploitation dilemma. For example, when applying the ε-greedy policy,
a fully random action is regularly taken. But for some systems one (badly chosen) random
action might mess up the process it’s been working towards for several time steps. Instead,
the solution that nature suggests is to simply follow the policy π(s) but, on top of this, to
add a noise with variance δ(s). This variance δ(s) depends on how familiar (i.e., well-trained)
the agent is with the state s. Initially δ(s) is big, but as s (or similar states) are visited often,
its value decreases. This offers an alternate solution to the exploration/exploitation dilemma
without suffering the drawbacks of the ε-greedy policy.

Learning by example

Another way in which brains in nature work is by imitation and example. Babies mimic their
parents. They try to do the same actions as their parents, because they implicitly assume
that whatever their parents are doing must work well, so is worth a try. This idea can also be
implemented in the RL algorithm. It doesn’t suggest that RL controllers should have parents.
Instead, they should have something to mimic. Something should show or tell them which
actions to try.

Imagine a control problem which already has a conventional (non-adapting) controller that
has adequate performance. However, the goal is to train a reinforcement learning controller
for this problem. In this case, the older conventional controller can instruct the RL controller
on how to control the system – that is, which actions to try. This will cause the RL controller
to get adequate performance much faster. Once this is obtained, the conventional controller
is discarded and the RL controller keeps on learning on its own. (That is, the child leaves the
nest.) This trick could speed up RL controller learning. It does also steer the way in which
it learns, which can sometimes be an advantage, yet sometimes also a disadvantage.

Making associations

A final book that provides interesting insights is (Hawkins & Blakeslee, 2004), which discusses
the working principles of the brain from a computer programmer’s background. It describes
how the brain makes associations. When two certain types of ‘input’ (say, the image of a fly
on your arm, and a tickling sensation) always occur together, an association is made between
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the two. This association is coupled with a concept: ‘there is a fly on my arm.’ If some time
later only one of these inputs arise (say, a tickling sensation on your arm), the other input
is immediately expected (seeing a fly on your arm). This method of ‘predicting inputs’ is
one advantage. However, when the inputs don’t match (that is, you don’t see a fly on your
arm), the result will be surprise. This surprise is the cue that tells the brain to adjust the
associations it has.

The process of forming associations and concepts is the key to real intelligence. If it is
achieved, the possibilities are legion. For example, it could be implemented in an aircraft.
When subsequently one of the aircraft sensors gives a wrong signal, the intelligent controller
would notice an association that doesn’t hold up. It is ‘surprised.’ It can firstly inform the
pilots of this surprise, and secondly discard the faulty controller data and still control the
aircraft appropriately by knowing what kind of sensor data should have been present instead.

Sadly, at the moment no methods are known to successfully implement the whole associating
process just like it works in an actual brain. Some methods (like (Agostini & Celaya Llover,
2010), discussed earlier) seem promising to actually achieving it, but they would require much
further research.

8-3 Other possibilities of potential future examination

After a reinforcement learning controller has been developed, including adequate neural net-
works and a good nature-inspired learning algorithm, there are still possibilities for improve-
ment. This section discusses some of them.

8-3-1 Multi-agent systems

Imagine a world in which reinforcement learning controllers with function approximators
become common. The result will then be a multi-agent system (MAS). A good and broad
introduction to MASs is given in (Stone & Veloso, 2000). One thing that becomes very clear
from this article is that the agents have the important need to interact. Only if they know
each other’s behavior and adjust to it, can they either successfully fulfill tasks together if they
have common goals, or manage to give each other a hard time if they have conflicting goals.

The question now arises: how can this agent-to-agent interaction be implemented into rein-
forcement learning controllers? Previously in chapter 5, it has been described how an agent
can use an identifier I to learn the behavior of its environment. In a similar way will it be
possible to implement an agent identifier Ia for every other agent with whom is interacted.
In this way, every agent learns the way the other agents behave. As time progresses, and this
behavior is learnt, some sort of ‘trust’ can be established between agents.

One might initially think that this just results in a lot of redundant processing time. After
all, if an agent knows exactly what another agent is doing, why would that other agent be
needed? This train of thought is incorrect though. The agent identifier Ia only learns the
input-output behavior of every other agent. All internal processes, like agent policies and
such, do not have to be considered here.
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8-3-2 Including rare events

One of the reasons why self-learning controllers can be promising in the real world, is that
they can adapt to unexpected circumstances. This can be done in two ways. The first is that
the self-learning controller learns on the fly how to deal with an unexpected event. The other
is that the controller has already been trained how to deal with an unexpected event earlier.

One downside of the latter method is that it is very hard to train agents sufficiently for
events that hardly ever occur. An article that describes how to solve this problem is (Frank,
Mannor, & Precup, 2008). With the REASA algorithm that has been developed, it is possible
to relatively quickly train RL agents on so-called rare events (events that have a very low
probability ε of occurring but do significantly influence the value function). The main idea is
to use a simulator, in which the probability ε̂ with which these rare events occur can be set
manually. Subsequentially, the RL learning algorithm is adjusted to take the altered state
transition function into account. The algorithm also provides a way to optimally set the
simulated rare event probability ε̂.

8-3-3 Varying the function approximator

In this report, only neural networks are considered, each with only one given layout. Of course
the type of function approximator that is used matters for the RL controller performance.
Some function approximators will perform better than others, and even for a given function
approximator (say, a neural network) the specific layout that is used can have a tremendous
effect.

One way in which at least the latter can be improved is by using the NEAT+Q algorithm,
proposed in (Whiteson & Stone, 2006). This article combines the Neuro-Evolution of
Augmenting Topologies (NEAT) technique with Q-learning. NEAT is an evolutionary
algorithm in which the structure of function approximators can be varied. For example, for
a neural network, the NEAT algorithm can add nodes, add links, etcetera. When combined
with Q-learning, the evolutionary algorithm checks various neural networks to see which has
the best learning abilities. The best ones are then reproduced into the next generation.

The result of the NEAT+Q algorithm is an improved performance. It generates NN architec-
tures that actually work for the problem at hand. A significant downside is that the algorithm
uses a big number of neural networks in every generation. Its run-time is thus relatively high.
Furthermore, it gives a lot of added complexity. As such, this technique seems (at least for
now) not the most suitable technique to apply in the current project. However, if it later on
turns out that the neural network set-up strongly influences the RL controller performance,
then the NEAT+Q technique might still be considered.

8-3-4 Relational reinforcement learning

The world of artificial intelligence is very broad. Though reinforcement learning is a very com-
mon technique, also relational learning (also known as inductive logic programming)
is very well-known. In this technique, logical relations are used, with which a controller can
subsequently plan how to solve a problem.
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Attempts have been made to combine these two techniques, resulting in Relational Rein-
forcement Learning (RRL). (Džeroski, De Raedt, & Driessens, 2001) gives a basic intro-
duction on RRL and shows an application to the blocks world problem.

The main strength of relational learning is that it can plan ahead for several actions. The
main problem is that usually a model of the environment is required. In Q-learning, such a
model can be learned. RRL is thus very well applicable to situations in which planning is
required, but no model of the environment is given. Though the blocks world problem falls
in this category, the cart and pendulum problem does not. Therefore RRL, though being a
promising technique, does not seem very applicable to the current project.
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Chapter 9

An initial CAP controller

This chapter describes the process of setting up a continuous RL controller for the CAP
system. It consists of four sections. First, some basics of setting up an RL controller are
described, like which architecture is used and which reward function is applied. After that, the
set-ups of the identifier, the value function and the policy are examined. Each of these function
approximators has its own section, discussing issues that arose during its development, as
well as a performance evaluation and potential improvements. At the end, some ideas about
proving convergence are discussed.

9-1 General CAP controller design

This section discusses some general data on the CAP controller design. First the RL con-
troller architecture and the function approximators used are discussed. This is followed by a
discussion on the reward function.

9-1-1 The controller set-up

During the development of a reinforcement learning controller for a CAP system with con-
tinuous states, the theory in chapter 5 has been used. Though a fixed time step has been
used, still the theory that allows for varying time steps has been implemented. This makes it
possible to adjust the simulation time step of trained controllers even after training.

As function approximators, the neural networks of chapter 4 have been used. The normalizing
input and output has been applied. This improvement proved to be highly necessary. If the
input and output were not normalized, then the learning performance was strongly reduced.
The automatic variation of the learning rate has not been applied due to time constraints.
Instead, a manually tuned fixed learning rate has been used.
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9-1-2 The reward function

One of the most important things to do when designing an RL controller is to define a proper
reward function. It will tell the controller what kind of results it should aspire to. The reward
function should thus in some way reflect the goals of the controller. The controller goals have
been defined in subsection 2-2-2. Most importantly, the controller needed to keep α and xc
near zero, with a relatively low control input.

The data that is inserted into the reward function is sk+1 (the new state reached) and ak (the
action used to get there). The state sk+1 consists of the parameters α, α̇, xc and ẋc while the
action ak equals the input force F that has been applied. The reward function that has been
used, which clearly reflects the goals of the controller, is

r(sk+1, ak) = −rα
|α|

αmax
− rxc

|xc|
xcmax

− rF

(

F

Fmax

)2

, (9-1-1)

where rα, rxc
and rF are coefficients. They can be used to tune the controller. If position

control is very important, rxc
will be high, while if it is necessary to use small input forces,

rF will be high. For the tests done in this report, only values of rα = rxc
= 1 and rF = 2

have been considered.

It must be noted that earlier versions of the RL controller did not have the last term of the
reward function. (That is, rF = 0.) This term was added later, for reasons that will be
further discussed in subsection 9-4.

One may wonder why the F term in the above reward function is squared, while the other
terms are not. There of course is a reason for that. Squaring a term will reduce its influence
for small values, while increasing its influence for big values. It is important to still control α
and xc, even if they have small values. For the input force F , small values don’t really matter
though. The controller only needs to be discouraged to use significantly big input values F .
Thus, more influence for big values is required.

A final thing to discuss is: what is the value of a crashed (terminal) state? A crash should be
discouraged, so the value should be lower than the value that could be obtained by ultimately
preventing the crash by applying maximum input, though it shouldn’t be so low as to create
significant discontinuities in the value function. A good value of a terminal state (with
|α| > αmax or |xc| > xcmax

) would thus be

− 1

ln(γ)

(

−rα
|α|

αmax
− rxc

|xc|
xcmax

− rF

)

. (9-1-2)

In other words, when the CAP system has crashed, it is just like the system stays forever
in that situation, while applying a maximum input, and forever gets rewards based on this
situation.

9-2 Developing the identifier

The next step, after choosing the reward function, was to develop the identifier. This wasn’t
a difficult task. A neural network with one hidden layer and 16 hidden nodes proved easily
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Weight development of the identifier
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Figure 9-1: Plots of the development of seven randomly selected identifier NN weights during
training. Training was done for 200 CAP simulations.

capable of the task. After 50 simulations, the identifier was adequately capable of predicting
the changes in state ∆s based on the current state s. Though there were some minor deviations
from the exact system dynamics, these deviations were very limited – usually less than 10%
of the actual change in state.

One of the reasons why the identifier was so easily capable of learning the system dynamics,
is the relatively simple and near-linear behavior of the CAP system. The identifier only needs
to learn the system dynamics for small values of α, and for these values the system behavior
is still roughly linear. (Note that for |α| ≥ 10◦ the simulation is aborted.) Furthermore,
the dynamics of α and α̇ do not depend on xc or ẋc. This makes the relation to be learned
relatively easy. Do note that this simplicity is not necessarily a downside. In an actual aircraft
the dynamic behavior is also mostly linear and many parameters can also be ignored.

Besides checking the value output of the identifier, it is also important to check whether it
converges to a stationary function. To check this, one can make a plot of the development
of the NN weights during training. The development of seven randomly selected NN weights
(out of a total of 164 weights) is shown in Figure 9-1.

It can be seen that the weights almost converge. They do have the tendency to go to a certain
value, but they continue to have minor oscillations near that value. The reason for this is
that the identifier cannot fully (with 100% accuracy) approximate the system dynamics. Also,
different input-output combinations are continuously given to the NN for training. If these
input-output combinations are a bit more concentrated in one region at a certain time, the
NN adjusts to become more accurate in that region.
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The small oscillations of the NN weights aren’t necessarily bad. The identifier still has a
sufficient performance. However, it is also easy to prevent them. Currently, the NN identifier
has been trained with a constant learning rate of α = 0.1. If this learning rate would decrease
over time, according to the well-known conditions

∞
∑

k=0

α =∞ and

∞
∑

k=0

α2 <∞, (9-2-1)

then the identifier weights will also converge. However, due to time constraints, this improve-
ment has not been implemented.

9-3 Developing the value function

Developing the value function was much more challenging. There were several issues to
overcome.

9-3-1 Choosing a value function type

The first choice that had to be made was what kind of value function to use. Use a value
function V (that only depends on the state s), or use an action-value function Q (that
depends on both the state s and the action a)? In most RL applications using the Q-function
is preferred, as it is very easy to derive the policy from it. One only needs to find the action
a maximizing Q(s, a) for the current state s. For discrete systems that is easily possible.

However, now the value function will be approximated using a neural network. Finding the
input that maximizes the NN output is a nonlinear optimization problem and a difficult one
at that. It can be solved, for example using the theory described in (de Weerdt et al., 2009),
but this is computationally very intensive. It would make the algorithm too slow and is
thus not practically possible. Instead, the value function V is used in this project. This has
as added advantage that the value function depends on less parameters. This reduces the
dimensionality and thus speeds up learning.

9-3-2 Choosing an update method

The second question to ask was which kind of updating to use: Monte Carlo methods or
(bootstrapping) TD methods. Initially, TD methods have been tried, as they are known to
learn faster. However, this very often resulted in divergence of the value function. The reason
for this was the NN initialization. Initially, the NN is randomly initialized. In other words,
the approximated value V (sk+1) of every state sk+1 is unlikely to be anywhere near its actual
value. When applying TD updating according to relations (5-1-5) and (5-1-6), this wrong
value will cause an incorrect update. If done repeatedly, the value function can diverge. This
is a problem that was also described in (Boyan & Moore, 1995).

To solve it, the Monte Carlo state-value prediction has been used. At the end of every trial,
one calculates the value of every state that has been visited. (Remember that the value
equals the sum of all future rewards.) These state-value combinations are then remembered,
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and subsequently used to train the value function with. Since these values are all bounded,
no value function divergence can occur. Instead, the value function converges to the correct
values.

Though slower than TD methods, the Monte Carlo state-value prediction proved to be much
more reliable. This does not mean that TD methods are fully discarded. Later on in the
algorithm, when the value function has become reasonably accurate, TD methods might still
be introduced. At the moment this has not been implemented in the current algorithm, but
it is suggested as a possible further improvement to the learning algorithm.

9-3-3 Caching of state-value pairs

With the above improvements, the value function still didn’t show convergence to the actual
values. Research showed that this was because of the lack of spread of data points. When a
simulation run is made, the state travels on a ‘path’ through the state-space. It by no means
visits a representative set of all possible states. When the value function NN is trained on the
corresponding state-value pairs, the whole value function is ‘pulled’ in the direction of these
data points. This is at the cost of the value approximation of all other states.

An initial solution to solve this problem was to write a state-value cacher. What this does is
it divides the state-space up into blocks of set width. For every block, it keeps track of which
state-value pair has been encountered last. It subsequently trains the value function NN on
only these state-value pairs. (This idea is similar to using a proposal distribution, as is done
in (Frank et al., 2008).) This means (A) that state-value pairs in rarely frequented regions
of the state-space are used for training more often and (B) that when multiple state-value
pairs occur in the same block during the same simulation, some of these state-value pairs are
discarded without being used for training even once.

The initial results of the state-value cacher were promising. The shape of the value function
NN started to resemble the actual value function for the given policy. However, later on in
the project (as will be described later), the policy changed. A changing policy also resulted in
a changing value function to be approximated, as well as different regions of the state-space
to be visited. The problem here was that the state-value cacher still remembered state-value
pairs in old regions of the state-space that were not visited anymore. These state-value pairs
were not refreshed, and so the state-value cacher still continued to use these pairs to train
the value function NN. This resulted in an inability of the value function NN to converge to
the value function corresponding to the new policy.

This problem can be solved in various ways, some more difficult than others. The approach
chosen in this project is to keep the solution as simple as possible. (Otherwise it will be
impossible to sufficiently analyze the system later on.) Hence the state-value cacher was
completely discarded. Instead, the value function was trained on all state-value data points
of the last n simulations (where n was initially set to 15 but later reduced to 6 for all function
approximators). Furthermore, all state-value data points of these simulations were fed to the
NN in a random order. By doing this, the ‘pulling’ of the NN towards certain data points was
prevented and some additional randomness was brought into the learning algorithm. This
solved the problems described earlier.
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Figure 9-2: Plots of the value function after 200 CAP simulations. The left plot shows the value
approximation V versus α and α̇, with xc = ẋc = 0. The right plot shows it versus α and xc,
with α̇ = ẋc = 0.

9-3-4 Value function evaluation

An RL controller has been trained for 200 CAP simulations, using the training method
described above. This RL controller contained an identifier, a value function and a policy.
(The way in which the policy was set up will be described in the next section.) It has been
trained using ε exploration with a decreasing value of ε, which eventually reached zero in the
last couple of simulation. This resulted in the value function shown in Figure 9-2.

First examine the left graph. Here the value function estimate is shown with respect to α
and α̇. It can be seen that the highest value occurs at α ≈ α̇ ≈ 0. This value equals −0.12.
Ideally (with the perfect controller and a converged value function) it would be zero, but
these conditions are evidently not present yet. It can also be noted that a positive value of
α combined with a negative value of α̇ (or vice versa), in the right proportions, also gives
a reasonably high value. This makes sense. When the CAP system is in such a state, it is
moving towards the α ≈ α̇ ≈ 0 state and will soon reach it without any required intervention.

Second, examine the right graph. It shows the value function approximation with respect to
α and xc. Again, the value function is at a maximum when α ≈ xc ≈ 0. Also a trend of high
value estimates can be seen when α and xc have opposite signs. This again makes sense. To
see why, suppose that xc < 0. When α > 0, the controller (through the policy) will be giving
a positive input force F > 0 to keep the pendulum upright. Because of this, the cart will also
move to the right, thus bringing the pendulum closer to the xc = 0 position, increasing the
rewards given.

It can be concluded that, though the value function approximation clearly hasn’t converged
yet, as can also be seen from its slightly asymmetrical shape, it does give useful information
with which a policy can be trained.
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9-4 Developing the policy

The hardest part in the design of the RL controller was the design of the policy. The issues
faced during its development will now be discussed.

9-4-1 Adding an input term to the reward

The policy has been set up using the methods described in subsection 5-2-2, together with
the continuous time extension of subsection 5-3-3. The weight update law is thus given by
equation (5-3-11).

It must be noted that initially the reward function (9-1-1) did not have a term with the
input force (action) F . However, this resulted in the policy giving very high input values F .
Divergence did not necessarily take place, but the input force F given by the policy NN far
surpassed the maximum input force Fmax. Research showed the reason for this.

Imagine the CAP system is in a state with a relatively big positive α and a big positive α̇
as well. This is a bad state with a low reward. Having a big positive α with a big negative
α̇ would be a much better state with a much higher value, as this would soon bring the
CAP system to α ≈ α̇ ≈ 0. If the system can, it would want to change the value of α̇ from
very positive to very negative within a single very short timestep. And, when no bounds or
constraints are imposed on the input force F , it will be able to. The policy will thus select a
huge force F .

Imposing a hard bound on the policy is nearly impossible. The gradient descent algorithm
that is used to adjust the policy π does not take into account a maximum. Instead, high
values of F should simply be discouraged. A very potent way of doing this, is giving negative
rewards for high input forces F . This resulted in the addition of the third term in the reward
function (9-1-1).

So what is the result of this term? To find that out, examine the update law (5-3-11) again.
Since the reward r now depends on the action a, the derivative ∂r/∂a is nonzero. Instead,
(with a = F ) it equals

∂r

∂F
= −2rF

F

F 2
max

. (9-4-1)

This term acts as a ‘stabilizing’ term in the updating of the policy weights. When the policy is
updated at a certain state s with a big value of F (magnitude-wise), the weights are adjusted
such as to reduce the magnitude of F . In fact, the whole update law has become a ‘tug of
war’ between terms, where most terms try to increase the magnitude of F to obtain desired
behavior quickly, yet the term with ∂r/∂a tries to keep F contained.

Indeed, the effect of introducing the extra term into the reward function was evident. The
input forces given by the policy π were not anymore in the order of several hundreds of
Newtons. Instead, for all states s that occur during normal operation, they were well within
the interval [−Fmax, Fmax].
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9-4-2 The effects of muscle learning

A certain degree of exploration is necessary for the policy to learn the right behavior. Part of
the exploration is already provided by the fact that the CAP system is randomly initialized
at every simulation run. However, also exploration for actions is necessary.

It is possible to use a fully random action from the interval [−Fmax, Fmax] in a part ε of the
times. Alternatively, it is possible to implement the idea of muscle learning, as described in
subsection 8-2-2. Both ideas have been implemented.

During the initial stages of training, both methods had a lot of randomness. That is, the ε
exploration method had a big value of ε, while muscle learning had a big variance. In these
stages of training both methods tried almost every possible action, and the methods thus
didn’t differ much. No noticable difference between the two methods was detected.

However, as training progressed, ε converged to zero and the muscle learning variance de-
creased to almost zero. It was here that differences became noticeable. However, it was the ε
exploration method which turned out to work better. This method was simply able to exploit
the best actions and learn from it. The muscle learning action still had some noise on the
input. The idea behind muscle learning was that the controller could learn the effect of these
partly randomized actions. However, since the noise had a high frequency, and a slow Monte
Carlo state-value prediction method was used to update the states, the controller was not
able to discern any effect from all the different actions taken.

This does not imply right away that the idea of using muscle learning in RL is useless. If a
faster update method (like the TD method) is used, or if the noise has a much lower frequency,
then muscle learning may still be advantageous. However, due to time constraints these ideas
have not been researched and will thus remain suggestions for further research.

9-4-3 The effects of the discount factor γ

During learning, several values of the decay γ have been tried. It was found that controllers
with a relatively strong decay (say, a discount factor of γ = 0.2 every second) learned to keep
the pendulum upright pretty quickly. Controllers with a weaker decay (say, a discount factor
of γ = 0.6 every second) learned slower, yet in the end had higher performance. Controllers
with very weak decay (say, a discount factor of γ = 0.9 every second) failed to learn to keep
the pendulum upright well enough within the learning time.

To see why this is the case, a policy should be examined more closely. Figure 9-3 displays
the policy after training on 200 simulation runs with γ = 0.6. On the left, the policy is
plotted versus α and α̇. Here it can be seen that the policy is 0 if α ≈ α̇ ≈ 0, but also in the
region described previously in which α and α̇ have opposite signs and their magnitudes are
in just the right proportion. If α and α̇ are both positive, then a crash is imminent, and a
big corrective force is required to save the system.

On the right of Figure 9-3, the policy has been plotted with respect to α and xc. Something
very important can be noticed if one looks closely at the line corresponding to α = 0. What
does the controller do when the pendulum is upright, yet the cart is in the wrong position? It
turns out that F hardly depends on xc, yet the tiny bit of dependency that actually is present
says that F and xc have the same sign. So if xc is negative (i.e., the cart is positioned too far
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Figure 9-3: Plots of the policy after 200 CAP simulations with γ = 0.6. The left plot shows
the policy π versus α and α̇, with xc = ẋc = 0. The right plot shows it versus α and xc, with
α̇ = ẋc = 0.

to the left), then a negative force F will be applied to the cart. This will cause the pendulum
to fall to the right, which results in a positive force F , ultimately moving the pendulum to the
right, increasing xc. This is typical long-term thinking. However, as was noted previously, xc
hardly varies with F , so this tendency is present only very little.

When the controller is trained for small γ (near 0.2), things are completely different. In
that case xc and F have the opposite sign (when all other state parameters are zero). When
now xc is negative, the controller applies a positive force. This initially increases xc, giving
an improved short-term reward. However, the pendulum starts to fall to the left and a big
negative input force F is required to keep the pendulum upright, thus ultimately moving the
cart further to the left.

This all corresponds to the theory described on short-term versus long-term thinking in sub-
section 8-2-2. The key here is to start learning while only thinking short-term. Once that
works, long-term thinking should be added. Thus, γ should be increased as learning pro-
gresses. This prevents the slow learning at high values of γ, as well as the low performance
resulting from low values of γ. Sadly, due to time constraints, this idea has not yet been
implemented and tested on an actual system yet, so no results on its actual performance can
be given so far.

9-4-4 Convergence issues

The RL controller algorithm, as it has been implemented currently, still does not converge.
The reason for this lies in the data points that are fed to the NNs. These are the data points
of the last 6 simulation runs (in random order).

It is important to keep in mind that simulation runs are randomly initialized. It may just
happen that most of these 6 simulation runs start (and stay) in one region of the state-space.
The neural networks then are trained extra for this region of the state-space, at the cost of
other regions. This causes the policy to vary over time.

There are several ways to solve this problem. One solution would be to change the data points
that are fed to the NNs. However, which data points should be fed to the NNs instead would

Guaranteed Globally Optimal Continuous Reinforcement Learning Hildo Bijl



94 An initial CAP controller

then still be a topic of discussion. A better solution would instead be to vary the learning
rate α. It should be decreased over time, preferably in a way satisfying relation (9-2-1).
Alternatively, it can be varied in a more sophisticated way, as suggested in subsection 4-3-2.
Either way will reduce the amount of variations in the policy during subsequent training, and
possibly also ensure convergence, maybe even to a local optimum, though no certainty on
this can be given yet. Also, due to time constraints, a varying learning rate has not yet been
implemented, so no definite claims can be made as to the effects it would have.

9-4-5 Policy evaluation

A plot of the policy has already been shown. But does the policy also work in controlling the
CAP system? To do that, a basic simulation using the resulting policy has been run. The
result is shown in Figure 9-4.

Figure 9-4 shows that the controller manages to keep the pendulum upright at α = 0. This is
done without an excessive input force F . Only during the first few timesteps of the simulation
run are significant input forces required. Also, the controller is capable of keeping xc within
the specified bounds. However, xc is not being kept at 0. The reason for this is, as was
discussed previously, that the controller doesn’t think that long-term. If xc needs to be
controlled adequately, then γ needs to be increased.

Concluding, a basic RL controller has already been written that can reasonably control the
CAP system. However, several improvements still need to be made before all requirements are
met. And when that has been done, the most difficult step still awaits: finding out whether
the controller always converges to a solution, and whether this solution is a local or a global
optimum.

9-5 Ideas on proving convergence

Consider the CAP controller as has been designed in this chapter. This controller has plenty
of issues. What should the value of γ be? What should be done with the learning rate α? In
what way should the state-space be explored? These are all complicated issues.

Ideas to solve all these issues have been presented. However, there are still several downsides.

• Solving all these issues will cost a lot of time and make the algorithm much more
complex.

• Once the improvements have been made, the algorithm may (or may not) always con-
verge, but the algorithm complexity will make it hard to prove convergence.

• Even if convergence has been established, it does not imply that this is convergence to
the optimal (or any useful) policy. Of course improvements can be made to encourage
convergence to a useful policy (like more exploration), but this still does not guarantee
global optimality.

• Ensuring global optimality will be hard, since it requires three neural networks to be
optimized together. All neural networks have huge numbers of weights, and finding the
global optimum in any practically viable way seems like an impossible task.
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Figure 9-4: Plots of a simulation run performed from a random state by an RL controller that
was trained on 200 CAP simulations with γ = 0.6.
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The above points don’t imply that it’s impossible to use neural networks to design an RL
algorithm that always converges to the global optimum. They do imply that expanding the
current RL algorithm to an algorithm with globally optimal convergence is very complicated,
and is unlikely to be obtained within the scope of this project. Therefore, alternative ap-
proaches need to be considered on obtaining proven convergence to the global optimum.
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Chapter 10

Combining Q-learning with interval

analysis

One of the goals of this report is to check whether interval analysis can be successfully
combined with reinforcement learning, and subsequentially whether the resulting algorithm
can be proven to converge. Combining RL with IA has never been done before in literature.
So a preliminary indication on how this can be done is required.

This chapter considers a combination of Q-learning and IA, called the interval Q-learning
algorithm. Though only an extension of discrete Q-learning (without function approximation)
as described in subsection 3-3-3 is considered here, keep in mind that IA can be applied in
a similar way to other RL algorithms. After this extension has been described, it will be
analyzed and its advantages and disadvantages will be examined. Later on, in chapter 11,
the discrete interval Q-learning algorithm will be expanded to a continuous domain.

10-1 The interval Q-learning algorithm

In interval analysis, numbers are replaced by intervals that give bounds on these numbers.
In Q-learning, the numbers to be considered are the values Q(s, a). This gives rise to the
idea to replace the Q-values by intervals. That is in fact the basis of the interval Q-learning
algorithm.

To start off, the Q-function is initialized for all states s and actions a as an interval from the
minimum value to the maximum value. So,

Q(s, a) = [Qmin, Qmax] (10-1-1)

for every s, a. This step must ensure that the optimal value of the Q-function, denoted by
the (degenerate) function Q∗, is inside the interval function Q(s, a).

Next, an update law is required. Suppose that the agent is in state sk, chooses an action ak
and winds up in state sk+1. In normal Q-learning, update law 3-3-5 is used. This law should
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now be adjusted to update both the minimum Q(sk, ak) and the maximum Q(sk, ak) possible
value of Q∗(sk, ak).

To find the minimum Q(sk, ak), one should adopt a conservative approach. One ignores the
possible maxima of Q(sk+1, a) and only looks at all possible minima. One then takes the
highest of these minima to update Q(sk, ak). In an equation, this becomes

Q
new

(sk, ak)← Q(sk, ak) + α
(

rk+1 + γmax
a

Q(sk+1, a)−Q(sk, ak)
)

. (10-1-2)

One can see this update law as ‘Searching for the minimum value which, in the worst case,
can always be obtained.’ Finding the maximum Q(sk, ak) goes similar, but now one adopts
an optimistic approach. One only considers the possible maxima of Q(sk+1, a). This gives

Qnew(sk, ak)← Q(sk, ak) + α
(

rk+1 + γmax
a

Q(sk+1, a)−Q(sk, ak)
)

. (10-1-3)

This update law can be seen as ‘Finding the maximum value which, when everything goes
perfectly, might be obtained.’ Note that the interval with the maximum lower limit Q(sk+1, a)

does not necessarily correspond to the interval with the maximum upper limit Q(sk+1, a), and
it is thus not possible to combine these two update laws in one relation.

It can also be noted (through a simple numerical example) that the new interval Qnew(sk, ak)
isn’t always a subset of the old interval Qold(sk, ak). However, the old bounds Qold(sk, ak) of
course still hold. An improvement can thus be obtained when one takes the intersection of
the two intervals. Thus, after applying the above update laws, one also applies

Q(sk, ak)← Qnew(sk, ak) ∩Qold(sk, ak). (10-1-4)

10-2 Analyzing the algorithm

To analyze the algorithm described above, one can perform tests, or one can perform a
theoretical analysis. In this section, the latter will be done. It turns out that for deterministic
environments it can be proven that the algorithm works. That will be done in this section.

10-2-1 Bounding of the optimal value function

First one may ask: will the interval Q(s, a) always contain the optimal value Q∗(s, a) for
every s, a? This is indeed the case, as will be proven now.

Initially, Q(s, a) contains Q∗(s, a) for every state s, a. (This follows from the algorithm
initialization.) Now suppose that there will be an update step in which Q(s, a) will not
contain Q∗(s, a) anymore for some combination s, a. Consider the first time k that this
happens. Refer to the Q-function before this update as Qold(s, a) and the Q-function af-
ter the update as Qnew(s, a). This implies that Q∗(sk, ak) /∈ Qnew(sk, ak) for sk, ak, while
Q∗(s, a) ∈ Qold(s, a) for all s, a. This directly implies that either Q∗(sk, ak) < Q

new
(sk, ak)

or Q∗(sk, ak) > Qnew(sk, ak).
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First consider the case where Q∗(sk, ak) < Q
new

(sk, ak). The Bellman optimality condition
(for a deterministic environment) states that

Q∗(sk, ak) = rk+1 + γmax
a

Q∗(sk+1, a), (10-2-1)

where state sk+1 follows from taking action ak at state sk. Now note the three inequalities

Q
new

(sk, ak) > Q∗(sk, ak), (10-2-2)

Q∗(sk, ak) ≥ Q
old

(sk, ak), (10-2-3)

Q∗(sk, ak) = rk+1 + γmax
a

Q∗(sk+1, a) ≥ rk+1 + γmax
a

Q
old

(sk+1, a). (10-2-4)

Thus, for every α ∈ [0, 1], it also holds that

Q
new

(sk, ak) > (1− α)Q
old

(sk, ak) + α(rk+1 +max
a

Q
old

(sk+1, a)) (10-2-5)

= Q
old

(sk, ak) + α
(

rk+1 + γmax
a

Q
old

(sk+1, a)−Q
old

(sk, ak)
)

.(10-2-6)

However, this is in complete violation with update law (10-1-2), which claims equality. Thus
there is a contradiction. It cannot occur that Q∗(sk, ak) < Q

new
(sk, ak). With a similar proof,

it can be shown that Q∗(sk, ak) > Qnew(sk, ak) is also impossible. Concluding, it cannot occur
that at some time, for some combination s, a, the interval Q(s, a) does not contain Q∗(s, a).
Instead, the interval Q(s, a) will always contain Q∗(s, a).

It is interesting to note that, in the above proof, α can take any value in the interval [0, 1].
This suggests setting α simply equal to 1, which would speed up convergence.

10-2-2 Converging to the optimal value function

A second question to ask is: will the intervalQ-learning algorithm converge? The quick answer
here is yes, if all state-action pairs are continually visited. Due to the nesting relation (10-1-4),
the subsequent intervals Q(s, a) are nested. As was mentioned in subsection 6-3-3, this proves
that the interval sequence desribed by the continuous updating of Q(s, a) converges. However,
this does not imply convergence to the degenerate valueQ∗(s, a). Instead, it may also converge
to a (possibly wide) interval. Now it will be proven that the algorithm indeed converges to
degenerate values.

Consider the case where the algorithm has converged. Thus, updating does not change the
value of Q(s, a) for any combination s, a. Now examine the width w(Q(sk, ak)) at some time
k. It equals

w(Q(sk, ak)) = Q(sk, ak)−Q(sk, ak). (10-2-7)

Working this out using the update relations (10-1-2) and (10-1-3) gives

w(Q(sk, ak)) = (1− α)w(Q(sk, ak)) + αγ
(

max
a

Q(sk+1, a)−max
a

Q(sk+1, a)
)

, (10-2-8)

or equivalently (if α ∈ (0, 1]),

w(Q(sk, ak)) = γ
(

max
a

Q(sk+1, a)−max
a

Q(sk+1, a)
)

. (10-2-9)
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Examine the quantity on the right. It can be shown to satisfy

max
a

Q(s, a)−max
a

Q(s, a) ≤ max
a

(

Q(s, a)−Q(s, a)
)

= max
a

w(Q(s, a)) (10-2-10)

for any state s. (To see why, consider the action a′ that maximizes Q(s, a′) and consider
which potential values Q(s, a′) might have.) Therefore,

w(Q(sk, ak)) ≤ γmax
a

w(Q(sk+1, a)). (10-2-11)

Now consider the combination sk, ak that maximizes w(Q(s, a)). (If there are multiple, take
any combination.) If γ < 1, then the above statement says that there is some other interval
Q(sk+1, a) that is wider than Q(sk, ak). This cannot be, as sk, ak was the widest interval.
This implies that w(Q(sk, ak)) = 0. Thus, if γ < 1, the algorithm always converges to a
degenerate solution.

Concluding, it has been proven that the intervals Q(s, a) in the interval Q-learning algorithm
always converge to the optimal values Q∗(s, a). This is a promising start of combining RL
with IA. However, a careful reader might have noticed that the algorithm basically executes
two simultaneous versions of Q-learning: one with very low starting values and one with
very high starting values. Since Q-learning always converges, it is evident that the algorithm
described above also converges. Thus, so far nothing new has been developed. However, the
question does arise whether it is possible to extend this algorithm to the world of continuous
states and actions.

10-3 Issues in the extension to a continuous domain

When attempting to extend the interval Q-learning for continuous states, several problems
arise. These problems will be discussed in this section.

The problem with continuous states and actions is that one needs an infinite amount of in-
tervals to approximate Q. This is of course impossible, so instead one can use a function
approximator for Q and a function approximator for Q. This poses some risks though. Imag-
ine that the approximation of Q(s, a) is adjusted. This will also adjust the approximations
of Q(s′, a′) for s′ and a′ close to s and a. Often these adjustments are warranted, but it may
occur that this is not the case. If that happens, then the guarantee that Q∗(s′, a′) ∈ Q(s′, a′)
is gone, and the algorithm may thus not find the optimal value function.

A second problem arises in deriving a policy. Previously in this report, it has been argued that
it is computationally impractical to find the action a that maximizes Q(s, a) for some state
s. As a result, it was posed to use a value function V instead, and derive a policy through
the derivative ∂V/∂s. However, if instead an interval value function V = [V , V ] is used, such
a derivative does not readily exist. Instead, one can take (for example) the derivative of the
midpoint ∂m(V )/∂s or the derivative of the maximum ∂V /∂s, but neither of these choices
seem to have an easy and logical justification. Alternatively, one can also set up the policy as
an interval function approximation, and subsequently use ∂V /∂s to update π, while ∂V /∂s
is used to update π, but this approach is also not without further issues.

Finally, the convergence proof of the previous section only holds for deterministic environ-
ments. It is not clear yet whether the interval Q-learning algorithm also works for stochastic
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environments (either discrete or continuous). The stochastic environment makes the proof
that always Q∗(s, a) ∈ Q(s, a) invalid. In fact, if the environment gives a particularly high or
low reward for one time, it may occur that Q∗(s, a) /∈ Q(s, a) for some s, a. This is a problem.

To get rid of it, one needs to delete the nesting step at the end of the interval Q-learning iter-
ation. Though this would solve the problem, it basically turns the whole interval Q-learning
algorithm into two simultaneous ordinary Q-learning algorithms, and without the guarantee
that Q∗(s, a) ∈ Q(s, a) there are no added benefits of using two Q-learning algorithms instead
of just one. Thus, so far the interval Q-learning algorithm does not provide any advantages
for stochastic environments.

These problems are all detrimental for the further expansion of the interval Q-learning al-
gorithm. A lot of further research is required to solve them. Later on in this report, in
chapter 11, this will in fact be done, and most of these problems will be solved. An extension
of the interval Q-learning algorithm to continuous systems will be set up, which has proven
convergence for continuous deterministic systems.
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Chapter 11

The theoretical set-up of the

continuous Q-learning algorithm

Earlier on, in chapter 10, the interval Q-learning algorithm was set up. This chapter will
expand this algorithm to the continuous domain. First, section 11-1 will set up the basic
theory of the algorithm, followed by the algorithm itself. Then section 11-2 will evaluate the
algorithm.

11-1 Setting up the continuous interval Q-learning algorithm

This section will discuss the main ideas behind the continuous Q-learning algorithm. Once
the main ideas have been mentioned, they are combined into an algorithm: the continuous
interval Q-learning algorithm.

11-1-1 The fundamental assumption

Consider a continuous reinforcement learning problem. In literature, there are many con-
trollers that solve such problems. They all use function approximators. These function
approximators all use data on a state s to update the values of nearby states s′. The algo-
rithms thus assume that nearby states have similar values. However, almost all articles fail to
mention this assumption. It is one that is silently assumed to be true. And that is strange,
since the assumption is one on which the entire algorithm is based.

In this report, things are done differently. The assumption that nearby states have nearby
values is not only mentioned, it’s also quantified. This quantification will turn out to be the
key to setting up a reinforcement learning algorithm with proven global convergence. Without
it, it will be very hard, if not impossible, to prove globally optimal convergence for continuous
reinforcement learning controllers.
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The main RL value assumption

The slope of the value function Q is assumed to have a certain known maximum value or
bound dQ/dsi or dQ/daj for every state parameter si and action parameter aj.

How these maximum slopes are found is something that will be briefly discussed later in
this report, in subsection 12-6-3. For now it is simply assumed that decent upper bounds are
known for the derivatives with respect to each parameter. Do note that the quantities dQ/dsi
and dQ/daj do not indicate actual derivatives but only bounds on the absolute value of these
derivatives.

11-1-2 The application to interval Q-learning

The above assumption can be used to extend the interval Q-learning algorithm to the con-
tinuous domain. Imagine that at some time k the RL agent is in the state vector sk and
chooses the action vector ak. This brings him to a state sk+1 with reward rk+1. Also as-
sume that bounds Qmin(s,a) and Qmax(s,a) are known for all states s and actions a. Now
new bounds Qmin(sk,ak) and Qmax(sk,ak) can be obtained for the state-action combination
sk,ak, according to relations (10-1-2) and (10-1-3), just like in the normal interval Q-learning
algorithm. For ease of reading, these relations are repeated here.

Q
new

(sk,ak) ← Q(sk,ak) + α
(

rk+1 + γmax
a

Q(sk+1,a)−Q(sk,ak)
)

, (11-1-1)

Qnew(sk,ak) ← Q(sk,ak) + α
(

rk+1 + γmax
a

Q(sk+1,a)−Q(sk,ak)
)

. (11-1-2)

Note that nesting is also again applied. That is, if Q
new

(sk,ak) ≤ Q
old

(sk,ak), it is not
updated, and a similar thing holds for the upper bound.

However, more can be done than just updating Q(sk,ak). The interval Q(sk,ak) has been
updated. This also means that the interval Q(s′,a′) can be updated for states s′ and actions
a′ near sk and ak. For this, the slopes dQ/dsi and dQ/daj are used. Given the new value of
Qmin(sk,ak), the bounds for any other state s and action a can be updated as

Qmin(s,a) = Qmin(sk,ak)−
ns
∑

i=1

dQ

dsi
|si − (sk)i| −

na
∑

i=1

dQ

dai
|ai − (ak)i| , (11-1-3)

with ns the number of states and na the number of actions. Also, (sk)i is the ith parameter
of state sk. It directly follows from the mean value theorem that these bounds are certain.
As long as the main RL value assumption holds, they cannot be violated.

To simplify notation, define D = ns + na, where D will be known as the dimension of the
problem. Also merge the state s and the action a into one vector x. (So xT = [sT ,aT ]. This
means that xi = si when i ≤ ns and xi = ai−ns

when i > ns.) This simplifies the above
relation to

Qmin(x) = Qmin(xk)−
D
∑

i=1

dQ

dxi
|xi − (xk)i| . (11-1-4)

Similarly, the maximum is given by

Qmax(x) = Qmax(xk) +
D
∑

i=1

dQ

dxi
|xi − (xk)i| . (11-1-5)
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Figure 11-1: New bounds during one update step of the continuous interval Q-learning algorithm.
The bounds take the shape of pyramids with as slopes the maximum possible slopes dQ/dxi.

This idea is visualized for the one-dimensional case (with D = 1) in figure 11-1. If the problem
is multi-dimensional, then the bounds will not take the form of triangles but of pyramids.
These triangles will thus be referred to as update pyramids.

11-1-3 Multiple updates

The effect of one update has been shown in figure 11-1. What happens when multiple updates
are done, one after the other? In that case, multiple triangles/pyramids will appear. This is
visualized in figure 11-2. All these pyramids give bounds for Q. How does one know which
bound to take?

That question is in fact easily answered. All the bounds that are given hold. They are all true.
Hence, one can simply take the most narrow bound possible. This bound will then still hold.
So, when one wants to determine Qmin(x) for some state-action point x, one looks at the value
of all possible minimum-pyramids at the point x and selects the highest value as the lower
bound Qmin(x). Similarly, for the upper bound, the lowest value of all maximum-pyramids
is selected for Qmax(x).

11-1-4 The best exploration strategy

The goal of the interval Q-learning algorithm is to narrow the bounds on the Q-values.
Preferably, the new width w(Qnew(xk)) of the state-action point xk is much smaller than
the old width w(Qold(xk)). Hence, the reduction factor w(Qnew(xk))/w(Qold(xk)) should be
minimized. How can this best be done?

First examine the width w(Qnew(xk)) more closely. For the discrete interval Q-learning
algorithm, a bound was given by relation (10-2-11). This relation still holds. Hence,

w(Qnew(xk)) ≤ γmax
a

w(Q(sk+1,a)). (11-1-6)
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Figure 11-2: New bounds after multiple update steps of the continuous interval Q-learning
algorithm. Where the bounds overlap, the most narrow bound is selected.

However, w(Q(sk+1,a)) depends on sk+1, which depends on the environment. Since no
knowledge is assumed on the environment, nothing can be derived on sk+1. Luckily, this
problem can be worked around.

Suppose that it is possible to put the RL agent in any state sk. One can then set xk to the
state-action combination with maximum width. That is,

xk = argmax
x

w(Q(x)). (11-1-7)

This ensures that maxaw(Q(sk+1,a)) ≤ w(Qold(xk)) for any possible state sk+1. Hence the
reduction factor of w(Q(xk)) is always at most a factor γ.

This strategy of taking the state and the action with the maximum width is called the best
explorative strategy for the continuous interval Q-learning algorithm. It is also a strategy
that intuitively makes sense. The width of the interval Q(x) can be seen as the ‘uncertainty’
in the value Q of a point x. When one always explores the point with the highest width, and
thus the highest uncertainty, the most can be learnt.

11-1-5 The solution to the exploration vs. exploitation dilemma

The best exploration strategy of the previous subsection can be expanded further. Suppose
that the agent is in some state s and can choose between two actions a1 and a2, but he
knows that Q(s,a1) ≤ Q(s,a2). In other words, he knows that choosing action a2 will always
result in a better value than choosing action a1. In this case, the agent can be fully certain
that action a1 is not part of the optimal strategy. This action (as evaluated from the current
state) can thus be fully ignored, even if w(Q(s,a1)) > w(Q(s,a2)). This process is known as
rejecting certainly sub-optimal actions.
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It is interesting to note that the rejection of certainly sub-optimal actions is a solution to the
exploration vs. exploitation dilemma. This dilemma is as old as reinforcement learning itself,
but if the best exploration strategy is applied together with rejecting certainly sub-optimal
actions, the dilemma is solved. The agent will recognize it when certain actions are not part
of the optimal strategy and ignore those actions in the remainder of the algorithm run. It
will thus automatically switch from exploration towards exploitation, without any risk that
he might not find the optimal strategy.

Finally, it must be noted that in may practical RL applications the effectiveness of the rejection
of certainly sub-optimal actions often remains limited. In a lot of continuous RL problems,
there is a very small timestep, and any change in the action ∆a will thus only have a very
small change in the value ∆Q. As long as w(Q) is significantly bigger than ∆Q, no certainly
sub-optimal actions can be rejected. However, in problems where different actions a do have
a significant effect on the value Q, the rejection of certainly sub-optimal actions will be very
useful.

11-1-6 The continuous interval Q-learning algorithm

Now all the ideas are present to set up the continuous interval Q-learning algorithm. This
algorithm is given below.

Algorithm 1 – The continuous interval Q-learning algorithm

Require: Ranges Ri = [ximin
, ximax

] for the parameters.
Require: Upper bounds dQ/dxi for the value function slopes.
Require: The minimum Qmin and maximum Qmax of the value function.
for k = 1→ niterations do

Select the point xk that maximizes w(Q(x)).
Split xk up into a state sk and an action ak. From state sk, execute action ak.
Calculate the interval Qk according to

Qk = [rk+1 + γmax
a

Q(sk+1,a), rk+1 + γmax
a

Q(sk+1,a)] (11-1-8)

and use it to update the Q-function.
end for

There is one part missing in the above algorithm. How does the function Q(x) work? That
part is discussed now.

Algorithm 2 – The exact interval Q-function

Require: A list of intervals Qk, with 1 ≤ k ≤ niterations.
Require: The point x (with xT = [sT ,aT ]) for which Q(x) needs to be found.
Start off with Qresult = [Qmin, Qmax].
for k = 1→ niterations do

Find the interval Qk(x) corresponding to the point x on the pyramid of iteration k:

Qk(x) =

[

Q
k
−

D
∑

i=1

dQ

dxi
|xi − (xk)i| , Qk +

D
∑

i=1

dQ

dxi
|xi − (xk)i|

]

. (11-1-9)

Set Qresult ← Qresult ∩Qk(x).
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end for
return Qresult.

Algorithm 1, together with algorithm 2 for finding Q-value intervals, makes up the continuous
interval Q-learning algorithm. It can be proven to converge, as will be done in the upcoming
section.

11-2 Analysing the continuous interval Q-learning algorithm

This section analyses the continuous interval Q-learning algorithm. It will prove its conver-
gence and provide estimates on its performance.

11-2-1 Defining parameters

It is quite easy to see why the continuous interval Q-learning function converges. Consider
the area (for a one-dimensional problem) or the volume (for a multi-dimensional problem)
between Q and Q. This volume decreases at every iteration. Since it cannot be negative, it
therefore must converge. And, in a way very similar to the way shown in subsection 10-2-2,
the volume can be shown to converge to zero. Furthermore, since the volume will always
contain the actual Q-function Q∗, it must converge to a volume containing Q∗.

What would be more interesting though, is how fast the algorithm converges. That will be
the subject of this section. Before that is done, some definitions need to be made. Most of
these parameter definitions have been visualized in figure 11-3.

First of all, the range Ri is the interval containing all possible values of the parameter xi.
Thus, Ri = [ximin

, ximax
]. Secondly, the parameter area is defined as the area spanned by

all parameters xi. So,

A = w(R1)w(R2) . . . w(RD) =
D
∏

i=1

w(Ri). (11-2-1)

Note that this is a D-dimensional area. Thirdly, the remaining volume V is defined as

V =

∫

R1

∫

R2

. . .

∫

RD

w(Q(x)) dxD . . . dx2 dx1, (11-2-2)

where the integration is over all parameters xi. Fourthly, there is the average width wav,

wav =
V

A
. (11-2-3)

There are also the average minimum value Q
av

and average maximum value Qav, respectively
defined as

Q
av

=
1

A

∫

R1

. . .

∫

RD

Q(x) dxD . . . dx1, (11-2-4)

Qav =
1

A

∫

R1

. . .

∫

RD

Q(x) dxD . . . dx1. (11-2-5)
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Figure 11-3: Parameters for the continuous interval Q-learning algorithm. (Note that, for a
one-dimensional problem as shown here, A = w(R1).)

Note that wav = Qav − Q
av
. Finally, the minimum and maximum widths are respectively

defined as

wmin = min
x

w(Q(x)), (11-2-6)

wmax = max
x

w(Q(x)). (11-2-7)

11-2-2 Bounding the change in volume

Consider one iteration of the continuous interval Q-learning algorithm. How much will this
iteration cause the volume to decrease? That is in fact something that cannot be exactly
determined. However, it is possible to give a minimum bound on the reduction in volume.

Consider an update at some point xk. Such an update is visualized in figure 11-4. During this
update, a new interval Q(xk) has been found with width wupdate = w(Qnew(xk)). According
to the continuous interval Q-learning algorithm, the point xk was the point with the largest
width everywhere. Hence, wmax = w(Qold(xk)). It now follows that

wupdate = w(Qnew(xk)) ≤ γw(Qold(sk+1)) ≤ γwmax. (11-2-8)

This thus bounds the width of the maximum update. However, to find the reduction in
volume, it is more important to find the widths of the pyramids wpyramid which reduce the
remaining volume. These specific pyramid widths are denoted by wbottom and wtop. Note that
it is possible that wbottom = 0 or wtop = 0, but it must always hold that

wbottom + wtop = wmax − wupdate ≥ (1− γ)wmax. (11-2-9)

Now, what is the volume of the two new pyramids? In other words, what is the reduction
of the remaining volume? This reduction of course depends on wpyramid, but it also depends
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Figure 11-4: An example update and the corresponding change in volume.
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Figure 11-5: A visualization of a worst-case pyramid during an update, together with certain
important parameters.

on the ‘bottom surface area’ onto which the pyramids fall, and this isn’t generally known.
It could be such as the top in figure 11-4, where the pyramid has a big volume because the
pyramids above it slope away. On the other hand, it could also be such as the bottom in
figure 11-4, where the pyramid has a relatively small volume. Which situation is the case
cannot generally be established. However, the worst case scenario is the one shown at the
bottom. This is the minimum pyramid volume that can ever occur for a given pyramid width
wpyramid.

The next question is: how much is this minimum reduction in volume? To find that out,
consider only one side of such an update, as shown in figure 11-5. The reduction in volume
now takes the shape of two sub-pyramids, connected at their base. Each of these sub-pyramids
has a ‘height’ of wpyramid/2. The base is a D-dimensional plane. Its length li in the direction
of parameter xi is given by

li =
wpyramid

dQ/dxi
. (11-2-10)

The area of the sub-pyramid base thus is

Asub−pyramid =
D
∏

i=1

li =
D
∏

i=1

wpyramid

dQ/dxi
=

wD
pyramid

∏D
i=1 dQ/dxi

. (11-2-11)
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Figure 11-6: A special case occurs when an update is performed near the boundary of one of
the parameters xi.

The volume of a sub-pyramid thus becomes

Vsub−pyramid =
Asub−pyramid

D + 1

wpyramid

2
=

1

D + 1

1

2

wD+1
pyramid

∏D
i=1 dQ/dxi

. (11-2-12)

However, it is important to keep in mind that, at the bottom of the update, there are two
such sub-pyramids. The same holds for the top of the update. Hence, the reduction of volume
∆V (taken positive for volume reductions) is bounded by

∆V ≥ 1

D + 1

1
∏D

i=1 dQ/dxi

(

wD+1
bottom + wD+1

top

)

. (11-2-13)

Take a closer look at wbottom and wtop. Minimizing the above quantity subject to constraint
(11-2-9) results in

wbottom = wtop =
1− γ

2
wmax. (11-2-14)

That is, the volume reduction bound is smallest when wbottom = wtop. This means that

∆V ≥ 2

D + 1

(

1− γ

2

)D+1 wD+1
max

∏D
i=1 dQ/dxi

. (11-2-15)

This is a solid bound on the reduction of the volume.

The careful reader might have noticed a special case in which the above bound does not hold.
And indeed, there is a hidden assumption in the above derivation. It has been assumed that
the update pyramid does not cross the boundary of the parameter range Ri for any of the
parameters xi. However, this assumption doesn’t always hold. It may occur that the update
is close to the boundary of some parameter xi. Such a case has been visualized in figure 11-6.

If this exception occurs, then the volume of the update pyramid is less than was previously
expected. Luckily, xk is always selected to fall within the allowed range. Thus, the pyramid
volume can at most be halved in each direction. This results in the new bound

∆V ≥ 1

2D
2

D + 1

(

1− γ

2

)D+1 wD+1
max

∏D
i=1 dQ/dxi

. (11-2-16)
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Next, an even more careful reader might ask, ‘What happens when a pyramid’s volume is cut
off on both sides, by both boundaries?’ Indeed, in this case it may happen that a factor 1/2
is not sufficient. However, in reality this virtually never occurs. (It only happens when Q has
been initialized with a width far larger than w(Ri)dQ/dxi for some parameter xi. If Qmin

and Qmax are adequately chosen, this will not happen.) And in the unlikely case that it does,
it is again possible to derive a factor that circumvents the problem. But, due to the rarity
of this issue, and to keep this explanation at least remotely resembling something simple and
brief, the solution of this problem will be omitted.

The reader might also wonder what would happen when xk+1 does not fall within the range
Ri for some parameter xi. In this case, the function approximator cannot give a bound on
Q(xk+1). However, it is assumed here that any state xk+1 that does not fall within the
allowed range is a terminal state of the reinforcement learning problem. Its value is known
exactly (i.e. with zero width), thus solving this issue.

11-2-3 Bounding the average width over time

Relation (11-2-16) gives a bound on the reduction of the volume during one iteration. This
gives rise to the question how fast the volume is reduced over several iterations. Or, to be
more exact, what is the average width (wav)k after k iterations?

First of all, from (11-2-3) it follows that the reduction of the average width during some
iteration k is given by

∆wav =
∆V

A
≥ 1

2D
2

D + 1

(

1− γ

2

)D+1 1

A

(wmax)
D+1
k

∏D
i=1 dQ/dxi

. (11-2-17)

Since ∆wav = (wav)k − (wav)k+1, the ratio between two successive average widths is

(wav)k+1

(wav)k
= 1− ∆wav

(wav)k
≤ 1− 1

(wav)k

1

2D
2

D + 1

(

1− γ

2

)D+1 1

A

(wmax)
D+1
k

∏D
i=1 dQ/dxi

. (11-2-18)

Because (wav)k ≤ (wmax)k, it follows that

(wav)k+1

(wav)k
≤ 1− 1

2D
2

D + 1

(

1− γ

2

)D+1 1

A

(wav)
D
k

∏D
i=1 dQ/dxi

. (11-2-19)

Now define the reference width wr as

wr =

(

D + 1

2

(

2

1− γ

)D+1 D
∏

i=1

w(Ri)
dQ

dxi

)

1
D

. (11-2-20)

Note that this is a problem-specific constant which does not depend on k. This simplifies
relation (11-2-19) to

(wav)k+1

(wav)k
≤ 1−

(

(wav)k
2wr

)D

. (11-2-21)
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Define w0 as the initial width w0 = (wav)0 = Qmax − Qmin. According to theorem 1 from
appendix A (with n = D and xd = 2wr), the average width is now bounded by

(wav)k ≤
2wr

(

Dk +
(

2wr

w0

)D
) 1

D

. (11-2-22)

This not only proves that wav converges to zero. It also gives a bound on the number of
iterations required to obtain a certain accuracy.

11-2-4 Estimating the expected average width

It is nice to have a bound on the average width wav, but this bound does not tell how quickly
wav is likely to converge to zero. It is only a very rough upper bound. To compensate for
this, also an estimate can be made on the average change of wav. It must be noted that an
accurate estimate is impossible to make. The part below thus concerns a rough estimate.

First consider the constraint wupdate ≤ γwmax. Previously, it was assumed that a worst case
scenario occurred, and thus that wupdate = γwmax. In reality, this is not exactly the case.
However, since during the algorithm execution the width of the Q-function does not vary
much, it does approximately hold. It is thus once more assumed that wupdate ≈ γwmax.

Secondly, it has previously been assumed that wbottom = wtop. In reality, this is again not
always the case. wbottom and wtop do vary – especially during the start of the algorithm
when the function approximator still needs to adjust to the main shape of the value function.
However, while the function approximator is converging to the optimal value function, this
approximation does start to become more accurate. Therefore, it is once more assumed that
wbottom ≈ wtop.

Thirdly, it has been assumed that the update pyramid is projected on a ‘valley-like’ base, as
shown in figure 11-5. This doesn’t always hold. Sometimes it is indeed a ‘valley-like’ base,
but sometimes it’s also a ‘tip-like’ base, thus increasing the volume of the update pyramid.
On average, it is expected that the update pyramid is projected on a roughly flat base. The
volume of one update pyramid then becomes

Vpyramid =
wpyramid

D + 1

D
∏

i=1

2wpyramid

dQ/dxi
=

2D

D + 1

wD+1
pyramid

∏D
i=1 dQ/dxi

. (11-2-23)

Finally, there previously was a correction factor for the case where the update pyramid was
near the state-action-space boundary. In reality, this situation rarely occurs, and on average
such a correction factor thus does not need to be applied.

The above statements give an approximated change of volume

∆V ≈ 2D+1

D + 1

(

1− γ

2

)D+1 wD+1
max

∏D
i=1 dQ/dxi

. (11-2-24)

This in turn results in a recursive relation for the average width, being

(wav)k+1

(wav)k
≈ 1− 2D+1

D + 1

(

1− γ

2

)D+1 1

A

(wav)
D
k

∏D
i=1 dQ/dxi

. (11-2-25)
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Using the definition for the reference width, this can also be written as

(wav)k+1

(wav)k
≈ 1−

(

2(wav)k
wr

)D

. (11-2-26)

The average width is thus approximated as

(wav)k ≈
wr

2

(

Dk +
(

wr

2w0

)D
) 1

D

. (11-2-27)

This quantity indeed decreases much faster than the bound given earlier. The question
remains whether it is accurate. To find that out, the next chapter will assess the accuracy of
these bounds through several practical examples.
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Chapter 12

Practical implementations of the

continuous Q-learning algorithm

The previous chapter has introduced the continuous interval Q-learning algorithm. This
chapter will apply this algorithm (or at least, various versions of it) to several simple test
systems. First a direct application of the algorithm will be set up. This algorithm has some
significant downsides, so afterwards an alternative algorithm will be designed that eliminates
these downsides. In the end, this alternative algorithm is applied to more complicated systems,
including the CAP system. The chapter closes off with some suggestions for further research.

12-1 A direct implementation of the algorithm

This section will try to implement the continuous Q-learning algorithm as it has been set up
in the previous chapter. First some issues in its implementation will be discussed, after which
the algorithm will be implemented and results will be shown.

12-1-1 Issues with the continuous Q-learning algorithm

During algorithm 1, four things need to be done with the Q-function approximator. It needs
to be possible to find values Q(x), the lower bound Q needs to be maximized, the upper

bound Q needs to be maximized and the width w(Q) needs to be maximized. But is all of
this easily achieved?

First consider looking up a value of Q. This is what algorithm 2 does. Computationally,
how fast does it do this? It is easily shown that this is of order O (niterations). (This nota-
tion, roughly speaking, means that the run-time is proportional to the number of iterations
niterations.) All previous updates simply need to be examined to find the value Q. Though this
order is not exactly ideal – most function approximators allow look-ups in constant (O (1))
time – it is still acceptable.
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Figure 12-1: The process of maximizing Qmax requires looking at intersections of pyramids.
Some intersections are invalid and should be ignored. Of the valid intersections, the highest one
should be returned as the maximum of Qmax.

Now consider the problem of maximizing the lower bound Q. This maximum must always
lie at the top of one of the update pyramids. To maximize the lower bound, it is thus only
required to check the tops of all the update pyramids. This can also be done in O (niterations)
time, which is still acceptable.

The problems arrive when one tries to maximize Q. To see why, first consider the one-
dimensional case as shown in figure 12-1. The maximum of Q is always at the intersection of
two update pyramids. Thus, to find it, all pairs of update pyramids need to be considered.
For every pair, the intersection needs to be found. It then needs to be checked whether this
is indeed a valid point on Q(x). Of all valid intersections the highest one then needs to be
returned. This algorithm is of O

(

n2
)

(where, for brevity, niterations has been shortened to n).

A reader with some knowledge of algorithms would realize here that it’s also possible to
design a clever data structure to store the update pyramids, thus bringing the run-time down
to O (n log(n)). This is indeed true. However, now consider the multi-dimensional case. In
this case, comparing every pair of update pyramids is no longer sufficient. Instead, one should
compare every combination of D + 1 update pyramids. The run-time of the algorithm will
thus be something like O

(

nD log(n)
)

. For D = 2 this already poses practical problems, and
for problems with D > 2 this is simply unacceptable.

It might be possible to reduce the run-time somewaht by eliminating old and useless update
pyramids. If an update pyramid is fully enclosed by another pyramid, it has become useless
and can be erased from the data storage. Practical tests have shown that this will cut the
number of active update pyramids roughly in half. Though this is definitely useful from a
practical point of view, it does not change the order of the algorithm, and thus the problem
is not solved. The algorithm is therefore not suitable for any practical implementation.

12-1-2 A first application of the algorithm

Still, it would be nice to at least see if the continuous interval Q-learning algorithm works.
Therefore, it has been applied to a simple two-dimensional problem.

Consider the simple problem where the state s describes some position x and the action a is
the velocity ẋ. Both the position s and the velocity a fall within the interval [−1, 1]. The time
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Figure 12-2: Plots of the bounds on Q after 100 (left) or 1000 (right) runs of the continuous
interval Q-learning algorithm. The green surface area is the optimal value function Q∗, which is
bounded by the upper (blue) and lower (red) bound.

step used is ∆t = 0.1 s. (The controller can basically choose ∆s from the interval [−0.1, 0.1].)
The reward given at every time step is rk = |sk|. (The agent needs to move the cart to
s = 0.) Furthermore, γ = 0.8, Qmin = −5, Qmax = 2, dQ/ds ≤ 5 and dQ/da ≤ 0.5. Since
this problem has D = 2, it is referred to as the simple two-dimensional problem.

The continuous interval Q-learning algorithm has been applied to this problem. A test has
been run both for niterations = 100 and niterations = 1000. While the first case had an
acceptable run-time (a few seconds), the second case already required significant waiting
(nearly an hour on a reasonably fast home computer). The results are shown in figure 12-2.

In the figure, it can be seen that the bounds converge to the optimal value function Q∗, as was
expected. An attentive reader might note that the lower bound (red) converges slightly faster
than the upper bound (blue). This can be explained. Due to the pyramid-like nature of the
bounds, there are always peaks in the bounds. That is, there are slightly higher values and
slightly lower values. When updating the bounds, one tries to maximize Q and Q. Because
of these peaks, both of these values will be slightly higher than expected. When updating
the lower bound, this is positive. The lower bound goes up a bit faster. When updating the
upper bound, however, this is not positive. The upper bound stays high and is narrowed
somewhat slower than otherwise would be the case. Hence, these peaks are benificial for the
lower bound but not beneficial for the upper bound. This is why the lower bound converges
slightly faster than the upper bound.

Another interesting thing to investigate is the width of Q as the algorithm progresses. The
minimum width, the maximum width, the average width, the average width bound according
to relation (11-2-22) and the expected average width according to relation (11-2-27) are all
shown in figure 12-3.

First of all, it can be seen that the bound is not violated. But, as expected, it is much too
rough. The actual average width (and even the maximum width) is far below it. On the other
hand, the expected average width does provide a reasonable estimate of the actual average
width. As the iteration number becomes big, there is a bit of an offset, but this offset is not
all that big. Hence the average expected width relation will be a useful tool to estimate how
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Figure 12-3: Evolution of the width of Q during a run of the continuous interval Q-learning
algorithm.

many iterations it will take for the algorithm to reach a certain accuracy.

12-2 Splitting the state-action-space up into set blocks

The previous section already showed an algorithm which worked, but it was so slow that it
was not practically feasible. Finding Q and especially maximizing Q simply took too long.
This section considers a first attempt at solving this problem. First the main idea behind the
solution is explained. Then the new algorithm is analysed, both from a theoretical point of
view and through a practical example.

12-2-1 The main idea

The main idea is to split the state-space up into blocks. And for this first version, the blocks
all have the same constant size. Each block has a corresponding (interval) Q-value. To then
find a Q-value for some point x, the Q-function approximator simply looks at which block
the point x is in and returns the value of the corresponding block.

The important part of this algorithm is the updating of the blocks. Such an update is shown
in figure 12-4. It is very important that the bounds remain consistent and can never be
violated. It may not occur that the actual Q∗ value falls outside of the Q interval. Thus,
when performing an update, the blocks can only be narrowed so much that they do not cross
the update pyramid corresponding to the update.
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Figure 12-4: The process of updating block values, such that the bounds remain consistent. The
blocks can be narrowed until they hit the update pyramid. Any further narrowing could result in
an incorrect bound.

12-2-2 Analysing the new algorithm

The algorithm is a significant improvement from its precursor. Q-values can be looked up in
O (1) time. Maximizing a Q-value bound does still require some time – all blocks need to be
checked – but this is a time which does not increase when niterations increases.

There are only two significant downsides. First of all, the algorithm will converge a bit slower
than its predecessor. This is because not all data is optimally used. There are still ‘holes’
in the update pyramid which are not filled. However, the effect of this disadvantage remains
limited.

The most important disadvantage is the inability of this algorithm to accurately adjust to
the actual Q-function as the algorithm progresses. The number of blocks remains constant
during run-time, and hence after a while the algorithm simply cannot improve any further.
This is a significant problem that needs to be solved.

12-2-3 A practical application

The constant block algorithm has been applied to the simple two-dimensional problem. This
has been done for two different block sizes. Either a total of 400 blocks (20 in each direction)
has been applied, or 40.000 blocks (200 in each direction), in which the latter case of course
had a longer run-time. The results can be seen in figure 12-5.

First of all, it can be noticed that, if the blocks are too big, then the algorithm doesn’t converge
properly. It continues to be somewhat distant from the actual Q∗ value, even after ten million
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Figure 12-5: Plots of the bounds on Q after 107 iterations of the continuous interval Q-learning
algorithm with constant size blocks. The left graph has been trained with big blocks (20 per
direction), while the right graph has been trained with small blocks (200 per direction).

iterations. When the blocks are small enough, the algorithm does converge properly. The Q∗

function is bounded quite accurately.

Of course the big question here is: how does one know how many blocks are required? This
is not known in advance, and it’s also not an easy question to answer. Using too little
blocks doesn’t work, while using too many blocks could result in too long run-times. A more
appropriate solution would be to vary the number of blocks during run-time. And that is
indeed the improvement that will be explored in the upcoming section.

12-3 Dynamically varying the number of blocks

This section will introduce another extension to the algorithm: dynamically splitting up
blocks. At some point in time, there is a block and it needs to be split up into several sub-
blocks. There are two obvious questions: how is this done and when is this done? These two
questions are answered first. Then the resulting algorithm is again analysed.

12-3-1 How to split up blocks

Suppose that a block will be split up into sub-blocks. How will it be split up? Or, to be more
precise, how many sub-blocks will be made, and where will the boundaries of these sub-blocks
be?

One option would be to conveniently choose the boundaries of sub-blocks, such that updates
are performed more smoothly. This seems like a promising idea, but in reality it’s a lot less
promising. Suppose that at the start of the algorithm run a block is split up at a certain
splitting point. As the algorithm progresses, more and more update pyramids are added
and stacked up on each other. After a few additional iterations, the splitting point that was
so conveniently placed earlier on has lost its reason for being positioned where it is. The
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ix

Splitting up once

Splitting up again

Figure 12-6: Splitting up a block into sub-blocks is done as shown above. Blocks are split up
uniformly in a set amount of (in this case 3) sub-blocks per direction. Sub-blocks can then later
on, if required, again be split up. This creates a tree-like structure of blocks.

usefulness of this idea is thus strongly limited. It might be possible to get this idea to work,
but that will be complicated and is thus merely posed as a suggestion for further research in
section 12-7.

The solution here is to go for a simple yet effective approach. When a block is split up, it is
split up uniformly into sub-blocks. At the start of the algorithm, the user specifies manually
into how many sub-blocks the blocks are split up, for each dimension. (For example, it might
be specified that sub-blocks are split up into three blocks in the direction of s, but only in
two blocks in the direction of a. This could be useful if the state s benefits more from a high
resolution than the action a.) Whenever a block then needs to be split up into sub-blocks, it
is then uniformly split into that amount of sub-blocks. This process is shown in figure 12-6.

12-3-2 When to split up blocks

The second question to be answered is when to split up sub-blocks. Suppose that an update is
being performed for some point xk. If a given block can be narrowed, thanks to this update,
then there appears to be no problem whatsoever. There is no need to split up the block
further. This would only cost more computational time with hardly any gain. Improvements
are already being made.

But now suppose that the block cannot be narrowed. Then the obvious question becomes: if
the block was split up into sub-blocks, could some of these sub-blocks be narrowed? This idea
is shown in figure 12-7. If a split of the block would result in improvements, then it would
make sense to split up the block.

The only problem is that such an algorithm set-up would result in an infinite loop. To see
why, consider a block which is passed through by the update pyramid (like the left-most
sub-block of figure 12-7). If this block is split up, then some of the resulting sub-blocks might
be narrowed, which is an improvement. This could be seen as an argument to split up the
block. However, the result is that there will be another sub-block which the update pyramid
passes through. The process thus continues, and blocks will continue to be split up.

This problem can be solved by adding another split-up criterion. A block may only be split
up if the block actually contains the update point xk. This ensures that only blocks are split
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Figure 12-7: A case where it’s useful to split up a block. Before the split, the block value
could not be narrowed. After the split into 5 sub-blocks, some of the sub-blocks’ values could be
narrowed, thus reducing the remaining volume.

up that are actually visited. Furthermore, points that often get visited automatically get
more sub-blocks and thus more resolution in this way. This solution thus also makes sense
intuitively.

12-3-3 Analysing the algorithm

So how good is this adjusted algorithm? The expectation is that it runs slower than the
previous constant-block-size algorithm, but still much faster than the original continuous
interval Q-learning algorithm. However, the situation is opposite when the efficiency with
which the algorithm uses data is considered. The original algorithm uses all data as efficiently
as possible, whereas the other two algorithms regularly ‘waste’ data. That is, during an update
they don’t ‘fill up’ an entire update pyramid. For this reason, it is expected that the original
algorithm narrows faster, given the same amount of iterations.

These expectations are indeed confirmed by a practical example. This time 104 simulations
have been run on the simple two-dimensional system. Doing so only cost a few seconds, as
opposed to the few hours that had to be waited for only 103 iterations of the original algorithm.
Results of this test are shown in figure 12-8. Here it can be seen that the algorithm does
still converge. However, it converges a bit slower than what was previously the case with the
original algorithm. That is, the green line (indicating the actual average width) is a bit above
the black line (indicating the expected average width), while previously the real average width
was quite a bit below the expected average width.

Although good progress has been made so far, the algorithm should still be improved. The
performance needs to increase. The obvious way to do that is to make sure that more parts of
the update pyramid are used in actual updates. Currently, because flat blocks are used, a lot
of information is wasted. A way in which this can largely be prevented, is by allowing blocks
to not be flat. Instead, they can be sloped. That will be the subject of the next section.
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Figure 12-8: Plots of the bounds on Q after 104 iterations of the continuous interval Q-learning
algorithm with flat blocks of varying size.

12-4 Allowing sloped blocks

Suppose that blocks don’t have to be flat. Suppose that they can be sloped lines (for one
dimension) or planes (for multiple dimensions). How can this be implemented? And what
will the result be? That’s what this section will look at.

12-4-1 Implementation of the extension

First of all, to allow sloped blocks, the representation of a block needs to change. One now
doesn’t only need to keep track of the interval Q-value. One also needs to know the slopes
of the minimum and maximum of the block in each direction. Keeping track of this isn’t all
that hard though.

A somewhat harder problem is deciding when and how to update the blocks. It is important
here to keep in mind that the goal of the algorithm is to minimize the remaining volume. The
remaining volume of any particular block equals the block area (which is constant) multiplied
by the average width of the block. This average width equals the width at the midpoint of
the block. Thus, if the width of the midpoint can be decreased, then the block should be
updated. This idea is visualised in figure 12-9. Here it can be seen that blocks are updated if
it means that the interval at their midpoints will narrow. This is not the case for the block
on the right, and hence it is not updated.

There are still two slight downsides to this update method. First of all, still not the entire
update pyramid is used during an update. Generally, the tip of the pyramid itself is not used,
as can be seen in figure 12-9. However, a much bigger part of the update pyramid is used
than previously, so this small downside can be accepted.
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Figure 12-10: Plots of the bounds on Q after 104 iterations of the continuous interval Q-learning
algorithm with sloped blocks of varying size.

The second downside is that sometimes there are points whose interval values actually widen.
This occurs at the left sub-block of figure 12-9. It seems strange: why would one widen the
interval value of a point? However, this is the way in which the maximum reduction of the
remaining volume can be obtained. That is why it occasionally can occur that, for some
specific point x, the width w(Q(x)) actually increases. However, it is important to keep in
mind that the remaining volume V and the average width wav always do decrease.

12-4-2 Analysing the extension

Now that sloped blocks are allowed, what happens to the performance of the algorithm? Does
it perform better than when flat blocks were used? To find that out, the same test has been
run as the one discussed in the previous section. The results are shown in figure 12-10.
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Figure 12-11: Comparison of the various algorithms so far. The average width has been plotted
versus the iteration number.

In figure 12-10 it can be seen that the algorithm with sloped blocks performs significantly
better than the case where flat blocks were still used. The average width again falls well
below the expected average width. Another interesting thing that can be noticed is that the
maximum width (the blue line) initially increase to above 7 (which is its initial value). Only
after roughly 30 iterations does it drop below 7 again. This is indeed due to the fact that the
width of a particular point can increase, as was just discussed.

To really compare the effect of the sloped blocks, a comparison plot has been made. Figure
12-11 shows the average width of three algorithms: the original algorithm, the algorithm
with a varying number of flat blocks and the same algorithm with sloped blocks. It now
becomes evident that using flat blocks doesn’t work all that well. On the other hand, using
sloped blocks does. Of course the sloped blocks algorithm performs slightly worse than the
original algorithm – it’s theoretically very improbable for it to perform better – but the
difference is nearly negligible. And since the run-time is significantly faster, it is indeed a
useful improvement of the algorithm.

12-5 Detailed workings of the varying block algorithm

In the previous sections, a short indication has been given of how the varying block algorithm
works. That is, when and how blocks are split up and how they are updated. However, it is
also necessary to look up Q interval values, as well as maximizing Q and Q values. How is
that done in detail? That is discussed in this section. This section then finishes off with a
detailed analysis of the varying-block algorithm, including a proof that it also converges to
the optimal value function Q∗.
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12-5-1 Looking up a Q value

First of all, consider the problem of looking up a Q value. How is this done? The process
is actually quite simple. As was already explained with figure 12-6, the whole process of
splitting up blocks creates some kind of tree structure. To find a Q value, one simply needs
to follow the tree, along the branches, to the right leaf.

This cryptic explanation might be a bit too brief for some readers, so things will be further
elaborated now. At the start of the algorithm run, there is only one block, called the main
block. This block spans the entire state-action-space. When this block is split up, it gets a
certain amount of sub-blocks. When each of these sub-blocks is then split up, it also gains
sub-blocks of its own. However, it is important to keep in mind that, when splitting up a
block, the ‘block’ as an object does not disappear. It only changes from a leaf – something
that keeps track of Q values – to a node – something that branches out to other nodes/leafs.

Now let’s say that one wants to find the Q value of a certain point x. The search for this value
starts at the main block. The main block checks which of its sub-blocks contains the point x.
(Such a sub-block must exist. After all, the main block must contain x – it contains all points
– and all sub-blocks of the main block cover the entire main block.) It then passes the request
of finding Q(x) on to the corresponding sub-block. This block then in turn checks which of its
sub-blocks contains x. Only when the algorithm arrives at a leaf – a block without sub-blocks
– will the leaf calculate and return the actual value Q(x). This process is summarized in the
following algorithm, which is initially called using the main block.

Algorithm 3 – The varying-block Q function – Finding Q

Require: A block, and a point x in that block whose value needs to be found.
if the block has sub-blocks then

Find the sub-block that contains x.
Ask this sub-block for the value Q(x) and return it.

else
Calculate the value Q(x) and return it.

end if

The next question to be answered is: what will the order of this process be? Looking up in
which sub-block a certain point is located can be done in O (D) time. But, assuming that
D is constant anyway, this can also be seen as O (1). The only repetitive task then is the
process of climbing up the tree. If there are nblocks in the algorithm, then this climb will take
O (log(nblocks)) time. Thus, looking up a Q-value also takes O (log(nblocks)) time.

12-5-2 Maximizing Q, Q and w(Q)

It also often occurs that certain quantities need to be maximized. Examples are Q, Q and
w(Q). Sometimes these quantities need to be maximized globally. For example, in the best
exploration strategy, the point s,a which maximizes w(Q(s,a)) needs to be found. Sometimes
though, these quantities need to be maximized subject to certain constraints. For example,
one often needs to find the action a which maximizes Q(s,a) for a given state vector s. How
can this maximization best be done? (For simplicity of notation, it will be assumed in this
subsection that one wants to maximize Q(x). Maximization of other quantities is done in a
similar way.)
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One suggestion might be to simply look everywhere, in all sub-blocks, for the highest value of
Q(x). Doing so will require a lot of time though. One has to examine almost nblocks blocks,
which is computationally not very efficient. This option is thus quickly rejected.

Another suggestion might be to keep track of the global optimum of Q(x). This is an inter-
esting suggestion. For Q(x), this suggestion might work, as Q(x) is a quantity which only
increases. (Okay, with one minor exception as indicated earlier, but that can be worked
around.) It is thus possible to keep track of some global maximum Q

max
. Every time an up-

date occurs for some block, it is checked whether this update creates a new global maximum
Q

max
within that block. If so, a new global maximum is stored.

The reason why this doesn’t work for Q(x) is that Q is a quantity which can decrease. (In
fact, it almost only decreases.) One can keep track of the global maximum, of course, but
when this maximum is updated, one needs to search the entire state-action-space for a new
global maximum. This is rather cumbersome. Furthermore, knowing the global maximum
Qmax wouldn’t even be sufficient, since Q doesn’t need to be maximized globally. Instead, it
needs to be maximized for an action a, given a certain state s. Thus, global maximums need
to be kept track of for every state s. In theory this is possible, but in practice this is rather
inefficient.

The solution here lies in again cleverly using the tree structure that is present. Every block
needs to keep track of which possible values of Q can be present within all of its sub-blocks.
(These values are stored in an interval.) Then, given that data, one can browse through the
tree structure, ignoring (pruning) parts that are certain not to contain the maximum. This
is done according to the following algorithm.

Algorithm 4 – The block Q function – Maximizing Q

Initialize the maximum m as Qmin.
Create a stack of blocks.
Put the main block on the stack.
while there are blocks on the stack do

Get the top block off the stack.
if all possible values of Q in the block are below m then

Completely ignore this block. Continue with the next block in the stack.
end if
if the block has sub-blocks then

Add all the sub-blocks (satisfying the criteria) to the stack.
else

The block must have a point with Q > m, or it would’ve already been ignored.
Update the maximum m to be the maximum possible value of Q within the block.
Remember at which point this maximum occurs.

end if
end while
Return the last remembered point.

This algorithm basically considers all block which might potentially contain the point that
maximizes Q. If a block cannot contain such a point, then this block and all its sub-blocks are
ignored. In this way, a big part of the search space is ignored, thus resulting in a reasonably
efficient algorithm.
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So how efficient is this algorithm? That strongly depends on the Q function itself. In a
worst-case scenario, all leafs have approximately the same value. In that case, the algorithm
has to consider all leafs to find the point that maximizes Q. The algorithm would be of order
O (nblocks). If on the other hand there are some strong variations in Q, then the search will
be more efficient. An order of O (log(nblocks)) or O

(

log(nblocks)
2
)

or so can be achieved.

When maximizing Q or Q this latter scenario occurs. Due to variations in the values, the
search algorithm is very efficient. However, when maximizing w(Q), this is most certainly not
the case. Due to the set-up of the algorithm, all points x have similar widths w(Q(x)). As a
result, almost all blocks are considered in the search to maximize w(Q). This is a significant
factor in slowing down the algorithm. It causes this algorithm to have run-time O (nblocks).

Do keep in mind that, for this algorithm to work, it needs to keep track of the possible values
of Q, Q and w(Q) that are present within it. How exactly it does this is something that will
(among others) be discussed in the upcoming section.

12-5-3 Updating the Q-function

Previously, the whole process of updating the Q-function has already been discussed. It
just hadn’t been summarized in an algorithm yet, because some parts were missing. Most
specifically, it wasn’t certain yet how to determine which blocks required updating. But this
is known now. One simply needs to walk through the tree in a clever way again. This trick is
worked out in the algorithm below, which is initially called with the main block as argument.

Algorithm 5 – The block Q function – Updating a block

Require: A point xk of which a new interval Q(xk) is known.
Require: A block to be updated.
if no part of the block can benefit from an update whatsoever then

Ignore the whole block including its sub-blocks. Return immediately.
end if
if the block does not have sub-blocks then

if the block can be updated immediately then
Narrow the bounds of the block as much as possible towards the update pyramid.
Pass information of the new bounds down to parent blocks.

else
if the block might partly benefit from an update then

if the block contains xk then
Split the block up into sub-blocks. Continue with the part below.

else
Ignore the block. Return immediately.

end if
else

Ignore the block. Return immediately.
end if

end if
end if
When this point in the algorithm is reached, the block must have sub-blocks.
if the block might partly benefit from an update then
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Individually update all sub-blocks.
else

Ignore this block and all sub-blocks.
end if

So how efficient is this updating? Does it really consider only a small part of all the blocks?
That question has been researched with the simple two-dimensional problem. It turns out
that for the first 10 iterations or so, nearly 100% of the blocks are considered for updating.
After 100 iterations, that’s down to 50 − 60%, after 1.000 iterations it’s 20 − 25% and after
10.000 iterations it’s 4− 8%. That raises the question: how many blocks are updated during
an update?

A decent rule of thumb (ignoring parts of the function approximator with disproportionally
high or low numbers of blocks) is that the number of blocks that are updated is given by

nblocks updated ≈
Apyramid

Atotal
nblocks. (12-5-1)

It is known that Atotal is constant. Also, Apyramid is proportional to wD
av. As the iteration

number k grows, relation (11-2-22) shows that wav decreases proportionally to k−1/D. Hence,
for large iteration numbers, Apyramid is proportional to 1/k. It can also be shown that nblocks

is roughly proportional to the iteration number k. This implies that nblocks updated converges
to a constant value as k → ∞. Whether this is actually supported by experiments is not
fully clear yet. What is clear, is that nblocks updated is not of O (nblocks) but of either O (1) or
O (log(nblocks)).

There is still one line in the above algorithm that deserves some extra attention. It’s the line
‘Pass information of the new bounds down to parent blocks.’ The algorithm to maximize Q
(algorithm 4) requires blocks to know the range of Q which its sub-blocks have. Whenever a
sub-block is updated, a check should be performed whether this data also requires updating.
So generally the line means that data on the sub-block is passed down to parents such that
they can keep track of their children.

Taking into account this fact, what’s the order of the algorithm? The process of passing on
information to parents is of order O (log(nblocks)). The number of blocks that are updated
themselves converges to some constant value, so it’s O (1). (Though in practice, for small to
medium values of the iteration number k, the number of updated blocks behaves more like
O (log(nblocks)).) The updating of a sub-block itself costs O (1) time as well. Hence the order
of the entire update algorithm is either O (log(nblocks)) or O

(

log(nblocks)
2
)

. Both options are
well below O (nblocks) and are therefore definitely satisfactory.

12-5-4 General algorithm analysis

Now that all the algorithms have been set up, it is time to investigate the order of the entire
combined algorithm. This investigation starts at algorithm 1. This algorithm has a loop
which executes algorithm 4 (three times) and algorithm 5. It may also execute algorithm 3 a
certain number of times, depending on the exact implementation of the algorithm.

The main bottleneck in this algorithm is algorithm 4, applied to maximize w(Q). This has run-
time O (nblocks). Compared to that, all the other algorithms (with run-time O (log(nblocks)))
are irrelevant. A single execution of the loop in algorithm 1 thus costs O (nblocks) time.
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Figure 12-12: Plots of the run-time of the continuous interval Q-learning algorithm with the
best exploration strategy. On the left is the run-time versus the iteration number. On the right
is the run-time divided by k2 versus the iteration number. It converges to a constant value.

To find the order of the entire algorithm, the relationship between the number of blocks nblocks

and the iteration number k should be known. It can be shown that these two are proportional.
After all, every time a block is split up, nblocks increases with a constant number. And only
during a certain percentage of the updates (in practice roughly 20%) will a block split up.
Thus nblocks increases roughly linearly with the iteration number k.

Now the order of algorithm 1 can be obtained. A number niterations times will a loop of order
O (nblocks) be executed, where nblocks is proportional to k. This implies that the algorithm is
of order O

(

n2
iterations

)

.

To see whether this is true in practice as well, the run-time of the actual algorithm after
k iterations should be considered. Such a plot is shown in figure 12-12 on the left. It can
already be seen that the graph shape resembles the shape of a parabola. However, to be certain
whether the determined order of the algorithm is accurate, the run-time at any time k should
be divided by k2. If the run-time divided by k2 converges to a more or less constant value,
then the order of the algorithm appears to be correct. And, as the right part of figure 12-12
shows, this is indeed the case. The run-time of the algorithm can (for the specific computer
that used for these experiments) thus be approximated by trun ≈ 1.7 · 10−4 · n2

iterations.

More interesting things can be determined though. Previously, it was found that the bottle-
neck of the algorithm was the maximization of w(Q(x)), due to the ‘best exploration strategy.’
This strategy can of course be replaced by a different exploration strategy. For example, it’s
possible to simply select random states and actions. This can be done in O (1) time instead
of O (nblocks) time. If this is done, the theoretical order of the algorithm is expected to be
O (niterations log(niterations)) or perhaps O

(

niterations log(niterations)
2
)

.

To see whether this is accurate, another plot of the run-time can be made, as well as a plot of
the run-time divided by k log(k). (In this case, the natural logarithm has been used. Though
note that, if any other logarithm had been used, the result would’ve been multiplied by a
constant, thus not affecting convergence of the plot.) These plots are shown in figure 12-13.
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Figure 12-13: Plots of the run-time of the continuous interval Q-learning algorithm with random
exploration. On the left is the run-time versus the iteration number. On the right is the run-time
divided by k ln(k).

In the left part of figure 12-13, one can immediately see that the run-time does not quite act
quadratically anymore. However, looking at the right part of the figure, it turns out that
the order O (niterations log(niterations)) is not quite correct either. Further research and plots
(which are omitted here) have shown that an order of O

(

niterations log(niterations)
4
)

would
be appropriate. The reason why this is the case is not certain. Expectations are that the
maximization of Q and Q is of order O

(

log(niterations)
4
)

(or, to be more precise, of order

O
(

log(niterations)
2D)
)

), though good arguments for why this is so have not been found.

In general, a run-time of O
(

n log(n)4
)

is much better than a run-time of O
(

n2
)

. This gives
reason to believe that the ‘best exploration strategy’ is not so optimal when combined with
the function approximator that has been designed in this chapter. Instead, other exploration
strategies like random exploration should definitely be kept in mind.

12-5-5 Convergence proof

The algorithm designed in this chapter is a slight modification of the algorithm discussed
in the previous chapter. That algorithm already had proven convergence. This adapted
algorithm does not have proven convergence yet. This subsection will prove convergence to
the optimal value function Q∗.

The main idea of the proof still holds. The volume closed in by the lower and upper bound
still always contains Q∗. Furthermore, the remaining volume V is still a quantity that can
only decrease. Hence, the algorithm will converge. However, it has not been proven yet that
the remaining volume will converge to zero. Maybe it can occur that, at some time, only
infinitesimally small updates will be performed, thus not allowing V to converge to zero.

To show that this is cannot be the case, consider an update at time k. A new value for Q(xk)
is then found. Consider the sub-block (i.e. the leaf) that contains xk. This block has a
non-infinitesimal surface area Ablock. Now two cases can be distinguished. Either the block
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containing xk can be updated immediately (by a non-infinitesimal amount), or it cannot be. If
it can be updated directly, the remaining volume immediately decreases by a non-infinitesimal
amount.

If this is not the case – if the block cannot be updated directly – then the block is split up into
sub-blocks. According to the algorithm, this continues until there is a sub-block containing
xk that can be updated (by a non-infinitesimal amount). (Note that this must always occur.
After all, if there are sufficient sub-blocks, then the update pyramid can be approximated
exactly.) Since this sub-block also has a non-infinitesimal area, the remaining volume again
decreases by a non-infinitesimal amount. This implies that the remaining volume always
decreases by a non-infinitesimal part, and hence it must converge to zero.

Of course numerical issues may compromise the validity of this proof. If the algorithm is run on
a computer with limited numerical accuracy (which in fact holds for all computers), then the
remaining volume may converge to a quantity that is not zero (though generally something
very close to it). Furthermore, when running the algorithm on a computer, appropriate
interval arithmetics must be used, including ideas like outward rounding as discussed in
chapter 6, to ensure that no Q-values are missed by the algorithm. If this is done, then the
algorithm is guaranteed to converge to something very close to the optimal value function Q∗.

12-6 Application to more complicated problems

So far, the algorithm has only been tested on the simple two-dimensional problem. This
section will also see the algorithm applied to a simple three-dimensional problem and of
course to the CAP problem discussed earlier in this report. In the end, some general remarks
will be given on the application of the algorithm to a system.

12-6-1 A simple three-dimensional problem

To make things a bit more complicated, this subsection considers the simple three-
dimensional problem. This problem has two state parameters: the position x and the
velocity ẋ. The input equals the acceleration ẍ. x falls in the range [−1, 1], ẋ falls in the
range [−1

2 ,
1
2 ] and ẍ falls in the range [−1, 1]. The time step is ∆t = 0.1 s. Furthermore,

Qmin = −4, Qmax = 1, ∂Q/∂x = 4, ∂Q/∂ẋ = 4, ∂Q/∂ẍ = 0.4 and γ = 1
2 . The reward r

again equals |x|. The goal is thus again to keep the position x near zero. Also, despite its
somewhat slower run-time, the best exploration strategy will again be used.

The resulting Q function, after 104 iterations, can be seen in figure 12-14. It shows Q as a
function of x and ẋ for ẍ = 0. Note that this time there is no green surface. This is because
the optimal value function Q∗ could not be easily calculated. Yet still, the red and blue
surfaces (the lower and upper bounds) are quite close together, so it’s easy to imagine what
the optimal value function would be.

It would also be interesting to see whether the average width indeed converges, as the theory
says it should. For that, figure 12-15 should be examined. This figure shows that the average
width indeed decreases. It is slightly higher than the expected average width, but it still falls
well below the bound given by relation (11-2-22).
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Figure 12-14: Plot of the value function bounds for the simple three-dimensional problem after
104 iterations. Q is plotted versus x and ẋ with ẍ = 0. The red surface indicates Q whereas the

blue surface indicates Q.
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Figure 12-15: Widths of the value function bounds during training of the simple three-
dimensional problem. The best exploration strategy has been used.
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Figure 12-16: Simulation runs of the simple three-dimensional system for various exploitation
strategies, after 104 iterations of training using the best exploration strategy.

The next question to be answered is: does the RL controller work? That is, can it get the
position x to zero and keep it there? To figure that out, first an exploitation strategy has to be
chosen. It is possible to select the action with the highest Q, the action with the highest Q or
the action with the highest m(Q). (Of course other more complicated exploitation strategies
are also possible.) These three strategies have all been applied to a starting state of x = 0.9
m and ẋ = 0 m/s. The resulting system behavior has been plotted in figure 12-16.

Figure 12-16 shows that all strategies are indeed capable of controlling the system. They can
definitely move the system towards the zero position. They have not had sufficient training
near the zero region to really put the system exactly onto the zero state, but they do keep it
near enough. Of course further training in this region would solve this problem.

Finally, it doesn’t seem as if any of the three strategies is significantly better than any of the
others, so either of the strategies can be used to control the system.

12-6-2 The CAP system

To give the system a real challenge, the CAP system is now considered, as has been defined
in section 2-2. This system has four state parameters and one input parameter, thus making
it a five-dimensional problem. This problem is considered for γ = 0.5. A lower value of γ
would (as was discussed earlier) not allow the controller to learn adequate long-term behavior,
while a higher value would make convergence of wav too slow for any research-like purpose.
Furthermore, Qmin = −5, Qmax = 1, dQ/dα = 4, dQ/dα̇ = 4, dQ/dx = 2, dQ/dẋ = 2 and
dQ/dF = 0.2.

Two test runs have been run, both with 12.000 iterations. One used the best exploration
strategy, while the other used random exploration. (That is, every iteration had a fully
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Figure 12-17: The CAP system Q-function after 12.000 iterations. The left Q-function has
been trained using the best exploration strategy, while the right Q-function used fully random
exploration. Plots are for xc = ẋc = F = 0.

random state and action.) It must be noted that random exploration was quite a bit faster,
as was predicted. The best exploration required 42 minutes, whereas random exploration
required 25 minutes to complete the 12.000 iterations.

The resulting Q-function after 12.000 iterations is shown in figure 12-17. Here it can be noted
that the Q-function of the best exploration strategy appears much more narrow than the
Q-function of random exploration. It thus seems that, despite the longer run-time, the best
exploration strategy does work better.

To really compare the two strategies, the width of the Q-function has been plotted as well.
This can be seen in figure 12-18. Here a few noticable things can be noticed. First of all, after
12.000 iterations, the best exploration strategy has indeed narrowed more than the random
exploration strategy. It has obtained an average width of 2.9, as opposed to 3.2 for random
exploration. However, after 8.000 iterations the situation was completely different. Here,
the best exploration strategy had wav = 4.6 while random exploration had wav = 3.5. A
significant difference.

This apparently strange phenomenon is caused by the update points selected by the best
exploration strategy, combined with the way in which blocks are split up. How it exactly
works can be best explained with the help of figure 12-19. Suppose that an update (like
the one of figure 12-9) has just been performed. This update is likely to have caused an
increase in width w(Q(x)) for some point x. (Especially if D is big, many such points will
be present.) Because of this increase in width, the point x is likely to be the next point that
is updated. However, during the initial stages of the algorithm, it is important that blocks
are split up, allowing the function approximator to adjust to the updates. When only update
points x from small blocks are selected, then big blocks are not split up. (After all, a block
is only split up when it contains the update point xk at some time k.) Hence the function
approximator cannot adjust properly to updates and the learning is slowed down. That is,
until all big blocks have been split up into smaller sub-blocks. Then learning can proceed in
its usual effective way. This is the cause of the strange angle in the graph for wav. It occurs

Guaranteed Globally Optimal Continuous Reinforcement Learning Hildo Bijl



138 Practical implementations of the continuous Q-learning algorithm

Iteration number [-]

Q
w
id
th

[-
]

Q widths (best exploration strategy)

Iteration number [-]
Q

w
id
th

[-
]

Q widths (random exploration)

0 4000 8000 120000 4000 8000 12000
0

1

2

3

4

5

6

7

8

0
1
2
3
4
5
6
7
8
9

10

Figure 12-18: Widths of the CAP system Q-function. The left graph shows training with the
best exploration strategy, while the right graph displays training with a random strategy. (Line
coloring is equivalent to previous graphs in this chapter.)
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Figure 12-19: When the best exploration strategy is used to select update points, blocks are
rarely split up. This significantly slows down learning in the initial stages – another downside of
the best exploration strategy.

exactly when all blocks have been split up into sub-blocks. (Note that this strange angle
also appeared in figure 12-11, though there it occurred much sooner due to the much smaller
state-action-space.)

So how can this problem be prevented? There are plenty of options here. The algorithm
to decide when a block is split up can be changed. It is possible to split up all blocks once
or twice prior to the running of the algorithm. Or alternatively, it is possible to prevent
points x from having increasing widths w(Q(x)). That is, when an update would cause the
width of some point in a block to increase, this block is not updated. This latter option has
been implemented, but it proved to be very uneffective. The amount of blocks that were not
updated because of it was so high, that the algorithm converged much slower. The other
options have not been implemented, so they remain suggestions for further research.

There is one very interesting question remaining: has the resulting Q-function been trained
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enough to control the CAP system? Since the average width of the Q-function is still near
3, this seems unlikely. And indeed, this is not the case. When the Q-function is set up
to control the CAP system, the pendulum simply falls over. The Q-function has not been
trained sufficiently yet to control the system. However, with significantly more training, the
Q-function will converge to the optimal value function Q∗ and optimal control of the CAP
system will be possible.

12-6-3 Controller parameter set-up

During training of the RL controller, several parameters play an important role. It is thus
very important to set these parameters accordingly. How this is done depends on the system
to which the RL controller is applied.

First of all, the factor γ has a strong influence on the learning performance. Low values of
γ make the learning process much faster. However, as has been argued several times earlier
in this report, a low value of γ might not always lead to satisfactory performance. Hence, γ
needs to be chosen well. Do note that, contrary to certain other types of RL controllers, it
is not possible to vary γ during training. This is because changing γ would also change Q∗,
which could potentially violate the bounds of the RL controller.

It is also very important to choose the slopes dQ/dxi well for all parameters xi. After all,
the whole convergence proof is based on the main RL value assumption, and if dQ/dxi is
too low, this assumption is violated. They should thus be chosen big enough. On the other
hand, they should also not be chosen too big, as this would significantly reduce the learning
performance.

Due to the novelty of this algorithm, no known methods to estimate dQ/dxi have been
developed yet. Choosing values for dQ/dxi therefore requires good knowledge of the problem
at hand, as well as good instincts. Luckily, it is possible to know when too low values
for dQ/dxi have been chosen. If this is the case, then at some time during the algorithm
execution, for some point x, the upper bound Q(x) will drop below the lower bound Q(x).
It is easy to check for this during the algorithm execution. This gives the algorithm some
integrity. However, if the check is violated, it is first of all not known which slope dQ/dxi is
faulty, and second of all the bounds for Q are known to be invalid, thus requiring the training
to start from scratch again. These problems both make it very hard to find accurate values
for dQ/dxi. Good methods to estimate this thus still need to be developed.

The last important parameter is the number of sub-blocks which a block is split up into.
When a block is split up, it is split up into n1 sub-blocks in the direction of parameter x1, n2

sub-blocks in the direction of x2, and so on. The total number of sub-blocks during a split
thus is n1n2 . . . nD. It is important to choose the values of ni well. Choose them too high and
the algorithm itself will run slower. Choose them too low and the algorithm will require more
iterations because the function approximator cannot adjust to updates well. Furthermore, it
is also important to tune ni to the other numbers nj . Parameters with big slopes dQ/dxi
need a lot of resolution and thus a high value for ni. Parameters with small slopes dQ/dxj
need less resolution and can thus do with a smaller value for nj .
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Figure 12-20: A great idea is to vary the points where blocks are split up. However, after several
subsequent updates, this poses some problems. Old splitting points have become irrelevant and
thus need to be gotten rid of in some way.

12-7 Suggestions for further improvements

The algorithm as it has currently been set up works with proven convergence. However, there
are still various improvements that can be made, to either speed up its learning performance
or improve its run-time. This section closes off the chapter by giving suggestions for further
improvements.

The first suggestion is to experiment with different criteria on when to split up blocks. Cur-
rently, blocks are split up when during an update at some point xk (A) the block cannot be
updated directly, (B) a part of the block could be updated directly and (C) xk falls within
the block. These criteria are somewhat strict and make it hard for blocks to split up, which
has occasionally shown to slow down learning. Perhaps an idea can be thought of that would
eliminate the need for criterion (C).

A second suggestion is to vary the way blocks are split up. At the moment, blocks are always
split up into a set amount ni of sub-blocks for each parameter xi. Maybe a method can be
thought of that detects in which direction it is most important to split the block up. The
block is then only split up in the direction of this parameter. This would decrease the number
of sub-blocks, thus making the algorithm run faster.

Thirdly, one may wonder: ‘Why are blocks split up into sub-blocks of fixed length? Isn’t it
more efficient to split them up at just the right place every time?’ Indeed, this may be true.
Imagine an update pyramid, as shown in figure 12-20 on the left. If the block is split up
exactly at the peak of this update pyramid, then the update pyramid can be approximated
exactly by the function approximator. This seems like a great idea.

The problems arrive when more updates in the same region have taken place. In that case old
splitting points have become obsolete. If they are not gotten rid of, then the whole function
approximator will become inefficient because the splitting points are likely to be clustered
in the wrong places. A method thus needs to be developed which can get rid of outdated
splitting points. That is, a way needs to be found to merge blocks back together again. If such
a thing is possible, then the algorithm can significantly improve. However, merging blocks
back together again is more difficult than it seems, and thus requires quite some further
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research should it ever be implemented.

Another interesting question is: what happens when the RL agent gets in a state x which
falls outside of the ranges Ri for some parameter xi? One possible answer to this question
would be to argue that such a state is always a terminal state, causing the simulation to end
anyway. Another possibility though would be to extend the range Ri that has been violated.
That is, more blocks are added in the direction of the parameter xi. This would enable the
RL controller to be very flexible: it isn’t bound to a certain range of states and actions, but
it can learn for any possible state and action.

A subsequent idea to improve the RL controller concerns the exploration strategy. As was
mentioned before, the ‘best exploration strategy’ apparently isn’t always the best strategy,
due to its slow run-time for the varying-block algorithm. Different exploration strategies can
be tried. Furthermore, the exploration strategies can also take into account certain project
constraints. If, for example, during training it is not allowed to get a really low value Q, then
a conservative exploration strategy can be tried. Only actions whose Q value is higher
than a given threshold value should be chosen. This would prevent certain potential disasters
from occurring, but whether this would also slow down learning, and if so by how much, is a
suggestion for further research.

Similar to the exploration strategy, also the exploitation strategy can still be improved. Pre-
vious suggestions for exploitation strategies have been to find the action a that maximizes
the lower bound Q, the upper bound Q, or their mean m(Q). The problem here is that each
of these three parameters has a rather jagged shape. There are small peaks and small valleys
everywhere. Whether a point x is a peak or a valley simply depends on whether it was re-
cently updated. This phenomenon reduces the accuracy with which Q∗ is approximated. To
solve this jaggedness, thus making the approximation of Q∗ more accurate, smoothing can be
used. For example, Gaussian smoothing can be applied to m(Q), after which this smoothed
function is maximized to find the optimal action a. Whether such a thing is possible with-
out serious computational issues and whether it actually does give an improved exploitation
strategy are suggestions for further research.

Finally, more attention can also be given to the bounds dQ/dxi. In this report, it has been
assumed that the absolute value of the derivatives dQ/dxi was bounded by some value. This
resulted in pyramid-shaped updates. An alternative is to use bounds of a different format.
For example, if ∇xQ indicates the gradient vector of Q with respect to x, then it might also
be possible to assume the quantity (∇xQ)TP (∇xQ) is bounded, where P is some conveniently
chosen weight matrix. This creates ellipsoid-shaped updates, and although it will be hard
to combine this with the current varying-block function approximator, a different function
approximator might be developed which can work with ellipsoid-shaped updates.
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Chapter 13

Conclusions and recommendations

To close off this thesis report, conclusions are made and recommendations are given.

13-1 Conclusions

At the start of this report, chapter 2 described some issues of continuous reinforcement learn-
ing controllers. At the moment, such controllers generally do not have proven convergence. In
fact, they occasionally are known to diverge. In short, this project had as goal to solve these
issues. A continuous reinforcement learning controller needed to be designed with proven
convergence.

To see how far along literature was on this topic, first an extensive literature survey was
conducted. Part III summarized the findings. It turned out that in the literature there
were only very few instances of continuous reinforcement learning controllers with nonlinear
function approximators that had guaranteed convergence. However, none of these controllers
were practically applicable, and none of these methods could guarantee convergence to the
global optimum either.

During the project, a continuous RL controller has been set up using techniques similar to
the ones described in literature. The process of designing this controller has been described
in chapter 9. The resulting controller was sometimes able to learn how to control the cart
and pendulum system, but sometimes it failed to do so, just like the controllers in literature.
Despite several attempts to improve the controller, it was still unclear as to how to ensure
convergence of the controller even to a local optimum, let alone the global optimum. Hence,
it was decided that it was too complicated to adjust the methods described in literature such
that convergence could be guaranteed. Guaranteed convergence to the global optimum of RL
controllers with neural network (or similar) function approximators did not seem feasible.

One other goal of this project was to see if reinforcement learning and interval analysis
could be successfully combined. Chapter 10 gave a preliminary exploration on this topic. It
managed to combine interval analysis and Q-learning into the interval Q-learning method. It
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did this by replacing the Q values in the Q-learning method by intervals, and subsequently
by narrowing these intervals. This method had proven convergence to the global optimum.
However, it still only considered deterministic discrete problems.

After this quite successful initial exploration, chapter 11 continued by expanding this algo-
rithm to the continuous domain. It managed to do this successfully, thanks to the ‘main RL
value assumption,’ which assumed that the derivatives dQ/dsi and dQ/daj for every state
parameter si and action parameter aj had known bounds. The resulting continuous interval
Q-learning algorithm had proven convergence to the global optimum for any deterministic
RL problem. And furthermore, also a bound was given on the way which the average width
wav of the bounds on Q converged. The bound that was derived equals

(wav)k ≤
2wr

(

Dk +
(

2wr

w0

)D
) 1

D

, (13-1-1)

where D is the dimension of the problem (i.e. the number of states and actions combined),
w0 is the initial width of the Q intervals and wr is a problem-specific constant, depending
(among others) on γ, dQ/dsi, dQ/daj and the widths of the ranges of the state and action
parameters si and aj .

When applied to a practical problem, this algorithm proved to work, although it was very
slow. In fact, it was so slow that it was not really practically applicable for any problem with
D ≥ 2. To solve this issue, chapter 12 saw the design of a different function approximator.
This function approximator dynamically split up the state-action-space into a number of
blocks. For every block, the bounds on Q (denoted by Q and Q) were given a first-order
approximation. The resulting algorithm showed to have a run-time of (for some exploration
strategies) O

(

n2
iterations

)

or (for other exploration strategies) O
(

niterations log(niterations)
2D
)

,
which is quite acceptable. This new varying-block continuous interval Q-learning algorithm
has a learning performance which is only slightly lower than that of the originally designed
continuous interval Q-learning algorithm (that is, it uses its data slightly less efficiently),
but its run-time is significantly faster, allowing it to be applied to actual practical problems.
Furthermore, this varying-block algorithm also has proven convergence.

In the end, the varying-block continuous interval Q-learning algorithm was applied to several
practical problems. For simple two-dimensional and three-dimensional problems (with D = 2
and D = 3, respectively) the algorithm managed to find a policy close to the optimal policy,
even after only short training times. For the cart and pendulum system, which has dimension
D = 5, this was not the case yet. Half an hour of training (on a reasonably fast home
computer) was not enough to ensure a satisfactory policy. However, because the algorithm
has guaranteed convergence to the global optimum, it is ensured that with further training
the algorithm does converge to the globally optimal policy.

Summarizing, this thesis report has introduced the world’s first combination of reinforcement
learning and interval analysis. It also introduced the world’s first practically feasible continu-
ous RL controller with proven convergence to the global optimum. The key to accomplishing
this turned out to be (A) letting go of conventional ways of designing continuous RL con-
trollers, and (B) quantifying the assumption that the value Q of two nearby states s and s′

are similar through the main RL value assumption.
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13-2 Recommendations

The controller that has been designed in this report has proven convergence to the global
optimum. In other words, it works. However, this does not mean that it cannot still be
improved. Section 12-7 already provided several suggestions for further improvement. This
section will summarize those suggestions, as well as add a few more.

First of all, the varying block continuous interval Q-learning algorithm can be improved by
allowing it to use its available data more effectively. To do so, a careful look should be given
to the rules that decide both when and how to split up blocks. If blocks are split up in a
more effective way, then the efficiency of the algorithm is likely to improve, and especially for
higher-dimensional problems this improvement can be quite significant.

The second suggestion is to consider different exploration strategies. A very good exploration
strategy has already been suggested, with as most important downside that it is somewhat
slow. (It requires the maximization of w(Q(s,a)), which is computationally a bit difficult.)
If a different exploration strategy can be found that doesn’t suffer from being very slow, but
does have a performance similar to that of the previously mentioned exploration strategy,
then the algorithm can run quite a bit faster.

Thirdly, more attention can be given to the bounds of the slopes dQ/dsi and dQ/daj . The
main assumption of the algorithm is that such bounds are known. How to find these bounds
is something that hasn’t been discussed a lot in this report. Should the continuous interval
Q-learning algorithm be applied to a large number of real-life problems, then a simple and
effective way needs to be found in which bounds for these slopes can be obtained. This is
another suggestion for further research.

Finally, it must be noted that the continuous interval Q-learning algorithm only works for
deterministic systems. For stochastic systems, it is not possible to find accurate bounds that
contain the optimal value function Q∗ with a 100% certainty. The algorithm therefore doesn’t
work for such systems. This does not directly mean that stochastic systems cannot benefit
from the continuous interval Q-learning algorithm. However, the way in which they might
be able to benefit from the algorithm is uncertain. Further research could potentially find
ways in which the continuous interval Q-learning algorithm would help to solve stochastic RL
problems as well.
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Appendix A

Theorems and proofs

Theorem 1

For a positive integer n, a given positive real number xd and a given positive real number
x0 ≤ xd, consider the series xk (with k ≥ 0) which decreases according to

xk − xk+1 =

(

xk
xd

)n

, (A-1)

or equivalently, the ratio between successive terms is given by

xk+1

xk
= 1−

(

xk
xd

)n

. (A-2)

This series is upper bounded by

xubk =
xd

(

nk +
(

xd

x0

)n) 1
n

. (A-3)

That is, xk ≤ xubk for all k from 0 up to ∞.

Proof

First consider the upper bound. Examine the ratio xubk+1/x
ub
k . It equals

xubk+1

xubk
= 1− xubk+1

xd

(

xd

xubk+1

− xd

xubk

)

(A-4)

= 1− xubk+1

xd

(

(

n(k + 1) +

(

xd
x0

)n) 1
n

−
(

nk +

(

xd
x0

)n) 1
n

)

. (A-5)
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Applying theorem 2 (with x = (xd/x0)
n) results in

xubk+1

xubk
≥ 1− xubk+1

xd

1
(

nk +
(

xd

x0

)n)n−1
n

(A-6)

= 1− xubk+1

xd







1
(

nk +
(

xd

x0

)n) 1
n







n−1

(A-7)

= 1− xubk+1

xd

(

xubk
xd

)n−1

(A-8)

= 1− xubk+1

(

xubk
)n−1

(xd)
n . (A-9)

Working this out further to solve for xubk+1 results in

xubk+1 ≥ xubk − xubk+1

(

xubk
xd

)n

(A-10)

xubk+1 + xubk+1

(

xubk
xd

)n

≥ xubk (A-11)

xubk+1 ≥
xubk

1 +
(

xub

k

xd

)n . (A-12)

(Keep in mind that all quantities are positive. Hence the above operations are valid.) Now

consider the case where x0 < (n − 1)−
1
nxd. Assume that for some k it holds that xubk ≥ xk

and xubk < (n− 1)−
1
nxd. (Note that this holds for k = 0, as equation (A-3) with k = 0 implies

xub0 = x0 < (n− 1)−
1
nxd.) Since (according to theorem 5) the above relation is an increasing

function in xubk , it follows that

xubk+1 ≥
xk

1 +
(

xk

xd

)n . (A-13)

(Inserting a lower number into an increasing function will result in a lower function outcome
as well.) Also note that

xk+1 = xk

(

1−
(

xk
xd

)n)

. (A-14)

Hence, the ratio xk+1/x
ub
k+1 satisfies

xk+1

xubk+1

≤
xk

(

1−
(

xk

xd

)n)

xk

1+
(

xk

xd

)n

(A-15)

=

(

1−
(

xk
xd

)n)(

1 +

(

xk
xd

)n)

(A-16)

= 1−
(

xk
xd

)2n

. (A-17)
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This is evidently a quantity between 0 and 1, which means that xk+1 ≤ xubk+1. In other words,

xubk ≥ xk implies xubk+1 ≥ xk+1. Since also xub0 ≥ x0, mathematical induction implies that xubk
is an upper bound for the sequence xk.

However, there is still a hole in the proof. It is based on the assumption that x0 < (n−1)− 1
nxd.

But what happens if x0 ≥ (n − 1)−
1
nxd? In this case, consider x1. First it will be shown

that xub1 > x1. Then it will also be shown that xub1 < (n − 1)−
1
nxd. Thus, if mathematical

induction is applied with xub1 as starting point, it still works and the proof still holds.

Consider theorem 6 with x = x0/xd. It implies that

1 >

(

x0
xd

)n(

1−
(

x0
xd

)n)n(

n+

(

x0
xd

)n)

, (A-18)

xnd

n+
(

x0
xd

)n > xn0

(

1−
(

x0
xd

)n)n

, (A-19)

(

xub1

)n
> (x1)

n . (A-20)

Hence xub1 > x1. Next, also consider xub1 itself. It satisfies

xub1 =
xd

(

n+
(

xd

x0

)n) 1
n

(A-21)

<
xd

(n− 1)
1
n

. (A-22)

This indeed proves that xub1 < (n− 1)−
1
nxd. This means that xub1 can be taken as a starting

point for induction as well, and hence that the mathematical induction stilll is applicable.
The theorem has thus been proven for all provided criteria.

Theorem 2

For integers n ≥ 1 and k ≥ 0, as well as any number x ≥ 0, it holds that

1

(n(k + 1) + x)
n−1
n

≤ (n(k + 1) + x)
1
n − (nk + x)

1
n ≤ 1

(nk + x)
n−1
n

, (A-23)

where equality only occurs if n = 1.

Proof

The above relation consists of two inequalities. First the right-hand part will be proven, which
is followed by a proof of the left-hand part.

Consider the term

(nk + 1 + x)n = ((nk + x) + 1)n . (A-24)
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Using a binomial expansion, this can be worked out as

(nk + 1 + x)n =

(

n

n

)

(nk + x)n +

(

n

n− 1

)

(nk + x)n−1 + . . .+

(

n

0

)

(nk + x)0 . (A-25)

All the terms in this expansion are positive. Removing terms would thus decrease the above
quanity. Hence it follows that

(nk + 1 + x)n ≥
(

n

n

)

(nk + x)n +

(

n

n− 1

)

(nk + x)n−1 , (A-26)

where equality only occurs if n = 1 (and thus no terms are removed). The above relation can
be worked out further, such that

(nk + 1 + x)n ≥
(

n

n

)

(nk + x)n +

(

n

n− 1

)

(nk + x)n−1 (A-27)

= (nk + x)n + n (nk + x)n−1 (A-28)

= (nk + x) (nk + x)n−1 + n (nk + x)n−1 (A-29)

= (nk + x+ n) (nk + x)n−1 (A-30)

= (n(k + 1) + x) (nk + x)n−1 . (A-31)

Taking the nth root of this relation gives

nk + 1 + x ≥ (n(k + 1) + x)
1
n (nk + x)

n−1
n . (A-32)

Working things out further results in

1 ≥ (n(k + 1) + x)
1
n (nk + x)

n−1
n − (nk + x), (A-33)

1

(nk + x)
n−1
n

≥ (n(k + 1) + x)
1
n − (nk + x)

1
n . (A-34)

This proves the right-hand part of the theorem. (Note that equality still only holds when
n = 1.)

The proof of the left-hand part is similar, although one extra complication arises. Consider
the term

(n(k + 1)− 1 + x)n = ((n(k + 1) + x)− 1)n. (A-35)

This can be worked out as the alternating sum

(n(k + 1)− 1 + x)n =

(

n

n

)

(n(k + 1) + x)n−
(

n

n− 1

)

(n(k + 1) + x)n−1+. . .±
(

n

0

)

(nk + x)0 .

(A-36)
Consider all but the first two terms of this series. According to theorem 3 (with a = n(k +
1) + x), the sum of all these terms is non-negative. This implies that

(n(k + 1)− 1 + x)n ≥
(

n

n

)

(n(k + 1) + x)n −
(

n

n− 1

)

(n(k + 1) + x)n−1 , (A-37)
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where equality only occurs if n = 1. The relation can then again be worked out further,
according to

(n(k + 1)− 1 + x)n ≥
(

n

n

)

(n(k + 1) + x)n −
(

n

n− 1

)

(n(k + 1) + x)n−1 (A-38)

= (n(k + 1) + x)n − n (n(k + 1) + x)n−1 (A-39)

= (n(k + 1) + x) (n(k + 1) + x)n−1 − n (n(k + 1) + x)n−1 (A-40)

= (n(k + 1) + x− n) (n(k + 1) + x)n−1 (A-41)

= (nk + x) (n(k + 1) + x)n−1 . (A-42)

Taking the nth root of this relation gives

n(k + 1)− 1 + x ≥ (nk + x)
1
n (n(k + 1) + x)

n−1
n . (A-43)

Working things out further then results in

1 ≤ (n(k + 1) + x)− (nk + x)
1
n (n(k + 1) + x)

n−1
n , (A-44)

1

(n(k + 1) + x)
n−1
n

≤ (n(k + 1) + x)
1
n − (nk + x)

1
n . (A-45)

This proves the left-hand part of the theorem, and thus the proof of the theorem has been
completed.

Theorem 3

Consider the binomial expansion of (a− 1)n for a certain number a ≥ 1 and integer n ≥ 1,

(a− 1)n =

(

n

n

)

an −
(

n

n− 1

)

an−1 +

(

n

n− 2

)

an−2 −
(

n

n− 3

)

an−3 + . . .±
(

n

0

)

a0. (A-46)

The sum of all but the first two elements in this expansion is greater than or equal to zero.
That is,

(

n

n− 2

)

an−2 −
(

n

n− 3

)

an−3 + . . .± 1 ≥ 0, (A-47)

or equivalently,
(a− 1)n + nan−1 ≥ an. (A-48)

Furthermore, equality only occurs if n = 1.

Proof

First consider the case where n ≥ a. In this case,

(a− 1)n + nan−1 ≥ (a− 1)n + an ≥ an. (A-49)

Equality only occurs if (for the left hand side) n = a and (for the right hand side) a = 1.
Since it was assumed that n ≥ a, equality thus only occurs whenever n = 1.
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Second, consider the case where n < a. Now examine the series

(

n

n− 2

)

an−2 −
(

n

n− 3

)

an−3 + . . .± 1. (A-50)

Or to be more precise, consider two subsequent terms in this series, of which the first is
positive and the second is negative. In other words, for some even integer k (subject to
2 ≤ k ≤ n− 1), examine

(

n

n− k

)

an−k −
(

n

n− k − 1

)

an−k−1. (A-51)

Using theorem 4 it can be shown that

(

n

n− k

)

an−k −
(

n

n− k − 1

)

an−k−1 =

(

n

n− k

)

(

an−k −
(

n
n−k−1

)

(

n
n−k

) an−k−1

)

(A-52)

≥ ak − nak−1 (A-53)

> ak − ak = 0. (A-54)

Hence every pair of numbers in the series is bigger than zero. This implies that the sum of
all these pairs is also bigger than zero. (Note that, when n is odd, the last number of the
series is not considered, but since this number always equals 1, it is also bigger than zero.)
Concluding, the series is always bigger than zero. The only exception occurs when the series
consists of no terms whatsoever, which in turn is the case when n = 1. In this case, and only
in this case, does the series equal zero. This proves the theorem.

Theorem 4

For every positive integer n and positive integer k with 1 ≤ k ≤ n, it holds that

(

n
k−1

)

(

n
k

) ≤ n, (A-55)

where equality occurs if and only if k = n.

Proof

Consider the left-hand side of the above relation. It can be worked out using the definition

(

a

b

)

=
a!

b!(a− b)!
. (A-56)

This turns the left-hand side into

n!
(k−1)!(n−k+1)!

n!
k!(n−k)!

=
k!(n− k)!

(k − 1)!(n− k + 1)!
=

k!

(k − 1)!

(n− k)!

(n− k + 1)!
=

k

n− k + 1
. (A-57)
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Now note that, because of k ≤ n,

n+ 1

k
− 1 ≥ n+ 1

n
− 1 =

1

n
, (A-58)

where equality only occurs when k = n. Hence,

k

n− k + 1
=

1
n+1
k − 1

≤ n, (A-59)

where still equality only occurs if k = n. This proves the theorem to be proven.

Theorem 5

Consider the function
y(x) =

x

1 +
(

x
xd

)n (A-60)

for some integer n ≥ 1 and some real numbers x ≥ 0 and xd ≥ 0. If n = 1, this always is an
increasing function. If n ≥ 2 then the function is increasing for

x < (n− 1)−
1
n xd. (A-61)

Proof

The derivative of y is given by

dy

dx
=

(

1 +
(

x
xd

)n)

− n
(

x
xd

)n

(

1 +
(

x
xd

)n)2
. (A-62)

Because the denominator is positive, this quantity is positive whenever the numerator is
positive. Note that for n = 1 this always holds. (The numerator then equals 1.) For n ≥ 2,
the numerator is positive whenever

1 +

(

x

xd

)n

− n

(

x

xd

)n

> 0, (A-63)

1− (n− 1)

(

x

xd

)n

> 0, (A-64)

1

n− 1
>

(

x

xd

)n

, (A-65)

(

1

n− 1

) 1
n

>
x

xd
. (A-66)

(A-67)

This directly implies the theorem to be proven.
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Theorem 6

For any real number x ∈ [0, 1] and any integer n ≥ 1 it holds that

xn(1− xn)n(n− 1) ≤ xn(1− xn)n(n+ xn) < 1. (A-68)

Proof

The left part of the inequality is trivial, so only the right part will be proven. First consider
the quantity y = x(1− xn). Its derivative with respect to x equals

dy

dx
= (1− xn)− nxn. (A-69)

This equals zero whenever

x =

(

1

n+ 1

) 1
n

. (A-70)

It can be verified (using a second derivative) that this point is indeed a maximum of y. The
corresponding maximum value of y equals

ymax =

(

1

n+ 1

) 1
n

(

1− 1

n+ 1

)

=

(

1

n+ 1

) 1
n

(

n

n+ 1

)

. (A-71)

It thus follows that for every x ∈ [0, 1],

xn(1− xn)n ≤ ynmax =
1

n+ 1

(

n

n+ 1

)n

. (A-72)

Now consider the quantity n+ xn. Since x ≤ 1, it holds that n+ xn ≤ n+ 1. Therefore,

xn(1− xn)n(n+ xn) ≤ 1

n+ 1

(

n

n+ 1

)n

(n+ 1) =

(

n

n+ 1

)n

< 1. (A-73)

This proves the theorem.
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Thoughts on artificial intelligence

During the course of this project, a lot of thoughts have been spent on making systems
more intelligent, and more like humans. Many artificial intelligence (AI) techniques, like
reinforcement learning and neural networks, are inspired by the way that humans think.
However, it turned out that for this project this was not beneficial. After all, the goal
of this project was to make a self-learning controller that always converges to the global
optimum, yet it is known that humans do not possess this property. In fact, when humans
learn a complicated skill on their own, without a proper teacher, they often learn sub-optimal
techniques. The continuous interval Q-learning algorithm designed during this project is
totally different from the way that humans think, yet it does have convergence to the global
optimum.

Still, many thoughts have been spent on how humans learn and think. To not let these
thoughts go to waste, they are summarized in this appendix. This appendix aims to answer
the question what properties a controller should have before it can become even remotely as
smart as a human being. Several properties will be described and their links will be elaborated
on.

The first property of a human-like system is conceptualization: the ability to form concepts.
This is the property which has inspired the AI field of pattern recognition. When a human
being sees many objects that all have four legs, like to chase balls or frisbees and regularly
bark, he puts them all into one big category called a concept. Then, when another creature
appears that also has four legs and barks, it is recognized to fall in this specific concept.
Similarly, if an aircraft controller regularly encounters low-frequency oscillations of the pitch
angle, combined with variations in the aircraft velocity, it groups these oscillations together
into a concept as well. This process of recognizing that some phenomenon is part of a group
of other related phenomena is fundamental to the way the human mind works.

But humans don’t just conceptualize. They also do concept branching. When a human
being spends a lot of time with a certain concept, this concept branches out into sub-concepts.
For example, when a human being spends a lot of time among dogs, he might start to notice
subtle differences between dogs. Some dogs are small, have white puffy hair and a tiny
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tail. Other dogs are big, have a brown/black color and pointy ears. Through noticing these
differences, the human mind makes a sub-division within the concept dogs. There are dogs
that are poodles and there are dogs that are German shepherds. These sub-concepts have
all the properties that their parent concepts have, but they are more detailed and can thus
only be formed when sufficient experience with the original concept is present. Furthermore,
these concepts (and sub-concepts) are also dynamic. Initially, you might believe that all birds
fly, but when you then suddenly discover penguins or ostriches, you have to readjust your
concept of birds. In this way, concepts are adjusted on a daily basis.

So what does the human mind do with these concepts? Most importantly, it forms rela-
tionships between these concepts. This is the property which has inspired the logic-based
computer systems that gave birth to the field of ‘artificial intelligence.’ Imagine that you
put your foot down on the floor and simultaneously you hear a loud knock. Your mind then
immediately establishes the relationship between the concepts ‘putting your foot down’ and
‘hearing a knock.’ If you put your foot down again, and you hear a knock again, this relation
is strengthened further. But if you then put your foot down and don’t hear a knock, the
relationship is weakened. In fact, when you then find out that your neighbour was knocking
on your door, coincidentally just at the times when you put down a foot, the relationship is
blown away.

This whole process of forming relationships is something which the mind is really active at.
In fact, it sometimes does this a bit too much. If you yell at someone, and a few seconds later
a picture frame falls from the wall, then your mind creates a link between these two events,
even though such a link in reality does not exist. These faulty relationships are often known
as ‘superstitions.’ It is important to keep in mind here that, should a human-like controller
ever be designed, then it should be accepted that such human-like disadvantages are also
present in that controller.

It should be noted here that relationships are often (if not always) stochastic. The concepts
‘yelling at someone’ and ‘making that person angry’ are of course connected, but there’s not a
100% relation between these two concepts. Some people simply don’t get angry when people
yell at them. Furthermore, relationships often have quantifications attached to them as well.
The concept of ‘throwing a ball’ is connected to ‘the ball lands somewhere in front of you.’
However, throwing a ball faster implies that the ball lands further. The exact relationship
between ‘ball velocity’ and ‘landing distance’ is therefore a quantified relationship.

A fourth very important property of the human mind is concept valuation. This is the
property which has inspired reinforcement learning. Human beings always have certain things
they like. One thing which (almost) all humans aspire to, is to feel good and healthy. This
concept of ‘feeling well’ is something they value highly. Many young people also have the link
that ‘eating sugary food’ helps them to ’feel good.’ (After all, these sugars give young people
lots of energy.) There is thus a relationship between these two contepts. Because of this, a
lot of young people like to eat sugary food.

But there is more. Initially, young people like to eat sugary food because of the link that
it makes them feel good. As time passes, the concept of ‘eating sugary food’ gains value of
its own. It’s something that these people value by itself, even without any links. And as it
turns out, later on in life eating sugary food isn’t so good anymore. For older people, the
link between ‘eating sugary food’ and ‘feeling healty’ not only disappears, it is also reversed.
(For people past their teenager years, eating sugar often does not result in more energy but
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in less, because it all needs to be digested.) Yet still human beings well into their twenties or
thirties often like to eat sugary food. It’s only after many years that the reversion of the link
manages to reduce the concept value of ‘eating sugary foods’ enough that people stop liking
it so much.

Summarizing, the human mind is able to form concepts, split up concepts into sub-concepts,
recognize phenomena as being part of a concept, form relationships between concepts, and
value concepts, all in a very dynamic way. Because of this, it is able to quickly learn how
to cope with unexpected circumstances. When some unexpected event happens, the mind
quickly makes a new concept out of the event, it establishes links between this new concept
and older well-known concepts and it then uses the values of these older concepts to guess
how positive this new unexpected event is.

The claim that is being made in this appendix is that, should a computer program ever be
designed that works in a way similar to the human mind, then it must possess all of the
properties/ideas that have been mentioned in this appendix. This does not mean that these
ideas are the key to intelligence – if this report has shown only one thing, then it’s that it’s
also possible to create intelligent systems that work totally different from the human mind
– but it does mean that any attempt at mimicking human intelligence should incorporate as
many of these ideas as possible. After all, they are part of the key to how the human mind
works.
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Bad convergence, 69
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Conservative exploration strategy, 141
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Simple three-dimensional problem, 134
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State transition function, 15
State transition probability function, 14
State-value cacher, 89
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