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A Generalized Orthonormal Basis 
for Linear Dynamical Systems 

Peter S .  C. Heuberger, Paul M. J. Van den Hof, Member, IEEE, and Okko H. Bosgra 

Abstract-In many areas of signal, system, and control theory, 
orthogonal functions play an important role in issues of analysis 
and design. In this paper, it is shown that there exist orthogonal 
functions that, in a natural way, are generated by stable linear 
dynamical systems and that compose an orthonormal basis for 
the signal space e; .  To this end, use is made of balanced re- 
alizations of inner transfer functions. The orthogonal functions 
can be considered as generalizations of, e.g., the pulse functions, 
Laguerre functions, and Kautz functions, and give rise to an 
alternative series expansion of rational transfer functions. It 
is shown how we can exploit these generalized basis functions 
to increase the speed of convergence in a series expansion, 
i.e., to obtain a good approximation by retaining only a finite 
number of expansion coefficients. Consequences for identification 
of expansion coefficients are analyzed, and a bound is formulated 
on the error that is made when approximating a system by a finite 
number of expansion coefficients. 

I. INTRODUCTION 
ONSIDER a linear time-invariant stable discrete-time C system G,  represented by its proper transfer function 

G ( z )  in the Hilbert space ? f a ,  i.e., G ( z )  is analytic outside 
the unit circle, IzI 2 1. A general and common representation 
of G ( z )  is in terms of its Laurent expansion around z = CO, as 

k=O 

with { G k } k = O , l ,  ... the sequence of Markov parameters. 
In constructing this series expansion we have employed a 

set of orthogonal functions: { z o ,  z-l, z-', . . -}, where orthog- 
onality is considered in terms of the inner product in ?fa. In 
a generalized form we can write (1) as 

m 

k=O 

with { f k ( z ) } k = O , J 2 ,  ... a sequence of orthogonal functions. 
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There are a number of research areas that deal with the 
question of either approximating a given system G with a 
finite number of coefficients in a series expansion as in (2), or 
(approximately) identifying an unknown system in terms of a 
finite number of expansion coefficients through 

N 

e'(.) = L k f k ( 2 ) .  (3) 
k=O 

The problem that will be analyzed in this paper is the 

Can we construct a sequence of orthogonal basis functions 

a) to some extent, the basis can be adapted to a linear 
stable system G to be described, implying that G can 
be accurately described by only a small number of 
coefficients in the expansion, and 

b) the basis allows the construction of an error bound for 
the approximation of a linear stable system G by a finite 
length expansion in the basis f k , G ,  i.e., an upper bound 
on l l ~ ( z ) - ~ ~ = o ~ k ~ k , G ( r ) l l  in some prechosen norm, 
whenever G and G do not match exactly. 

The use of orthogonal functions with the aim of adapting 
the system and signal representation to the specific properties 
of the systems and signals at hand has a long history. The 
classical work of Lee and Wiener during the 1930's on network 
synthesis in terms of Laguerre functions [24], [46] is summa- 
rized in [25]. Laguerre functions have been used in the 1950's 
and 1960's to represent transient signals [45], [7]. During 
the past decades, the use of orthogonal functions has been 
studied in problems of filter synthesis [22], [30] and for system 
identification [23], [32], [31], [6] and approximation [35], [36]. 
In these approaches to system identification, the input and 
output signals are transformed to a (Laguerre) transformed 
domain and standard identification techniques are applied to 
the signals in this domain. Data reduction has been the main 
motivation in these studies. Identification of continuous-time 
models with the aid of orthogonal functions is considered 
in e.g., [38] and [29]. In recent years, a renewed interest 
in Laguerre functions has emerged. The approximation of 
(infinite dimensional) systems in terms of Laguerre functions 
has been considered in [27], [28], [12], [13], and [15]. In the 
identification of coefficients in finite length series expansions, 
Laguerre function representations have been considered from 
a statistical analysis point of view in [43], [42], and [16]. 

following. 

{ f k , G ( z ) } k = O ,  ... with G E ? f a ,  such that 
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The use of Laguerre-function-based identification in adaptive 
control and controller tuning is studied in [47] and [9]. A 
second-order extension to the basic Laguerre functions using 
the so called Kautz functions [21] is subject of discussion in 
[41] and [44]. 

In this paper we will expand and generalize the orthogonal 
functions as basis functions for dynamical system representa- 
tions. Specifically we will generalize the Laguerre functions 
and Kautz functions to a situation where a higher degree of 
flexibility is present in the choice of basis functions, and 
where consequently a smaller error bound as meant in part 
b) of the problem can be obtained. Laguerre functions are 
specifically appropriate for accurate modeling of systems with 
dominant first-order dynamics, whereas Kautz functions are 
directed toward systems with dominant second-order resonant 
dynamics. The generalized basis functions, introduced in this 
paper, will be suited also for systems with a wide range of 
dominant dynamics, i.e., dominant high frequency and low 
frequency behavior. 

We will restrict attention to the transfer function space 7& 
being equipped with the usual inner product. This choice, 
rather than the &-space where orthogonality is abandoned, 
is motivated by the fact that our main intended application of 
these results is in the area of approximate system identification. 
As the main stream of approaches in system identification is 
directed toward prediction error methods and the use of least- 
squares types of identification criteria, [26], the choice of a 
two-norm is quite straightforward and natural in this respect. 

Note that the two problems a) and b) should be treated as a 
joint problem. One of the (trivial) solutions to problem a) only 
is the use of a Gram-Schmidt orthogonalization procedure on 
the impulse response of the system G itself [l]. In that case 
the system can be described by a series expansion of only one 
single term. In this situation, however, no results are available 
for part b) of the problem. 

In an identification context, the use of the orthogonal 
functions as in (1) leads to the so-called finite impulse response 
(FIR)-model [26] 

where ~ ( t )  is the one-step-ahead prediction error, and 
{ y ( t ) ,  u(t)}  are samples of the output, input of the dynamical 
system to be identified. The identification of the unknown co- 
efficients { Gk (B)}k=O, ...,N through least squares minimization 
of E ( t )  over the time interval is an identification method that 
has some favorable properties. First, it is a linear regression 
scheme, which leads to a simple analytical solution: second, it 
is of the type of output-error-method, which has the advantage 
that the input/output system G(z )  can be estimated consistently 
whenever the unknown noise disturbance on the output data 
is uncorrelated with the input signal [26]. 

It is well known, however, that for moderately damped 
systems, and/or in situations of high sampling rates, it may take 
a large value of N ,  the number coefficients to be estimated, to 
capture the essential dynamics of the system G into its model. 

If we would be able to improve the basis functions in such a 
way that an accurate description of the model to be estimated 
can be achieved by a small number of coefficients in a series 
expansion, then this is beneficial from both aspects of bias and 
variance of the model estimate. 

For the series expansion in (1) with f k  = z-', it is 
straightforward to show that a system G will have a finite 
length series expansion if and only if all system poles are at 
z = 0. Moreover, in the scalar case the length of the expansion, 
i.e., the index of the last nonzero coefficient, equals the total 
number of poles at z = 0. 

As a generalized situation, we can consider Laguerre poly- 
nomials [37] that are known to generate a sequence of orthog- 
onal functions [14] 

Similar to above, a system G will have a finite length series 
expansion if and only if all system poles are at z = a,  with 
the length of the expansion being equal to the total number 
of poles at z = a. 

In dealing with the problem of finding similar results for any 
general stable dynamical system G(z) ,  we have considered 
the question of whether a linear system in a natural way 
gives rise to a set of orthogonal functions. The answer to 
this question appears to be affirmative. It will be shown that 
every stable system gives rise to a complete set of orthonormal 
functions based on input (or output) balanced realizations, or 
equivalently based on a singular value decomposition of a 
corresponding Hankel matrix. These generalized orthogonal 
basis functions will be shown to provide solutions to problems 
a) and b). 

In Section I11 we will first briefly state the main result of 
this paper. Next in Section IV it will be shown how inner 
functions generate two sets of orthonormal functions that are 
complete in the signal space l2. This is the basic ingredient of 
the main result. Next an interpretation of these results is given 
in terms of balanced state-space representations. After showing 
the relations of the new basis functions with existing ones, we 
will focus on the dynamics that implicitly are involved in the 
inner functions generating the basis. It will be shown that if the 
dynamics of a stable system match the dynamics of the inner 
function that generates the basis, then the representation of 
this system in terms of this basis becomes extremely simple. 
Consequences for a related identification and approximation 
problem are discussed in Section VIII. 

Due to space limitations, a complete statistical analysis of 
the related system identification problems that result from 
these basis functions can not be given in this paper. A 
statistical analysis along similar lines as [43] and [44] is 
presented elsewhere [39]. 

The proofs of all results are collected in an appendix. 

11. PRELIMINARIES 

We will use the following notation. 

Transpose of a matrix. 
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Complex conjugate transpose of a matrix. 
Set of complex-valued matrices of 
dimension p x m. 
Real-valued matrix with dimension p x m. 
Set of nonnegative integers. 
Space of squared summable sequences on 
the time interval Z+. 
Space of matrix sequences 
{Fk E Cmxn}],=0,1,2, ... such that 

tr(F,*Fk) is finite. 
Set of real p x m matrix functions, 
analytic for 
integrable on the unit circle. 
Set of real rational p x m matrix 
functions, analytic for IzI 2 1, that are 
squared integrable on the unit circle. 
Induced 2-norm or spectral norm of a 
constant matrix, i.e., its maximum singular 
value. 
H,-norm. 
Vector-operation on a matrix, stacking its 
columns on top of each other. 
Kronecker matrix product. 
(Block) Hankel matrix related to transfer 
function G = 
Xij (G)  = Gi+j-l being the (i,j)-block 
element. 
ith Euclidian basis vector in R". 
n x n Identity matrix. 

2 1, that are squared 

Gkz-k,  defined by 

In this paper we will consider discrete-time signals and 
systems. A linear time-invariant finite-dimensional system will 
be represented by its rational transfer function G E RX;'", 
with m the number of inputs in U ,  and p the number of outputs 
in y. State-space realizations will be considered of the form 

~ ( k  + 1) = Ax(k)  + Bu(k)  
y(k) = C z ( k )  + Du(k) 

(6) 
(7) 

with A E C Y X n ,  B E Cnxm,  C E CpXn, and D E Cpxm. 
( A ,  B ,  C, D )  is an n-dimensional realization of G if G ( z )  = 
C(z I  - A)- lB  + D. A realization is stable if all eigenvalues 
of A lie strictly within the unit circle. If a realization is 
stable, the controllability gramian P and observability gramian 
Q are defined as the solutions to the Lyapunov equations 
APA* + BB* = P and A*QA + C*C = Q,  respectively. A 
stable realization is called (intemally) balanced if P = Q = C, 
with C = diag(a1,.  . . , an), 01 2 . . . 2 on, a diagonal matrix 
with the positive Hankel singular values as diagonal elements. 
A stable realization is called input balanced if P = I, Q = C2, 
and output balanced if P = C2, Q = I. 

A system G E R X ; X m  is called inner if it satisfies 
GT(z - l )G(z )  = I. As G is analytic outside and on the unit 
circle, it has a Laurent series expansion Er=o GkZ-'. 

111. THE MAIN RESULT 

We will start the technical part of this paper by giving the 
basic result first and then consecutively give the analysis that 
provides the ingredients for making the result plausible. 

Theorem 3.1: Let G be an m x m inner transfer function 
with McMillan degree n > 0, having a Laurent expansion 
G ( z )  = z r = o G k z - k  and satisfying I1Goll2 < 1, and let 
( A ,  B ,  C, D )  be a balanced realization of G ( z ) .  Denote 

Vk(z) = z (z1  - A)- 'BGk(z) .  (8) 

Then the set of functions {eTVk(Z)}i=l, ...n;k=O,...oo consti- 
tutes an orthonormal basis of the function space Xixm. 

A direct consequence of this theorem is the following 
corollay . 0 

Corollary 3.2: Let G be an inner function with McMillan 
degree n as in Theorem 3.1, with a corresponding sequence 
of basis functions v k ( Z ) .  Then for every proper stable transfer 
function H E there exist unique D, E Rpxm, and 
L {Lk}k=O,l, ... E l ; '""[O,CO),  such that 

a2 

H ( Z )  = D, + 2 - l  Lkvk(z). (9) 

of H ( z ) .  0 

k=O 

We refer to D,, Lk as the orthogonal expansion coefficients 

Note that due to the fact that & ( Z )  is an n x m-matrix of 
transfer functions, the dimension of each Lk is p x n. 

IV. ORTHONORMAL FUNCTIONS GENERATED 
BY INNER TRANSFER FUNCTIONS 

In this section we will show that a square and inner transfer 
function gives rise to an infinite set of orthonormal functions. 
This derivation is based on the fact that a singular value 
decomposition of the Hankel matrix associated to a linear 
system induces a set of left (right) singular vectors that are 
orthogonal. Considering the left (right) singular vectors as 
discrete time functions, they are known to be orthogonal in &- 
sense, thus generating a number of orthogonal functions being 
equal to the McMillan degree of the corresponding system. 
We will embed an inner function with McMillan degree n 
into a sequence of inner functions with McMillan degree k n ,  
for which the left (right) singular vectors of the Hankel matrix 
span a space with dimension kn. If we let k -+ 00 the set 
of left (right) singular vectors will yield an infinite number of 
orthonormal functions, which can be shown to be complete 
in l 2 .  

First we have to recapitulate some properties of inner 
transfer functions. 

Proposition 4.1: Let G ( z )  be an inner transfer function 
with a Laurent expansion G ( z )  = Gkz-'. Then 

00 

Gc+'+,Gk = I for i = 0; (10) 
k=O 

= 0 for i > 0. (1 1) 

0 
The Hankel matrix of an inner transfer function has some 

specific properties, reflected in the following two results. 

I I '  1 ' I  
1 
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-Go G1 G2 . - . -  
0 Go G1 G2 .. '  
0 0 Go GI . . .  

; 0 Go * * a  

. .  T, = 

. . . . .  . . . . .  . . . .  
-Go 0 0 . . .  ...- 
G1 Go 0 . . .  . . .  

T, = G2 G1 Go ... ... 
. .  

G1 Go . ' .  
. . - .  . . . . . .  . . .  . .  

Proposition 4.2: Let G(z)  be an inner function with 
McMillan degree n > 0. Then a singular value decomposition 

constitute a singular value decomposition of X( Gk) ,  
through 

, (12) 

(13) . 

(svd) of X(G)  satisfies 

X(G)  = UoV; 

'With slight abuse of notation we will use this notation to indicate an 
operator C" -+ ez(0, CO). 

x ( G ~ )  = rgrc,. (16) 

The matrix sequence {U;, &};=0,1, ... is unique up to 
postmultiplication of each U; and V,  with one and the 
same unitary matrix. 
Let G(z)  have a Laurent expansion G(z)  = 
czo Giz-;, and consider the block Toeplitz matrices 
Tu, T, as in (12), (13) then the matrix sequence 
{U;, V,};=o,l ,... satisfies 

V,* = Vc-lT,, (17) 
Uk = TUuk-1 for k = 1 , 2 , .  . f . (18) 

0 
The theorem shows the construction of orthogonal matrices 

rg,r; that have a nesting structure. The suggested svd of 
X(Gk)  incorporates svd's of X(Gi) for all i < k. In this 
way orthogonal matrices and r; are constructed with an 
increasing rank. Note that the restriction on the structure of 
the consecutive svd's is so strong that, according to b), given 
a singular value decomposition X(G)  = UoV<, the matrix 
sequence {U; , , i = 1,2, . . .} is uniquely determined. Note 
also that there is a clear duality between the controllability 
part I?; and the observability part rg. To keep the exposition 
and the notation as simple as possible we will further restrict 
attention to the controllability part of the problem. Dual results 
exist for the observability part. 

Proposition 4.6: Let G(z)  be an m x m inner function with 
McMillan degree n > 0, and consider any sequence of unitary 
matrices {V,}i=o,l, .,. satisfying (17) in Theorem 4.5. Denote 
for k E Z+ 

m 

V k ( 2 )  = Mk(z)z-;, with Mk(2) E c"'" defined by 
i=O 

v,* =: [ h f k ( o )  Mk(1) Mk(2) . ' . I .  (19) 

Then 

Vk(.) = V0(,Z)Gk((Z). 

0 
The proposition actually is a z-transform-equivalent of 

the result in Theorem 4.5. It shows the construction of the 
controllability matrix r;. 

In the next stage we show that this controllability matrix 
generates a sequence of orthogonal functions that is complete 
in e;. 

Theorem 4.7: Let G ( z )  be an m x m inner function with 
McMillan degree n > 0, such that llGoll2 < 1; consider a 
sequence of unitary matrices {&}i=o,l ,  ... as meant in Theorem 
4.5. For each k E Z+ consider the function : Z+ 4 c", 
defined by 

[4k(O) 4 k ( l )  4 k ( 2 )  ' . '  ] = v,*. 
Then the set of functions Q(G) := { 4 k } &  constitutes an 

0 orthonormal basis of the signal space Cz[O,  m). 

1 I I 1  1 1 
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Fig. 1. Sene 
basis Ik(G). 

expansion of a transfer function in terms of an orthonormal 

Remark 4.8: This basis has been derived from the singular 
value decomposition of the Hankel matrix X(G). As stated in 
Proposition 4.2 this svd is unique up to postmultiplication of 
UO, VO with a unitary matrix. Consequently-within this con- 
text-both VL, Vk(Z), and the corresponding basis functions 
{ $hk} are unique up to unitary premultiplication. 

For use later on we will formalize the class of inner 
functions that have the property as mentioned in the previous 
theorem. 

Definition 4.9: We define the class of functions: 91 := {all 
square inner functions G with McMillan degree > 0 such that 

As a result of the fact that the proposed orthonormal 
functions constitute a basis of l z ,  each square inner function 
generates an orthonormal basis that provides a unique transfor- 
mation of lg-signals to an orthogonal domain. Similarly, when 
given such an orthonormal basis, each stable rational function 
can be expanded in a series expansion of basis functions vk (2) 

as defined in Proposition 4.6. 
Corollary4.10: Let G E E l ,  and let 9 ( G )  be as defined 

in Theorem 4.7. Then 
a) For every signal x E lz[O,m) there exists a unique 

transform x = {Xk}k=O,l, ... E !gx"[o, m) such that 

llGoll2 < 1). 0 

00 

x ( t )  = Xk$hk(t). (20) 
k=O 

We refer to XI, E cqx" as the orthogonal expansion 
coefficients of x. 

b) For every proper stable transfer function H ( z )  E X;', 
there exist unique D ,  E Rpxm,  and L = {Lk}k=o,l, ... E 
l ; ""[O,  m), such that 

00 

H ( Z )  = D, f Z-l Lkvk(Z). (21) 

We refer to D,,  Lk as the orthogonal expansion coeffi- 
cients of H ( z ) .  0 

We will refer to the sequence {Vk(Z)}k=O,l, ..., as defined 
in Proposition 4.6, as the sequence of generating transfer 
functions for the orthonormal basis 9(G) .  

The series expansion as reflected in (21) is schematically 
depicted in the diagram in Fig. 1, where q reflects the time 

To find appropriate ways to calculate the orthogonal func- 
tions, as well as to determine the transformations as meant in 
the corollary, we will now first analyze the results presented 
so far in terms of state-space realizations. 

k=O 

shift, qu(t) = u(t + 1). 
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V. BALANCED STATE-SPACE REPRESENTATIONS 

To represent the orthogonal controllability matrix in a state- 
space form, we will use a balanced state-space realization of G. 
We first present the following, rather straightforward, lemma. 

Lemma 5.1: Let G be a square inner transfer function 
with minimal realization ( A ,  B, C, D ) .  Then the realization 
is (internally) balanced if and only if it is both input balanced 

Next we examine how the property that a transfer function 
is inner, is reflected in a state-space realization of the function. 

Proposition 5.2: Let G be a transfer function with realiza- 
tion (A, B, C, D ) ,  such that ( A ,  B) is a controllable pair, and 
the realization is output balanced, i.e., A*A+ C*C = I. Then 
GT(zP1)G(z) = I if and only if 

i) D*C + B*A = 0, and 
ii) D*D + B * B  = I .  0 
Note that for this proposition there also exists a dual 

form, conceming the transfer function GT with realization 
(A*, C*, B * ,  D * ) ,  that can be applied if G is square inner. 

The characterization of the inner property in the above 
proposition is made for output balanced realizations. Since, 
according to Lemma 5.1 output balancedness is implied by 
balancedness, it also refers to balanced realizations. 

The class of functions 81 can simply be characterized in 
terms of a balanced realization. 

Proposition 5.3: Let G be an m x m inner function with 
minimal balanced realization ( A ,  B ,  C, D ) .  Then G E 91 if 
and only if rank B = m, or equivalently rank C = m. 0 

The following proposition shows that we can use a balanced 
realization of G to construct a balanced realization for any 
power of G. 

Proposition 5.4: Let G be a square inner transfer function 
with minimal balanced realization (A, B ,  C, D )  having state 
dimension n > 0. Then for any IC > 1 the realization 

and output balanced. 0 

(Ak > Bk i c k ,  Dk) with 

is a minimal balanced realization of Gk with state dimension 
n . IC. 0 

Examining the realization in the above proposition, reveals 
a similar structure of observability and controllability matrices, 
as has been discussed in the previous section; e.g., taking the 
situation IC = 2, it shows that the controllzbility matrix of 
(A2, B2) contains the controllability matrix of (A, B )  as its 
first block row. 

-1.1 I ' '  
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Proposition 5.5: Let G ( z )  be an m x m inner transfer 
function with McMillan degree n > 0, whose Hankel matrix 
has an svd Z ( G )  = VoV;; let ( A ,  B ,  Cl D) be a minimal 
balanced realization of G such that V: = [ B  AB A2B . . . 1. 
Then the unique sequence of orthogonal matrices {rg}k=1,2, ... 
as considered in Theorem 4.5 is determined by 

(26) ri = [Bk AkBk AEBk ... ] 

with Ak, Bk as defined in (22), (23). 0 
The above result shows how a minimal balanced realization 

of G actually generates the sequence of orthogonal matri- 
ces rg, the rows of which are the basis functions in our 
orthonormal basis of l;.  

We will show that there exist recursive formulae for con- 
structing the orthogonal functions. 

Proposition 5.6: Let G be an inner function, G E 81, and 
consider the assumptions and notation as in Theorem 4.5 and 
Proposition 5.5. Denote 

X = B C  and (27) 

P any mamx satisfying 

P B  = B D .  (28) 

Then the elements of rg are determined by the following 
recursive equations 

Mo(0) = B (29) 
k 

Mk(i + 1)=AMk(Z)+CP3-1X~k-3(.i)l i 2 0; (30) 
3=1 

Mk (0) = PMk- 1 (0) (31) 

with as in (15) with 

v,* = [Mk(o) Mk(1) Mk(2) ' . ' I  
as in (19). 0 

The recursive equations show how we can simply construct 
the set of orthogonal functions. Note that the matrix P in 
(28) is nonunique. The result (29)-(31) however is unique. A 
straightforward choice for P satisfying (28) is 

P = B D ( B * B ) - ~ B * .  (32) 

Note that, as a result of Proposition 5.3, the matrix B*B is 
invertible whenever G E 91. 

The orthogonal functions @ ( G )  generated by an inner func- 
tion G can be represented in terms of their generating functions 
Vk(Z), as defined in Proposition 4.6. These generating transfer 
functions can also be realized in terms of a minimal balanced 
realization of G. This is reflected in the following theorem. 

Theorem 5.7: Let G be an inner function, G E 91, with 
a minimal balanced realization (A, B ,  C, D). Let this inner 
function generate an orthonormal basis with corresponding 
generating functions vk ( Z ) ,  as defined in Proposition 4.6. 

1) Let F be a matrix determined by 

F z X - P A  (33) 

with X defined in (27) and P any matrix satisfying (28). 
Then, for k E Z + ,  

a) v k ( Z )  = [ ( z I  - A)- lF(I  - zA*)]  ' z ( z l -  A)-'B; 
b) Vk(z) is unique, i.e., it is not dependent on the 

specific choice of P in (28). 

2) If there exists a matrix R such that B = RC*, then 
F = R satisfies the conditions of Part 1 of this theorem. 

0 
Now we come to the construction of a series expansion of 

any stable proper rational transfer function, in terms of the 
new orthonormal basis. 

Theorem 5.8: Let G be an inner function, G E 91, with 
a minimal balanced realization ( A ,  B ,  C, D). Let this inner 
function generate an orthonormal basis with corresponding 
generating functions Vk(Z). as defined in Proposition 4.6. Let 
H E ZgXm be any proper and stable transfer function with a 
minimal realization (A, B,  C,, 0,). Then 

a3 

H(Z) Ds + 2 - l  Lkvk(z) (34) 
k=O 

with Lk E C p x n  determined by 

Lk = CsQk (35) 
Qo = A,QoA* + B,B* (36) 

(37) 

0 
In Section VI1 we will show that specific choices of G(z )  

in relation with H ( z ) ,  i.e., specific relations between the inner 
function G producing the orthonormal basis and a transfer 
function H that should be described in this basis, will lead to 
very simple representations. 

&;+I = AsQz+lA* + AsQzF* - QzAF* 

with F as defined in (33). 

VI. A GENERALIZATION OF CLASSICAL BASIS FUNCTIONS 

In this section we show three examples of well-known 
sets of orthogonal functions that are frequently used in the 
description of linear time-invariant dynamical systems and that 
occur as special cases in the framework that is discussed in 
this paper. 

Pulse Functions 
Consider the inner function G ( z )  = z-', G E 91. The 

Hankel matrix of G satisfies 
r i  o ... . 01 

rli 

As a result Vi(.) = 1, and with Proposition 4.6 the generating 
transfer functions Vk(z) satisfy Vk(.) = G k ( z )  = z - ~ ,  
k = 0,1,. . .. The corresponding set of basis functions @ ( G )  

1 1 1-1 1 1 
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is determined by &(t)  = S ( t  - I C )  with S ( T )  the Kronecker 
delta function. 

The inner function G can be realized by the minimal 
balanced realization (A ,  B ,  C, D )  = (0, 1, 1,O).  The equation 
PB = BD is satisfied by P = 0, and the corresponding 
result for F is F = BC = 1. Applying Theorem 5.8 shows 
the classical result that L k  = c,A:B,. 

Laguerre Functions 
1 - az 

Consider the inner function G ( z )  = - , with some real- 

valued a, la1 < 1, and denote 77 = 1 - a'. A minimal balanced 
realization of G is given by ( A ,  B ,  C, D )  = ( a ,  J5, J5, -a). 
Equation PB = BD is satisfied by P = -a, leading to 
F = BC - PA = 77 + a2 = 1. Taking account of the fact 
that for one-dimensional scalar G, Mk(i) = &(i) ,  it follows 
from Proposition 5.6 that 

z - a  

+O(O) = Jsi (39) 
k 

&(i + 1) = a&(i) + ~x(-a) ' -~$k- j (Z)  (40) 
j=1 

4 4 0 )  = -ahC-1(0). (41) 

These equations exactly match the equations that generate the 
normalized discrete-time Laguerre polynomials with discount 
factor a, [14], [321. 

The corresponding generating transfer functions V k  (2 )  can 
be analyzed with the result of either Proposition 4.6 or 
Theorem 5.7 

This exactly fits with the formulation of the generating transfer 
functions of discrete-time Laguerre polynomials in, e.g., [23]. 

Kautz Functions 
-e22 + b(c - 1)" + 1 

2 2  + b(c - 1)" - c 
Consider the inner function G ( z )  = 

A balanced realization of G ( z )  can be found to be equal to 
with some real-valued b, c satisfying I C [ ,  Ibl < 1. 

with 71 = 44- and 72  = J(l - c2)(1 - b2) .  

follows that 
With the expression for Vo(z) from Theorem 5.7-a) it 

m do-7 (43) 
Vo(z) = 2 2  + b(c - 1)" - c [ z - b ] 2-1 

which exactly equals representing the orthogonal 

Kautz functions, as represented in [41], [44]. Postmultiplica- 
tion with G k ( z )  is equivalent to the situation in the case of 
Kautz functions. 

VII. ORTHONORMAL FUNCTIONS ORIGINATING 
FROM GENERAL DYNAMICAL SYSTEMS 

We have shown that any square inner transfer function 
G E 81 generates an orthonormal basis for the signal space l;. 
One of the reasons for developing this generalized bases was 
to find out whether we can yield a more suitable representation 
of a general dynamical system, when the basis within which 
we describe the system is more or less adapted to the system 
dynamics. In view of the results presented so far, this aspect 
relates to the question whether we can construct an inner 
transfer function generating a basis that incorporates dynamics 
of a general system to be represented within this basis. 

There are several ways of connecting general transfer func- 
tions to inner functions, as e.g., inner/outer factorization [lo], 
[5], normalized coprime factorization [81, [401, [331, [41, or 
inner-unstable factorization [2]. Even if the corresponding 
inner functions are not square, they can always be embedded 
in a square inner function [I l l .  In this paper, however, we 
will explore a different connection, where a general %table 
dynamical system with input balanced realization ( A ,  B ,  C, D) 
will induce a square inner function through retaining the ma- 
trices (A ,  B )  and constructing (C, D )  such that ( A ,  B ,  C,  D)  
is inner. This implies that the poles of the stable dynamical 
system are retained in the corresponding inner function. The 
following result shows the existence and construction of such 
an inner function. 

Proposition 7.1: Let (A ,  B )  be the system matrix and input 
matrix of an input balanced realization of a transfer function 
H E R3-t5Xm with McMillan degree n > 0, and with rank 
B = m. Then 

a) There exist matrices C, D such that ( A ,  B ,  C,  D )  is a 
minimal balanced realization of a square inner function 
G E GI. 

b) A realization ( A ,  B ,  C, D)  has the property mentioned 
in a) if and only if 

(44) 
(45) 

C = UB*(I,  + A*)-'(I ,  + A )  
D = UIB*(In + A*) - lB  - Im] 

with U E RmX" any unitary matrix. 

matrix F satisfying (33) is given by 
c) For a realization satisfying (44), (45) a valid choice of 

F = [I, + B(U - Im)(B*B)-'B*](I,  + A ) ( I ,  +A*)- ' .  
(46) 
0 

In the proposition all inner functions are characterized that 
can be constructed in the way as described above, by retaining 
the matrices ( A ,  B )  of any given stable system. Note that the 
extension C, D is not unique. The nonuniqueness is reflected 
by a possible unitary premultiplication of the inner function. 
Note also that when choosing U = Im, expression (46) reduces 
to F = ( I ,  + A)(I ,  + A*)-l. 

We will now present a result that is very appealing. It 
shows that when we want to desciibe the dynamical system 
H in terms of the basis that it has generated, as presented 
in Proposition 7.1, then the series expansion in the new 
orthogonal basis becomes extremely simple. 

I I I 1  1_- 
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Theorem 7.2: Let H E R'FI;Xm have an input balanced 
realization (A,, B,, C, , D,), having all controllability indexes 
> 0. Let G E 81 be a square inner function with minimal 
balanced realization (A ,B,C,D)  such that A = A, and 
B = B,, generating an orthonormal basis with generating 
transfer functions v k  (2). Then 

w 

H ( z )  = D, + 2 - l  Lkvk(z)  (47) 
k=O 

with 

Lo = C ,  and (48) 
Lk = 0 for IC > 0. (49) 

Proofi The proof follows by applying Theorem 5.8. With 
A = A,, B = B, (36) becomes QO = AQoA* + BB*. 
Since ( A , B )  is input balanced, the solution to this equation 
is QO = I, leading to LO = C,. Substituting QO = I in (37) 
and using the stability of A shows that Q; = 0 for i > 0. 0 

The theorem shows that when we use a general stable and 
proper dynamical system to generate an orthonormal basis 
as described above, then the system itself has a very simple 
representation in terms of this basis. It is represented in a series 
expansion with only two nonzero expansion coefficients, being 
equal to the system matrices Cs and D,. 

In the next section we will discuss the results of this paper 
regarding their relevance to problems of system identification 
and system approximation. 

It has to be stressed that, so far, we have only used the 
generalized orthonormal basis to study the series expansion of 
a given stable transfer function. Similar to the case of the pulse 
functions and Laguerre functions, the presented generalized 
functions induce a transformation of &-signals to a transform 
domain, compare e.g., with the z-domain when pulse functions 
are used. In this transform domain dynamical system equations 
can be derived, leading to transform pairs of time-domain and 
orthogonal-domain system representations. In the case of a 
Laguerre basis, these kinds of transformations actually have 
been used frequently also in an identification context, by first 
transforming the measured input/output signals to the Laguerre 
domain, and consecutively identifying a system in this domain; 
see e.g., [22], [23], [32], [31]. 

For the generalized basis, results along these lines have been 
presented in [18], [19]. An analysis of the system transforma- 
tions between time domain and generalized transform domain 
is treated in [19] and [39]. 

I 

I 

VIII. SYSTEM APPROXIMATION AND IDENTIFICATION 
We will now discuss the way in which the introduced 

orthogonal basis functions provide a solution to problem b) 
as mentioned in the introduction, i.e., the quantification of an 
error bound for finite length expansion approximants. 

We will present results showing that the speed of conver- 
gence in an orthogonal series expansion can be quantified and 
that an increase of speed is obtained as the dynamics of system 
and basis approach each other. To formulate these results we 
need an altemative formulation of Theorem 5.8 in terms of 
Kronecker products. 

Proposition 8.1: Let H E R'H;'" be a transfer function 
with an input balanced realization ( A s ,  B,, C,, D,), and let 
( A , B )  be an input balanced pair that generates an m x m 
inner transfer function G E 81, leading to an orthonormal 
basis @(G). 

Then the orthogonal expansion coefficients L k  satisfying 
H ( z )  = D, + z- l  cr=o Lkvk(z)  are determined by 

Vec(Lk) = Z X ~ Y  (50) 

z = ( I  E3 C,)M-1 (51) 
Y = Vec(B,B*) (52) 
X = NM-l  (53) 
M =  I@ I - A @  A,  (54) 
N = F @ A s  - F A *  @ I .  (55 )  

with 

Note that due to (50) we can consider Vec(Lk) as a 
sequence of Markov parameters of a dynamical system with 
a state-space realization given by ( X ,  Y, 2 , O ) .  By examining 
the eigenvalues of this realization, we create the possibility of 
drawing some conclusions on the speed of convergence of the 
series expansion. The following result is taken from [19]. 

Proposition 8.2: Consider the situation of Proposition 8.1 
with H ( z )  and G(z )  having McMillan degree n,, n, re- 
spectively, and m = 1. k t  pi, i = 1,. . . , n, denote the 
eigenvalues of A,, and p j ,  j = 1, . . . , n denote the eigenvalues 
of A. The dynamical system Z ( z I  - X ) - l Y  has a realization 
( X , ,  Yo, Z,, 0 )  that satisfies 

a) X, has dimension n,; 
b) X, has eigenvalues Xi, i = 1,. . . , n, that satisfy 

Since the proof of this proposition is somewhat outside the 
scope of this paper, the reader is referred to [19]. 

The above proposition shows that we can draw conclu- 
sions on the convergence rate of the sequence of expansion 
coefficients { L k } k = O ,  ..., when given the eigenvalues of the 
original system H ( z )  and the eigenvalues of the inner function 
G ( z )  that generates the basis. Note that when the sets of 
eigenvalues {p i } ,  { p j }  coincide, then X i  = 0, for all i ,  and 
consequently the sequence { Lk} will have a finite number of 
elements unequal to zero. The above result also enables the 
determination of an upper bound on the error that is made, 
when we approximate a given system H ( z )  through a finite 
number of its expansion coefficients. 

Theorem 8.3: Consider the situation of Proposition 8.2, and 
denote 

N-1 

k=O 

and A := maxi IXiI .  Then there exists a finite c E R such that 
€or any Q E R, Q > X 

(57) 

U 

1 I I 1  I I 
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Since X is a measure for the “closeness” of system dynamics 
and basis dynamics, the above theorem shows that the error 
that is made when neglecting the tail of a series expansion, 
becomes smaller as X becomes smaller. As a result, when 
restricting to a fixed number of expansion coefficients, the 
approximation error gets smaller the more accurate the basis 
dynamics is “adapted” to the system. 

In the final part of this paper we will briefly comment 
on how these results could be employed in an approximate 
identification framework. As mentioned in the introduction, 
identification of a finite impulse model (FIR) (4), has some 
important advantages; however, it fails to be successful when 
the number of coefficients to be estimated becomes large. This 
may happen in situations of high sampling rates, moderately 
damped systems, as well as systems that have dominant 
dynamics in both the high-frequent and low-frequent region 
(e.g., multitime-scale systems). An altemative way to attain 
the advantages of this identification method, is to exploit the 
model structure 

where E (  t )  is the one-step-ahead prediction error, D( e), L k  (6’) 
the parameterized expansion coefficients, and with Vj ( z )  rep- 
resenting an appropriately chosen basis. 

Note that this model structure can simply be written as 

where &(t)  can simply be calculated by applying u(t)  to the 
-known- filters Vk(q), compare Fig. 1. 

Identifying 6’ through least squares optimization of +)over 
the time interval, is a similar problem as in the case of a FIR- 
model. With appropriately chosen basis functions, however, 
the convergence rate of the series expansion can become 
extremely fast: with only a few coefficients to be estimated 
a very accurate approximate model can be obtained. This 
is of course interesting and appealing from both aspects of 
bias (accurate approximation is possible) and variance (few 
parameters to be estimated from data). An analysis of bias 
and variance errors in these identification schemes is presented 
in 1391. 

Additionally, when comparing these “orthogonal FIR” 
model structures with nonlinearly parameterized model 
structure as e.g., a Box Jenkins or ARMAX model ([26]), we 
avoid problems of possible occurrence of local (nonglobal) 
minima in the quadratic identification criterion. Moreover 
the freedom in the choice of basis functions allows the 
fruitful use of “a priori information” conceming the system 
dynamics. 

Very often an identification experimenter has a -rough- 
knowledge about the dynamics of the system under considera- 
tion, e.g., from previous experiments or from physical insight 
into the process dynamics. It would be favorable to exploit 

v --- 

this knowledge in an identification procedure. The method 
suggested above, shows that this a priori knowledge can be 
exploited in terms of the basis functions that are chosen. 
When we have -rough- knowledge about the poles of the 
system, we can construct basis functions that are based on this 
set of poles. The more accurate the poles are, i.e., the more 
accurate our a priori information is, the better we can adapt 
the basis functions to the system dynamics. As a result, see 
Theorem 8.3, the estimated model can become more accurate 
when restricting to a prespecified number of coefficients to be 
estimated. 

Effectively the identification problem now reflects the iden- 
tification of the mismatch between the system under considera- 
tion and the knowledge that already was available, represented 
in the basis functions. This actually is very appealing, as the 
priori information simplifies the identification procedure. Note 
that in the way described above, the a priori information does 
not have to be exact, i.e., it is not of the type of fixing a 
priori a constraint on the model parameters, as e.g., the steady- 
state gain. The information can be uncertain. The only result 
is that the more accurate it is, the more simple the system 
representation will be. 

This discussion also motivates the use of an iterative 
scheme, where the identification of parameters 6’ is performed 
iteratively, using the model that is estimated in step z - 1 
for constructing the basis functions for step i. An example of 
such an iterative scheme has been.shown in [19]. 

One remark that has to be made in this respect, is a remark 
on the model order of a system represented by a finite number 
of expansion coefficients. The McMillan degree of this system, 
as in the case of an FIR-representation, will generally be large. 
This results from the following observation. 

Proposition 8.4: Consider the transfer function 

with V k ( z )  the generating transfer functions of an or- 
thonormal basis @(G), where the inner function G E 91 

has a minimal balanced realization ( A ,  B,  G, D) with 
dimension n. Then f i N  ( 2 )  has a state-space realization 
  AN-^, B N - ~ ,  K ,  a), with A N - ~ , B N - ~  defined in (22), 

U 
The proof of this proposition follows by inspection. 
With Li being the result of an unconstrained optimization 

in an identification procedure, the state-space dimension of 
the model will generically be equal to Nn.  Consequently, if 
one wants to represent the model again in a traditional state- 
space form of low dimension, a model reduction procedure 
will have to be used to arrive at a reduced dimension. This 
also motivates a further analysis of the realization problem in 
terms of orthogonal expansion coefficients { Lk} .  

IX. CONCLUSIONS 

We have developed a theory on orthogonal functions as basis 
functions for general linear time-invariant stable systems. The 
basic ingredient is that every square inner transfer function in 

(23), and K = [ i 1  L,  . . . L N - ~  1. 



460 IEEE TRANSACI'IONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995 

a very natural way induces two sets of orthogonal functions 
that form a basis of the signal space &. The ordinary pulse 
functions and the classical Laguerre and Kautz polynomials 
are special cases in this theory of inner functions. 

With this concept we have explored the connection between 
a general dynamical system and an inner function, by letting 
the inner function be determined through a specified set of 
poles. An important property of the resulting orthonormal 
functions is that they-to some extent-incorporate the dy- 
namic behavior of the underlying system. We have developed 
a theory on these system based orthogonal functions, both on 
an input-output level and in terms of balanced state-space real- 
izations. Furthermore we have shown how the alternative basis 
can be fruitfully used in problems of system approximation and 
identification, leading to simplified identification schemes, in 
which a priori knowledge about the process dynamics can be 
utilized by incorporating the information into the basis. 

APPENDIX 

Lemma A l :  Let G(z), F(z), and R ( z )  be stable transfer 
functions wit Laurent expansions G(z) = Gkz-', 
F(z) = Fkz-', and R(z)  = Rkz-'. Then 
R(z)  = F(z)G(z) if and only if 

[Ro R1 R2 ... ] = [Fo F1 F 2  .. . IT, (A.l) 

with T, as defined in (12). 0 
Proof: The equality R(z)  = (Er=o F ~ z - ~ )  (ET=, 

Gk,z-'") is equivalent to ErTo Rkz-' = 
Fi(2k-i ]zPk, and to Rk = EF=oF&&-;, which exactly 
matches (A.1). 0 

LemmaA2 1111: Given matrices X E cXm, Y E Cnx", 
T 2 m, with XX* = YY*; then there exists a W E pxr  
such that Y = XW and WW* = I. 0 

n! 
LemmaA3: Let ( n ) = Then ( "L  = (;I+ 

k k!(n - IC)!' 
0 

Proof: By simple calculation. 0 
Lemma A4: Let G(z) be a square inner function such that 

llGoll < 1, with I( . 1 1  any induced matrix norm. Let Gk 
have a Laurent expansion Gk(z) = EEoGjk)z-i. Then 

0 
Proof: The proof will be given by induction. For k = 1, 

validity is trivial. Suppose that the statement holds true for 
k 5 n. Now we consider two cases. 

where i < n 

k + i - 1  IIGI~)II I ( - ) 1 1 ~ ~ l l k - - i  for o I i I IC - 1. 

i) Consider 

= I IG~ l l~+ l -~(n  2 )  by Lemma A3. (A.3) 

2n - 1 2n - 3 

= llGoll[1+ (,,, ')I 
I IlGoIl [(:I;) + (2n; ')I = 

= llGoIl(;). 

We have shown that \lG{n+l)ll I llGoll n+l- i  ("l 2 )  for 

i 5 n, which proves the result. 0 
LemmaA.5: Let G(z) be an m x m inner function such 

that llGoll < 1, with 1 1  . 1 1  any induced matrix norm. Let 
Gk have a Laurent expansion Gk(z) = C~oG,!k)z-i, and 
Hankel matrix & := X(Gk). Then for all i 

Proof: Consider Rk(i) = E:=, IIGIk)II. With Lemma 
A4 it follows that &(i) 5 

. .  
that for all j ,  l/(III;&)ij - 2 Rk(i - 1). 

Proof of Proposition 4 .  1 :  Denote Li = Er=o Gr+iGk, 
for i  E 2, with Gj := 0, j < 0. Then GT(z-l) G(z) = E,"=, 

Gr+jGk) z j  = E,"=-, L j z j .  Since G is inner, GT ( z - ' )  
G(z) = I, and evaluation of the former expression for .I 2 0 

5 ~ ~ G o ~ ~ ~ ~ G ~ " ) ~ ~  + lIGiz),Il + ' " + llG?'II + IIGP'II GT ze xrT0 ~ ~ ~ - k .  n i S  expression equals E,"=-, 

\ I  

proves the result. 0 
Proof of Proposition 4.3: Part i) follows directly from 

Proposition 4.1. For Part ii), consider T, (X( G))* . Applying 
Proposition 4.1, shows that T,(X(G))* = 0, which implies 

1 I 
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that TVVoU,* = 0 and T,VoU,*Uo = 0, leading to TVVo = 0. 
The proof for T, follows analogously, employing the fact that 

Proof of Lemma 4.4: If G is inner, then for any k > 1, 
(Gk)T ( z - ' )  Gk(z)= (Gk-l)T (2-') GT (z - ' )  G(z )  G"' 
( z )  = (Gk-l)T (2-l) Gk-l(z), and by induction it follows 
that Gk is inner. A proof for the McMillan degree of Gk is 

0 

GT(z)  is inner too. 0 

contained in the proof of Proposition 5.4. 
Proof of Theorem 4.5: 

Part A: A constructive proof will be given in three steps. 
i) The choices for U, and Vj* as in (17), (18) lead to 

ii) The constructed matrix rgr; has a block Hankel struc- 

iii) r;r; = 'FI(Gk). 

i) Note that the (i,j)-block-element of I'",(r;)* equals 
V,*Tt-1(T,*)3-1V~. With Proposition 4.3 it follows that 
this equals I for i = j ,  and zero elsewhere. 

ii) This proof will be given by complete induction. For 
k = 1 the statement is true by definition. Assume that 
it holds for k - 1, i.e., I I k - 1  := r;-ll?;-l is a Hankel 
matrix. We have to show that n k  is a Hankel matrix too, 

matrices r; and r; in (14), (15), that are unitary; 

ture; 

proofs: 

rmc i 
with IIk = [Uk-l >*-l . ' 1  k - 1 1  

The Markov parameters of the system G"l(z) will 
be denoted by Ho, H I ,  H2, . . .. 

With Uj and Vj* chosen as in (17), (18), it follows that 

showing that IIk = TJIk-1 + UoV$T,"-'. 

only if S I I k  = I I k S * ,  with 
The matrix IIk has a block Hankel structure if and 

L :  1 

From Lemma A1 we can deduct that the ith block row 
of Tt-' corresponds to the Markov parameters of the 
transfer function z-~+'G"' ( z ). so 

As a result (A.6) can be written as 

which proves that IIk is a block Hankel matrix. 
iii) The proof follows by induction, similarly as in step ii). 

Consider the first block row of n k  = r;r;. This equals 

Go[H1 H2 . . .] + [GI G2 . . .IT;-'. 

Lemma A1 shows that this is equivalent to 

where W; is such that 

1 

Hence the first block row of IIk corresponds to the 
Markov parameters of CEO Gjz-j] [CEO H,zPi] [ 
= Gk(z) .  

Part B: Since & = [uk-l r g ~  [zcl] is an svd of n k ,  
'k-1 

it follows that U,*& = Vt-', and I I k b o  = d k - 1  which shows 
the uniqueness of Uk-1 and v k - 1  for a given and I?;-l. 
Since UO, VO are unique up to unitary postmultiplication, this 
holds for the whole sequence of matrices {U;, K};=o,~, .... 

Part C: The proof is given by construction in part a). 0 
Proof of Proposition 4.6: With Vt = V,*_,T, the result 

0 

Evaluation of s& shows that S ~ I I ,  = S T , L i  + 
SUOV,*T,"-~ = 

G2 G3 
= 1;; T,]IIk-l+ [.. "-' (A*5) 

follows immediately from Lemma Al.  . .  
Proof of Theorem 4.7: The result of the theorem follows 

if the set of basis functions is complete in &, i.e., if for any 
z E &[O,co), the following implication holds H1 H 2  n k - l s *  H3 " I +  

(< 4 k , z  > = 0 for all k )  + z = 0 

with < ., . > the inner product in &. 
If < d k ,  z >= 0 for all k ,  then (l?;)*l?;y = 0 for all k ,  with 

y := [z(O) z(1) . . .I*. Consider the ith row of this equation: 
[(r;)*r;];*y = 0 for all k, with [(r;)*r;li* the ith row of 
the corresponding matrix, then 

H1 H2 H3 . . .  G1 G2 
+ G2 G3 [ [ Tt-1 1.  

(-4.6) Il([(r;)*r;li* - e 3 I I  5 II[(r;)*r;li* - ($11 . Ilvll. 
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0 -  0 . . .  . 
A 0 . 0  
x . . 0 

. -.. 0 
p k - l x  . . .  X A -  
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and 

Since, (r;)*r; = ( x ( G ~ ) ) * ' F I ( G ~ ) ,  it follows from Lemma 
A5 that limk+m Il[(r;)*r;]i* - er11 = 0, which implies that 
ya = 0. U. 

Proof of Corollary 4.10: Part a) follows directly from the 
completeness of the basis. For part b), consider the ith row of 
H ( z )  - D, with D = limz-+mH(z), and H ( z )  - D written 
as Zr=lhT(k ) z -k ,  with h(k)  E R". 

Consider the scalar time series { w ( ~ ) } ~ = o , I ,  ... defined by 

[w(0) w(1) 4 2 )  ] = [hT(l) hT(2 )  . . . 1. 

Applying part a) delivers w(t) = Wz$hk(t), with Wk E 
R", $hk(t) E W". As aresult hT(j+l)  = Erzo Wz[$hk(mj+ 

In the notation of Proposition 4.6 this leads to hT( j  + 
1) = W?Mk('j). Consequently C z l  / ~ ~ ( i ) z - ~  = 

WzVk(z).  Since 
this applies to each row of H ( z )  - D, this proves the result. 

Proof of Lemma 5.1: From Proposition 4.2 it follows that 
for the realization of an inner function, the controllability 
and observability grammians have to satisfy PQ = I, while 
stability requires that P, Q 2 0. In a balanced realization 

U 

1) * * '  $hk(m(j + 1)) 1. 

Erzo W?hfk(i- l ) z +  = z- l  

P = Q and diagonal, which implies P = Q = I .  
Proof of Proposition 5.2: 

GT(z-l)G(z) = [B*(z-lI  - A*)-lC* + D*] 
. [C(ZI - A ) - ~ B  + D] 

= B*(z-lI - A*)-lC*C(zI - A)-lB+ 
+ D*C(zI - A)-lB 
+ B*(z-lI - A*)-lC*D + D*D. (A.7) 

Using A*A + C*C = I, we can rewrite the first term of 
the right-hand side by employing I - A*A = A*(zI - A)  + 
( z p 1 1  7 AY)A + (z.-'I - A * ) ( z I -  A).  

Substitution of this in (A.7) shows that 

G ~ ( Z - ~ ) G ( ~ )  = (D*C + B * A ) ( ~ I  - A ) - ~ B  
+ B*(z-lI  - A*)-l(C*D + A*B) 
+ B*B + D*D. 

Since (A ,  B )  is a controllable pair, it follows that 
GT(z-l)G(z) = I if and only if B*B + D*D = I 
and D*C + B*A = 0. 0 

Proof of Proposition 5.3: Using Proposition 5.2, and its 
dual version, it follows that DD* + CC* = D*D + B*B = I .  
Now llDllz < 1 is equivalent to the smallest singular value 
of B*B being greater than zero which is equivalent to rank 

U 
Proof of Proposition 5.4: We use complete induction on 

B = m. The result for rank C follows analogously. 

k to prove this proposition. Note that we can write 

with ( A I ,  B1, C1,Dl) = ( A ,  B ,  C, D). Validity of the state- 
ment for ( A I ,  B1, C1,Dl) is straightforward. Assuming valid- 
ity for k - 1, we have to show that the statement holds for 
k .  First we show that (Ak, Bk, Ck, D k )  is indeed a realization 
of Gk(z )  

Balancedness of the realization (Ak, Bk, c k )  can be shown by 
evaluating: &A; + BkB;. For brevity of notation, we will 
Write (Ak-1, Bk-1, c k - 1 ,  Dk-1) = ( A ,  B ,  c, 0) 

AkA; + BkB; = 

1 
1 

AA* rt BB* AC* B* + BD* B* 
BCA* + BDB* BCC*B + AA* + BDD*B* 

(AC* + BD*)B* 
- - [ B(CA* AA*+BB* + DB*) B(CC* + DD*)B* + AA* * 

Employing Proposition 5.2 together with AA* + BB* = I 
shows that the above expression equals the identity matrix. 
In a similar way, using the dual forms, it can be shown 
that A;& + C;ck = I ,  which proves that the realization 
is balanced and minimal. U 

Proof of Proposition 5.5: Since Vz = [B  AB A2 B . . . ] 
and %(G) = UoV; is an svd, it follows that U,* = 
[C* A*C* . . . 1. Similarly it holds for any IC that 'FI(Gk) = 
rir; is an svd, with (r",* = [C; A;C; . . . 1. Since and 

satisfy the recursion property of Theorem 4.5-a), the given 
0 

Proof ofProposition5.6: With X = BC and P any 
matrix satisfying PB = BD, the matrices Ak,Bk as in 
Proposition 5.4 will take the form 

solution has to be the unique one. 

A k =  I Pk-2X p x  

1 I '  1 1  
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We can write 

Mo(j - 1) 
= A k [  Ml( j  - 1) 1 -  

Mk-l(j - 1) 
With the above representation of Ak this leads to the recursive 
relation (30). Relations (29), (31) follow directly from Bk. 0 

Proof of Theorem 5.7: 1-a). Using Proposition 4.6 we 
have to show that 

z ( z I -  A)-lB[D + C(z1-  A)-lBIk = 
= [ (z I  - A)-lF(I - zA*)lkz(zl  - A)-'B. 

Note that it is sufficient to show that this holds for k = 1, 
since successive application of the equality for k = 1 shows 
the result for any k. The equality for k = 1 is equivalent to 

{B[D + C ( z I -  A)-lB] = F(I  - zA*)(zI - A)- lB]  
H {BD + B C ( z I -  A) - lB  = BC(z1-  A)-lB+ 
- P A ( z I -  A)-'B - zFA*(zI - A)- lB} ,  
e {BD = -PA(zI - A)- lB  - zFA*(zI - A)- lB} .  

With PB = BD it suffices to show that 

P = -PA(zI - A)-l - zFA*(zI - A)-' 

This is equivalent to {P(zI  - A )  = -PA - zFA*} w 

BDB*+P-PBB*} w {PBB* = BDB*} which is known 
to be true since P B  = BD. 

{ P  = -FA*} { P  = -BCA* + PAA*} { P  = 

1-b) This follows directly from Proposition 4.6. 
2) Take P = -RA*. Then P B  = -RA*B, which with 

Proposition 5.2-i) equals RC*D. With B = RC* it follows 
that PB = BD and thus this choice of P satisfies (28). 

Now it has to be shown that for this P,  BC - PA = R. 
This follows from BC - P A  = BC + RA*A = BC + R(I  - 

0 
Proof of Theorem 5.8: Denote the infinite-dimensional 

matrices B, := Bk, k -+ CO, and A, := Ak, k + CO. Then 
we can rewrite (34) as 

[C,B, C,A,B, C,A:B, - . - I  = 

(7°C) = BC+ R -  BC = R. 

= [LO L1 . . . I [  B ,  A,B, ALB,  . . . I .  ('4.8) 

Because of the orthonormality of [B, A,B, . . .] postmul- 
tiplication of (A.8) with [B, A,B, . . .]* provides 

[C,B, C,A,B, * * . ] [ B ,  A,B, . . . I *  = [Lo L1 L2 . . . I  
leading to [LO L1 L2 . . . I  = ~ ~ = o C s A ~ B s B & ( A & ) k .  

We define 
03 

Q := [Qo Qi Q2 . ' - I  = C A 2 B s B L ( A k ) k  (A.9) 
k=O 

and as a result, Lk = CsQk, which equals (35). 

Based on (A.9) we can write A,QAT, = Q - B,B&. With 
X = BC and P any matrix satisfying PB = BD, this leads to 

A* X* X*p*  . . .  
1 0  A* X*  X*p*  :::I 

As[Qo Qi Q2 - . . I  I 0 0 A* 
: :  0 

1:  i 
= [Qo Q1 Q2 .-.I - B,[B* B*P* B*(P*)2 ...I. 

The first element of this equation shows A,QoA* = QO - 
B,B*, which equals (36). The ith element leads to 

i 

A,[QiA* + C Q i - j X * ( P * ) j - l ]  = Q; - B,B*(P*)'. 
j=1 

Postmultiplication with P* gives 
(A. 10) 

i 

A,[QiA*P* + C Q i - j X * ( P * ) j ]  = QiP* - B,B*(P*)Z+'. 

(A.11) 
Writing (A.lO) for i + i + 1, shows that 

As[Qi+lA* +E Q;-j+lX*(P*)j-l]=Q;+l - B,B*(P*)i+l 

(A.12) 

j=1 

i+l 

j=1  

and subtracting (A.11) from (A.12) delivers 

AsQi+lA* - A,Q;[A*P* - X*]  = &;+I - QiP*. (A.13) 

Note that P = P(AA* + BB*)  = PAA* + BDB* = 
PAA* - BCA* = -FA*, and since F = X - PA, (A.13) 

Proof of Proposition 7.1: Part a) A similar result for 
continuous-time systems is proven in [ 111. The discrete-time 
version follows by applying a bilinear transformation, as is 
shown in [19]. 

Part b) The proof is based on an equivalence relation as 
employed in [ l l ] ,  based on the bilinear transformation. If 
(Ad, Bd , Cd , Dd) is a balanced realization of a square discrete- 
time system Gd, then (A,, B,, C,, 0,) is a (continuous-time) 
balanced realization of a continuous-time system G,, where 

leads to (37). 0 

A,=[Ad-I][Ad+I]-l  
B, = d [ A d  + I1-l Bd 
C, = JZCd[Ad + I1-l 
Dc=Dd-Cd[Ad+I]-lBd Dd=Dc+Cc[I-Ac]-lBc. 

Ad = [I + A,][I - A,]-1 
Bd = 4 [ 1 -  A,]-'B, 
Cd = JzC,[I - A,]-' 

Furthermore Gd is inner if and only if G, is inner. From 
[ l  13 it follows that G, is inner if and only if the following 
conditions are satisfied: 

1) A, + A: + B,B,* = A, + A,* + C,*Cc = 0 
2) D,DZ = D,*D, = I 
3) D,*Cc + B,* = D,B: + C = 0. 
Given Ad, Bd we can construct A,, B, with the equations 

above, additionally choosing C, := B,*, D, := -I it follows 
that (A,, B,, C,, 0,) is a balanced realization of an inner 
function. 

Now transforming the continuous-time realization back to 
the discrete-time domain, with the expressions for Cd, Dd 

-1'1 1 
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as given before and employing the relation ( I  - A=)-’ = 
$ ( I  + Ad), shows that 

Cd = B;(A: + I)-’(Ad + I )  
Dd = Bi(A:  + I)-’Bd - I 

which completes the balanced realization (Ad, Bd, Cd, Dd). 
Using the fact that Bd and c d  have full rank, Proposition 

5.2 now implies that premultiplication of C d  and Dd with any 
unitary matrix U characterizes the intended class of balanced 
realizations. 
Part c) Consider a realization ( A ,  B ,  C, 0) satisfying (44), 

(45) with U = I .  For F = [I + A][I  + A*]-’ it follows 
immediate that FC* = B, and the result follows with Theorem 

Denote F(X,  U )  = [ X I  + B(U - XI)(B*B)-’B*]F, with 
U a unitary matrix and X E C. Then by substitution it can 
be verified that F(X, U)C*U* = B. This means that for any 

= UC-we have constructed a A-family F(X, U )  that satisfies 
F(X,U)C* = B. Again with Theorem 5.7-2) and choosing 
X = 1 this proves the result. 0 

Proof of Proposition 8.1 : This result follows directly 
from rewriting the Lyapunov equations in Theorem 5.8 in 
terms of Kronecker products: see [3], [19]. 

Proof @Theorem 8.3: Consider a single scalar entry of 
the rational matrix function W ( z )  = Z,(zI - Xo)-’Yo, 
written as w(z) = X , ” = , W ~ Z - ~ .  Then w(z) is convergent 
for JzI > A. Consequently, according to basic theory of 
power series, see e.g., [20], as employed also in [17], there 
exists an a E R such that for each 77 > A, J W ~ V - ~ ~  5 
a ,  leading to Iwk( 5 a$. Since this holds for any entry 
of W ( z ) ,  and W ( z )  = x r = l V e c ( L k - l ) z - k ,  there exist 
scalars azl such that ILk(i , j) l  5 aZ1$+’, with L k ( i , j )  

f i N ( z )  = Cr==,LkVk(z), it follows that 113(~)11~ 5 

Using the above upper bound for ( L k ( i ,  j ) l  together with the 
well-known relation between the m-norm and the Frobenius 
norm, 11 . )loo 5 1 1  . I ( F ,  it follows that 

(A.14) 
(A. 15) 

5.7-2). 

I being the (i,j)-entry in Lk. Denoting E ( z )  := H ( z )  - 

II CEN LkVk(~>l lm I IIVo(z)llm CEN IILkllm. 

ll-hllm I #+‘\/CnZ. (A. 16) 

Substituting this latter upper bound in the derived upper 
bound for 11E(~)11~, the result of the theorem follows with 

z,1 

c = I l V o ( . ) l I m ~ ~ .  0 

REFERENCES 

[I] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operarors in Hilbert 
Space, vol. 1. 

[2] L. Baratchart and M. Olivi, “Inner-unstable factorization of stable ratio- 
nal transfer functions,” in Modeling, Estimation and Control of Systems 
with Uncertuinry, G.B. DiMasi, A. Gombani and A.B. Kurzhanski, 
Eds. Boston, MA: Birkhauser Verlag, 1991, pp. 22-39. 

[3] R. Bellman, Introduction to Matrix Computations. New York: 
McGraw-Hill, 1970. 

[4] P. M. M. Bongers and P. S. C. Heuberger, “Discrete normalized coprime 
factorization,” in Proc. 9th Int. Con5 Analysis and Optimization of 
Systems, Antibes, France, June 12-15, 1990, pp. 307-313. 

[5] C.-C. Chu, “On discrete inner-outer and spectral factorizations,” in Proc. 
Amer. Contr. Conf., Atlanta, GA, 1988, pp. 1699-1700. 

Boston, MA: Pitman Adv. Publ. Program, 1981. 

7 1 I 1  

[6] P. R. Clement, “Laguerre functions in signal analysis and parameter 
identification,” J. Franklin Inst., vol. 313, no. 2, pp. 85-95, 1982. 

[7] G. J. Clowes, “Choice of the time scaling factor for linear system 
approximations using orthonormal Laguerre functions,” IEEE Trans. 
Automat. Contr., vol. AC-IO, no. 5, pp. 487489, 1965. 

[8] C. A. Desoer, R-W Liu, J. Murray and R. Seaks, “Feedback system 
design: the fractional representation approach to analysis and synthesis,’’ 
IEEE Trans. Automat. Contr., vol. AC-25, pp. 399-412, 1980. 

[9] G. A. Dumont, Y. Fu, and A.-L. Elshafei, “Orthonormal functions in 
identification and adaptive control,” in Intelligent Tuning and Adaptive 
Control, Selected Papers from the IFAC Symposium Oxford, England: 
Pergamon Press, 1991, pp. 193-198. 

[IO] B. A. Francis, A Course in H ,  Control Theory (Lecture Notes in 
Control Information Sciences) vol. 88. Berlin: Springer-Verlag, 1987. 

[ 1 I] K. Glover, “All optimal Hankel-norm approximations of linear multi- 
variable systems and their L,-error bounds,” Int. J. Contr., vol. 39, 

[I21 K. Glover, J. Lam and J. R. Partington, “Rational approximation of 
a class of infinite-dimensional systems. I. Singular values of Hankel 
operators,” Math. Contr. Signals Syst., vol. 3, no. 4, pp. 325-344, 1990. 

[ 131 -, “Rational approximation of a class of infinite-dimensional 
systems. 11. Optimal convergence rates of L ,  approximants,” Math. 
Contr. Signals Syst., vol. 4, no. 3, pp. 233-246, 1991. 

[I41 M. J. Gottlieb, “Conceming some polynomials orthogonal on finite or 
enumerable set of points,” Amer. J .  Math., vol. 60, pp. 453458, 1938. 

[15] G. Gu, P. P. Khargonekar, and E. B. Lee, “Approximation of infinite- 
dimensional systems,” IEEE Trans. Automat. Contr., vol. 34, no. 6, pp. 
610-618, 1989. 

[I61 S. Gunnarsson and B. Wahlberg, “Some asymptotic results in recursive 
identification using Laguerre models,” Int. J. Adaptive Contr. Signal 
Processing, vol. 5,  no. 5, pp. 313-333, 1991. 

[17] A. J. Helmicki, C. A. Jacobson, and C. N. Nett, “Control oriented system 
identification: a worst-case/deterministic approach in H ,  ,” IEEE Trans. 
Automat. Contr., vol. 36, no. 10, pp. 1163-1176, 1991. 

[I81 P. S. C. Heuberger and 0. H. Bosgra, “Approximate system identifi- 
cation using system based orthonormal functions,” in Proc. 29th IEEE 
Conf. Decis. Contr., Honolulu, HI, 1990, pp. 10861092. 

[I91 P. S. C. Heuberger, “On approximate system identification with system 
based orthonormal functions,” Ph.D. dissertation, Delft University of 
Technology, The Netherlands, 1991. 

[20] E. Hille, Analytic Function Theory, vol. 1. Boston, MA: Ginn, 1959. 
[21] W. H. Kautz, “Transient synthesis in the time domain,” IRE Trans. 

Circuit Theory, vol. CT-I, pp. 29-39, 1954. 
[22] R. E. King and P. N. Paraskevopoulos, “Digital Laguerre filters,” Inc. J .  

Circuit Theory and Appl., vol. 5, pp. 81-91, 1977. 
[23] -, “Parametric identification of discrete time SISO systems,” Int. 

J. Contr., vol. 30, pp. 1023-1029, 1979. 
[24] Y. W. Lee, “Synthesis of electrical networks by means of the Fourier 

transforms of Laguerre functions,” J. Math. Physics, vol. 11, pp. 

[25] -, Statistical Theory of Communication. New York: Wiley, 1960. 
[26] L. Ljung, System Identifxatiom-Theory for the User. Englewood 

Cliffs, NJ: Prentice-Hall, 1987. 
[27] P. M. M&ila, “Approximation of stable systems by Laguerre filters,” 

Automatica, vol. 26, pp. 333-345, 1990. 
[28] -, “Laguerre series approximation of infinite dimensional systems,” 

Automatica, vol. 26, no. 6, pp. 985-995, 1990. 
[29] -, “Laguerre methods and H ,  identification of continuous-time 

systems,” Int. J .  Contr., vol. 53, no. 3, pp. 689-707, 1991. 
[30] M. Masnadi-Shirazi and N. Ahmed, “Optimum Laguerre networks for 

a class of discrete-time systems,” IEEE Trans. Signal Processing, vol. 
39, no. 9, pp. 2104-2108, 1991. 

[31] Y. Nurges, “Laguerre models in problems of approximation and identifi- 
cation of discrete systems,” Automar. Remote Contr., vol. 48, 346-352, 
1987. 

[32] Y. Nurges and Y. Yaaksoo, “Laguerre state equations for a multivariable 
discrete system,” Automat. Remote Contr., vol. 42, 1601-1603, 1981. 

[33] R. Ober and D. McFarlane, “Balanced canonical forms for minimal sys- 
tems: A normalized coprime factor approach,” Linear Algebra Applicat., 
vol. 122/123/124, pp. 23-64, 1989. 

[34] P. N. Paraskevopoulos, “System analysis and synthesis via orthogonal 
polynomial series and Fourier series,” Math. Compur. Simulation, vol. 
27, 453-469, 1985. 

[35] M. Schetzen, “Power-series equivalence of some functional series with 
applications,” IEEE Trans. Circuit Theory, vol. CT-17, no. 3, pp. 
305-313, 1970. 

[36] -, “Asymptotic optimum Laguerre series,” IEEE Trans. Circuit 
Theory, vol. CT-18, no. 5, pp. 493-500, 1971. 

1115-1193, 1984. 

83-113, 1933. 

1- 



HEUBERGER er al.: ORTHONORMAL BASIS FOR LINEAR DYNAMICAL SYSTEMS 465 

[37] G. Szego, Orthogonal Polynomials, 4th ed. Providence, RI: American 
Mathematical Soc. 1975. 

[38] H. Unbehauen and G. P. Rao, “Continuous-time approaches to system 
identification,” Prep.  8th IFACIIFORS Symposium ldentifrcation and 
System Param. Esrim., Beijing, China, 1988, pp. 60-68. 

[39] P. M. J. Van den Hof, P. S. C. Heuberger, and J. Bokor, “Identification 
with generalized orthonormal basis functions-Statistical analysis and 
error bounds,” Preprints 10th IFAC Symposium on System Identification, 
Copenhagen, vol. 3, 1994, pp. 207-212, to appear in Auromatica, vol. 
31, no. 12 

[40] M. Vidyasagar, Control Systems Synthesis: A Factorization Approach. 
Cambridge, MA: MIT Press, 1985. 

[41] B. Wahlberg, “On the use of orthogonalized exponentials in system 
identification,” Dept. Electr. Eng., Linkoping University, Sweden, Rep. 
LiTH-ISY-1099, 1990. 

[42] B. Wahlberg and E. J. Hannan, “Parametric signal modeling using 
Laguerre filters,” Annals Appl. frob.,  vol. 3,  pp. 467496, 1993. 

[43] B. Wahlberg, “System identification using Laguerre models,” IEEE 
Trans. Automat. Contr., vol. 36, 551-562, 1991. 

[44] -, “System identification using Kautz models,’’ IEEE Trans. Au- 
tomat. Contr., vol. 39, pp. 1276-1282, 1994. 

[45] E. E. Ward, “The calculation of transients in dynamical systems,”froc. 
Cambridge Philos. Soc., vol. 50, pp. 49-59, 1954. 

[46] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary 
Time Series. 

[47] C. Zervos, P. R. BClanger and G.A. Dumont, “On PID controller tuning 
using orthonormal series identification,” Auromatica, vol. 24, no. 2, pp. 
165-175, 1988. 

Cambridge, MA: MIT Press, 1949. 

Peter S. C. Heuberger was bom in Maastricht, The 
Netherlands, in 1957. He obtained the M.Sc degree 
in Mathematics from the Groningen State University 
in 1983 and the Ph.D. degree in 1991 from Delft 
University of Technology. 

From 1983 until 1990 he was a Research As- 
sistant in the Mechanical Engineering Systems and 
Control Group at Delft University of Technology 
Since 1991, he has been a staff member of the Dutch 
National Institute of Public Health and Environmen- 
tal Protection in Bilthoven, The Netherlands, dealing 

with modeling and calibration of environmental systems. His main research 
interests are in issues of system identification and model reduction. 

I 1 

Paul M. J. Van den Hof (S’X5-M’XX) was bom 
in Maastricht, The Netherlands, in 1957. He ob- 
tained the M.Sc. and Ph.D. degrees both from the 
Department of Electrical Engineering, Eindhoven 
University of Technology, The Netherlands, in 1982 
and 1989, respectively. 

From 1986 to 1990 he was an Assistant Pro- 
fessor in the Mechanical Engineering Systems and 
Control Group at Delft University of Technology, 
The Netherlands. Since 1991 he has been working 
in this same tzrouu as an Associate Professor. In 

- 1  

1992 he has held a short term visiting position at the Centre for Industrial 
Control Science, The University of Newcastle, NSW, Australia. His research 
interests are in issues of system identification, parameterization, and the 
interplay between identification and robust control design, with applications 
in mechanical servo systems and industrial process control systems. 

Dr. Van den Hof is an Associate Editor of Automatica. For his M.Sc thesis 
he received the 1983 Control Systems Award (Regeltechniekprijs) of the Royal 
Dutch Institute of Engineers (KIvI). 

theory of robust iden 
industrial problems in 

Okko H. Bosgra was bom in Groningen, The 
Netherlands, in 1944. He obtained the M.Sc. degree 
in mechanical engineering from Delft University of 
Technology in 1968. 

From 1981-1985 he held a Professorship in the 
Department of Physics at the Agricultural University 
of Wageingen, The Netherlands. Since 1986 he 
is a Full Professor in control engineering, head- 
ing the Mechanical Engineering Systems and Con- 
trol Group of Delft University of Technology, The 
Netherlands. His current research interests are inthe 

tification and control design and their application to 
the process control field and in the field of mechanical 

servo motion control. 
Prof. Bosgra is a member of the EUCA (European Union Control Associa- 

tion) Goveming Board, a founding member of the Dutch Systems and Control 
Theory Network, and an Editor-At-Large of the new European Journal of 
Control. 

-7 . . . 


