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Abstract
In digital holographic particle image velocimetry, the particle image
depth-of-focus and the inaccuracy of the measured particle position along
the optical axis are relatively large in comparison to the characteristic
transverse dimension of the reconstructed particle images. This is the result
of a low optical numerical aperture (NA), which is limited by the relatively
large pixel size of the CCD camera. Additionally, the anisotropic light
scattering behaviour of the seeding particles further reduces the effective
numerical aperture of the optical system and substantially increases the
particle image depth-of-focus. Introducing an appropriate Fourier filter can
significantly suppress this additional reduction of the NA. Experimental
results illustrate that an improved Fourier filter reduces the particle image
depth-of-focus. For the system described in this paper, this improvement is
nearly a factor of 5. Using the improved Fourier filter comes with an
acceptable reduction of the hologram intensity, so an extended exposure
time is needed to maintain the exposure level.

Keywords: digital holography, digital holographic particle image
velocimetry, Fourier filtering, HPIV, DHPIV

1. Introduction

Digital holographic particle image velocimetry (DHPIV)
makes it possible to determine the three-dimensional
displacement field of small tracer particles carried by a
fluid and uses a digital image sensor to record a hologram
[1–4]. It provides many practical advantages by avoiding
the time-consuming chemical processing of silver halide
plates in conventional holographic particle image velocimetry.
However, as a consequence of the relatively large CCD
(or CMOS) pixel size (typically 5–10 µm, or about ten times
the wavelength of the illuminating light) the optical numerical
aperture (NA) of a DHPIV set-up is limited. As a result, a
point-like object such as a tracer particle with a typical size
of a few tens of micrometres has a theoretical depth-of-focus
(DOF) of typically more than 1 mm. This implies a significant

limitation of the spatial resolution along the optical axis of the
system.

The maximum NA that follows from the finite CCD
pixel size is referred to as the nominal NA. In addition,
the anisotropic forward-scattering behaviour of the seeding
particles makes the effective NA even smaller than the nominal
NA, as most of the scattered light travels forward in a very
narrow cone [5], as illustrated in figure 1. Although recording
at 90◦ side-scattering would largely avoid this, the extreme
reduction of the angular light intensity of approximately a
factor of 1012 for 30 µm particles (figure 1) makes this an
unfavourable solution.

Various approaches have focused on improving the spatial
resolution along the optical axis. Stereoscopic holography can
successfully remove the uncertainty along one axis by viewing
from another (perpendicular) direction [1, 6, 7]. Pan and Meng
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Figure 1. Scattered light intensity as a function of the scattering
angle for a 30 µm particle. The intensity scale is logarithmic and
each circle represents a light intensity increase of a factor 100.
(Source: M Raffel, C Wilert and J Kompenhans Particle Image
Velocimetry, A Practical Guide [5]).

studied the use of the phase of the reconstructed light wave
(only available in digital holography) to increase the accuracy
of the reconstructed particle depth coordinate [2]. Although
this work reports an impressive spatial resolution along the
optical axis of approximately 10 µm, it cannot be applied
successfully to transparent particles [2].

While the above methods aim at a general improvement
of the spatial resolution along the optical axis, the following
methods specifically aim to suppress the anisotropic scattering
behaviour of the seeding particles, thereby attempting
to increase the effective NA towards the nominal NA.
Yang, Kostinski and Shaw [8] recently proposed numerical
processing of the digital hologram to decouple particle size
and particle position information. This method aims at the
reduction of the particle image depth-of-focus by modifying
a digital hologram in the frequency domain. However, this
method requires foreknowledge of the particle size within 5%
[8]. Further, the scattered light intensity anisotropy of our
particles is typically six orders of magnitude in the relevant
range. Because the dynamic range of a typical CCD camera
is only three orders of magnitude, we expect that the dynamic
range and the noise level of the camera would limit the
effectiveness of this method.

Alternatively, an appropriate optical filter can provide a
solution for this problem without large requirements of the
dynamic range of the camera. Previously, optical Fourier
filters with a very small beam-stop were used to remove
only the unscattered light while maintaining a high hologram
exposure [6, 7]. Because the particle scattering profile is
nearly unchanged, the anisotropic character of the object beam
remains. This leads to a system with an effective NA that is
significantly smaller than the nominal NA, as explained in
section 2. Liu and Hussain [9] proposed an improved optical
filter for a film-based (non-digital), off-axis holographic PIV
set-up. Improvement of the depth-of-focus was investigated
only for a single Fourier filter. In this paper, we build on
their work by investigating various Fourier filters that have
beam-stops with increasing diameter. The Fourier filters
are specifically designed for application in forward-scattering
digital holographic PIV. The effect of the different filters on
the effective NA and the particle image depth-of-focus is
investigated. We demonstrate that the optical performance is
optimal with a Fourier filter with a beam-stop of intermediate
size, and that this filter successfully increases the effective NA
towards the nominal NA.

Section 2 contains a simple analysis of the relation
between NA and particle image DOF for a digital in-line

Figure 2. Optical configuration for recording a digital hologram.
O: the recorded object; L: a plano-convex lens; FF: an optical
Fourier filter; PBS: a polarizing beam splitter; P: a linear polarizer;
f: the focal length of the lenses.

holographic system, and explains how anisotropic scattering
from particles affects the effective NA of the optical system.
Section 3 supports section 2 with two numerical models. The
holographic set-up and numerical reconstruction method that
was used to study the effect of Fourier filtering is discussed in
section 4. The results and conclusions are given in sections 5
and 6 respectively.

2. Analysis

Most DHPIV systems [1–3] consist of an optical configuration
with a single beam that is both the object beam and the
reference beam. In this paper, we consider a modified system
with spatially separated object and reference beams and a
Fourier band pass filter, as shown in figure 2. This allows
for filtering of the object beam and improvement of the optical
performance of the system.

In a set-up with a plane-wave reference beam, the
maximum nominal NA of the optical configuration depends
on the pixel spacing of the CCD/CMOS sensor and the
illumination wavelength. To achieve a successful hologram
reconstruction, the Nyquist sampling criterion requires that the
highest spatial frequency of the interference pattern projected
on the sensor be less than 1/(2�), where � is the pixel spacing.
This implies that the angle between the propagation direction
of any object light and the reference beam should be less than
φmax and is given by

φmax = arcsin(λ/2�), (1)

where λ is the illumination wavelength. If the reference beam
is parallel to the optical axis, φmax represents the maximal
angle between the object beam and the optical axis. For a
typical DHPIV system φmax is a few hundredths of a radian,
so the nominal NA (NAnom) is equal to φmax in radians. An
effective way to limit the range of propagation angles of the
scattered object light is to include a circular3 aperture in the
Fourier plane of the Fourier filter. The appropriate diameter D
of the aperture is given by

D = 2f sin(φmax), (2)

where f is the focal length of the Fourier filter lenses. The
diameter D is typically a few tens of millimetres with an f of
a few hundred millimetres. The diffraction limit δ (transverse
dimension of a point-source image) of this optical system is
3 Analysing the square arrangement of the sensor pixels on the CCD chip with
a two-dimensional Fourier transform indicates that a square-shaped aperture
is needed for the most effective cut-off at the Nyquist (spatial) frequency.
However, a circular aperture is applied to match the circular symmetry of
particle scattering.
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Figure 3. The measured light power as a function of the scattering
angle for 40–63 µm glass particles (spherical) suspended in resin.

given by [10]

δ = 1.22 λ/NAnom, (3)

which is typically between 10 and 20 µm.
Additionally, the particle light scattering behaviour

greatly influences the optical performance of the system. The
intensity of the scattered light shows a very strong decay for
increasing scattering angle. In the relevant range of scattering
angles (0.00–0.04 rad), the scattered light intensity can decay
several orders of magnitude. For example, using 40–63 µm
particles and green (532 nm) light, the scattered light intensity
decays approximately six orders of magnitude in the relevant
angular range (section 4.1), as shown in figure 3. Due to the
strong particle scattering anisotropy, the light rays that scatter
from the object with a relatively large angle and that contribute
most to the localization of the reconstructed particle image
have a negligible contribution to the hologram. Therefore,
the strong anisotropy in the scattering intensity leads to an
increase of the particle image depth-of-focus. This increase in
particle image DOF can be interpreted in terms of a reduced
numerical aperture, which will be referred to as the effective
NA (NAeff) of the optical system. (The particle image depth-
of-focus DOFp is defined as the full-width half-maximum
(FWHM) of the intensity peak along a longitudinal line that
crosses the centre of a particle image. This term is sometimes
also referred to as the geometrical DOF and should not be
confused with the conventional DOF, which refers to the
longitudinal dimension of a diffraction-limited point-source
image.)

When the particle diameter, dp, is larger than the
diffraction limit, the particle image depth-of-focus (DOFp)
is approximately given by

DOFp ≈ dp/NAeff . (4)

Because the effective NA is always smaller than the nominal
NA, the typical DOFp is larger than the DOFp in the ideal case
when NAeff = NAnom. Hence, the DOFp is often significantly
larger that the 1 mm stated in section 1. Clearly, such a DOFp

is much larger that the transverse dimension of typical seeding
particles and leads to a poor spatial resolution along the optical
axis.

To suppress the increase of the particle image DOF due to
anisotropic particle scattering, an opaque disc with a diameter
C is placed on the optical axis in the Fourier plane of the Fourier

Figure 4. Three Fourier filters that were analysed; from left to right:
the small-disc filter, the intermediate-disc filter and the large-disc
filter. The diameter of the aperture is constant.

Figure 5. The small-disc filter and the intermediate-disc filter with
the second Fourier lens and a real particle image. For clarity, the
filter is rotated into the plane of the page. It is shown that the theory
of geometrical optics predicts a smaller particle image DOF with the
intermediate-disc filter versus the small-disc filter.

filter. The disc is concentric with respect to the outer aperture
(figure 4). The filter factor γ is introduced and defined as

γ = (D − C)/C. (5)

To study the effect of the Fourier filter on the particle image
depth-of-focus, three filters were tested: (1) a small-disc filter
where C � D, or γ � 1; (2) an intermediate-disc filter where
C ≈ 1

2D, or γ ≈ 1; and (3) a large-disc filter where C is only
slightly smaller than D (i.e., C ≈ D), or γ � 1. The small-disc
filter (with C � D) corresponds to a conventional beam-stop
that is supposed to block only the non-scattered light. (The
diameter of such a beam-stop should be at least 1–2 times the
diffraction limit of the primary Fourier lens, which is typically
a few micrometres; in most practical cases this requirement is
amply fulfilled.)

Due to the strong particle scattering anisotropy, the
majority of the light scatters from the object with a small
angle and reaches the Fourier plane near the optical axis [10].
The light intensity decays rapidly with increasing distance
from the optical axis. Therefore, most of the light transmitted
by the spatial filter is centred closely around the inner opaque
disc. Hence, relatively most of the light that passes the
small-disc filter corresponds to a small scattering angle and
the effective NA of the system remains considerably smaller
than the available nominal NA. By increasing the diameter
of the inner disc to an intermediate value, and being able
to increase the CCD exposure time without overexposing,
the light further from the optical axis will make a larger
contribution to the hologram. This is expected to lead to an
increased effective NA and decreased particle image DOF (4)
as is shown schematically in figure 5. However, it is expected
that the large-disc filter has such a narrow transmitting ring
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that the diffraction limit begins to influence the particle image
DOF: if any opaque disc is placed inside the larger aperture,
equation (3) is no longer a correct formulation of the diffraction
limit [10]. Although for a small inner disc the effect of the
inner disc on the diffraction limit is negligible, the inner disc of
the large-disc filter significantly increases the diffraction limit
of the optical system. Because the diffraction limit becomes
larger than the particle diameter, the particle diameter dp in
equation (4) should be replaced by the (larger) diffraction
limit δ, which implies that the further increase of C leads to
an increase of the particle image DOF. Summarizing, a typical
DHPIV system with a Fourier filter, and with particle diameters
in the range of tens of micrometres, is expected to have a
minimal particle image DOF with an intermediate-disc filter.
This is the result of a trade-off between an increasing effective
NA and an increasing diffraction limit of the optical system
for an increasing C. The exact size of the optimal intermediate
disc depends on the specific experimental parameters. For
example, the optimal diameter of the inner disc is closely
related to the particle size. It is expected that if particle
diameters are in the single-micrometre range, resulting in near-
isotropic scattering, a filter with a smaller inner disc results
in a minimal particle image depth-of-focus. Similarly, the
optimal size of the inner disc of the Fourier filter is expected
to be larger for bigger particles. The optimal diameter of the
aperture of the Fourier filter is independent of the particle
size. Therefore, the optimal γ is larger for small particles
and smaller for bigger particles. When focal lengths of the
lenses vary, it is expected that the size of both the inner disc
and the aperture in the Fourier plane should scale linearly,
as described by equation (2). Hence, the optimal γ would be
independent of the focal length of the lenses. If the wavelength
and CCD pixel size vary, the aperture diameter should, for such
a low NA, scale proportional to the wavelength and inversely
proportional to the CCD pixel size, as shown by equations (1)
and (2). The optimal inner-disc diameter is expected to
scale comparably, but not necessarily proportionally, to the
diameter of the aperture. This corresponds to a possibly weak
dependence of γ on the wavelength and CCD pixel size.

The appropriate exposure time of the CCD camera
depends on the size of the inner disc and the scattered light
intensity as a function of the scattering angle. Increasing
the inner-disc diameter, and so reducing γ , reduces the
total amount of transmitted light and therefore implies a
proportionally increased exposure time.

3. Simple numerical model

Two numerical models are used to investigate the effect of
various Fourier filters on the longitudinal profile of a particle
image.

The calculation consists of the following steps: light is
numerically propagated from a particle, along the first ‘f ’
distance, through the first lens, along the second ‘f ’ distance,
through the filter in the Fourier plane, along the third ‘f ’
distance, through the second lens, and then to the real particle
image. In both models, the particle is a point source on the
optical axis that scatters isotropically. The Fresnel diffraction
integral [10] is applied for propagation of light along the optical
axis. Both lenses are modelled by a thin-lens approximation

(quadratic exponential phase delay) [10]. The filter in the
Fourier plane has a fully transmitting region, where the light
amplitude is unchanged, and opaque regions, where the light
amplitude is set to zero. To visualize the longitudinal profile
of the particle image, propagation after the second lens is
performed several times over a distance that ranges from
(f − �z) to (f + �z), where f is the focal length of the lens
and �z is half of the longitudinal range of interest. Throughout
the system, the light field is modelled as a complex-amplitude
scalar. Conversion to light intensity is the last step.

The first model illustrates the effect of a filter with a
fixed aperture diameter (D = 24 mm) and a varying inner-disc
diameter (C = 1–20 mm) (figure 6(a)) on the longitudinal
profile of the particle image. Figure 6(b) shows the increasing
particle image DOF for an increasing C. In section 2 this
increase is associated with the changing diffraction limit of the
system. The increase of the particle image DOF is also shown
in figure 6(c). The decreasing transmission for increasing C is
also illustrated in figure 6(c). Because in this model, scattering
is isotropic, transmission is proportional to (D2 − C2)/D2.
Clearly, this model favours the use of a small inner disc to
obtain a small particle image DOF and a high transmission.
This would explain the frequent former application of small
inner discs in HPIV set-ups [6, 7].

However, the strong light intensity anisotropy with
scattering from realistic particles cannot be ignored. The
anisotropy effect is included in the second model.

Although the anisotropy can be introduced by modelling
Mie-scattering from a tracer particle, this approach is not
followed because the extensive mathematics and physics of
Mie-scattering theory is considered beyond the scope of this
paper. Instead, the anisotropy is modelled by an adjustment
in the Fourier filter. As described in section 2, the anisotropy
leads to a concentration of the light just around the inner disc.
For this reason, the anisotropy is here modelled by defining the
Fourier filter as a fully transmitting ring with an inner diameter
C and an outer diameter 1.2C, where C ranges from 1–20 mm.
The filter is opaque elsewhere. The power-law dependence
of the realistic light intensity in the Fourier plane on the
radius (section 4.1), and choosing the ring’s outer diameter
proportional to the inner diameter, makes this model identical
to thresholding the realistic light intensity in the Fourier plane.
For the proportionality value of 1.2 (chosen for practical
reasons) thresholding occurs at (section 4.1) (1.2−2.9 =)
0.59 times the intensity at the edge of the inner disc. In other
words, in this model, Fourier plane positions (x, y) where the
realistic light intensity is larger than the threshold (C < r <

1.2C), the modelled light amplitude is constant and finite, and
where the realistic light intensity is smaller than the threshold
(r < C, r > 1.2C), the modelled light amplitude is zero
(figure 6(d)). Figure 6(e) shows that the second model predicts
a decreasing particle image DOF for an increasing inner-disc
diameter (opposite to the trend in figure 6(b)!). This result is
also shown in figure 6(f ). The second model clearly favours
the use of a large inner disc for a minimal particle image DOF.

Because the particle image DOF curve in figure 6(c) rises
sharply at high C-values and this curve in figure 6(f ) rises
sharply at low C-values, these two results could intuitively
be combined to predict that, in practice, a minimal particle
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Figure 6. Two simple numerical models that show the effect of various Fourier filters on the longitudinal profile of the particle image.
Figures (a)–(c) correspond to the first model with isotropic scattering. Figures (d)–(f ) correspond to the second model, where the realistic
anisotropic scattering is modelled as a constant light intensity on a narrow ring around the inner disc. The inner diameter of the ring is C, the
outer diameter is 1.2C. With C = 20 mm, both models are identical. The scales of the horizontal axes in (b) and (e) are different for optimal
visualization of the various curves.

DOF can be obtained with a Fourier filter with an intermediate
inner-disc diameter. This supports4 the content of section 2.

4. Experimental procedure

4.1. Digital hologram recording

The three different Fourier filter configurations were tested
in an in-line digital holographic optical system as shown in
figure 2. The illumination source of the set-up is a diode-
pumped continuous-wave 150 mW Nd:YAG laser (Coherent,
Compass 315M-150) with a light wavelength of 532 nm.
The laser beam is expanded, collimated and then split into
separate object and reference beams. The object is a resin-
filled tank with stationary 40–63 µm tracer particle (Sphericel)
at a density of approximately 103 particles per cm3. This object
with stationary particles allows for full control of the position
of the particles and hence for calibration measurements on the
system. The depth of the tank along the optical axis is 20 mm.

The hologram is recorded by a lens-less digital CCD
camera (PCO Sensicam 690LL) with 1376 × 1040 pixels and
a pixel spacing of 6.45 µm. According to equation (1) the

4 Despite the fair predictions of these models, we would still not recommend
the use of a numerical model for the prediction of the optimal inner-disc
diameter. Finding an exact optimal value of C requires an improved model
with Mie-scattering simulations, which implies a considerable computational
effort. An experimental approach, however, requires the optimization of only
one parameter, namely the inner-disc diameter, C. Production and testing of
a few filters typically takes only a few days, making it a far more practical
approach.

maximum angle between the reference beam and object light
should be less than 0.041 rad. The reference beam and the
object beam are combined and propagate towards the CCD
camera along the same axis. This on-axis set-up is appropriate
for digital holography, because, for a plane-wave reference
beam, fringes have a maximum size.

The Fourier filter consists of a spatial filter and two
identical positive plano-convex lenses with a 300 mm focal
length and 50 mm diameter. The filter and the lenses are all
separated by the lens focal length. Equation (2) shows that a
focal length of 300 mm leads to a practically sized spatial filter
with an aperture diameter of 24 mm.

The Fourier-filtered object light and the reference beam
are combined by a beam splitter and travel through a linear
polarizer. This polarizer ensures uniform polarization at
the CCD chip and suppresses other states of polarization
introduced when light scatters from the object. If the object
light and reference beam at the CCD are not polarized
uniformly, it is expected that hologram fringe contrast is
negatively affected.

An important aspect is the positioning of the camera.
For our configuration, the camera was positioned in a region
between 1 and 3 cm behind the real image of the particles that
is created by the lenses of the Fourier filter. If the CCD is
positioned closer to the real image, the virtual image in the
reconstruction approaches the brightness of the real image,
making it difficult to distinguish the real image from the
virtual image and preventing a successful reconstruction of
the particle locations. If the CCD is positioned too close to
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the real image, it is also expected that the signal-to-noise ratio
of the hologram reconstruction would be negatively affected,
because a reconstructed particle image would be derived from
a smaller area on the sensor (i.e., fewer hologram pixels). This
makes the reconstruction more sensitive to CCD camera noise.
On the other hand, if the CCD camera is positioned too far from
the real image, only a part of a diverging out-of-focus particle
image falls onto the CCD chip. This would negatively affect
the particle image depth-of-focus, because it is expected that
the entire circular out-of-focus image should be recorded to
allow for an optimal particle reconstruction.

4.2. Numerical reconstruction

Rayleigh–Sommerfeld diffraction theory [10] is applied to
obtain the light amplitude in 200 parallel reconstruction planes.
The hologram image, Ih, is regarded as a grating and the
light amplitude in a reconstruction plane, Uz, is calculated
by convoluting the hologram intensity with a kernel Kz(x, y),
representing the light wave emitted by a point source [10].
This is a well-described method for obtaining an image in a
parallel reconstruction plane [11],

Uz(x, y) = Ih(x, y) ∗ Kz(x, y),

with

Kz(x, y) = 1

iλ

exp
(
ik

√
x2 + y2 + z2

)

√
x2 + y2 + z2

, (6)

where ∗ represents a two-dimensional (2D) convolution, i is
the imaginary unit, λ is the wavelength, k is the wavenumber, x
and y are the transverse coordinates, and z is the distance from
the CCD chip to a parallel reconstruction plane. The cosine
term in the Raleigh–Sommerfeld solution can be neglected
for this low-NA set-up. Equation (6) does not use the
Fresnel approximation because the use of this approximation
is possibly not justified for all z-values. The calculation time
of the hologram reconstruction with or without application of
the Fresnel approximation is identical.

The convolution is performed with 2D fast Fourier
transform (FFT) algorithms on a personal computer (CPU:
AMD 2.5 GHz; OS: Linux Red Hat) using Matlab 6.5. A
selection of 1024 × 1024 pixels is cropped from the hologram
to optimize the computing speed for the 2D FFTs. In the
Fourier transform of the hologram, the spatial frequencies
larger than (D/2·λ·f ), or 75 mm−1 in our case, should be
zero due to the presence of the aperture in the Fourier plane
of the recording set-up. The spatial frequencies smaller
than (C/2·λ·f ) should also be zero, due to the presence of
the opaque disc in the Fourier plane. Pixel values outside
the resulting ‘doughnut’ in the numerical Fourier plane that,
against expectation, are not equal to zero, are considered to be
noise and numerically set to zero.

The kernel Kz(x, y) has only finite (non-zero) values on
a disc where the angle between the propagation direction of
the light and the optical axis is sufficiently small to avoid
aliasing in the hologram, i.e., smaller than 0.041 radians. The
obtained Fourier transform of the hologram and the Fourier
transform of the kernel are multiplied and the product is
inversely Fourier transformed. The complex-amplitude image
is multiplied by its own conjugate to obtain the light intensity
in the reconstruction plane. This process is repeated for all

Figure 7. A modelled three-dimensional light intensity profile of a
real particle image near its focus. The scale of the transverse (x, y)
axis does not correspond to the scale of the longitudinal (z) axis.

reconstruction planes, each separated by 100 µm, to obtain a
volume of 6.6 × 6.6 × 20 mm3 containing 1024 × 1024 ×
200 volume elements or voxels.

The following procedure is applied for the particle
detection: a reference volume is defined numerically that
contains an estimated three-dimensional (3D) light intensity
pattern of a real image of a single particle. As shown in figure 7,
the reference volume consists of a cone along the optical axis of
13 × 13 × 19 voxels, corresponding to a volume of 84 × 84 ×
1900 µm3. This synthetic reference volume is correlated with
the previously determined total volume, resulting in a volume
with several correlation maxima. This volume is scanned for
local maxima that are higher than one-half of the maximum
correlation value in the volume. These points are assumed
to represent actual particle positions and the 3D coordinates
of all particles are stored in an array. The analysis typically
takes 1 h per reconstructed volume (using 1.5 Gbyte physical
memory).

5. Optimizing Fourier filtering

5.1. Measurement of the scattered light intensity profile

The optimal design of the Fourier filter depends strongly on the
anisotropic scattering behaviour of the particles. To study the
scattering behaviour of our particles in more detail, the light
intensity is measured as a function of the scattering angle in
an intermediate experiment.

Using the set-up as described in section 4, the light
intensity in the Fourier plane was measured directly by means
of a power meter with a light sensitive area of about 1 mm2.
The measured light intensity pattern as a function of a
transverse coordinate in the Fourier plane can be interpreted
as the scattering light intensity as a function of the scattering
angle at the object [10]. The measured light intensity is plotted
as a function of the scattering angle in figure 3. The graph
clearly shows the decrease of light intensity with increasing
scattering angle. In a double logarithmic graph, the data
points are approximately distributed along a straight line. This
suggests a power-law relation between the light intensity and
the scattering angle,

I = A/φB (7)

where I is the light intensity (in nW mm−2), φ is the scattering
angle, and A and B are numerical coefficients. A fit of
the data in figure 3 to the power law in equation (7) yields
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Figure 8. The steps that lead to the profiles of figure 9.

A = 10−4 nW radB mm−2 and B = 2.9. The value of A depends
on the particular laser power and the optical configuration.
The value of B is close to 3, which would be the expected
exponent for light diffracted by a small circular aperture when
ignoring fine-structured variations [10].

5.2. Measuring the effect of different Fourier filters

Three different filters were applied in the holographic system
described in the previous section, i.e., with C = 1 mm (small-
disc filter, γ = 23), 10 mm (intermediate-disc filter, γ = 1.4),
and 20 mm (large-disc filter, γ = 0.2). (The diameter D
of the anti-aliasing aperture is 24 mm; see the previous
section.) The relative area of transmission of the filter is (D2 −
C2)/D2, and equals 99.8%, 82.6% and 30.6% for the respective
filters. Because the appropriate CCD exposure time should be
inversely proportional to the surface-integrated light intensity
at the filter, the CCD exposure times would, with the respective
filters and in the case of isotropic particle scattering, relate as
1.00 : 1.21 : 3.26. However, because particle scattering is
strongly anisotropic, these ratios of the CCD exposure time
are expected to be significantly larger.

Following the reconstruction and particle detection
procedure described in the previous section, the positions of
about 100 particles per hologram were determined. The light
intensity along a longitudinal line, which intersects a particle
centre, is determined for all particles, and this was repeated
for each of the Fourier filters. The longitudinal intensity
profiles are averaged over all particles for each Fourier filter.
The procedure is shown schematically in figure 8, and the
result is shown in figure 9. The graph in figure 9 shows that
the DOFp (defined as the FWHM of the longitudinal profile)
for the 1 mm, 10 mm and 20 mm discs are 5.34, 1.08 and
2.99 mm respectively. As expected, for the three filters the
10 mm intermediate-disc filter yields results with the smallest
DOFp. Note that the DOFp for the 1 mm small-disc filter (i.e.,
the one that would correspond to a conventional DHPIV set-
up) spans a significant part of the full depth of the measurement
domain. The DOFp for the intermediate-disc 10 mm filter is
4.9 times smaller than the DOFp corresponding to the small-
disc 1 mm filter, and 2.8 times smaller than the DOFp

corresponding to the large-disc 20 mm filter. Figure 10 shows
a slice of the intensity profile of a single particle image for each
Fourier filter, and confirms the results shown in figure 9. It also
shows that the transverse particle image size increases notably
for the 20 mm filter as a result of the increased diffraction
limit for the large-disc filter (as explained in section 2). The
CCD exposure times are 10 µs, 500 µs and 2750 µs for the
respective filters. This confirms that the appropriate CCD

Figure 9. Experimental result: the average light intensity as a
function of the longitudinal coordinate in holographic
reconstructions of about 100 seeding particles for the three Fourier
filters.

Figure 10. Three reconstructions of one particle, recorded with the
three different Fourier filters. An increase of C from 1 to 10 mm
leads to a significant reduction of the particle image DOF. The
increased transverse dimension of the particle image is clearly
visible for C = 20 mm.

exposure time ratios are significantly larger than the ratios
corresponding to isotropic scattering, namely 1 : 50 : 275.
These ratios are theoretically confirmed within a factor 3 when
integrating the light intensity of equation (7) over the Fourier
plane and taking the reciprocal values to obtain the exposure
times.

These experimental results are summarized in table 1: the
effective NA is calculated by dividing the smallest particle
diameter, i.e., 40 µm, by the measured FWHM particle image
depth-of-focus (4). The ratio of the effective NA and nominal
NA is based on a nominal NA of 0.041, and equals 18%, 90%
and 32% for the small-disc filter, intermediate-disc filter and
large-disc filter respectively.

The use of an enlarged (10 mm) inner disc implies a
reduction of the amount of transmitted light that reaches the
CCD sensor. If increasing the exposure time to compensate for
the reduction of light intensity is not possible (for example, due
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Table 1. Summary of measurement results. Calculations are described in section 5.

Filter: C (mm) γ (= (D−C)/C) Depth-of-focus (mm) NAeff (−) NAeff /NAnom (%) Exposure time (µs)

1 23 5.34 7.5 × 10−3 18 10
10 1.4 1.08 3.7 × 10−2 90 500
20 0.2 2.99 1.3 × 10−2 32 2750

Figure 11. Histogram of longitudinal shifts of reconstructed
particles. All particles were shifted exactly 1 mm.

to particle motion), it can be compensated by an increase in the
amount of light supplied by the light source. Although roughly
50 times less light reaches the CCD camera with the 10 mm
filter in comparison to the 1 mm filter, available lasers have
sufficient power to compensate for this. For example, with
an exposure time of 500 µs, the continuous-wave 150 mW
laser delivers 75 µJ to the system. A pulsed laser could easily
deliver 75 mJ per pulse.

Further, the effect of omission of the outer aperture from
the Fourier filter is studied. Although it may be expected that
the outer aperture is redundant due to the low light intensity
away from the optical axis, experimental results indicated that
the particle image longitudinal resolution slightly deteriorated
after removing the outer aperture.

Because the effectiveness of a DHPIV set-up largely
depends on the ability of the system to accurately reconstruct
particle positions, and because the spatial resolution along
the optical axis is relatively poor, the measured longitudinal
particle position accuracy is further analysed.

With the set-up described in section 4 and the 10 mm
Fourier filter, a holographic recording is made of the described
tank with fixed particles at a certain position and of the same
tank after it was moved exactly 1 mm along the optical
axis. Two reconstructed volumes are derived from the two
holograms and particle positions are determined as described
in section 4. Then, for each particle, the longitudinal sub-
pixel coordinate is obtained by performing a seven-point least-
squares Gaussian fit. The measured longitudinal particle
position is a direct result of one of the fit parameters. Then,
by subtracting the longitudinal coordinate of each particle
before and after the 1 mm shift, a set of displacements
is obtained, which should be distributed around 1 mm.
These data are shown as a histogram in figure 11. The

result shows that the centre of the histogram is located at
1 mm, which means that there is no bias in the measured
displacement and that there is no undesired longitudinal
scaling factor present in the experimental set-up and numerical
reconstruction procedure. Secondly, the approximate full-
width half-maximum (FWHM) of the histogram is 200 µm.
This value is about one order of magnitude smaller than the
FWHM of the average longitudinal intensity profile (solid
line in figure 9), which agrees with a rule of thumb that it
should be possible to experimentally determine the position
of a Gaussian peak with an accuracy that is one order of
magnitude better than the typical width of the peak [12–14].

The transverse particle coordinates are simply derived
from the integer pixel point of local maximum light intensity.
The accuracy of the transverse particle coordinate is therefore
nearly two orders of magnitude better than the longitudinal
particle coordinate, so no effort is currently made for its
improvement.

6. Conclusions

The particle image depth-of-focus and effective numerical
aperture of a DHPIV system are primarily determined by the
anisotropic scattering of light by the tracer particles. It is
demonstrated that the effects due to the anisotropic scattering
can be reduced by means of an appropriate Fourier filter that
blocks the scattered light near the optical axis of the optical
system. Three filter configurations were tested with filter
factors γ = 23, γ = 1.4, γ = 0.2 which correspond to 1 mm,
10 mm and 20 mm diameter opaque discs respectively. For
the 10 mm filter, the particle image depth-of-focus is 4.9 times
smaller than for the 1 mm filter and 2.8 times smaller than
for the 20 mm filter. These results agree with the theoretical
prediction of geometrical optics that the 10 mm filter has a
smaller particle image DOF than the 1 mm filter. These results
also agree with the expectation that, for the 20 mm filter, the
particle image DOF has again increased due to a significant
increase of the transverse size of the particle image as a result of
an increase in the diffraction limit of the optical system. These
results are also in agreement with the two numerical models
in section 3. It is shown in section 5 that the reduction of light
that reaches the CCD sensor with the intermediate-disc filter
can, next to adjustment of the CCD exposure time, be easily
compensated by the power of available lasers. It is further
demonstrated that the uncertainty for the measured position
of a single particle along the optical axis is about 200 µm.
This uncertainty for a digital HPIV system is close to the
reported inaccuracies of optical holographic PIV systems
using high-resolution films or plates [5]. These conclusions
indicate that the optical performance of the system is optimal
for the intermediate-disc filter.

Because previous publications describe holographic
recording set-ups with small high-pass filters [6, 7] or without
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any Fourier filtering at all [1–3], it is expected that there may
be room for improvement in the effective NA and DOFp of
both conventional and digital holographic PIV systems.
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