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Preface

The following pages form my MSc. Thesis on the subject ‘Modelling wave damping by
fluid mud’. I worked on this project from March 2007 to January 2008, mainly at WL | Delft
Hydraulics (presently Deltares).

Excuse me for the fact that I need so many pages to explain what I did. Probably it tells you
more about me and my inclination to be too complete and to explain things that are clear
already, than it tells you about the amount of work. Perhaps I could have reduced the
number of words. But I am convinced that it would not be an improvement to economize on
the number of chapters. We even miss one chapter: the calibration of the model on a
practical  case.  What  I  like  about  this  project  is  that  –  except  for  the  calibration  –  the
complete development is investigated from a simple mathematical model to an
implementation that can be used in engineering environment. This development is clearly
reflected in the structure of this report. I consider passing through all stages involved not
only as instructive to myself, but also as a valuable contribution to the discussion in
literature on this subject, because it underlines the importance of consistency between the
various  parts  of  the  model.  It  is  also  for  that  reason  that  I  am especially  content  with  the
derivation of the energy dissipation term (chapter 6). When my supervisors frowned their
brows at my rather naïvely made remark on the influence of the pressure term on the energy
dissipation, I realized that there was a challenging task for me in the derivation of an energy
dissipation term that is consistent with the used dispersion equation.

At the end of this project, I would like to take the opportunity to thank the people that
contributed to both my pleasure and my results during this project.

I would like to thank Han for his very accurate reading of both text and formula’s. Also his
purposive approach and ability to present plans and results positive and convincing are a
great motivation. The offered possibility to do a part of my work in Brasil contributed for
sure to my enthousiasm. Next, thanks to Gerben for his essential practical assistance in the
‘daily work’ of programming and post-processing, his ideas for finding a useful function for
the starting value and his general role as sparring-partner. I also would like to thank the
other members of my graduation committee. Although less closely associated to my project,
they all made a positive contribution. Let me mention e.g. the introduction in Fortran by
John Cornelisse the modifications in the SWAN infrastructure by Marcel Zijlema that enabled
me to implement dispersion equation and energy dissipation term, the fundamental
questions on wave mechanics and suggestions for methods by Andrei Metrikine and the
financial support by professor Stelling for writing an article in the coming months.

Thanks also to Susana, for the supervision during my time in Brasil and the opportunity to
join the fieldwork near Cassino. I am sorry I didn’t finalize the calibration yet, but I am sure
it will be done soon. Thanks to my friend Saulo and the other MSc. and PhD. students in
Brasil, both Rio de Janeiro and Rio Grande. Saulo was not only the first student-colleague
that didn’t get tired of conversations on the subject, but was also a funny roommate and a
great guide in both culturale and natural wilderness of Rio. Thanks to the student-colleagues
at  WL | Delft Hydraulics. I am convinced we together form the most pleasant department of
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WL | Delft Hydraulics. I would be honoured if you would carry on the tradition of cookie-
time I introduced.

Thanks to my family for their interest in my work and well being, for their morale and
financial support and for their patient listening to my considerations in the processes of
making choices. Thanks to my girlfriend Ditske, whose cheerfull character wipes out even
my most peevish mood. Your enthousiasm, confidence and perseverance are a great
inspiration to me. Finally, I would like to give thanks to the Lord, for his blessings and care,
for the health and strength he gave me to do my work. I am called to do my work and live
my life to honour him. Therefore I would like to do it good, in a positive mood, with sincere
interest for the people around me and the world I am living in and gratefullness towards my
Lord.

Wouter Kranenburg
February 2008
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Abstract

At numerous locations in the world mud occurs in front of the coast close to river mouths.
This mud can be transported to these place in fluid state or can become fluid under certain
wave conditions. Fluid mud may have a strong damping effect on surface waves. This study
presents modelling of wave damping by fluid mud.

After studying various two-layer models described in literature, one schematization is
chosen to describe the water-mud-system (Figure 1). In this schematization, the upper layer
represents the water and is non-hydrostatic and non-viscous. The lower layer represents the
mud and is quasi-hydrostatic and viscous. Based on this schematization a complex
dispersion equation is derived and compared with other dispersion equations from literature.
A numerical procedure is formulated in Fortran to solve this implicit dispersion equation for
the wave number. The function for the initial approximation in the iteration depends on the
relative water depth and is assembled from the limit of the dispersion equation for shallow
water with mud and the limit for intermediate and deep water without mud. When the wave
number is known, information on the damping is given by the imaginary part, while the real
part is associated with the wave length and the propagation velocity of energy.

Figure 1 viscous two-layer model

To compute wave damping for situations in practice, the influence of mud is incorporated in
the wave model SWAN. First, an energy dissipation term is derived that represents the mud-
induced dissipation. The derivation is based on the used viscous two-layer model and
consistent with the dispersion equation. This term is added as a sink term to the energy
balance in SWAN. By making the mud-adjusted wave number available through the whole
code, also influence of fluid mud on energy propagation is included in the model. The
performance of the model for both energy dissipation and energy propagation is validated
for some simple cases.

The final result of this study is a modified version of SWAN which allows to model the
decrease of energy during the propagation of a wave field over fluid mud. The model is
ready for use in engineering applications by specialists. Further improvement of the solving
procedure to calculate the wave number and calibration of the model on a practical case are
the main recommendations.

MUD quasi-hydrostatic & viscous

WATER non-hydrostatic & non-viscous

energy transfer

dissipation

propagation

dissipation
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Samenvatting

Op vele plaatsen in de wereld is voor de kust modder te vinden. Meestal vinden we de
modder in de buurt van mondingen van rivieren of estuaria. Deze modder kan hier terecht
komen doordat ze als vloeibare modder naar deze plaatsen wordt getransporteerd. Het kan
ook zo zijn dat eerder afgezette modder vloeibaar wordt onder invloed van golven. Hoe het
ook zij, vloeibare modder kan een grote dempende werking hebben op oppervlaktegolven.
In deze studie is onderzocht hoe de demping van golven door vloeibare modder kan worden
gemodelleerd.

De basis van de modellering is een tweelagenmodel (Figure 2. De bovenste laag stelt het
water voor. De druk in deze waterlaag is niet-hydrostatisch en er wordt verondersteld dat het
water niet viskeus is. De onderste laag stelt de vloeibare modder voor. In deze laag is de
drukverdeling hydrostatisch. Daarnaast is de vloeibare modder viskeus. Op basis van deze
schematizatie is een dispersierelatie afgeleid. Door de aanwezigheid van demping, wordt
deze dispersierelatie complex. Om deze dispersierelatie op te lossen voor het golfgetal, is
een numerieke oplosroutine gebruikt. Daarbij is veel aandacht besteed aan een eerste
schatting van het golfgetal. Deze schatting wordt gebruikt als startwaarde voor de iteratie.
Wanneer het complexe golfgetal is gevonden, geeft het imaginare deel informatie over de
demping. Het reële deel geeft informatie over de golflengte en over de
voortplantingssnelheid van de golfenergie.

Figure 2 Tweelagenmodel

Om de demping van golven door vloeibare modder te berekenen voor praktische situaties
(Figure 3), zijn aanpassingen gedaan aan het bestaande golf model SWAN. Allereerst is
ingebouwd dat het golfgetal berekend wordt via de eerder afgeleide dispersierelatie.
Vervolgens is een uitdrukking afgeleid die de energiedissipatie door vloeibare modder
beschrijft en die consistent is met de dispersierelatie. Deze term is toegevoegd aan de
energiebalans in SWAN. In de volgende stap is het programma zo aangepast, dat het door de
modder beïnvloede golfgetal ook gebruikt wordt voor de berekening van andere processen,
zoals golfvoortplanting (propagatie). Middels een aantal eenvoudige testen en vergelijking

MUD quasi-hydrostatic & viscous

WATER non-hydrostatic & non-viscous

energy transfer

dissipation

propagation

dissipation
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met analytische berekeningen is het model zowel voor dissipatie als voor propagatie
gevalideerd.

Het uiteindelijke resultaat van deze studie is een aangepaste versie van SWAN, waarmee het
mogelijk is de demping van golven door vloeibare modder te modelleren. Het model is klaar
voor gebruik.

Figure 3 Luchtfoto van breking en demping van golven, Demerara Coast, Guyana

breaking
waves

damped
waves
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1 Introduction

1.1 General background

At various places in the world mud has been deposited in front of the coast close to river
mouths or estuaries. These mud deposits can be liquefied under incoming waves when the
waves cause stresses in the mud above a certain limit (De Wit, 1995). Liquefied mud  may
damp waves very effectively (Gade, 1958). At the same time, wave-induced currents can
cause transport of the liquefied mud, sometimes even resulting in mud deposits on the shore.

The liquefaction of muddy bottoms, the mud-induced wave damping and the transport of
mud are phenomena of practical importance, because they can have implications for e.g.
constructing, dredging, ecology and coastal protection. These phenomena can influence
wave loads on structures, wave refraction, soil motions, also around structures and pipelines,
and the accessibility of the shore.

The practical importance is reason to study these phenomena, among others with the use of
process based models. This project focuses on the stand-alone modelling of the damping of
waves by fluid mud. This is schematically presented in the figure below.

Figure 4 Schematic presentation of the context of the project with indication of the current focus

1.2 Problem analysis

In literature often a two layer approach is used to model the surface-bottom interaction in
the case of wave propagation over muddy bottoms. Various schematizations, each focusing
on different properties of the mud, have been examined to investigate the deformation of the
bottom.  It  is  argued  in  literature  (o.a.  Dalrymple  1978)  that  after  liquefaction  of  the  mud,
viscosity is the most important property to deal with.

The  schematization  of  Gade  (1958)  is  a  schematization  that  assumes  both  layers  to  be
hydrostatic and takes into account only the viscosity of the  lower layer. This schematization

Hydraulical
model

liquefaction damping flow and transport

Wave
model

Rheological
model
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has been used earlier to assess the dissipation of energy by liquefied mud. A procedure
based on this schematization has been build in the SWAN spectral wave model and
calculations have been performed for wave attenuation in the Guyana coastal system
(Winterwerp et al., 2007). Although the model shows quite well that energy is dissipated by
the mud layer, an extension of the model is proposed to give a better account of the
dissipation of non-shallow water waves.

Schematizations that take also into account non-shallow water waves lead to quite complex
dispersion relations. The first problem is that the dispersion relations in literature are not
free of typing or derivation errors. Another problem is that the more complex dispersion
relations do not give an explicit or analytical solution for the wave number.

In practical cases, waves with various frequencies and wave heights approach from various
directions over a bed with changing bathymetry. Also the thickness of the mud layers can
change in space. To make it possible to model the wave propagation over mud in practical
cases, the non-shallow water schematization(s) has to be applied on various frequencies and
directions in a practical applicable spectral wave model. Problems in this part of the project
are the translation of the dispersion relation into a dissipation term that can be applied in the
wave model, the parallel application on different frequencies in a spectrum and the change
in the propagation velocity of energy.

1.3 Framework

ONR,  the  Office  of  Naval  Research  (USA),  is  the  initiator  and  financier  of  a  series  of
projects on the interaction between waves and mud. Some of the projects focus on field
measurements or real-time monitoring, other on further research on the dissipation
mechanisms. Numerical modeling of the processes presently known is also a greater task in
a part of the projects. The locations of the field experiments are the coast of Louisiana,
USA, and Cassino Beach in Southern Brazil. The projects are executed by universities and
institutes mainly in the United States and Brazil. WL|Delft Hydraulics is also involved as a
participant in the Cassino Beach project. The contribution of WL|Delft Hydraulics mainly
exists of numerical modeling with the use of the WL-product DELFT3D and the open source
spectral wave energy model SWAN.

1.4 Project objectives

The main objective of this MSc. Thesis project is the development and testing of an
adaptation to SWAN with which it is possible to model the decrease of wave energy during
the propagation of a wave field over fluid mud.

This implementation has to be:
applicable for shallow and non-shallow water
consistent
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efficient
reliable
validated

Several sub objectives can be distinguished. These sub objectives form steps in the project.

1. Study of the short-wave energy dissipation mechanism in two layer systems and
comparison of the dispersion relations for the various schematizations in literature

2. Search for an efficient and reliable solving routine to determine the wave number from
the dispersion relation

3. Determination of a mud-induced energy dissipation term that can be used in SWAN,
implementation of this term and validation of the model for a simple 1D case

4. Extension of the model with influence of mud on the propagation velocity of energy,
validation of the implementation for simple propagation tests (1D/2D)

5. Calibration of the model by application on a practical case: Cassino Beach, Brazil

1.5 Reading guide

In this chapter the objective of this MSc. Thesis project was shortly described after a short
analysis of the problem of wave damping by fluid mud.

The chapters 2, 3 and 4 concern with dispersion equations and wave numbers. Chapter 2
discusses various models that describe the response of a non-rigid bed to progressive waves,
mainly focussing on viscous bed models. Chapter 3 describes the derivation of the ‘DELFT’
dispersion equation. In chapter 4 the dispersion equation is solved for the complex wave
number.  The  results  of  the  calculations  are  compared  to  results  for  other  dispersion
equations and results obtained with a different method.

The chapters 5, 6, 7 and 8 mainly study the influence of mud on waves in terms of wave
energy. Chapter 5 gives a brief introduction on wave models, focussing on SWAN, and
studies recent implementations of viscous bed models in wave models described in
literature. Chapter 6 gives the derivation of an energy dissipation term consistent with the
‘DELFT’ dispersion equation. Chapter 7 describes the implementation of dispersion equation
and energy dissipation term into SWAN and shows the results of a few simple tests. Chapter 8
discusses the inclusion in the SWAN-mud model of the influence of fluid mud on energy
propagation. Also this extended model is tested for some discriminating cases.

Conclusions and recommandations of this project are discussed in chapter 9. The content of
this report is schematically presented in Figure 5.
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Figure 5 Schematic presentation of the content of this report
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2 Models describing the response of a non-rigid
bed to progressive waves

2.1 Introduction

Various models exist to describe the response of a non-rigid bed to progressive waves. This
chapter discusses the models described in literature. A classification of various types of
models is given in section 2.2. Viscous models to describe wave damping by fluid mud are
extensively studied in section 2.4. Because the investigated viscous models are all two layer
models, a short introduction to wave propagation in stratified flows is given in section 2.3.
This chapter is concluded with a discussion (section 2.5). This discussion indicates which
schematizations  can  be  used  in  the  adaptation  to SWAN and what problems have to be
accounted for while comparing the various schematizations.

2.2 Classification of various types of models

The various models that describe the response of a non-rigid bed to progressive waves use
various rheological models and constitutive equations to describe the mechanical properties
of the non-rigid bed. De Wit (1995) gives an overview of the models presented in literature
and divides the models in five groups based on rheology.

The first group of models consideres waves over an ideal elastic bed. The influence of pore
water is incorporated in the poro-elastic models. These two groups of models can be used
to calculate the maximum wave pressure induced shear stress in the bed. These models are
thoroughly studied by De Wit, because the results of these models might be used to estimate
the onset of liquefaction when the yield stress of the mud is known. The application of the
first group of models is limited to non-fluid, highly consolidated cohesive beds. The second
group of models can also be applied to relatively thin layers of unconsolidated mud. These
models cannot calculate wave damping, because dissipation is not incorporated.

When the bed consists of a mud layer that is fluid, wave damping occurs. Fluid mud in
general has viscous, viscoelastic or viscoplastic properties. Based on these characteristics,
De Wit distinguishes viscous models (group three), viscoplastic models (group four) and
viscoelastic models (group five). De Wit states that the viscoplastic description is not
suitable to model the response of a mud bed to waves, because ‘in the field the shearing of
mud due to wave action is oscillatory and the rheological response to oscillatory shearing
shows that the mud then behaves more like an viscoelastic material.’ (p.62). The viscoelastic
models probably represent the rheological properties of soft mud in the best way, but
application of  these models  is  rather  complex.  De Wit  gives a  number of  reasons,  most  of
which are connected to the determination of the viscoelastic properties and the fact that
these parameters depend nonlinearly on depth, oscillatory strain amplitude and
consolidation time. In the viscous models the fluid mud is considered as a Newtonian fluid.
Although these models only partly represent the rheological properties of the mud, these
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models can be used to estimate the wave damping and the wave-induced velocities in a
fluid-mud layer.

2.3 Introduction to wave propagation in stratified fluids

2.3.1 External and internal waves

The viscous models studied in section 2.4 are all two-layer models, describing the system of
water and fluid mud as two layers of fluid with a clear interface and different density and
viscosity. As an introduction to the study of these models a few remarks are made on the
propagation of waves in stratified, non-viscous fluids, as presented for long waves in
C.Kranenburg (1998).

Assuming no viscosity, small density differences between the layers, and long, linear
surface waves, two types of waves can be distinguished, namely external (or surface) long
waves and internal long waves.

For the external wave, both layers behave in fact as one layer. The propagation velocity of
the external wave is close to the propagation velocity in a one layer system. The ratio
between the amplitude on the interface and the amplitude on the surface is the same as the
ratio between the thickness of the lower layer and the total depth. For long external waves,
the velocity of the current induced by the disturbance is the same in both layers.

Internal waves mainly disturb the interface. The surface is much less affected. The
propagation velocity of internal waves is much smaller than the propagation speed of the
external waves. For systems of salt and fresh water, the amplitude of the surface is an order
smaller than the amplitude of the interface. The velocities in the two layers are opposite, in
such a way that the total discharge is zero.

C.Kranenburg illustrates the theory with some simple sketsches (Figure 6).

External wave in positive direction Internal wave in positive direction

Figure 6 Schematic presentation of two-layer system with external (left) and internal long wave, taken
from C.Kranenburg (1998). The positive direction is defined to the right.
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where we define:

ce =  propagation speed external wave u1 = velocity in upper layer
ci = propagation speed internal wave u2 = velocity in lower layer

= elevation of the surface a1 = thickness of upper layer
2 = elevation of the interface a2 = thickness of lower layer

Considering an x-z-plane, both type of waves can travel in positive (to the right) and
negative x-direction. So four waves can be distinguished. The propagation velocities can be
found by writing the continuity equation and momentum equation of the two layers in a
homogeneos matrix notation and determining the four eigenvalues of this matrix. The four
eigenvalues for this case are all included in the expression:

1/ 2
2 2

1 24
2

ga ga g a a
c

(1)

where 2 1

2

1  and 1 2a a a

To facilitate discussion, names are assigned to the four waves in the table below.

type of wave traveling direction Signs of roots Name
external wave positive direction + & + EWpos
external wave negative direction -  & + EWneg
internal wave positive direction + & - IWpos
internal wave negative direction -  & - IWneg

Table 1 Overview of the four waves with type, traveling direction, signs of the roots and a name attributed
to each wave. This table is given here to facilitate interpretation in the remainder of this study.

Following C.Kranenburg’s example, the characteristics of the waves are collected in Table
2.
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Type of wave Waves in positive direction Waves in negative direction

e
e

c ga
k e

e

c ga
k

External
2

2e e
a
a

2
2e e

a
a

1
e

e e
cu
a 1

e
e e

cu
a

2
e

e e
cu
a 2

e
e e

cu
a

1 2
i

i

a ac g
k a

1 2
i

i

a ac g
k a

Internal
2

2i i
a
a

2
2i i

a
a

1 2
1

i
e i

cu
a 1 2

1

i
e i

cu
a

2 2
2

i
i i

cu
a 2 2

2

i
i i

cu
a

Table 2 Overview of the characteristics (propagation velocity, surface and interface elevation en layer
velocity) of external and internal waves in positive and negative directions

where i and e are the elevation of the surface as a consequence of the internal respectively
the external wave.

2.3.2 Relevant waves for this study

Although wave damping by viscous dissipation was not included, the explanation of the
theory for long waves in stratified fluids in section 2.3.1 shows that in a two-layer model
four waves are playing a role. Every disturbance can be seen as a linear combination of
these four waves. The aim of this study is to determine the influence of a mud layer on the
surface elevation. In the models in literature this is studied in a half-infinite space extending
in the positive direction. Therefore only waves propagation in positive direction have to be
taken into account. The influence of the internal wave to the surface elevation is small. So
also damping of this wave will hardly affect the surface elevation. Therefore it can be
concluded that the relevant wave for this study on wave damping is the external wave
traveling in positive direction (EWpos). This is merely the ordinary surface wave, the
effects of which extend down to the interface and cause a smaller disturbance in the lower
layer (Gade, 1958).
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2.4 Viscous two-layer models

2.4.1 Introduction

This section discusses non-rigid bottom models of the category of viscous models. In these
models the system is schematized as a two layer system, the upper layer being a non or low
viscous water layer and the lower layer a layer consisting of fluid mud. This lower layer is
viscous and has a high density. The general schematization for viscous models is shown in
the picture below.

Figure 7 Schematic presentation of two-layer fluid mud system, with definitions

Symbol f ( par. ) Description Units Alternative
name

Hw0 constant Equilibrium height of water layer m
Hm0 constant Equilibrium height of mud layer m D, Dm0

Htot0 constant Equilibrium height of total system m
hw ( x, t ) Height of water layer m h1

hm ( x, t ) Height of mud layer m h2 , dm

htot ( x, t ) Height of total system m
a constant Amplitude of water surface displacement m

( x, t ) Displacement of water surface (ref. = eq.) m
b constant Amplitude of interface displacement m

constant Phase difference between surface and interface rad
0 constant (complex) amplitude of interface displacement m, rad

( x, t ) Displacement of interface (ref. = eq.) m
w constant Density of water kg / m3

1

m constant Density of mud kg / m3
2

w constant Kinematic viscosity of water m2 / s 1

m constant Kinematic viscosity of mud m2 / s 2

Htot0

z

x

Hw0

Hm0 hm

a

mud layer (2)
m , m , u2 , w2 , p2

Consolidated

htot

b

water layer (1)

w , w , u1 , w1 , p1

’

hw
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u ( x, z, t ) Horizontal orbital velocity in x-direction m / s
w ( x, z, t ) Vertical orbital velocity in z-direction m / s
p ( x, z, t ) Pressure N / m2

Wave (angular) frequency (2  / T) rad / s
k (all par.) Wave number rad / m
Table 3 Definition of parameters in the two-layer models

Assumptions

Gade (1958) was the first who studied the modification of waves by fluid mud with a two
layer approach. He gives a thorough overview of the assumptions in his model. Some of
these assumptions are used in all the models discussed in this section:

1) viscosity is assumed to be constant over a layer
2) density is assumed to be constant over a layer
3) the fluid in both layers is assumed to be incompressible
4) the fluid mud is assumed to be a Newtonian fluid
5) the interface is assumed to be stable, no interfacial mixing is present
6) the lower layer is assumed to rest on a rigid horizontal stratum at which no motion

exists (we assume this to be a consolidated bed that is not liquefied by the waves)
7) the fluid layers are considered to be of infinite horizontal extent
8) the wave is of sinusoidal form
9) only plane waves are considered
10) the wave amplitude is considered small compared with depth
11) the disturbance of the upper fluid is not directly associated with any driving or

dissipative shearing forces. (The wave is a free wave which gives us the possibility
to determine a dispersion relation.)

12) variations of surface pressure are neglected
13) motions of both fluids are free of divergence
14) it is assumed that the mean current is zero
15) effects of earth rotation are neglected

Equations

If we ignore the possible effects of advection, turbulence and earth rotation and assume a
small disturbance, the fluid system can be described with the continuity equation and the
linearized momentum equations for each layer i (where i can be 1 or 2):

0i iu w
x z

(2)

2 2

, ,2 2

1 0i i i i
x i z i

i

u p u uv v
t x x z

(3)
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2 2

, ,2 2

1i i i i
x i z i

i

w p w wv v g
t z x z

(4)

In these equations, p is  the total  pressure.  This  pressure contains in  fact  three terms.  One
term is directly connected to the orbital motion. The second term is the hydrostatic part,
determined  by  the  distance  to  the  equilibrium  surface  or  interface.  The  third  term  is  the
ambient pressure, consisting of the pressure at the surface or interface.

11 1 0( ) 0orb
totp p g H z (5)

22 2 0 1 0( )orb
m wp p g H z gH (6)

The displacement of the free surface and the interface with reference to the equilibrium
levels are described by:

( )( , ) i kx tx t ae (7)
( ) ( )

0( , ) i kx t i i kx tx t e be e (8)

where k is the complex wave number with k = kr + iki.

The amplitude of the interface displacement 0 is  complex  to  account  for  a  phase  shift
between surface and interface displacement. This complex amplitude is a priori unknown.
Note that with this notation for the phase of waves (kx- t), used in all viscous models
treated in this section, the phase angle appears to become negative with growing t. Therefore
a  negative  value  for  the  phase  shift  implies  an  interface  elevation  that  is  ahead  of  the
surface elevation.

Boundary conditions

To complete the description of the system, boundary conditions are required. The conditions
used in the various models are all simplifications or subsets of the list below.

At z = 0, the location of the fixed bed, slip and penetration are not allowed:

2 ( ,0, ) 0u x t (9)

2 ( ,0, ) 0w x t (10)

At z = hm, the location of the interface, velocities and stresses have to be continuous over the
interface (kinematic and dynamic boundary conditions respectively). Additional information
about the vertical velocity can be derived from the fact that particles on the interface have to
follow the interface.

2 1( , , ) ( , , )m mu x h t u x h t (only used in complete continuous description) (11)

2 1( , , ) ( , , )m mw x h t w x h t (12)

2
( , )( , , )m

D x tw x h t
Dt

(13)
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2 1( , , ) ( , , )zz m zz mx h t x h t (14)

2 1( , , ) ( , , )xz m xz mx h t x h t (15)

At z = htot,  the  location  of  the  free  surface,  particles  have  to  follow  the  surface  as  well.
Dynamic boundary conditions require the imposition of zero normal and tangential stresses.

1
( , )( , , )tot

D x tw x h t
Dt

(16)

1( , , ) 0zz totx h t (17)

1( , , ) 0xz totx h t (18)

Simplifications of the equations above in the various models are introduced through extra
assumptions in the various schematizations or through considering the problem as linear.

2.4.2 Gade

Gade (1958) was the first who used a viscous model to study the effects of a non rigid,
impermeable bottom on plane surface waves. In his mathematical model, the upper layer is
inviscid. For both layers, a shallow water approximation was used. Gade assumes the
pressure to be hydrostatic, neglects the vertical accelerations in both layers and assumes the
horizontal velocity in the upper layer to be independent of depth.

These assumptions lead to simplification of the differential equations and the boundary
conditions. By substitution of an assumed harmonic solution for each variable that is
separable in time and x-direction, a dispersion relation can be derived. This derivation is
described in detail in his article.

The dispersion relation for Gade’s schematization is:
1/ 2

2

0 0 0

0 0 0

0

1 1 4

2

m m m

w w w

m

H H H
H H H

k
g H

(19)

where

0

0

tanh
1 m

m

mH
mH

     , 1
2

m i       & 2 1

2

(20)

Gade’s dispersion relation gives four solutions. As explained in section 2.3.2, the relevant
solution is the solution for the external wave traveling in positive direction (EWpos). This is
the  solution  with  a  plus  sign  for  the  first  root  and  a  minus  sign  for  the  second  root.  (The
smallest positive value of k gives the highest propagation speed, which is the external
wave.) Gade’s dispersion relation gives an explicit expression for the wave number k, which
can be calculated analytically.
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Gade presented his results in graphs of the normalized real and imaginary wave number as
function of the normalized mud layer thickness. The wave number is normalized with the
shallow water wave number for one water layer only. The mud layer thickness is normalized
with the wave boundary layer thickness in the mud layer. The dimensionless parameters are:

2 2

0 02 2Re ,  Imw w
k kH g H g

(21)

0 2mH
(22)

A consequence of this normalization is that the normalized real wave number will approach
one when the mud layer thickness approaches zero. The imaginary wave number will
approach to zero in this situation, because without a mud layer, there is no damping. Gade’s
model is based on shallow water approximations. Therefore Gade limits the applicability of
his model to cases where H’ / L  1/20, with H’ a certain ‘effective depth’. For the fixed
value of  viscosity,  densities,  period and water  layer  thickness this  results  in  an upper  limit
for the normalized mud layer thickness beyond which the solution is not valid.

0 1.6815
2mH

(23)

Figure 8 Real and imaginary parts of the dimensionless wave number versus the dimensionless mud layer
thickness as shown in Gade (1958), figure 2.

Gade found that the wave height decays exponentially with travelled distance as long as the
imaginary wave number ki is constant. According to Gade, the rate of decay has a maximum
value when the normalized mud layer thickness has a value of 1.2 [sic].
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2.4.3 De Wit

De Wit (1995) modified Gade’s model for the situation of a non-hydrostatic inviscid water
layer over a viscous mud layer that is thin compared to the wave length. For the upper layer,
the vertical acceleration was taken into account in the vertical momentum equation. The
lower layer was still assumed to be quasi-hydrostatic: no vertical acceleration is taken into
account in the lower layer vertical momentum equation. The vertical velocity can than be
computed with the continuity equation.

Again, the relevant model assumptions lead to specific forms of the differential equations
and the boundary conditions and again, the variables are substituted by assumed solutions
that are separable and periodic in time and x-direction. First the amplitudes of the variables
as function of the vertical position z are determined via the differential equations.
Subsequently the expressions for the variables are substituted in the boundary conditions.
This set of equations can be written in a homogeneous matrix equation. In order to have
non-trivial solutions, the coefficient matrix should be singular. The non-trivial solution is
found by equating the coefficient determinant of the matrix to zero. This gives an equation
in which the wave number k is the only unknown variable, i.e. the dispersion relation. De
Wit gives:

2 1
0 0 02 2

2

1
0 0 02

2

1 tanh tanh 1

tanh tanh 0

m m w

m m w

gk k gkkH mH kH
m

k gkkH mH kH
m

(24)

De Wit explains his method carefully, but typing errors occur in the formulation of the
amplitudes of the variables and the substitution into the boundary conditions. A dispersion
equation is presented, but the details of the derivation are not given. In an attempt to
reproduce his dispersion equation starting from his schematization, a new dispersion
equation has been derived (the ‘DELFT’ dispersion equation, further disussed in chapter 3).
Reproduction of De Wit’s dispersion equation was only possible by making some additional
simplifications (discussed in chapter 3 and appendix B).

The dispersion equation which is found using the schematization of De Wit is an implicit
expression for the wave number k. In contrast to Gade, an iteration method is needed to find
the value of k for which the determinant is zero.

2.4.4 Gade+

Another extension of Gade’s model was presented by Cornelisse and Verbeek (1994). In this
extension both layers can be non-hydrostatic. Therefore the vertical accelerations are taken
into account in the vertical momentum equation of both layers. Only the lower layer is
viscous with the same viscosity in x- and z-direction.

The dispersion equation resulting from this schematization is given by Cornelisse as:
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2 2
2 2

2 2 2
2

2 2 2

2

2tanh( )

tanh( )

2
         + 2  0

m m m m

m m m m

m m m m

m m m m

kh h kh h
w

m
kh h kh hw

kh h kh h

m
kh h kh h

k k S S C Ckh gk kg k
S C kC Sk gk kh

k C C S S k
kk

S C kC S

(25)

where

sinh( )xS x  , cosh( )xC x        & 2 2

m

k i
(26)

This dispersion equation yields also an implicit expression for the wave number k. So also in
this case, an iteration method is needed to find a solution. The derivation of this method is
given in detail in Cornelisse et al. (1994), together with derivations of Gade and Dalrymple
(1a).

2.4.5 Dalrymple and Liu ‘complete models’

In Dalrymple and Liu (1978) three models are developed (called here 1a, 1b and 2). Model
1a and 1b are the subject of this section. In the article, these models are called the ‘complete
models’.

‘These ‘complete models’ are developed to be valid for any depth upper layer and both deep
and shallow lower fluid layers, thus extending Gade’s results to deeper water. These models
also include the viscous effects in the upper layer for completeness, although the damping
effects there are quite small when compared to the lower, more viscous layer’ (Dalrymple
and Liu, 1978, p.1121).

In Dalrymple and Liu (1978) the equations of motion are almost the same as in the
introduction section. Differences are that Dalrymple and Liu assume the viscosity to be the
same in x- and z-direction and that they directly cancel out the gravitational acceleration
against the hydrostatic part of the pressure in the vertical momentum equations.

Dalrymple and Liu introduces a simplification in model 1a, which implies a constraint for
the validity of the results, related to the parameter , where

2 2

m

k i
(27)

They state that ‘for most problems i is quite small with respect to k by several orders of
magnitude. Consequently, the i are quite large and in fact represent the viscosity-dominated
flow in the vicinity of boundaries. Away from the boundaries, i.e. outside any boundary
layers, the viscous terms are negligible.’  (ibid.  p.1122)  For  this  reason  they  assume  a
solution for the amplitudes W(z) with viscous terms near the boundaries and without viscous
terms away from the boundaries. This assumption restricts the validity of the model to cases
where the lower layer is thick compared to the viscous boundary layer BL:
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0
2,     with m

m BL BLH O
(28)

Model 1b, described in appendix B of Dalrymple and Liu (1978), focusses on the case
where the lower layer is thin, of the same order of magnitude as the boundary layers within
the region, i.e. where

0
2          with m

m BL BLH O
(29)

This model differs from model 1a in the assumed solution for the amplitude W(z). Now
viscosity is present over the entire layer.

The procedure in both models 1a and 1b is the same as in De Wit: after determination of the
amplitudes of the variables via the differential equations, the expressions for the variables
are substituted in the boundary conditions. A coefficient matrix is obtained by writing these
equations in a homogeneous matrix notation. Equation the determinant of this matrix to
zero, gives a dispersion equation that is an implicit expression for k which has to be solved
with the help of an iteration technique. Dalrymple and Liu (1978) mention this procedure,
but do not elaborate it in detail in their article.

2.4.6 Dalrymple and Liu ‘boundary layer approximation’

In  appendix  C  of  their  article,  Dalrymple  and  Liu  also  present  a  boundary  layer
approximation for large values of Hm0( /2 m)1/2. This approximation is a further
simplification of model 1a. The basic assumption is that the energy dissipation mainly takes
place in the boundary layers near the solid bottom and the interface, and that the core of the
layers can be treated as inviscid. As a consequence the velocity field can be divided into a
rotational part and a potential part. The rotational velocity is significant only near the solid
bottom and the interface. Dalrymple first solves the potential velocity (which gives the same
solution as the two-layer model for non-hydrostatic water layers without damping in the
theory of density currents, see C.Kranenburg, 1998) and subsequently adds a rotational
velocity in the boundary layers, which is solved with the use of adapted boundary
conditions. Finally expressions are given for the time-averaged wave energy density and for
the energy dissipation in the boundary layers near the bottom, under the interface and above
the interface and substituted into an energy balance:

d d d
d d d

d
E E P
t k x

(30)

where E is the time-averaged wave energy density. The total rate of change of energy while
following the wave front makes it possible to estimate the wave damping.

Dalrymple gives as constraints for the validity of this approximation

0
2,     with m

m BL BLH O          
1/ 22

1m

g

(31)

and states that this approach yields explicit solutions for the wave damping when

0  1wkH                0  1mkH (32)
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The boundary layer approximation is compared with the ‘complete models’ in Dalrymple
and Liu (1978) figure 2, here presented in Figure 9.

Figure 9 Comparison of the boundary layer approximation of Dalrymple and Liu (1978) with their
‘complete models’.  On the horizontal axis the relative mud layer thickness Hm0/(2 / )1/2, on the
vertical axis the normalized imaginary wave number ki/( /(gHw0)1/2).

2.4.7 Ng ‘boundary layer approximation’

Ng (2000) “provides an analytical limit to the complete model of Dalrymple (1978) when
the mud layer is comparable in thickness to the Stokes’ boundary layer, and much thinner
than the overlying water layer” (Ng, 2000, p. 236),  so Ng is an approximation of model 1b
of Dalrymple.

The key assumption is that both the mud layer thickness Hm0 and the boundary layer
thickness are of the same order of magnitude as the wave amplitude a,  which  is  much
smaller than the wavelengh. These assumptions result in an ordening parameter , where:

0 1m BLka kH k (33)

Because of the shallowness, the wave-induced motion of mud is dominated by viscosity
throughout the layer. This means that the boundary layer equations are the governing
equations in the mud layer and the water layer close to the interface. Ng uses the ordening
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parameter  to indicate relative order to determine which terms can be kept out of
consideration.

For the water layer, Ng determines expressions for velocity valid inside the boundary layer
close to the interface and valid inside the boundary layer close to the surface (where
damping  is  assumed  to  be  small  compared  to  all  the  other  boundary  layers,  resulting  in  a
potential solution). These two expressions are asymptotically matched. This asymptotic
matching allows the determination of the complex eigenvalue for the wave number k.

The dispersion relation according to Ng is:

2
0

0

tanh( )
1 tanh( )

w

w

kH B
gk B kH

(34)

where B is a complex parameter following from the asymptotically matching. The wave
number k can be expanded in terms of different order n, where kn = O(k BL)n-1. The first term
k1 is real and dominated by the normal single layer non-shallow water dispersion relation.
The next order k2 is complex and given by:

1
2

1 0 1 0 1 0sinh( ) cosh( )w w w

Bkk
k H k H k H

(35)

The imaginary part of this expression gives the wave attenuation rate due to dissipation in
the fluid mud layer and can explicitely be calculated when k1 and B are known.

Ng (2000) thoroughly investigates the effects of varying viscosity and density ratio’s
between the layers and the shape of the graph of the wave number k as function of the
normalized mud layer thickness Hm0 . In his graphs, ‘the effect of mud on the wave damping
is most pronounced when (I) the mud is highly viscous, (II) the mud layer is approximately
1.5 times as thick as its Stokes’ boundary layer and (III) the mud is not too much denser than
water’ (Ng, 2000, p.229).

2.4.8 Jain ‘full semi-analytical solution’

Jain (in review) compares the dispersion relation according to Ng and according to
Dalrymple and Liu (not clearly stated which one, I suppose model 1a) with her own ‘full
semi-analytical solution’. This full semi-analytical solution is firstly derived for the first
order problem and later extended to a second order solution. First the wave amplitude is
assumed to be small compared to the wave length. This makes it possible to linearize.
Except for the fact that she strictly holds on to the first order approximation (and the
gravitational acceleration is again canceled out against the hydrostatic part of the pressure in
the vertical momentum equation), she does not add any constraint in the equations in section
2.4.1. The method of substituting an assumed solution for each variable separable and
periodic in time and x-direction, has been followed here as well. Jain does not give her
dispersion equation, but it is evident that this is an implicit relation which needs an iteration
procedure to be solved.
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Jain assumes that the modification of surface wave profiles will be more significant for
muddy beds than for rigid bottoms. She also assumes that damping can be quite different for
non-sinusoidal wave profiles. That is why she extends her solution to a second order
solution by a perturbation approach in terms of wave steepness. The Stokes expansion she
uses is only valid if the series converges. The rate of convergence is related to the so called
Ursell number, a measure for the ratio between wave length L, wave height (2a) and water
depth H. For a valid expansion, the Ursell number is bound to:

2

3
0

2 25L aUr
H

(36)

Comparing Ng and Dalrymple and Liu with her full semi-analytical solution of the first
order, Jain concludes that Ng’s solution is a very good approximation as long as the mud
thickness is less than the Stokes’ boundary layer thickness. For depths a little larger than the
boundary layer thickness, Ng’s solution starts to deviate. Jain shows pictures of a case of
intermediate water depth and of a shallow water scenario. In the first case, Ng’s solution
shows a lower, in the second case a higher wave attenuation coefficient than Jain’s full semi-
analytical  solution  of  the  first  order.  Dalrymple  and  Liu’s  solution  starts  to  deviate  from
Jain’s solution when the normalized mud layer thickness is less than 2.5. A noteworthy
observation is that Dalrymple and Liu’s solution predicts a high wave attenuation in case of
intermediate water depth even when the mud layer thickness approaches to zero.

Figure 10 Comparison of the normalized imaginary wave number as function of the dimensionless mud
layer thickness for the case of intermediate water depth (left) and shallow water depth (right) as
obtained with the Ng-model, a Dalrymple model (probably the boundary layer approximation)
and the ‘full semi-analytical solution’ according to Jain.

Jain also compares the peak of the wave attenuation in the different models. In Ng’s solution
the peak dissipation always occurs when the mud layer thickness is 1.55 times the boundary
layer thickness. Jain’s solution shows peaks at lower values of the normalized mud layer
thickness. This is especially the case for shallow water scenario’s. This also agrees better
with  Gade’s  calculation  for  the  shallow  water  case,  that  showed  a  peak  dissipation  at  a
normalized mud layer thickness of 1.2, and Gades experimental data that showed peaks in
the range 1.3 BL - 1.5 BL.
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2.4.9 Overview

An overview of the terms taken into account in the various dispersion relations in literature
is given in Table 4. The table also mentions if a dispersion equation is presented by the
authors, and if the equation is implicit or explicit for the wave number k. The last column
gives constraints on the domain of application resulting from assumptions in the derivations.

Name Mom. eq. lower layer Mom. eq. lower layer Disp. eq.
given

Impl /
Expl

Constraints on the domain

dw1/dt x1 z1 dw2/dt x2 z2

Gade - - - - - + Yes Expl shallow water, thin mud

De Wit + - - - - + Yes Impl thin mud layer ( 0  1mkH )

Gade+ + - - + - + Yes Impl not specified

Dalrymple&Liu

       1a, complete model + x1 = z1 + x2 = z2 No Impl
0 2 /m mH

       1b, complete model + x1 = z1 + x2 = z2 No Impl
0 2 /m mH O

       2, boundary layer
       approximation

+ x1 = z1 + x2 = z2 Yes Expl
0 2 /m mH ,

1/ 22

1m

g

Ng
     boundary layer
     approximation

- / + - + - - + Yes Expl
0 2 /m mH O ,

0 0w mH H

Jain
semi-anal. full solution

+ x1 = z1 + x2 = z2 No Impl not specified

Table 4 Overview of terms taken into account in the momentum equations and constraints on the domain
of application for the various dispersion equations discussed in this section.

2.5 Discussion and conclusions

This discussion indicates which schematizations can be used in the adaptation to SWAN and
what kind of problems has to be accounted for while comparing the various schematizations.
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2.5.1 Issues concerning comparison

Normalization

Many parameters are involved in the computation of the wave number k with the dispersion
equations discussed in section 2.4 (viz. w, m, Hw0, Hm0, , ( w),  m,  g).  To  compare  the
various dispersion relations in a useful way, normalization is needed. At present all authors
follow Gade in his parameter normalization. (The wave number is normalized with the
shallow water wave number for one water layer only and the mud layer thickness is
normalized with the Stokes visous boundary layer thickness BL. See eq. 21 & 22). Because
most  authors extend the domain to non-shallow water cases, it seems more logical to
normalize the wave number with the normal non-shallow water wave number that can be
calculated from:

2 tanh( )gk kH (37)

With this normalization, the normalized real wave number kr should  approach  1  for  all
dispersion equations and parameter settings in case the mud layer thickness approaches
zero.

The normalization with the Stokes viscous boundary layer thickness BL reduces the number
of parameters and has a clear physical meaning. However, it is not fully clear if this
normalization  gives  a  summary  of  the  results.  It  is  suggested  in  Rogers  and  Holland  (in
review) that the boundary layer thickness might not be the best parameter to compare results
or define the limits of a domain. Rogers and Holland suggest to use Hw0 as normalization
parameter as well. In case of normalization with the boundary layer thickness each value of
Hw0 gives a separate line in the graph. The normalization of parameters is subject to further
considerions in chapter 4.

Domains

When comparing the various dispersion relations, it is important to note for which part of
the domain these relations have been derived. Jain (in review) compared Ng, Dalrymple and
Liu (model 1a) and her own semi-analytical full solution and suggested to distinguish three
parts in the range of normalized mud layer thicknesses:

0 1
2m

m

H , 01 2.5
2m

m

H 02.5
2m

m

H
(38)

(thus indicating the domains (1) where here dispersion equation gives the same results as
Ng, (2) where here dispersion equation does not coincide with another considerd in here
comparison, and (3) where here dispersion equation coincides with result from Dalrymple
and Liu (model 1a), see Figure 10).
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It  is  also  important  to  determine  which  part  of  each  graph  represents  the  shallow  water
situation. This is not evident in the graphical presentation as used in the articles describing
the various dispersion relations.

Peaks

A feature that might discriminate dispersion relations is the location and the height of the
peak of the (normalized) imaginary wave number as a function of other normalized
parameters. Gade found that the rate of decay has a maximum value when the relative mud
depth has a value of 1.2 [sic]. Ng states that the attenuation rate is maximum when the
relative mud depth equals 1.55. Dalrymple and Liu (1978) show values for the peak in
between, but Jain shows peaks for Dalrymple and Liu (1a) at relative mud depths less then
1.0 (see Figure 10). This makes clear that various dispersion equations and various
computations with the same dispersion equation show maximum wave attenuation at
different values of the normalized mud layer thickness. Especially the latter indicates the
need for a better normalization.

Special cases

To check the correctness and validity of various dispersion relations, investigation of their
behaviour for special cases can be helpful. The first one is the limit of mud layer thickness
Hm0 approaching zero. If there is no mud layer, the real wave number is expected to
approach the normal (non-shallow water) wave number, and the imaginary wave number is
expected to approach zero, or at least low values, because the viscosity of the water layer is
much less than the viscosity of the mud layer. Also for m approaching zero while m = w,

the normal non-shallow water wave number should be obtained, where H = Htot0. A third
case that can be investigated is the limit of m approaching 0 while m w. For the case of
non-shallow layers this case should approach the two layer dispersion relation for short
waves as derived in C.Kranenburg (1998).

2.5.2 Criteria for further work

Although an elaborated comparison of results for all dispersion relations discussed in
section 2.4 would certainly give much insight in the behaviour of the functions and the
consequences of various assumptions, a preselection is made here to determine which
dispersion relations are most relevant for this project.

The aim of this project is to model the energy loss during propagation over a mudlayer by
implementing a dispersion relation into the wave energy model SWAN. This introduces a
number of criteria. First, the model should be valid and consistent for practical cases. It is
clear that in reality the water layer above the fluid mud can not always be considered as
shallow. Especially higher frequency waves fall outside the shallow water domain. In most
marine environments the mud layer is typically much thinner than the overlying water layer
(Mei and Liu, 1987). Therefore a dispersion relation has to be applied that covers these
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practical situations. Secondly, it is required to calculate the proper wave number in a reliable
way from a dispersion equation that is clear and fully understood.

The schematization of De Wit is a suitable candidate, because it is valid in the most
interesting domain: shallow and non-shallow water and thin mud layers. The schematization
for this relation is simple and the assumptions are clear. The domain overlaps the domain of
Gade’s analytical relation, so the results of the model can be checked easily. Therefore it is
decided to derive anew the dispersion equation from the schematization of De Wit, to
investigate this function and to compare results to results for Gade. (Model 1a of Dalymple
and Liu is also enclosed in the comparison, because in literature it is considered as the most
complete equation and because it is available from previous studies).

The next step would be to investigate the analytical solutions of the boundary layer
approximations of Ng and Dalrymple and Liu (model 2), because these solutions are explicit
and their wave numbers can be calculated much faster. Because in a wave model the wave
number has to be calculated quite often, this would save much computer time. Especially the
dispersion relation of Ng is interesting, because it covers the domain of a non-shallow water
layer over a thin mud layer. Note that the constraints for Ng are stronger than for De Wit.
For Ng the mud layer has to be thin compared to the wave length, but also compared to the
water layer thickness. The latter constraint is not the case for the schematization of De Wit.
Furthermore, Jain showed that Ng already started to deviate from a more complete solution
at a relative mud layer thickness Hm0/(2 / )1/2 < 1 (see Figure 10).
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3 Derivation of the ‘DELFT’ dispersion equation

3.1 Introduction

In chapter 2 various viscous two-layer models have been discussed. It was concluded that
the schematization of De Wit covers the water and mud layer thicknesses that occur in
reality, and is a suitable candidate for implementation into the wave model SWAN. Therefore
it was decided to elaborate the dispersion equation from the schematization of De Wit and to
compare it to results of Gade (and Dalrymple and Liu as extra). This chapter describes step
by step the derivation of the  dispersion equation belonging to the schematization of the
system as a two-layer system. The upper layer is considered non-viscous and no
constrictions are imposed on the layer thickness. The lower layer is considered viscous and
shallow compared to the wave length. (For a drawing and more details of the schematization
and the assumptions, see section 2.4.1 and 2.4.3).

The clear derivation of a well understood dispersion equation for a relevant schematization
is an important contribution to the development of SWAN-mud models. Therefore it is
presented in the main text  of  this  report.  The last  section of  this  chapter  (3.9)  summarizes
the conclusions. Those not interested in the derivation can limit themselves to the
conclusions without losing the thread of the story.

Section 3.2 gives the differential equations describing the system. Section 3.3 mentions the
assumed forms of the solutions for the unknown (fluctuating) parameters. Expressions for
the amplitudes of these fluctuations are determined in section 3.4. The next step of the
derivation is formed by the formulation of the boundary conditions (section 3.5). Notation
of these equations in terms of a (reduced) homogeneous matrix equation gives a coefficient
matrix (section 3.6). The determinant of the matrix gives the dispersion equation when
equated to zero (section 3.7). A verification of the dispersion equation is carried out in
section 3.8 with two basic tests. The conclusions are summarized in section 3.9.

The symbolic mathematical computer program MAPLE has been used in the derivation.
Results are inserted as formulae in MAPLE output format to avoid typing errors.

3.2 Differential equations

The  system  is  described  by  a  horizontal  (a)  and  vertical  (b) momentum equation and a
continuity equation (c) for each layer (1&2) (compare with section 2.4.1).

verg1a :=
 ¶

 ¶ t
u1 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 +

 ¶

 ¶ x
p1 x, z, t( )

r1
 = 0

(39)
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verg1b :=
 ¶

 ¶ t
w1 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 +

 ¶

 ¶ z
p1 x, z, t( )

r1
 + g = 0

(40)

verg1c :=
 ¶

 ¶ x
u1 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 +
 ¶

 ¶ z
w1 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 = 0
(41)

verg2a :=
 ¶

 ¶ t
u2 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 +

 ¶

 ¶ x
p2 x, z, t( )

r2
 = n

 ¶
2

 ¶ z 2
u2 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

(42)

verg2b :=

 ¶

 ¶ z
p2 x, z, t( )

r2
 + g = 0

(43)

verg2c :=
 ¶

 ¶ x
u2 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 +
 ¶

 ¶ z
w2 x, z, t( )

æ
ç
ç
è

ö
÷
÷
ø

 = 0
(44)

3.3 Assumed solutions

The solutions for horizontal and vertical velocity and pressure are assumed to be of the
following form:

u1 x, z, t( ) := U1 z( ) e I k x - w t( )( ) (45)

u2 x, z, t( ) := U2 z( ) e I k x - w t( )( ) (46)

w1 x, z, t( ) := W1 z( ) e I k x - w t( )( ) (47)

w2 x, z, t( ) := W2 z( ) e I k x - w t( )( ) (48)

p1 x, z, t( ) := P1 z( ) e I k x - w t( )( ) + r1 g Htot0 - z( ) (49)

p2 x, z, t( ) := P2 z( ) e I k x - w t( )( ) + r1 g Htot0 - Hm0( ) + r2 g Hm0 - z( ) (50)

3.4 Expressions for the z-amplitudes

Water layer

By substituting the assumed solutions for u1(x,z,t) and p1(x,z,t) in equation (39), P1(z) can
be expressed in terms of U1(z). When this result is substituted in equation (40), also W1(z)
can be expressed in terms of U1(z).
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P1 z( ) :=
U1 z( ) w r1

k

(51)

W1 z( ) := -

I d
dz

U1 z( )æ
ç
è

ö
÷
ø

k

(52)

Substitution of expression (52) in the continuity equation (41) results in an ordinary
differential equation in terms of U1(z).

ODE_U1 :=

I e I k x - w t( )( ) U1 z( ) k 2 -
d 2

dz 2
U1 z( )

æ
ç
ç
è

ö
÷
÷
ø

æ
ç
ç
è

ö
÷
÷
ø

k
 = 0

(53)

When this differential equation is solved, expressions for U1(z), W1(z) and P1(z) are found.
It is chosen to work with trigonometric notations (rather than exponential).

U1 z( ) := C1 sinh k z( ) + C2 cosh k z( ) (54)

W1 z( ) := -I C1 cosh k z( ) + C2 sinh k z( )( ) (55)

P1 z( ) :=
w r1 C1 sinh k z( ) + C2 cosh k z( )( )

k

(56)

Mud layer

Also  for  the  mud  layer,  first  an  expression  for P2(z) is determined by substituting the
assumed solution of p2(x,z,t) (eq. 50) in the vertical momentum equation (43). This shows
that P2(z) has to be a constant (here named E):

verg2b :=

d
dz

P2 z( )æ
ç
è

ö
÷
ø

e
I k x - w t( )( )

 - r2 g

r2
 + g = 0

(57)

P2 z( ) := E (58)

Substitution of this expression for P2(z) and the assumed solution for u2(x,z,t) (equation 46)
in the horizontal momentum equation (42), leads to an ordinary differential equation in
terms of U2(z):

ODE_U2 :=
I e I k x - w t( )( ) -U2 z( ) w r2 + E k( )

r2
 = n

d 2

dz 2
U2 z( )

æ
ç
ç
è

ö
÷
÷
ø

e I k x - w t( )( ) (59)

The solution of this ODE is:
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U2 z( ) := sin

1
2

 + 1
2

Iæ
ç
è

ö
÷
ø

2 w z

n

æ
ç
ç
ç
ç
è

ö
÷
÷
÷
÷
ø

C4 + cos

1
2

 + 1
2

Iæ
ç
è

ö
÷
ø

2 w z

n

æ
ç
ç
ç
ç
è

ö
÷
÷
÷
÷
ø

C3 +
E k

w r2

(60)

(This solution is obtained with MAPLE. This step in the derivation is elaborated in appendix
A).

With the continuity equation for the mud layer, eq. (44), an expression for W2(z)  can  be
found:

22 uw dz
x

(61)

When we introduce the variable m (as introduced by Gade):

1
2

I m
v

(62)

and make use of the facts that

1 1I I I (63)

sin( ) sinh( )
cos( ) cosh( )

Imz I mz
Imz mz

(64)

the solutions for U2 (z), W2(z) and P2(z) can be written as:

U2 z( ) := C3 cosh m z( ) + I C4 sinh m z( ) + E k
w r2

(65)

W2 z( ) := - I k C3 sinh m z( )
m

 +
k C4 cosh m z( )

m
 -

I k 2 z E

w r2
 + C5

(66)

P2 z( ) := E (67)

3.5 Boundary conditions

The displacement of the free surface and the interface with respect to the equilibrium levels
are described by:

( )( , ) i kx tx t ae (68)
( ) ( )

0( , ) i kx t i i kx tx t e be e (69)
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Note that the amplitude of the interface displacement 0 is  complex to account  for  a  phase
shift between surface and interface displacement. This complex amplitude is a priori
unknown. The height of the free surface and interface become:

( )
0, i kx t

tot toth x t H ae (70)

( )
0 0, i kx t

m mh x t H e (71)

At z = htot, the location of the free surface, particles have to follow the surface (kinematic
boundary condition, BC I). Dynamic boundary conditions require that the normal stress is
zero (atmospheric pressure is not taken into account, BC II).

BC I:
1

( , )( , , )tot
D x tw x h t

Dt
(72)

BC II:
1 1( , , ) 0          ( , , ) 0zz tot totx h t p x h t (73)

At z = hm, the location of the interface, the vertical velocity can be derived from the fact that
particles have to follow the interface (kinematic boundary condition, BC IV). Moreover
vertical  velocities  (BC III)  and tangential  (BC V) and normal  (BC VI)  stresses have to be
continuous over the interface (kinematic and dynamic boundary conditions respectively).

BC III:
2 1( , , ) ( , , )m mw x h t w x h t (74)

BC IV:
2

( , )( , , )m
D x tw x h t

Dt
(75)

BC V:
2 1( , , ) ( , , )xz m xz mx h t x h t (76)

BC VI:
2 1( , , ) ( , , )zz m zz mx h t x h t (77)

At z = 0, the location of the fixed bed, slip (BC VII) and penetration (BC VIII) are not
allowed:

BC VII:
2 ( ,0, ) 0u x t (78)

BC VIII:
2 ( ,0, ) 0w x t (79)

In the viscous lower layer, the presence of viscosity causes extra terms for normal and shear
stresses:

contribution of viscosity to normal stress = 2 w
z

(80)

contribution of viscosity to shear stress =
u w
z x

(81)

Expressions for the boundary conditions are found by linearizing the equations. This is done
by using the Taylor approximations around the equilibrium level of the surface and the
interface. Dingemans makes some remarks about the order of approximation in personal
communication with Winterwerp:
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“We suppose the perturbations of the free surface and the intermediate layer to be small
quantities as is usual in water wave mechanics for which the linear approximation is valid.
We  suppose  that  | |  = a and | |= | 0|= b (small adaptation WK) are of equal order of
magnitude. The velocities in the upper layer are typically of O{a} and those in the lower
layer are of O{b}. In the Taylor approximations we will account for terms linear in  and ,
thus of terms of O{a,b}.  That  means that  terms of  (  or,WK)  which are multiplied by a
derivative of a velocity are of second order and are therefore ignored. The situation is
different for the pressure. (…), the pressure is composed of a hydrostatic part, which is of
order one, and a perturbation, which is of order a. Thus p = O{1}.”  (M.Dingemans; a two
layer fluid-flow model, version March 8, 2007, p.2, communication with Winterwerp).

This means that we get the following boundary conditions:

At z = Htot0:
BC I:

1 0
( , )( , , )tot
x tw x H t
t

(82)

BC II:
0

1
1 0, , | 0

tottot z H
pp x H t
z

(83)

At z = Hm0:
BC III:

1 0
( , )( , , )m
x tw x H t
t

(84)

BC IV:
2 0

( , )( , , )m
x tw x H t
t

(85)

BC V:
0

2 | 0
mz H

u
z

(86)

BC VI:
0 0 0

1 2 2
1 0 2 0 2 2, , | , , | 2 |

m m mm z H m z H z H
p p wp x H t p x H t
z z z

(87)

At z = 0:
BC VII:

2 ( ,0, ) 0u x t (88)

BC VIII:
2 ( ,0, ) 0w x t (89)

3.6 The coefficient matrix

The expressions for the z-amplitudes Ui(z), Wi(z) and Pi(z), derived in section 3.4, are
substituted in the assumed solutions of section 3.3. These assumed solutions are substituted
in the boundary conditions.

BC1 := -1. I C1 cosh k Htot0( ) + C2 sinh k Htot0( )( ) e
1. I k x - 1. w t( )( )

 + 1. I a w e
1. I k x  - 1. w t( )( )

 =  0 (90)

BC2 :=
w r1 C1 sinh k Htot0( ) + C2 cosh k Htot0( )( ) e

I k x - w t( )( )

k

(91)
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 + a e
I k x - w t( )( ) w r1 C1 cosh k Htot0( ) k + C2 sinh k Htot0( ) k( ) e

I k x  - w t( )( )

k
 - r1 g

æ
ç
è

ö
÷
ø

 =  0

BC3 :=  -I C1 cosh k Hm0( ) + C2 sinh k Hm0( )( ) e
I k x - w t( )( )

 + I x0 w e
I k x - w t( )( )

 =  0 (92)

BC4 := - I k C3 sinh m Hm0( )
m

 + k C4 cosh m Hm0( )
m

 - I k 2 Hm0 E

w r2
 + C5æ

ç
è

ö
÷
ø

e
I k x - w t( )( )

 + I x0 w e
I k x - w t( )( )

 =  0
(93)

BC5 := C3 sinh m Hm0( ) m + I C4 cosh m Hm0( ) m( ) e
I k x - w t( )( )

 =  0 (94)

BC6 := w r1 C1 sinh k Hm0( ) + C2 cosh k Hm0( )( ) e
I k x - w t( )( )

k

 + x0 e
I k x - w t( )( ) w r1 C1 cosh k Hm0( ) k + C2 sinh k Hm0( ) k( ) e

I k x  - w t( )( )

k
 - r1 g

æ
ç
ç
è

ö
÷
÷
ø

 - E e
I k x - w t( )( )

 + x0 e
I k x - w t( )( )

r2 g +  2 n r2 -I k C3 cosh m Hm0( ) + k C4 sinh m Hm0( ) - I k 2 E
w r2

æ
ç
ç
è

ö
÷
÷
ø

e
I k x - w t( )( ) =  0

(95)

BC7 := C3 + E k

w r2
æ
ç
è

ö
÷
ø

e
I k x - w t( )( )

 =  0 (96)

BC8 := k C4
m

 + C5æ
è

ö
ø

e
I k x - w t( )( )

 =  0 (97)

These equations can be written in a more convenient way in a matrix notation. Before doing
so, a closer look is given to BC2 and BC6. These equations contain the products aC1 and
aC2 or 0C1 and 0C2 respectively. These products are introduced by the Taylor –term

0

1 |
totz H

p
z

(98)

or its equivalent at the interface. We would like to state here the following:
If terms of  or  which are multiplied by a derivative of a velocity are of second order and
therefore can be ignored, then terms of  or  which are multiplied by the derivative of the
perturbation part of the pressure can be ignored as well. After all it is a multiplication of
O{ 0} with O{ 0}  and  is  therefore  negligible.  This  is  not  the  case  for  the  -  or  -terms
multiplied by the derivative of the hydrostatic part of the pressure. Therefore these terms
(containing 1ga, 1g 0 and 2g 0) are taken into account while building the coefficient
matrix.

The dispersion relation will be determined by equating the determinant of the coefficient
matrix to zero. If aC1-products would be kept in the boundary conditions, coefficients with
the wave height a arise in the matrix. In that case, the wave height a is of influence in the
determination of the complex wave number k. In a one dimensional test case, it would make
a difference if ki is calculated at the beginning or half way the mud patch. The damping will
never have the form of
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0 exps s iH x H k x (99)

This non-linearity is outside the scope of this project. As long as the wave amplitude is
considered small compared to the depth, this assumption is justified.

The boundary conditions above represent a system of 8 equations and 8 unknowns.
Boundary condition VII and VIII allow a direct reduction of the 8x8-matrix tot a 6x6-
matrix. For reasons of simplicity some rows are multiplicated with certain factors. This will
not affect the determinant of the matrix nor the parameters in the vector. With only the linear
terms from the boundary conditions, the following matrix is obtained:

(100)

Matrix 1: coefficient matrix, belonging to the vector with the constants [C1, C2, C3, C4, a, 0]

In a parallel derivation by Winterwerp, U2(z) was written in a different way:

2

2 sinh coshWi Wi
kU z C mz D mz E

(101)

That means that the relation between the constants is:
* 4
3

Wi

Wi

C I C
D C

(102)

The matrix belonging to these constants is obtained by dividing the fourth column by I and
swapping the third and the fourth column:

(103)
Matrix 2: coefficient matrix, belonging to the vector with the constants [C1, C2, I*C4, C3, a, 0]
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As a consequence the whole determinant is divided by I. This does not have any
consequences for the value of k where the determinant is zero.

3.7 The dispersion equation

The dispersion equation is obtained by equating the determinant of the matrix with zero. For
reasons of overview the equation is multiplied by 1 and written as a polynomial of . The
equation is considerably shortened by using the equations:

0 0 0 0 0

0 0 0 0 0

sinh( ) sinh( )*cosh( ) cosh( )*sinh( )
cosh( ) cosh( )*cosh( ) sinh( )*sinh( )

w tot m tot m

w tot m tot m

kH kH kH kH kH
kH kH kH kH kH

(104)

The resulting dispersion equation itself is given by:

Disprel  :=
cosh m Hm0( ) r2 cosh k Hw0( )

k
 - r1 sinh k Hw0( ) sinh m Hm0( )

m
 + r1 sinh k Hw0( ) cosh m Hm0( ) Hm0

æ
ç
ç
è

ö
÷
÷
ø

w
4

 + -2 I k r2 n cosh m Hm0( )2 cosh k Hw0( ) + 2 I k n r2 sinh m Hm0( )2 cosh k Hw0( ) + 2 I k r2 n cosh m Hm0( ) cosh k Hw0( )( ) w
3

 + r2 g k cosh k Hw0( ) sinh m Hm0( )
m

 - r2 g k cosh k Hw0( ) cosh m Hm0( ) Hm0  - r2 g cosh m Hm0( ) sinh k Hw0( )
æ
ç
ç
è

ö
÷
÷
ø

w
2

 +  2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )2 - 2 I k 2 r2 n g sinh k Hw0( ) sinh m Hm0( )2  - 2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )( ) w

 +
k 2 g 2  sinh k Hw0( ) sinh m Hm0( ) r1

m
 - k2 g 2  sinh k Hw0( ) r1 cosh m Hm0( ) Hm0  + k 2 g 2  sinh k Hw0( ) cosh m Hm0( ) Hm0 r2

 -
k2 g 2  sinh k Hw0( ) sinh m Hm0( ) r2

m
 = 0

(105)

Formula (105): the DELFT dispersion equation

In the remainder of this report this dispersion equation is named the DELFT dispersion
equation. The various people playing a role in the origine of this expression are all presently
or formerly connected to WL|Delft Hydraulics or Delft University of Technology.

3.8 Verification

Two simple checks are carried out to check whether the DELFT dispersion relation (105) can
be correct. The first one is the limit for the absence of mud when Hm0  0 and 2 1. For
this case the dispersion equation reduces to:

DispRelwater :=
r1 cosh k Hw0( ) w

4

k
 - r1 g sinh k Hw0( ) w

2
 = 0

(106)

which is the regular dispersion relation
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2
0tanh wgk kH (107)

The second check only concerns the presence of I in the dispersion equation. It follows out
of the matrix that the factor I can only be present in the determinant in combination with 0

or 2.  This can be deduced when we realize that terms of the determinant are assembled by
multipliing six position out of the matrix, chosen in such a way that all rows and columns
are represented. After multiplication with 1, I can only be present in the dispersion
equation in combination with 1 or 3. This is the case.

Finally, the newly derived dispersion equation is compared with the original dispersion
equation of De Wit (1995). Although it is a question whether you verify the equation of De
Wit with the DELFT dispersion equation or the other way around, comparison can take away
confusion and doubt. This comparison is described in appendix B. It shows that the original
dispersion equation of De Wit can only be reproduced by making some additional
simplifications,  that  cause  the  disappearance  of  the  odd  powers  of  from the DELFT
dispersion equation (105).

3.9 Conclusions

This chapter describes the derivation of a dispersion equation. This dispersion equation is
derived using the schematization of De Wit (see 2.4.3), assuming a non-hydrostatic, non-
viscous water layer and a quasi-hydrostatic, viscous mud layer. The result of the derivation
is given in equation (108):

Disprel  :=
cosh m Hm0( ) r2 cosh k Hw0( )

k
 - r1 sinh k Hw0( ) sinh m Hm0( )

m
 + r1 sinh k Hw0( ) cosh m Hm0( ) Hm0

æ
ç
ç
è

ö
÷
÷
ø

w
4

 + -2 I k r2 n cosh m Hm0( )2 cosh k Hw0( ) + 2 I k n r2 sinh m Hm0( )2 cosh k Hw0( ) + 2 I k r2 n cosh m Hm0( ) cosh k Hw0( )( ) w
3

 + r2 g k cosh k Hw0( ) sinh m Hm0( )
m

 - r2 g k cosh k Hw0( ) cosh m Hm0( ) Hm0  - r2 g cosh m Hm0( ) sinh k Hw0( )
æ
ç
ç
è

ö
÷
÷
ø

w
2

 +  2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )2 - 2 I k 2 r2 n g sinh k Hw0( ) sinh m Hm0( )2  - 2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )( ) w

 +
k 2 g 2  sinh k Hw0( ) sinh m Hm0( ) r1

m
 - k2 g 2  sinh k Hw0( ) r1 cosh m Hm0( ) Hm0  + k 2 g 2  sinh k Hw0( ) cosh m Hm0( ) Hm0 r2

 -
k2 g 2  sinh k Hw0( ) sinh m Hm0( ) r2

m
 = 0

Formula (108): DELFT dispersion equation (108)

where
Hw0 = Equilibrium height of water layer = Wave (angular) frequency (2  / T)
Hm0 = Equilibrium height of mud layer k = (complex) wave number

 = Kinematic viscosity of mud I  = Imaginary unit i
1  = Density of water g = Gravitational acceleration
2  = Density of mud

1
2

m I
v
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In  the  remainder  of  this  report  this  dispersion  equation  is  named  the DELFT dispersion
equation. This equation is the one that is numerically investigated and implemented in SWAN
during this study.
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4 Solution of the dispersion equation

4.1 Introduction

Chapter 3 described the derivation of the DELFT dispersion equation. This chapter deals with
the solution of this equation for the complex wave number. An iteration procedure is needed
to solve the equation. Section 4.2 describes the iteration method and starting value
developed in this study. A separate part of this section gives a description of the process that
led to the described solving routine. Section 4.3 describes the normalization that is used to
investigate results obtained with the solving routine of section 4.2. The results itself are
given in section 4.4. As a test, these results are compared with the results obtained with an
alternative method: Argand diagrams (section 4.5). This chapter is finalized with a
discussion, containing conclusions and recommendations (section 4.6).

4.2 Description of the solving routine

4.2.1 General remarks

The DELFT dispersion equation, like all the other dispersion equations describing wave
damping, is a complex equation. Both its real and imaginary part are functions of both the
real and the imaginary part of the wave number k and a list of other parameters:

0 0, , , , , , , ,re re im w m w m m wF f k k H H (109)

0 0, , , , , , , ,im re im w m w m m wF f k k H H (110)

If  we  assume  all  the  other  parameters  to  be  constants, Fre and Fim can be seen as curved
surfaces  with  a  (z-)value representing the height above the horizontal kre- kim-plain. Both
surfaces can cross the horizontal plain more than once, for each function resulting in secants
where the value of the function is zero. At the points of intersections of secants of Fre and
Fim, both functions are zero. These crossing points are solutions for the dispersion equation.

The DELFT dispersion equation is also an implicit equation for the wave number k. Therefore
a numerical iteration procedure is needed to find the solutions. Section 4.2.2 describes this
iteration method, while section 4.2.3 focusses on the starting value for the iterations.
Starting value and iteration procedure together form the routine used to solve the dispersion
equation.

4.2.2 The iteration method

The method of iteration employed in this study is the ZANLY / DZANLY routine for complex
functions. This routine is available from the Fortran IMSL library (Visual Numerics, 1997) .
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This method makes use of Muller’s method (see: Burden and Faires, 2001, p. 67-99), which
is a generalization of the Secant Method.

In the most simple iteration routines, the new approximation pn of the zero crossing is
determined out of the old one pn-1 with

1
1

1'
n

n n
n

f p
p p

f p

(111)

where n is the counter of the iterations.

The Secant Method avoids the evaluation of the derivative by using an approximation based
on the assumption that the function is approximately linear in the region of interest:

1
1

1 2

1 2

n
n n

n n

n n

f p
p p

f p f p
p p

(112)

In Muller’s Method the Secant Method is generalized for less linear cases by using a
quadratic 3-point interpolation. This method is adapted for complex functions and used in
the ZANLY / DZANLY routine.

4.2.3 Starting values for the iteration

The starting value for the iteration is computed from two analytical functions. These two
functions each deal with a different limit of the dispersion equation. The weight of the
contribution of each function depends on the relative water depth kHw0.

For low values of kHw0, the DELFT dispersion equation is expected to give a result for the
wave number close to Gade. This expectation is based on the fact that Gade’s
schematization represents a subdomain of the schematization of De Wit, namely the shallow
water case.

For higher values of kHw0, the water can be considered as deep. This implies that the effect
of the (muddy) bottom on the waves will be less. In case no influence of mud is present, the
regula dispersion relation 2 = gk tanh(kH) can be used to calculate the (real) wave number.
This function is an implicit function itself. To avoid the necessity of iterations, the regular
dispersion equation is approximated with the explicit approximation of Guo (2002). (See
Fenton, 2006, for an investigation of the quality of this approximation.) Although there is no
damping in deep water, a positive imaginary part is added to this starting value to make sure
that the iteration procedure converges to non-negative solutions.

These considerations result in two analytical functions for starting values:
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1/ 2
2

0 0 0

0 0 0
1

0

1 1 4

2

m m m

w w w
SV

m

H H H
H H H

k
g H

(113)

Starting Value 1: Gade’s analytical dispersion equation

with

0

0

tanh
1 m

m

mH
mH

     , 1
2

m i       & 2 1

2

(114)

and
5 / 2

0

2/ 52
/

2 1
11 exp Im

10
wH g

SV SVk k
g

(115)

Starting Value 2: Guo’s approximation of the normal dispersion equation plus a small imaginary
part resulting from Gade’s dispersion equation (113)

The starting value for the wave number used in the iteration procedures (kSV) is a weighted
superposition of these two functions. The superposition is computed from these functions
using the weights f1 and f2:

1 1 2 2* *SV SV SVk f k f k (116)

1 2

0
2

1

tanh 1
2

w

f f

a kH c
f

(117)

The parameter c denotes the value of kHw0 where both function contribute with the same
weight to the starting value. The parameter a is a measure for the width of the zone where
the two functions are merged to compute a starting value. Using tanh(x)  1 for x  3, the
width of the merging zone can be computed with width = 6/a. Applied values for a and c
are:

1.5c (118)

1.2a (119)

Figure 11 shows the weights for the two functions used to calculate the Starting Value of the
iteration, as function of the relative water depth kHw0.
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Figure 11 Graph of the weights of the two functions used to compute the Starting Value of the iteration
procedure, plotted as function of the relative water depth kHw0

4.2.4 Justification of choices concerning solving routine

The previous sections described the solving routine used to calculate the wave number. This
section gives a justification of the choices concerning iteration method and starting value by
roughly describing the process that led to the present solving routine. The computation of a
starting value out of a combination of limits has a clear physical meaning and seems quite
trivial. But to investigate the performance of a routine, to make sure that the relative water
depth kHw0 is the normative dimensionless parameter and to determine a good combined
starting value is not that trivial. The process of development during this project can be split
in the following steps, which are shortly discussed in the sections below.

1. Choice of iteration method
6. Choice of a preliminary starting value
7. Normalization
8. Visualization
9. Evaluation of the preliminary results
10. Investigation of other possible starting values
11. Assembling of a function to compute the Starting Value

Step 1: Choice of iteration method

In previous projects at WL|Delft Hydraulics, Groenewegen and Cornellisse have applied a
Newton and a DZANLY solver, respectively, to solve the wave number in complex implicit
dispersion relations. A main problem was that these applications did not always find a
proper solution. As explained in section 2.3, each dispersion relation has more than one
solution for the wave number. In the previous attempts a small change in input parameters
could lead to a totally different solution, probably one of the other roots. In some cases no
solution was found at all. Globally comparing the performance of the various methods, the
DZANLY method seemed to converge succesfully in more cases and from greater distances to
a solution that could be the proper root. This better convergens and more robust
performance can be explained by the more sophisticated character of the procedure. Because
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no good approximations for the starting value were available at that moment, a robust
procedure was needed. Therefore it was decided to investigate the DELFT dispersion relation
with the DZANLY iteration method.

 Step 2: Choice of a preliminary starting value

The DELFT dispersion equation is an extension of Gade. Therefore it was decided to start the
investigation with the analytical expression of Gade as preliminary starting value.

 Step 3: Normalization

To evaluate the behaviour of the solving routine and the behaviour of the function, the
results have to be presented in an informative and orderly way. In literature, most of the time
the real and imaginary wave numbers are plotted while only one parameter is variable and
all others are kept at the same value. Following Gade (1958), most authors use a
normalization in which the wave number is divided by the shallow water wave number and
the mud layer thickness by the wave boundary layer thickness of the viscous sublayer. By
evaluating the results in this way, it is possible to distinguish a value for the running
parameter or for the dimensionless parameter on the x-axis where the function or the
iteration procedure does not function well. But as soon as the value of one of the other
parameters changes, the value of the running (normalized) parameter where the results show
erroneous values changes as well. Summarizing, the presentation of the (dimensionless)
results as function of one (dimensionless) parameter is not sufficient to determine where in
the  parameter  domain  errors  occur.  Obvious  reason  for  this  is  that  many  parameters  are
present in the dispersion equation.

A new normalization is carried out to determine physically meaningful dimensionless
parameters that span the parameter domain. These dimensionless parameters are used in the
visualization and are used to identify the location of the erroneous results. Because of the
importance of this step, the normalization and the results are more thoroughly discussed in
section 4.3.

Step 4: Visualization

Based on the normalization, contour plots could be made that show the normalized wave
number against the normalized mud layer thickness Hm0/(2 / )1/2,  the ratio of the mud and
water layer thicknesses Hm0/Hw0, and the relative water depth kHw0.
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Figure 12 Contour plot of the real (middle panel) and imaginary (bottom panel) wave number normalized
with the wave number for cases without mud. The wave number is plotted as function of the
normalized mud layer thickness and the ratio of layer thicknesses. The upper panel shows the
relative water depth kHw0. The white areas indicate areas where the solving routine does not give
a solution.

Step 5: Evaluation of the preliminary results

Two issues were subject of the evaluation: the behaviour of the solving routine and the
behaviour of the dispersion equation itself. It was assumed that the DELFT dispersion
equation would show the same kind of behaviour with respect to the imaginary wave
number  as  Gade:  a  smooth  function,  a  maximum  in  the  damping  at  values  for  the
normalized mud layer thickness of the order 1, and values for the imaginary wave number of
the same order or one order lower or higher. In that case the peaks and the areas of
unexpected high or low values or no results at all could be attributed to malfunctioning of
the solving routine.

Investigation of the results with visualizations as discussed under step 4, clearly indicated
that the bigger part of the erroneous results occurred at higher values of kHw0. Therefore, an
other starting value had to be found for this part of the domain.

Step 6: Investigation of other possible starting values

A possible other starting values is the solution for the wave number in the situation of two
non-viscous layers with different densities. For small density differences, an explicit
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expression is given in C. Kranenburg (1998). But for small density differences and equal
current velocity in both layers, the external  propagation velocity in a system of two non-
viscous layers is the same as in a one layer system. The expression for higher density
differences is implicit for the wave number k (C. Kranenburg, 1998). Therefore the wave
number for systems of one layer of intermediate or deep water depth was chosen as second
starting value to investigate. This is the regular dispersion equation for waves in water,
which is implicit for the wave number as well, but for which various explicit
approximations exist (Fenton, 2006). Based on Fenton’s investigation of the quality of
various approximations it was chosen to work with the approximation of Guo (2002).

The results obtained with this starting value where investigated in the same way as the
results obtained with Gade as starting value. For higher values of the relative water depth
kHw0 the results where much better: a smooth curve without peaks or unexpected high or
low values. On the other hand, for low values of kHw0 the results where less positive: area’s
with no solution appeared in this part of the domain.

Step 7: Assembling the function to compute the Starting Value

The two functions where merged to acquire a function that determines a suitable starting
value for the whole domain. At low values of kHw0, Gade is dominant in the determination
of the starting value. At high values of kHw0, Guo is dominant. The contribution of each
function for kHw0-values in between is determined with a hyperbolic tangent. (The result is
described in formulae in 4.2.3). The kHw0-value of equal contributions of Gade and Guo, the
constant c in (117), is determined as follows:

First it is tried to identify a dividing line between the area where Gade gives good results
and the area where Guo gives good results. This is done by plotting the difference between
the two outcomes as a function of kHw0 (see Figure 13).

Figure 13 Plot of the difference between the results for DELFT dispersion equation obtained with Starting
Value I: Gade-analytical and obtained with Starting Value II: Guo, as function of kHw0.
 This plot shows results for two parameter sets (left, right) and shows the result for the real (top)
and the imaginary (bottom) wave number.
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Figure 13 shows the difference in the results obtained with the two starting values. The
results are compared with each other with:

obtained with SV2 obtained with SV1
real

SV2

Re - Re
Re

k k
k

(120)

imag obtained with SV2 obtained with SV1
Im - Imk k (121)

In the area where almost all points are on the zero line, both starting values interate towards
the same solution. The various pictures show that this is the case at kHw0 is around 1.5  to
1.7. Sometimes the area of identical results is very small (left graph), sometimes it is much
wider (right).

The parameter a, determining the widht of the ‘merging-zone’, is choosen by fitting a graph
of the new starting value by trial and error over the results of the previous calculations for
various parameter sets.

4.3 Normalization

The DELFT dispersion equation resulting from the schematization of De Wit contains a high
number of variables. A reduction of the parameters involved is needed to get some insight in
the behaviour of the function and to present the results clearly. A dimensional analysis is
carried out to reduce the parameters and also to get more insight in physical relevant
combinations of parameters.

4.3.1 Dimensional analysis

 The Buckingham  theorem, a key theorem in dimensional analysis, forms the basis of
this analysis.

The Buckingham  theorem states that, if we have a meaningful equation such as

1 2, ,... 0nf q q q (122)

where the qi are the n physical variables, and they are expressed in terms of k independent
physical units, then the above equation can be restated as

1 2, ,... 0pF (123)

where the i are dimensionless parameters constructed from the qi by p = n – k equations of
the form

1 2
1 2 ... nmm m

i nq q q (124)

where the exponents mi are rational numbers (http://en.wikipedia.org/wiki/Buckingham).

The DELFT dispersion equation can be written as

0 0, , , , , , , 0w m w m mf H H g k (125)

http://en.wikipedia.org/wiki/Buckingham).
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In this equation the viscosity of water is not taken into consideration according to the
assumptions of the schematization. The gravitational acceleration g is taken into account,
because this is a dimensional parameter (although not variable in our problem). The number
of physical variables n becomes eight. The dimensional matrix looks as follows:

quantity Omega Hw0 Hm0 rhow rhom num g k

quantity unit 1/s m m kg/m3 kg/m3 m2/s m/s2 1/m

M kg 0 0 0 1 1 0 0 0

L m 0 1 1 -3 -3 2 1 -1

t s -1 0 0 0 0 -1 -2 0

Table 5 Dimensional Matrix of the DELFT dispersion equation

Only three independent physical units are present (k = 3). This means that the number p of
dimensionless parameters  with which the problem can be restated, is 5 (p = n – k = 8 - 3 =
5).

The Buckingham  theorem does not state anything about how the dimensionless
parameters can be constructed and which set of dimensionless parameters is a relevant set to
describe the problem. A plausible criterium in answering the last question is that all the
original  variables  should  be  present  in  the  final  set  of  five  dimensionless  parameters.
Furthermore, dimensionless parameters with sound physical meanings are preferred.

There are many ways to determine dimensionless variables. The most simple methods are to
use repeaters or primary variables. In the first method k combinations of original variables
each with the dimension of one different physical unit are used to make all other parameters
dimensionless (see De Vriend, course material River Dynamics, part Scale Models). In the
second method a set of k primary variables is choosen from the original variables in such a
way that all k physical units are present. (More precise is the criterium that the determinant
of the dimensional matrix of these k primary variables has to be non-zero. This does not
allow to use one parameter containing two physical units twice, or to use two variables with
the same dimensions, like w and m). Again, the primary variables can be used to make all
the other parameters dimensionless (see Finlayson et al., 1997, p.3-89).

If we apply the method of primary variables on our problem, sets of primary variables can
be found by taking one variable out of each row below. This ensures that all k physical units
are present in a set of primary variables.

0 0

kg:     ,
m:      , , , ,
s:       , ,

w m

w m m

m

H H g k
g

(126)

Choosing one parameter twice is not allowed. When m is chosen from row 2, the choice in
row three is restricted to  or g, otherwise the determinant of the dimensional matrix of the
three primary variables would be zero.
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The (sets of) dimensionless parameters that can be generated are thoroughly investigated
with the various methods. Finally the most obvious primary variables turn out to give the
physically most interesting dimensionless parameters.

0
0 1 2 3 4 5 02 2

0 0 0

A:   , , ,  ,  ,  ,m m m
w w w

w w w w

H gH kH
H H H

(127)

0
0 1 2 3 4 5 02 2

0 0 0

B:   , , ,  ,  ,  ,w m m
w m m

m w m m

H gH kH
H H H

(128)

4.3.2 Physical meanings of dimensionless parameters

In set A and B 1 and 2 are ratios of the thickness or the density of the two layers. In set B 3

is directly related to ratio of the mud layer thickness and the Stokes boundary layer
thickness of the mud layer:

1/ 2
3 02

2 m
m

H
(129)

This is the parameter often used in the visualizations in literature. 3 of set A does not really
have a sound physical meaning. It relates the water layer thickness to the viscous boundary
layer thickness of the mud layer. 5 in set A is a ratio between water depth and wave length,
often used to discriminate between shallow (low values), intermediate and deep water.
Although the real wave number will be affected by the mud, the value is dominated by the
‘normal’ real wave number (Ng, 2000). This is especially true for deep water, because in
deep water the wave is not affected by the (muddy) bottom, so kmud and kno mud will be the
same. Therefore the unadjusted wave number calculated via the normal dispersion relation
will be a suitable parameter to characterize the waterdepth. Combinations of 4 and 5 from
set A also give interesting parameters. For the situation without mud we know:

2
0

2
0 0 0

2 2
0

tanh

        if 1           /     (shallow)

        if 3                     /         (deep)

w

w w w

w

gk kH

kH gk kH k gH

kH gk k g

(130)

Combining 4 and 5 from set A results in the following interesting parameters:

0
5 4 0 no mud, shallow2 2

0

/w
w

w

gHgkH k k k
H

(131)

5 4 0 no mud, deep2 2
0

/w
w

g gkH k k k
H

(132)

Of course it is also possible to relate the wave number for the mud affected situation with
the wave number for intermediate water depth without mud. This becomes clear when we
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use the approximation formula of Guo (Guo 2002, Fenton 2006) for the normal dispersion
relation:

5 / 2
0

2/ 52
/0

0 1 exp wH gw
w

HkH
g

(133)

in which kHw0 is completely determined by 4. So
1

5 4 no mud, intermediate water depth/f k k (134)

The considerations above are the basis for the presentation of the results in graphs of the
wave number normalized with the unaffected wave number for intermediate water depth
( 5A f( 4A)) as a function of Stokes layer normalized mud layer thickness (f( 3B))  and the
ratio of the layer thicknesses ( 1) while the density ratio ( 2) is kept constant:

1
5A 4A 1A 2A 3B, ,f f (135)

4.4 Results for the wave number

4.4.1 Introduction

The wave number according to the DELFT dispersion equation (chapter 3) has been
computed using the solving routine presented in section 4.2 and can be plotted using the
normalization discussed in section 4.3. This section presents results for the wave number
and gives an evaluation. This evaluation discussed both the behaviour of the solving routine
and the behaviour of the function itself. To make this possible, the results are compared with
results obtained for other dispersion equations. A representative subset of the results is
presented in Figure 14 and Figure 15.
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Figure 14 Plots of the normalized real (middle panel) and imaginary (bottom panel) wave number as
function of the normalized mud layer thickness for the dispersion equations Gade, DELFT and
Dalrymple and Liu (1a). The kHw0- and kHm0-values are given in the top panel.

Figure 15 Contour plot of the real (panel 3) and imaginary (panel 4) wave number as function of the
normalized mud layer thickness and the ratio of water and mud layer thickness. Panel 1 and panel
2 show kHw0- and kHm0-values. This graph is obtained with the starting value described in section
4.2.3.
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4.4.2 Evaluation of behaviour of solving routine

In evaluating the solving routine, three kinds of errors are distinguished:
1. Occasional errors
12. More persistent errors
13. No (positive) results at all

In  case  of  errors  of  the  first  kind,  the  iteration  procedure  fails  on  a  certain  point  in  the
domain, while around this point the procedure works well. These errors are indicated by
dots, smudges or occasional anomalies in a contour that in the rest is smooth. The more
serious errors of the second category are indicated by irregular contours, sharp edges in
contours that are in the rest gradually bending, and bigger patches of different colours.
These characteristics indicate that the iterations converge to another solution. When areas in
a picture are not filled at all, this is an indication of non-convergence of the iteration.

With this distinction it was possible to asses the various starting values as well as the
merged starting value function. Figure 15 shows a smooth contour for the wave number both
for low and high values of kHw0. This indicates that the solving routine functions well for all
water  depths.  Simulations  for  other  parameter  sets  give  the  same  results,  although
occasional errors still occur.

In this investigation, the routine is run with thight criteria for the iteration. Therefore, many
iterations are carried out before a solution is returned. A consequence is that this routine is
quite time consuming.

4.4.3 Evaluation of behaviour of the function

The evaluation of the behaviour of the function itself is mainly based on Figure 14. At cases
comparable with the cases investigated by GADE (shallow water,  low values for kHw0), the
DELFT dispersion equation shows the same behaviour as GADE (circle). The more a certain
parameter combination represents shallow water, the better coincides DELFT with GADE.

For higher frequencies, the relative water depth is larger. Also the normalized mud layer
thickness is larger. In this case, the behaviour of DELFT is similar to Dalrymple and Liu (1a)
(vertical oval), which has as basic assumption that the mud layer thickness is large
compared to the Stokes boundary layer thickness.

Very high frequencies  imply a  large value for  the relative mud layer  thickness and a large
value for kHw0.  In this case, the real wave number seems to be hardly affected by the mud
(horizontal oval). This is a clear difference with the result for GADE, what can be explained
by the fact that GADE is not valid for this case of deep water.
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4.5 Alternative method: Argand diagrams for increasing
viscosity

4.5.1 Description of the method

As a test of the solving routine, the wave number according to the DELFT dispersion
equation is computed with an alternative method. This more extended approach is taken
from dynamic stability analysis in mechanics of structures. Examples can be found in
Païdoussis (1998), where the method is applied to pipes conveying fluid.

The method works as follows: First, the situation without damping is investigated (mud
viscosity m = 0). This comes down to determination of the zero crossings of a real function
of the real wave number k. Iterations with the presented DELFT dispersion equation do not
give answers for m = 0 (because of divisions by zero). Therefore the DELFT dispersion
equation is reduced to a real function belonging to the situation without damping by
elimination of the terms related to damping. This reduction together with some basic checks
of the result is presented in appendix C. The zero crossings of DELFT-reduced are found by
walking along the k-axis and computing the function for each step. If the sign of the answer
changes between two values of k, the k-value of  the zero crossing is  assumed to be in the
middle of these values.

When the real wave numbers k are found that belong to the situation without damping, the
viscosity m is increased in small steps. The values of kre and kim for which the complex
DELFT dispersion equation is zero are determined with the iteration method DZANLY, with
the (real) wave number for the situation without damping as starting value of the first
iteration. The (complex) outcome of the iteration is used as input for the next iteration, in
which m is increased again. This procedure is continued untill m has reached his proper
value.

The advantage of this approach is that a starting value is used that is relevant and close to
the proper solution. It is possible to gain insight in the development of all the wave numbers
k for increasing values of m.  Because  of  the  fact  that  it  is  possible  to  follow  the  wave
numbers starting from the situation where m = 0, both the physical meaning and the number
of  solutions  are  clear.  An  easy  way  to  present  the  results,  is  to  plot  the  results  of  each
iteration step in the complex plain. Such plots are also called Argand diagrams.

4.5.2 Situation without viscosity

Figure 16 shows the reduced function for a situation without damping for three arbitrary
parameter sets. The picture shows clearly that there are two zero crossings at each site of the
y-axis. When we connect the zero-crossings for various values of omega, a graph of the
dispersion relation for the situation without damping is achieved (plotted in Figure 17 as
function of wave angular frequency  and of the wave period T for the positive solutions
only). These values for the real wave number kreal are used as starting point for the iterations
with increasing viscosity.
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Figure 16 Graphs of the function DELFT-reduced (reduction of DELFT for the situation without damping) as
function of the real wave number k for three values of the wave period T. Walking from left to
right along the function (indicated for T=2) the x-axis is passed four times (neglecting the results
at k=0). The numbers 1 to 4 represent IWneg, EWneg, EWpos IWpos respectively (see Table 1 in
section 16)

Figure 17 Situation without damping: development of the real wave numbers k as function of the wave
angular frequency  (top) and the wave period T (bottom)
 External wave in positive direction = zero crossing 3 in Figure 16
 Internal wave in positive direction = zero crossing 4 in Figure 16

1 2 3 4
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4.5.3 Increasing viscosity

For each combination of parameters an Argand diagram can be drawn for all roots. In Figure
18 Argand diagrams are plotted for various values of T and for all four roots. The viscosity
increases from 0 to 0.5 m2/s.

The roots are presented in Figure 18 in the same order as 1-4 in Figure 16: IWneg, EWneg,
EWpos, IWpos.

Figure 18 Argand Diagrams; This graph shows the development of the wave number k for increasing values
of the mud viscosity m for various values of the wave period T (each presented by a separate
sequence of dots)

4.5.4 Maximum viscosity

By plotting the real coordinate and the imaginary coordinate of the last point of each
sequence of dots against the wave period (or angular frequency), a graph is obtained of the
dispersion relation for a system with a sublayer with m = 0.5 m2/s and other parameters as
indicated. This graph is plotted in Figure 19.
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Figure 19 Dispersion relation for the damped situation ( m = 0.5 m2/s). This graph shows the real (1&3) and
imaginary (2&4) wave number as function of  (1&2) and T (3&4).

The results for the DELFT dispersion equation obtained with the solving routine described in
4.2.2 are compared with the results obtained with the Argand method. The latter confirmes
the results of the solving routine, as can be seen in Figure 14 where the dots indicate results
obtained with the Argand method.

4.5.5 Discussion

Based on the graphs presented in the previous sections, a few conclusions can be drawn:
Subplot 2&3 of Figure 18 show that for a certain parameter set there can be a value for
the viscosity where the damping reaches a maximum. The smaller the wave period, the
larger the viscosity value at which this maximum is reached (see e.g. plot 3, the Argand
Diagram for T = 1.5 (at the right side): the highest value for kimag is reached just before
the maximum viscosity is reached).
The real wave numbers of the internal waves (subplot 1&4, Figure 18) are very sensitive
for the increasing viscosity. The real wave numbers of the external waves (subplot
2&3), are much less sensitive.
The imaginary wave number of the internal waves (subplot 1&4) are an order 102 larger
than the imaginary wave number of the external waves (subplot 2&3), which means that
the internal waves decay faster than the external waves.
The real wave numbers of the internal waves (subplot 1&4) can be decreased so much
with increasing viscosity that their values come close to or even become smaller than
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the real wave numbers of the external waves (subplot 2&3). (Compare also Figure 19,
panel 1 and 3 with Figure 17 panel 1 en 2, in Figure 19 the lines cross each other at  =
3.1 or T = 2).
The convergence is not always succesful. With other parameter set, jumps were found in
the value of kimag of the order 102 (probably convergence to another solution) and also
Figure 18 shows a few inexplicable outliers.

The crossing of the lines in Figure 19 is remarkable. Attention should be given to this
property especially when an iteration method is used that calculates the answer by iteration
directly from one starting value for the real wave number to the answer. The imaginary
wave number of the internal wave remains an order 102 larger than the imaginary wave
number of the external wave. So discrimination between roots is remains possible.

The Argand method indicates very well the development of the wave numbers starting from
starting values that are easily to compute and have a clear physical meaning. This is a great
advantage of this method. The general application of this method can be hindered by the fact
that also this method does not always iterate to the proper solution and that this method does
consume more computation time, depending on the number of steps while increasing the
viscosity and the criteria of the iteration method (maximum error, maximum number of
staps).

A remark on the number of solutions for the DELFT dispersion equation:

As indicated in Table 1, section 2.3.1, four solutions are present for a system of two non-viscous layers with
different density. Also Gade’s dispersion equation (eq. 19), the shallow water limit of the DELFT dispersion
equation, has four solutions. So there are good reasons to state that the DELFT dispersion equation has four
solutions as well. Verification of this statement using Cauchy’s Argument Principle indicated the presence of
more than four solutions, the exact number depending on the size of the investigated complex domain. The
‘extra’ solutions appear to be almost completely imaginary. There presence probably could be explained by the
fact that an hyperbolic function of a imaginary parameter has infinitely many solutions, e.g.:

cosh cos / 0,           1/ 2x x i x i n             where n = 0,1,2,3,…

The physical meaning of these ‘extra’ solutions is not clear, while the physical meaning of the first four solutions
is clear because of the ressemblance with the analytical solutions of the limits. Therefore, these ‘extra’ solutions
are not investigated further.

4.6 Discussion, conclusions and recommendations

This chapter described the DELFT dispersion equation and a solving routine to compute the
wave number with this dispersion equation. A starting value is proposed that is assembled
from explicit expression for the shallow water and the deep water limit of the DELFT
dispersion equation. In the investigation of the results, attention is given to the behaviour of
the solving routine and the behaviour of the function itself. Contour plots of the results show
that the assembled starting value yields results over the entire domain. Comparison of these
results with results for other dispersion equations show that the behaviour of the function is
plausible.  In  case  of  shallow  water,  the  results  coincide  with  Gade.  In  case  of  a  large
normalized mud layer thickness, the results coincide with Dalrymple and Liu (model 1a). In
case of deep water, the real wave number will not be adjusted by the mud.
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The method is compared with results obtained with an alternative method: the Argand
method. This method gives the same results. It also showed that the imaginary wave number
for the internal wave is two orders larger than the imaginary wave number of the external
wave. This means that the internal wave is damped very fast and is a justification of the
statement in section 2.3.2 that the external wave is the relevant wave for this study.

Although the solving routine gives results over the entire range of kHw0, occasional errors
still occur. The routine is also quite time consuming. Depending on the consequences of
these disadvantages for implementation into SWAN, it can be worth to improve the solving
routine. While improving the routine, it is important to realize that the initial motivation for
employing DZANLY (an apparent better convergence to the proper solution from inaccurate
initial approximations compared to a Newton method) is not that relevant anymore, because
a more accurate starting value is found.
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5 Recent implementations of viscous two-layer
models into wave models

5.1 Introduction

It is only recently that the development started to implement the viscous two-layer models
described in chapter 2 into numerical wave (energy) models. These wave models are not
only applicable for the theoretical case of uni-directional and mono-chromatic waves over
flat  bottoms,  but  can  deal  with  the  more  realistic  circumstances  of  wind  and  swell  sea
approaching from various directions and propagating over an area of varying bottom
geometry.

This chapter discusses three recent implementations of viscous two-layer models into wave
models. Prior to the descriptions of these implementations, some attention is given to the
principles of the wave energy model SWAN (section 5.2) and to mud in SWAN till 2006
(section 5.3). Section 5.4 discusses the implementation of De Wit into SWAN as described in
Winterwerp et al. (2007). Section 5.5 discusses the implementation of Ng into SWAN as
described in  Rogers and Holland (in review). Section 5.6 discusses the implementation of
Ng into a phase-resolving wave model as described by Kaihatu et al. (2007). This chapter is
finalized with a discussion (section 5.7) that gives the foundation for the remaining part of
this study by discussing the most important differences between the various
implementations, indicating the priorities in further model development and resuming the
fundamental questions on the implementation of viscous bottom models into the wave
energy  model SWAN.

5.2 The SWAN wave model

Section 5.2.1 describes the key equation of the wave model SWAN and the processes it takes
into account. Section 5.2.2 describes more generally the classification of SWAN. The sources
for these sections are Booij et al. (1999), Ris et al. (1999), the technical documentation of
SWAN (SWAN team, 2007) and Holthuijsen (2007).

5.2.1 Model Set-up

The wave action density balance

The SWAN model is based on the description of waves in a two-dimensional wave action
density spectrum for each grid point and timestep: N ( , ; x,y,t). The balance equation for
the wave action density is:
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, ,
tot

g x g y
SN c N c N c N c N

t x y
(136)

where
 = relative radian frequency in a frame of reference moving with the current velocity
 = wave direction

N ( , ) = E ( , )/ .

The wave action density spectrum N ( , ) and the relative radian frequency  are  used
instead of the energy density spectrum E ( , ) and the absolute radian frequency  to
account for wave-current interaction. In the presence of ambient currents, action density is
conserved, whereas energy density is not conserved. In the absence of ambient currents,
can be replaced by  and no frequency shifting by currents is present. In that case equation
(136) reduces to:

, ,g x g y totE c E c E c E S
t x y

(137)

Kinematic terms

The left-hand side of equation (136) is the kinematic part. The first term represents the local
rate of change of action density in time. The second and third term denote the propagation of
action in two-dimensional geographical space, with the group velocity cg,x and cg,y as  the
propagation velocities in x and y space. These terms account for shoaling. The fourth term
represents depth-induced and current-induced refraction, with propagation velocity c in  
space. The fifth term of equation (136) represents the effect of shifting of the relative
frequency due to variations in depth and mean currents. In case of external conditions that
vary only slowly, the situation can be considered as stationair. In that (quasi-)steady case the
first  term  can  be  omitted.  When  also  the  waves  come  in  at  right  angles  to  a  shore  with
straight and parallel depth contours, the situation can be considered as one dimensional and
no refraction will occur. In that case only the second term remains on the left-hand side.

Source and sink term

The right-hand side contains the total source and sink term Stot in terms of energy density.
This term contains the effects of generation, dissipation and non-linear wave-wave
interaction.

4 3tot wind wc b br nl nlS S S S S S S (138)

Energy is added to the spectrum by transfer of wind energy to the waves (Swind). Energy is
dissipated by white-capping (Swc), bottom induced dissipation (Sb) and depth-induced surf
breaking (Sbr). White-capping can be described as breaking of waves controlled by the wave

Dissipation Wave-wave
interactionsGeneration
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steepness. Bottom induced dissipation can be caused by bottom friction, bottom motion,
percolation losses or bottom irregularities. For continental shelf seas with sandy bottoms,
bottom friction (Sbfr) is the dominant term. The nonlinear wave-wave interaction consist of
quadruplet wave-wave interactions (Snl4) and triad wave-wave interactions (Snl3). Quadruplet
wave-wave interactions are dominant in deep water. This mechanism transfers wave energy
from the spectral peak to lower and to higher frequencies. This mechanism is responsible for
the evolution of the spectrum from only wind sea to a spectrum containing swell as well. In
shallow water, also triad wave-wave interactions occur, transferring energy from lower
frequencies to higher frequencies. These mechanisms are nonlinear, but the spatial scale on
which these phenomena happen, is a number of wave lenghts (quite long compared to e.g.
depth-induced breaking).

5.2.2 Classification

The SWAN model is classified as a third generation, phase-averaged, Eulerian model for
coastal regions. Without discussing the development from first and second to third
generation wave models, we mention that in a third-generation wave model the relevant
processes are represented explicitly without a priori restrictions on the evolution of the
spectrum. The model is called phase-averaged because it considers the phase-averaged
energy by relating this quantity to the surface wave amplitude via E = ½ ga2. The model
does not predict time series of water level elevations, but statistical properties of the waves
via the energy spectrum. The fact that the model considers phase averaged properties only,
makes the model applicable on a larger scale (compared to e.g. phase-resolving models).
The model uses an Eulerian approach, on which the wave evolution is formulated on a grid.
This is quite common for deep-ocean or shelf-sea wave models. All processes then can be
included as sources and sinks in the basic equation. Drawbacks of this approach in coastal
waters are the absence of diffraction and the use of linear wave theory for propagation.
These are drawbacks because diffraction and nonlinear phenomena become more important
in the presence of breakwaters and close to the coast. Compensation of these drawbacks is
possible via the other terms. The real important adaption in SWAN compared to third
generation deep ocean models is the adaptation of the formulation of  various processes for
shallow water, the addition of bottom dissipation, depth-induced wave breaking and triad
wave-wave interactions (typically shallow water phenomena) and the use of implicit
propagation schemes. Explicit schemes, normaly used for deep ocean models, are not
efficient for a coastal wave model. This is caused by the Courant criteria t < x / cg,x and t
< y / cg,y, that states that the wave energy may not travel more than one grid cel in one time
step,  while  the  grid  cells  has  to  be  small,  because  of  the  strong  changes  in  the  seabed
topography. But also when using an implicit scheme, t still has its limits, namely to be
much smaller than the time scales of the phenomena involved. But this (less stringent)
criterium is related to accuracy in stead of stability.
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5.3 Mud in SWAN till 2006

In case of sandy bottoms the bottom friction Sbfr is the dominant term in the bottom-induced
wave damping Sb. When fluid mud is present, the bottom-induced wave damping might be
dominated by energy dissipation in the viscous mud layer (Sb,m).

The  absence  of  a  mud-related  dissipation  term  in SWAN was often compensated by
manipulation of existing bottom friction parameterizations. In the calibration, the bottom
friction is increased to get a dissipation in the model that corresponds to the observations in
the presence of mud. Numerical experiments by Sheremet and Stone (2003) show that this
manipulation results in damping of low-frequency waves, with almost no effect in the high-
frequency part of the spectrum, while they report to have observed damping at the high-
frequency part as well. These results underline the need for the implementation of a
physically correct mechanism for mud-induced dissipation.

5.4 Implementation of De Wit into SWAN by Winterwerp et al.
(2007)

5.4.1 Introduction

Winterwerp et al. (2007) describes the first implementation of a viscous two-layer model in
SWAN, the validation of this model against small-scale wave attenuation measurements
carried  out  in  a  laboratory  wave  flume  and  the  application  of  this  model  to  predict  wave
attenuation in the Guyana coastal system.

This section describes the principles of this model (5.4.2) and shortly discusses the results of
the simulations (5.4.3). The constraints of this model are discussed in section 5.4.4.

5.4.2 Principles of the model

Dispersion equation

The dispersion equation used in this model is the dispersion equation of De Wit (see 2.4.3).

Energy dissipation term

The dispersion equations in chapter 2 result in a wave number for uni-directional, mono-
chromatic waves over a bed of uniform bathymetry. To implement mud-induced damping
into SWAN, a formulation for the energy dissipation Sb,m ( , ) is required, where Sb,m ( , ) is
a sink term accounting for viscous dissipation in the mud layer. Winterwerp et al. (2007) use
the expression for the energy dissipation obtained by Gade (1958, Part II). This expression
was obtained by Gade by integrating the work done by the surface waves on the mud layer
below over one wave period. This term is implemented in SWAN using the principle that the
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equation (139) can be applied for each wave frequency and direction and that superposition
of the individual solutions is allowed. This principle follows from linear wave theory, where
the various waves are considered independently. Application of this principle is common in
spectral wave models, including SWAN. The formula for the energy dissipation is written
here  in  the  same  symbols  as  used  in  the  remainder  of  this  report  and  corrected  for  the
omission of the frequency in Gade (1958)):

,
0 sinb m

w

S bgH R
E a

(139)

where R and  (directly related to amplitude and phase of the complex wave number) result
from:

2
i kRe

(140)

and the amplitude ratio b/a and phase difference  between interface and surface elevation
follow from:

2 2
0 01 cos sinw w

b gH R gH R
a

(141)
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(142)

The meaning of the symbols are explained in Table 6.

Symbol Description [-]
Sb,m Energy dissipation caused by viscous mud Nm/ m2s
E Present energy per m2 Nm / m2

Optional calibration coefficient [-]
Hw0 Equilibrium height of water layer, position interface m
a Amplitude of water surface displacement m
b Amplitude of interface displacement m

Phase difference between surface and interface displacement rad
k Complex wave number rad / m

Wave (angular) frequency (2  / T) rad / s
Table 6 Overview of parameters in the expressions for Energy Dissipation by mud
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Figure 20 Winterwerp et al. (2007) figure 12: Computed cross-shore profiles of significant wave height;
mean wave period; wave dissipation; and depth profile together with the thickness of the fluid
mud layer as schematised in the SWAN-mud model. Continuous lines: results for simulation
without mud. Dashed lines: results for simulations with fluid mud.
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5.4.3 Results of simulations

The model of Winterwerp et al. (2007) was validated on laboratory experiments by De Wit
(1995) and applied on the Guyana coastal system. Direct comparison between nearshore
observations and model results was not possible, because of the likely change in the
bathymetry since the moment of the wave observations and the moment of the bathymetry
observations. But with the model, damping was obtained of the same order of magnitude as
in the observations. Comparison between simulations with SWAN-mud and simulations with
only a sandy bottom shows much more energy dissipation when mud is taken into account.

It was concluded that “when including the SWAN mud wave damping model (…), the
damping effect of the wave energy is in reasonable agreement with the observations. Wave
heights are significantly overestimated in case fluid mud-induced wave damping is not
included in the SWAN simulations.”  (Winterwerp et al., 2007)

Figure 12 of Winterwerp et al. (2007) showes that the dissipation of wave energy starts at
the offshore end of the fluid mud layer. From that point on, the wave height decreases
gradually. In the simulations with fluid mud, no dissipation by bottom induced wave
breaking is present. This agrees with field observations. For the investigated situation, the
mean wave period decreases strongly over the fluid mud layers, with a stronger dissipation
of the low-frequency waves.

5.4.4 Constraints of the model

The conclusions of Winterwerp et al. (2007) clearly show that it is important to implement a
separate term into the model representing the mechanism for mud-induced dissipation. In
this section constraints of the model are discussed, indicating possibilities for further model
development. This evaluation discusses:

1. the used two-layer model
2. the energy dissipation term
3. energy propagation in the model
4. remaining restrictions

The validity of the model is firstly limited by the constrains of the schematization of  De
Wit. The most important restriction is that the schematization of De Wit is only valid for
mud layer thicknesses that are small compared to the wave length (see section 2.4.3).

The implementation of the energy dissipation into SWAN via the formulation for Sb,m ( , )
obtained by Gade (equation (139)) also introduces a restriction to the model. Gade derived
his expression using expressions for the pressure, the amplitude ratio and the phase
difference between interface and surface that follow from his shallow water approximation
of the two-layer system. Therefore, it is possible that the model will give a erroneous
estimation of the energy dissipation at deeper water even though a wave number is used that
follows from a dispersion equation that is valid on the concerned domain. If this is the case,
the extension of the domain of application to deeper water by using De Wit instead of Gade
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is nullified by the use of an energy dissipation term inconsistent with De Wit at deeper
water.

Figure 21 Schematic presentation of the structure of the model of Winterwerp et al. (2007) (black lines).
The model uses the dispersion equation of De Wit, valid on the whole kHw0-range. The energy
dissipation is calculated with the energy dissipation term obtained by Gade (1958, part II), which
is derived under the shallow water assumption. The use of this term in the Winterwerp et al.
model, aimed for the whole kHw0-range, probably introduces an inconsistency in case of
application on non-shallow water, in essence reducing the application of the model to shallow
water again. The gray chain on top indicates the possible structure of a consistent shallow water
model that can be assembled with the equations presented in literature.

(The issue of the consistency between dispersion equation and energy dissipation term is
extensively investigated in chapter 6 and 7.)

The location  of  the  calculation  of  the  wave  number in  the  code  also  introduces  a
restriction in the applicability of (this version of) the model. The mud affected wave number
is calculated inside the procedure that determines the mud-induced energy dissipation term.
But the modification of the wave number by the fluid mud has influence on other terms of
the action balance as well. At first we mention the group velocity, which is of major
importance for the calculation of the propagation of energy through the domain and the
transfer of energy over directions. But also other source and sink terms are affected by the
change of the wave number. In fact at all places where the wave number plays a part in the
determination of energy changes, propagation or dissipation the mud affected wave number
has to be used. It is expected that the influence of mud on energy propagation will be the
strongest in cases where high differences in energy propagation velocities can be expected
and where they are of influence on for instance refraction patterns and shoaling. Practical
situation where this is the case are situations with large variations in bed level, transitions
from sandy to muddy bottoms, or patches of mud.

(The inclusion of the influence of fluid mud on energy propagation in the SWAN-mud model
is the subject of chapter 8.)
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Remaining limitations

Winterwerp et al. (2007) mention the constraint formed by the difficulty to establish the
mud parameters, especially the mud layer thickness. This is caused by the fact that the
thickness of a layer of fluid mud is determined  by the wave height, the mud properties,
plasticity, transport of mud and probably the stress history. This has severe consequences for
a model describing wave damping by fluid mud, because these models are very sensitive for
the mud layer thickness. It is proposed to develop a advanced rheological model to model
the liquifaction in a proper way.

In the article it is also mentioned that further model calibration is required, but that it is
difficult to acquire data on muddy coasts, because of the poor accessibility of the sites.

5.5 Implementation of Ng by Rogers and Holland (in review)

5.5.1 Introduction

Rogers and Holland (under review) also describe the implementation of a viscous two-layer
model into SWAN. Their article contains a verification of wave damping implementations in
SWAN in which their model is compared to the model described in Winterwerp et al. (2007).
The model is applied on waves near Cassino Beach, Brazil, and compared to simulations
without dissipation by mud, simulations with the model of Winterwerp et al. and
measurements. Finally the model is used for inverse modelling: a method used to determine
the mud characteristics that would yield the observed wave heights.

This section starts with a description of the principles of the model of Rogers and Holland
(5.5.2). Thereafter the verification containing the comparison between Winterwerp et al. and
Rogers and Holland is summarized (5.5.3). The results of the simulations are discussed in
5.5.4. The constraints of the model are discussed in section 5.5.5.

5.5.2 Principles of the model

Dispersion equation

The dispersion equation used in this model is the dispersion equation of Ng (see 2.4.7).

Energy dissipation term

The solution for the wave number is implemented in SWAN via a relative energy dissipation
term given by:

,
,2b m

g x i

S
C k

E
(143)
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This expression has been derived for a mono-chromatic, uni-directional wave train
propagating over a flat muddy bottom, with dissipation by mud as only source or sink term.
In that case the action density balance reduces to:

, ,g x b mC N S
x

(144)

The relative energy dissipation term (143) is obtained by substituting (145) into the reduced
action density balance (144), calculating the derivative and dividing both sides by N.

/N E , 21
2

E ga , 0
ik xa a e

(145)

Also in this model it is assumed that the expression for energy dissipation can be applied to
calculate the energy dissipation for each bin in the E( , )-spectrum seperately.

5.5.3 Verification and comparison

Rogers and Holland verify their wave damping implementation in SWAN with simple tests
and compare their implementation with the model described in Winterwerp et al. (2007).
The first test compares the results obtained for the wave number ki via the various dispersion
equations at various mud layer thicknesses (like in chapter 4). The second test compares the
decay rates obtained for the dispersion equation of Ng, the dispersion equation of De Wit,
the SWAN-implementation of Rogers and Holland and the SWAN-implementation of
Winterwerp et al. for a situation with a flat, muddy bottom and all energy contained in a
single frequency and direction. Ng, De Wit and Rogers give almost exactly the same result
for the wave height, while Winterwerp differs from its corresponding expected decay rate.
According to Rogers and Holland, this suggests that the deviation in the dissipation is more
likely  due  to  differences  in implementation, rather than differences in the dispersion
equation.
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Figure 22 Rogers and Holland, figure 3: comparison of decay rates obtained with the dispersion equation of
Ng, the SWAN-implementation of Rogers and Holland, the dispersion equation of De Wit and the
SWAN-implementation of Winterwerp et al. (mentioned in same order as in legend) for a situation
with a flat, muddy bottom and all energy contained in a single frequency and direction.

5.5.4 Results of simulations

Rogers and Holland (under review) applied their model to Cassino Beach, Brazil. This
location  is  characterized  by  a  mild  slope  of  the  sea  bottom  and  a  wave  climate  that  is
dominated by wind sea and relatively young swell. The rheological information used in the
model is based on in situ measurements (Holland et al., under review). The model is run for
wave data obtained during a storm on 21-23 May 2005, firstly for the Cassino example itself
and secondly for a hypothetical scenario, which is the same, except for the mud location. In
the latter case the mud is located at or near the surf zone, much closer to the shore as in the
original Cassino example. They present an exponential decay rate by showing the distance
of propagation at which a wave would be attenuated to 50% or 10% of its original
amplitude. This example showed that the dissipation is much faster when the mud is at or
near the surf zone.

Rogers and Holland also compared the model for a situation without dissipation by mud and
a situation with dissipation caused by mud assumed to be present in a uniform lens of 40 cm
with measurements for the wave height obtained for three locations. These tests are aimed to
evaluate the necessity of including dissipation by viscous mud in the wave model. The tests
with dissipation are carried out with their own model, but also with the model of
Winterwerp et al. (2007).

These tests showed that for the situation without mud, the wave height was clearly
overpredicted. This means that some type of muddy bottom induced dissipation is needed.
The overprediction was less for high-energy cases. Rogers and Holland suggest that this is
caused by the change in viscosity in situations with high waves: a high level of forcing
reduces the viscosity. Therefore the effect of the mud-induced damping would be smaller.
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With mud-induced dissipation, the model results and the observations fit much better,
especially for the locations closest to the beach. Overprediction of dissipation occurs,
especially at the heighest waves at the most offshore measurement point. This could be
explained with the same argument of changing viscosity, but Rogers and Holland also give
as possible explanation that the true mud distribution in the region might be thinner or
patchyer than the uniform lens of 40 cm applied in the simulation.

The model results of Rogers and Holland coincide better with the observations than the
results obtained with Winterwerp et al. The latter consistently overpredicts the wave
damping.

5.5.5 Constraints of the model

This section discusses constraints of the model, focussing on (compare 5.4.4):
1. the used two-layer model
2. the energy dissipation term
3. energy propagation in the model

The validity of the model of Rogers and Holland is firstly limited by the constraints of the
dispersion equation of Ng, a boundary layer approximation that covers only a part of the
domain covered by the schematization of De Wit. This dispersion equation is valid when the
mud layer thickness is small compared to the wave length (like De Wit) and small compared
to the water layer thickness (see 2.4.7).

The formulation of the energy dissipation also yields constraints. In the derivation for the
uni-directional wave Cg is  considered  in  the  direction  of  propagation.  In  case  of  waves  in
various directions, the energy dissipation of each directional bin has to be calculated using
its own energy propagation velocity. This would require extension of the dissipation term to:

,
, ,2 2b m

g x i g y i

S
C k C k

E
(146)

containing a vectorial summation of Cg,x and Cg,y to obtian the energy propagation velocity
in the direction of propagation. Although not treated in the article, this step does not seem to
restrict the application. A question is which Cg,x is used in the model to calculate the
dissipation according to equation (143). As explained before, Cg,x is  also  affected  by  the
mud.

This problem is equivalent again with the location of the calculation of k in the SWAN code.
When k would be calculated on a higher level, it can be made available for calculation of
other parameters influenced by mud.

Finally, in comparing their model with the model of Winterwerp et al. Rogers and Holland
state (section 2.2.3): “Unlike the implementation of Ng in SWAN, the Winterwerp et al. SWAN
implementation uses the mud–adjusted wave number to calculate a mud-adjusted group
velocity which is shared with the rest of the model and used in calculation of kinematics.
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For his reason , the Winterwerp et al. implemention can produce “shoaling”  and
“refraction” effects associated with spatial variation of mud, separate from traditional
shoaling and refraction associated with variation of depths or currents.” Although this
remark clearly appoints the desired model developments, it is not entirely correct
concerning the model of Winterwerp et al. (2007). So both models encounter the same
constraint concerning the influence of mud on other phenomena than the dissipation itself.

5.6 Implementation of Ng by Kaihatu et al. (2007)

5.6.1 Introduction

The implementation of a viscous two-layer model into a wave model described by Kaihatu
et al. (2007) is quite different from the two previously discussed models, because a wave
model is used that differs strongly from the wave model SWAN. Kaihatu et al. compared their
model with laboratory experiments and tested the model on theoretical 1D and 2D cases.
This section shortly describes the setup of the model (5.6.2) and the results obtained in the
tests (5.6.3).

5.6.2 Principles of the model

Wave model

The wave model used by Kaihatu et al. is a model described in Kaihatu and Kirby (1995).
This  is  a  ‘parabolic frequency-domain mild-slope equation model with second-order
nonlinear wave-wave interactions’. The model belongs to the category of phase-resolving
models. The basics of the model are formed by a parabolic version of the mild-slope
equation. Characteristics of this kind of models are that the wave condition is computed
line-by-line, propagating in a forward direction, that the resolution of the method is a small
fraction of the wave length and that these models can deal very well with nonlinear
processes, diffraction and rapid variations in the evolution of waves (e.g. breaking). These
models are especially suitable for small scale (say ten wave lenghts) calculations on uni-
directional waves which characteristics are given by a fully deterministic description. The
wave generation by wind is absent in these models.

Here only the principle characteristics of this type of models are mentioned, based on the
literature below. For equations and further discussions on the mild slope equation and phase-
resolved models, see Holthuijsen (2007, p.6;218;262), Dingemans (1997, section 4.3) and
Kaihatu and Kirby (1995).

Dispersion equation

The dispersion equation used to describe mud-induced dissipation is the dispersion equation
of Ng (see 2.4.7). The imaginary part of the wave number describes the dissipation effect of
the mud, while the real part is considered to describe the effect of mud on the wave
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kinematics. Kaihatu investigates the effect of the adjusted real part on energy transfer within
the wave spectrum and on the increase of the wave length during propagation over
thickening fluid mud. The latter causes an inverse shoaling effect.

Nonlinear wave-wave interaction

Kaihatu et al. extensively deal with the nonlinear wave-wave interaction by describing the
way this mechanism is implemented in the model. The reason for this is the following: The
dissipation mechanism described by the dispersion equation requires direct interaction
between wave motion and bottom. Therefore it is in essence a long wave dissipation
mechanism. But cohesive sediment coasts in practise turn out to be of dimensions on which
also “indirect wave-sediment energy exchange processes can become important” (Kaihatu et
al., 2007), where dissipation of short-wave energy via nonlinear wave-wave interaction is
normally considered as the most important process. This spectrum-wide wave damping was
observed in the field experiments of Sheremet and Stone (2003), but was not reproduced in
simulations with damping by enhanced bottom friction or observed in measurements for
areas with sandy bottoms. Therefore Kaihatu stresses the importance of nonlinear wave-
wave interaction in models where dissipation by viscous mud is investigated.

5.6.3 Results of simulations

Kaihatu et al. validated their model with the laboratory experiments of De Wit, the same
data used by Winterwerp et al. (2007). Further testing was done in both one and two spatial
dimensions. It was found that the actively-dissipated frequencies were mainly present at
shallow and intermediate water depths. By simulations with and without the nonlinear
wave-wave interactions it was found that the “subharmonic interactions are responsible for
the dissipation of the high frequencies of the wavefield, even if beyond the deep water limit.”
It was also found that the change of the real part of the wave number by the mud did not
much influence the wave-wave interaction.

In case of patches of mud, strong damping inside the patch leads to significant diffraction on
the lee side. This diffraction is reproduced well with this wave model.

5.7 Discussion

5.7.1 Introduction

Considering the models described above, this section discusses the most important
differences between the models (5.7.2) and indicates the priorities in the further
development and testing of an adaptation to SWAN to model the decrease of energy during
the propagation of a wave field over fluid mud (5.7.3). Before starting with the model
extension in chapter 7, a  few fundamental questions on the implementation of viscous two-
layer models into the wave energy model SWAN are discussed in section 5.7.4.
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5.7.2 Overview

Table 7 resumes some important information concerning the models described in the
previous sections.

Name Wave model type two-layer model Dissipation term Propagation?

Winterwerp et al. SWAN phase averaged De Wit Gade (part II) no

Rogers and Holland SWAN phase averaged Ng Rogers no

Kaihatu Kaihatu&Kirby phase resolved Ng [-] yes

Table 7 Some important information concerning the models described in literature

Winterwerp et al. (2007) and Rogers and Holland (in review) both implemented a viscous
two-layer model into SWAN, a phase-averaged wave energy model. Kaihatu et al. (2007) use
a phase-resolving model. Phase-resolving models are especially suitable for small scale,
fully deterministic simulations, diffraction and nonlinear wave-wave interaction. Phase-
averaged models are better suited to model statistical properties of the waves on a larger
scale.

The type of the wave model also makes a difference concerning the implementation of the
influence of mud on dissipation and propagation. In the SWAN-models, a separate energy
dissipation term is needed. Winterwerp et al. (2007) uses a term derived by Gade, Rogers
and Holland (in review) derive their own term. This term has to be added to the source and
sink terms of the energy balance. In Kaihatu’s model, the influence of mud on dissipation
(and propagation) is known as soon as the mud-adjusted wave number is calculated and
available in the model. Both Winterwerp et al. (2007) and Rogers and Holland (in review)
only consider the influence of the mud on the dissipation. The effects of the mud-adjusted
wave number on other parameters and phenomena, like the group velocity and energy
propagation, are not yet taken into account.

The energy dissipation term used in Winterwerp et al. is based on shallow water
assumptions. The expectation that the model will give an incorrect estimation of the energy
dissipation  at  deeper  water,  is  supported  by  the  results  of  the  comparison  between
Winterwerp et al. and Rogers and Holland as shown in Figure 22.

The dispersion equations used to implement in the wave models are De Wit in Winterwerp
et al. (2007) and Ng in Rogers and Holland (in review) and in Kaihatu et al. (2007). As
discussed before, the schematization of De Wit is less strict concerning the mud layer
thickness.

5.7.3 Priorities in model development

Priorities in the further development of an adaptation to SWAN to model the decrease of
energy during the propagation of a wave field over fluid mud are the following:
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1. Implementation of the DELFT dispersion equation described in chapter  3 and the solving
routine to compute the mud-adjusted wave number described in chapter 4

2. Derivation and implementation of a process based energy dissipation term for a phase
averaged model, consistent with the DELFT dispersion equation

3. Adaptation of the code to make the mud-adjusted wave number available for calculation
of other parameters and processes, allowing for energy propagation being affected by
mud

The derivation of a new energy dissipation term is described in chapter 6. The
implementation of the DELFT dispersion equation and the newly derived energy dissipation
term is described in chapter 7. The adaptation to compute the influence of mud on energy
propagation is described in chapter 8.

5.7.4 Remaining constriants

With the elaboration of the priorities formulated in the previous section, important
constraints mentioned in the discussion of the separate models are resolved. But other
constraints remain and form fundamental restrictions on the SWAN-model adapted for
propagation over fluid mud.

Linearity

The first important restriction is imposed by the assumption that the problem is linear. This
assumption is important for various steps in the model. It is on the basis of the two-layer
model that is used to calculate the mud-affected wave number. But it is also the justification
of the superposition of the energy term per wave frequency and direction to compute the
total energy dissipation (a basic principle in SWAN itself). This principle is only true when
the amount of energy at one frequency or direction does not influence the dissipation at
another frequency or direction. The energy at various frequencies is connected in a non-
linear way: energy can be transferred from one frequency to another by non-linear wave-
wave interaction. But this does not make it impossible to describe the problem as linear. The
various energy dissipation and energy transfer terms can be treated separately and linear,
especially because the spatial scale of the wave-wave interaction is much larger than the
spatial scale of the dissipation by viscous mud.

Small spation variability

A second important restriction concerns the assumed small spatial variability of the water
depth and the newly introduced  variables in space (mud layer thickness, density, viscosity).
As soon as any hard boundary or modification of layer thickness or mud property is
encountered, (partial) reflection occurs. In a simple mathematical model, this reflection
would be described using not only the external wave traveling in positive directions, but
also the other solutions of the dispersion equation. These other solutions are not available in
the SWAN-version considering mud-induced damping.
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But also this omission does not impose constraints to a SWAN-mud model that are not
already present in SWAN itself. Small spatial variability of the variables in space is an
assumption in SWAN itself. Therefore the model does not deal with reflection in general.
Reflection on hard structures or clear discontinuities can only be taken into account by using
a separate reflection module that removes or adds energy from or to the spectrum via extra
source and sink terms on the specific location of the structure.

This assumption is already present in the derivation of the regular dispersion equation. The
regular dispersion equation is derived under the assumption of a horizontal bottom.
Therefore the wave number can be considered independent from x. In third generation wave
models for oceans (with explicit scheme) the capacity of the model to deal with spatial
variability is limited by the courant criterium and efficiency (small x would lead to small

t, because t < x/cg,x, see the remarks on ocean models in section 5.2.2). The implicit
propagation scheme of SWAN makes the model better capable to deal with the stronger
variations in seabed topography in coastal seas. But in this case the assumptions used in the
description of the kinematics itself impose limits on the spatial variability the model can
deal with.

Conclusions

The conclusion from the preceding considerations is that the implementation of mud into
SWAN in principle does not impose restrictions on the model that are not already present in
SWAN itself.
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6 Derivation of an energy dissipation term

6.1 Introduction

The previous chapter indicates the need for the derivation and implementation of an energy
dissipation term that is consistent with the used dispersion equation. This chapter describes
step by step the derivation of an energy dissipation term consistent with the DELFT
dispersion equation. The derivation follows Gade (1958): the wave period averaged work by
the pressure on the interface is used as measure for the energy loss. But in this derivation the
DELFT dispersion equation is used to determine the wave number, the pressure fluctuation
and the phase and the amplitude of the interface displacement.

The derivation of a new energy dissipation term is one of the main contributions of this
project to the development of SWAN-mud models. Therefore it is presented in the main text
of this report. The last section of this chapter (6.8) summarizes the conclusions. Those not
interested in the derivation can limit themselves to the conclusions without losing the thread
of the story.

Section 6.2 explains how the vector of constants can be computed with the coefficients of
the matrix. Section 6.3 focusses on the ratio between the (complex) amplitudes of the
interface and surface displacement. In section 6.4 the expression for the pressure is
investigated. Section 6.5 shows how the work on the interface can be computed, thus giving
an expression for the dissipation of energy. The dissipation rate is related to the total amount
of energy in section 6.6. This defines a relative energy loss. On various places in this
derivation, a comparison is made with expressions by Gade (1958). Numerical computations
in section 6.7 illustrate the conclusions about terms that have to be taken into account.
Section 6.8 forms the conclusion of this chapter and gives the key equations.

6.2 Calculation of vector of homogeneous solution

Given the coefficient matrix derived in chapter 3, the five unknows of the vector of
homogeneous solutions can be expressed in terms of the surface wave amplitude a. As soon
as  the  solution  for  the  wave  number k is computed, the unknowns can be computated as
well.

Matrix equation of the system (147)
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Using the first and the second row, C1 and C2 can be expressed in terms of a.

C1 :=  - sinh k Htot0( ) g k
w

 + cosh k Htot0( ) wæ
ç
è

ö
÷
ø

a
(148)

C2 := -sinh k Htot0( ) w + cosh k Htot0( ) g k
w

æ
ç
è

ö
÷
ø

a
(149)

Using the fifth and the fourth row, C3 and C4 can be expressed in terms of 0.

C3 := -
cosh m Hm0( ) w x0 m

k -sinh m Hm0( ) + cosh m Hm0( ) m Hm0( )

(150)

C4 := -
I w x0 m sinh m Hm0( )

k -sinh m Hm0( ) + cosh m Hm0( ) m Hm0( )

(151)

The  third  or  the  sixth  row  can  be  used  to  express  0 in  terms  of a. Substituting the
expressions for C1 and C2 in the equation following from the third row and solving for 0

gives:

x0 := cosh k Hm0( ) cosh k Htot0( ) - cosh k Hm0( ) sinh k Htot0( ) g k

w
2

 - sinh k Hm0( ) sinh k Htot0( ) + sinh k Hm0( ) cosh k Htot0( ) g k

w
2

æ
ç
ç
è

ö
÷
÷
ø

a (152)

where 0 is the complex amplitude of the interface displacement and a the real amplitude of
the surface displacement.

6.3 Ratio between interface and surface displacement

 With the use of:

sinh sinh cosh cosh sinhx y x y x y (153)

cosh cosh cosh sinh sinhx y x y x y (154)

0 0 0w tot mH H H (155)

the complex amplitude of the interface displacement 0 is written in a more convenient way:

x0 := cosh k Hw0( ) - sinh k Hw0( ) g k

w
2

æ
ç
ç
è

ö
÷
÷
ø

a
(156)

Key equation 1: Relation between (complex) interface and surface amplitude
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where the (complex) ratio between 0 and a is given by:

rXi0a := cosh k Hw0( ) - sinh k Hw0( ) g k

w
2

(157)

00
iberXi a

a a
(158)

The modulus and argument of rXi0a give information on the real amplitude ratio and the
phase difference between interface and surface displacement.

2 2
mod 0 Re 0 Im 0 brXi a rXi a rXi a

a
(159)

Im 0
arg 0 arctan

Re 0
rXi a

rXi a
rXi a

(160)

The analytical expressions for modulus and argument can be obtained with

rXi0aReal := cosh Hw0 kr( ) cos Hw0 ki( ) - g kr sinh Hw0 kr( ) cos Hw0 ki( )

w
2

 + g ki cosh Hw0 kr( ) sin Hw0 ki( )

w
2

(161)

rXi0aImag := sinh Hw0 kr( ) sin Hw0 ki( ) - g kr cosh Hw0 kr( ) sin Hw0 ki( )

w
2

 - g ki sinh Hw0 kr( ) cos Hw0 ki( )

w
2

(162)

These expressions can not be easily reduced to more compact formulations. For that reason
the analytical expressions are not given here.

Comparison with Gade

A comparison with Gade is made by expanding rXi0a with a Taylor series, with the use of:

3 5 7

sinh ...
3! 5! 7!
x x xx x

(163)

2 4 6

cosh 1 ...
2! 4! 6!
x x xx

(164)

In case of shallow water (Gade), kHw0 << 1. So we can expand around kHw0 = 0 and neglect
terms of (kHw0)n with n  2:

2

0 02 with0 1 1 i i
w w

gk krXi a kH gH Re Re (introduced by Gade)
(165)

This is exactly the expression given by Gade and used to compute amplitude ratio and phase
difference (see Gade I-16, I-32, I-33, I-41).



Wouter Kranenburg February 2008 Modelling Wave damping by fluid mud

8 8 WL | DELFT Hydraulics & DELFT University of Technology

6.4 The pressure term

In section 3.3, equation (49), the assumed solution for the pressure was

p1 x, z, t( ) := P1 z( ) e I k x - w t( )( ) + r1 g Htot0 - z( ) (166)

The amplitude of the pressure in the upper layer is given in section 3.4, equation (56):

P1 z( ) :=
w r1 C1 sinh k z( ) + C2 cosh k z( )( )

k

(167)

The expressions for C1 and C2 are known and can be substituted in expression (167). We
use

sinh sinh cosh cosh sinhx y x y x y (168)

cosh cosh cosh sinh sinhx y x y x y (169)

0totdiepte H z      = position below equivalent water level (170)

to rewrite the amplitude as:

P1 diepte( ) := r1 a g cosh k diepte( ) -
r1 a w

2
 sinh k diepte( )

k

(171)

Key equation 2: Expression for the amplitude of the pressure fluctuation in the upper layer

Why only the real part of the pressure amplitude is relevant

Expression (171) shows that the amplitude of the pressure fluctuation P1(diepte) is complex
due to the presence of the complex wave number k. Only the real part of the amplitude is
relevant for the calculation of the energy dissipation. The reasoning is as follows:

1) It is necessary to split the pressure in a real and an imaginary part before multiplication
with the (real) interface displacement and integration over a wave period T to obtain the
work. This necessity originates from the fact that the real part of the product of two complex
functions is not the same as the product of the real part of these functions. In mathematical
notation

( ) ( ) ( ) ( )Re e *e Re e Re ei kx t i kx t i kx t i kx t (172)

2) If the pressure amplitude is split up, the imaginary part of the pressure amplitude times
the imaginary part of the function describing the fluctuation itself does also give a real
product:

Im 1 * sin * realik x
ri P diepte i k x t e (173)
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but this product does not represent the physics involved. The reason for this is the fact that
the ‘imaginary part of the fluctuation’ i*sin(phase) is introduced by describing the harmonic
wave at the surface with the Eulerian expression e(i phase). Here the mathematical describtion
does not describe exactly what is physically present, adding an imaginary part. We seek the
physically present pressure, therefore the influence of this added imaginary part of the
fluctuation domain should be omitted.

3) Another argument is that the fluctuation of the pressure in the upper layer has to have the
same form and phase as  the water  level  elevation as  long as  no viscosity is  present  in  the
upper layer. This will not be the case if other harmonics than cos(phase) are added.

Based  on  these  arguments,  it  is  stated  that  only  the  real  part  of  the  pressure  amplitude  is
relevant for the computation of the work.

Determination of real part of the pressure amplitude

When the k-value is determined via the iteration, the real part of the pressure amplitude can
be computed, just by taking:

Re 1P diepte (174)

To get insight in the cause of the differences between the shallow water approximation and
this more extended approach, analytical expressions for the real and imaginary part of the
pressure amplitude are derived. This derivation, that is presented in appendix E, makes use
of:

*r ik k i k (175)
argmod * i kk k e (176)
2 2mod r ik k k (177)

arg arctan i

r

k
k

k
(178)

and results in:

Real_P1 diepte( ) := r1 a g cosh diepte kr( ) cos diepte ki( ) -
r1 a w

2
 sinh diepte kr( ) cos diepte ki( ) cos ARGk( )

MODk

 -
r1 a w

2
 cosh diepte kr( ) sin diepte ki( ) cos -0.5 p + ARGk( )

MODk

(179)

Imag_P1 diepte( ) := I r1 a g sinh diepte kr( ) sin diepte ki( ) +
I r1 a w

2
 sinh diepte kr( ) cos diepte ki( ) sin ARGk( )

MODk

 +
I r1 a w

2
 cosh diepte kr( ) sin diepte ki( ) sin -0.5 p + ARGk( )

MODk

(180)
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Because the first term of these two equations result from the first term of equation (171) and
the second and third terms result from the second term of equation (171), the terms are
called respectively:

(for eq. 179) Real_P1_1 Real_P1_2a Real_P1_2b
(for eq. 180) Imag_P1_1 Imag_P1_2a Imag_P1_2b

The order of magnitude of the various pressure terms

At diepte =  0,  that  is  where z = Htot0,  all  the  real  and  imaginary  terms  of  the  pressure
amplitude except the first real term become zero, due to sinh(0) = 0 and sin(0) = 0. The first
real part equals the contribution of the surface level elevation in the second Taylor term (BC
II, equation (83)):

0

( ) ( )1
1 0 1 1, , | 0  cosh 0* cos 0* 0

tot

i kx t i kx t
tot z H r i

pp x z H t ag k k e gae
z

(181)

At diepte  0,  the  other  terms  are  not  equal  to  zero.  Although  a  small  numerical
investigation shows that the first real term is the dominant term also at larger depths, it is not
justified to generalize this statement based on the symbolic notation. Below, the shallow
water  and  deep  water  limits  for  the  pressure  amplitude  at  diepte  = Hw0 are investigated,
using the Taylor series expansions:

3 5 7

sinh ...
3! 5! 7!
x x xx x

(182)

2 4 6

cosh 1 ...
2! 4! 6!
x x xx

(183)

3 5 7

sin ...
3! 5! 7!
x x xx x

(184)

2 4 6

cos 1 ...
2! 4! 6!
x x xx

(185)

At first, we assume that both in shallow and deep water the modulus MODk, the real wave
number kr and the unadjusted wave number knomud are of similar order of magnitude.
Furthermore the real wave number is always larger than the imaginary wave number.

r nomudO MODk O k O k (186)

r ik k (187)

For shallow water we find:
22

0 01w nm wkH g k H (188)
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The order of magnitude of the terms becomes:

Term Order ratio shallow
water

Real_P1_1
1ag 1

Real_P1_2a 2
1 0 0 cos arg /nm w w rag k H H k k MODk 2

0wkH  0

Real_P1_2b 2
1 0 0 sin arg /nm w w iag k H H k k MODk 2

0wkH  0

Imag_P1_1
1 0 0w r w iagH k H k 2

0wkH  0

Imag_P1_2a 2
1 0 0 sin arg /nm w w rag k H H k k MODk 2

0wkH  0

Imag_P1_2b 2
1 0 0 cos arg /nm w w iag k H H k k MODk 2

0wkH  0

Table 8: Comparison of order of magnitude of the terms of the pressure amplitude in shallow water

The discrimination with the < and << sign is based on the assumption that cos(argk) is close
to one. In case of multiplication with sin(argk) or using ki in stead of kr, the ‘order ratio’
becomes < kHw.. If both are the case, the order becomes << kHw0. It can be concluded that in
shallow water only Real_P1_1 has to be taken into account. The physical meaning of this is
a hydrostatic influence of the water level elevation on the pressure. This is the way how the
pressure is taken into consideration in the computation of the Work in Gade (1958).

For completeness the shallow water limit of the pressure term (171) is also investigated in
the same way as the shallow water limit of the amplitude ratio. The Taylor series expansion
of

P1 diepte( ) := r1 a g cosh k diepte( ) -
r1 a w

2
 sinh k diepte( )

k

(189)

around kHw0 = 0 becomes:

2
0 1 1 0 1 1 0 0 11 w w nm nm w wP H ag a H ag agk k H H ag (190)

This gives the same result as above.

For deep water we find:

2
0 >3w nmkH gk (191)

0                    arg 0ik k (192)
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In that case the order of magnitude of the various terms becomes:

Term Order ratio deep
water

Real_P1_1
1 0cosh w rag H k 1

Real_P1_2a
1 0sinh /nm w ragk H k MODk 1

Real_P1_2b
1 0 0cosh arg /nm w r w iagk H k H k k MODk 0 argw iH k k  0

Imag_P1_1
1 0 0sinh w r w iag H k H k 0w iH k  0

Imag_P1_2a
1 0sinh arg /nm w ragk H k k MODk arg k  0

Imag_P1_2b
1 0 0cosh /nm w r w iagk H k H k MODk 0w iH k  0

Table 9: Comparison of order of magnitude of the terms of the pressure amplitude in deep water

This  analysis  shows  that  the  importance  of  the  second  real  term  (2a)  increases  with
increasing relative water depth kHw0. In this case, the amplitude of the pressure as function
of depth becomes:

2
1

1 1

sinh *
( ) cosh * r

r

a k diepte
P diepte ag k diepte

MODk

(193)

which is (171) with k replaced by kr, while MODk is approximately equal to kr for small ki.
In the computation of the work, Gade (1958) only takes into account the first term, 1ag.

6.5 Work on the interface

Gade (1958) expresses the work dW done per  unit  area in time dt on the lower layer  at  a
given abscissa as:

dndW p dt
dt

(194)

where dn is the infinitesimal displacement normal to the interface of an element of the
interface.  The slope of  the interface is  assumed to be very small,  based on the assumption
that the amplitude a of the surface level is small compared to depth and wavelenght and the
fact that the amplitude of the interface for an external wave is smaller than the amplitude of
the surface. Therefore we can take the vertical displacement of the interface instead of n.
The work dW becomes:

ddW p dt
dt

(195)

The total work done per unit area during a whole wave period T at a particular point is found
by integration. Division by T results in the average energy transmitted through the interface
per unit area and time.
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0

1 T dWork p dt
T dt

(196)

Dalrymple and Liu (1978) notice that the work in fact consists out of two parts: the pressure
in the upper fluid and the shear stress both working on the moving interface. It is only the
first part that is taken into account by Gade. As long as the water layer is considered as non-
viscous this is justified, because in that case the shear stresses are absent in the water layer.
Dalrymple  and  Liu  (1978)  argue  that  also  for  viscosity  in  both  layers “in most cases, i.e.
when the lower layer is of reasonable thickness with respect tot the boundary layer scale,
( /2 m)1/2 Hm0 > 1, the first of these is of most importance, …”. For these reasons, the work
by the pressure is considered as the only mechanism of energy transfer from water layer to
mud layer.

Using the expression

x x, t( ) := b cos kr x - w t + f( ) e -ki x( ) (197)

for the displacement of the interface, and the expression

ReDrukInt := Real_P1 e -ki x( ) cos kr x - w t( ) + r1 g Hw0 - r1 g b cos kr x - w t + f( ) e -ki x( ) (198)

for the pressure on the interface (using Taylor, but taking only - 1g into account, as in BC
VI) the product representing dW in an infinitesimal time span dt can be expressed as:

dW := -Real_P1 e -ki x( )( )
2
 cos kr x - w t( ) b sin kr x - w t + f( ) w

 - r1 g Hw0 b sin kr x  - w t + f( ) w e -ki x( )

 + b 2 cos kr x - w t + f( ) e -ki x( )( )
2

r1 g sin kr x - w t + f( ) w

(199)

where Real_P1 is the real part of the total amplitude of the pressure fluctuation P1 at diepte
= Hw0, that is at the interface.

2
1 0

0 1 0

sinh
_ 1 Re 1( ) Re cosh w

w w

a kH
Real P P H ag kH

k

(200)

Because
sin sin

sin cos
2

x y x y
x y

(201)

the first term of dW can be expressed as
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2
1

sin 2 2 sin
_

2
ik x rk x t

Real Pe b
(202)

while the third term of dW becomes

22
1

sin 2( )
2

ik x rk x t
gb e

(203)

Only the sin( )-part of the first term contributes to the integral, because all the other terms
amount to:

2 /

0

sin 0A B C t dt
(204)

The expression for the average work per unit area and time becomes:

AvWork  := - 1
2

w Real_P1 b e -2 ki x( ) sin f( ) (205)

So only the term explicitely related to the phase shift between surface and interface, the term
representing the multiplication of the pressure fluctuation and the interface displacement,
contributes to the averaged work. This is a physically sound description.

6.6 Relative energy loss

The energy loss can be related to the total amount of energy. The total wave period averaged
energy per unit area is:

Energie := 1
2

r1 g a 2 e -ki x( )( )
2 (206)

The relative dissipation is obtained by division of the avarage work and the average energy:

RelDiss := -
w Real_P1b sin f( )

r1 g a 2

(207)

Key equation 3: Expression for the Relative Energy Dissipation

As explained in 6.4, the real amplitude of the pressure fluctuation at the interface, Real_P1,
consists of three terms (Real_P1_1, Real_P1_2a and Real_P1_2b). When these terms are
substituted one by one in this expression for the relative dissipation, we obtain also three
partial dissipation terms:
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Pressure term Relative dissipation term

Real_P1_1
RelDiss1 := -

w cosh Hw0 kr( ) cos Hw0 ki( ) b sin f( )
a

(208)

Real_P1_2a
RelDiss2a :=

w 3 sinh Hw0 kr( ) cos Hw0 ki( ) cos ARGk( ) b sin f( )

a MODk g

(209)

Real_P1_2b
RelDiss2b :=

w
3
 cosh Hw0 kr( ) sin Hw0 ki( ) cos -0.5 p + ARGk( ) b sin f( )

a MODk g

(210)

Table 10: Relative dissipation terms following from the various terms of the pressure amplitude

Computation of the dissipation in this way, enables us to compare the contributions of the
various pressure terms to the total dissipation at various water depths. Together, these terms
form the total relative dissipation:

RelDiss := -
w cosh Hw0 kr( ) cos Hw0 ki( ) b sin f( )

a
 +

w 3 sinh Hw0 kr( ) cos Hw0 ki( ) cos ARGk( ) b sin f( )

a MODk g

 +
w

3
 cosh Hw0 kr( ) sin Hw0 ki( ) cos -0.5 p + ARGk( ) b sin f( )

a MODk g

(211)

Remember that the ratio b/a is given by the modulus of rXi0a as given in equation (159).

Comparison to Gade

Finally this expression is compared to Gade’s expression for the relative energy loss:

0/ sinw
bWork E gH R
a

(212)

Note that, compared to formula (II-11) in Gade (1958),  is added to correct for the typing
error and symbols are replaced by their equivalent notation in this report. Hence
represents the phase difference between surface an interface. R and  result from:

2
i kRe

(213)

and the amplitude ratio b/a and phase difference  between interface and surface elevation
follow from:

 acc. to Gade 00 1 i
wrXi a gH Re (214)

mod 0rXi a
2 2

0 01 cos sinw w
b gH R gH R
a

(215)
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tan arg 0rXi a 0

0

sin
tan

1 cos
w

w

H gR
H gR

(216)

Gade (1958) used a shallow water limit of the complex ratio of the interface and surface
displacement rXi0a, ànd a shallow water limit of the amplitude of the pressure fluctuation
(Real_P1) to compute the dissipation.  Gade states that gHw0R is close to one for shallow
water conditions and that  is small compared to . In the limit case his expression reduces
to:

/ sinbWork E
a

(217)

The relative dissipation term for shallow water, consistent with the DELFT dispersion
equation, is RelDiss1, obtained by substituting the first real term for the pressure amplitude
into (207). As became clear while investigating the shallow water limit in section 6.4, only
the first pressure term is relevant for shallow water conditions. This gives

0 0cosh cos sin
1 sinw r w iH k H k b bRelDiss

a a

(218)

Or in table format:

Derivation Energy Dissipation Term Reduced for kHw0 << 1
GADE:

0/ sinw
bWork E gH R
a

/ sinbWork E
a

DELFT:
RelDiss1 := -

w cosh Hw0 kr( ) cos Hw0 ki( ) b sin f( )
a

sinbRelDiss
a

Table 11: Comparison of Relative Energy Dissipation Term for GADE and DELFT in shallow water limit case

So in shallow water, Gade’s energy dissipation term and the newly derived energy
dissipation term give the same results.

6.7 Numerical example

The conclusions of the analytical investigation above are verified with a numerical example
for intermediate water depth. This example is presented in Table 12. For the imput in the left
column, the wave number k is computed with the iteration method presented in chapter 4.
This  wave  number  is  used  to  compute  the  amplitude  ratio,  the  phase  difference  and  the
contribution of the various pressure terms to the relative energy dissipation.
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Input Output
T := 5.000 with dispersion equation:

w := 1.256637062 kr  := 0.285128

Hw0 := 2.0000 ki := 0.0159164

Hm0 := 1.00 MODk  := 0.2855718967

Htot0 := 3.0000 ARGk := 0.05576407273

r1 := r1 with vector of homogeneous solutions / rXi0a:

r2 := 1750.00 b := 0.1492343882a

n := 0.500 f := -0.7909079906

g := 9.81 with pressure terms and integral:

RelDiss1 := 0.1555295798

RelDiss2a := -0.04512748593

RelDiss2b := -0.0001555962776

Table 12 Numerical verification of conclusions of the previous sections

The conclusions about the importance of the second real term of the pressure amplitude are
supported by this numerical example. In this case, omitting the contribution of the second
term, leads to an overestimation of the damping of 40%:

RelDiss1 0.155 0.407
RelDiss 0.155 0.045

(219)

Another important result is that the phase difference  has a negative value. Because the
elevation of surface and interface are described by:

( )( , ) Re i kx tx t ae (220)

( ) ( )
0( , ) Re Re cosi kx t i i kx tx t e be e b kx t (221)

a negative value for  means that the interface wave is ahead of the surface wave (see
section 2.4.1).

A more extended example of a numerical computation is given in Figure 23. This figure
shows  the  three  terms  (RelDiss1, RelDiss2a, RelDiss2b) that contribute to the energy
dissipation term derived in this chapter (RelDiss). It illustrates the increasing importance of
taking into account the RelDiss2a for increasing values of kHw0. The dissipation term
according to Gade coincides with the newly derived energy dissipation term where kHw0 is
small, but considerably overestimates the dissipation at higher values of kHw0. (Note that the
various computation all have the same input, including the wave number k, computed with
the DELFT dispersion equation and the solution procedure of described before.)
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Figure 23 Graph of the Relative Energy Dissipation Terms as function  of the relative water depth kHw0.
This graph shows the three terms (RelDiss1, RelDiss2a, RelDiss2b) that contribute to the total
energy dissipation term derived in this chapter (RelDiss, thick dark gray line). The thick light gray
line shows the energy dissipation term according to Gade (1958). The thick lines coincides at low
values of kHw0. The importance of RelDiss2a increases with increasing kHw0. The dissipation
term according to Gade stays close to RelDiss1 over the main part of the domain.

Figure 24 Detail ofFigure 23 for low values of kHw0
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This agrees with the remarks made on the limits of the various pressure terms in section 6.4,
especially Table 8 and Table 9:

For  shallow  water  (kHw0< 1/3), both Real_P1_2a and Real_P1_2b, and therefore the
connected dissipation terms, approach zero. The dissipation term RelDiss1, connected to
the pressure term Real_P1_1 is the only term contributing to RelDiss and gives the same
results as the dissipation term according to Gade.
For intermediate water depths (1 < kHw0< 3), Real_P1_2b, and therefore the connected
dissipation  term,  stays  very  small.  Both Real_P1_1 and Real_P1_2a contribute to the
total energy dissipation RelDiss.
For  deep water  (3 < kHw0), Real_P1_2b, and therefore the connected dissipation term,
approaches zero again. Real_P1_1 and Real_P1_2a approach to the same value, except
for the minus sign. Therefore the energy dissipation term RelDiss,  which is the sum of
the contributions of the dissipation terms connected to these pressure terms, approaches
zero, while the dissipation term according to Gade keeps a high and positive value.
RelDiss approaching zero for deep water conditions is in agreement with the
expectation: deep water means no influence of the bottom resulting in no mud-induced
wave damping.

6.8 Conclusions

This chapter described the derivation of an energy dissipation term consistent with the
DELFT dispersion equation. The same method is followed that has been applied by Gade
(1958). However, here expressions are used for the amplitude ratio, the phase difference
between interface and surface and the amplitude of the pressure fluctuation that are valid on
the whole kHw0-domain. The main assumption of the method is that the energy dissipation in
the second layer equals the energy transport through the interface. The transfer of energy
over the interface is induced by the work of the pressure on the fluctuating interface. A mean
energy dissipation term is obtained by taking the integral of the work over a wave period.
When  this  term is  divided  by  a  wave  period  and  by  the  total  amount  of  present  energy,  a
relative energy dissipation term is. This relative energy dissipation is given by:

RelDiss := -
w sin f( ) Real_P1b

r1 g a 2

(222)

where:

mod 0b rXi a
a

(223)

arg 0rXi a (224)

rXi0a := cosh k Hw0( ) - sinh k Hw0( ) g k

w
2

(225)

2
1 0

0 1 0

sinh
_ 1 Re 1( ) Re cosh w

w w

a kH
Real P P H ag kH

k

(226)
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with:
Symbol Description [-]
a Amplitude of water surface displacement m
b Amplitude of interface displacement m

Phase difference between surface and interface displacement rad
1 Density of water kg / m3

Real_P1 Real amplitude of pressure fluctuation N / m2

diepte Htot – z, position below equivalent water level m
Wave (angular) frequency (2  / T) rad / s

rXi0a Complex ratio of interface and surface displacement [-]
Hw0 Equilibrium height of water layer, depth of interface m
k Wave number rad / m

Table 13 Overview of parameters in the expression for the Relative Energy Dissipation by mud

This expression is valid for the same parameter domain as the associated DELFT dispersion
equation. At shallow water conditions, this expression reduces to Gade’s (1958) expression
for the energy difference. This can be demonstrated by substituting the shallow water limits
of rXi0a and Real_P1 in equation (222). The results for Gade’s expression and the newly
derived energy dissipation term start to diverge considerably with increasing relative water
depth kHw0. This leads to the conclusion that Gade’s expression is not applicable for
intermediate and deep water conditions. Another conclusion is that the displacement of the
interface is ahead of the displacement of the surface.

Although the amplitude of the surface wave a is present in the expressions above, the energy
dissipation term is independent of the value of a (because both Real_P1 and b are a function
of a). This is consistent with the assumption that the wave amplitude is considered small
compared with depth and that therefore the problem can be considered as linear.

The implementation of the relative energy dissipation term derived in this chapter into the
wave model SWAN is described in the next chapter.
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7 Implementation of ‘DELFT’ into SWAN (1):
Energy dissipation

7.1 Introduction

In chapter 2 various viscous two-layer models have been discussed. In chapter 3 a
dispersion equation (DELFT) has been derived for a schematization compatible with the
conditions of the majority of practical field study cases. A method to compute the wave
number from this equation is presented in chapter 4. An overview of the recent
implementation of viscous bed models into wave models has been given in chapter 5,
mainly focussing on implementations into the wave model SWAN. A new energy dissipation
term, consistent with the DELFT dispersion equation, has been presented in chapter 6. This
chapter describes the first step in the implementation of the DELFT dispersion equation and
the newly derived energy dissipation term into the wave model SWAN.

Section 7.2 describes how and where dispersion equation and energy dissipation term are
implemented in the code of SWAN. Section 7.3 describes various validation tests executed
with SWAN-mud. Finally, section 7.4 discusses conclusions and suggestions for further
improvement.

7.2 Implementation into SWAN

With the newly derived dissipation term that is consistent with and valid for the same
domain as the DELFT dispersion equation, a model can be set up which is valid on the whole
kHw0-range. The content of the model is shown in the picture below.

Figure 25 Schematic presentation of the content of the new model (black lines), compared to the model of
Winterwerp et al. (2007) (gray lines). The model uses the dispersion equation DELFT and the

Winterwerp et al.
(2007) model

Model consistent for
whole kHw0-range

Shallow
water

Whole
kHw0-
range

De Wit ki

Gade
(part II)

 Sb,m
b/a,

New Energy
Dissipation
Term

 Sb,m
b/a,

Energy
Dissipation

Dispersion
Equation

Application outsite
domain of validityx

Model

Introduction
of inconsistency

DELFT ki

Winterwerp et al.
(2007) model
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newly derived energy dissipation term, both valid on the whole kHw0-domain. Proven the fact that
the energy dissipation term obtained by Gade (1958, part II) is a shallow water reduction of the
newly derived energy dissipation term (see appendix E), the domain of validity of the Winterwerp
et al. model reduces to shallow water.

The first step in the implementation of the mud-adjusted wave number k and the newly
derived energy dissipation term Sb,m consists of adding these parameters to the existing
SWAN infrastructure. This implementation is suitable to carry out some simple validation
tests, but is inefficient and not complete. The next step in the development of the model
contains the adaptation of the location where the wave number k is computed. This makes
the model more efficient and makes it possible to compute the influence of mud on energy
propagation. This next stap is the subject of chapter 8.

The structure of the adapted SWAN model (first step of implementation, called here SWAN-
mud (I)), is illustrated with a Program Structure Diagram (Figure 26). The Program
Structure Diagram in Figure 27 is a more detailed elaboration of the subroutine used to
calculate the mud-induced dissipation term Sb,m. These two tables show at which level the
wave number k is calculated. It is shown that the mud-adjusted wave number is not available
outside the Sb,m-calculation and is calculated inside the general SWAN-iteration loop and the
directional sweeps.

SWAN-mud (I), stationair

Initialisations
Boundary Conditions

Four directional sweeps
Grid loop (x,y)

calculation propagation velocities of energy (x,y )

calculation propagation velocities of energy ( , )

calculation SOURCE and sink terms:
S bfr

S b,m

S wc

S br

S nl3

S nl4

S wind

calculation left-hand side terms in ACTION balance:
C xN / x
C yN / y

C N /

C N /

solve matrix filled in SOURCE and ACTION N (x,y, , )
Iterate until iteration criterium is fulfilled

Figure 26 Program Structure Diagram of the SWAN-mud (I), with the mud-induced dissipation term Sb,m as
one of the source and sink terms.
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Calculation of S b,m

INPUT: H w0, H mud, 1, 2, w, m, g , (vector IS=1:ISSTOP)

DO for IS = 1:ISSTOP
compute starting value for k -iteration

execute k -iteration procedure (DZANLY)
calculate amplitude ratio b/a

calculate phase difference interface and surface
calculate real pressure amplitude

calculate mud-induced energy dissipation
OUTPUT: vectors of length ISSTOP for b/a , , S b,m

}   "
D

E
LF

T"
S

ub
ro

ut
in

e

Figure 27 Program Structure Diagram of the calculation of the mud-induced dissipation term Sb,m in the
SWAN-mud (I) model. The computation takes place in the subroutine DELFT. The mud affected
wave number is calculated within this subroutine with the iteration procedure discussed in chapter
4.

Like in Winterwerp et al. (section 5.4) and Rogers and Holland (section 5.5) the calculation
of the mud-adjusted wave number k is implemented at a low level in the wave model SWAN,
where it is only used to calculate the mud-induced energy dissipation term Sb,m ( , ). At all
the other locations in the program where the wave number k is needed, the unadjusted and
real wave number is used. Therefore no influence of the mud is present in the calculation of
the energy propagation velocities cg,x, cg,y or c . This means that the presence of mud does
not have any influence on the processes of refraction and shoaling. Also for the calculation
of the other source and sink terms, the unadjusted wave number is used. This means that no
influence of the mud is present in the calculation of generation, dissipation and wave-wave
interaction processes via the wave number. These processes are influenced by the total
amount of energy. Obviously influence of mud is present in this way.

Strictly speaking, the omission of the influence of mud on the propagation of energy
restricts the applicability of the SWAN-mud (I) model to cases without shoaling or refraction.
Kaihatu et al. (2007) state that the influence of the change of the wave number by fluid mud
on the wave-wave interaction is small, so this is not expected to impose limits on the
applicability. In practice, this means that the applicability of the model is limitted to cases
where energy propagates along straight lines over flat bottoms with equally distributed mud
of constant properties.

7.3 Validation with simple dissipation tests

7.3.1 Test 1: Monochromatic, one-directional waves over a flat bottom
with a mud layer of constant thickness

Description test lay-out

In this test a monochromatic wave is constructed by concentrating a pack of energy at an
infinitesimal frequency and directional range. This sharply peaked spectrum is prescribed at
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the boundary of a one dimensional domain, representing a straight flume with a layer of
fluid mud of constant thickness at constant water depth (see Figure 28).

Figure 28 Schematic presentation of the lay-out of test 1: monochromatic, one-directional wave over a flat
bottom (indicated by the dark gray volume) with a mud layer of constant thickness (indicated by
the light gray volume).

Test objective and expected results

The decrease of energy during the propagation over the mud layer is calculated in SWAN-
mud (I). When the energy at location x is calculated, also the significant wave height Hs can
be calculated via:

0 04         with     ,sH m m E d d (227)

where m0 is the zero-th order moment of the energy spectrum.

The results of this computation will be compared with the results for the decay of the wave
height Hs calculated directly from the imaginary wave number with:

0
ik x

s sH H e (228)

where ki is the same imaginary wave number as calculated in SWAN and used to determine
the energy dissipation term Sb,m. Comparison with this (analytical) method is possible
because ki has the same value in the whole domain in case of uniform bottom geometry and
properties.

Figure 29 Schematic presentation of the two methods used to calculate Hs in test 1: the first method (top)
calculates Hs with the use of the energy dissipation term in SWAN, the second method calculates
Hs directly with the analytical expression Hs=Hs0e-ki.
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If the mud-induced dissipation term correctly represents the energy loss, the two graphs
should coincide, both for shallow water and intermediate water depths.

Results

The results obtained with this test are shown in graphs of the significant wave height Hs as
function of the travelled distance over the mud.

Figure 30 Test 1: Significant wave height Hs calculated via the newly derived energy dissipation term
implemented in SWAN-mud (I) (dots) and directly with the analytical expression Hs=Hs0e-kix

(continous line) for shallow water (left) and intermediate water depth. The kHw0-values are
indicated in the pictures. The wave number k is calculated with the dispersion equation DELFT.

The two lines coincide exactly, which is the case for all tested cases. This result shows that
the newly derived energy dissipation term correctly represents the mud-induced energy loss.
It also shows that the dispersion equation and the dissipation term are now consistent with
each other both for shallow water as for intermediate water depths.

Test 1b: Comparison with other models

The results are compared to the models of Winterwerp et al.(2007), the model of Rogers and
Holland (in review) and a shallow water model using both the dispersion equation and the
energy dissipation term of Gade.

Name model Reference Dispersion
Equation

Energy
Dissipation

Domain of validity

Gade complete Figure 21 (gray) Gade Gade (part II) shallow water

Winterwerp et al. section 5.4 & Figure 25 (gray) De Wit Gade (part II) shallow water
Rogers and Holland section 5.5 Ng Rogers and Holland all kHw0-values
SWAN-mud (I) section 7.2 & Figure 25 (black) DELFT new dissipation term all kHw0-values

Table 14 The new SWAN-mud (I) model (row 4) has been compared with the models in row 1, 2 and 3.
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The energy dissipation term obtained by Gade (part II) is the shallow water limit of the
newly derived energy dissipation term. The dispersion equations of Gade, De Wit and DELFT
do give the same results for the wave number k for shallow water. Therefore, Gade complete
and Winterwerp et al. (2007) are expected to give the same results for small values of kHw0.
Comparison of Figure 31 with the left panel of Figure 30 shows that this indeed the case.

Figure 31 Test 1b, comparison for shallow water: The significant wave height calculated via energy
dissipation implemented in SWAN (dots) and directly with the analytical expression Hs=Hs0e-kix

(continous line). The left panel shows Gade complete, the right one shows Winterwerp et al.
(2007)

At intermediate water depths (kHw0  1), two kinds of deviations are expected. Firstly we
expect that ki will be overpredicted by the dispersion equation of Gade, leading to too strong
dissipation. Secondly we expect that computations with the energy dissipation term of Gade
(part II) will also cause overprediction of the damping (compared to calculations with
Hs=Hs0e-kix). The results shown in Figure 32 are obtained for the same settings used in Figure
30, right panel. The results confirm the expectations, confirming the observation that
Winterwerp et al. (2007) is in fact a shallow water model.

Figure 32 Test 1b, comparison for intermediate water depth: The significant wave height is computed from
the energy dissipation according to Gade implemented in SWAN (dots) and directly from the
analytical expression Hs=Hs0e-kix (continous line). The left panel shows Gade complete, the right
one shows Winterwerp et al.(2007).
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The SWAN-mud (I) model is compared with the model of Rogers and Holland by running the
same test case as executed by Rogers and Holland (discussed in section 5.5.3, shown again
in Figure 33.b). Figure 33 shows that the SWAN-mud (I) model and the model of Rogers and
Holland give the same results.

Figure 33 Test 1b, comparison of SWAN-mud (I) (left) with the test case of Rogers and Holland (right)
showing results for their own model and for Winterwerp et al. (2007). The graphs show the
significant wave height computed from the energy dissipation implemented in SWAN and directly
from the analytical expression Hs=Hs0e-kix  (see Figure 22 for a more extensive explanation).

7.3.2 Test 2: A spectrum of uni-directional waves over a flat bottom
with a mud layer of constant thickness

Description test lay-out

Test 1 is extended by using a spectrum of waves as forcing of the system. The energy is
spread over a broader frequency range but is still concentrated in a single directional bin.
The bottom is flat and the mud layer is of constant thickness.

Figure 34 Schematic presentation of the lay-out of test 2: a spectrum of waves over a flat bottom with a mud
layer of constant thickness.

Hw0

Hmud

Energy
(small )

x
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Test objectives and expected results

This test investigates whether the model deals correctly with a full spectrum as well. The
statement in literature (Sheremet and Stone, 2003) that the longer waves are more affected
by the presence of fluid is investigated. The shape of the spectrum and the mean frequency
are the discriminating parameters in this investigation. If the longer waves are more
affected, it can be expected that the energy is reduced more at the lower frequencies and that
the mean frequency shifts to a higher value.

Explanation of graphical presentation

The results are presented in a series of graphs (starting from Figure 35). The central graph is
a contourplot of the variance density spectrum as function of the travelled distance x. The
interpretation of this graph is facilitated by a second graph showing the variance density
spectrum at a few distances (bottom left) and a résumé of some important spectral
characteristics at x = 0 m and x = 300 m. The central graph also shows the development of
the mean frequency of the waves as function of the travelled distance (thick black line). The
mean frequency is computed from:

, d

, dmean

fE f f
f

E f f

(229)

The top graph shows the significant wave height Hs as a function of the travelled distance,
where Hs is computed directly from the variance density spectrum through equation (227).
This graph gives the clearest insight in the influence of damping by fluid mud. In the
bottom-right graph, the imaginary part of the wave number ki is plotted as a function of the
frequency. In case of one directional waves over a horizontal flat bottom with a mud layer of
constant thickness, ki(f)is the same at every grid point.

Results

Figure 35 and Figure 36 clearly show the wave damping by fluid mud. The significant wave
height (top graph) and the variance density (center and bottom-left) decrease with travelled
distance.

Comparison of the bottom-right graph in Figure 35 and in Figure 36 shows that the ki(f)-
funtion differs strongly for these two cases. Figure 35 shows the highest value for ki at high
frequencies. Figure 36 shows a peak value for ki at a lower frequency. In the first case, the
high frequency waves are damped the most. Therefore the mean frequency decreases with
travelled distance (center graph). In the latter case, the peak of the damping is in the middle
if the spectrum, resulting in a slight increase of the mean frequency with travelled distance.
The different frequency of maximum damping is also visible in the shape of the spectra
(bottom-left). In the first case the shape of the spectrum is mainly affected in the high
frequency part of the spectrum. In the latter case, the spectral shape is mostly affected close
to the peak frequency. In Figure 36 the spectrum is dented just right of the peak, around
0.20Hz.
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Conclusions

The graphs of the imaginary wave number as a function of frequency show that the peak of
the damping can occur over the whole frequency domain (period 3-16 s), when using the
currently investigated parameter domain. Therefore it is not possible to conclude that only
the low frequency waves will be affected by the mud or that the mean frequency will
increase. The frequency that receives the strongest damping depends on the local conditions
concerning layer thicknesses and mud properties.

7.3.3 Test 3: the consequences of insufficient iterations

Description test lay-out

The lay-out of test 3 is exactly the same as the lay-out of test 2. The only difference is that
the maximum number of iterations used to calculate the wave number with the DZANLY
numerical iteration procedure is limited to 20 instead of 500 in the simulations before (as
criterium next to a very stingent stopping criterium that was almost never reached). Such a
reduction would make the procedure much faster.

Test objectives and expected results

The aim of this test is to investigate the sensitivity of the SWAN-calculations for deviations
or errors in the computation of the wave number. It is expected that with less iterations,
more cases will occur where the iteration has not yet converged to a proper solution. Values
for the imaginary wave number that are too high are expected to result in energy loss. This
is expected to be the case especially when wave-wave interaction will be taken into account.
Values for the imaginary wave number that are too low will yield an underestimation of the
damping as long as the value will not become negative. It is expected that negative values
for the imaginary wave number will result in ‘energy generation’ and an increase of the
wave height.

Results

Both phenomena are visible in the graphs presented. Figure 38 shows a positive peak in the
ki(f)-graph (bottom-right) with extra dissipation at one single frequency (center and bottom-
left). (Wave-wave interaction is not activated here.) Figure 39 shows a peak resulting in a
negative value for the imaginary wave number (bottom-right), causing a huge energy
increase  at  one  single  frequency  (center  and  bottom-left).  The  effect  is  an  increase  of  the
significant wave height over the travelled distance (top graph).
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Discussion and conclusions

This test makes clear that one single erroneous value for the wave number can totally
corrupt the results. Especially the influence of a negative value for the imaginary wave
number  is  far-reaching.  As  long  as  the  possibility  exists  that  energy  is  generated  by  the
model and that the significant wave height increases, the model functions insufficiently.

There are reasons to ease this statement. Firstly, the investigations till now show that
erroneous results for the iteration are rare and isolated: only a single peak in the frequency
spectrum  for  one  specific  set  of  parameters.  Secondly,  it  is  only  in  this  test  case  with
constant parameters over het whole area that an erroneous iteration can distort the result cell
after cell. In practical cases, the next cell will yield new parameters, thus limiting the
influence of errors in the iteration.

However, generation of energy would yield an unstable model. This has to be avoided at all
cost. Therefore measures have to be taken to avoid generation of energy. The model
achievement can be improved with the following adaptations:

1) Setting the value of the imaginary wave number ki to zero when a negative value is
computed. This adaptation would exclude instabilities, but is not very accurate.

2) Calculation of the wave number k outside the procedure which calculates Sb,m (see Figure
26 and Figure 27). This adaptation, aimed to enable the model to take into account refraction
and shoaling via the energy propagation velocities, also reduces the number of times that the
wave number k is computed for each grid point to one. When less computations are needed,
the time consumption of the iteration procedure is less problematic. In that case, application
of more iteration staps and more strict criteria is not a problem.

3) Overruling the dissipation term in case dissipation by mud is less than dissipation by
sand. This adaptation is needed to deal with gradually transition from sand to mud. It is
expected that in case of a very thin mud layer, the damping will not be governed by the
mud-induced damping, but by the normal bottom friction. Otherwise bottom induced
damping would almost vanish when the first thin mud patches are encoutered by the waves.
The details of this transition are not studied within the scope of this thesis. For the time
being, the largest bottom dissipation term is set to be dominant via:

, , ,

, ,

,

          &     0
     0         &

b m bfr b m b m bfr

b m bfr b m bfr bfr

bottom b m bfr

S S S S S
S S S S S

S S S

(230)

Where Sb,m is the mud-induced dissipation term, Sbfr is the dissipation by bottom friction on
a sandy bottom and Sbottom is the total bottom-induced damping.

With this measure negative peaks for the wave number are overruled and the erroneous
generation of energy is prevented, because regular bottom friction will be dominant in case
of peaks with negative values for the imaginary wave number.



Modelling Wave damping by fluid mud February 2008 Wouter Kranenburg

WL | DELFT Hydraulics & DELFT University of Technology 1 1 3

Fi
gu

re
 3

7:
 G

ra
ph

s o
f

th
e 

si
gn

ifi
ca

nt
 w

av
e

he
ig

ht
H

s a
s f

un
ct

io
n 

of
th

e 
tra

ve
lle

d 
di

st
an

ce
x

(to
p)

, t
he

 v
ar

ia
nc

e
de

ns
ity

 sp
ec

tru
m

 a
s

fu
nc

tio
n 

of
 x

 w
ith

 th
e

m
ea

n 
fre

qu
en

cy
(c

en
tra

l g
ra

ph
), 

th
e

va
rio

us
 d

en
si

ty
sp

ec
tru

m
 a

t x
=0

m
,

x=
20

0m
, x

=3
00

m
 a

nd
x=

40
0m

 (b
ot

to
m

 le
ft)

,
an

d 
th

e 
im

ag
in

ar
y 

w
av

e
nu

m
be

rk
i a

s f
un

ct
io

n 
of

th
e 

fr
eq

ue
nc

y 
(b

ot
to

m
rig

ht
)

Th
e 

po
sit

iv
e 

pe
ak

 in
th

e 
im

ag
in

ar
y 

w
av

e
nu

m
be

r r
es

ul
tin

g 
fro

m
an

 in
co

m
pl

et
e

ite
ra

tio
n 

im
pl

ie
s

ov
er

es
tim

at
io

n 
of

 th
e

da
m

pi
ng

. T
hi

s i
s

vi
sib

le
 in

 th
e 

va
ria

nc
e

de
ns

ity
 sp

ec
tru

m
 v

ia
an

 in
de

nt
 a

t 0
.2

H
z.



Wouter Kranenburg February 2008 Modelling Wave damping by fluid mud

1 1 4 WL | DELFT Hydraulics & DELFT University of Technology

Fi
gu

re
 3

9:
 G

ra
ph

s o
f

th
e 

si
gn

ifi
ca

nt
 w

av
e

he
ig

ht
H

s a
s f

un
ct

io
n 

of
th

e 
tra

ve
lle

d 
di

st
an

ce
x

(to
p)

, t
he

 v
ar

ia
nc

e
de

ns
ity

 sp
ec

tru
m

 a
s

fu
nc

tio
n 

of
 x

 w
ith

 th
e

m
ea

n 
fre

qu
en

cy
(c

en
tra

l g
ra

ph
), 

th
e

va
rio

us
 d

en
si

ty
sp

ec
tru

m
 a

t x
=0

m
,

x=
20

0m
, x

=3
00

m
 a

nd
x=

40
0m

 (b
ot

to
m

 le
ft)

,
an

d 
th

e 
im

ag
in

ar
y 

w
av

e
nu

m
be

rk
i a

s f
un

ct
io

n 
of

th
e 

fr
eq

ue
nc

y 
(b

ot
to

m
rig

ht
)

Th
e 

ne
ga

tiv
e 

va
lu

e 
fo

r
th

e 
im

ag
in

ar
y 

w
av

e
nu

m
be

r r
es

ul
tin

g 
fro

m
an

 in
co

m
pl

et
e

ite
ra

tio
n 

im
pl

ie
s

ge
ne

ra
tio

n 
of

 e
ne

rg
y.

Th
is

 is
 v

is
ib

le
 in

 th
e

va
ria

nc
e 

de
ns

ity
sp

ec
tru

m
 v

ia
 a

 p
ea

k 
at

0.
18

H
z 

in
cr

ea
sin

g
w

ith
 tr

av
el

le
d 

di
sta

nc
e

an
d 

vi
a 

th
e 

in
cr

ea
s o

f
th

e 
si

gn
ifi

ca
nt

 w
av

e
he

ig
ht

.



Modelling Wave damping by fluid mud February 2008 Wouter Kranenburg

WL | DELFT Hydraulics & DELFT University of Technology 1 1 5

4) Correction of the wave number via comparison with neighbouring frequencies (and
gridpoints). A physically more sound and probably more accurate improvement would be to
identify the peaks by comparing the value for the wave number with results for
neighbouring frequencies (and possibly gridpoints) and neutralize them by interpolation
between or extrapolation of proper results. Disadvantage is that such a procedure is only
possible in case of occasional errors in the iteration and certainty about the values used for
inter- or extrapolation. An advantage is that in this way the real part of the wave number can
be improved as well.

5) Application of a more reliable iteration procedure. This implies extension of the work
done in chapter 4. A more extended investigation could focus on the iteration procedure
itself, by comparing the performance of the DZANLY iteration procedure with other
procedures available.

Finally, it is also possible to pre-calculate the wave number for a high number of parameter
sets and to store the results in a look-up table (LUT). The computations for this table could
be carried out very accurately and checked manually. When this table is accessible during
the run of SWAN,  the wave number can be achieved by interpolation of  the results  for  the
nearest parameter sets. However, this approach is rejected, because of the large numbers of
parameters involved in the schematization, leading to a huge LUT when the LUT is
generated by going through the domain in appropriate small steps.

7.4 Discussion and conclusions

This chapter described the implementation of the DELFT dispersion equation into the wave
model SWAN, focussing on energy dissipation. A newly derived energy dissipation term has
been implemented and tested. Tests for the case of mono-chromatic, uni-directional waves
over a flat bottom with a mud layer of constant thickness prove the consistency between
dispersion equation and energy dissipation term. This implies that the SWAN-mud (I) model
is valid both for shallow water and water of intermediate water depths. Tests with a
spectrum of waves as forcing of the system show that the SWAN-mud (I)  model  deals  well
with spectra. It was also shown that it is not possible to conclude that only the low
frequency waves will be affected, because the frequency of the highest damping depends on
the layer thicknesses and mud properties and can be in the high frequency range. Tests with
a strongly reduced number of iterations show that the results of the SWAN-mud (I) model can
be distorted heavily in case of erroneous values for the imaginary wave number.

Based on the last test, four suggestions are given for model improvement:
1. set negative values of the wave number to zero to avoid instability
2. reduce the number of times the iteration procedure has to be carried out. This can be

achieved by computation of the wave number only once for each grid point and
frequency.

3. avoid the negative peaks in the damping by overruling the mud-induced dissipation term
in case this dissipation is less than the normal bottom dissipation.

4. correct the erroneous values for the wave number via comparison with values for
neighbouring frequencies and gridpoints.

5. investigate the application of other iteration procedures instead of the DZANLY routine
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The first three improvements are applied in SWAN-mud  (II),  described  in  chapter  8.
Suggestion three and four are not studied further within this project.
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8 Implementation of ‘DELFT’ into SWAN (2):
Energy propagation

8.1 Introduction

Chapter 7 described the first step in the implementation of the mud-adjusted wave number k
and the newly derived energy dissipation term Sb,m into SWAN, focussing on the energy
dissipation by fluid mud. This chapter describes the next step in the development of the
model. It contains the displacement of the location where the wave number k is computed.
This makes the model more efficient and makes it possible to compute the influence of mud
on energy propagation.

Because the presence of mud affects the wave number k,  it  will  also  affect  the  group
velocity cg (cg = / k). This group velocity is the propagation velocity of energy. Therefore
the presence of mud also affects the propagation of energy and the propagation phenomena
of shoaling and refraction. This is illustrated in the picture below.

Figure 40 Illustration of the influence of the mud adjusted wave number on both dissipation and
propagation of energy

Chapter 8 discusses the inclusion of the influence of fluid mud on energy propagation in the
SWAN-mud model. Section 8.2 describes the changes in the implementation compared to
chapter 7. Section 8.3 describes a validation with various propagation tests on shoaling and
refraction. Finally, section 8.4 discusses conclusions and suggestions for further
improvement.
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8.2 Consequences for implementation into SWAN

To take into account the effect of mud on the propagation of energy, the mud affected wave
number k has to be used to calculate the propagation speed of energy cg. This means that the
iteration procedure to calculate the wave number k has to be carried out on a higher level in
the program compared to the implementation described in chapter 7. Figure 26 and Figure
27 in chapter 7 illustrated the structure of SWAN-mud (I). The Program Structure Diagrams
in Figure 41 and Figure 42 illustrate the structure of the extended implementation.

SWAN stationair

Initialisations
Boundary Conditions

Four directional sweeps

Grid loop (x,y)

calculation mud affected wave number (x,y)  (only once)

calculation propagation velocities of energy (x,y )

calculation propagation velocities of energy ( , )

calculation SOURCE and sink terms:
S bfr

S b,m

S wc

S br

S nl3

S nl4

S wind

calculation left-hand side terms in ACTION balance:
C xN / x

C yN / y

C N /

C N /

solve matrix filled in SOURCE and ACTION N (x,y, , )
Iterate until iteration criterium is fulfilled

Figure 41 Program Structure Diagram of the SWAN-mud (II) model (including propagation). The wave
number k is calculated before the propagation velocities of energy. This calculation is executed
only once for each grid point (compare to Figure 26, chapter 7)

Calculation of Sb,m

INPUT: H w0, H mud, 1, 2, w, m, g , , k ( &k v ector IS=1:ISSTOP)

DO for IS = 1:ISSTOP
calculate amplitude ratio b/a

calculate phase difference interface and surface
calculate real pressure amplitude
calculate mud-induced energy dissipation

OUTPUT: vectors of length ISSTOP for b/a , , S b,m

} "D
IS

D
E

LF
T"

  S
ub

ro
ut

in
e

Figure 42 Program Structure Diagram of the calculation of the mud-induced dissipation term Sb,m in the
SWAN-mud (II) model (including propagation). The wave number k is an input parameter for this
subroutine (compare to Figure 27, chapter 7).
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The calculation of the mud-induced dissipation term is simplified. Now the wave number is
an input parameter to the calculation of Sb,m (see Figure 42). Also the other generation,
dissipation and interaction mechanisms make use of the adjusted wave number. However,
these effects are considered to be small (Kaihatu et al., 2007).

As long as layer thicknesses and water and mud properties do not change in time, the wave
number can be considered as a fixed property to each grid point. Therefore the iteration
procedure is executed only once for each grid point. So also in non-stationary SWAN
calculations without coupling to other models giving feedback on layer thicknesses (flow)
or water and mud properties, one calculation per grid point is sufficient.

The present version of the code contains a number of test configurations. The first is the
possibillity to choose a dispersion relation to calculate the wave number (1:Gade; 2:DeWit;
3:DELFT). The second is the possibility to choose the energy dissipation term (0:off;
1:Gade; 3:DELFT). Finally it is possible to choose to run the program with or without
influence of mud on propagation (0:without; all other values:with). These configurations
make it possible to test dissipation and propagation phenomena seperately.

8.3 Validation with simple propagation tests

The objective of the tests in this section is to validate the implementation of DELFT into
SWAN for energy propagation. Therefore, the energy dissipation by fluid mud is switched
off.

8.3.1 Test 1: A Sloping bottom covered with a thin mud layer

Description test lay-out

A monochromatic, uni-directional wave is sent over a mildly sloping bottom covered with a
thin mud layer of constant thickness.

Figure 43 Schematic presentation of the lay-out of test 1: monochromatic, uni-direction wave over a mildly
sloping bottom covered with a mud layer of constant thickness

Hmud

Hw0

Energy
(small & )

x

E
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Test objective and expected results

The objective of this test is to check whether shoaling can be reproduced with the use of the
mud affected wave number. Because the mud layer is of constant thickness and because
dissipation is turned off, the simulation is expected to show a development of the significant
wave height Hs comparable to normal shoaling.

Results

The results of the test are shown in Figure 44.

Figure 44 Propagation Test 1: Significant wave height Hs calculated with SWAN-mud (II). Panel 1 shows the
used profile, panel 2 & 3 show the imaginary and real part of the wave number respectively.
Panel 4 shows the significant wave height Hs.

The development of the significant wave height Hs while propagating over the slope is
shown in Figure 44, panel 4. It shows the same behaviour as known for normal shoaling on
a sloping bottom: initialy the amplitude decreases, followed by an increase in the shallowest
part (see e.g. Holthuijssen 2007).

This result shows that shoaling can be determined using the dispersion relation DELFT and
that in the current implementation the mud adjusted wave number is influencing the group
velocity.



Modelling Wave damping by fluid mud February 2008 Wouter Kranenburg

WL | DELFT Hydraulics & DELFT University of Technology 1 2 1

8.3.2 Test 2: A shallow water layer on top of a mud layer of varying
thickness

Description test lay-out

The bathymetry consists of a shallow water layer of constant thickness on top of a fluid mud
layer of varying thickness. The energy comes in concentrated in a single frequency and
directional bin.

Figure 45 Schematic presentation of the lay-out of test 2: monochromatic, uni-direction wave in a shallow
water layer of constant thickness and a mud layer that at first increases and subsequently
decreases

Test objective, method and expected results

The objective of this test is twofold: to check for the reversibility of mud-induced shoaling
and to compare the results with results obtained analytically.

Shoaling can be considered as horizontal compacting or stretching of wave energy. No
energy is dissipated in this phenomenon. When the mud layer thickness varies while the
water  layer  keeps the same thickness,  mud-induced shoaling can be expected.  In the same
way  as  waves  can  be  compacted  or  stretched  on  a  certain  slope,  they  will  be  stretched  or
compacted again on the reverse slope, finally resulting in the same significant wave height.
So the process is reversible. The results of the model are expected to show this reversible
behaviour.

The comparison with analytical results has the aim to check the numerical calculations and
implementation in the code in a quantitative way. An analytical expression is derived for the
shoaling coefficient. This represents the ratio between the significant wave height at location

Hmud, max

Hw0

Energy
(small & )

x

E

x

Energy
(small & )
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x and at the beginning of the domain. To do this, the group velocity cg at both locations is
needed. The group velocities are calculated via differentiation of Gade’s dispersion equation
(see equation 19).

Figure 46 Illustration of the analytical way to calculate the influence of the mud affected wave number on
the propagation phenomenon of shoaling

This procedure is described with the following formulae:

, 0

0 ,

g xs
s

s g x

cH x
K

H x c

(231)

1

g
kc

(232)

k f f        with
f f m

m
     and , m  see eq. (20)

(233)

An important condition for this test is that the choosen parameters represent shallow water
conditions, because only at shallow water conditions, Gade’s dispersion equation gives the
same results for the wave number. Under this condition, also the same results are expected
for shoaling.

Results

The results of these tests are shown in Figure 47 and Figure 48.

Figure 47 combines the results of the computation with SWAN-mud (II) (continuous lines)
and the analytical computations using Gade (dots). The continuous line clearly shows that
the  reversible  character  of  shoaling  is  reproduced  by  the  model.  It  also  shows  that  the
reduction of the wave height for the choosen parameters is more than 10%. Comparison of
the results obtained with SWAN and the analytical  results  shows that SWAN gives the same
results as the analytical computation. (The very small differences that exist can be explained
by the fact that in this simulation kHw0=0.168,  which  is  close  to,  but  not  the  same  as  the
shallow water limit).

Figure 48 shows the results for cg and Ks from the analytical computation using Gade (so
these graphs belong to the dots in Figure 47). It illustrates that the propagation velocity of
energy is higher in case of propagation over mud. This results in a Ks < 1 and in a reduction
of the significant wave height Hs (Figure 47, panel 4). The analytical computations are
carried out only for half the domain.

f = k/  =
Gade’s DE

Group
velocity

cg

Shoaling
coefficient

Ks
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Figure 47 Propagation Test 2: Significant wave height Hs calculated with SWAN-mud (II) using Dispersion
Equation ‘DELFT’. (continuous line) and in an analytical way using  Gade (dots). Panel 1 shows
the used profile, panel 2 & 3 show the imaginary and real part of the wave number respectively.
Panel 4 shows the significant wave height Hs.

Figure 48 Propagation Test 2: Group velocity cg and shoaling coefficient Ks as computed in an analytical
way from GADE. Panel 1 shows the used profile, panel 2 shows the group velocity cg and panel 3
the shoaling coefficient Ks representing the ratio of the significant wave height at distance x and at
the beginning of the domain.
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8.3.3 Test 3: Obliquely incident waves over a mud layer of varying
thickness

Description test lay-out

The  bathymetry  in  this  test  is  the  same  as  in  the  previous  test:  a  shallow  water  layer  of
constant thickness on top of a fluid mud layer of varying thickness. Again, the energy comes
in concentrated in a single frequency and directional bin, but this time the waves approach
obliquely. The depth contours of the mud are assumed to be parallel (which comes with the
1D-approach). The angle between the normal to the contours and the direction of
propagation of the incoming waves is 20O.

Figure 49 Schematic presentation of the lay-out of test 3: monochromatic, obliquely incident wave in a
shallow water layer of constant thickness and a mud layer that at first increases and subsequently
decreases

Test objective, method and expected results

The objective of this test is to validate the model for mud-induced refraction. It is expected
that the presence of mud under a water layer of constant thickness causes a (reverse)
refraction: the real wave number is expected to decrease. In that case the phase speed of the
incoming waves will increase (just as in the shoaling test). For obliquely incident waves,
this should cause an increase of the angle between ‘normal’ and direction of propagation.
Furthermore, refraction is expected to have influence on the significant wave height
(additional to shoaling).

Hmud, max

Hw0

Energy
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x

E

x

Energy
(small & )
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normal
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Results

The results of these tests are shown in Figure 50.

Figure 50 Propagation Test 3: Wave direction Dir and Significant wave height Hs calculated with SWAN-
mud (II) using Dispersion Equation ‘DELFT’. Panel 1 shows the used profile, panel 2 & 3 show the
imaginary and real part of the wave number respectively. Panel 4 shows the direction of
propagation. Panel 5 shows the significant wave height Hs.

Panel 4 of Figure 50 does not show any effect of mud on the propagation. This is in
contradiction with the expectations. Although the mud-adjusted wave number is available in
SWAN-mud (II) throughout the whole code and is used to compute the propagation speed of
energy in x- and y-direction (cg,x and cg,y), its effect on the propagation speed of energy over
frequency and direction (c  and c ) is apparently not yet accounted for in SWAN in a correct
way. The reason for the absence of mud-induced refraction is identified and explained
below.

A general formulation to compute c  for the situation without current is given in equation
(234) (for derivation, see Holthuijsen, p. 204):

,
g

ref

cd cc
dt c m

(234)
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where
 m is a coordinate axis along an iso-phase line (e.g. the wave crest),
 c ,ref the turning rate in time in a frame of reference moving with the wave energy

Using c = /k and cg = / k, this expression can be written as:

,
1

ref
d kc
dt k k m

(235)

In the SWAN code, c ,ref is computed with:

0
,

0

1
sinh 2

w
ref

w

Hd kc
dt k kH m

(236)

This expression is obtained from equation (235) using the fact that in the absence of an
ambient  current,  the  frequency  is  constant  along  the  wave  crest  and  that  for  the  regular
dispersion equation the frequency can be seen as a function of (only) the wave number k and
the water depth Hw0, resulting in the equation:

0 0

0 0

0w w

w w

H Hd k k
dm k m H m k m H m

(237)

Furthermore, the term / Hw0 is in the code directly subsituted with an expression that is
derived using the regular dispersion equation:

2
0

0 0 0 0

tanh1 1
2 2 sinh 2

w

w w w w

gk kH k
H H H kH

(238)

The use of the regular dispersion equation (twice) in the derivation of equation (236), makes
this expression not valid in the presence of fluid mud, also not when the mud-adjusted wave
number is used to compute c ,ref with this equation. Therefore it is recommended to use the
more general equation (235) to compute c ,ref in the presence of fluid mud. To determine the
partial derivative of the wave number k with respect to (the direction) m,  a  proper
discretization has to be introduced and information has to be available in the subroutine
concerning the wave number k on the locations around the location for which c ,ref is
calculated. This recommended adaptation of the code is not yet carried out during this
project.

8.4 Discussion and conclusions

This chapter described the inclusion of the influence of fluid mud on energy propagation in
SWAN-mud (II). The main characteristic of this implementation is that the mud affected
wave number is made available to be used at all places in the model where a wave number is
needed. The implementation is tested for various cases. These tests showed that the model
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represents the (reversible) shoaling phenomenon as expected. For shallow water the model
results are the same as results of analytical computations for this limit case.

Mud-induced refraction is not yet properly represented, because the formula used in SWAN
to compute the turning rate in time of wave energy over directions (c ) has been derived
using the regular dispersion equation (which is not valid in the presence of fluid mud). To
account for mud-induced refraction, this formula has to be replaced by a more general
applicable formula.

The shallow water test for straightly incoming waves (Figure 47) showed that the reduction
of the significant wave height by shoaling can be more than 10%. For this specific case, the
damping would be very strong, as illustrated in Figure 51.

Figure 51 Propagation Test 2 with damping: Significant wave height Hs calculated with SWAN via
Dispersion Equation ‘DELFT’. Panel 1 shows the used profile. Panel 4 shows the significant wave
height Hs.

To assess the importance of the incorporation of mud on wave energy propagation, it will be
useful to investigate for various cases the ratio between the reduction of the wave height by
propagation and dissipation phenomena. This ratio will not be a ‘property’ of the location,
because it depends on the distance between the locations of varying layer thicknesses.
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9 Conclusions and recommendations

9.1 Recapitulation of project objectives

The main objective of this MSc. Thesis project was the development and testing of a
modified SWAN-version with which it is possible to model the decrease of energy during the
propagation of a wave field over fluid mud.

Additional requirements on the application were formulated. The application has to be:
applicable for shallow and non-shallow water
consistent
efficient
reliable
validated

Several sub objectives were distinguished.
1. Study of the short-wave energy dissipation mechanism in two layer systems and

comparison of the dispersion relations belonging to the various schematizations in
literature

2. Search for an efficient and reliable solving routine to determine the wave number
out of the dispersion relation

3. Determination of a mud-induced energy dissipation term that can be used in SWAN,
implementation of this term and testing of the model for a simple 1D case

4. Extension of the model with influence of mud on the propagation velocity of
energy, testing of the implementation with simple propagation tests (1D/2D)

5. Calibration of the model by application on a practical case: Cassino Beach, Brazil

9.2 Conclusions

Concerning dispersion equations, it can be concluded from this study that:
The schematization of De Wit (1995) covers the most relevant parameter domain: thin
mud layers and shallow and non-shallow water.
The DELFT dispersion equation, that has been derived in this thesis using the
schematization of De Wit, is valid for thin mud layers and all water depths. The
equation shows explicable behaviour and forms a sound description of the physics in the
domain of validity.
The DELFT dispersion equation reduces to the original expression of De Wit upon extra
assumptions concerning the order of magnitude of the mud-adjusted wave number.
Viscous two-layer models are suitable for implementation into practical applicable wave
energy models to model the influence of fluid mud on progressive waves.

Concerning the solving routine it can be concluded that:
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An iteration procedure using a starting value determined with a function that depends on
the relative water depth kHw0, can be used to compute the wave number from the DELFT
dispersion equation.
The solving routine gives results for the wave number over the entire range of kHw0, but
occasional erroneous evolutions still occur.

Concerning the energy dissipation terms it can be concluded from this study that:
The newly derived energy dissipation term is fully consistent with the DELFT dispersion
equation.
This energy dissipation term is valid for all relative water depths and reduces to Gade’s
expression for energy dissipation under shallow water conditions.
Gade’s expression for energy dissipation, and the Winterwerp et al. (2007) model that
uses this expression, consistently overestimates the damping at intermediate and deep
water. It’s validity is limited for shallow water conditions.

Concerning the modification of the wave energy model SWAN, it can be concluded that:
Implementation of the DELFT dispersion equation to compute the wave number and the
newly derived energy dissipation term as extra sink term into SWAN, results in a model
that is consistent and valid for all water depths. This consistency is tested with simple
sanity checks, as shown in Figure 52.
Issues of efficiency, consistency and physically sound representation of the influence of
mud on other processes than damping, require the computation of the mud-adjusted
wave number on a higher level in the Fortran code of SWAN than in the subroutine
determining the energy dissipation term itself.

With respect to the influence of the mud on energy dissipation, it can be concluded that:
The modified SWAN model represents the mud-induced dissipation phenomenon well.
This is shown in the validation of the model on mono-chromatic waves and spectra of
waves over a flat bottom with mud layers of constant thickness.
The occasional erroneous evoluations in the iteration procedure lead to erroneous results
for the wave properties in SWAN. Considerable overestimation or underestimation of the
damping can occur, sometimes resulting in artificial energy generation. The latter has to
be prevented at all cost. A simple yet effective measure is taken to avoid this deviation,
so the SWAN-mud model is unconditionally stable, but not free of occasional
inaccuracies.
The presence of mud can cause both increase as decrease of the mean frequency,
depending on the parameter settings. So not only the low frequency waves will be
affected by the mud.

With respect to the influence of the mud on energy propagation, it can be concluded that:
The modified SWAN model represents the (reversible) mud-induced shoaling
phenomenon well, as shown in the validation of the model on mud layers of varying
thickness.
The influence of mud-induced shoaling on the significant wave height can be
considerable, but is under circumstances of gradually changing bottom bathymetry
probably less important than the influence of dissipation on the significant wave height.
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A modification of the SWAN-subroutine to compute the turning rate of energy in time (c ,
the propagation speed of energy over the directions) is needed to account for mud-
induced refraction.

Concerning the testing of the model by application on a practical case, it can be concluded
that:

the testing of the model on Cassino Beach is not discussed in this report and still has to
be completed.

Considering the preceding conclusions, we come to following general conclusion:

An extension of SWAN is developed which enables modelling the dissipation of energy
during the propagation of a wave field over fluid mud. The implemented dispersion equation
and energy dissipation term are mutually consistent and both valid for shallow and non-
shallow water. In the Fortran code of SWAN, the wave number is not computed in the
subroutine determining the energy dissipation term itself, but on a higher level. In this way
the influence of mud on other phenomena, like propagation of energy, is included in the
model as well. At the same time, this considerably reduces the number of times the wave
number has to be computated. The computation of the wave number itself may need some
improvement. At this moment, the model is ready for judicious use by specialists.

Energy
dissipation
term

E

Dispersion
Equation

ki

Hs via SWAN

Hs direct

Hs = Hs0*e-kix

Figure 52

Comparison of the significant wave height Hs
calculated with the newly derived energy
dissipation term implemented in SWAN (dots)
and directly with the analytical expression Hs
= Hs0*e-kix (continuous line) for intermediate
water  depth  (kHw0  1).  This  figure
demonstrates the mutual consistency of the
DELFT dispersion equation and the newly
derived energy dissipation term
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9.3 Recommendations

A number of recommendations for further development of the model is given below.

Suggestions for improvement of the solving routine are:
To try another iteration method. The original motivation for employing the DZANLY
method was an apparent better convergence to the proper solution starting from
inaccurate initial approximations compared to a Newton method. This motivation is not
relevant anymore when an approprioate starting value is applied. Applying another
iteration method could make the model more simple.
To check the formulated function for the starting value for various sets of parameters,
especially with respect to the mud density m. The coefficients (a and c) of the present
function (eq. 116 & 117) are predetermined values, determined by fitting this function
by trial and error through the results of previous iterations for various parameter sets.
But m was kept constant during this process. A varying m may yield a function
describing the value of the coefficients a and c.
To build in a procedure which automatically detects and corrects erroneous solutions for
the wave number. Suggestions for an automatic correction procedure are:
– to set the value of the imaginary wave number ki to zero when a negative value is

computed
– to detect and correct the erroneous results of the iteration procedure by comparing

the results to neighbouring frequencies or gridpoints
– to compute the wave number with various procedures, resulting in a warning when

two different results are given (disadvantage: time consumption)
One correction procedure has already been implemented in the program. In this
procedure, the correction takes place at the level of the dissipation term instead of the
wave number. Negative and very low values of mud-induced damping are overruled by
the normal bottom dissipation, when the first one is smaller than the latter. It is
recommended to test this correction procedure more extensively.

Concerning propagation of energy in the SWAN-mud model, it is recommended to:
Replace the formula that is currently used to compute the turning rate of energy in time
(c ) and whose validity is limited to situations where the regular dispersion equation
applies, with a more general applicable formala to account properly for mud-induced
refraction

Concerning validation of the model, it is recommended to carry out at least the following
additional tests:

Damping at sand-mud transition. A gradually  transition of the seabed from sand to fluid
mud is a suitable configuration to test the procedure that has to overrule negative
dissipation. At the same time it is possible to investigate the influence of the transition
on the propagation of energy.
Interaction between mud-induced dissipation and wave-wave interactions. It is expected
that the wave-wave interaction changes because of changing wave lenghts. It is also
expected that energy is transferred to the frequency where the mud-induced dissipation
is the strongest. Depending on the length scale of the phenomena involved, the
frequency of the highest dissipation can start to function as an energy leak. It would be
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interesting to investigate the development of various spectral forms. Also comparison of
the results with Kaihatu et al. (2007) could give more insight.

Concerning calibration of the model, recommendations are:
To calibrate the model against Cassino Beach observations. This can be carried out in
the same way as done by Rogers and Holland (in review) (data 2005) to make it
possible to compare the results.
To do a sensitivity analysis of the model to indicate the relative importance of accurate
measurements of the various parameters. Sensitivity analysis like this can be helpful in
the preparation of coming measurement campaign. It is suggested to start with
conditions such as used by Rogers and Holland, to vary the constant mud layer
thickness, and to run the model for a mud layer thickness changing over the profile. This
recommendation is based on the suspection that the model is especially sensitive for
changes in the mud layer thickness.

Finally it is recommended to set the default parameter values in SWAN in such a way that the
model is employed with the consistent combination of dispersion relation and dissipation
term that has been derived in this study. The various test configurations present in the code
should be available for administrators and specialists only. This concerns the possibility to
choose seperately the dispersion equation used to calculate the wave number (Gade, De Wit,
DELFT), the energy dissipation term (off, Gade, newly derived term), and the activation of
the influence of mud on the group velocity (on, off). These default settings would make it
impossible for the user to disregard ignorantly the major contribution of this study to the
development of SWAN-mud: the formulation and implementation of a consistent
combination of dispersion equation and energy dissipation term.
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List of symbols

The most important of the symbols used in this MSc-thesis are explained in the list below.
When in a particular section the meaning of a symbol deviates from the definitions given
below, the local meaning is described explicitely in the section concerned.

Roman letters in alphabetic order:

a Amplitude of water surface displacement [m]
b Amplitude of interface displacement [m]
c Phase speed [m / s]
cg Group velocity [m / s]
c Turning rate in time of the wave energy over directions [  / s]
E Wave energy [J / m2]
g Gravitational acceleration [m / s2]
hm Height of mud layer [m]
Hm0 Equilibrium height of mud layer [m]
htot Height of total system [m]
Htot0 Equilibrium height of total system [m]
hw Height of water layer [m]
Hw0 Equilibrium height of water layer [m]
i (I) Imaginary unit [-]
k Wave number [rad / m]
knm Wave number acc. to regular dispersion relation [rad / m]
L Wave length [m]
m Coordinate along the wave crest [-]
m Auxiliary parameter, see eq. 20 [m-1]
N Wave action density [J s / m2]
p Pressure [N / m2]
P Amplitude of pressure variation [N / m2]
rXi0a Complex ratio between 0 and a [-]
Sb Sink term of bottom induced dissipation [J / m2 / s]
Sb,mud (Sb,m) Sink term of mud-induced dissipation [J / m2 / s]
Sbfr Sink term of dissipation by bottom friction [J / m2 / s]
Sbr Sink term of dissipation by wave breaking [J / m2 / s]
Snl Source & Sink term of nonlinear wave-wave interactions [J / m2 / s]
Stot Total source and sink term in wave energy balance [J / m2 / s]
Swc Sink term of energy dissipation by whitecapping [J / m2 / s]
Swind Source term of wave energy generation by wind [J / m2 / s]
t Time [s]
T Wave period [s]
u Horizontal orbital velocity in x-direction [m / s]
Ur Ursell number [-]
w Vertical orbital velocity in z-direction [m / s]
W Work [J / m2]
(x,z) Coordinates in horizontal and vertical direction [-]
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Greek letters in alphabetic order:

BL Viscous boundary layer thickness [m]
Relative density difference [-]
Displacement of water surface [m]
Wave direction [ ]

w Kinematic viscosity of water [m2 / s]
Kinematic viscosity of mud [m2 / s]

m Kinematic viscosity of mud [m2 / s]
Displacement of interface [m]

0 (complex) Amplitude of interface displacement [m, rad]
w Density of water [kg / m3]
m Density of mud [kg / m3]

Normal stress [N / m2]
Relative (angular) frequency in a frame of reference moving with the
current velocity

[rad / s]

Shear stress [N / m2]
Phase difference between surface and interface [rad]
Wave (angular) frequency (2  / T) [rad / s]
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Appendices
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A Solving the ODE for U2(z) by hand

This appendix belongs to the derivation of the DELFT dispersion equation in chapter 3.

In equation (59), section 3.4, an ODE for U2(z) is given:

ODE_U2 :=
I e I k x - w t( )( ) -U2 z( ) w r2 + E k( )

r2
 = n

d 2

dz 2
U2 z( )

æ
ç
ç
è

ö
÷
÷
ø

e I k x - w t( )( )
(A239)

The solution of this ODE in equation (60) was obtained via MAPLE. This step is elaborated
here by hand.

The ODE can be written as:

2 2
2 2

2 22 2
2 2

( ) ( )( ) 0 ( )U z U zikE i ikEi U z U z
z z (A240)

A solution is assumed in the most general form of:

2 ( ) expU z A Xz F (A241)

Substitution of the assumed solution in the ODE gives:

2

2

exp( )i i ikEX A Xz F
(A242)

This can only be true if:

2

2 2

     enikE kE iF X
i

(A243)

By using i in a practical way, this can be written as:

2
22 2 1

 1
2 2
iiX iY Y Y i

(A244)

When we assign the name Y to the positive root we obtain for U2(z):

2 3 4
2

( ) exp exp EkU z A iYz A iYz
(A245)

This linear combination of a positive and a negative power of e can be written as:
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2 3 4
2

( ) cosh( ) sinh( ) EkU z B iYz B iYz
(A246)

where:

3 4 3 4
3 4 3 3 4 4 3 4     en

2 2
B B B BA A B A A B A A

(A247)

Using sinh(ix) = i sin(x) and cosh(ix) = cos(x), U2(z) can be written as:

2 3 4
2

( ) cos( ) sin( ) EkU z B Yz iB Yz
(A248)

Substituting:

3 3 4 4 ,B C iB C (A249)

and filling in again the complete expression for Y, U2(z) reads:

U2 z( ) := sin
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 (A250)

which is the solution given in equation (60), section 3.4.



Modelling Wave damping by fluid mud February 2008 Wouter Kranenburg

WL | DELFT Hydraulics & DELFT University of Technology 1 4 3

B Comparison of the dispersion equations DELFT

and DeWit

The dispersion equation DELFT has been derived in appendix A. De dispersion equation of
De Wit is given in De Wit (1995). In this appendix the expressions are compared in an
analytical way.

The DELFT dispersion equation is given by:

Disprel  :=
cosh m Hm0( ) r2 cosh k Hw0( )

k
 - r1 sinh k Hw0( ) sinh m Hm0( )

m
 + r1 sinh k Hw0( ) cosh m Hm0( ) Hm0

æ
ç
ç
è

ö
÷
÷
ø

w
4

 + -2 I k r2 n cosh m Hm0( )2 cosh k Hw0( ) + 2 I k n r2 sinh m Hm0( )2 cosh k Hw0( ) + 2 I k r2 n cosh m Hm0( ) cosh k Hw0( )( ) w
3

 + r2 g k cosh k Hw0( ) sinh m Hm0( )
m

 - r2 g k cosh k Hw0( ) cosh m Hm0( ) Hm0  - r2 g cosh m Hm0( ) sinh k Hw0( )
æ
ç
ç
è

ö
÷
÷
ø

w
2

 +  2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )2 - 2 I k 2 r2 n g sinh k Hw0( ) sinh m Hm0( )2  - 2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )( ) w

 +
k 2 g 2  sinh k Hw0( ) sinh m Hm0( ) r1

m
 - k2 g 2  sinh k Hw0( ) r1 cosh m Hm0( ) Hm0  + k 2 g 2  sinh k Hw0( ) cosh m Hm0( ) Hm0 r2

 -
k2 g 2  sinh k Hw0( ) sinh m Hm0( ) r2

m
 = 0

(B251)

The dispersion equation of De Wit is given by:

DEWIT  := -1. +

1. - r1

r2

æ
ç
ç
è

ö
÷
÷
ø

g k k Hm0 - k tanh m Hm0( )
m

æ
ç
è

ö
÷
ø

w
2

æ
ç
ç
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ç
ç
è

ö
÷
÷
÷
÷
÷
ø

g k tanh k Hw0( )

w
2

 - 1.æ
ç
ç
è

ö
÷
÷
ø

 -

r1 k Hm0 - k tanh m Hm0( )
m

æ
ç
è

ö
÷
ø

g k

w
2
 - tanh k Hw0( )æ

ç
ç
è

ö
÷
÷
ø

r2
 = 0

(B252)

B.1 Rewriting De Wit

At first we expand the expression of De Wit to get an expression with separate terms:

DEWIT  := - 1. g k tanh k Hw0( )

w
2

 + 1. +
1. g 2 k 3 Hm0 tanh k Hw0( )

w
4

 -
1. g k 2 Hm0

w
2

 -
1. g 2 k 3 tanh m Hm0( ) tanh k Hw0( )

w
4

m
 +

1. g k 2 tanh m Hm0( )

w
2

m
 -

g 2 k 3 r1 Hm0  tanh k Hw0( )

w
4

r2

(B253)
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 +
g 2 k 3 r1 tanh m Hm0( ) tanh k Hw0( )

w
4

r2 m
 +

r1 k Hm0 tanh k Hw0( )

r2
 -

r1 k tanh m Hm0( ) tanh k Hw0( )

r2 m
 = 0

This expression shows that only even terms of  are present in De Wit. To make it possible
to compare the two dispersion equations, the expression above is multiplied with the factor

4
2 cosh(mHm0) cosh(kHw0) / k. (This does not have any consequences for the solution of

the roots.) The expression that arises can be written as a polynomial for :

DEWITnew  :=
1. cosh m Hm0( ) r2 cosh k Hw0( )

k
 + r1 sinh k Hw0( ) cosh m Hm0( ) Hm0  -

1. r1 sinh k Hw0( ) sinh m Hm0( )
m

æ
ç
è

ö
÷
ø

w
4

 +
1. g r2 k cosh k Hw0( ) sinh m Hm0( )

m
 - 1. g r2 cosh m Hm0( ) sinh k Hw0( ) - 1. g r2 k cosh k Hw0( ) cosh m Hm0( ) Hm0

æ
ç
è

ö
÷
ø

w
2

 -
1. k 2 g 2  sinh k Hw0( ) sinh m Hm0( ) r2

m
 + 1. k 2 g 2  sinh k Hw0( ) cosh m Hm0( ) Hm0 r2  +

k 2 g 2  sinh k Hw0( ) sinh m Hm0( ) r1
m

 - 1. k 2 g 2  sinh k Hw0( ) cosh m Hm0( ) Hm0 r1 =  0

(B254)

B.2 Investigating the difference

When we subtract the newly obtained expression for De Wit from the dispersion equation
DELFT, only the odd -terms of DELFT remain.

 + -2 I k r2 n cosh m Hm0( )2 cosh k Hw0( ) + 2 I k n r2 sinh m Hm0( )2 cosh k Hw0( ) + 2 I k r2 n cosh m Hm0( ) cosh k Hw0( )( ) w
3

 +  2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )2 - 2 I k 2 r2 n g sinh k Hw0( ) sinh m Hm0( )2  - 2 I k 2 r2 n g sinh k Hw0( ) cosh m Hm0( )( ) w

(B255)

The term for 3 can be rewritten as:

Om3t := A cosh m Hm0( ) + sinh m Hm0( )2 - cosh m Hm0( )2( ) (B256)

With

A := 2 I cosh k Hw0( ) w
3

k r2 n (B257)

The term for 1 can be rewritten as:

Om1t := cosh m Hm0( )2 - sinh m Hm0( )2 - cosh m Hm0( )( ) B (B258)

With
B := 2 I sinh k Hw0( ) w k 2 g r2 n (B259)

The question is whether these terms can be neglected or counterbalance each other. If that is
the case, the dispersion equation of De Wit and DELFT amount to the same.
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First we look whether the parts within the brackets equal zero. We make use of

2 2cosh sinh 1x x (B260)

to rewrite Om3t en Om1t as:

Om3t := A cosh m Hm0( ) - 1( ) (B261)

Om1t := B 1 - cosh m Hm0( )( ) (B262)

The parts within the brackets will only be zero when mHm0 << 1. Although the mud layer is
small compared to the wave length, m can easily be equal to (1-i) or larger. Therefore it is
not justified to use a limit of cosh(mHm0) to neglect these terms.

Now we look to A and B. When we substitute the ‘normal’ dispersion relation into A, A
becomes equal to B:

2
0tanh wgk kH (B263)

A := 2 I sinh k Hw0( ) k 2 r2 n g w (B264)

By doing this, Om3t and Om1t counterbalance each other. In that case the dispersion
equation DELFT reduces to the dispersion equation of De Wit.

It is questionable whether it is correct to substitute the normal dispersion equation into A.
The higher the value of kHw0, the more this substitution is justified. This is caused by the
fact that the influence of the muddy bottom decreases with growing water depth. So at high
water depths the difference between the mud-adjusted -k-relation and the unadjusted -k-
relation becomes smaller. But for more shallow water, the relation between  and k is more
strongly affected by the presence of the mud. Therefore it can be expected that there will be
a difference between DELFT and De Wit at lower values of kHw0.

De DELFT dispersion equation is a more general formulation. Therefore this equation is the
one that is numerically investigated and implemented in SWAN in this project.
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C Reduction of the DELFT dispersion equation
for a non-viscous mud layer

The dispersion equation derived in appendix A is reduced for the situation in which m is
zero, which represents the case of a non-viscous mud layer. This reduction will  be used to
calculate a starting value for the iterations with the Argand method. The reduction is
necessary because calculations with the dispersion equation with the value of m set to zero
do not give results. This is imputed to divisions to zero that will arise when m is set to zero.
Therefore the DELFT dispersion equation is reduced to a real function belonging to the
situation without damping by elimination of the terms related to damping.

C.1 Reduction

The terms connected to 1 and 3 are cancelled immediately, because of the multiplication
with m. What remaines of the dispersion relation is:

cosh m Hm0( ) r2 cosh k Hw0( )
k

 - r1 sinh k Hw0( ) sinh m Hm0( )
m

 + r1 sinh k Hw0( ) cosh m Hm0( ) Hm0æ
ç
è

ö
÷
ø

w
4

 + r2 g k cosh k Hw0( ) sinh m Hm0( )
m

 - r2 g k cosh k Hw0( ) cosh m Hm0( ) Hm0 - r2 g cosh m Hm0( ) sinh k Hw0( )æ
ç
è

ö
÷
ø

w
2

 +
k 2 g 2 sinh k Hw0( ) sinh m Hm0( ) r1

m
 + k 2 g 2 sinh k Hw0( ) cosh m Hm0( ) Hm0 r2 - k 2 g 2 sinh k Hw0( ) r1 cosh m Hm0( ) Hm0

 -
k 2 g 2 sinh k Hw0( ) sinh m Hm0( ) r2

m
 =  0

(C265)

To get some insight in the importance of the various terms in the remaining expression, the
expression is divided by cosh(mHm0). This does not have any consequences for the zero
crossing points of the equation. At first, the division is applied to the 4-term.

T4 :=
r2 cosh k Hw0( )

k
 -

r1 sinh k Hw0( ) sinh m Hm0( )
cosh m Hm0( ) m

 + r1 sinh k Hw0( ) Hm0
(C266)

In this term, like in the 2-term and 0-term term, we get some useful terms not affected by
the limit and terms of which it is still not clear if they will contribute to the solution. The
latter are the terms with a division by m. To determine their influence we have to investigate
the limit of:

T42 := sinh m Hm0( )
cosh m Hm0( ) m

(C267)
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Examining this equation it is expected that the limit will be zero when m is zero, because m
is expected to become infinite when m becomes  zero.  But  the  fact  that m is  a  complex
number requires a closer investigation of the limit. This is done by substituting for m:

1 1
2

I m I
v

(C268)

which gives:

1
2

 + 1
2

Iæ
ç
è

ö
÷
ø

 sinh 1 - I( ) q Hm0( )

cosh 1 - I( ) q Hm0( ) q

(C269)

This term can be expanded in four terms:

T42expanded :=
sinh q Hm0( ) cos q Hm0( )

2 cosh q Hm0( ) cos q Hm0( ) - I sinh q Hm0( ) sin q Hm0( )( ) q

 +

1
2

I sinh q Hm0( ) cos q Hm0( )

cosh q Hm0( ) cos q Hm0( ) - I sinh q Hm0( ) sin q Hm0( )( ) q

 -

1
2

I cosh q Hm0( ) sin q Hm0( )

cosh q Hm0( ) cos q Hm0( ) - I sinh q Hm0( ) sin q Hm0( )( ) q

 +
cosh q Hm0( ) sin q Hm0( )

2 cosh q Hm0( ) cos q Hm0( ) - I sinh q Hm0( ) sin q Hm0( )( ) q

(C270)

The expanded inverses of these four terms all look more or less the same. They are given
below:

invT421 :=
2 q cosh q Hm0( )

sinh q Hm0( )
 -

2 I q sin q Hm0( )

cos q Hm0( )

invT422 := -
2 I q cosh q Hm0( )

sinh q Hm0( )
 -

2 q sin q Hm0( )

cos q Hm0( )

invT423 :=
2 I q cos q Hm0( )

sin q Hm0( )
 +

2 q sinh q Hm0( )

cosh q Hm0( )

invT424 :=
2 q cos q Hm0( )

sin q Hm0( )
 -

2 I q sinh q Hm0( )

cosh q Hm0( )

(C271)
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In all these inverses, a multiplication with  is in the counter, which means that these
inverses become infinite in the case m = 0 (  = infinite). This gives enough justification to
neglect all terms containing

sinh m Hm0( )
cosh m Hm0( ) m

(C272)

for  the case of m = 0.

Then the dispersion equation becomes:

Disprelnum0 := r2 cosh k Hw0( )
k

 + r1 sinhk Hw0( ) Hm0
æ
ç
è

ö
÷
ø

w
4

 +  -r2 g k cosh k Hw0( ) Hm0 - r2 g sinhk Hw0( )( ) w
2

 + k 2 g 2 sinhk Hw0( ) Hm0 r2 - k 2 g 2 sinhk Hw0( ) r1 Hm0

(C273)

This expression can be used to find initial approximations for the Argand iteration.

C.2 Basic checks

For the situation without a mud layer, the solution still reduces to the normal dispersion
relation.

For the situation where only a sublayer is present (Hw0=0)with m = 0, the equation reduces
to:

DispRel_nonviscsublayeronly :=
r2 w

4

k
 - r2 g k Hm0 w

2
(C274)

This is the equation for the shallow water wave number k.

g k 2 Hm0  = w
2 (C275)

This is consistent with a basic assumption of this dispersion equation, that assumes the
sublayer to be thin compared to the wave length.
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D Determination of real and imaginary part of
the pressure amplitude

This apppendix belongs to the derivation of the energy dissipation term in chapter 6. To get
insight in the cause of the differences between the shallow water approximation and the
more extended approach, analytical expressions for the real and imaginary part of the
pressure amplitude are derived. This derivation is presented here.

The complex expression for the amplitude of the pressure fluctuation P1(diepte) is:

P1 diepte( ) := r1 a g cosh k diepte( ) -
r1 a w

2
 sinh k diepte( )

k

(D276)

The real part of the amplitude of the pressure can be determined by substitution of k =
kr+i*ki:

P1 diepte( ) := r1 a g cosh diepte kr  + I ki( )( ) -
r1 a w

2
 sinh diepte kr  + I ki( )( )

k

(D277)

The first term becomes:

P1_1eterm := r1 a g cosh dieptekr( ) cos diepteki( ) + I r1 a g sinh dieptekr( ) sin diepteki( ) (D278)

The second term multiplied by k becomes:

kP1_2eterm := -r1 a w
2
 sinh diepte kr( ) cos diepteki( ) - I r1 a w

2
 cosh diepte kr( ) sin diepte ki( ) (D279)

When this is divided again by k, where

argmod * i kk k e (D280)
2 2mod r ik k k (D281)

arg arctan i

r

k
k

k

(D282)

part a and b of the second term become

P1_term2a := -
r1 a w

2
 sinh dieptekr( ) cos diepteki( ) e -I ARGk( )

MODk

(D283)

P1_term2b := -
r1 a w

2
 cosh dieptekr( ) sin diepteki( ) e

0.5 I p( ) e -I ARGk( )

MODk

(D284)
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Both part a and b can be splitted up in a real and an imaginary part:

Real_P1_2a := -
r1 a w

2
 sinh dieptekr( ) cos diepteki( ) cos ARGk( )

MODk

(D285)

Imag_P1_2a :=
I r1 a w

2
 sinh dieptekr( ) cos diepteki( ) sin ARGk( )

MODk

(D286)

Real_P1_2b := -
r1 a w

2
 cosh dieptekr( ) sin diepteki( ) cos -0.5 p + ARGk( )

MODk

(D287)

Imag_P1_2b :=
I r1 a w

2
 cosh dieptekr( ) sin diepteki( ) sin -0.5 p + ARGk( )

MODk

(D288)

The real and imaginary parts of the pressure amplitude P1(diepte) consist of the summation
of the various real and imaginary parts respectively:

Real_P1 diepte( ) := r1 a g cosh diepte kr( ) cos diepte ki( ) -
r1 a w

2
 sinh diepte kr( ) cos diepte ki( ) cos ARGk( )

MODk

 -
r1 a w

2
 cosh diepte kr( ) sin diepte ki( ) cos -0.5 p + ARGk( )

MODk

(D289)

Imag_P1 diepte( ) := I r1 a g sinh diepte kr( ) sin diepte ki( ) +
I r1 a w

2
 sinh diepte kr( ) cos diepte ki( ) sin ARGk( )

MODk

 +
I r1 a w

2
 cosh diepte kr( ) sin diepte ki( ) sin -0.5 p + ARGk( )

MODk

(D290)


